WO2014040282A1 - 增强下行控制信道资源与天线端口的映射方法和装置 - Google Patents

增强下行控制信道资源与天线端口的映射方法和装置 Download PDF

Info

Publication number
WO2014040282A1
WO2014040282A1 PCT/CN2012/081433 CN2012081433W WO2014040282A1 WO 2014040282 A1 WO2014040282 A1 WO 2014040282A1 CN 2012081433 W CN2012081433 W CN 2012081433W WO 2014040282 A1 WO2014040282 A1 WO 2014040282A1
Authority
WO
WIPO (PCT)
Prior art keywords
mapping
resource
control channel
downlink control
antenna ports
Prior art date
Application number
PCT/CN2012/081433
Other languages
English (en)
French (fr)
Inventor
王键
吴强
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to JP2015531416A priority Critical patent/JP5990332B2/ja
Priority to CN201280007715.9A priority patent/CN103503394B/zh
Priority to KR1020157009359A priority patent/KR101709598B1/ko
Priority to EP12884540.1A priority patent/EP2887598B1/en
Priority to PCT/CN2012/081433 priority patent/WO2014040282A1/zh
Priority to EP16160163.8A priority patent/EP3089418B1/en
Publication of WO2014040282A1 publication Critical patent/WO2014040282A1/zh
Priority to US14/657,389 priority patent/US10009880B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences

