WO2013178184A2 - ePDCCH发送、接收方法及装置、基站、用户设备 - Google Patents

ePDCCH发送、接收方法及装置、基站、用户设备 Download PDF

Info

Publication number
WO2013178184A2
WO2013178184A2 PCT/CN2013/080485 CN2013080485W WO2013178184A2 WO 2013178184 A2 WO2013178184 A2 WO 2013178184A2 CN 2013080485 W CN2013080485 W CN 2013080485W WO 2013178184 A2 WO2013178184 A2 WO 2013178184A2
Authority
WO
WIPO (PCT)
Prior art keywords
ereg
epdcch
eregs
physical resource
cyclic prefix
Prior art date
Application number
PCT/CN2013/080485
Other languages
English (en)
French (fr)
Other versions
WO2013178184A3 (zh
Inventor
戴博
陈艺戬
石靖
孙云锋
左志松
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/417,422 priority Critical patent/US9609640B2/en
Publication of WO2013178184A2 publication Critical patent/WO2013178184A2/zh
Publication of WO2013178184A3 publication Critical patent/WO2013178184A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • ePDCCH transmitting and receiving method and device, base station, user equipment
  • the present invention relates to the field of communications, and in particular, to an enhanced physical downlink control channel (ePDCCH) transmitting and receiving method and apparatus, a base station, and a user equipment.
  • ePDCCH enhanced physical downlink control channel
  • the frame structure type Type 1 is applicable to Frequency Division Duplex (FDD) and Frequency Division Half Duplex.
  • FDD Frequency Division Duplex
  • Each radio frame is 10ms long and consists of 20 slots, each slot is 0.5ms, numbered from 0 to 19.
  • one subframe consists of two consecutive time slots, for example, subframe i consists of two consecutive time slots 2i and 2i+1.
  • Frame Structure Type 2 is suitable for Time Division Duplex (TDD).
  • a wireless frame is 10ms long and consists of two half-frames of length 5ms.
  • One field consists of five lms subframes of length.
  • the special subframe consists of the downlink special subframe DwPTS, the guard interval (GP) and the uplink special subframe UpPTS, and the total length is lms.
  • Each subframe i consists of two time slots 2i and B 2i+1 of length 0.5ms (15360xTs).
  • a resource element (Resource Element, referred to as RE) is an Orthogonal Frequency Division Multiplexing (OFDM) symbol in the time domain, and is a frequency domain.
  • resource Block is a regular cyclic prefix
  • one resource block is as shown in FIG. 1; a pair of resource blocks (RB-pair) in the same frequency domain in one subframe.
  • PCFICH Physical Hybrid Automatic Retransmission Request Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • Control Channel Element Physical downlink control channel PDCCH with control channel element
  • the CCE is mapped to the physical resource.
  • the CCE size is 9 resource element groups (Resource Element Group, REG for short), that is, 36 resource units.
  • One PDCCH has four aggregation levels (Aggregation Level), and four types of aggregation. Levels correspond to one PDCCH occupying 1, 2, 4, or 8 CCEs, which are called aggregation level 1, aggregation level 2, aggregation level 4, and aggregation level 8, which correspond to the four formats of PDCCH, that is, aggregation.
  • the level represents the physical resource size occupied by the physical downlink control channel.
  • the search space of the physical downlink control channel of the user equipment is divided into a public search space and a search space unique to the user equipment.
  • a Common Reference Signal (CRS) is designed.
  • the user equipment User Equipment, UE for short
  • CSI-RS channel information reference signal
  • DMRS demodulation reference signal
  • CSI-RS is used for channel measurement
  • DMRS is used for demodulation of downlink shared channel
  • DMRS demodulation can use beam method to reduce interference between different receiving sides and different cells, and can reduce codebook granularity. The performance caused is degraded, and the overhead of downlink control signaling is reduced to some extent.
  • LTE R11 proposes to solve the interference problem by using a multi-antenna transmission method based on user-specific pilots.
  • mapping the PDCCH to the PDSCH region and adopting a frequency division multiplexing method similar to PDSCH multiplexing the frequency domain of inter-cell interference can be realized. coordination.
  • This enhanced PDCCH is called an enhanced PDCCH.
  • the ePDCCH mapping method mainly includes two types of continuous mapping and discrete mapping, and one resource block pair can carry 2, 3, and 4 ePDCCHs, and the antenna port used by one resource block pair includes ⁇ 107, 108, 109 One or more of 110 ⁇ , as shown in Figure 2.
  • the search space of the enhanced physical downlink control channel of the UE also includes the UE-specific search space.
  • the ePDCCH transmission performance is relatively poor, and an effective solution has not been proposed yet.
  • the method for processing the ePDCCH in the related art causes the problem that the ePDCCH transmission performance is relatively poor.
  • the present invention provides an enhanced physical downlink control channel sending and receiving method and apparatus, a base station, and a user equipment, so as to solve the problem at least.
  • an ePDCCH transmission method including: a base station mapping an enhanced resource unit group eREG corresponding to an ePDCCH to a different resource unit, where each eREG in the eREG corresponding to the ePDCCH is located in a Physical resource block pairing; the base station transmitting the ePDCCH on the resource unit.
  • the one physical resource block pair includes n eREGs, and the resource unit locations in the physical resource blocks corresponding to the n eREGs on different physical resource blocks are different, where n is an integer greater than or equal to 1.
  • the mapping, by the base station, the eREG corresponding to the ePDCCH to different resource units includes: the base station dividing the modulation symbol corresponding to the transmitted ePDCCH into a resource group; and performing, by the base station, modulation symbols in the resource group according to a predetermined rule. Sorting; the base station maps the sorted modulation symbols to the resource unit; or the base station divides a physical resource block pair corresponding to the ePDCCH into eREGs; the base station maps the ePDCCH to a preset eREG .
  • the ordering, by the base station, the modulation symbols in the resource group according to a predetermined rule comprises: the sequence in which the base station adopts the modulated modulation symbols; and the base station according to the sequence number of the first eREG, and then in the eREG
  • the order of the sequence numbers of the modulation symbols sorts the modulation symbols in the resource group; the base station inputs the modulated modulation symbols into a sub-block interleaver, and the resources are in the order according to the output of the sub-block interleaver
  • the modulation symbols in the group are sorted.
  • the method further includes: the base station cyclically shifting the sorted modulation symbols.
  • the base station cyclically shifts the sorted modulation symbols according to at least one of the following: a resource group sequence number, a sequence number of a physical resource block corresponding to the resource group, a cell identifier, a subframe number, and a cyclic shift Indication signaling.
  • the mapping, by the base station, the sorted modulation symbols to the physical resources includes: the base station mapping the sorted modulation symbols to the resource unit according to one of the following manners: Domain, sequential mapping of physical resource blocks; first frequency domain re-time domain, sequential mapping of physical resource blocks.
  • the dividing, by the base station, the physical resource block pair corresponding to the ePDCCH into the eREG includes: the base station numbers the resource units used for the ePDCCH according to the first time domain re-frequency domain, or the frequency domain re-time domain; The numbered resource unit is divided into eREGs.
  • dividing the numbered resource unit into an eREG includes one of: dividing the numbered resource unit into the eREG at equal intervals; and dividing the numbered resource unit into consecutively
  • the numbered resource unit is input to the sub-block interleaver, and the resource unit output by the sub-block interleaver is sequentially divided into the eREG; and the numbered resource unit is input to the sub-block interleaver
  • the resource unit output by the sub-block interleaver is cyclically shifted, and then divided into the eREG.
  • the base station cyclically shifts the sorted modulation symbols according to at least one of the following: a resource group sequence number, a sequence number of a physical resource block corresponding to the resource group, a cell identifier, a subframe number, and a cyclic shift Indication signaling.
  • the time domain start position of the physical resource corresponding to the ePDCCH is the same as the time domain start position of the physical downlink shared channel PDSCH scheduled by the ePDCCH, where the ePDCCH and the PDSCH are on the same serving cell. .
  • the frequency domain location of the corresponding physical resource of the ePDCCH is a signaling configuration or a preset location, where the preset location includes one of the following: two sidebands of the system bandwidth, the system bandwidth N physical resource blocks of each sideband of the two sidebands, N physical resource blocks on the spaced mapping system, and N physical resource blocks of the system bandwidth center, where N is an integer greater than zero.
  • the start time position of the PDSCH of the serving cell is determined according to the start symbol indication signaling.
  • the base station encodes the ePDCCH according to the physical resource after the preset physical resource block is removed, where the preset physical resource block is the same as the physical resource block where the secondary synchronization channel is located, and the preset physical resource is The eREG corresponding to the block does not carry the ePDCCH.
  • mapping the eREG corresponding to the ePDCCH to different resource units includes: mapping of the virtual eREG to the eREG, where the eREG corresponds to a physical resource, and the virtual eREG corresponds to a logical unit of the ePDCCH;
  • the eREG includes a continuous virtual eREG and a discrete virtual eREG, and the consecutive virtual eREGs are mapped to the same eREG as the serial number of the consecutive virtual eREGs, and the discrete virtual eREGs are mapped to the preset eREG.
  • the mapping of the discrete virtual eREG to the preset eREG includes: dividing the discrete eREG into discrete virtual eREG sets; dividing the eREG into eREG sets; and combining the discrete virtual eREGs with The eREG set corresponds to one-to-one, and the discrete virtual eREG set includes a number of discrete virtual eREGs equal to the number of eREGs included in the eREG set.
  • the correspondence between the discrete virtual eREGs in the discrete virtual eREG set and the eREGs in the eREG set includes:
  • the eREG numbers in the eREG set are a0, al, a2, a3, a4, a5, a6, a7, a8, a9, al O, al l , al2 , Al 3 , al4 , a ⁇ 5 , al 6, al 7 , al 8, al 9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31, the discrete virtual The discrete virtual eREG numbers in the eREG set are b0, bl, b2, b3, b4, b5, b6, b7, B8, b9, blO, bll, M2, M3, M4, M5, M6, M7, M8, M9, b20, b21, b22, b23, b24, b25,
  • aO al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, a ⁇ 5, al6, all, al8, al9, a20, a21, a22, a23, A24, a25, a26, a27, a28, a29, a30, a31 in turn correspond to b0, bl6, b4, b20, b2, bl8, b6, b22, bl, bl7, b5, b21, b3, bl9, bl, b23, B8, b24, M2, b28, blO, b26, M4, b30, b9, b25, bl3, b29, bll, bll, bl5, b31 ;
  • aO al, a2, a3, a4, a5, a6, al, aS, a9, alO, all, al2, al3, al4, a ⁇ 5, al6, all, al8, al9, a20, a21, a22, a23, A24, a25, a26, a27, a28, a29, a30, a31 in turn correspond to b0, bl6, b4, b20, bl, bl7, b5, b21, b2, bl8, b6, b22, b3, bl9, bl, b23, B8, b24, M2, b28, b9, b25, bl3, b29, blO, b26, M4, b30, bll, bll, bl5, b31 ;
  • aO al, a2, a3, a4, a5, a6, al, aS, a9, alO, all, al2, al3, al4, a ⁇ 5, al6, all, al8, al9, a20, a21, a22, a23, A24, a25, a26, a27, a28, a29, a30, a31 in turn correspond to b0, bl6, b2, bl8, bl, bl7, b3, bl9, b4, b20, b6, b22, b5, b21, bl, b23, B8, b24, blO, b26, b9, b26, bll, bll, M2, b28, M4, b30, bl3, b29, bl5, b31 ;
  • aO al, a2, a3, a4, a5, a6, al, aS, a9, alO, all, al2, al3, al4, a ⁇ 5, al6, all, al8, al9, a20, a21, a22, a23, A24, a25, a26, a27, a28, a29, a30, a31 in turn correspond to b0, M6, b8, b24, bl, M7, b9, b25, b2, M8, M0, b26, b3, M9, bll, bll, B4, b20, M2, b28, b5, b21, M3, b29, b6, b22, M4, b30, bl, b23, bl5, b31 ;
  • aO al, a2, a3, a4, a5, a6, al, aS, a9, alO, all, al2, al3, al4, a ⁇ 5, al6, all, al8, al9, a20, a21, a22, a23, A24, a25, a26, a27, a28, a29, a30, a31 in turn correspond to b0, M6, b8, b24, b2, M8, M0, b26, bl, M7, b9, b25, b3, M9, bll, bll, B4, b20, M2, b28, b6, b22, M4, b30, b5, b21, M3, b29, bl, b23, bl5, b31 ;
  • the discrete virtual eREG numbers in the discrete virtual eREG set are a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, Al l , al2, al3, al4, al5, the eREG numbers in the eREG set are b0, bl, hi, b3, b4, b5, b6, hi, b8, b9, M0, bl l, M2, M3, M4, M5, the correspondence between the discrete virtual eREGs in the discrete virtual eREG set and the eREGs in the eREG set is one of the following:
  • A0, al, a2, a3, a4, a5, a6, ⁇ , a8, a9, alO, al l , al2, al3, al4, al5 in turn correspond to b0, b8, bl, b9, hi, blO, b3, M l , b4, bl2: , b5, bl3, b6, bl4, hi, bl5 ; a0, al, a2, a3, a4, a5, a6, ⁇ , a8, a9, alO, al l, al2, al3, al4, Al5 corresponds in turn to b0, b8, hi, blO, bl, b9, b3, M l , b4, bl2:, b6, bl4, b5, bl3, hi, bl5; aO, al, a2, a3, a4, a5 A6, ⁇ , a8, a9, al
  • the Null modulation symbol is added, where the number of the added Null modulation symbols is an integer greater than or equal to 0.
  • the one physical resource block pair includes n eREGs, where the normal cyclic prefix subframe has the same value of n corresponding to the physical resource block of the extended cyclic prefix subframe, or the one physical resource block includes n eREGs.
  • n Determining an n value according to the predefined scenario, where the predefined scenario includes at least one of the following: a general subframe of the extended cyclic prefix configuration, a general subframe configured by the regular cyclic prefix, and a special subframe set of the extended cyclic prefix configuration
  • the special subframe set 2 of the extended cyclic prefix configuration, the special subframe set 1 of the regular cyclic prefix configuration, and one or more of the special subframe set 2 of the regular cyclic prefix configuration, n is an integer greater than or equal to 1.
  • the special subframe set 1 of the regular cyclic prefix configuration includes a special subframe configuration 3, 4, 8; or the special subframe set 1 of the regular cyclic prefix configuration includes a special subframe configuration 1, 2, 6 , 7, 3, 4, 8;
  • the special subframe set 2 of the conventional cyclic prefix configuration includes a special subframe configuration 1, 2, 6, 7;
  • the special subframe set 1 of the extended cyclic prefix configuration includes a special subframe configuration 1, 2, 3, 5, 6; or the special subframe set 1 of the extended cyclic prefix configuration includes a special subframe configuration 1, 2, 3, 4, 5, 6;
  • the special subframe set 2 of the extended cyclic prefix configuration includes a special subframe configuration 4.
  • an ePDCCH receiving method including: determining, by a user equipment (UE), an enhanced resource unit group eREG mapped resource unit corresponding to an ePDCCH, where each of the ePDCCHs corresponding to the ePDCCH The eREG is located in one physical resource block pair; the UE receives the ePDCCH on the resource unit.
  • UE user equipment
  • the ePDCCH corresponding to the ePDCCH is mapped to a different resource unit by: the base station dividing the physical resource block pair corresponding to the ePDCCH into an eREG; and the base station mapping the ePDCCH to a preset eREG.