Definitions

  • the present invention relates to a Long Term Evolution (LTE) technology, and more particularly to a method and apparatus for enhancing mapping of downlink control channel resources and antenna ports.
  • LTE Long Term Evolution
  • the control data for the auxiliary service data demodulation of the LTE system is transmitted through a Physical Downlink Control Channel (PDCCH), and Orthogonal Frequency Division Multiple Access (Orthogonal Frequency Division Multiple) is usually used. , referred to as: OFDM) mode transmission.
  • the PDCCH includes resources distributed in the time domain and the frequency domain, and may be referred to as a downlink control channel resource (referred to as a downlink resource); the downlink resource is divided into multiple OFDM symbols in the time domain, and is divided into multiple in the frequency domain.
  • a subcarrier, a certain subcarrier within a certain OFDM symbol is called a resource element (Resource Element, RE: abbreviation).
  • the mapping between the RE and the antenna port that carries the control data needs to be established, and the control data of the RE bearer is corresponding to the antenna port according to the mapping relationship, and the reference signal of the antenna port is adopted.
  • the control transmits the control data.
  • the control data carried by the RE is demodulated by the reference signal corresponding to the antenna port corresponding to the RE according to the mapping relationship, and the control data is obtained.
  • the control data on each subframe is carried by the REs in the first few OFDM symbols of the subframe, and the REs in the remaining OFDM symbols are used.
  • the capacity of the downlink control channel needs to be increased.
  • the bearer space of the control data needs to be extended from the area of the first few OFDM symbols to the area of the entire subframe.
  • Such a control channel may be referred to as an enhanced physical downlink control channel (Enhanced PDCCH, referred to as ePDCCH).
  • ePDCCH enhanced physical downlink control channel
  • ePDCCH enhanced downlink control channel
  • the present invention provides a method and apparatus for enhancing mapping of downlink control channel resources and antenna ports.
  • the mapping between resources and antenna ports in the ePDCCH is determined to meet the requirements of LTE development.
  • the present invention provides a method for enhancing a mapping between a downlink control channel resource and an antenna port, including: establishing a mapping between each resource element and an antenna port in a downlink control channel resource;
  • the pair includes a plurality of resource element groups, each of the resource element groups includes a plurality of the resource elements, and the mapping of each resource element and the antenna port in the enhanced downlink control channel resource includes: In the resource element group, the antenna ports corresponding to the resource elements are alternately changed according to the order defined by the logical indexes of the plurality of resource elements.
  • the mapping between each resource element and the antenna port in the enhanced downlink control channel resource further includes: the another one of the multiple resource element groups
  • the mapping of each resource element and the antenna port in the enhanced downlink control channel resource further includes: a sequence defined by the logical element of the resource element group And the antenna ports corresponding to the resource elements with the same logical index in the different resource element groups are alternately changed according to a preset alternating period.
  • the determining, by the physical index, the mapping between the resource element and the antenna port including: the antenna ports corresponding to all resource elements included in each of the OFDM symbols are the same; and, Between the OFDM symbols, the alternating periods of the OFDM symbols in the time domain are alternately changed.
  • the method further includes: performing, by using a plurality of resource elements corresponding to the partial subcarrier index in the frequency domain, cyclically shifting the antenna ports corresponding to the multiple resource elements in the time domain Bit.
  • the determining, by the physical index, the mapping between the resource element and the antenna port, the method includes: the antenna ports corresponding to the multiple resource elements corresponding to the same subcarrier index are the same; and, corresponding to Between the resource elements of different subcarrier indexes, according to the order defined by the subcarrier index in the frequency domain, different antenna ports corresponding to the resource elements are alternately changed according to a preset alternating period.
  • the antenna ports corresponding to the multiple resource elements corresponding to the same subcarrier index are the same, and different antenna ports corresponding to the resource elements are alternate according to a preset alternating period.
  • changing further comprising: cyclically shifting the antenna ports corresponding to the plurality of resource elements in a frequency domain among the plurality of resource elements corresponding to the partial OFDM symbol index in the time domain.
  • the enhanced downlink control channel resource includes multiple
  • each of the PRB pairs performing the step of establishing a mapping of each resource element and an antenna port in the enhanced downlink control channel resource; and the plurality of the PRB pairs having the same resource element and an antenna port Mapping.
  • the enhanced downlink control channel resource includes multiple PRB pairs; each of the PRB pairs performs each of the resource elements and antenna ports in the enhanced downlink control channel resource.
  • the step of mapping; the plurality of the PRB pairs, according to the order defined by the physical index of the PRB Pair in the frequency domain, the antenna port corresponding to the resource element of the corresponding position in the different PRB Pair, according to a preset The alternating periods alternate.
  • the enhanced downlink control channel resource includes multiple PRB pairs; each of the PRB pairs performs each of the resource elements and antenna ports in the enhanced downlink control channel resource. a step of mapping; a plurality of the PRB pairs, according to the sequence defined by the logical index of the PRB Pair in the enhanced downlink control channel resource, the antenna port corresponding to the resource element of the corresponding location in the different PRB Pair, according to The preset alternating periods alternate.
  • the present invention provides an apparatus for enhancing downlink channel resource and antenna port mapping, including: a resource mapping unit, configured to establish each resource element and antenna end in a downlink control channel resource. Port mapping;
  • a data mapping unit configured to establish a correspondence between the control data carried by the resource element and the antenna port corresponding to the resource element, to send or receive the resource element carrying according to the reference signal corresponding to the antenna port Control data.
  • each of the resource element groups includes a plurality of the resource elements
  • the resource mapping unit is specifically configured to: in each resource element group, according to the plurality of resource elements
  • the logical index is defined in an order in which the antenna ports corresponding to the respective resource elements are alternately changed.
  • the resource mapping unit is further configured to be the same in the antenna ports of the multiple resources.
  • the resource mapping unit is further configured to alternate between different resource element periods in an order defined by a logical index of the resource element group between the plurality of resource element groups.
  • each of the OFDM symbols include a plurality of the resource elements, each of the resource elements corresponding to one subcarrier in the frequency domain;
  • the resource mapping unit is specifically configured to determine, according to a physical index, a mapping between the resource element and an antenna port, where The physical index includes an OFDM symbol index corresponding to the OFDM symbol, and a subcarrier index corresponding to the subcarrier.
  • the resource mapping unit includes: any one or more of a first mapping subunit, a second mapping subunit, a third mapping subunit, and a fourth mapping subunit; a first mapping subunit, configured to set an antenna port corresponding to all resource elements included in each of the OFDM symbols to be the same; and, between the plurality of the OFDM symbols, according to the OFDM symbol index in a time domain The antenna ports corresponding to the resource elements of the different OFDM symbols are alternately changed according to a preset alternating period; the second mapping sub-unit is configured to set the frequency after the processing of the first mapping sub-unit The antenna ports corresponding to the plurality of resource elements are cyclically shifted in the time domain, and the third mapping sub-units are configured to correspond to the same one of the plurality of resource elements corresponding to the partial sub-carrier index on the domain.
  • the antenna ports of the resource elements are the same; and the antenna ports corresponding to the different resource elements are determined according to the order defined by the subcarrier index in the frequency domain, and the antenna ports corresponding to the resource elements are preset according to the preset Alternating periods of alternating change; the fourth mapping sub-unit, configured to: after processing of the third mapping sub-unit, set a plurality of resource elements corresponding to a partial OFDM symbol index in a time domain, The antenna ports corresponding to the resource elements are cyclically shifted in the frequency domain.
  • the enhanced downlink control channel resource includes multiple PRB pairs
  • the resource mapping unit is configured to perform, by using, the enhanced downlink control channel resource for each of the PRB pairs.
  • the enhanced downlink control channel resource includes multiple
  • the resource mapping unit configured to perform, for each of the PRB pairs, the step of establishing a mapping of each resource element and an antenna port in the enhanced downlink control channel resource;
  • the PRB pair according to the physical index of the PRB Pair or the sequence defined by the logical index, the antenna ports corresponding to the resource elements of the corresponding positions in the different PRB pairs are alternately changed according to a preset alternating period.
  • the present invention provides an apparatus for mapping a downlink control channel resource and an antenna port, including: a processor, configured to establish a mapping of each resource element and an antenna port in the enhanced downlink control channel resource, and carry the resource element Establishing a correspondence between the control data and the antenna ports corresponding to the resource elements;
  • a memory configured to store a mapping between each of the resource elements established by the processor and an antenna port, and a correspondence between the control data and an antenna port.
  • FIG. 1 is a schematic diagram of resource division in an embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention
  • FIG. 2 is a schematic diagram of an embodiment of a method for enhancing downlink channel resource and antenna port mapping according to the present invention. Schematic diagram of the process;
  • FIG. 3 is an antenna port mapping table in another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention
  • FIG. 4 is an antenna port mapping table in still another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention
  • FIG. 5 is an antenna port mapping table in still another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention
  • FIG. 6 is an antenna port mapping table in still another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention
  • FIG. 7 is a schematic diagram of a cyclic shift of an antenna port in another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention.
  • FIG. 8 is an antenna port mapping table in still another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention.
  • FIG. 9 is an antenna port mapping table in still another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention.
  • FIG. 10 is a schematic diagram of a cyclic shift of an antenna port in another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention.
  • 11 is an antenna port mapping table in still another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention.
  • FIG. 12 is a schematic diagram of PRB Pair distribution according to still another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention.
  • 13 is a schematic diagram of PRB Pair distribution according to still another embodiment of the method for enhancing downlink channel resource allocation and antenna port mapping;
  • FIG. 14 is a schematic diagram of PRB Pair distribution according to still another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention.
  • 15 is an antenna port mapping table of still another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention.
  • 16 is a schematic structural diagram of an embodiment of an apparatus for enhancing downlink channel resource and antenna port mapping according to the present invention
  • 17 is another implementation of an apparatus for enhancing downlink channel resource and antenna port mapping according to the present invention. Schematic diagram of the structure;
  • FIG. 18 is a structural diagram of an entity for an embodiment of an apparatus for mapping a downlink control channel resource and an antenna port according to the present invention.
  • the downlink control channel resource is enhanced.
  • the base station sends the service data to the terminal, the base station also sends control data for assisting the terminal side to demodulate the service data.
  • the control data is transmitted through the downlink control channel.
  • the downlink control channel includes downlink control channel resources, and the control data is actually carried by the resource.
  • the enhanced downlink control channel resource is shown in FIG. 1.
  • FIG. 1 is a schematic diagram of resource partitioning in an embodiment of a method for enhancing downlink channel resource mapping and antenna port mapping according to the present invention. Some definitions involved in this resource are illustrated in conjunction with Figure 1:
  • the downlink control channel resource is divided into multiple parts in the time domain, and each part may be referred to as one OFDM symbol, that is, a column corresponding to the OFDM symbol indicated in FIG. 1;
  • Subcarrier The resource is divided into multiple subcarriers in the frequency domain, that is, the rows corresponding to the subcarriers indicated in FIG. 1 belong to the same subcarrier;
  • the resource element RE the OFDM symbol and the subcarrier division are actually divided into the grid shape shown in FIG. 1 in the time domain and the frequency domain; wherein, corresponding to a certain OFDM symbol
  • the subcarriers are called resource elements RE, which is equivalent to one of the grid cells in the grid; and, as can also be seen from FIG. 1, one OFDM symbol includes a plurality of REs;
  • each downlink subframe includes two slots, each slot has 7 or 6 OFDM symbols, that is, 14 or 12 OFDM symbols in total; Only one time slot is shown, and includes 7 OFDM symbols as an example;
  • RB Resource Block
  • - RBs include 12 subcarriers in the frequency domain and one slot in the time domain, that is, 7 or 6 OFDM symbols. Therefore, one RB can contain 84 OFDM symbols. Or 72 RE; resource block 1 is shown in Figure 1, the resource block 1 includes 84 REs, and resource block 2 shows only a portion;
  • PRB Pair There are two time slots in one subframe, so it also includes two RB, the two RBs may be referred to as a resource block pair PRB Pair; the resources of the downlink control channel may include one PRB Pair, and may also include multiple PRB Pairs;
  • Enhanced Resource Element Group (eREG): The mapping method in the embodiment of the present invention is directed to an enhanced physical downlink control channel ePDCCH. Therefore, the corresponding resource element group is also an enhanced resource element group eREG; In the PRB Pair in the frame, multiple eREGs are included, for example, every 9 REs form an eREG;
  • control data not all REs are used to carry control data, and some REs are dedicated to carrying reference signals corresponding to antenna ports, and the reference signals are mainly used for: control data.
  • the transmitting end modulates and transmits the control data through the reference signal, and the receiving end of the control data demodulates the received control data by using the reference signal; for example, the resource element REs shown in FIG. 1 is dedicated to carrying the reference signal.
  • the RE that normally carries the reference signal is in the time domain and the frequency domain.
  • the control data may be sent through multiple antenna ports, and correspondingly also include REs for respectively carrying different reference signals. For example, four REs that can be set to carry reference signals corresponding to different antenna ports.
  • the mapping means that, as described above, when the control data is transmitted by the transmitting end, it is required to be transmitted by the coded modulation, and the reference signal associated with the control data. Transmitted with the same coded modulation scheme as the control data; when the control data is received at the receiving end, it needs to be demodulated and acquired by the reference signal; that is, when the control data is carried to a certain RE, it must be determined that the control data needs to be obtained.
  • the reference signal corresponding to which antenna port is used for modulation or demodulation is also equivalent to determining the correspondence between the RE carrying the control data and the antenna port; for example, assuming that the control data is carried in the first RE, the first RE and the antenna Corresponding to port A, it indicates that the control data carried in the first RE needs to be modulated or demodulated by the reference signal of the antenna port A.
  • mapping method of the embodiment of the present invention is described in detail below.
  • the method mainly describes how to determine the mapping of the enhanced downlink control channel resource and the antenna port.
  • FIG. 2 is a schematic flowchart of an embodiment of a method for enhancing a mapping between a downlink control channel resource and an antenna port according to the present invention. As shown in FIG. 2, the method may include:
  • each resource element RE and the day in the enhanced downlink control channel resource are to be enhanced.
  • the mapping relationship of the line ports is determined, instead of only determining the mapping relationship between the partial REs and the antenna ports. For example, if a downlink control channel occupies a resource of a PRB pair, the mapping relationship between the RE and the antenna port used to carry the control data in the PRB Pair is established.
  • the mapping relationship between the established RE and the antenna port means that, for example, a certain RE is mapped to the antenna port A, indicating that the control data carried in the RE is demodulated by the reference signal corresponding to the antenna port A.
  • the mapping relationship established in this embodiment is the mapping between the RE and the antenna port, that is, the RE corresponding to a certain time domain location and the frequency domain location is bound to the antenna port; for example, the RE and the antenna port may be set according to an index.
  • the index may be a logical index or a physical index, and the specific mapping manner will be described in detail in the following embodiments.
  • the main purpose of the mapping between the control data of the downlink control channel and the antenna port is to establish a correspondence between the control data carried in the resource and the antenna port, and then transmit the control data according to the reference signal corresponding to the antenna port. Or demodulating the received control data according to the reference signal corresponding to the antenna port.
  • the following describes the various alternative ways of establishing the mapping between the REs and the antenna ports.
  • the method for mapping the antenna ports in the PRB Pair will be described first by using a PRB Pair as an example.
  • the downlink control channel is used as an example to describe the mapping mode in multiple PRB Pairs.
  • FIG. 3 is an antenna port mapping table in another embodiment of the method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention.
  • the antenna port mapping in a PRB pair is taken as an example in the embodiment.
  • the PRB Pair is exemplified by including 14 OFDM symbols in a time domain in one subframe.
  • the control data of the present embodiment is transmitted through two antenna ports, for example, through the antenna port A and the antenna port B, and each RE needs to correspond to the antenna port A or the antenna port B.
  • the location of the REs in Figure 3 is fixed for carrying the antenna port reference signal and will not be described again.
  • the REs outside the reference signal bearer areas are used for carrying control data.
  • This embodiment focuses on the manner of mapping the REs and antenna ports of the control data bearer area.
  • the mapping mode of the embodiment is related to the logical index of the RE. Therefore, the logical index of the RE is first described as follows: As described above, in the PRB Pair, multiple eREGs are included, and this embodiment includes 16 eREG; Each eREG includes 9 REs.
  • the eREG includes nine REs, and the logical index of the RE is used to define a sequence of the nine REs, which is equivalent to a logical sequence, irrespective of the physical location of the RE (ie, the location of the corresponding time domain frequency domain);
  • the "1, 2...9" in the 1 to 9 is the logical index of the RE, and the
  • a and B are antenna ports corresponding to the RE.
  • the RE is the first RE in the eREG according to the logical index
  • the antenna port corresponding to the RE is the antenna port A. If the control data is carried in the RE. , the control data needs to be processed according to the reference signal of the antenna port A.
  • B 4 indicates that the RE in which the B 4 is located is the fourth RE in the eREG defined by the logical index, and the antenna port corresponding to the RE is the antenna port B.
  • the mapping between the RE and the antenna port is established.
  • the antenna ports corresponding to the REs are alternately changed according to the order defined by the logical indexes of the multiple REs. Still taking FIG. 3 as an example: In the eREG described in the above paragraph, the order defined by the logical index of the RE is "1, 2...9", which can be clearly seen. The corresponding antenna ports are alternately changed, that is, "A, B, A, B".
  • the mapping of the REs in the other eREGs in the PRB pair is the same as that of the eREGs described above, and is not described here.
  • the embodiment also designs an antenna port mapping relationship between the eREGs in the PRB Pair.
  • the antenna ports corresponding to the same RE in the different eREGs can be defined to be the same.
  • the nine REs highlighted in the hatched box in vertical lines in Figure 3 belong to another eREG, and the logical indexes of the nine REs are also shown in Figure 3.
  • the eREG displayed in the shaded box of the previous one is referred to as the first eREG
  • the eREG displayed in the shaded box of the current vertical line is referred to as the second eREG
  • REs with the same logical index are mapped with the same antenna port.
  • the A l displayed by the hatched box in the vertical line of the shaded box indicates that the two REs have the same logical index in their respective eREGs and are mapped to the phase.
  • the same antenna port that is, antenna port A.
  • the RE mapping mode of each eREG in the PRB pair is the same as that in the second embodiment.
  • the difference is mainly that the eREGs are different according to the order defined by the logical index of the eREG.
  • the logical index of the eREG in the eREG corresponds to the antenna port corresponding to the RE, which alternates according to a preset alternating period.
  • the alternate period of the present embodiment is not limited, and may be set autonomously according to actual conditions, for example, the alternating period is 1, 2, and the like.
  • FIG. 4 is an antenna port mapping table in still another embodiment of a method for enhancing downlink channel resource and antenna port mapping according to the present invention.
  • the PRB Pair is divided into different eREGs, similar to the logical index of the RE described earlier, and the eREG logical index is also used to define the logical order of multiple eREGs.
  • the eREG index "Gl, G2, G3... ... G8" in Figure 4
  • each eREG index corresponds to an eREG.
  • different REs located in the same OFDM symbol usually belong to different eREGs, such as four REs in the first OFDM symbol on the left side in the time domain shown in FIG. 4, respectively, and G1 and G2.
  • the four REs belong to different eREGs.
  • the logical indexes of the four REs are the same. In each eREG, the logical index is 1, that is, "A ⁇ B Bj". It can also be seen from FIG.
  • the antenna ports corresponding to the respective REs are also alternately changed, that is, " A, B, A, B".
  • the alternate period in Figure 4 is 1, that is, as the eREG is replaced one by one, the corresponding antenna port also changes accordingly.
  • mapping manner of "B 2 , A 2 , B 2 , A 2 " (corresponding to G5, G6, G7, G8, respectively) in FIG. 4 is also the same as above; wherein A1 and G5 corresponding to G1 correspond to B2 belongs to the same eREG, B1 corresponding to G2 and A2 corresponding to G6 belong to the same eREG, A1 corresponding to G3 and B2 corresponding to G7 belong to the same eREG, and B1 corresponding to G4 and A2 corresponding to G8 belong to the same eREG.
  • only a partial RE is shown in FIG. 4 to describe the mapping mode.
  • the antenna ports corresponding to other REs are not shown in FIG. 4, but the mapping manner is the same as the above-described manner, and has been determined.
  • FIG. 5 is an antenna port mapping table in another embodiment of the method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention; wherein A1 corresponding to G1 and B2 corresponding to G5 belong to the same eREG, A1 corresponding to G2 and B2 corresponding to G6 belong to the same eREG. B2 corresponding to G3 and A2 corresponding to G7 belong to the same eREG, and B1 corresponding to G4 and A2 corresponding to G8 belong to the same eREG.
  • the Figure 5 is also in the order defined by the eREG index.
  • the antenna ports corresponding to the REs with the same logical index in different eREGs are alternately changed according to the preset alternating period; only the difference from FIG. 4 is that the alternating period is 2.
  • the mapping relationship between each RE and the antenna port in the enhanced downlink control channel resource is set according to the logical index of the RE, and the enhanced downlink control channel resource is also designed.
  • the change of the mapping relationship between the eREGs for example, the antenna ports corresponding to the REs in the different eREGs are alternately changed, and the manner of mapping the REs and the antenna ports in the enhanced downlink control channel resources is clearly given, which satisfies the LTE.
  • the transmission requirement of the downlink control data of the ePDCCH in the medium is the transmission requirement of the downlink control data of the ePDCCH in the medium.
  • the RE belongs to the same eREG (other REs in the eREG are not shown); in one downlink subframe, some of the control data is carried in the three REs, and it is assumed that REa corresponds to antenna port A, and REb corresponds to antenna port B. , REc corresponds to antenna port C.
  • the antenna port corresponding to the REaa is the same as the REa according to an optional manner existing in the prior art.
  • the antenna port A that is, the mapping corresponding to the antenna port is bound to the eREG, and the antenna port mapping does not change regardless of the location of the RE in the eREG.
  • the disadvantage of this processing is that, corresponding to different frame structures, the antenna ports corresponding to each RE in the resource grid shown in FIG. 1 may be different, if the antenna ports corresponding to all REs in the entire resource grid are also viewed.
  • both the transmitting end and the receiving end need to store multiple antenna port mapping tables respectively corresponding to different frame structures, and separately process the different frame structures according to the different mapping tables, and increase the processing. the complexity.
  • the established mapping is a fixed mapping between each resource element and an antenna port; for example, it is determined in advance that the antenna port corresponding to REa is A, and the antenna port corresponding to REaa is B; where REa refers to FIG. 1
  • the second OFDM symbol corresponding to the time domain from left to right and the frequency domain from bottom to top a trellis unit at the intersection of the third subcarrier, wherein the REaa refers to the intersection position of the second OFDM symbol in the time domain from left to right and the first subcarrier in the frequency domain from bottom to top in FIG. Grid cells, regardless of which eREG they belong to.
  • the REa corresponding antenna port is A.
  • the REaa corresponds to the antenna port.
  • B that is, the REaa at this time still belongs to the original eREG, but the corresponding antenna port is re-determined according to the antenna port mapping of the position.
  • the mapping between each RE and the antenna port established in this embodiment is to bind the RE corresponding to a fixed position in a certain time domain and frequency domain to the antenna port, and does not change with the change of the eREG.
  • the significant advantage of this processing is that the transmitting end and the receiving end only need to store one antenna port mapping table, and do not need to store multiple mapping tables corresponding to different frame structures, because the fixed position RE and the antenna port are already bound, even The frame structure is changed.
  • the antenna ports of the REs in the eREG in the new frame structure are also determined according to the antenna port mapping table, and the mapping between the RE and the antenna port is no longer changed, thereby greatly reducing the processing of the transmitting end and the receiving end. the complexity.
  • FIG. 6 is an antenna port mapping table in another embodiment of the method for enhancing the mapping between the downlink control channel resource and the antenna port according to the present invention.
  • the mapping between the RE and the antenna port is determined according to the physical index.
  • this embodiment is The mapping is based on the OFDM symbol index on the time domain in the physical index.
  • the role of the OFDM symbol index in the time domain is similar to that of the logical index, subcarrier index, and the like of the RE described above, and is used to define a logical sequence, and the OFDM symbol index is used to define the time domain.
  • the mapping between the RE and the antenna port in this embodiment has no relationship with each eREG in the PRB Pair, and the position of each RE in the eREG is in the time domain and the frequency domain, and is indexed according to the OFDM symbol in the time domain.
  • the specific mapping manner is that the antenna ports corresponding to all the REs included in each OFDM symbol are the same, and the REs of different OFDM symbols are corresponding to the OFDM symbol index in the order defined by the OFDM symbol index in the time domain.
  • the antenna port is alternately changed according to a preset alternating period.
  • the OFDM symbol corresponding to the OFDM symbol index T1 is an example in which the alternate period is 1, that is, the first column on the left side in FIG. 6 , and the antenna ports corresponding to all REs are antenna ends.
  • the antenna ports corresponding to the REs of different OFDM symbols are alternated according to the order of the OFDM symbol index defining "Tl, ⁇ 2 ⁇ 8"
  • the REs in the OFDM symbols corresponding to the T1 correspond to the antenna port A
  • the REs in the OFDM symbols corresponding to the T2 correspond to the antenna port B
  • the REs in the OFDM symbols corresponding to the T3 correspond to the antenna port A.
  • the alternate period is 1 as an example.
  • the alternating period may also be 2, 3, etc., for example, when the alternating period is 2, T1 and T2 may be set.
  • the REs in the OFDM symbols correspond to the antenna port A, and the REs in the OFDM symbols corresponding to T3 and T4 correspond to the antenna port B and the like.
  • the present embodiment also performs the replacement only in the order of "Tl, T2 T8". Of course, it is also possible to perform the replacement in the order of "T8, ⁇ 7 Tl".
  • the mapped antenna port is further cyclically shifted in the frequency domain; that is, multiple subcarrier indices corresponding to the frequency domain are corresponding.
  • the antenna ports corresponding to the plurality of resource elements are cyclically shifted.
  • FIG. 7 is a schematic diagram of a cyclic shift of an antenna port in another embodiment of a method for enhancing a downlink control channel resource and an antenna port according to the present invention, where multiple resource elements of a corresponding subcarrier index S2 in the frequency domain are taken as an example, and an antenna port is used.
  • the RE line the row of REs corresponding to the subcarrier index S2
  • the REs carrying the reference signal does not participate in the shift, and The position is fixed), along the ellipse in FIG.
  • the RE corresponding to the subcarrier index S2 is shifted to the left by one bit, and the bit refers to moving one OFDM symbol, which can be seen,
  • the leftmost A moves out of the resource grid; then, the removed A will move along the ellipse and the direction of the arrow to the far right of the RE line; since the antenna port B at the rightmost RE position has also been correspondingly left One bit is moved, so the corresponding antenna port of the rightmost RE will be supplemented by the A removed above.
  • FIG. 8 is an antenna port mapping table in another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention.
  • This is an antenna port mapping table after cyclic shifting according to FIG. 7 described above. It can be seen that, in the new mapping table, the RE row corresponding to the subcarrier index S2 is shifted to the left by one bit as compared with the antenna port mapping table before the shift in FIG. 7, for example, corresponding to the OFDM symbol.
  • the RE of the index T1 and the subcarrier index S2, whose corresponding antenna port is currently the antenna port B, corresponds to the antenna port A in FIG. 6 before the shift.
  • Figure 8 it can also be seen from Figure 8. It can be seen that in the resource grid, the RE lines corresponding to the subcarrier indexes S4, S6, and S8 are also subjected to the same cyclic shift as the RE lines corresponding to S2.
  • FIG. 7 and FIG. 8 are described by taking the RE line to the left as an example. In the specific implementation, it is not limited thereto, and may be cyclically shifted to the right, and may be moved by two bits. Three and so on.
  • the frequency domain is cyclically shifted by one subcarrier, for example, the RE row corresponding to the subcarrier indexes S2, S4, S6, and S8 is executed. In specific implementation, the method may be selected in other manners.
  • the cyclically shifted RE line is executed. For example, only S2, S3, and S8 may be selected for cyclic shift, or S6, S7 may be selected for cyclic shift.
  • FIG. 9 is an antenna port mapping table in another embodiment of the method for enhancing the mapping between the downlink control channel resource and the antenna port according to the present invention.
  • the mapping between the RE and the antenna port is determined according to the physical index.
  • this embodiment is The mapping is based on the subcarrier index on the frequency domain in the physical index.
  • the mapping between the RE and the antenna port in this embodiment has no relationship with each eREG in the PRB Pair, regardless of the position of each RE in the eREG in the time domain and the frequency domain, according to the subcarrier index in the frequency domain.
  • the specific mapping manner is that the antenna ports corresponding to the multiple REs corresponding to the same subcarrier index are the same; and the REs corresponding to the different subcarrier indexes are defined according to the subcarrier index in the frequency domain.
  • the antenna ports corresponding to different REs are alternately changed according to preset alternate periods.
  • the alternate period is 3, and the antenna ports corresponding to all the REs in the RE row corresponding to a certain subcarrier index are the same.
  • the RE corresponding to the subcarrier index S1 is mapped to the antenna port A.
  • the RE corresponding to the subcarrier index S4 is mapped to the antenna port B and the like.
  • the REs in the RE rows corresponding to the subcarrier index S1, the subcarrier index S2, and the subcarrier index S3 correspond to the antenna port A, the subcarrier index S4, the subcarrier index S5, and the RE corresponding to the subcarrier index S6.
  • the REs in the row correspond to the antenna port B; it is equivalent to replacing the corresponding antenna port every three subcarriers in the frequency domain.
  • the embodiment is described by taking the alternating period as 3 as an example.
  • the alternating period may also be 1, 2, etc., for example, when the alternating period is 2, the subcarrier indexes S1 and S2 may be set.
  • the REs in the corresponding RE rows correspond to the antenna port A
  • the REs in the RE rows corresponding to the subcarrier indexes S3 and S4 correspond to the antenna port B and the like.
  • the present embodiment also performs the replacement only in the order of "SI, S2 S8", and of course, the replacement may be performed in the order of "S8, S7 SI".
  • the mapped antenna port is further cyclically shifted in the time domain; that is, multiple portions corresponding to the partial OFDM symbol index in the time domain.
  • the antenna ports corresponding to the plurality of resource elements are cyclically shifted.
  • FIG. 10 is a schematic diagram of a cyclic shift of an antenna port in another embodiment of a method for enhancing a downlink control channel resource and an antenna port according to the present invention, where all REs in an OFDM symbol corresponding to an OFDM symbol index T2 in the time domain are taken as an example, How to perform cyclic shifting of the antenna port in the frequency domain: It is assumed that all REs in the OFDM symbol corresponding to the OFDM symbol index T2 are cyclically shifted by corresponding antenna ports, as shown by the ellipse and the arrow in FIG. Direction, all REs in the OFDM symbol are shifted up by one bit.
  • the one bit refers to moving one subcarrier, which is equivalent to moving one RE; it can be seen that the A located at the top is removed from the resource grid; The removed A will move to the lowermost edge of the OFDM symbol along the ellipse and the direction of the arrow; since the antenna port B at the lowermost RE position has also moved one bit upward, the corresponding antenna port of the lowermost RE It will be supplemented by the A removed above.
  • FIG. 11 is an antenna port mapping table in another embodiment of the method for enhancing downlink channel resource and antenna port mapping according to the present invention.
  • This is an antenna port mapping table after the cyclic shift of FIG. 10 described above.
  • the RE of the index T2 and the subcarrier index S3, whose corresponding antenna port is currently the antenna port B, corresponds to the antenna port A in FIG. 9 before the shift.
  • the OFDM symbols corresponding to the OFDM symbol indexes T4, ⁇ 6, ⁇ 8, and the like are also subjected to the same cyclic shift of the OFDM symbol corresponding to T2.
  • FIG. 10 and FIG. 11 are described by taking an example in which the RE in the OFDM symbol is shifted upward by one.
  • the present invention is not limited thereto, and may be cyclically shifted downward, and may be moved two times. Bit, three, etc.
  • the time domain is cyclically shifted by one OFDM symbol, for example, the RE lines corresponding to the OFDM symbol indexes T2, ⁇ 4, ⁇ 6, and ⁇ 8 are executed. In specific implementation, other methods may be selected.
  • the cyclically shifted OFDM symbol is executed, for example, only T2, ⁇ 3, and ⁇ 8 may be selected for cyclic shift, or ⁇ 6, ⁇ 7 may be cyclically shifted.
  • the RE and antenna ports in a PRB Pair are mapped.
  • the method of mapping the antenna ports in different PRB pairs in the case where the downlink control channel includes multiple PRB pairs in the distributed e-PDCCH will be described below.
  • FIG. 12 is a schematic diagram of a PRB Pair distribution according to still another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention. As shown in FIG. 12, each of a plurality of PRB pairs in a frequency domain is shown in each OFDM symbol.
  • Each has a physical index, which may be used to limit the order of distribution of the plurality of PRB Pairs in the frequency domain, such as "N, N+l, N+2 N+7" shown in FIG. According to the order defined by the physical index, the plurality of PRB Pairs are sequentially distributed in the frequency domain.
  • Each of the plurality of PRB pairs may also have a logical index, which is a logical number assigned when some of the PRB pairs are configured to the e-PDCCH as a resource of the downlink control channel, and is used to indicate these The logical order between PRB Pairs; there is no association between this logical index and the physical index described above. For example, referring to FIG. 12, assuming that a PRB Pair whose physical index is "N+l, N+3, N+5, N+7" is configured to an e-PDCCH channel, the logical index of the four PRB Pairs can be set.
  • FIG. 13 is a schematic diagram of a PRB Pair distribution of another embodiment of the method for enhancing the mapping of downlink control channel resources and antenna ports.
  • FIG. 14 is a schematic diagram of PRB Pair distribution according to still another embodiment of a method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention.
  • FIG. 14 further shows an optional manner, where the physical index is "N+l,
  • the PRB Pairs of N+4, N+5, and N+7" are configured to the e-PDCCH channel, and their corresponding logical indexes are "(1), (3), (2), (4)", respectively.
  • the mapping between the REs and the antenna ports in each PRB Pair is a PRB according to the foregoing embodiment.
  • the RE mapping mode in the Pair is executed; and, the mapping of each PRB Pair The way is exactly the same.
  • each PRB Pair uses the antenna port mapping table shown in FIG.
  • the mapping between the RE and the antenna port in each PRB Pair is performed according to the RE mapping manner in one PRB Pair described in the foregoing embodiment; and, the mapping relationship between the PRB pairs is, according to The physical index of the PRB Pair is defined in the frequency domain.
  • the antenna ports corresponding to the corresponding REs in different PRB Pairs are alternately changed according to preset alternate periods.
  • the mapping manner of the four PRB pairs is still the same, for example, the antenna port mapping table shown in Figure 8. Because, alternating If the period is 1, it indicates that the PRB Pair corresponding to the physical index N+2 is different from the PRB Pair corresponding to the physical index N+1 according to the order defined by the physical index "N, N+l, N+2 N+8".
  • the PRB Pair corresponding to the physical index N+3 is different from the PRB Pair corresponding to the physical index N+3.
  • the PRB Pair corresponding to the physical index N+1 is the same as the PRB Pair corresponding to the physical index N+3, and the physical index N+ 2
  • the corresponding PRB Pair is the same as the PRB Pair corresponding to the physical index N+4.
  • the RE of the corresponding position in the different PRB Pairs refers to, for example, in each PRB Pair, the RE corresponding to the intersection position of the OFDM symbol index T2 and the subcarrier index S3 is viewed, which is The "RE corresponding to the location", that is, the corresponding RE in the different PRB Pairs in the same time domain and frequency domain; and the alternate change refers to, for example, a certain physical PR index N+1 in the PRB Pair
  • the RE of the location corresponds to the antenna port A
  • the RE of the corresponding position in the PRB Pair of the physical index N+2 corresponds to the antenna port B
  • the RE of the corresponding position in the PRB Pair of the physical index N+3 corresponds to Antenna port A.
  • the RE mapping in the PRB Pair corresponding to N+1, N+5, and N+7 is exactly the same, and the RE mapping in the PRB Pair corresponding to N+4 is opposite to the PRB Pair corresponding to N+1.
  • the alternating period is 1, and in the specific implementation, the alternating period may be other values.
  • the alternating period is 2, then,
  • the physical index N+l, N+5 corresponds to the PRB Pair.
  • the RE in the same way as the antenna port is mapped.
  • the REs in the PRB Pair corresponding to the physical indexes N+3 and N+7 are mapped in the same way as the antenna ports.
  • the RE in the PRB Pair corresponding to N+5 is mapped differently from the antenna port, which is exactly the same.
  • the RE corresponding to the intersection of the OFDM symbol index T2 and the subcarrier index S3 if the RE in the PRB Pair corresponding to N+3 corresponds to the antenna port A, the RE in the PRB Pair corresponding to N+5 corresponds to the antenna port B.
  • the REs in the PRB pairs corresponding to the physical indexes N+1 and N+5 are the same as the mappings of the antenna ports, and the physical indexes N+4 and N+7 correspond to the PRB Pairs.
  • the mapping between the RE and the antenna port, and the antenna ports corresponding to the REs at the corresponding positions are mutually exchanged.
  • the antenna port mapping manner of the multiple PRB pairs provided in this embodiment differs from the ninth embodiment in that the ninth embodiment is to alternately replace the mapped antenna ports according to the physical index of the PRB pair, and the embodiment is based on the PRB Pair.
  • the logical index is alternated, and the plurality of PRB Pairs, according to the order defined by the logical index of the PRB Pair, the antenna ports corresponding to the REs of the corresponding positions in the different PRB Pairs are alternately changed according to the preset alternating period.
  • the principle of the alternation is the same as that of the ninth embodiment, and therefore, this embodiment is only briefly described.
  • the antenna port mapping of the PRB Pair corresponding to the physical index N+3 (logical index (2)) and N+7 (logical index (4)) are exchanged.
  • the physical port index N+1 (logical index (1)), N+3 (logical index (3)) corresponds to the same antenna port mapping of the PRB Pair, and the physical index N+5 (logical index) (2)), N+7 (logical index (4)) corresponds to the antenna port mapping of the PRB Pair, and the antenna ports corresponding to the REs corresponding to each other are exchanged.
  • the antenna port mapping of the PRB Pair corresponding to N+1 (logical index (1)) and N+3 (logical index (2)) is the same, while the physical index N+5 (logical index (3)), N+7 (logic Index (4))
  • the antenna port mapping of the corresponding PRB Pair, and the antenna ports corresponding to the REs corresponding to each other are exchanged.
  • the physical port index N+1 (logical index (1)), N+4 (logical index (2)) corresponds to the same antenna port mapping of the PRB Pair, and the physical index N+5 (logical index) (3)), N+7 (Logical index (4))
  • the antenna port mapping of the corresponding PRB Pair, and the antenna ports corresponding to the REs corresponding to each other are exchanged.
  • the description includes a case where the subframe includes 14 OFDM symbols, and the mapping with the two antenna ports is taken as an example, for example, corresponding to the antenna port A. Or correspond to antenna port B.
  • a subframe may also include 12 OFDM symbols, which is also applicable to the solution of the embodiment of the present invention.
  • the number of antenna ports may also be Three, four, etc., the principle of mapping is similar to the mapping of two antenna ports. For example, if port A and port B are used in one PRB pair, in another PRB pair, if port alternates, port A alternates to port C, and port B alternates to port D, and vice versa.
  • FIG. 15 is an antenna port mapping table of another embodiment of the method for enhancing downlink channel resource allocation and antenna port mapping according to the present invention.
  • FIG. 15 is an example of four antenna ports participating in mapping, and is based on time domain.
  • the OFDM symbols are defined in an order in which the antenna ports corresponding to the REs of the respective OFDM symbols are alternately replaced.
  • the other methods are not mentioned.
  • For the principle refer to the mapping mode of the two ports. For example, in the case of distributed multiple PRB pairs, the antenna ports corresponding to the corresponding REs in different PRB pairs are alternately changed.
  • the antenna port A corresponding to the RE may be replaced with the corresponding antenna port C
  • the corresponding antenna port B of the RE may be replaced with the corresponding antenna port D
  • FIG. 16 is a schematic structural diagram of an embodiment of an apparatus for enhancing a downlink control channel resource and an antenna port according to an embodiment of the present invention, where the apparatus can perform a method according to any embodiment of the present invention; wherein the mapping apparatus can be applied to a control apparatus for controlling data, for example.
  • the base station can also be applied to a receiving device such as a terminal that controls data.
  • the apparatus may include: a resource mapping unit 1601 and a data mapping unit 1602;
  • a resource mapping unit 1601 configured to establish a mapping between each resource element and an antenna port in the enhanced downlink control channel resource
  • a data mapping unit 1602 configured to establish a correspondence between control data carried by the resource element and an antenna port corresponding to the resource element, according to a reference signal corresponding to the antenna port Sending or receiving the control data carried by the resource element.
  • each of the resource element groups includes a plurality of the resource elements; the resource mapping unit 1601, specifically For each resource element group, the antenna ports corresponding to the respective resource elements are alternately changed according to the order defined by the logical indexes of the plurality of resource elements.
  • the resource mapping unit 1601 is further configured to have the same port between the plurality of resource element groups.
  • the resource mapping unit 1601 is further configured to: in the order defined by the logical index of the resource element group, in the order in which the logical indexes in the different resource element groups are the same, between the multiple resource element groups
  • the antenna ports corresponding to the resource elements are alternately changed according to a preset alternating period.
  • each of the OFDM symbols includes a plurality of the resources An element, each of the resource elements corresponding to one subcarrier in the frequency domain;
  • the resource mapping unit 1601 is specifically configured to determine, according to a physical index, a mapping between the resource element and an antenna port, where the physical index includes the OFDM An OFDM symbol index corresponding to the symbol, and a subcarrier index corresponding to the subcarrier.
  • FIG. 17 is a schematic structural diagram of another embodiment of an apparatus for enhancing downlink channel resource and antenna port mapping according to the present invention.
  • the apparatus is based on the structure shown in FIG. 16.
  • the resource mapping unit 1601 The method may include: any one or more of the first mapping subunit 1603, the second mapping subunit 1604, the third mapping subunit 1605, and the fourth mapping subunit 1606; the first mapping subunit 1603, configured to set
  • the antenna ports corresponding to all the resource elements included in each of the OFDM symbols are the same; and, between the plurality of the OFDM symbols, different OFDM symbols according to an order defined by the OFDM symbol index in the time domain
  • the antenna port corresponding to the resource element is alternately changed according to a preset alternating period;
  • the second mapping sub-unit 1604 is configured to: after the processing of the first mapping sub-unit, set a plurality of resource elements corresponding to a partial sub-carrier index on a frequency domain, and corresponding to the multiple resource elements
  • the antenna port is cyclically shifted;
  • the third mapping sub-unit 1605 is configured to set the antenna ports corresponding to the multiple resource elements corresponding to the same sub-carrier index to be the same; and, the resources corresponding to different sub-carrier indexes Between the elements, according to the order defined by the subcarrier index in the frequency domain, different antenna ports corresponding to the resource elements are alternately changed according to a preset alternating period;
  • the fourth mapping sub-unit 1606 is configured to: after the processing of the third mapping sub-unit, set a plurality of resource elements corresponding to a partial OFDM symbol index on the time domain, and corresponding to the multiple resource elements
  • the antenna port is cyclically shifted.
  • the enhanced downlink control channel resource includes a plurality of the PRB pair; the resource mapping unit 1601 is configured to perform, for each of the PRB pairs, each resource element and antenna in the establishing enhanced downlink control channel resource. The step of mapping the ports; and is further configured to set a plurality of the PRB pairs, having the same mapping of the resource elements and antenna ports.
  • the enhanced downlink control channel resource includes a plurality of the PRB pair; the resource mapping unit 1601 is configured to perform, for each of the PRB pairs, each resource element and antenna in the establishing enhanced downlink control channel resource.
  • Figure 18 is a block diagram showing an embodiment of an apparatus for mapping a downlink control channel resource and an antenna port according to the present invention.
  • the mapping apparatus includes at least one processor and a memory coupled to the at least one processor.
  • processors and memory are random access memory (RAM) for illustration.
  • the processor is configured to establish a mapping between each resource element and an antenna port in the enhanced downlink control channel resource, and establish a correspondence between the control data carried by the resource element and the antenna port corresponding to the resource element;
  • the memory is configured to store a mapping between each resource element and an antenna port established by the processor, and a correspondence between the control data and an antenna port.
  • the processor may also be configured to perform various steps in a method embodiment, not described again.
  • the storage medium includes: ROM, RAM, disk or optical disc, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种增强下行控制信道资源与天线端口的映射方法和装置,其中方法包括:建立增强下行控制信道资源中的每个资源元素与天线端口的映射;将所述资源元素承载的控制数据与所述资源元素对应的天线端口之间建立对应关系,以根据所述天线端口对应的参考信号发送或者接收所述资源元素承载的所述控制数据。本发明确定了ePDCCH中的资源与天线端口的映射方式,满足了LTE发展的需求。