  • the dividing, by the base station, the physical resource block pair corresponding to the ePDCCH into the eREG includes: the base station numbers the resource units used for the ePDCCH according to the first time domain re-frequency domain, or the frequency domain re-time domain; The numbered resource unit is divided into eREGs.
  • dividing the numbered resource unit into an eREG includes one of: dividing the numbered resource unit into the eREG at equal intervals; and dividing the numbered resource unit into consecutively
  • the numbered resource unit is input to the sub-block interleaver, and the resource unit output by the sub-block interleaver is sequentially divided into the eREG; and the numbered resource unit is input to the sub-block interleaver
  • the resource unit output by the sub-block interleaver is cyclically shifted, and then divided into the eREG.
  • the time domain start position of the physical resource corresponding to the ePDCCH is the same as the time domain start position of the physical downlink shared channel PDSCH scheduled by the ePDCCH, where the ePDCCH and the PDSCH are on the same serving cell. .
  • mapping the eREG corresponding to the ePDCCH to different resource units includes: mapping of the virtual eREG to the eREG, where the eREG corresponds to a physical resource, and the virtual eREG corresponds to a logical unit of the ePDCCH;
  • the eREG includes a continuous virtual eREG and a discrete virtual eREG, and the consecutive virtual eREGs are mapped to the same eREG as the serial number of the consecutive virtual eREGs, and the discrete virtual eREGs are mapped to the preset eREG.
  • the mapping of the discrete virtual eREG to the preset eREG includes: dividing the discrete eREG into discrete virtual eREG sets; dividing the eREG into eREG sets; and combining the discrete virtual eREGs with The eREG set corresponds to one-to-one, and the discrete virtual eREG set includes a number of discrete virtual eREGs equal to the number of eREGs included in the eREG set.
  • the one physical resource block pair includes n eREGs, where the normal cyclic prefix subframe has the same value of n corresponding to the physical resource block of the extended cyclic prefix subframe, or the one physical resource block includes n eREGs.
  • the predefined scenario includes at least one of the following: a general subframe of the extended cyclic prefix configuration, a general subframe configured by the regular cyclic prefix, and a special subframe set of the extended cyclic prefix configuration , the special subframe set 2 of the extended cyclic prefix configuration, and the special subframe set 1 of the regular cyclic prefix configuration, One or more of the special subframe sets 2 of the regular cyclic prefix configuration, n being an integer greater than or equal to one.
  • the discrete virtual eREG set is in one-to-one correspondence with the eREG set, and the discrete virtual eREG set includes a discrete virtual eREG number equal to the eREG number included in the eREG set.
  • an ePDCCH transmitting apparatus is further applied to a base station, including: a first mapping module, configured to map an enhanced resource unit group eREG corresponding to an ePDCCH to a different resource unit, where Each eREG in the eREG corresponding to the ePDCCH is located in one physical resource block pair; and the sending module is configured to send the ePDCCH on the resource unit.
  • the one physical resource block includes n eREGs, and the resource unit locations in the physical resource blocks corresponding to the n eREGs on different physical resource blocks are different, where n is an integer greater than or equal to 1.
  • the first mapping module includes: a first dividing module, configured to divide a modulation symbol corresponding to the transmitted ePDCCH into a resource group; and a sorting module, configured to sort the modulation symbols in the resource group according to a predetermined rule a second mapping module, configured to map the sorted modulation symbols to the resource unit; or a second partitioning module, configured to divide the physical resource block pair corresponding to the ePDCCH into eREGs; To map the ePDCCH to a preset eREG.
  • the ordering module is configured to sort the modulation symbols in the resource group by using one of the following modes: using the sequence of the modulated modulation symbols; performing the eREG intra-modulation according to the sequence number of the first eREG The order of the sequence numbers of the symbols sorts the modulation symbols in the resource group; the modulated modulation symbols are input to the sub-block interleaver, and the modulation in the resource group is performed in the order after the output of the sub-block interleaver The symbols are sorted.
  • the first mapping module further includes: a shifting module, configured to cyclically shift the sorted modulation symbols.
  • the second mapping module is configured to map the sorted modulation symbols to the resource unit according to one of the following manners: first time domain re-frequency domain, sequential mapping of physical resource blocks; first frequency domain Re-time domain, the order of physical resource blocks.
  • the second partitioning module includes: a numbering module, configured to: use resource elements for ePDCCH according to a prior time domain re-frequency domain, or first frequency domain re-time domain order; third partitioning module, set to The numbered resource unit is divided into eREGs.
  • the third dividing module is configured to divide the numbered resource unit into eREGs by using one of the following ways: dividing the numbered resource units into the eREGs at equal intervals; The resource units are successively divided into the eREGs in order; the numbered resource units are input to the sub-block interleaver, and the resource units output by the sub-block interleaver are sequentially divided into the eREGs; The resource unit inputs the sub-block interleaver, cyclically shifts the resource unit output by the sub-block interleaver, and then divides into the eREG.
  • the first mapping module is configured to map the eREG corresponding to the ePDCCH to different resource units by: mapping the virtual eREG to the eREG, where the eREG corresponds to the physical a resource, the virtual eREG corresponding to a logical unit of the ePDCCH; the virtual eREG includes a continuous virtual eREG and a discrete virtual eREG, where the consecutive virtual eREGs are mapped to the same eREG as the serial number of the consecutive virtual eREGs, The discrete virtual eREG is mapped to the preset eREG.
  • the first mapping module is configured to map the discrete virtual eREG to a preset eREG by: dividing the discrete eREG into discrete virtual eREG sets; dividing the eREG into eREGs
  • the discrete virtual eREG set is in one-to-one correspondence with the eREG set, and the discrete virtual eREG set includes a discrete virtual eREG number equal to the eREG number included in the eREG set.
  • the one physical resource block pair includes n eREGs, where the normal cyclic prefix subframe has the same value of n corresponding to the physical resource block of the extended cyclic prefix subframe, or the one physical resource block includes n eREGs.
  • n Determining an n value according to the predefined scenario, where the predefined scenario includes at least one of the following: a general subframe of the extended cyclic prefix configuration, a general subframe configured by the regular cyclic prefix, and a special subframe set of the extended cyclic prefix configuration
  • the special subframe set 2 of the extended cyclic prefix configuration, the special subframe set 1 of the regular cyclic prefix configuration, and one or more of the special subframe set 2 of the regular cyclic prefix configuration, n is an integer greater than or equal to 1.
  • a base station including the ePDCCH transmitting apparatus described above.
  • an ePDCCH receiving apparatus which is applied to a UE, and includes: a determining module, configured to determine a resource unit of an enhanced eREG mapping corresponding to an ePDCCH, where each eREG corresponding to the ePDCCH An eREG is located in one physical resource block pair; and a receiving module is configured to receive the ePDCCH on the resource unit.
  • a UE including the ePDCCH receiving apparatus described above.
  • the resource elements in the physical resource blocks corresponding to the n eREGs on different physical resource blocks are differently, and the resource units corresponding to the physical resource blocks are discretely divided into eREGs, and the ePDCCH is solved.
  • Corresponding performance balancing between eREGs ensures that the transmission performance of ePDCCH is stable, and the complexity of scheduling is reduced, and resource utilization is improved.
  • FIG. 1 is a schematic diagram of resource block mapping when a subframe cyclic prefix is a regular cyclic prefix according to the related art
  • FIG. 2 is a schematic diagram of terminal-specific pilot antenna ports 107 to 110 according to the related art
  • FIG. 3 is a flowchart of a method for transmitting an ePDCCH according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for receiving an ePDCCH according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of an apparatus for transmitting an ePDCCH according to an embodiment of the present invention
  • FIG. 6 is a block diagram showing a preferred structure of an apparatus for transmitting an ePDCCH according to an embodiment of the present invention
  • FIG. 7 is a structural block diagram of a receiving apparatus of an ePDCCH according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a user equipment according to an embodiment of the present invention.
  • the present embodiment provides a method for transmitting an ePDCCH according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps S302 to S304.
  • Step S302 The base station maps the eREG corresponding to the ePDCCH to different resource units, where each eREG in the eREG corresponding to the ePDCCH is located in one physical resource block pair.
  • Step S304 The base station sends an ePDCCH on the resource unit.
  • the base station maps the eREG corresponding to the ePDCCH to different resource units, and each eREG in the eREG corresponding to the ePDCCH is located in one physical resource pair, so that the performance of the eREG corresponding to the ePDCCH is balanced, thereby overcoming the performance.
  • the ePDCCH processing method in the related art causes a problem that the ePDCCH transmission performance is relatively poor, and the problem of improving the ePDCCH transmission performance is achieved.
  • one physical resource block includes n eREGs, and different physical resource blocks have different resource unit locations in the physical resource blocks corresponding to the n eREGs, where n is an integer greater than or equal to 1.
  • the preferred embodiment achieves equalization between the eREGs corresponding to the ePDCCH.
  • the eNodeB can map the eREG corresponding to the ePDCCH to different resource units in multiple manners.
  • the following two methods are provided:
  • Manner 1 The base station divides the modulation symbols corresponding to the transmitted ePDCCH into resource groups, and then the base station sorts the modulation symbols in the resource group according to a predetermined rule. Finally, the base station maps the sorted modulation symbols to the resource unit.
  • Manner 2 The base station divides the physical resource block pair corresponding to the ePDCCH into an eREG, and then the base station maps the ePDCCH to the preset eREG.
  • one of the above methods can be selected as needed.
  • the modulation symbols in the resource group may be ordered by using one of the following predetermined rules: (1) The sequence in which the base station adopts the modulated modulation symbols.
  • the base station sorts the modulation symbols in the resource group according to the sequence number of the first eREG and then the sequence number of the modulation symbols in the eREG.
  • the base station inputs the modulated modulation symbols into the sub-block interleaver, and sorts the modulation symbols in the resource group in the order after the sub-block interleaver outputs.
  • the sorted modulation symbols may also be cyclically shifted.
  • This preferred embodiment can improve the performance of the modulation symbols.
  • the base station may cyclically shift the sorted modulation symbols according to at least one of the following: a resource group sequence number, a sequence number of the physical resource block corresponding to the resource group, a cell identifier, a subframe number, and a cyclic shift Indication signaling.
  • the base station may map the sorted modulation symbols to the resource unit according to one of the following manners: (1) the first time domain and the frequency domain, the order of the physical resource blocks.
  • the base station may divide the physical resource block pair corresponding to the ePDCCH into an eREG according to the following manner: the base station re-frequency domain according to the first time domain, or the frequency domain re-time domain The sequential number; then the numbered resource unit is divided into eREGs.
  • the numbered resource unit can be divided into eREGs by one of the following methods:
  • Manner 1 The resource units after the numbering are divided into the eREGs at equal intervals;
  • Manner 2 The resource unit after the above number is successively divided into the eREG in order;
  • Manner 3 input the numbered resource unit into the sub-block interleaver, and divide the resource unit output by the sub-block interleaver into eREG;
  • Manner 4 The resource unit after the number is input into the sub-block interleaver, and the resource unit output by the sub-block interleaver is cyclically shifted, and then divided into eREGs.
  • the sorted modulation symbols may be cyclically shifted according to at least one of the following: a resource group sequence number, a sequence number of the physical resource block corresponding to the resource group, a cell identifier, a subframe number, Cyclic shift indication signaling.
  • the time domain start location of the physical resource corresponding to the ePDCCH satisfies the following conditions: a time domain start location of the physical resource corresponding to the ePDCCH and a time domain of the physical downlink shared channel (PDSCH) scheduled by the ePDCCH
  • the starting position is the same, where the ePDCCH and the PDSCH are on the same serving cell.
  • the frequency domain location of the corresponding physical resource of the ePDCCH may be a signaling configuration or a preset location, where the preset location includes one of the following: N sidebands, N physical resource blocks for each sideband of the two sidebands of the system bandwidth, N physical resource blocks on the interval mapping system, and N physical resource blocks of the system bandwidth center, where N is greater than An integer of 0.
  • the start time position of the PDSCH of the serving cell is determined according to the start symbol indication signaling.
  • the base station encodes the ePDCCH according to the physical resource after the preset physical resource block is removed, where the preset physical resource block is the same as the physical resource block where the secondary synchronization channel is located, and the preset physical resource block corresponds to The eREG does not carry the ePDCCH.
  • the preferred embodiment improves the accuracy of the base station in determining the physical resources of the ePDCCH.
  • the mapping of the ePDCCH corresponding to the ePDCCH to the different resource units includes: mapping of the virtual eREG to the eREG, where the eREG corresponds to the physical resource, and the virtual eREG corresponds to the logical unit of the ePDCCH;
  • the virtual eREG includes a continuous virtual eREG and a discrete virtual eREG.
  • the consecutive virtual eREGs are mapped to the same eREG as the serial number of the consecutive virtual eREGs, and the discrete virtual eREGs are mapped to the preset eREG.
  • the mapping of the discrete virtual eREG to the preset eREG includes: dividing the discrete eREG into discrete virtual eREG sets; dividing the eREG into eREG sets; and separating the discrete virtual eREG sets with The eREG sets are in one-to-one correspondence, and the discrete virtual eREG sets include a discrete number of virtual eREGs equal to the number of eREGs included in the eREG set.
  • the correspondence between the discrete virtual eREGs in the discrete virtual eREG set and the eREGs in the eREG set includes:
  • the enhanced resource unit group number in the enhanced resource unit group set is a0, al, a2, a3, a4, a5, a6 , a7, a8, a9, alO, al l , al2, al3, al4, al5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, A31.
  • the discrete virtual enhanced resource unit group numbers in the discrete virtual enhanced resource unit group set are b0, bl, a2, a3, a4, a5, a6, al, a8, a9, alO, al l , al2, Al3, al4, al5, al6, al7, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, b31, discrete virtual eREGs within the discrete virtual eREG set Correspondence with eREGs within the eREG set: a0, al, a2, a3, a4, a5, a6, al, a8, a9, alO, al l , al2, al3, al4, al5, al6, al7, Al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28,
  • the discrete virtual eREG numbers in the discrete virtual eREG set are a0, al, a2, a3, a4, a5, a6, al, a8, a9, alO, all, al2, Al3, al4, al5, the eREG numbers in the eREG set are b0, bl, b2, b3, b4, b5, b6, bl, b8, b9, blO, bll, M2, M3, M4, M5, discrete virtual eREG
  • the correspondence between the discrete virtual eREGs in the set and the eREGs in the eREG set is one of the following:
  • A0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5 in turn correspond to b0, b8, bl, b9, b2, blO, b3, bll, B4, bl2: , b5, bl3, b6, bl4, hi, bl5; a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5 On b0, b8, b2, blO, bl, b9, b3, bll, b4, bl2:, b6, bl4, b5, bl3, hi, bl5; aO, al, a2, a3, a4, a5, a6, a7, A8, a9, alO, all, al2, al3,
  • a physical resource block includes n eREGs, where a regular cyclic prefix subframe has the same value of n as a physical resource block of an extended cyclic prefix subframe, or one physical resource block includes n eREGs.