Description

增强下行控制信道资源与天线端口的映射方法和装置 技术领域
本发明涉及长期演进(Long Term Evolution, 简称: LTE )技术, 尤 其涉及一种增强下行控制信道资源与天线端口的映射方法和装置。 背景技术
LTE系统的用于辅助业务数据解调的控制数据是通过物理下行控制信道 ( Physical Downlink Control Channel, 简称: PDCCH )传输的, 并且, 通常 釆用正交频分复用多址( Orthogonal Frequency Division Multiple,简称: OFDM ) 方式传输。 该 PDCCH包括在时域和频域上分布的资源, 可以称为下行控制 信道资源(简称下行资源 );该下行资源在时域上被划分为多个 OFDM符号, 在频域上被划分为多个子载波,在某个 OFDM符号内的某个子载波称为资源 元素 ( Resource Element, 简称: RE ) 。 基站在向终端下行传输控制数据时, 需要建立承载控制数据的 RE与天线端口之间的映射关系, 以根据该映射关 系将该 RE承载的控制数据与天线端口对应, 通过该天线端口的参考信号调 制发送该控制数据; 在终端侧, 也需要根据该映射关系, 通过从 RE对应的 天线端口对应的参考信号对 RE承载的控制数据进行解调, 获得控制数据。
现有技术中, 例如在 LTE Release 8/9/10的版本中, 每个子帧上的控制数 据是通过该子帧的前几个 OFDM符号中的 RE承载的,其余的 OFDM符号中 的 RE 用于承载业务数据。 随着 LTE 技术的发展, 目前发展到了 LTE Releasel l/12的版本, 下行控制信道的容量需要增加, 需要将控制数据的承载 空间从前几个 OFDM符号的区域扩展至在整个子帧的区域上传输, 这种控制 信道可以称为增强的物理下行控制信道( Enhanced PDCCH,简称: ePDCCH )。 但是, 目前尚没有明确确定的该 ePDCCH的资源 (可以称为增强下行控制信 道资源)与天线端口的映射方式, 不能满足 LTE发展的需求。 发明内容
本发明提供一种增强下行控制信道资源与天线端口的映射方法和装置, 以确定 ePDCCH中的资源与天线端口的映射方式, 满足 LTE发展的需求。 本发明提供一种增强下行控制信道资源与天线端口的映射方法, 包括: 建立下行控制信道资源中的每个资源元素与天线端口的映射;
将所述资源元素承载的控制数据与所述资源元素对应的天线端口之间建 立对应关系, 以根据所述天线端口对应的参考信号发送或者接收所述资源元 素承载的所述控制数据。
一种可能的实现方式中, 在所述下行控制信道资源的一个资源块对 PRB
Pair中, 包括多个资源元素组, 每个所述资源元素组包括多个所述资源元素; 所述建立增强下行控制信道资源中的每个资源元素与天线端口的映射, 包括: 每个所述资源元素组中, 根据多个所述资源元素的逻辑索引限定的顺序, 各 个所述资源元素对应的天线端口交替改变。
另一种可能的实现方式中, 所述建立增强下行控制信道资源中的每个资 源元素与天线端口的映射, 还包括: 所述多个资源元素组之间, 不同的所述 又一种可能的实现方式中, 所述建立增强下行控制信道资源中的每个资 源元素与天线端口的映射, 还包括: 所述多个资源元素组之间, 根据资源元 素组的逻辑索弓 ]限定的顺序, 不同的所述资源元素组中的逻辑索引相同的所 述资源元素对应的所述天线端口, 依据预设的交替周期交替改变。
又一种可能的实现方式中, 在所述增强下行控制信道资源的一个资源块 对 PRB Pair中,包括时域上的多个正交频分复用 OFDM符号,每个所述 OFDM 符号包括多个所述资源元素,每个所述资源元素对应于频域上的一个子载波; 所述建立增强下行控制信道资源中的每个资源元素与天线端口的映射, 包括: 根据物理索引, 确定所述资源元素与天线端口的映射, 所述物理索引包括与 所述 OFDM符号对应的 OFDM符号索引、 以及与子载波对应的子载波索引。
又一种可能的实现方式中, 所述才艮据物理索引确定资源元素与天线端口 的映射, 包括: 每个所述 OFDM符号包括的所有资源元素对应的天线端口均 相同; 并且, 多个所述 OFDM符号之间, 根据时域上的所述 OFDM符号索 设的交替周期交替改变。
又一种可能的实现方式中, 在每个所述 OFDM符号包括的所有资源元素 口, 依据预设的交替周期交替改变之后, 还包括: 在频域上的部分子载波索 引对应的多个资源元素中, 将所述多个资源元素对应的天线端口在时域上进 行循环移位。
又一种可能的实现方式中, 所述才艮据物理索引确定资源元素与天线端口 的映射, 包括: 对应于相同的子载波索引的多个所述资源元素对应的天线端 口相同; 并且, 对应于不同的子载波索引的各资源元素之间, 根据频域上的 所述子载波索引限定的顺序, 不同的所述资源元素对应的天线端口, 依据预 设的交替周期交替改变。
又一种可能的实现方式中, 在所述对应于相同的子载波索引的多个所述 资源元素对应的天线端口相同, 且不同的所述资源元素对应的天线端口依据 预设的交替周期交替改变, 之后还包括: 在时域上的部分 OFDM符号索引对 应的多个资源元素中, 将所述多个资源元素对应的天线端口在频域上进行循 环移位。
又一种可能的实现方式中, 所述增强下行控制信道资源包括多个所述
PRB Pair; 每个所述 PRB Pair均执行所述建立增强下行控制信道资源中的每 个资源元素与天线端口的映射的步骤; 多个所述 PRB Pair, 具有相同的所述 资源元素与天线端口的映射。
又一种可能的实现方式中, 所述增强下行控制信道资源包括多个所述 PRB Pair; 每个所述 PRB Pair均执行所述建立增强下行控制信道资源中的每 个资源元素与天线端口的映射的步骤;多个所述 PRB Pair,根据所述 PRB Pair 在频域上的物理索引限定的顺序, 不同的所述 PRB Pair中的相对应位置的资 源元素对应的天线端口, 依据预设的交替周期交替改变。
又一种可能的实现方式中, 所述增强下行控制信道资源包括多个所述 PRB Pair; 每个所述 PRB Pair均执行所述建立增强下行控制信道资源中的每 个资源元素与天线端口的映射的步骤;多个所述 PRB Pair,根据所述 PRB Pair 在增强下行控制信道资源中的逻辑索引限定的顺序, 不同的所述 PRB Pair中 的相对应位置的资源元素对应的天线端口, 依据预设的交替周期交替改变。
本发明提供一种增强下行控制信道资源与天线端口的映射装置, 包括: 资源映射单元, 用于建立下行控制信道资源中的每个资源元素与天线端 口的映射;
数据映射单元, 用于将所述资源元素承载的控制数据与所述资源元素对 应的天线端口之间建立对应关系, 以根据所述天线端口对应的参考信号发送 或者接收所述资源元素承载的所述控制数据。
一种可能的实现方式中, 在所述增强下行控制信道资源的一个资源块对
PRB Pair中, 包括多个资源元素组, 每个所述资源元素组包括多个所述资源 元素; 所述资源映射单元, 具体用于在每个资源元素组中, 根据多个所述资 源元素的逻辑索引限定的顺序,各个所述资源元素对应的天线端口交替改变。
另一种可能的实现方式中, 所述资源映射单元, 还用于在所述多个资源 的所述天线端口相同。
又一种可能的实现方式中, 所述资源映射单元, 还用于在所述多个资源 元素组之间, 根据资源元素组的逻辑索引限定的顺序, 不同的所述资源元素 周期交替改变。
又一种可能的实现方式中, 在所述增强下行控制信道资源的一个资源块 对 PRB Pair中, 包括时域上的多个正交频分复用多址 OFDM符号,每个所述 OFDM符号包括多个所述资源元素, 每个所述资源元素对应于频域上的一个 子载波; 所述资源映射单元, 具体用于根据物理索引, 确定所述资源元素与 天线端口的映射, 所述物理索引包括与所述 OFDM符号对应的 OFDM符号 索引、 以及与所述子载波对应的子载波索引。
又一种可能的实现方式中, 所述资源映射单元, 包括: 第一映射子单元、 第二映射子单元、 第三映射子单元和第四映射子单元中的任意一个或多个; 所述第一映射子单元, 用于设置每个所述 OFDM符号包括的所有资源元素对 应的天线端口均相同; 并且, 多个所述 OFDM符号之间, 根据时域上的所述 OFDM符号索引限定的顺序,不同的所述 OFDM符号的资源元素对应的天线 端口, 依据预设的交替周期交替改变; 所述第二映射子单元, 用于在所述第 一映射子单元的处理之后, 设置在频域上的部分子载波索引对应的多个资源 元素中, 将所述多个资源元素对应的天线端口在时域上进行循环移位; 所述 第三映射子单元, 用于设置对应于相同的子载波索引的多个所述资源元素对 应的天线端口相同; 并且, 对应于不同的子载波索引的各资源元素之间, 根 据频域上的所述子载波索引限定的顺序, 不同的所述资源元素对应的天线端 口, 依据预设的交替周期交替改变; 所述第四映射子单元, 用于在所述第三 映射子单元的处理之后,设置在时域上的部分 OFDM符号索引对应的多个资 源元素中, 将所述多个资源元素对应的天线端口在频域上进行循环移位。
又一种可能的实现方式中, 所述增强下行控制信道资源包括多个所述 PRB Pair; 所述资源映射单元, 用于为每个所述 PRB Pair均执行所述建立增 强下行控制信道资源中的每个资源元素与天线端口的映射的步骤; 还用于设 置多个所述 PRB Pair, 具有相同的所述资源元素与天线端口的映射。
又一种可能的实现方式中, 所述增强下行控制信道资源包括多个所述
PRB Pair; 所述资源映射单元, 用于为每个所述 PRB Pair均执行所述建立增 强下行控制信道资源中的每个资源元素与天线端口的映射的步骤; 还用于设 置多个所述 PRB Pair, 根据所述 PRB Pair的物理索引或者逻辑索引限定的顺 序, 不同的所述 PRB Pair中的相对应位置的资源元素对应的天线端口, 依据 预设的交替周期交替改变。
本发明提供一种增强下行控制信道资源与天线端口的映射装置, 包括: 处理器, 用于建立增强下行控制信道资源中的每个资源元素与天线端口 的映射, 并将所述资源元素承载的控制数据与所述资源元素对应的天线端口 之间建立对应关系;
存储器, 用于存储所述处理器建立的所述每个资源元素与天线端口之间 的映射、 以及所述控制数据与天线端口之间的对应关系。
本发明提供的增强下行控制信道资源与天线端口的映射方法和装置的技 术效果是: 通过建立每个 RE与天线端口的映射, 将对应于某个时域和频域 的位置的 RE与天线端口绑定, 确定了 ePDCCH中的资源与天线端口的映射 方式, 满足 LTE发展的需求。 附图说明 图 1为本发明增强下行控制信道资源与天线端口的映射方法实施例中的 资源划分示意图;
图 2为本发明增强下行控制信道资源与天线端口的映射方法一实施例的 流程示意图;
图 3为本发明增强下行控制信道资源与天线端口的映射方法另一实施例 中的天线端口映射表;
图 4为本发明增强下行控制信道资源与天线端口的映射方法又一实施例 中的天线端口映射表;
图 5为本发明增强下行控制信道资源与天线端口的映射方法又一实施例 中的天线端口映射表;
图 6为本发明增强下行控制信道资源与天线端口的映射方法又一实施例 中的天线端口映射表;
图 7为本发明增强下行控制信道资源与天线端口的映射方法又一实施例 中的天线端口循环移位示意图;
图 8为本发明增强下行控制信道资源与天线端口的映射方法又一实施例 中的天线端口映射表;
图 9为本发明增强下行控制信道资源与天线端口的映射方法又一实施例 中的天线端口映射表;
图 10为本发明增强下行控制信道资源与天线端口的映射方法又一实施 例中的天线端口循环移位示意图;
图 11为本发明增强下行控制信道资源与天线端口的映射方法又一实施 例中的天线端口映射表;
图 12为本发明增强下行控制信道资源与天线端口的映射方法又一实施 例的 PRB Pair分布示意图;
图 13为发明增强下行控制信道资源与天线端口的映射方法又一实施例 的 PRB Pair分布示意图;
图 14为本发明增强下行控制信道资源与天线端口的映射方法又一实施 例的 PRB Pair分布示意图;
图 15为本发明增强下行控制信道资源与天线端口的映射方法又一实施 例的天线端口映射表;
图 16为本发明增强下行控制信道资源与天线端口的映射装置一实施例 的结构示意图;
图 17为本发明增强下行控制信道资源与天线端口的映射装置另一实施 例的结构示意图;
图 18 为本发明增强下行控制信道资源与天线端口的映射装置实施例的 实体构造图。 具体实施方式 在对本发明实施例的增强下行控制信道资源与天线端口的映射方法进行 说明之前, 首先对有助于理解该映射方法的一些基本概念进行说明:
增强下行控制信道资源: 基站在向终端下行发送业务数据时, 通常也会 发送用于辅助终端侧解调获取该业务数据的控制数据; 该控制数据是通过下 行控制信道传输的。 而下行控制信道包括下行控制信道资源, 控制数据实际 是通过该资源承载的。 所述的增强下行控制信道资源可以参见图 1所示, 图 1为本发明增强下行控制信道资源与天线端口的映射方法实施例中的资源划 分示意图。 结合图 1说明该资源中涉及到的一些定义:
OFDM符号: 下行控制信道资源在时域上被划分为多份, 每份可以称为 一个 OFDM符号, 即图 1中标示的 OFDM符号对应的列;
子载波: 该资源在频域上被划分为多个子载波, 即图 1中标示的子载波 对应的行都属于同一个子载波;
资源元素 RE: 经过上述的 OFDM符号和子载波的划分, 实际上将增强 下行控制信道资源在时域和频域内划分成了图 1所示的网格状; 其中, 对应 于某个 OFDM符号的某个子载波称为资源元素 RE, 相当于这个网格中的其 中一个网格单元; 并且, 由图 1也可以看到, 一个 OFDM符号包括了多个 RE;
子帧与资源: 以一个下行子帧为例, 每个下行子帧包括两个时隙, 每个 时隙有 7个或 6个 OFDM符号, 即共有 14个或 12个 OFDM符号; 图 1中 仅示出了一个时隙, 且以包括 7个 OFDM符号为例;
资源块(Resource Block, 简称: RB ) : —个 RB在频域上包括 12个子 载波, 在时域上为一个时隙, 即包括 7个或 6个 OFDM符号, 因此, 一个 RB可以包含 84个或 72个 RE; 在图 1中示出了资源块 1 , 该资源块 1包括 84个 RE, 而资源块 2仅示出了一部分;
资源块对(PRB Pair ) : 在一个子帧内, 有两个时隙, 所以也包括两个 RB, 这两个 RB可以称为资源块对 PRB Pair; 下行控制信道的资源可以包括 1个 PRB Pair, 也可以包括多个 PRB Pair;
增强资源元素组 ( Enhanced Resource Element Group, 简称: eREG ) : 本发明实施例的映射方法针对的是增强的物理下行控制信道 ePDCCH,因此, 对应的资源元素组也是增强资源元素组 eREG;在一个子帧内的 PRB Pair中 , 包括多个 eREG, 比如, 每 9个 RE组成一个 eREG;
需要说明的是, 在上述的增强下行控制信道资源中, 并不是所有的 RE 都用于承载控制数据, 部分 RE是专用于承载天线端口对应的参考信号的, 该参考信号主要用于: 控制数据的发送端通过该参考信号将控制数据调制后 发送, 控制数据的接收端通过该参考信号将接收的控制数据解调后获取; 比 如, 图 1中所示的资源元素 REs即专用于承载参考信号, 并且, 通常承载参 考信号的 RE在时域和频域的位置是的。 此外, 控制数据可以通过多个天线 端口发送, 相应的也包括分别用于承载不同参考信号的 RE, 例如, 可以设置 位置的 4个 RE用于承载对应不同天线端口的参考信号。
增强下行控制信道资源与天线端口的映射: 所述的映射的意思是, 如前 所述的, 控制数据在发送端发送时, 是需要通过编码调制后发送, 与控制数 据相关联的参考信号釆用与这些控制数据相同的编码调制方案发送; 控制数 据在接收端接收时, 是需要通过参考信号来解调获取; 即, 将控制数据在承 载至某个 RE时, 必须要确定该控制数据需要用哪个天线端口对应的参考信 号来调制或解调, 也相当于确定承载该控制数据的 RE与天线端口的对应关 系; 例如, 假设将控制数据承载在第一 RE中, 该第一 RE与天线端口 A对 应, 则表明承载在第一 RE中的控制数据需要用天线端口 A的参考信号进行 调制或解调。