  • n value Determining an n value according to the predefined scenario, where the predefined scenario includes at least one of the following: a general subframe of the extended cyclic prefix configuration, a general subframe configured by the regular cyclic prefix, and a special subframe set of the extended cyclic prefix configuration
  • the special subframe set 1 of the regular cyclic prefix configuration includes the special subframe configuration 3, 4, 8; or, the special subframe set 1 of the regular cyclic prefix configuration includes the special subframe configuration 1, 2, 6, 7, 3, 4, 8;
  • the special subframe set 2 of the regular cyclic prefix configuration includes special subframe configurations 1, 2, 6, 7;
  • the special subframe set 1 of the extended cyclic prefix configuration includes special subframe configurations 1, 2, 3, 5, 6; or, the special subframe set 1 of the extended cyclic prefix configuration includes special subframe configurations 1, 2, 3, 4, 5, 6;
  • the special subframe set 2 of the extended cyclic prefix configuration includes a special subframe configuration 4.
  • FIG. 4 is a flowchart of a method for receiving an ePDCCH according to an embodiment of the present invention. As shown in FIG. 4, the method includes the following steps S402 to S404.
  • Step S402 The UE determines the resource unit of the eREG mapping corresponding to the ePDCCH, where each eREG in the eREG corresponding to the ePDCCH is located in one physical resource block pair.
  • Step S404 The UE receives the ePDCCH on the resource unit.
  • the UE determines the resource unit of the eREG mapping corresponding to the ePDCCH, and each eREG in the eREG corresponding to the ePDCCH is located in one physical resource pair, so that the performance of the eREG corresponding to the ePDCCH is balanced, thereby overcoming the related art.
  • the ePDCCH processing method causes the problem that the ePDCCH transmission performance is relatively poor, and the problem of improving the ePDCCH transmission performance is achieved.
  • one physical resource block includes n eREGs, and different physical resource blocks have different resource unit locations in the physical resource blocks corresponding to the n eREGs, where n is an integer greater than or equal to 1.
  • n is an integer greater than or equal to 1.
  • the performance between the eREGs corresponding to the ePDCCH is balanced.
  • an ePDCCH transmitting device software is also provided, which is used to execute the technical solutions described in the foregoing embodiments and preferred embodiments.
  • a storage medium is further provided, where the ePDCCH transmission software is stored, and the storage medium includes, but is not limited to, an optical disc, a floppy disk, a hard disk, a rewritable memory, and the like.
  • the embodiment of the present invention further provides an ePDCCH sending apparatus, where the apparatus can be applied to a base station, and the ePDCCH sending apparatus can be used to implement the foregoing ePDCCH sending method and a preferred implementation manner, which have been described, and are not described again.
  • the modules involved in the ePDCCH transmitting apparatus will be described.
  • the term "module” may implement a combination of software and/or hardware for a predetermined function.
  • FIG. 5 is a structural block diagram of an apparatus for transmitting an ePDCCH according to an embodiment of the present invention. As shown in FIG. 5, the apparatus includes: a first mapping module 52, and a sending module 54, which is described in detail below.
  • the first mapping module 52 is configured to map the enhanced resource unit group eREG corresponding to the ePDCCH to a different resource unit, where each eREG in the eREG corresponding to the ePDCCH is located in one physical resource block pair;
  • the first mapping module 52 is coupled to the ePDCCH that is configured to transmit on the resource unit mapped by the first mapping module 52.
  • one physical resource block includes n eREGs, and the resource unit locations in the physical resource blocks corresponding to the n eREGs on different physical resource blocks are different, where n is an integer greater than or equal to 1.
  • FIG. 6 is a block diagram of a preferred structure of an ePDCCH transmitting apparatus according to an embodiment of the present invention.
  • the first mapping module 52 includes: a first dividing module 521, a sorting module 522, a second mapping module 523, and a second The partitioning module 524, the third mapping module 525, the first mapping module 52 further includes: a shifting module 526; the second partitioning module 524 includes a numbering module 5242, and a third partitioning module 5244.
  • the foregoing structure is described in detail below.
  • the first mapping module 52 includes a first dividing module 521, configured to divide the modulated symbol corresponding to the transmitted ePDCCH into a resource group, and the sorting module 522 is coupled to the first dividing module 521, and is configured to perform the first dividing module according to a predetermined rule.
  • the modulating symbols in the 521 partitioned resource group are sorted;
  • the second mapping module 523 is coupled to the sorting module 522, and configured to map the sorting module 522 to the resource unit; or
  • the second dividing module 524 is configured to divide the physical resource block pair corresponding to the ePDCCH into eREGs; the third mapping module 525 is coupled to the second dividing module 524, and is configured to map the ePDCCH to the eREG divided by the second dividing module 524. .
  • the ordering module 522 is arranged to order the modulation symbols in the resource group in one of the following ways:
  • the first mapping module 52 further includes: a shifting module 526 configured to cyclically shift the sorted modulation symbols.
  • the second mapping module 523 is arranged to map the sorted modulation symbols onto the resource unit in one of the following ways:
  • Pre-time domain re-frequency domain sequential mapping of physical resource blocks
  • the frequency domain is then re-timed, and the order of physical resource blocks is mapped one by one.
  • the second dividing module 524 includes: a numbering module 5242, configured to sequence the resource units for the ePDCCH according to the first time domain re-frequency domain, or the frequency domain re-time domain; the third partitioning module 5244, coupled To the numbering module 5242, the resource unit numbered by the numbering module 5242 is set to be divided into eREGs.
  • the third dividing module 5244 is configured to divide the numbered resource unit into eREGs by one of the following methods:
  • the numbered resource units are divided into the eREGs at equal intervals;
  • the numbered resource units are successively divided into the eREGs in order;
  • the numbered resource unit is input to the sub-block interleaver, and the resource unit output by the sub-block interleaver is cyclically shifted, and then divided into the eREG.
  • an ePDCCH receiving device software is also provided, which is used to implement the technical solutions described in the above embodiments and preferred embodiments.
  • a storage medium is further provided, where the ePDCCH receiving software is stored, and the storage medium includes, but is not limited to, an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like.
  • the embodiment of the present invention further provides an ePDCCH receiving apparatus, where the apparatus can be applied to a UE, and the ePDCCH receiving apparatus can be used to implement the foregoing ePDCCH receiving method and a preferred implementation manner, which have been described, and are not described again.
  • the modules involved in the ePDCCH receiving apparatus will be described.
  • the term "module” may implement a combination of software and/or hardware for a predetermined function.
  • FIG. 7 is a structural block diagram of an apparatus for receiving an ePDCCH according to an embodiment of the present invention.
  • the apparatus includes: a determining module 72, and a receiving module 74.
  • the determining module 72 is configured to determine a resource unit of the eREG mapping corresponding to the ePDCCH, where each eREG in the eREG corresponding to the ePDCCH is located in one physical resource block pair, and the receiving module 74 is coupled to the determining module 72, and is configured to be The ePDCCH is received on the resource unit determined by the determining module 72.
  • FIG. 8 is a structural block diagram of a base station according to an embodiment of the present invention.
  • the base station includes the ePDCCH transmitting apparatus shown in FIG. 5 or 6, and the apparatus includes: A mapping module 52, a sending module 54, the first mapping module 52 includes: a first dividing module 521, a sorting module 522, a second mapping module 523, a second dividing module 524, a third mapping module 525, and a first mapping module 52
  • the second dividing module 524 includes: a numbering module 5242, and a third dividing module 5244. The above structure is described in detail below.
  • the first mapping module 52 is configured to map the enhanced resource unit group eREG corresponding to the ePDCCH to a different resource unit, where each eREG in the eREG corresponding to the ePDCCH is located in one physical resource block pair;
  • the first mapping module 52 is coupled to the ePDCCH that is configured to transmit on the resource unit mapped by the first mapping module 52.
  • one physical resource block includes n eREGs, and the resource unit locations in the physical resource blocks corresponding to n eREGs on different physical resource blocks are different, where n is an integer greater than or equal to 1.
  • the first mapping module 52 includes a first dividing module 521, configured to divide the modulated symbol corresponding to the transmitted ePDCCH into a resource group, and the sorting module 522 is coupled to the first dividing module 521, and is configured to perform the first dividing module according to a predetermined rule.
  • the modulating symbols in the 521 partitioned resource group are sorted;
  • the second mapping module 523 is coupled to the sorting module 522, and configured to map the sorting module 522 to the resource unit; or
  • the second dividing module 524 is configured to divide the physical resource block pair corresponding to the ePDCCH into eREGs; the third mapping module 525 is coupled to the second dividing module 524, and is configured to map the ePDCCH to the eREG divided by the second dividing module 524. .
  • the first mapping module 52 further includes: a shifting module 526 configured to cyclically shift the sorted modulation symbols.
  • the second dividing module 524 includes: a numbering module 5242, configured to sequence the resource units for the ePDCCH according to the first time domain re-frequency domain, or the frequency domain re-time domain; the third partitioning module 5244, coupled To the numbering module 5242, the resource unit numbered by the numbering module 5242 is set to be divided into eREGs.
  • FIG. 9 is a structural block diagram of a user equipment according to an embodiment of the present invention.
  • the base station includes the ePDCCH receiving apparatus 4 shown in FIG. 7, and the apparatus includes: a determining module. 72.
  • the receiving module 74 The above structure is described in detail below.
  • the determining module 72 is configured to determine a resource unit of the eREG mapping corresponding to the ePDCCH, where each eREG in the eREG corresponding to the ePDCCH is located in one physical resource block pair, and the receiving module 74 is coupled to the determining module 72, and is configured to be The ePDCCH is received on the resource unit determined by the determining module 72.
  • the preferred embodiment provides an ePDCCH sending method, where the method includes the following steps:
  • Step 1 Divide the modulated symbols into resource groups
  • the modulated symbols corresponding to each of the enhanced resource unit groups are divided into one resource group, and each resource group includes different enhanced resource unit groups, where n is a corresponding physical resource block pair.
  • the modulated symbol is divided into resource groups by using a predefined parameter X, and each resource group includes different modulation symbols, wherein the X values corresponding to the resource groups may be the same. It can also be different.
  • the X value is a number of subcarriers corresponding to the corresponding physical resource block
  • the resource group is added with a Null modulation symbol, where the number of added Null modulation symbols is an integer greater than or equal to 0, and the resource group after adding the Null modulation symbol is the same as the number of resource units on the corresponding physical resource block. ;
  • the steps are not the same; the Null modulation symbols added by the resource groups may be the same or different.
  • one physical resource block includes n eREGs, where the regular cyclic prefix subframe has the same value of n corresponding to the extended cyclic prefix subframe, or one physical resource block includes n eREGs, and the value of n is determined according to a predefined scenario.
  • the predefined scenario includes at least one of the following: a general subframe in which a cyclic prefix configuration is extended, a general subframe configured in a regular cyclic prefix, a special subframe set 1 in which a cyclic prefix configuration is extended, and a special subframe in which a cyclic prefix configuration is extended.
  • Set 2 special subframe set 1 of the regular cyclic prefix configuration, one or more of the special subframe set 2 of the regular cyclic prefix configuration;
  • the special subframe set 1 of the regular cyclic prefix configuration includes the special subframe configuration 3, 4, 8; or the special subframe set 1 of the extended cyclic prefix configuration includes the special subframe configuration 1, 2, 6, 7, 3 , 4, 8;
  • the special subframe set of the regular cyclic prefix configuration 2 includes the special subframe configuration 1, 2, 6, 7;
  • the special subframe set 1 of the extended cyclic prefix configuration includes special subframe configurations 1, 2, 3, 5, 6; or, the special subframe set 1 of the extended cyclic prefix configuration includes special subframe configurations 1, 2, 3, 4, 5, 6;
  • the special subframe set 2 of the extended cyclic prefix configuration includes a special subframe configuration 4.
  • Example 1 The normal cyclic prefix subframe has the same value of n corresponding to the extended cyclic prefix subframe, and n is 8;
  • Example 2 When the general subframe of the cyclic prefix configuration is extended, n is 4; when the general subframe of the regular cyclic prefix is configured, n is 8; the special subframe set is 1, n is 4; the special subframe is set 2, n is 2
  • the special subframe set 1 includes a special subframe configuration in which the downlink subframe is configured with a regular cyclic prefix 3, 4, 8 and the downlink subframe is extended.
  • Special subframe configuration 4 for cyclic prefix configuration; special subframe set 2 includes special subframe configuration with normal cyclic prefix configuration for downlink subframes 1, 2, 6, 7 and special subframe configuration for extended subframe prefix with extended cyclic prefix configuration 1, 2, 3, 5, 6.
  • Example 3 When a normal sub-frame of a regular cyclic prefix configuration, n is 8; when a special sub-frame and a general sub-frame of the extended cyclic prefix configuration, n is 4.
  • Example 4 When the general subframe of the cyclic prefix configuration is extended, n is 4; when the general subframe of the regular cyclic prefix is configured, n is 8; the special subframe set is 1, n is 4; the special subframe is set 2, n is 2
  • the special subframe set 1 includes a special subframe configuration in which the downlink subframe is configured with a regular cyclic prefix 2, 6, 7, 3, 4, 8 and a special subframe configuration in which the downlink subframe is configured with an extended cyclic prefix 2, 3 4, 6;
  • special subframe set 2 includes a special subframe configuration in which the downlink subframe is configured with a regular cyclic prefix, and a special subframe configuration 1, 5 in which the downlink subframe is configured with an extended cyclic prefix.
  • the above classification does not include the scene definition under the new carrier type.
  • Step 2 Sort the symbols in the resource group.
  • Sorting in this step can be as follows:
  • Method 1 Keep the order of the symbols after the existing modulation does not change
  • Mode 3 Input all modulated symbols into the sub-block interleaver, in the order after the output of the sub-block interleaver;
  • the sorted symbols of the resource groups may be cyclically shifted, or may be directly output without cyclic shift.
  • cyclically shifting according to the physical resource block number corresponding to the resource group For example, cyclically shifting according to the physical resource block number corresponding to the resource group, or cyclically shifting according to the sum of the physical resource block number corresponding to the resource group and the subframe number, or corresponding to the resource group And cyclically shifting the sum of the physical resource block sequence number and the cyclic indication signaling, or cyclically shifting according to the sum of the physical resource block sequence number, the subframe sequence number, and the cell identifier corresponding to the resource group;
  • Step 3 Map the sorted symbols to physical resources.
  • the physical resource block pairs may be mapped according to the time domain re-frequency domain, or the frequency domain re-time domain order.
  • the physical resource block mapping is performed, and when mapping within each physical resource block, the mapping is performed according to the order (first time domain re-frequency domain, or first frequency domain re-time domain).
  • the time domain start position of the physical resource corresponding to the ePDCCH is related to the time domain start position of the PDSCH on the serving cell where the ePDCCH is located.
  • the time domain start position of the physical resource corresponding to the ePDCCH is the same as the time domain start position of the physical downlink shared channel PDSCH scheduled by the ePDCCH, where the ePDCCH and the PDSCH are on the same serving cell;
  • the start time position of the PDSCH of the serving cell is determined according to the start symbol indication signaling.
  • the start symbol indication signaling includes whether the time domain start position of the PDSCH/ePDCCH of the serving cell is obtained according to the PCFICH, and if not, the start symbol indication signaling is when the PDSCH/ePDCCH of the serving cell is given. The starting position of the domain. If the UE does not receive the start symbol indication signaling, the time domain start position of the PDSCH/ePDCCH of the serving cell may be obtained according to the PCFICH.
  • the start symbol indication signaling includes a time domain start position of the PDSCH/ePDCCH of the serving cell.
  • the PDSCH is scheduled by the ePDCCH.