在上述说明的基础上, 下面对本发明实施例的映射方法进行详细描述, 该方法主要是描述如何确定增强下行控制信道资源与天线端口的映射。
实施例一
图 2为本发明增强下行控制信道资源与天线端口的映射方法一实施例的 流程示意图, 如图 2所示, 该方法可以包括:
201、 建立增强下行控制信道资源中的每个资源元素与天线端口的映射; 其中, 本实施例要将增强下行控制信道资源中的每个资源元素 RE与天 线端口的映射关系都确定, 而不是仅确定部分 RE与天线端口的映射关系。 比如, 某下行控制信道占用一个 PRB Pair的资源, 则该 PRB Pair中的所有用 于承载控制数据的 RE与天线端口的映射关系均建立。
所述的建立 RE与天线端口的映射关系指的是, 例如, 某个 RE与天线端 口 A映射, 则表明承载在该 RE中的控制数据将通过天线端口 A对应的参考 信号解调。
本实施例建立的映射关系是 RE与天线端口的映射, 即, 将对应某个时 域位置和频域位置的 RE与天线端口绑定; 例如, 可以依据某种索引设定 RE 与天线端口的映射, 该索引可以是逻辑索引或者物理索引, 具体的映射方式 将在后面的实施例中详细说明。
202、将所述资源元素承载的控制数据与所述资源元素对应的天线端口之 间建立对应关系;
其中, 建立增强下行控制信道资源与天线端口的映射, 主要目的还是为 了将该资源中承载的控制数据与天线端口之间建立对应关系, 以根据所述天 线端口对应的参考信号调制控制数据后发送, 或者根据天线端口对应的参考 信号解调接收的控制数据。
下面将对建立各 RE与天线端口的映射的多种可选的方式, 分别进行说 明, 其中, 将首先以一个 PRB Pair为例, 描述该 PRB Pair中的天线端口映射 方法, 再以分布式的下行控制信道为例, 说明多个 PRB Pair的方式中的映射 方式。
实施例二
图 3为本发明增强下行控制信道资源与天线端口的映射方法另一实施例 中的天线端口映射表, 如图 3所示, 本实施例以一个 PRB Pair中的天线端口 映射为例进行描述 , 该 PRB Pair是以一个子帧在时域上包括 14个 OFDM符 号为例。
其中, 假设本实施例的控制数据的发送是通过两个天线端口, 例如是通 过天线端口 A和天线端口 B传输的, 则每个 RE需要对应到天线端口 A或者 天线端口 B。 在图 3中的 REs的位置是固定用于承载天线端口参考信号的, 不再多加说明。 在这些参考信号承载区域之外的 RE都是用于承载控制数据 的, 本实施例着重描述控制数据承载区域的 RE与天线端口的映射方式。 本实施例的映射方式, 与 RE的逻辑索引有关, 因此, 首先对 RE的逻辑 索引进行说明如下: 如前所述的 , 在该 PRB Pair中 , 包括多个 eREG, 本实 施例是包括 16个 eREG; 每个 eREG包括 9个 RE。 参见图 3所示,假设其中 标示的 B2、 A3、 B4、 A5、 B6、 A7、 B8、 A9所在的这九个 RE (图中用斜 线阴影框突出显示的)属于同一个 eREG,即该 PRB Pair中的其中一个 eREG。 该 eREG包括九个 RE, RE的逻辑索引是用于限定这九个 RE的一个顺序的, 相当于一个逻辑顺序, 与 RE所在的物理位置(即对应时域频域的位置)无 关; 比如上述的入1至入9中的 "1、 2... ...9" 就是 RE的逻辑索引, 而其中的
"A" 和 "B" 是表示该 RE对应的天线端口。
举例如下: 表示: 该入所在的 RE是所述 eREG中依据逻辑索引限定 的顺序排在第一个的 RE, 并且该 RE对应的天线端口是天线端口 A, 如果将 控制数据承载在该 RE中, 则需要根据天线端口 A的参考信号处理该控制数 据。 同理, B4表示: 该 B4所在的 RE是所述 eREG中依据逻辑索引限定的顺 序排在第四个的 RE, 并且该 RE对应的天线端口是天线端口 B。
本实施例建立 RE与天线端口的映射的方式是: 每个 eREG中, 根据多 个 RE的逻辑索引限定的顺序, 各个 RE对应的天线端口交替改变。 仍以图 3 为例说明: 在上面一段所述的 eREG中, 根据 RE的逻辑索引限定的顺序即 "1、 2... ...9" , 可以 ^[艮明显的看到, 各 RE对应的天线端口是交替改变的, 即 "A、 B、 A、 B " 。 该 PRB Pair中的其他 eREG中的 RE的映射方式 与上述的 eREG的映射方式相同, 不再赘述。
进一步的, 在上述限定了每个 eREG内部的 RE与天线端口的映射方式 的基础上, 本实施例还设计了该 PRB Pair中的各 eREG之间的天线端口映射 关系。 例如, 可以限定不同的 eREG中的逻辑索引相同的 RE对应的天线端 口相同。
举例如下: 如图 3中的用竖线阴影框突出显示的九个 RE, 是属于另一个 eREG的, 并且图 3中也示出了这九个 RE的逻辑索引。 在本实施例中, 如果 将前一个的斜线阴影框显示的 eREG称为第一 eREG,将当前的竖线阴影框显 示的 eREG称为第二 eREG, 则从图 3中也可以看到, 逻辑索引相同的 RE是 具有相同的天线端口映射的。 比如, 斜线阴影框显示的 竖线阴影框显示 的 Al 表明了这两个 RE在各自的 eREG中的逻辑索引相同, 并且映射于相 同的天线端口, 即天线端口 A。
实施例三
本实施例与实施例二相比, 该 PRB Pair中的每个 eREG内部的 RE映射 方式是与实施例二相同的, 区别主要在于, 各 eREG之间, 根据 eREG的逻 辑索引限定的顺序, 不同的 eREG中的逻辑索引相同的 RE对应的天线端口, 依据预设的交替周期交替改变。 其中, 所述的交替周期本实施例不做限制, 可以根据实际情况自主设定, 例如, 交替周期为 1、 2等。
例如, 参见图 4, 图 4为本发明增强下行控制信道资源与天线端口的映 射方法又一实施例中的天线端口映射表。 首先说明 eREG逻辑索引的概念: 该 PRB Pair被划分为不同 eREG,类似于前边所述的 RE的逻辑索引,该 eREG 逻辑索引也是用于限定多个 eREG的逻辑顺序的。 比如图 4中的 eREG索引 "Gl、 G2、 G3... ... G8" , 每个 eREG索引对应于一个 eREG。
本实施例中, 位于同一个 OFDM符号内的不同 RE通常是属于不同的 eREG的,比如图 4中所示的位于时域上左边第一个 OFDM符号内的四个 RE, 分别与 Gl、 G2、 G3、 G4对应, 这四个 RE属于不同的 eREG, 但是, 该四 个 RE的逻辑索引是相同的, 在各自的 eREG中其逻辑索引都是 1 , 即 "A^ B Bj" 。 从图 4中也可以看到, 这四个 RE对应于不同的 eREG索引, 并且, 按照 eREG索引限定的顺序 "Gl、 G2、 G3、 G4" , 各 RE对应的天线 端口也交替改变, 即 "A、 B、 A、 B" 。 图 4中的交替周期是 1 , 即随着 eREG 的逐个更换, 对应的天线端口也相应改变。
同理, 图 4中的 "B2、 A2、 B2、 A2" (分别与 G5、 G6、 G7、 G8对应) 的映射方式也与上述相同; 其中, G1对应的 A1与 G5对应的 B2属于同一个 eREG, G2对应的 B1与 G6对应的 A2属于同一个 eREG, G3对应的 A1与 G7对应的 B2属于同一个 eREG, G4对应的 B1与 G8对应的 A2属于同一个 eREG。 此外, 本实施例在图 4中仅示出了部分 RE来说明映射方式, 其他的 RE对应的天线端口, 在图 4中未示出, 但是其映射方式与上述方式相同, 均 已确定。
又例如, 参见图 5, 图 5为本发明增强下行控制信道资源与天线端口的 映射方法又一实施例中的天线端口映射表; 其中, G1对应的 A1与 G5对应 的 B2属于同一个 eREG, G2对应的 A1与 G6对应的 B2属于同一个 eREG, G3对应的 Bl与 G7对应的 A2属于同一个 eREG, G4对应的 B1与 G8对应 的 A2属于同一个 eREG。 该图 5同样是根据 eREG索引限定的顺序, 不同的 eREG中的逻辑索引相同的 RE对应的天线端口,依据预设的交替周期交替改 变; 只是与图 4的区别在于, 交替周期为 2。
在上面的实施例二和实施例三中, 是根据 RE的逻辑索引设定了增强下 行控制信道资源中的每个 RE与天线端口的映射关系, 并且, 还设计了增强 下行控制信道资源中的各 eREG之间的映射关系的变化, 比如上述的不同的 eREG中的 RE对应的天线端口交替改变等,明确的给出了增强下行控制信道 资源中的 RE与天线端口的映射方式, 满足了 LTE中的 ePDCCH的下行控制 数据的传输需求。
在下面的实施例中, 将说明如何根据物理索引设计 RE与天线端口的映 射关系, 并且, 根据物理索引设计比根据逻辑索引设计更为方便, 能够使得 下行控制数据传输时的处理更加简单。 如下首先说明依据物理索引相比依据 逻辑索引的更优的效果, 再接着详细介绍根据物理索引设计的映射方式: 举例说明: 仍以图 1中所标示出的 REa、 REb和 REc为例 , 假设这三个
RE属于同一个 eREG (该 eREG中的其他 RE未示出 ); 在一个下行子帧中, 将其中一部分控制数据承载在该三个 RE中, 且假设 REa对应天线端口 A, REb对应天线端口 B、 REc对应天线端口 C。
接着, 在另一个下行子帧中, 假设帧结构发生变化, REa的位置变更到 了 REaa, 则按照现有技术中已有的一种可选的方式, 该 REaa对应的天线端 口与 REa相同,仍然是对应天线端口 A,即相当于天线端口的映射是与 eREG 绑定的, 不论该 eREG中的 RE变更到什么位置, 天线端口映射不变。 这样 处理的缺陷是, 对应于不同的帧结构, 图 1所示的资源网格中的每个 RE对 应的天线端口都可能不同, 如果将整个资源网格中的所有 RE对应的天线端 口也看做一张天线端口映射表, 则发送端和接收端都需要存储分别对应不同 帧结构的多张天线端口映射表, 并才艮据该不同的映射表对不同帧结构分别处 理, 增加了处理的复杂度。
而本实施例中, 建立的映射是每个资源元素与天线端口的固定映射; 比 如, 预先确定好 REa对应的天线端口是 A, REaa对应的天线端口是 B; 这里 的 REa即指的图 1中对应于时域从左至右第二个 OFDM符号与频域从下至上 第三个子载波的交叉位置的网格单元,所述的 REaa即指的图 1中对应于时域 从左至右第二个 OFDM符号与频域从下至上第一个子载波的交叉位置的网格 单元,与他们属于哪个 eREG无关。假设 REa、 REb和 REc最初所在的 eREG 中, REa对应天线端口是 A, 当帧结构发生变化, 该 eREG中包括的资源元 素从 REa的位置变更到了 REaa的位置时,该 REaa对应的是天线端口 B,即, 此时的 REaa仍然属于原来的 eREG, 但是其对应的天线端口要按照该位置的 天线端口映射重新确定。
由上述说明可知, 本实施例中建立的每个 RE与天线端口的映射, 是将 对应于某个时域和频域的固定位置的 RE与天线端口绑定, 而不随 eREG的 变化而变化。 这样处理的显著优点是, 发送端和接收端只需要存储一张天线 端口映射表, 而不需要再存储对应不同帧结构的多张映射表, 因为固定位置 的 RE与天线端口已经绑定, 即使帧结构发生变更, 那新的帧结构中的 eREG 中的各 RE的天线端口也要按照该天线端口映射表确定, RE与天线端口的映 射不再变动, 从而大大降低了发送端和接收端的处理复杂度。
实施例四
图 6为本发明增强下行控制信道资源与天线端口的映射方法又一实施例 中的天线端口映射表, 本实施例是根据物理索引, 确定 RE与天线端口的映 射; 具体的, 本实施例是根据物理索引中的时域上的 OFDM符号索引映射。
其中, 时域上的 OFDM符号索引的作用,与前边所述的 RE的逻辑索引、 子载波索引等的作用是类似的, 都是用于限定逻辑顺序, 该 OFDM符号索引 是用于限定时域上划分的多个 OFDM符号的逻辑顺序的;如图 6所示, OFDM 符号索引是 "Tl、 Τ2、 Τ3 Τ8" 。
本实施例的 RE与天线端口的映射与该 PRB Pair中的各 eREG没有关系, 不论 eREG中的各 RE的位置是在时域和频域的什么位置, 都是按照时域上 的 OFDM符号索引来进行映射的。 具体的映射方式是, 每个 OFDM符号包 括的所有 RE对应的天线端口均相同, 并且, 多个 OFDM符号之间, 根据时 域上的 OFDM符号索引限定的顺序,不同的 OFDM符号的 RE对应的天线端 口, 依据预设的交替周期交替改变。
举例如下: 图 6中是以交替周期是 1为例, OFDM符号索引 T1对应的 OFDM符号, 即图 6中的左边第一列, 所有 RE对应的天线端口都是天线端 口 A; 并且, 多个 OFDM符号之间, 例如, T1至 T8所分别对应的各 OFDM 符号, 根据 OFDM符号索引限定 "Tl、 Τ2 Τ8" 的顺序, 不同的 OFDM 符号的 RE对应的天线端口交替改变; 比如, T1对应的 OFDM符号中的 RE 均对应天线端口 A, T2对应的 OFDM符号中的 RE均对应天线端口 B, T3 对应的 OFDM符号中的 RE均对应天线端口 A 。
需要说明的是, 本实施例仅是以交替周期是 1为例进行说明, 具体实施 中, 交替周期也可以是 2、 3等, 例如, 当交替周期是 2时, 可以设定 T1和 T2对应的 OFDM符号中的 RE均对应天线端口 A, T3和 T4对应的 OFDM 符号中的 RE均对应天线端口 B等。并且,本实施例也仅是以 "Tl、 T2 T8" 的顺序执行更替, 当然, 也可以依据 "T8、 Τ7 Tl" 的顺序执行更替。
实施例五
本实施例在实施例四的根据时域上的 OFDM符号索引映射的基础上, 进 一步将映射的天线端口在频域上进行循环移位; 即在频域上的部分子载波索 引对应的多个资源元素中,将该多个资源元素对应的天线端口进行循环移位。
图 7为本发明增强下行控制信道资源与天线端口的映射方法又一实施例 中的天线端口循环移位示意图,以频域上的对应子载波索引 S2的多个资源元 素为例, 对天线端口如何在时域上进行循环移位进行说明: 假设子载波索引 S2对应的那一行 RE (后续简称 RE行),其对应的天线端口进行循环移位 (承 载参考信号的 REs不参与移位, 其位置是固定的) , 沿着图 7中的椭圓以及 箭头所示的方向, 子载波索引 S2对应的 RE向左移一位, 该一位指的是移动 一个 OFDM符号, 可以看到, 原来位于最左边的 A移出资源网格; 然后, 该 移出的 A将沿着椭圓以及箭头方向, 移到该 RE行的最右边; 由于最右边的 RE位置处的天线端口 B也已经相应向左移动一位,所以该最右边 RE的对应 天线端口将由上述移出的 A来补充。
参见图 8, 图 8为本发明增强下行控制信道资源与天线端口的映射方法 又一实施例中的天线端口映射表, 这是经过上述的图 7循环移位之后的天线 端口映射表。 可以看到, 新的映射表中, 在子载波索引 S2对应的 RE行, 相 比于图 7中未移位之前的天线端口映射表, 整体向左移动了一位, 比如, 对 应于 OFDM符号索引 T1和子载波索引 S2的 RE, 其对应的天线端口当前是 天线端口 B, 而移位之前对应的是图 6中的天线端口 A。 此外, 由图 8还可 以看到, 该资源网格中, 在子载波索引 S4、 S6、 S8等对应的 RE行, 也进行 了与 S2对应的 RE行相同的循环移位。
需要说明的是, 上述的图 7和图 8是以 RE行向左移动一位为例进行说 明, 具体实施中, 并不局限于此, 也可以向右循环移位, 并且可以移动两位、 三位等。 此外, 图 8中在频域上是以间隔一个子载波进行循环移位的, 比如, 在子载波索引 S2、 S4、 S6、 S8对应的 RE行执行, 具体实施中, 可以用其他 方式选择需要执行循环移位的 RE行, 比如, 可以仅选择 S2、 S3和 S8进行 循环移位, 或者选择 S6、 S7进行循环移位等。
实施例六
图 9为本发明增强下行控制信道资源与天线端口的映射方法又一实施例 中的天线端口映射表, 本实施例是根据物理索引, 确定 RE与天线端口的映 射; 具体的, 本实施例是根据物理索引中的频域上的子载波索引映射。
本实施例的 RE与天线端口的映射与该 PRB Pair中的各 eREG没有关系, 不论 eREG中的各 RE的位置是在时域和频域的什么位置, 都是按照频域上 的子载波索引来进行映射的。 具体的映射方式是, 对应于相同的子载波索引 的多个 RE对应的天线端口均相同; 并且, 对应于不同的子载波索引的各 RE 之间, 根据频域上的子载波索引限定的顺序, 不同的 RE对应的天线端口, 依据预设的交替周期交替改变。
举例如下: 图 9中是以交替周期是 3为例, 对应于某个子载波索引的 RE 行中的所有 RE对应的天线端口均相同, 例如, 子载波索引 S1对应的 RE都 与天线端口 A映射, 子载波索引 S4对应的 RE都与天线端口 B映射等。 并 且, 按照交替周期是 3 , 子载波索引 Sl、 子载波索引 S2和子载波索引 S3对 应的 RE行中的 RE均对应天线端口 A, 子载波索引 S4、 子载波索引 S5和子 载波索引 S6对应的 RE行中的 RE均对应天线端口 B; 相当于在频域上每三 个子载波更换一次对应的天线端口。
同理, 本实施例仅是以交替周期是 3为例进行说明, 具体实施中, 交替 周期也可以是 1、 2等, 例如, 当交替周期是 2时, 可以设定子载波索引 S1 和 S2对应的 RE行中的 RE均对应天线端口 A, 子载波索引 S3和 S4对应的 RE行中的 RE均对应天线端口 B等。并且,本实施例也仅是以 "SI、 S2 S8" 的顺序执行更替, 当然, 也可以依据 "S8、 S7 SI " 的顺序执行更替。 实施例七
本实施例在实施例六的根据频域上的子载波索引映射的基础上, 进一步 将映射的天线端口在时域上进行循环移位; 即在时域上的部分 OFDM符号索 引对应的多个资源元素中,将该多个资源元素对应的天线端口进行循环移位。
图 10为本发明增强下行控制信道资源与天线端口的映射方法又一实施 例中的天线端口循环移位示意图, 以时域上的对应 OFDM符号索引 T2的 OFDM符号内的所有 RE为例, 对天线端口如何在频域上进行循环移位进行 说明: 假设 OFDM符号索引 T2对应的 OFDM符号内的所有 RE, 其对应的 天线端口进行循环移位, 沿着图 10中的椭圓以及箭头所示的方向,该 OFDM 符号内的所有 RE向上移一位, 该一位指的是移动一个子载波, 也相当于移 动一个 RE; 可以看到, 原来位于最上边的 A移出资源网格; 然后, 该移出 的 A将沿着椭圓以及箭头方向,移到该 OFDM符号的最下边; 由于最下边的 RE位置处的天线端口 B也已经相应向上移动一位,所以该最下边 RE的对应 天线端口将由上述移出的 A来补充。
参见图 11 , 图 11为本发明增强下行控制信道资源与天线端口的映射方 法又一实施例中的天线端口映射表,这是经过上述的图 10循环移位之后的天 线端口映射表。可以看到 ,新的映射表中 ,在 OFDM符号索引 T2对应的 OFDM 符号内,相比于图 10中未移位之前的天线端口映射表,整体向上移动了一位, 比如, 对应于 OFDM符号索引 T2和子载波索引 S3的 RE, 其对应的天线端 口当前是天线端口 B, 而移位之前对应的是图 9中的天线端口 A。 此外, 由 图 11还可以看到, 该资源网格中, 在 OFDM符号索引 T4、 Τ6、 Τ8等对应 的 OFDM符号, 也进行了与 T2对应的 OFDM符号相同的循环移位。
需要说明的是, 上述的图 10和图 11是以 OFDM符号中的 RE向上移动 一位为例进行说明, 具体实施中, 并不局限于此, 也可以向下循环移位, 并 且可以移动两位、 三位等。 此外, 图 11中在时域上是以间隔一个 OFDM符 号进行循环移位的, 比如, 在 OFDM符号索引 T2、 Τ4、 Τ6、 Τ8对应的 RE 行执行,具体实施中,可以用其他方式选择需要执行循环移位的 OFDM符号, 比如, 可以仅选择 T2、 Τ3和 Τ8进行循环移位, 或者选择 Τ6、 Τ7进行循环 移位等。
在上面的几个实施例中, 都是以一个 PRB Pair内的 RE与天线端口的映 射方式进行说明; 下面将描述在分布式的 e-PDCCH中, 下行控制信道包括多 个 PRB Pair的情况下, 不同的 PRB Pair中的天线端口的映射方法。
首先对分布式 e-PDCCH的下行控制信道资源结构进行说明: 结合图 1 中的说明也可以得到, 每一个 OFDM符号在频域上是由多个 PRB Pair组成, 下行控制信道可以仅使用其中一个 PRB Pair的资源, 也可以使用多个 PRB Pair的资源。 图 12为本发明增强下行控制信道资源与天线端口的映射方法又 一实施例的 PRB Pair分布示意图, 如图 12所示, 每一个 OFDM符号中, 频 域上的多个 PRB Pair中的每个都具有一个物理索引, 该物理索引实际上可以 是用于限定该多个 PRB Pair在频域上的分布顺序, 例如图 12中示出的 "N、 N+l、 N+2 N+7" , 按照该物理索引限定的顺序, 该多个 PRB Pair在频域 上是顺序分布的。
该多个 PRB Pair中的每个还可能具有一个逻辑索引, 该逻辑索引是将其 中的某些 PRB Pair配置给 e-PDCCH作为下行控制信道的资源时 , 所分配的 逻辑编号, 用于表示这些 PRB Pair之间的逻辑顺序; 该逻辑索引与上述的物 理索引之间没有关联。 例如, 参见图 12, 假设将物理索引是 "N+l、 N+3、 N+5、 N+7" 的 PRB Pair配置给 e-PDCCH信道, 则可以将这四个 PRB Pair 的逻辑索引设定为 "(1 ) 、 (2 ) 、 ( 3 ) 、 (4 ) 、 " ; 当然, 物理索引与 逻辑索引之间没有关联, 也可以将这四个 PRB Pair的逻辑索引设定为图 13 中所示的 "(1 ) 、 (3 ) 、 (2 ) 、 (4 ) " , 图 13为发明增强下行控制信道 资源与天线端口的映射方法又一实施例的 PRB Pair分布示意图。
图 14为本发明增强下行控制信道资源与天线端口的映射方法又一实施 例的 PRB Pair分布示意图, 该图 14又示出了一种可选的方式, 殳将物理 索引是 "N+l、 N+4、 N+5, N+7" 的 PRB Pair配置给 e-PDCCH信道, 且其 对应的逻辑索引分别是 "(1 ) 、 (3 ) 、 (2 ) 、 (4 ) " 。
在上述的多个 PRB Pair分布介绍的基础上, 如下将说明该多个 PRB Pair 中的 RE与天线端口的映射方式的设计; 并且, 仍然是以两个天线端口为例。
实施例八
本实施例提供的多个 PRB Pair的天线端口映射方式是: 在该多个 PRB Pair中, 每个 PRB Pair内部的 RE与天线端口的映射, 均是按照前边的实施 例中所述的一个 PRB Pair内的 RE映射方式执行; 并且, 各 PRB Pair的映射 方式完全相同。
例如, 分配给 e-PDCCH信道的四个 PRB Pair "N+1 , N+3、 N+5、 N+7" 中, 每个 PRB Pair均釆用图 8所示的天线端口映射表。
实施例九
本实施例提供的多个 PRB Pair的天线端口映射方式是: 在该多个 PRB
Pair中, 每个 PRB Pair内部的 RE与天线端口的映射, 均是按照前边的实施 例中所述的一个 PRB Pair内的 RE映射方式执行; 并且, 各 PRB Pair之间的 映射关系是,根据 PRB Pair在频域上的物理索引限定的顺序,不同的 PRB Pair 中的相对应位置的 RE对应的天线端口, 依据预设的交替周期交替改变。
例如,假设交替周期是 1 , 则对于图 12和图 13所示的结构, 即将 "N+l、
N+3、 N+5、 N+7" 分配给 e-PDCCH信道时, 这四个 PRB Pair的映射方式仍 是完全相同的, 比如均是图 8所示的天线端口映射表。 因为, 交替周期是 1 , 则表明依据物理索引 "N、 N+l、 N+2 N+8" 限定的顺序, 物理索引 N+2 对应的 PRB Pair是与物理索引 N+1对应的 PRB Pair不同的, 物理索引 N+4 对应的 PRB Pair是与物理索引 N+3对应的 PRB Pair不同的, 但是, 物理索 引 N+1对应的 PRB Pair与物理索引 N+3对应的 PRB Pair相同,物理索引 N+2 对应的 PRB Pair与物理索引 N+4对应的 PRB Pair相同。
所述的不同的 PRB Pair中的相对应位置的 RE, 指的是, 例如, 在每个 PRB Pair中,都查看对应于 OFDM符号索引 T2和子载波索引 S3相交叉位置 的 RE, 这就是所述的 "相对应位置的 RE" , 即比较的是在不同的 PRB Pair 中对应的时域和频域位置相同的 RE; 而交替改变指的是, 例如, 物理索引 N+1的 PRB Pair中某个位置的 RE对应是天线端口 A,物理索引 N+2的 PRB Pair中相对应位置的 RE对应的是天线端口 B, 而物理索引 N+3的 PRB Pair 中相对应位置的 RE对应的又是天线端口 A。
根据以上原理, 对于图 14中所示的结构, 就可以很容易得出, 物理索引
N+1、 N+5和 N+7对应的 PRB Pair中的 RE映射方式完全相同, 而 N+4对应 的 PRB Pair中的 RE映射方式与 N+1对应的 PRB Pair相反。
上述只是以交替周期是 1为例, 在具体实施中, 交替周期也可以是其他 数值。 又例如, 假设交替周期是 2, 那么,
对于图 12和图 13中所示的结构, 物理索引 N+l、 N+5对应的 PRB Pair 中的 RE与天线端口的映射方式相同, 物理索引 N+3、 N+7对应的 PRB Pair 中的 RE与天线端口的映射方式相同,但是,这两组之间,比如物理索引 N+3、 N+5对应的 PRB Pair中的 RE与天线端口的映射方式不同, 正好是交替了。 例如 , 比较物理索引 N+3、 N+5对应的 PRB Pair中, 对应于 OFDM符号索 引 T2和子载波索引 S3相交叉位置的 RE,如果 N+3对应的 PRB Pair中的 RE 对应的是天线端口 A,则 N+5对应的 PRB Pair中的 RE对应的是天线端口 B。 同理, 在图 14所示的结构中, 物理索引 N+1、 N+5对应的 PRB Pair中的 RE 与天线端口的映射相同, 物理索引 N+4、 N+7对应的 PRB Pair中的 RE与天 线端口的映射, 相对应位置的 RE对应的天线端口相互交换。
实施例十
本实施例提供的多个 PRB Pair的天线端口映射方式, 与实施例九的区别 在于, 实施例九是根据 PRB Pair的物理索引进行交替更换映射的天线端口, 而本实施例是根据 PRB Pair的逻辑索引进行交替 , 多个 PRB Pair , 根据 PRB Pair的逻辑索引限定的顺序, 不同的 PRB Pair中的相对应位置的 RE对应的 天线端口, 依据预设的交替周期交替改变。 交替的原理与实施例九相同, 因 此, 本实施例仅简单描述。
例如,假设交替周期是 1,那么,对于图 12所示的结构,物理索引 N+1 (逻 辑索引为 (1) )、 N+5 (逻辑索引 (3) )对应的 PRB Pair的天线端口映射相 同, 而物理索引 N+3(逻辑索引(2))、 N+7(逻辑索引(4) )对应的 PRB Pair 的天线端口映射, 相对应位置的 RE对应的天线端口互相交换。 对于图 13所 示的结构, 物理索引 N+1 (逻辑索引 (1) )、 N+3 (逻辑索引 (3) )对应的 PRB Pair的天线端口映射相同, 而物理索引 N+5(逻辑索引 (2) )、 N+7 (逻 辑索引 ( 4 ) )对应的 PRB Pair的天线端口映射, 相对应位置的 RE对应的天 线端口互相交换。
又例如, 假设交替周期是 2, 那么, 对于图 12所示的结构, 物理索引
N+1 (逻辑索引 (1) )、 N+3 (逻辑索引 (2) )对应的 PRB Pair的天线端口映 射相同, 而物理索引 N+5(逻辑索引 (3) )、 N+7 (逻辑索引 (4) )对应的 PRB Pair的天线端口映射 , 相对应位置的 RE对应的天线端口互相交换。 对 于图 14所示的结构, 物理索引 N+1 (逻辑索引 (1) )、 N+4 (逻辑索引 (2) ) 对应的 PRB Pair的天线端口映射相同,而物理索引 N+5(逻辑索引(3))、N+7 (逻辑索引 ( 4 ) )对应的 PRB Pair的天线端口映射, 相对应位置的 RE对应 的天线端口互相交换。
需要说明的是, 在本发明上述的实施例中, 一直在以一个子帧包括 14个 OFDM符号为例进行说明, 并且是以与两个天线端口的映射为例, 例如与天 线端口 A对应、或者与天线端口 B对应。但是,在具体实施中并不局限于此, 也可以进行变通; 比如, 一个子帧中也可以包括 12个 OFDM符号, 对于本 发明实施例的方案同样适用; 此外, 天线端口的数量也可以是三个、 四个等, 映射的原理与两个天线端口的映射是类似的。 比如在一个 PRB Pair中使用端 口 A, 端口 B, 则在另外一个 PRB Pair中, 如果发生端口交替, 则端口 A交 替变化为端口 C, 端口 B交替变化为端口 D, 反之亦然。
举例如下: 图 15为本发明增强下行控制信道资源与天线端口的映射方法 又一实施例的天线端口映射表, 该图 15是以有四个天线端口参与映射为例, 并且是根据时域上的 OFDM符号限定的顺序,各 OFDM符号的 RE对应的天 线端口交替更换。 其他的方式将不再举例, 原理可以参见两个端口的映射方 式; 比如, 对于分布式的多个 PRB Pair的情况, 不同的 PRB Pair中的相对应 位置的 RE对应的天线端口交替改变, 所述的交替改变对于四个端口的情况, 例如可以设定, 将 RE原来对应的天线端口 A更换为对应天线端口 C, 将 RE 原来对应的天线端口 B更换为对应天线端口 D ,将 RE原来对应的天线端口 C 更换为对应天线端口 A, 将 RE原来对应的天线端口 D更换为对应天线端口 B。
实施例十一
图 16为本发明增强下行控制信道资源与天线端口的映射装置一实施例 的结构示意图, 该装置可以执行本发明任意实施例的方法; 其中, 该映射装 置既可以适用于控制数据的发送装置例如基站, 也可以适用于控制数据的接 收装置例如终端。 如图 16所示, 该装置可以包括: 资源映射单元 1601和数 据映射单元 1602; 其中,
资源映射单元 1601 , 用于建立增强下行控制信道资源中的每个资源元素 与天线端口的映射;
数据映射单元 1602, 用于将所述资源元素承载的控制数据与所述资源元 素对应的天线端口之间建立对应关系, 以根据所述天线端口对应的参考信号 发送或者接收所述资源元素承载的所述控制数据。
进一步的, 在所述增强下行控制信道资源的一个资源块对 PRB Pair中, 包括多个资源元素组, 每个所述资源元素组包括多个所述资源元素; 所述资 源映射单元 1601 , 具体用于在每个资源元素组中, 根据多个所述资源元素的 逻辑索引限定的顺序, 各个所述资源元素对应的天线端口交替改变。
进一步的,所述资源映射单元 1601 ,还用于在所述多个资源元素组之间, 口相同。
进一步的,所述资源映射单元 1601 ,还用于在所述多个资源元素组之间, 根据资源元素组的逻辑索引限定的顺序, 不同的所述资源元素组中的逻辑索 引相同的所述资源元素对应的所述天线端口,依据预设的交替周期交替改变。