  • the frequency domain location of the frequency domain ePDCCH is a signaling configuration, or a predefined location;
  • the predefined location includes: a fixed central frequency band N physical resource blocks, or two sidebands of the system bandwidth, and each sideband has N physical resources.
  • the eREG corresponding to the physical resource block is not used to transmit the ePDCCH, and the transmitting end encodes the ePDCCH according to the physical resource after the physical resource block is removed.
  • the preferred embodiment provides an ePDCCH transmission method.
  • the Y ePDCCH encoded bits are multiplexed together.
  • the eREG corresponding to the ePDCCH specifically includes: mapping of the virtual eREG to the eREG, where the eREG corresponds to a specific physical resource, and the virtual eREG corresponds to a logical unit of the ePDCCH, where the logical unit is configured to allocate resources to the ePDCCH, or The logical unit is set to carry the ePDCCH encoded bit information. Mapping the ePDCCH-encoded bits to the corresponding virtual enhanced resource unit group; mapping the virtual enhanced resource unit group corresponding to the ePDCCH to the enhanced resource unit group.
  • Y is a positive integer greater than 1, and Y may be the number of all ePDCCHs that the current serving cell needs to transmit in the current subframe, or may be the portion of all ePDCCHs that the current serving cell needs to transmit in the current subframe.
  • the virtual enhanced resource unit group includes a continuous virtual enhanced resource unit group and a discrete virtual enhanced resource unit group;
  • the continuous virtual enhanced resource unit group is directly mapped to the enhanced resource unit group with the same sequence number; the discrete virtual enhanced resource unit group is directly mapped to the predefined enhanced resource unit group; preferably, the predefined mapping relationship Determine as follows:
  • the discrete virtual enhanced resource unit group is divided into discrete virtual enhanced resource unit group sets, and the different discrete virtual enhanced resource unit group sets contain different discrete virtual enhanced resource unit groups; for example, a sequential division manner.
  • the enhanced resource unit group is divided into enhanced resource unit group sets; the different enhanced resource unit group sets include different enhanced resource unit groups; for example, a sequential division manner may be adopted, or an interval extraction manner may be adopted;
  • the discrete virtual enhanced resource unit group set has a one-to-one correspondence with the enhanced resource unit group set; for example: the discrete virtual enhanced resource unit group set #k corresponds to the enhanced resource unit group set #1 ⁇ ;
  • the discrete virtual enhanced resource unit group set includes a discrete virtual enhanced resource unit group number equal to the enhanced resource unit group set containing the same number of enhanced resource unit groups;
  • the enhanced resource unit group number in the enhanced resource unit group set is a0, al, a2, a3, a4, a5, a6 , a7, a8, a9, alO, all, al2, al3, al4, al5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31
  • the discrete virtual enhanced resource unit group numbers in the discrete virtual enhanced resource unit group set are b0, bl, b2, b3, b4, b5, b6, b7, b8, b9, bl0, bll, bl2, M3, Bl4, M5, bl6, bl7, M8, bl9, b20, b21, b22, b23, b24, b25,
  • a31 corresponds to b0, bl6, b8, b24 , b4, b20, M2, b28, bl, M7, b9, b25, b5, b21, M3, b29, hi, M8, blO, b26, b6, b22, bl4, b30, b3, bl9, bl l, b27, Hi, b23, M5, b31 ;
  • the discrete virtual enhanced resource unit group numbers in the discrete virtual enhanced resource unit group set are a0, al, .. Al5
  • the enhanced resource unit group number in the enhanced resource unit group set is b0, bl, ..., ⁇ 5
  • the discrete virtual eREG in the discrete virtual eREG set and the eREG in the eREG set Correspondence between: a0, al , ..
  • al5 corresponds to b0, b8, bl, b9, hi, M0, b3, bll, b4, M2, b5, bl3, b6, M4, hi, M5, or, A0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5 correspond to b0, b8, hi, blO, bl, b9, b3, bl l, B4, M2, b6, M4, b5, bl3, hi, bl5, or, a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5 On b0, b8, b4, bl2, bl, b9, b5, M3, hi, bl0, b6, M4, b3, bl l, hi,
  • the discrete virtual enhanced resource unit group numbers in the discrete virtual enhanced resource unit group set are a0, al, a2, 3, 4, ⁇ , 6, 7, the enhanced resource unit group set in the enhanced resource unit group set is 1) 0, 1) 1, ..., hi, the discrete virtual eREG set is discrete
  • the correspondence between the virtual eREG and the eREG in the eREG set is: a0, al, a2, a3, a4, a5, a6, a7 corresponding to b0, b4, bl, b5, hi, b6, b3, hi, Alternatively, a0, al, a2, a3, a4, a5, a6, a7 correspond to b0, b4, hi, b6, bl, b5, b3, b7.
  • one physical resource block pair includes eight eREGs, and there are a total of 64 eREGs.
  • the number of eREGs included in the eijG set can be 32, that is, all eREG partitions.
  • the number of eREGs in the eREG set may be 16, that is, the number of eREGs in the eREG set may be four, or the number of eREGs in the eREG set may be eight, that is, all eREGs are divided into eight eREG sets.
  • one physical resource block pair includes 8 eREGs, and there are a total of 32 eREGs.
  • the number of eREGs included in the eijG set can be 32, that is, all eREG partitions.
  • the number of eREGs included in the eREG set can be 16, that is, all The eREG is divided into two eREG sets.
  • the number of eREGs included in the eREG set may be 8, that is, all eREGs are divided into four eREG sets.
  • one physical resource block pair includes four eREGs, and there are a total of 32 eREGs, and the number of eREGs included in the eREG set may be 32, that is, all eREG partitions.
  • the number of eREGs in the eREG set may be 16, that is, the number of eREGs in the eREG set may be two, or the number of eREGs in the eREG set may be eight, that is, all eREGs are divided into four eREG sets.
  • one physical resource block pair includes
  • eREGs 4 eREGs, a total of 16 eREGs, and the number of eREGs in the eREG set may be 16, that is, all eREGs are divided into 1 eREG set, or the number of eREGs in the eREG set may be 8, that is, all eREGs are divided into 2 eREG collections.
  • one physical resource block pair includes
  • the number of eREGs in the eREG set can be 16, that is, all eREGs are divided into 1 eREG set, or the number of eREGs in the eREG set can be 8, that is, all eREGs are divided into 2 eREG collections;
  • Step 1 Divide the modulated symbols into resource groups.
  • the modulated symbols corresponding to each of the enhanced resource unit groups are divided into one resource group, and each resource group includes different enhanced resource unit groups, where n is a corresponding physical resource block pair.
  • n is a corresponding physical resource block pair.
  • the Null modulation symbol is added to the resource group, where the number of the added Null modulation symbols is an integer greater than or equal to 0, and the resource group after adding the Null modulation symbol is the same as the resource unit on the corresponding physical resource block.
  • the Null modulation symbols added by each resource group may be the same or different.
  • the normal cyclic prefix subframe is the same as the value of the n corresponding to the extended cyclic prefix subframe, or the n value is separately defined according to a predefined scenario, where the predefined scenario includes at least one of the following: a general subframe in which the cyclic prefix configuration is extended, General subframes for regular cyclic prefix configuration, special subframe set 1 for extended cyclic prefix configuration, special subframe set 2 for extended cyclic prefix configuration, special subframe set 1 for regular cyclic prefix configuration, special subframe for regular cyclic prefix configuration One or more of the collections 2; For example, the general subframe of the extended cyclic prefix configuration is 2, the general subframe configured by the regular cyclic prefix is 4, the special subframe set 1 of the extended cyclic prefix configuration is 1, and the special subframe set 2 of the extended cyclic prefix configuration is 2.
  • the special subframe set 1 of the regular cyclic prefix configuration is 2, and the special subframe set 2 of the regular cyclic prefix configuration is 1; or, the general subframe of the extended cyclic prefix configuration is 2, and the normal subframe configured by the regular cyclic prefix is 4.
  • the special subframe set 1 of the extended cyclic prefix configuration is 1, the special subframe set 1 of the regular cyclic prefix configuration is 2, and the special subframe set 2 of the regular cyclic prefix configuration is 1.
  • the special subframe set 1 of the regular cyclic prefix configuration includes the special subframe configuration 3, 4, 8; or, the special subframe set 1 of the regular cyclic prefix configuration includes the special subframe configuration 1, 2, 6, 7, 3 , 4, 8;
  • the special subframe set of the regular cyclic prefix configuration 2 includes the special subframe configuration 1, 2, 6, 7;
  • the special subframe set 1 of the extended cyclic prefix configuration includes special subframe configurations 1, 2, 3, 5, 6; or, the special subframe set 1 of the extended cyclic prefix configuration includes special subframe configurations 1, 2, 3, 4, 5, 6;
  • the special subframe set 2 of the extended cyclic prefix configuration includes a special subframe configuration 4.
  • Step 2 Sort the symbols in the resource group.
  • Sorting in this step can be as follows:
  • Mode 1 The order of the symbols after the existing modulation is kept unchanged.
  • the enhanced resource unit group #0 includes the symbols c0, cl, c2, c3, the corresponding number is 0, 1, 2, 3, and the enhanced resource unit group #1 includes the symbol d0, dl , d2, d3, corresponding number 0, 1, 2, 3, Bay ij, sorted according to mode 2, the result is c0, d0, cl, dl, c2, d2, c3, d3 ;
  • mode 3 all modulation
  • the subsequent symbol input sub-block interleavers are ordered according to the output of the sub-block interleaver; wherein the sub-block interleaver is a sub-block interleaver defined in the standard 5.1.4.2.1 of TS36.212-V910 version;
  • the sorted symbols of each resource group may be cyclically shifted, or may be directly output without cyclic shift.
  • cyclically shifting the sorted symbols of each resource group may be cyclically moved according to at least one of a resource group sequence number, a physical resource block sequence number corresponding to the resource group, a cell identifier, a subframe number, and a cyclic shift indication signaling. Bit.
  • cyclically shifting according to the physical resource block number corresponding to the resource group or cyclically shifting according to the sum of the physical resource block number corresponding to the resource group and the subframe number, or according to the physical resource block number corresponding to the resource group.
  • the cyclic shift indicates that the sum of the signaling is cyclically shifted, or is cyclically shifted according to the sum of the physical resource block number, the subframe number, and the cell identifier corresponding to the resource group;
  • Step 3 Map the sorted symbols to physical resources.
  • the physical resource block pairs are mapped one by one according to the time domain re-frequency domain, or the frequency domain re-time domain order.
  • the physical resource block mapping may be performed according to the number of the physical resource block.
  • mapping may be performed according to the order (first time domain re-frequency domain, or first frequency domain re-time domain). .
  • the time domain start position of the physical resource corresponding to the ePDCCH is related to the time domain start position of the PDSCH on the serving cell where the ePDCCH is located, and is described in detail below:
  • the time domain start position of the physical resource corresponding to the ePDCCH is the same as the time domain start position of the physical downlink shared channel PDSCH scheduled by the ePDCCH, where the ePDCCH and the PDSCH are on the same serving cell;
  • the start time position of the PDSCH of the serving cell is determined according to the start symbol indication signaling.
  • the start symbol indication signaling includes whether the time domain start position of the PDSCH/ePDCCH of the serving cell is obtained according to the PCFICH, and if not, the start symbol indication signaling is when the PDSCH/ePDCCH of the serving cell is given. The starting position of the domain. If the UE does not receive the start symbol indication signaling, the time domain start position of the PDSCH/ePDCCH of the serving cell may be obtained according to the PCFICH.
  • the start symbol indication signaling includes a time domain start position of the PDSCH/ePDCCH of the serving cell.
  • the PDSCH is scheduled by the ePDCCH.
  • the frequency domain location of the frequency domain ePDCCH is a signaling configuration, or a predefined location;
  • the predefined location includes: a fixed central frequency band N physical resource blocks, or two sidebands of the system bandwidth, each sideband N physical resource blocks, or N physical resource blocks on the bandwidth of the mapped system, or N physical resource blocks in the system bandwidth center;
  • N is a positive integer greater than or equal to 1.
  • the eREG corresponding to the physical resource block is not used to transmit the ePDCCH, and the transmitting end encodes the ePDCCH according to the physical resource after the physical resource block is removed.
  • the preferred embodiment improves an ePDCCH mapping method, and the method includes the following steps:
  • Step 1 Divide the physical resource block pair into an enhanced physical resource unit group.
  • Step 2 Map the ePDCCH to the physical resource unit group of the corresponding physical resource block.
  • the physical resource block pair in the step 1 is divided into the enhanced resource unit group, which can be implemented as follows:
  • the resource unit used for the ePDCCH on the physical resource block is re-frequency domain according to the first time domain, or
  • the sequence number of the domain re-time domain is then divided into n enhanced resource unit groups, where the numbered resource unit on the physical resource block is divided into n enhanced resource unit groups, specifically including the following Mode 1:
  • the sequence is equally divided; for example: resource unit index modulo n, the number of modulo values is the same as the resource unit is divided into a group:
  • Mode 2 sequential sequential division; for example: continuous division, each enhanced physical resource unit group contains different resource units;
  • Manner 3 input the numbered resource unit into the sub-block interleaver, and divide the resource unit output by the sub-block interleaver into n enhanced resource unit groups;
  • Manner 4 The numbered resource unit is input to the sub-block interleaver, and the resource units output by the sub-block interleaver are cyclically shifted and then sequentially divided into n enhanced resource unit groups;
  • the cyclic shift may be cyclically shifted according to at least one of the physical resource block sequence number, the cell identifier, the subframe sequence number, and the cyclic shift indication signaling.
  • cyclically shifting according to the physical resource block number corresponding to the resource group For example, cyclically shifting according to the physical resource block number corresponding to the resource group, or cyclically shifting according to the sum of the physical resource block number corresponding to the resource group and the subframe number, or according to the physical group corresponding to the resource group.
  • the sum of the resource block number and the cyclic shift indication signaling is cyclically shifted, or cyclically shifted according to the sum of the physical resource block number, the subframe number, and the cell identifier corresponding to the resource group.
  • the start time position of the physical resource corresponding to the ePDCCH is related to the start time position of the PDSCH on the service cell where the ePDCCH is located, and is described in detail below:
  • the time domain start position of the PDSCH is the same, where the ePDCCH and the PDSCH are on the same serving cell;
  • the start time position of the PDSCH of the serving cell is determined according to the start symbol indication signaling.
  • the start symbol indication signaling includes whether the time domain start position of the PDSCH/ePDCCH of the serving cell is obtained according to the PCFICH, and if not, the start symbol indication signaling is when the PDSCH/ePDCCH of the serving cell is given. The starting position of the domain. If the UE does not receive the start symbol indication signaling, the time domain start position of the PDSCH/ePDCCH of the serving cell may be obtained according to the PCFICH.
  • the start symbol indication signaling includes a time domain start position of the PDSCH/ePDCCH of the serving cell.
  • the PDSCH is scheduled by the ePDCCH.
  • the frequency domain location of the frequency domain ePDCCH is a signaling configuration, or a predefined location;
  • the predefined location includes: a fixed central frequency band N physical resource blocks, or two sidebands of the system bandwidth, each sideband N a physical resource block, or N physical resource blocks on the bandwidth of the mapped system, or N physical resource blocks in the system bandwidth center;
  • N is a positive integer greater than or equal to 1;
  • the eREG corresponding to the preset physical resource block is not used to transmit the ePDCCH, and the transmitting end encodes the ePDCCH according to the physical resource after the preset physical resource block is removed.
  • the normal cyclic prefix subframe is the same as the value of the n corresponding to the extended cyclic prefix subframe.
  • the value of the n corresponding to the regular cyclic prefix subframe and the extended cyclic prefix subframe is separately defined according to a predefined scenario, and the predefined scenario includes the following One of the following: a general subframe with extended cyclic prefix configuration, a general subframe with regular cyclic prefix configuration, a special subframe set with extended cyclic prefix configuration, a special subframe set with extended cyclic prefix configuration 2, a special for regular cyclic prefix configuration Subframe Set 1, one or more of the special subframe set 2 of the regular cyclic prefix configuration.
  • the general subframe of the extended cyclic prefix configuration is 2, the general subframe configured by the regular cyclic prefix is 4, the special subframe set 1 of the extended cyclic prefix configuration is 1, and the special subframe set 2 of the extended cyclic prefix configuration is 2.
  • the special subframe set 1 of the regular cyclic prefix configuration is 2, and the special subframe set 2 of the regular cyclic prefix configuration is 1; or, the general subframe of the extended cyclic prefix configuration is 2, and the normal subframe configured by the regular cyclic prefix is 4.
  • the special subframe set 1 of the extended cyclic prefix configuration is 1, the special subframe set 1 of the regular cyclic prefix configuration is 2, and the special subframe set 2 of the regular cyclic prefix configuration is 1.
  • the special subframe set 1 of the regular cyclic prefix configuration includes the special subframe configuration 3, 4, 8; or, the special subframe set 1 of the regular cyclic prefix configuration includes the special subframe configuration 1, 2, 6, 7, 3 , 4, 8;
  • the special subframe set of the regular cyclic prefix configuration 2 includes the special subframe configuration 1, 2, 6, 7;
  • the special subframe set 1 of the extended cyclic prefix configuration includes special subframe configurations 1, 2, 3, 5, 6; or, the special subframe set 1 of the extended cyclic prefix configuration includes special subframe configurations 1, 2, 3, 4, 5, 6;
  • the special subframe set 2 of the extended cyclic prefix configuration includes a special subframe configuration 4.
  • the ePDCCH is mapped to the physical resource unit group of the corresponding physical resource block.
  • the preferred embodiment provides a method for transmitting an ePDCCH, the method comprising: dividing a physical resource block pair into an enhanced physical resource unit group; and mapping the ePDCCH to a physical resource unit group of the corresponding physical resource block.
  • the physical resource block pair is divided into the enhanced resource unit group, and specifically includes: the resource unit used for the ePDCCH on the physical resource block, according to the first time domain re-frequency domain, or the frequency domain re-time domain
  • the sequence number is then divided into n enhanced resource unit groups, where the numbered resource unit on the physical resource block is divided into n enhanced resource unit groups, which specifically includes one of the following:
  • Method 1 The sequence is equally spaced; for example: Resource unit index module! !, After the number is modulo, the same resource unit is divided into one group.
  • Method 2 Continuous sequential division; For example: Continuous division, each enhanced physical resource unit group contains different resource units.
  • Manner 3 The numbered resource unit is input to the sub-block interleaver, and the resource unit output by the sub-block interleaver is sequentially divided into n enhanced physical resource unit groups.
  • Manner 4 The numbered resource unit is input to the sub-block interleaver, and the resource units output by the sub-block interleaver are cyclically shifted and then sequentially divided into n enhanced physical resource unit groups.
  • the cyclic shift specifically includes: performing the cyclic shift according to at least one of a physical resource block sequence number, a cell identifier, a subframe sequence number, and a cyclic shift indication signaling. For example, cyclically shifting according to the physical resource block number corresponding to the resource group, or cyclically shifting according to the sum of the physical resource block number corresponding to the resource group and the subframe number, or corresponding to the resource group.
  • the sum of the physical resource block number and the cyclic shift indication signaling is cyclically shifted, or cyclically shifted according to the sum of the physical resource block number, the subframe number, and the cell identifier corresponding to the resource group.
  • the time domain start position of the physical resource corresponding to the ePDCCH is related to the time domain start position of the PDSCH on the serving cell where the ePDCCH is located, and is described in detail below:
  • the time domain start position of the physical resource corresponding to the ePDCCH is the same as the time domain start position of the physical downlink shared channel PDSCH scheduled by the ePDCCH, where the ePDCCH and the PDSCH are on the same serving cell;
  • the start time position of the PDSCH of the serving cell is determined according to the start symbol indication signaling.
  • the start symbol indication signaling includes whether the time domain start position of the PDSCH/ePDCCH of the serving cell is obtained according to the PCFICH, and if not, the start symbol indication signaling is when the PDSCH/ePDCCH of the serving cell is given. The starting position of the domain. If the UE does not receive the start symbol indication signaling, the time domain start position of the PDSCH/ePDCCH of the serving cell may be obtained according to the PCFICH.
  • the start symbol indication signaling includes a time domain start position of the PDSCH/ePDCCH of the serving cell.
  • the PDSCH is scheduled by the ePDCCH.
  • the frequency domain location of the frequency domain ePDCCH is a signaling configuration, or a predefined location; the predefined location includes: a fixed central frequency band N physical resource blocks, or two sidebands of system bandwidth, each sideband N physical a resource block, or N physical resource blocks on the bandwidth of the mapped system, or N physical resource blocks of the system bandwidth center; N is an integer that is greater than or equal to 1.
  • the eREG corresponding to the physical resource block is not used to transmit the ePDCCH, and the transmitting end encodes the ePDCCH according to the physical resource after the physical resource block is removed.
  • the normal cyclic prefix subframe has the same value of n as the extended cyclic prefix subframe, or the value of n is separately defined according to a predefined scenario, and the predefined scenario includes at least one of the following: a general subframe of the extended cyclic prefix configuration , the general subframe of the regular cyclic prefix configuration, the special subframe set 1 of the extended cyclic prefix configuration, the special subframe set 2 of the extended cyclic prefix configuration, the special subframe set 1 of the regular cyclic prefix configuration, and the special subframe of the regular cyclic prefix configuration One or more of the set of frames 2.
  • the general subframe of the extended cyclic prefix configuration is 2, the general subframe configured by the regular cyclic prefix is 4, the special subframe set 1 of the extended cyclic prefix configuration is 1, and the special subframe set 2 of the extended cyclic prefix configuration is 2.
  • the special subframe set 1 of the regular cyclic prefix configuration is 2, and the special subframe set 2 of the regular cyclic prefix configuration is 1; or, the general subframe of the extended cyclic prefix configuration is 2, and the normal subframe configured by the regular cyclic prefix is 4.
  • the special subframe set 1 of the extended cyclic prefix configuration is 1, the special subframe set 1 of the regular cyclic prefix configuration is 2, and the special subframe set 2 of the regular cyclic prefix configuration is 1;
  • the special subframe set 1 of the regular cyclic prefix configuration includes the special subframe configuration 3, 4, 8; or the special subframe set 1 of the extended cyclic prefix configuration includes the special subframe configuration 1, 2, 6, 7, 3 , 4, 8;
  • the special subframe set of the regular cyclic prefix configuration 2 includes the special subframe configuration 1, 2, 6, 7;
  • the special subframe set 1 of the extended cyclic prefix configuration includes special subframe configurations 1, 2, 3, 5, 6; or, the special subframe set 1 of the extended cyclic prefix configuration includes special subframe configurations 1, 2, 3, 4, 5, 6;
  • the special subframe set 2 of the extended cyclic prefix configuration includes a special subframe configuration 4.
  • mapping of a virtual eREG to an eREG where the eREG corresponds to a specific physical resource, and the virtual eREG corresponds to a logical unit of the ePDCCH, where the logical unit is configured to allocate resources to the ePDCCH, or the logical unit is configured to carry the ePDCCH code Bit information; first mapping the ePDCCH to the virtual enhanced physical resource unit group according to the scheduling situation, and then mapping the virtual enhanced resource unit group to the physical resource unit group, wherein the virtual enhanced resource unit The group includes a continuous virtual enhanced resource unit group and a discrete virtual enhanced resource unit group;
  • the specific mapping of the virtual enhanced resource unit group to the physical resource unit group is performed by using the sequence number of the physical resource block to the physical resource unit group corresponding to the ePDCCH.
  • the continuous virtual enhanced resource unit group is directly mapped to the enhanced resource unit group with the same sequence number; the discrete virtual enhanced resource unit group is directly mapped to the predefined enhanced resource unit group; the discrete virtual enhanced The resource unit group is directly mapped to the predefined enhanced resource unit group, and specifically includes:
  • the discrete virtual enhanced resource unit group is divided into discrete virtual enhanced resource unit group sets, and the different discrete virtual enhanced resource unit group sets include different discrete enhanced resource unit groups; for example, a sequential dividing manner;
  • the enhanced resource unit group is divided into an enhanced resource unit group set; the different enhanced resource unit group sets include different enhanced resource unit groups; for example, a sequential division manner or an interval extraction manner may be adopted;
  • the discrete virtual enhanced resource unit group set has a one-to-one correspondence with the enhanced resource unit group set; eg, the discrete virtual enhanced resource unit group set #1 ⁇ corresponds to the enhanced resource unit group set #k ;
  • the discrete virtual enhanced resource unit group set includes a discrete virtual enhanced resource unit group number equal to the enhanced resource unit group set containing the same number of enhanced resource unit groups;
  • the enhanced resource unit group number in the enhanced resource unit group set is a0, al, a2, a3, a4, a5, a6 , a7, a8, a9, alO, al l , al2, al3, al4, al5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, A31.
  • the discrete virtual enhanced resource unit group numbers in the discrete virtual enhanced resource unit group set are b0, bl, b2, b3, b4, b5, b6, b7, b8, b9, blO, bl l , Bl2, M3, bl4, M5, bl6, bl7, M8, bl9, b20, b21, b22, b23, b24, b25, b26, b27, b28, b29, b30, b31, discrete in the discrete virtual eREG set Correspondence between the virtual eREG and the eREG in the eREG set: a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5, al6, al7 , al, al, a, a, a, a, a, a, a,
  • the enhanced resource unit group number in the enhanced resource unit group set is a0, al, al, a2, a3, a4, a5, a6, al , a8, a9, alO, all, al2, al3, al4, al5,
  • the discrete virtual enhanced resource unit group numbers in the discrete virtual enhanced resource unit group set are b0, bl, b2, b3, b4, B5, b6, b7, b8, b9, blO, bll, bl2, bl3, M4, M5, the correspondence between the discrete virtual eREGs in the discrete virtual eREG set and the eREGs in the eREG set: a0, al , a2, a3, a4, a5, a6, al, a8, a9, alO, all, al2, al3, al4, al5 correspond to b0, b8, bl, b9, b2, b
  • the enhanced resource unit group set includes an enhanced resource unit group number of 8
  • the enhanced resource unit group number in the enhanced resource unit group set is a0, al, a2, a3, a4, a5, a6 And a7
  • the discrete virtual enhanced resource unit group set in the discrete virtual enhanced resource unit group set is b0, bl, hi, b3, b4, b5, b6, hi, discrete virtual eREG set discrete
  • the correspondence between the virtual eREG and the eREG in the eREG set is: a0, al, a2, a3, a4, a5, a6, a7 corresponding to b0, b4, bl, b5, hi, b6, b3, hi, or , a0, al , a2, a3, a4, a5, a6, a7 correspond to b0, b4, hi, b6, bl, b5, b3, b7 ;
  • one physical resource block pair includes eight eREGs, and there are a total of 64 eREGs.
  • the number of eREGs included in the eijG set can be 32, that is, all eREG partitions.
  • the number of eREGs in the eREG set may be 16, that is, the number of eREGs in the eREG set may be four, or the number of eREGs in the eREG set may be eight, that is, all eREGs are divided into eight eREG sets.
  • one physical resource block pair includes 8 eREGs, and there are a total of 32 eREGs.
  • the number of eREGs included in the eijG set can be 32, that is, all eREG partitions.
  • the number of eREGs in the eREG set may be 16, that is, the number of eREGs in the eREG set may be divided into two, that is, the number of eREGs in the eREG set may be eight, that is, all eREGs are divided into four eREG sets;
  • one physical resource block pair includes four eREGs, and there are a total of 32 eREGs, and the number of eREGs included in the eREG set may be 32, that is, all eREG partitions.
  • the number of eREGs in the eREG set may be 16, that is, the number of eREGs in the eREG set may be two, or the number of eREGs in the eREG set may be eight, that is, all eREGs are divided into four eREG sets.
  • Example 4 When the base station configures four physical resource block pairs for ePDCCH transmission, one physical resource block pair includes four eREGs, and there are a total of 16 eREGs, and the number of eREGs included in the eijG set may be 16, that is, all eREG partitions. The number of eREGs included in the eREG set may be 8, that is, all eREGs are divided into 2 eREG sets.
  • one physical resource block pair includes two eREGs, and there are a total of 16 eREGs.
  • the number of eREGs included in the eJG set can be 16, that is, all eREG partitions.
  • the number of eREGs included in the eREG set may be 8, that is, all eREGs are divided into 2 eREG sets.
  • an ePDCCH mapping and receiving method and apparatus a base station, and a user equipment are provided.
  • the resource unit locations in the physical resource blocks corresponding to the n eREGs on different physical resource blocks are different, and the resource unit corresponding to the physical resource block is discrete.
  • the method is divided into eREGs, which solves the problem of performance balance between eREGs corresponding to the ePDCCH, thereby ensuring stable transmission performance of the ePDCCH, and reducing the complexity of scheduling and improving resource utilization. It should be noted that these technical effects are not in all of the above embodiments, and some technical effects are obtained by some preferred embodiments.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device so that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种ePDCCH发送、接收方法及装置、基站、用户设备,该方法包括:基站将ePDCCH对应的增强资源单元组eREG映射到不同的资源单元上,其中,所述ePDCCH对应的eREG中的一个eREG位于一个物理资源块对中;基站在所述资源单元上发送所述ePDCCH。通过本发明,提高了ePDCCH传输的可靠性和资源利用率。

Description

ePDCCH发送、 接收方法及装置、 基站、 用户设备 技术领域
本发明涉及通信领域, 具体而言, 涉及一种增强物理下行控制信道 (enhanced Physical Downlink Control Channel, 简称为 ePDCCH) 发送、 接收方法及装置、 基站、 用户设备。
背景技术
长期演进 (Long Term Evolution, 简称为 LTE) 系统中有两种帧结构, 帧结构类 型 Type 1适用于频分全双工 (Frequency Division Duplex, 简称为 FDD) 和频分半双 工。 每个无线帧长为 10ms, 由 20个时隙 (slot) 组成, 每个时隙 0.5ms, 编号从 0到 19。 其中, 一个子帧(subframe) 由两个连续的时隙组成, 如子帧 i由两个连续的时隙 2i和 2i+l组成。
帧结构 Type 2适用于时分双工 (Time Division Duplex, 简称为 TDD)。 一个无线 帧长度为 10ms, 由两个长度为 5ms的半帧 (half-frame) 组成。 一个半帧由 5个长度 为 lms子帧组成。 特殊子帧由下行特殊子帧 DwPTS, 保护间隔 (GP) 以及上行特殊 子帧 UpPTS组成, 总长度为 lms。 每个子帧 i由两个长度为 0.5ms ( 15360xTs) 的时 隙 2i禾 B 2i+1组成。
在上述两种帧结构里, 对于常规循环前缀 (Normal Cyclic Prefix, 简称为 Normal CP), 一个时隙包含 7个长度为 66.7微秒(us)的符号, 其中第一个符号的 CP长度为 5.21us, 其余 6个符号的长度为 4.69 us; 对于扩展循环前缀 (Extended Cyclic Prefix, 简称为 Extended CP), 一个时隙包含 6个符号, 所有符号的 CP长度均为 16.67 us。 其 中, 特殊子帧的配置如表 1所示, 其中, 30720.7; = l ms。
表 1: 特殊子帧配置.