进一步的, 在所述增强下行控制信道资源的一个资源块对 PRB Pair中, 包括时域上的多个正交频分复用多址 OFDM符号, 每个所述 OFDM符号包 括多个所述资源元素, 每个所述资源元素对应于频域上的一个子载波; 资源 映射单元 1601 , 具体用于根据物理索引, 确定所述资源元素与天线端口的映 射, 所述物理索引包括与所述 OFDM符号对应的 OFDM符号索引、 以及与 所述子载波对应的子载波索引。
图 17为本发明增强下行控制信道资源与天线端口的映射装置另一实施 例的结构示意图, 如图 17所示, 该装置在图 16所示结构的基础上, 进一步 的, 资源映射单元 1601 , 可以包括: 第一映射子单元 1603、 第二映射子单元 1604、 第三映射子单元 1605和第四映射子单元 1606中的任意一个或多个; 所述第一映射子单元 1603 ,用于设置每个所述 OFDM符号包括的所有资 源元素对应的天线端口均相同; 并且, 多个所述 OFDM符号之间, 根据时域 上的所述 OFDM符号索引限定的顺序, 不同的所述 OFDM符号的资源元素 对应的天线端口, 依据预设的交替周期交替改变;
所述第二映射子单元 1604, 用于在所述第一映射子单元的处理之后, 设 置在频域上的部分子载波索引对应的多个资源元素中, 将所述多个资源元素 对应的天线端口进行循环移位;
所述第三映射子单元 1605, 用于设置对应于相同的子载波索引的多个所 述资源元素对应的天线端口相同; 并且, 对应于不同的子载波索引的各资源 元素之间, 根据频域上的所述子载波索引限定的顺序, 不同的所述资源元素 对应的天线端口, 依据预设的交替周期交替改变;
所述第四映射子单元 1606, 用于在所述第三映射子单元的处理之后, 设 置在时域上的部分 OFDM符号索引对应的多个资源元素中, 将所述多个资源 元素对应的天线端口进行循环移位。
进一步的, 所述增强下行控制信道资源包括多个所述 PRB Pair; 资源映 射单元 1601 ,用于为每个所述 PRB Pair均执行所述建立增强下行控制信道资 源中的每个资源元素与天线端口的映射的步骤; 还用于设置多个所述 PRB Pair, 具有相同的所述资源元素与天线端口的映射。
进一步的, 所述增强下行控制信道资源包括多个所述 PRB Pair; 资源映 射单元 1601 ,用于为每个所述 PRB Pair均执行所述建立增强下行控制信道资 源中的每个资源元素与天线端口的映射的步骤; 还用于设置多个所述 PRB Pair, 根据所述 PRB Pair的物理索引或者逻辑索引限定的顺序, 不同的所述 PRB Pair中的相对应位置的资源元素对应的天线端口, 依据预设的交替周期 交替改变。
实施例十二
图 18为本发明增强下行控制信道资源与天线端口的映射装置实施例的 实体构造图, 该映射装置包括至少一个处理器、 以及与所述至少一个处理器 连接的存储器。 为了简明起见, 在图 18中仅以一个处理器、 存储器为随机存 取存储器( random access memory, 简称: RAM )为例进行说明。
所述处理器, 用于建立增强下行控制信道资源中的每个资源元素与天线 端口的映射, 并将所述资源元素承载的控制数据与所述资源元素对应的天线 端口之间建立对应关系;
所述存储器, 用于存储所述处理器建立的所述每个资源元素与天线端口 之间的映射、 以及所述控制数据与天线端口之间的对应关系。
所述处理器还可以被配置用于执行方法实施例中的各个步骤, 在这里不 再——描述。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种增强下行控制信道资源与天线端口的映射方法, 其特征在于, 包 括:
建立增强下行控制信道资源中的每个资源元素与天线端口的映射; 将所述资源元素承载的控制数据与所述资源元素对应的天线端口之间建 立对应关系, 以根据所述天线端口对应的参考信号发送或者接收所述资源元 素承载的所述控制数据。
2、 根据权利要求 1所述的增强下行控制信道资源与天线端口的映射方 法, 其特征在于, 在所述下行控制信道资源的一个资源块对 PRB Pair中, 包 括多个资源元素组, 每个所述资源元素组包括多个所述资源元素;
所述建立增强下行控制信道资源中的每个资源元素与天线端口的映射, 包括: 每个所述资源元素组中, 根据多个所述资源元素的逻辑索引限定的顺 序, 各个所述资源元素对应的天线端口交替改变。
3、 根据权利要求 2所述的增强下行控制信道资源与天线端口的映射方 法, 其特征在于, 所述建立增强下行控制信道资源中的每个资源元素与天线 端口的映射, 还包括: 所述多个资源元素组之间, 不同的所述资源元素组中
4、 根据权利要求 2所述的增强下行控制信道资源与天线端口的映射方 法, 其特征在于, 所述建立增强下行控制信道资源中的每个资源元素与天线 端口的映射, 还包括: 所述多个资源元素组之间, 根据资源元素组的逻辑索 应的所述天线端口, 依据预设的交替周期交替改变。
5、 根据权利要求 1所述的增强下行控制信道资源与天线端口的映射方 法,其特征在于,在所述增强下行控制信道资源的一个资源块对 PRB Pair中, 包括时域上的多个正交频分复用 OFDM符号, 每个所述 OFDM符号包括多 个所述资源元素, 每个所述资源元素对应于频域上的一个子载波;
所述建立增强下行控制信道资源中的每个资源元素与天线端口的映射, 包括: 根据物理索引, 确定所述资源元素与天线端口的映射, 所述物理索引 包括与所述 OFDM符号对应的 OFDM符号索引、 以及与所述子载波对应的 子载波索引。
6、 根据权利要求 5所述的增强下行控制信道资源与天线端口的映射方 法, 其特征在于, 所述根据物理索引确定资源元素与天线端口的映射, 包括: 每个所述 OFDM符号包括的所有资源元素对应的天线端口均相同;并且, 多个所述 OFDM符号之间, 根据时域上的所述 OFDM符号索引限定的顺序 , 不同的所述 OFDM符号的资源元素对应的天线端口,依据预设的交替周期交 替改变。
7、 根据权利要求 6所述的增强下行控制信道资源与天线端口的映射方 法, 其特征在于, 在每个所述 OFDM符号包括的所有资源元素对应的天线端 的交替周期交替改变之后, 还包括:
在频域上的部分子载波索引对应的多个资源元素中, 将所述多个资源元 素对应的天线端口在时域上进行循环移位。
8、 根据权利要求 5所述的增强下行控制信道资源与天线端口的映射方 法, 其特征在于, 所述根据物理索引确定资源元素与天线端口的映射, 包括: 对应于相同的子载波索引的多个所述资源元素对应的天线端口相同; 并 且, 对应于不同的子载波索引的各资源元素之间, 根据频域上的所述子载波 索引限定的顺序, 不同的所述资源元素对应的天线端口, 依据预设的交替周 期交替改变。
9、 根据权利要求 8所述的增强下行控制信道资源与天线端口的映射方 法, 其特征在于, 在所述对应于相同的子载波索引的多个所述资源元素对应 的天线端口相同, 且不同的所述资源元素对应的天线端口依据预设的交替周 期交替改变, 之后还包括:
在时域上的部分 OFDM符号索引对应的多个资源元素中, 将所述多个资 源元素对应的天线端口在频域上进行循环移位。
10、 根据权利要求 2〜9任一所述的增强下行控制信道资源与天线端口的 映射方法, 其特征在于, 所述增强下行控制信道资源包括多个所述 PRB Pair; 每个所述 PRB Pair均执行所述建立增强下行控制信道资源中的每个资源元素 与天线端口的映射的步骤;
多个所述 PRB Pair, 具有相同的所述资源元素与天线端口的映射。
11、 根据权利要求 2〜9任一所述的增强下行控制信道资源与天线端口的 映射方法, 其特征在于, 所述增强下行控制信道资源包括多个所述 PRB Pair; 每个所述 PRB Pair均执行所述建立增强下行控制信道资源中的每个资源元素 与天线端口的映射的步骤;
多个所述 PRB Pair,根据所述 PRB Pair在频域上的物理索引限定的顺序, 不同的所述 PRB Pair中的相对应位置的资源元素对应的天线端口, 依据预设 的交替周期交替改变。
12、 根据权利要求 2〜9任一所述的增强下行控制信道资源与天线端口的 映射方法, 其特征在于, 所述增强下行控制信道资源包括多个所述 PRB Pair; 每个所述 PRB Pair均执行所述建立增强下行控制信道资源中的每个资源元素 与天线端口的映射的步骤;
多个所述 PRB Pair, 根据所述 PRB Pair在增强下行控制信道资源中的逻 辑索引限定的顺序, 不同的所述 PRB Pair中的相对应位置的资源元素对应的 天线端口, 依据预设的交替周期交替改变。
13、 一种增强下行控制信道资源与天线端口的映射装置, 其特征在于, 包括:
资源映射单元, 用于建立增强下行控制信道资源中的每个资源元素与天 线端口的映射;
数据映射单元, 用于将所述资源元素承载的控制数据与所述资源元素对 应的天线端口之间建立对应关系, 以根据所述天线端口对应的参考信号发送 或者接收所述资源元素承载的所述控制数据。
14、根据权利要求 13所述的增强下行控制信道资源与天线端口的映射装 置,其特征在于,在所述增强下行控制信道资源的一个资源块对 PRB Pair中, 包括多个资源元素组, 每个所述资源元素组包括多个所述资源元素;
所述资源映射单元, 具体用于在每个资源元素组中, 根据多个所述资源 元素的逻辑索引限定的顺序, 各个所述资源元素对应的天线端口交替改变。
15、根据权利要求 14所述的增强下行控制信道资源与天线端口的映射装 置, 其特征在于,
所述资源映射单元, 还用于在所述多个资源元素组之间, 不同的所述资
16、根据权利要求 14所述的增强下行控制信道资源与天线端口的映射装 置, 其特征在于,
所述资源映射单元, 还用于在所述多个资源元素组之间, 根据资源元素 资源元素对应的所述天线端口, 依据预设的交替周期交替改变。
17、根据权利要求 13所述的增强下行控制信道资源与天线端口的映射装 置,其特征在于,在所述增强下行控制信道资源的一个资源块对 PRB Pair中, 包括时域上的多个正交频分复用多址 OFDM符号, 每个所述 OFDM符号包 括多个所述资源元素, 每个所述资源元素对应于频域上的一个子载波;
所述资源映射单元, 具体用于根据物理索引, 确定所述资源元素与天线 端口的映射, 所述物理索引包括与所述 OFDM符号对应的 OFDM符号索引、 以及与所述子载波对应的子载波索引。
18、根据权利要求 17所述的增强下行控制信道资源与天线端口的映射装 置, 其特征在于, 所述资源映射单元, 包括: 第一映射子单元、 第二映射子 单元、 第三映射子单元和第四映射子单元中的任意一个或多个;
所述第一映射子单元, 用于设置每个所述 OFDM符号包括的所有资源元 素对应的天线端口均相同; 并且, 多个所述 OFDM符号之间, 根据时域上的 所述 OFDM符号索引限定的顺序, 不同的所述 OFDM符号的资源元素对应 的天线端口, 依据预设的交替周期交替改变;
所述第二映射子单元, 用于在所述第一映射子单元的处理之后, 设置在 频域上的部分子载波索引对应的多个资源元素中, 将所述多个资源元素对应 的天线端口在时域上进行循环移位;
所述第三映射子单元, 用于设置对应于相同的子载波索引的多个所述资 源元素对应的天线端口相同; 并且, 对应于不同的子载波索引的各资源元素 之间, 根据频域上的所述子载波索引限定的顺序, 不同的所述资源元素对应 的天线端口, 依据预设的交替周期交替改变;
所述第四映射子单元, 用于在所述第三映射子单元的处理之后, 设置在 时域上的部分 OFDM符号索引对应的多个资源元素中,将所述多个资源元素 对应的天线端口在频域上进行循环移位。
19、 根据权利要求 14-18任一所述的增强下行控制信道资源与天线端口 的映射装置, 其特征在于, 所述增强下行控制信道资源包括多个所述 PRB Pair;
所述资源映射单元, 用于为每个所述 PRB Pair均执行所述建立增强下行 控制信道资源中的每个资源元素与天线端口的映射的步骤; 还用于设置多个 所述 PRB Pair, 具有相同的所述资源元素与天线端口的映射。
20、 根据权利要求 14-18任一所述的增强下行控制信道资源与天线端口 的映射装置, 其特征在于, 所述增强下行控制信道资源包括多个所述 PRB Pair;
所述资源映射单元, 用于为每个所述 PRB Pair均执行所述建立增强下行 控制信道资源中的每个资源元素与天线端口的映射的步骤; 还用于设置多个 所述 PRB Pair, 根据所述 PRB Pair的物理索引或者逻辑索引限定的顺序, 不 同的所述 PRB Pair中的相对应位置的资源元素对应的天线端口, 依据预设的 交替周期交替改变。
21、 一种增强下行控制信道资源与天线端口的映射装置, 其特征在于, 包括:
处理器, 用于建立增强下行控制信道资源中的每个资源元素与天线端口 的映射, 并将所述资源元素承载的控制数据与所述资源元素对应的天线端口 之间建立对应关系;
存储器, 用于存储所述处理器建立的所述每个资源元素与天线端口之间 的映射、 以及所述控制数据与天线端口之间的对应关系。
PCT/CN2012/081433 2012-09-14 2012-09-14 增强下行控制信道资源与天线端口的映射方法和装置 WO2014040282A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015531416A JP5990332B2 (ja) 2012-09-14 2012-09-14 拡張ダウンリンク制御チャネルリソースとアンテナポートとのマッピングを確立する方法及び装置
CN201280007715.9A CN103503394B (zh) 2012-09-14 2012-09-14 增强下行控制信道资源与天线端口的映射方法和装置
KR1020157009359A KR101709598B1 (ko) 2012-09-14 2012-09-14 인핸스트 다운링크 제어 채널 자원과 안테나 포트 간의 맵핑을 구축하기 위한 방법 및 장치
EP12884540.1A EP2887598B1 (en) 2012-09-14 2012-09-14 Method and device for mapping enhanced downlink control channel resource and antenna port
PCT/CN2012/081433 WO2014040282A1 (zh) 2012-09-14 2012-09-14 增强下行控制信道资源与天线端口的映射方法和装置
EP16160163.8A EP3089418B1 (en) 2012-09-14 2012-09-14 Method and apparatus for mapping between enhanced downlink control channel resource and antenna port
US14/657,389 US10009880B2 (en) 2012-09-14 2015-03-13 Method and apparatus for establishing a mapping between enhanced downlink control channel resource and antenna port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/081433 WO2014040282A1 (zh) 2012-09-14 2012-09-14 增强下行控制信道资源与天线端口的映射方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/657,389 Continuation US10009880B2 (en) 2012-09-14 2015-03-13 Method and apparatus for establishing a mapping between enhanced downlink control channel resource and antenna port

Publications (1)

Publication Number Publication Date
WO2014040282A1 true WO2014040282A1 (zh) 2014-03-20

Family

ID=49866754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081433 WO2014040282A1 (zh) 2012-09-14 2012-09-14 增强下行控制信道资源与天线端口的映射方法和装置

Country Status (6)

Country Link
US (1) US10009880B2 (zh)
EP (2) EP3089418B1 (zh)
JP (1) JP5990332B2 (zh)
KR (1) KR101709598B1 (zh)
CN (1) CN103503394B (zh)
WO (1) WO2014040282A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817209B (zh) * 2015-11-30 2019-11-22 上海诺基亚贝尔股份有限公司 在毫米波系统中用于实施下行传输的方法及其装置
CN106953720B (zh) * 2016-01-07 2020-01-03 工业和信息化部电信研究院 一种信号发送方法、装置和系统
CN107294676B (zh) * 2016-03-31 2020-10-20 电信科学技术研究院 导频映射方法、导频信号传输方法及装置、基站和终端
US11166225B2 (en) * 2016-08-02 2021-11-02 FG Innovation Company Limited Method for signaling RAN profile index and radio communication equipment using the same
US10091777B1 (en) * 2017-03-31 2018-10-02 At&T Intellectual Property I, L.P. Facilitating physical downlink shared channel resource element mapping indicator
CN110768767B (zh) * 2018-07-27 2021-04-09 华为技术有限公司 一种上下行时间资源配置的方法和装置
US11569957B2 (en) 2019-08-16 2023-01-31 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving downlink control channel in shortened transmission time intervals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340227A (zh) * 2008-08-15 2009-01-07 中兴通讯股份有限公司 下行参考信号的发送方法和装置
CN101645722A (zh) * 2008-08-05 2010-02-10 中兴通讯股份有限公司 一种天线端口配置信息的检测系统及方法
CN102396198A (zh) * 2009-03-17 2012-03-28 三星电子株式会社 用于在多流传输中映射导频信号的方法和系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101754970B1 (ko) * 2010-01-12 2017-07-06 삼성전자주식회사 무선 통신 시스템의 채널 상태 측정 기준신호 처리 장치 및 방법
KR101673906B1 (ko) * 2010-04-29 2016-11-22 삼성전자주식회사 Ofdm 시스템에서 공간 다중화 제어 채널 지원을 위한 상향 링크 ack/nack 채널의 맵핑 방법 및 장치
US8824267B2 (en) * 2010-08-13 2014-09-02 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for transmit diversity for DFT precoded channels
CN115767752A (zh) * 2011-02-11 2023-03-07 交互数字专利控股公司 用于增强型控制信道的系统和方法
JP5616284B2 (ja) * 2011-05-02 2014-10-29 株式会社Nttドコモ 基地局装置、移動端末装置、通信システム及び通信方法
US9565004B2 (en) * 2011-08-10 2017-02-07 Telefonaktiebolaget L M Ericsson Transmit diversity for pre-coded radio control signals
US9197387B2 (en) * 2011-08-15 2015-11-24 Google Technology Holdings LLC Method and apparatus for control channel transmission and reception
WO2013112972A1 (en) * 2012-01-27 2013-08-01 Interdigital Patent Holdings, Inc. Systems and/or methods for providing epdcch in a multiple carrier based and/or quasi-collated network
KR102023009B1 (ko) * 2012-01-31 2019-09-19 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 위한 참조 신호 안테나 포트 결정 방법 및 이를 위한 장치
US9179456B2 (en) * 2012-02-07 2015-11-03 Samsung Electronics Co., Ltd. Methods and apparatus for downlink control channels transmissions in wireless communications systems
JP6215297B2 (ja) * 2012-03-19 2017-10-18 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 高度制御通信路におけるリソースの集約
EP2830244B1 (en) * 2012-03-22 2019-05-08 LG Electronics Inc. Method and apparatus for receiving control information in wireless communication system
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
US9538517B2 (en) * 2012-06-27 2017-01-03 Telefonaktiebolaget Lm Ericsson (Publ) User equipment supporting communication in a multicarrier radio communication system and a method therein for receiving information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645722A (zh) * 2008-08-05 2010-02-10 中兴通讯股份有限公司 一种天线端口配置信息的检测系统及方法
CN101340227A (zh) * 2008-08-15 2009-01-07 中兴通讯股份有限公司 下行参考信号的发送方法和装置
CN102396198A (zh) * 2009-03-17 2012-03-28 三星电子株式会社 用于在多流传输中映射导频信号的方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2887598A4 *

Also Published As

Publication number Publication date
EP2887598A1 (en) 2015-06-24
EP3089418A1 (en) 2016-11-02
US20150189634A1 (en) 2015-07-02
JP5990332B2 (ja) 2016-09-14
JP2015534749A (ja) 2015-12-03
KR101709598B1 (ko) 2017-02-23
CN103503394A (zh) 2014-01-08
EP2887598A4 (en) 2015-09-09
CN103503394B (zh) 2016-12-21
KR20150058311A (ko) 2015-05-28
EP3089418B1 (en) 2017-07-26
US10009880B2 (en) 2018-06-26
EP2887598B1 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6689354B2 (ja) エンハンスト物理ダウンリンク制御チャネル伝送の方法及び装置
WO2014040282A1 (zh) 增强下行控制信道资源与天线端口的映射方法和装置
CN102395206B (zh) 下行控制信息的传输方法和设备
CN108540279B (zh) 在无线通信系统中发送/接收控制信道的方法和装置
CN108200651B (zh) 无线通信控制信道系统和方法
CN104170487B (zh) 一种控制信道资源传输方法、用户设备及基站
US9538507B2 (en) Method and apparatus for transmitting control channel signal in orthogonal frequency division multiplexing communication system
JP6032511B2 (ja) 制御チャネルを送受信するための方法、基地局、およびユーザ機器
WO2013023621A1 (zh) 传输增强下行控制信道的方法、设备和系统
WO2013135179A1 (zh) 控制信息发送和接收方法、基站和用户设备
WO2013097120A1 (zh) 下行控制信道的搜索空间的映射方法和装置
WO2013013643A1 (zh) 控制信道的接收和发送方法和装置
KR101778924B1 (ko) 물리적 다운링크 제어 채널의 자원 매핑 방법 및 장치
WO2013117171A1 (zh) 一种控制信道资源传输方法、基站及用户设备
WO2013139211A1 (zh) ePDCCH资源确定方法及装置
WO2013097418A1 (zh) 导频资源分配方法和设备
WO2014047850A1 (zh) 一种控制信道候选的分配方法及装置
WO2013149594A1 (zh) 一种资源配置方法和装置
WO2014019208A1 (zh) 传输控制信息的方法、装置及系统
WO2013178184A2 (zh) ePDCCH发送、接收方法及装置、基站、用户设备
WO2013139246A1 (zh) 一种控制信令的发送、解调方法与系统及终端
WO2014019234A1 (zh) 控制信息发送方法、接收方法和装置
WO2013138980A1 (zh) 一种资源分配方法、分布式传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012884540

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012884540

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157009359

Country of ref document: KR

Kind code of ref document: A