Figure imgf000003_0001
一个资源单元 (Resource Element, 简称为 RE) 在时域上为一个正交频分复用 (Orthogonal Frequency Division Multiplexing, 简称为 OFDM)符号, 在频域上为一个 子载波;一个时隙包含 symb个 OFDM符号,一个资源块(Resource Block,简称为 RB) 由 N b x N^个资源单元组成, 在时域上为 1个时隙, 在频域上为 180kHz; 当子帧循 环前缀为常规循环前缀时, 一个资源块如图 1所示; 一个子帧中相同频域上对应一对 资源块 (RB-pair)。
LTE中定义了如下三种下行物理控制信道: 物理下行控制格式指示信道(Physical
Control Format Indicator Channel, 简称为 PCFICH)、 物理混合自动重传请求指示信道 物理下行控制信道 (Physical Downlink Control Channel, 简称为 PDCCH)。 其中, 物 理下行控制格式指示信道承载的信息指示了子帧中下行控制区域时域大小。
物理下行控制信道 PDCCH 以控制信道元素 (Control Channel Element, 简称为
CCE)为单位映射到物理资源上, 一个 CCE大小为 9个资源单元组(Resource Element Group, 简称为 REG)、 即 36个资源单元, 一个 PDCCH有四种聚合等级(Aggregation Level), 四种聚合等级分别对应一个 PDCCH占用 1、 2、 4或者 8个 CCE, 称之为聚 合等级 1、 聚合等级 2、 聚合等级 4和聚合等级 8, 也就对应了 PDCCH的四种格式, 也就是说, 聚合等级代表物理下行控制信道占有的物理资源大小。 另外, 用户设备的 物理下行控制信道的搜索空间分为公有搜索空间和用户设备专有的搜索空间。
在 LTE系统的版本 (Release, 简称为 R) 8/9中, 为了对信道的质量进行测量以 及对接收的数据符号进行解调, 设计了公共参考信号 (Common Reference Signal, 简 称为 CRS)。用户设备(User Equipment, 简称为 UE)可以通过 CRS进行信道的测量, 从而支持 UE进行小区重选和切换到目标小区。 在 LTE R10中为了进一步提高小区平 均的频谱利用率和小区边缘频谱利用率以及各个 UE的吞吐率, 分别定义了两种参考 信号: 信道信息参考信号 (CSI-RS) 和解调参考信号 (DMRS), 其中, CSI-RS 用于 信道的测量, DMRS用于下行共享信道的解调, 利用 DMRS解调可以利用波束的方法 减少不同接收侧和不同小区之间的干扰, 而且可以减少码本粒度造成的性能下降, 并 且在一定程度上减少了下行控制信令的开销。
在异构网下, 由于不同基站类型有较强的干扰, 考虑了宏基站 (Macro eNodeB) 对微基站 (Pico) 的干扰问题和家庭基站 (Home eNodeB)对宏基站 ( Macro eNodeB ) 干扰问题, LTE R11提出通过基于用户专有导频的多天线传输方法, 解决干扰问题, 另外, 通过将 PDCCH映射到 PDSCH区域, 采用类似 PDSCH复用的频分复用方式, 可以实现小区间干扰的频域协调。 这种增强的 PDCCH 称之为 ePDCCH ( enhanced PDCCH)。 目前, ePDCCH 映射方法主要有连续映射和离散映射两种, 并且, 1 个资 源块对可以承载 2个、 3个、 4个 ePDCCH, 1个资源块对使用的天线端口包括 {107, 108, 109, 110}中 1个或多个, 如图 2所示。 另外, UE的增强的物理下行控制信道的 搜索空间也包括 UE专有的搜索空间。 针对相关技术中 ePDCCH的处理方法导致 ePDCCH传输性能比较差的问题,目前 尚未提出有效的解决方案。
发明内容
针对相关技术中 ePDCCH的处理方法导致 ePDCCH传输性能比较差的问题,本发 明提供了一种增强物理下行控制信道发送、 接收方法及装置、 基站、 用户设备, 以至 少解决该问题。
根据本发明的一个方面, 提供了一种 ePDCCH发送方法, 包括: 基站将 ePDCCH 对应的增强资源单元组 eREG映射到不同的资源单元上, 其中, 所述 ePDCCH对应的 eREG中的每一个 eREG位于一个物理资源块对中; 所述基站在所述资源单元上发送 所述 ePDCCH。
优选地,所述一个物理资源块对包括 n个 eREG,不同物理资源块上所述 n个 eREG 对应的物理资源块内资源单元位置不同, 其中, n为大于或等于 1的整数。
优选地, 基站将 ePDCCH对应的 eREG映射到不同的资源单元上包括: 所述基站 将传输的 ePDCCH对应的调制符号划分为资源组; 所述基站按照预定规则对所述资源 组中的调制符号进行排序;所述基站将所述排序后的调制符号映射到所述资源单元上; 或所述基站将 ePDCCH对应的物理资源块对划分为 eREG; 所述基站将所述 ePDCCH 映射到预设的 eREG。
优选地, 所述基站按照预定规则对所述资源组中的调制符号进行排序包括: 所述 基站采用所述调制后的调制符号的顺序;所述基站按照先 eREG的序号,再所述 eREG 内调制符号的序号的顺序对所述资源组内的调制符号进行排序; 所述基站将所述调制 后的调制符号输入子块交织器, 按照所述子块交织器输出后的顺序对所述资源组中的 调制符号进行排序。
优选地, 在所述基站将所述排序后的调制符号映射到物理资源上之前, 还包括: 所述基站对所述排序后的调制符号进行循环移位。
优选地, 所述基站根据以下至少之一对所述排序后的调制符号进行循环移位: 资 源组序号、 所述资源组对应的物理资源块的序号、 小区标识、 子帧序号、 循环移位指 示信令。
优选地, 所述基站将所述排序后的调制符号映射到物理资源上包括: 所述基站按 照以下方式之一将所述排序后的调制符号映射到所述资源单元上: 先时域再频域, 逐 个物理资源块的顺序映射; 先频域再时域, 逐个物理资源块的顺序映射。
优选地, 所述基站将 ePDCCH对应的物理资源块对划分为 eREG包括: 所述基站 将用于 ePDCCH的资源单元按照先时域再频域, 或者, 先频域再时域的顺序编号; 将 所述编号后的资源单元划分为 eREG。 优选地, 将所述编号后的资源单元划分为 eREG包括以下之一: 将所述编号后的 资源单元按照等间隔划分为所述 eREG; 将所述编号后的资源单元按照顺序连续划分 为所述 eREG; 将所述编号后的资源单元输入子块交织器, 将所述子块交织器输出的 资源单元顺序划分为所述 eREG; 将所述编号后的资源单元输入所述子块交织器, 将 所述子块交织器输出的资源单元进行循环移位后, 再划分为所述 eREG。
优选地, 所述基站根据以下至少之一对所述排序后的调制符号进行循环移位: 资 源组序号、 所述资源组对应的物理资源块的序号、 小区标识、 子帧序号、 循环移位指 示信令。
优选地,所述 ePDCCH对应的物理资源的时域起始位置与所述 ePDCCH调度的物 理下行共享信道 PDSCH的时域起始位置相同, 其中, 所述 ePDCCH和所述 PDSCH 在相同的服务小区上。
优选地,所述 ePDCCH的对应的物理资源的频域位置为信令配置或者预设的位置, 其中, 所述预设的位置包括以下之一: 系统带宽的两个边带、 所述系统带宽的两个边 带的每个边带的 N个物理资源块、 间隔的映射系统上 N个物理资源块、所述系统带宽 中心的 N个物理资源块, 其中, N为大于 0的整数。
优选地, 当服务小区的 PDSCH对应的下行控制信息通过所述 ePDCCH承载时, 所述服务小区的 PDSCH的时域起始位置根据起始符号指示信令确定。
优选地, 所述基站按照除去预设物理资源块后的物理资源对所述 ePDCCH进行编 码, 其中, 所述预设物理资源块与辅同步信道所在的物理资源块相同, 所述预设物理 资源块对应的 eREG不承载所述 ePDCCH。
优选地, 将 ePDCCH对应的 eREG映射到不同的资源单元上包括: 虚拟 eREG到 所述 eREG的映射,其中,所述 eREG对应于物理资源,所述虚拟 eREG对应于 ePDCCH 的逻辑单元;所述虚拟 eREG包括连续的虚拟 eREG和离散的虚拟 eREG,所述连续的 虚拟 eREG映射到与该连续的虚拟 eREG 的序号相同的 eREG上, 所述离散的虚拟 eREG映射到预设的 eREG上。
优选地,所述离散的虚拟 eREG映射到预设的 eREG上包括:将所述离散的 eREG 划分为离散的虚拟 eREG集合; 将所述 eREG划分为 eREG集合; 将所述离散的虚拟 eREG集合与所述 eREG集合一一对应,且所述离散的虚拟 eREG集合包含的离散的虚 拟 eREG数量等于所述 eREG集合包含的 eREG数量。
优选地, 所述离散的虚拟 eREG集合内离散的虚拟 eREG与所述 eREG集合内的 eREG之间对应关系包括:
当所述 eGEG集合包含的 eREG的数量为 32时,所述 eREG集合中 eREG编号为 a0, al , a2, a3, a4, a5, a6 , a7, a8, a9, al O , al l , al2 , al 3 , al4 , a\ 5 , al 6, al 7 , al 8, al 9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30 , a31, 所述离 散的虚拟 eREG集合中的离散的虚拟 eREG编号为 b0, b l, b2, b3, b4, b5, b6, b7, b8, b9, blO, bll, M2, M3, M4, M5, M6, M7, M8, M9, b20, b21, b22, b23, b24, b25, b26, b27, b28, b29, b30, b31, 所述离散的虚拟 eREG集合内离散的虚 拟 eREG与所述 eREG集合内的 eREG之间对应关系为以下之一:
a0, al , a2, a3, a4, a5, a6, a7, a8, a9, alO, all , al2, al3, al4, a\5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31 依 次对应于 b0, bl6, bl, bl7, b2, bl8, b3, bl9, b4, b20, b5, b21, b6, b22, bl, b23, b8, b24, b9, b25, blO, b26, bll, b27, M2, b28, bl3, b29, M4, b30, bl5, b31;
aO, al , a2, a3, a4, a5, a6, a7, a8, a9, alO, all , al2, al3, al4, a\5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31 依 次对应于 b0, bl6, b4, b20, b2, bl8, b6, b22, bl, bl7, b5, b21, b3, bl9, bl, b23, b8, b24, M2, b28, blO, b26, M4, b30, b9, b25, bl3, b29, bll, bll, bl5, b31;
aO, al , a2, a3, a4, a5, a6, al , aS, a9, alO, all , al2, al3, al4, a\5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31 依 次对应于 b0, bl6, b4, b20, bl, bl7, b5, b21, b2, bl8, b6, b22, b3, bl9, bl, b23, b8, b24, M2, b28, b9, b25, bl3, b29, blO, b26, M4, b30, bll, bll, bl5, b31;
aO, al , a2, a3, a4, a5, a6, al , aS, a9, alO, all , al2, al3, al4, a\5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31 依 次对应于 b0, bl6, b2, bl8, bl, bl7, b3, bl9, b4, b20, b6, b22, b5, b21, bl, b23, b8, b24, blO, b26, b9, b26, bll, bll, M2, b28, M4, b30, bl3, b29, bl5, b31;
aO, al , a2, a3, a4, a5, a6, al , aS, a9, alO, all , al2, al3, al4, a\5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31 依 次对应于 b0, M6, b8, b24, bl, M7, b9, b25, b2, M8, M0, b26, b3, M9, bll, bll, b4, b20, M2, b28, b5, b21, M3, b29, b6, b22, M4, b30, bl, b23, bl5, b31;
aO, al , a2, a3, a4, a5, a6, al , aS, a9, alO, all , al2, al3, al4, a\5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31 依 次对应于 b0, M6, b8, b24, b2, M8, M0, b26, bl, M7, b9, b25, b3, M9, bll, bll, b4, b20, M2, b28, b6, b22, M4, b30, b5, b21, M3, b29, bl, b23, bl5, b31;
aO, al , a2, a3, a4, a5, a6, al , aS, a9, alO, all , al2, al3, al4, a\5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31 依 次对应于 b0, bl6, b8, b24, b4, b20, bl2, b28, bl, bl7, b9, b25, b5, b21, bl3, b29, hi, bl8, bl0, b26, b6, b22, bl4, b30, b3, bl9, bl l, b27, hi, b23, bl5, b31 ;
当所述 eREG集合包含的 eREG数量为 16时,所述离散的虚拟 eREG集合中的离 散的虚拟 eREG编号为 a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, al l , al2, al3, al4, al5, 所述 eREG集合中 eREG编号为 b0, bl, hi, b3, b4, b5, b6, hi, b8, b9, M0, bl l, M2, M3, M4, M5, 所述离散的虚拟 eREG集合内离散的虚拟 eREG与所述 eREG集合内的 eREG之间对应关系为以下之一:
a0, al , a2, a3, a4, a5 , a6, ΆΊ, a8, a9, alO, al l , al2, al3 , al4, al5依次 对应于 b0, b8, bl, b9, hi, blO, b3, M l , b4, bl2: , b5, bl3, b6, bl4, hi, bl5 ; a0, al , a2, a3, a4, a5, a6, ΆΊ, a8, a9, alO, al l , al2, al3 , al4, al5依次 对应于 b0, b8, hi, blO, bl, b9, b3, M l , b4, bl2: , b6, bl4, b5, bl3, hi, bl5 ; aO, al , a2, a3, a4, a5 , a6, ΆΊ, a8, a9, alO, al l , al2, al3 , al4, al5依次 对应于 b0, b8, b4, bl2, bl, b9, b5, bl3 , i, blO , b6, bl4, b3, bl l, hi, bl5 ; aO, al , a2, a3, a4, a5 , a6, ΆΊ, a8, a9, alO, al l , al2, al3 , al4, al5依次 对应于 b0, b8, b4, bl2, hi, blO, b6, M4, bl, b9 , b5, bl3, b3, bl l, hi, bl5 ; 当所述 eREG集合包含的 eREG数量为 8时, 所述离散的虚拟 eREG集合中的离 散的虚拟 eREG编号为 a0, al , al, a3, a4, a5, a6, al , 所述 eREG集合中 eREG 编号为 b0, bl, a2, a3, a4, a5, a6, hi, 所述离散的虚拟 eREG集合内离散的虚拟 eREG与所述 eREG集合内的 eREG之间对应关系为以下之一:
a0, al , a2, a3, a4, a5, a6, a7依次对应于 b0, b4, bl, b5, b2, b6, b3, b7; aO, al , a2, a3, a4, a5, a6, a7依次对应于 b0, b4, b2, b6, bl, b5, b3, b7。 优选地, 所述调制符号或所述资源单元输入子块交织器前还包括, 添加 Null调制 符号, 其中, 所述添加 Null调制符号的数量为大于等于 0的整数。
优选地, 所述一个物理资源块对包含 n个 eREG, 其中, 常规循环前缀子帧与扩 展循环前缀子帧的物理资源块对应的 n值相同, 或者, 所述一个物理资源块包含 n个 eREG, 根据预定义场景确定 n值, 其中, 所述预定义场景包括以下至少之一: 扩展循 环前缀配置的一般子帧, 常规循环前缀配置的一般子帧, 扩展循环前缀配置的特殊子 帧集合 1,扩展循环前缀配置的特殊子帧集合 2,常规循环前缀配置的特殊子帧集合 1, 常规循环前缀配置的特殊子帧集合 2中一个或多个, n为大于或等于 1的整数。
优选地, 所述常规循环前缀配置的特殊子帧集合 1包括特殊子帧配置 3, 4, 8; 或者, 所述常规循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 6, 7, 3, 4, 8;
所述常规循环前缀配置的特殊子帧集合 2包括特殊子帧配置 1, 2, 6, 7; 所述扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 3, 5, 6; 或 者, 所述扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 3, 4, 5, 6; 所述扩展循环前缀配置的特殊子帧集合 2包括特殊子帧配置 4。
根据本发明的再一方面,还提供了一种 ePDCCH接收方法,包括:用户设备(UE) 确定 ePDCCH对应的增强资源单元组 eREG映射的资源单元,其中,所述 ePDCCH对 应的 eREG中的每一个 eREG位于一个物理资源块对中; 所述 UE在所述资源单元上 接收所述 ePDCCH。
优选地, 将 ePDCCH对应的 eREG通过以下方式映射到不同的资源单元上: 所述 基站将 ePDCCH对应的物理资源块对划分为 eREG; 所述基站将所述 ePDCCH映射到 预设的 eREG。
优选地, 所述基站将 ePDCCH对应的物理资源块对划分为 eREG包括: 所述基站 将用于 ePDCCH的资源单元按照先时域再频域, 或者, 先频域再时域的顺序编号; 将 所述编号后的资源单元划分为 eREG。
优选地, 将所述编号后的资源单元划分为 eREG包括以下之一: 将所述编号后的 资源单元按照等间隔划分为所述 eREG; 将所述编号后的资源单元按照顺序连续划分 为所述 eREG; 将所述编号后的资源单元输入子块交织器, 将所述子块交织器输出的 资源单元顺序划分为所述 eREG; 将所述编号后的资源单元输入所述子块交织器, 将 所述子块交织器输出的资源单元进行循环移位后, 再划分为所述 eREG。
优选地,所述 ePDCCH对应的物理资源的时域起始位置与所述 ePDCCH调度的物 理下行共享信道 PDSCH的时域起始位置相同, 其中, 所述 ePDCCH和所述 PDSCH 在相同的服务小区上。
优选地, 将 ePDCCH对应的 eREG映射到不同的资源单元上包括: 虚拟 eREG到 所述 eREG的映射,其中,所述 eREG对应于物理资源,所述虚拟 eREG对应于 ePDCCH 的逻辑单元;所述虚拟 eREG包括连续的虚拟 eREG和离散的虚拟 eREG,所述连续的 虚拟 eREG映射到与该连续的虚拟 eREG 的序号相同的 eREG上, 所述离散的虚拟 eREG映射到预设的 eREG上。
优选地,所述离散的虚拟 eREG映射到预设的 eREG上包括:将所述离散的 eREG 划分为离散的虚拟 eREG集合; 将所述 eREG划分为 eREG集合; 将所述离散的虚拟 eREG集合与所述 eREG集合一一对应,且所述离散的虚拟 eREG集合包含的离散的虚 拟 eREG数量等于所述 eREG集合包含的 eREG数量。
优选地, 所述一个物理资源块对包含 n个 eREG, 其中, 常规循环前缀子帧与扩 展循环前缀子帧的物理资源块对应的 n值相同, 或者, 所述一个物理资源块包含 n个 eREG, 根据预定义场景确定 n值, 其中, 所述预定义场景包括以下至少之一: 扩展循 环前缀配置的一般子帧, 常规循环前缀配置的一般子帧, 扩展循环前缀配置的特殊子 帧集合 1,扩展循环前缀配置的特殊子帧集合 2,常规循环前缀配置的特殊子帧集合 1, 常规循环前缀配置的特殊子帧集合 2中一个或多个, n为大于或等于 1的整数。 将所 述离散的虚拟 eREG集合与所述 eREG集合一一对应, 且所述离散的虚拟 eREG集合 包含的离散的虚拟 eREG数量等于所述 eREG集合包含的 eREG数量。
根据本发明的又一方面, 还提供了一种 ePDCCH发送装置, 应用于基站, 包括: 第一映射模块, 设置为将 ePDCCH对应的增强资源单元组 eREG映射到不同的资源单 元上,其中,所述 ePDCCH对应的 eREG中的每一个 eREG位于一个物理资源块对中; 发送模块, 设置为在所述资源单元上发送所述 ePDCCH。
优选地, 所述一个物理资源块包括 n个 eREG, 不同物理资源块上所述 n个 eREG 对应的物理资源块内资源单元位置不同, 其中, n为大于或等于 1的整数。
优选地, 所述第一映射模块包括: 第一划分模块, 设置为将传输的 ePDCCH对应 的调制符号划分为资源组; 排序模块, 设置为按照预定规则对所述资源组中的调制符 号进行排序; 第二映射模块, 设置为将所述排序后的调制符号映射到所述资源单元上; 或第二划分模块, 设置为将 ePDCCH对应的物理资源块对划分为 eREG; 第三映射模 块, 设置为将所述 ePDCCH映射到预设的 eREG。
优选地, 所述排序模块, 设置为通过以下方式之一对所述资源组中的调制符号进 行排序: 采用所述调制后的调制符号的顺序; 按照先 eREG的序号, 再所述 eREG内 调制符号的序号的顺序对所述资源组内的调制符号进行排序; 将所述调制后的调制符 号输入子块交织器, 按照所述子块交织器输出后的顺序对所述资源组中的调制符号进 行排序。
优选地, 所述第一映射模块还包括: 移位模块, 设置为对所述排序后的调制符号 进行循环移位。
优选地, 所述第二映射模块设置为按照以下方式之一将所述排序后的调制符号映 射到所述资源单元上: 先时域再频域, 逐个物理资源块的顺序映射; 先频域再时域, 逐个物理资源块的顺序映射。
优选地, 所述第二划分模块包括: 编号模块, 设置为将用于 ePDCCH的资源单元 按照先时域再频域, 或者, 先频域再时域的顺序编号; 第三划分模块, 设置为将所述 编号后的资源单元划分为 eREG。
优选地, 所述第三划分模块设置为通过以下方式之一将所述编号后的资源单元划 分为 eREG: 将所述编号后的资源单元按照等间隔划分为所述 eREG; 将所述编号后的 资源单元按照顺序连续划分为所述 eREG; 将所述编号后的资源单元输入子块交织器, 将所述子块交织器输出的资源单元顺序划分为所述 eREG; 将所述编号后的资源单元 输入所述子块交织器, 将所述子块交织器输出的资源单元进行循环移位后, 再划分为 所述 eREG。
优选地, 所述第一映射模块设置为通过以下方式将 ePDCCH对应的 eREG映射到 不同的资源单元上: 虚拟 eREG到所述 eREG的映射, 其中, 所述 eREG对应于物理 资源, 所述虚拟 eREG对应于 ePDCCH的逻辑单元; 所述虚拟 eREG包括连续的虚拟 eREG和离散的虚拟 eREG,所述连续的虚拟 eREG映射到与该连续的虚拟 eREG的序 号相同的 eREG上, 所述离散的虚拟 eREG映射到预设的 eREG上。
优选地, 所述第一映射模块设置为通过以下方式将所述离散的虚拟 eREG映射到 预设的 eREG上: 将所述离散的 eREG划分为离散的虚拟 eREG集合; 将所述 eREG 划分为 eREG集合; 将所述离散的虚拟 eREG集合与所述 eREG集合一一对应, 且所 述离散的虚拟 eREG集合包含的离散的虚拟 eREG数量等于所述 eREG集合包含的 eREG数量。
优选地, 所述一个物理资源块对包含 n个 eREG, 其中, 常规循环前缀子帧与扩 展循环前缀子帧的物理资源块对应的 n值相同, 或者, 所述一个物理资源块包含 n个 eREG, 根据预定义场景确定 n值, 其中, 所述预定义场景包括以下至少之一: 扩展循 环前缀配置的一般子帧, 常规循环前缀配置的一般子帧, 扩展循环前缀配置的特殊子 帧集合 1,扩展循环前缀配置的特殊子帧集合 2,常规循环前缀配置的特殊子帧集合 1, 常规循环前缀配置的特殊子帧集合 2中一个或多个, n为大于或等于 1的整数。
根据本发明的又一方面, 还提供了一种基站, 包括上述的 ePDCCH发送装置。 根据本发明的再一方面, 还提供了一种 ePDCCH接收装置, 应用于 UE, 包括: 确定模块, 设置为确定 ePDCCH 对应的增强 eREG 映射的资源单元, 其中, 所述 ePDCCH对应的 eREG中的每一个 eREG位于一个物理资源块对中; 接收模块, 设置 为在所述资源单元上接收所述 ePDCCH。
根据本发明的又一方面, 还提供了一种 UE, 包括上述的 ePDCCH接收装置。 通过本发明给出的 ePDCCH发送方法和接收方法, 采用不同物理资源块上所述 n 个 eREG对应的物理资源块内资源单元位置不同、 物理资源块对应的资源单元离散划 分为 eREG, 解决了 ePDCCH 对应的各 eREG 之间性能均衡的问题, 进而保证了 ePDCCH的传输性能稳定, 并且, 降低了调度的复杂性, 提高资源利用率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1 是根据相关技术的当子帧循环前缀为常规循环前缀时的资源块映射的示意 图;
图 2是根据相关技术的终端专有导频天线端口 107到 110示意图;
图 3是根据本发明实施例的 ePDCCH的发送方法的流程图;
图 4是根据本发明实施例的 ePDCCH的接收方法的流程图;
图 5是根据本发明实施例的 ePDCCH的发送装置的结构框图; 图 6是根据本发明实施例的 ePDCCH的发送装置的优选的结构框图;
图 7是根据本发明实施例的 ePDCCH的接收装置的结构框图;
图 8是根据本发明实施例的基站的结构框图; 以及
图 9是根据本发明实施例的用户设备的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。
本优选实施例提供了一种 ePDCCH 发送方法, 图 3 是根据本发明实施例的 ePDCCH的发送方法的流程图, 如图 3所示, 该方法包括如下步骤 S302至步骤 S304。
步骤 S302: 基站将 ePDCCH 对应的 eREG 映射到不同的资源单元上, 其中, ePDCCH对应的 eREG中的每一个 eREG位于一个物理资源块对中。
步骤 S304: 基站在资源单元上发送 ePDCCH。
通过上述步骤, 基站将 ePDCCH 对应的 eREG 映射到不同的资源单元上, 且 ePDCCH对应的 eREG中的每一个 eREG位于一个物理资源对中, 使得 ePDCCH对应 的个 eREG 之间性能达到均衡, 从而克服了相关技术中 ePDCCH 的处理方法导致 ePDCCH传输性能比较差的问题, 达到了提高 ePDCCH传输性能的问题。
作为一个较优的实施方式, 一个物理资源块包括 n个 eREG, 不同物理资源块对 上所述 n个 eREG对应的物理资源块内资源单元位置不同, 其中, n为大于或等于 1 的整数。 该优选实施方式使得 ePDCCH对应的 eREG之间性能达到均衡。
在实施时, 基站可以通过多种方式将 ePDCCH对应的 eREG映射到不同的资源单 元上, 在本优选实施例中提供如下两种方式:
方式一: 基站将传输的 ePDCCH对应的调制符号划分为资源组, 然后基站按照预 定规则对资源组中的调制符号进行排序, 最后, 基站将排序后的调制符号映射到资源 单元上。
方式二:基站将 ePDCCH对应的物理资源块对划分为 eREG,然后基站将 ePDCCH 映射到预设的 eREG。
在实施时, 可以根据需要选择上述方式之一。
在实施时, 在上述方式一中, 可以采用如下预定规则之一对资源组中的调制符号 进行排序- ( 1 ) 基站采用所述调制后的调制符号的顺序。
(2)基站按照先 eREG的序号, 然后 eREG内调制符号的序号的顺序对所述资源 组内的调制符号进行排序。 (3 )基站将调制后的调制符号输入子块交织器, 按照该子块交织器输出后的顺序 对资源组中的调制符号进行排序。
在方式一的实施过程中, 在所述基站将所述排序后的调制符号映射到物理资源上 之前, 还可以对所述排序后的调制符号进行循环移位。 该优选实施方式可以提高调制 符号的性能。 比较优的, 基站可以根据以下至少之一对所述排序后的调制符号进行循 环移位: 资源组序号、 所述资源组对应的物理资源块的序号、 小区标识、 子帧序号、 循环移位指示信令。
在方式一的实施过程中, 为了提高映射的多样性, 基站可以按照如下方式之一将 排序后的调制符号映射到资源单元上- ( 1 ) 先时域再频域, 逐个物理资源块的顺序映射;
(2) 先频域再时域, 逐个物理资源块的顺序映射。
在实施时, 在方式二中, 基站可以按照如下方式将 ePDCCH对应的物理资源块对 划分为 eREG: 基站将用于 ePDCCH的资源单元按照先时域再频域, 或者, 先频域再 时域的顺序编号; 然后将编号后的资源单元划分为 eREG。
比较优的, 可以通过如下方式之一将上述编号后的资源单元划分为 eREG:
方式一: 将上述编号后的资源单元按照等间隔划分为所述 eREG;
方式二: 将上述编号后的资源单元按照顺序连续划分为所述 eREG;
方式三: 将上述编号后的资源单元输入子块交织器, 将子块交织器输出的资源单 元顺序划分为 eREG;
方式四: 将上述编号后的资源单元输入子块交织器, 将子块交织器输出的资源单 元进行循环移位后, 再划分为 eREG。
在实施时, 可以根据系统要求将根据以下至少之一对所述排序后的调制符号进行 循环移位: 资源组序号、 所述资源组对应的物理资源块的序号、 小区标识、 子帧序号、 循环移位指示信令。
作为一个较优的实施方式, ePDCCH对应的物理资源的时域起始位置满足如下条 件- ePDCCH对应的物理资源的时域起始位置与所述 ePDCCH调度的物理下行共享信 道 (PDSCH) 的时域起始位置相同, 其中, 所述 ePDCCH和所述 PDSCH在相同的服 务小区上。
在实际通信过程中, 为了提高了系统配置的灵活性, ePDCCH的对应的物理资源 的频域位置可以为信令配置或者预设的位置, 其中, 预设的位置包括以下之一: 系统 带宽的两个边带、 系统带宽的两个边带的每个边带的 N个物理资源块、 间隔的映射系 统上 N个物理资源块、 系统带宽中心的 N个物理资源块, 其中, N为大于 0的整数。 在实施时, 当服务小区的 PDSCH对应的下行控制信息通过该 ePDCCH承载时, 该服务小区的 PDSCH的时域起始位置根据起始符号指示信令确定。
作为一个较优的实施方式, 基站按照除去预设物理资源块后的物理资源对 ePDCCH进行编码, 其中, 预设物理资源块与辅同步信道所在的物理资源块相同, 预 设物理资源块对应的 eREG 不承载所述 ePDCCH。 该优选实施例提高了基站确定 ePDCCH物理资源的准确性。
作为另一个较优的实施方式, 将 ePDCCH对应的 eREG映射到不同的资源单元上 包括: 虚拟 eREG到 eREG的映射, 其中, eREG对应于物理资源, 所述虚拟 eREG对 应于 ePDCCH的逻辑单元; 其中, 虚拟 eREG包括连续的虚拟 eREG和离散的虚拟 eREG, 连续的虚拟 eREG映射到与该连续的虚拟 eREG的序号相同的 eREG上, 离散 的虚拟 eREG映射到预设的 eREG上。
比较优的, 为了提高映射的合理性, 离散的虚拟 eREG映射到预设的 eREG上包 括: 将离散的 eREG划分为离散的虚拟 eREG集合; 将 eREG划分为 eREG集合; 将 离散的虚拟 eREG集合与所述 eREG集合一一对应, 且离散的虚拟 eREG集合包含的 离散的虚拟 eREG数量等于所述 eREG集合包含的 eREG数量。
比较优的, 在实施时, 离散的虚拟 eREG集合内离散的虚拟 eREG与所述 eREG 集合内的 eREG之间对应关系包括:
当增强的资源单元组集合包含的增强的资源单元组数量为 32时,假设,所述增强 的资源单元组集合中增强的资源单元组编号为 a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, al l , al2, al3, al4, al5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31 , 离散的虚拟增强的资源单元组集合中的离散的 虚拟增强的资源单元组编号为 b0, bl, a2, a3, a4, a5, a6, al, a8, a9, alO, al l , al2, al3, al4, al5, al6, al7, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, b31,所述离散的虚拟 eREG集合内离散的虚拟 eREG与所述 eREG 集合内的 eREG之间对应关系: a0, al , a2, a3, a4, a5, a6, al, a8, a9, alO, al l , al2, al3, al4, al5, al6, al7, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31 依次对应于 b0, bl6, bl, bl7, b2, bl8, b3, bl9, b4, b20, b5, b21, b6, b22, bl, b23, b8, b24, b9, b25, blO, b26, bl l, b27, M2, b28, M3, b29, M4, b30, M5, b31, 或者, a0, al , a2, a3, a4, a5, a6, a7, a8, a9, alO, al l , al2, al3, al4, al5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, all, a28, a29, a30, a31依次对应于 b0, bl6, b4, b20, b2, M8, b6, b22, bl , M7, b5, b21, b3, M9, bl, b23, b8, b24, M2, b28, blO, b26, M4, b30, b9, b25, M3, b29, bl l, b27, M5, b31, 或者, a0, al , a2, a3, a4, a5, a6, al, a8, a9, alO, al l , al2, al3, al4, al5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, all, a28, a29, a30, a31依次对应于 b0, bl6, b4, b20, bl , bl7, b5, b21, b2, M8, b6, b22, b3, M9, bl, b23, b8, b24, M2, b28, b9, b25, bl3, b29, blO, b26, M4, b30, bll, b27, M5, b31, 或者, a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5, al6, al7, al8, al9, a20, a21, a22, a23, a24, a25, a26, all, a28, a29, a30, a31依次对应于 b0, bl6, b2, bl8, bl, M7, b3, M9, b4, b20, b6, b22, b5, b21, bl, b23, b8, b24, M0, b26, b9, b26, bll, bll, M2, b28, M4, b30, bl3, b29, M5, b31, 或者, a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5, al6, al7, al8, al9, a20, a21, a22, a23, a24, a25, a26, all, a28, a29, a30, a31依次对应于 b0, bl6, b8, b24, bl, M7, b9, b25, b2, M8, blO, b26, b3, M9, bll, bll, b4, b20, bl2, b28, b5, b21, M3, b29, b6, b22, bl4, b30, bl, b23, M5, b31, 或者, a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, a\5, al6, al7, al8, al9, a20, all, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31依次对应于 b0, bl6, b8, b24, b2, bl8, blO, b26, bl, bl7, b9, b25, b3, bl9, bll, b27, b4, b20, bl2, b28, b6, b22, bl4, b30, b5, b21, M3, b29, bl, b23, M5, b31, 或 者, a0, al , a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, a\5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31 依 次对应于 b0, bl6, b8, b24, b4, b20, bl2, b28, bl, bl7, b9, b25, b5, b21, bl3, b29, b2, bl8, blO, b26, b6, b22, bl4, b30, b3, bl9, bll, b27, bl, b23, bl5, b31;
当 eREG集合包含的 eREG数量为 16时,离散的虚拟 eREG集合中的离散的虚拟 eREG编号为 a0, al, a2, a3, a4, a5, a6, al, a8, a9, alO, all, al2, al3, al4, al5, 所述 eREG集合中 eREG编号为 b0, bl, b2, b3, b4, b5, b6, bl, b8, b9, blO, bll, M2, M3, M4, M5, 离散的虚拟 eREG集合内离散的虚拟 eREG与 eREG集合 内的 eREG之间对应关系为以下之一:
a0, al , a2 , a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5依次 对应于 b0, b8, bl, b9, b2, blO, b3, bll , b4, bl2: , b5, bl3, b6, bl4, hi, bl5; a0, al , a2 , a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5依次 对应于 b0, b8, b2, blO, bl, b9, b3, bll , b4, bl2: , b6, bl4, b5, bl3, hi, bl5; aO, al , a2 , a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5依次 对应于 b0, b8, b4, bl2, bl, b9, b5, bl3 , b2, blO , b6, bl4, b3, bll, hi, bl5; aO, al , a2 , a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5依次 对应于 b0, b8, b4, bl2, b2, blO, b6, M4, bl, b9 , b5, bl3, b3, bll, hi, bl5; 当 eREG集合包含的 eREG数量为 8时, 离散的虚拟 eREG集合中的离散的虚拟 eREG编号为 a0, al, al, a3, a4, a5, a6, al , 所述 eREG集合中 eREG编号为 b0, bl, a2, a3, a4, a5, a6, hi, 所述离散的虚拟 eREG集合内离散的虚拟 eREG与所 述 eREG集合内的 eREG之间对应关系为以下之一: a0, al , a2, a3, a4, a5, a6, a7依次对应于 b0, b4, bl, b5, hi, b6, b3, b7; aO, al , a2, a3, a4, a5, a6, a7依次对应于 b0, b4, hi, b6, bl, b5, b3, b7。 为了提高处理的准确性,在将调制符号或所述资源单元输入子块交织器前还包括, 添加 Null调制符号, 其中, 添加 Null调制符号数量为大于等于 0的整数。
作为一个较优的实施方式, 一个物理资源块包含 n个 eREG, 其中, 常规循环前 缀子帧与扩展循环前缀子帧的物理资源块对应的 n值相同, 或者, 一个物理资源块包 含 n个 eREG, 根据预定义场景确定 n值, 其中, 所述预定义场景包括以下至少之一: 扩展循环前缀配置的一般子帧, 常规循环前缀配置的一般子帧, 扩展循环前缀配置的 特殊子帧集合 1,扩展循环前缀配置的特殊子帧集合 2, 常规循环前缀配置的特殊子帧 集合 1, 常规循环前缀配置的特殊子帧集合 2中一个或多个, n为大于等于 1的整数。
比较优的, 常规循环前缀配置的特殊子帧集合 1包括特殊子帧配置 3, 4, 8; 或 者, 常规循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 6, 7, 3, 4, 8; 常规循环前缀配置的特殊子帧集合 2包括特殊子帧配置 1, 2, 6, 7;
扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 3, 5, 6; 或者, 扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 3, 4, 5, 6;
扩展循环前缀配置的特殊子帧集合 2包括特殊子帧配置 4。
本优选实施例提供了一种 ePDCCH 接收方法, 图 4 是根据本发明实施例的 ePDCCH的接收方法的流程图,如图 4所示个,该方法包括如下步骤 S402至步骤 S404。
步骤 S402: UE确定 ePDCCH对应的 eREG映射的资源单元, 其中, ePDCCH对 应的 eREG中的每一个 eREG位于一个物理资源块对中。
步骤 S404: UE在资源单元上接收 ePDCCH。
通过上述步骤, UE确定 ePDCCH对应的 eREG映射的资源单元, 且 ePDCCH对 应的 eREG中的每个 eREG位于一个物理资源对中, 使得 ePDCCH对应的个 eREG之 间性能达到均衡,从而克服了相关技术中 ePDCCH的处理方法导致 ePDCCH传输性能 比较差的问题, 达到了提高 ePDCCH传输性能的问题。
作为一个较优的实施方式, 一个物理资源块包括 n个 eREG, 不同物理资源块对 上所述 n个 eREG对应的物理资源块内资源单元位置不同, 其中, n为大于或等于 1 的整数。 该优选实施方式中使得 ePDCCH对应的 eREG之间性能达到均衡。
需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的 计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可 以以不同于此处的顺序执行所示出或描述的步骤。
在另外一个实施例中, 还提供了一种 ePDCCH发送装置软件, 该软件用于执行上 述实施例及优选实施例中描述的技术方案。 在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述 ePDCCH 发送软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。
本发明实施例还提供了一种 ePDCCH 发送装置, 该装置可以应用于基站, 该 ePDCCH发送装置可以用于实现上述 ePDCCH发送方法及优选实施方式, 已经进行过 说明的, 不再赘述, 下面对该 ePDCCH发送装置中涉及到的模块进行说明。 如以下所 使用的, 术语"模块"可以实现预定功能的软件和 /或硬件的组合。 尽管以下实施例所描 述的系统和方法较佳地以软件来实现, 但是硬件, 或者软件和硬件的组合的实现也是 可能并被构想的。
图 5是根据本发明实施例的 ePDCCH的发送装置的结构框图, 如图 5所示, 该装 置包括: 第一映射模块 52, 发送模块 54, 下面对上述结构进行详细描述。
第一映射模块 52,设置为将 ePDCCH对应的增强资源单元组 eREG映射到不同的 资源单元上, 其中, 所述 ePDCCH对应的 eREG中的每一个 eREG位于一个物理资源 块对中; 发送模块 54, 耦合至第一映射模块 52, 设置为在第一映射模块 52映射的资 源单元上发送所述 ePDCCH。
优选地, 一个物理资源块包括 n个 eREG, 不同物理资源块上所述 n个 eREG对 应的物理资源块内资源单元位置不同, 其中, n为大于或等于 1的整数。
图 6是根据本发明实施例的 ePDCCH的发送装置的优选的结构框图,如图 6所示, 第一映射模块 52包括: 第一划分模块 521, 排序模块 522, 第二映射模块 523, 第二 划分模块 524, 第三映射模块 525, 第一映射模块 52还包括: 移位模块 526; 第二划 分模块 524包括:编号模块 5242,第三划分模块 5244,下面对上述结构进行详细描述。
第一映射模块 52包括- 第一划分模块 521, 设置为将传输的 ePDCCH对应的调制符号划分为资源组; 排 序模块 522,耦合至第一划分模块 521, 设置为按照预定规则对第一划分模块 521划分 的资源组中的调制符号进行排序; 第二映射模块 523, 耦合至排序模块 522, 设置为将 排序模块 522排序后的调制符号映射到资源单元上; 或
第二划分模块 524, 设置为将 ePDCCH对应的物理资源块对划分为 eREG; 第三 映射模块 525, 耦合至第二划分模块 524, 设置为将所述 ePDCCH映射到第二划分模 块 524划分的 eREG。
优选地, 排序模块 522, 设置为通过以下方式之一对所述资源组中的调制符号进 行排序:
采用所述调制后的调制符号的顺序;
按照先 eREG的序号, 再所述 eREG内调制符号的序号的顺序对所述资源组内的 调制符号进行排序; 将所述调制后的调制符号输入子块交织器, 按照所述子块交织器输出后的顺序对 所述资源组中的调制符号进行排序。
第一映射模块 52还包括: 移位模块 526, 设置为对所述排序后的调制符号进行循 环移位。
优选地, 第二映射模块 523设置为按照以下方式之一将所述排序后的调制符号映 射到所述资源单元上:
先时域再频域, 逐个物理资源块的顺序映射;
先频域再时域, 逐个物理资源块的顺序映射。
优选地, 第二划分模块 524包括: 编号模块 5242, 设置为将用于 ePDCCH的资源 单元按照先时域再频域, 或者, 先频域再时域的顺序编号; 第三划分模块 5244, 耦合 至编号模块 5242, 设置为将编号模块 5242编号后的资源单元划分为 eREG。
优选地,第三划分模块 5244设置为通过以下方式之一将所述编号后的资源单元划 分为 eREG:
将编号后的资源单元按照等间隔划分为所述 eREG;
将编号后的资源单元按照顺序连续划分为所述 eREG;
将编号后的资源单元输入子块交织器, 将所述子块交织器输出的资源单元顺序划 分为所述 eREG;
将编号后的资源单元输入所述子块交织器, 将所述子块交织器输出的资源单元进 行循环移位后, 再划分为所述 eREG。
在另外一个实施例中, 还提供了一种 ePDCCH接收装置软件, 该软件用于执行上 述实施例及优选实施例中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述 ePDCCH 接收软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。
本发明实施例还提供了一种 ePDCCH 接收装置, 该装置可以应用于 UE, 该 ePDCCH接收装置可以用于实现上述 ePDCCH接收方法及优选实施方式, 已经进行过 说明的, 不再赘述, 下面对该 ePDCCH接收装置中涉及到的模块进行说明。 如以下所 使用的, 术语"模块"可以实现预定功能的软件和 /或硬件的组合。 尽管以下实施例所描 述的系统和方法较佳地以软件来实现, 但是硬件, 或者软件和硬件的组合的实现也是 可能并被构想的。
图 7是根据本发明实施例的 ePDCCH的接收装置的结构框图, 如图 7所示, 该装 置包括: 确定模块 72, 接收模块 74, 下面对上述结构进行详细描述。 确定模块 72, 设置为确定 ePDCCH对应的 eREG映射的资源单元, 其中, 所述 ePDCCH对应的 eREG中的每一个 eREG位于一个物理资源块对中; 接收模块 74, 耦 合至确定模块 72, 设置为在确定模块 72确定的资源单元上接收所述 ePDCCH。
本优选实施例还提供了一种基站, 图 8是根据本发明实施例的基站的结构框图, 如图 8所示, 该基站包括图 5或 6所示的 ePDCCH发送装置, 该装置包括: 第一映射 模块 52, 发送模块 54, 第一映射模块 52包括: 第一划分模块 521, 排序模块 522, 第 二映射模块 523, 第二划分模块 524, 第三映射模块 525, 第一映射模块 52还包括- 移位模块 526; 第二划分模块 524包括: 编号模块 5242, 第三划分模块 5244, 下面对 上述结构进行详细描述。
第一映射模块 52,设置为将 ePDCCH对应的增强资源单元组 eREG映射到不同的 资源单元上, 其中, 所述 ePDCCH对应的 eREG中的每一个 eREG位于一个物理资源 块对中; 发送模块 54, 耦合至第一映射模块 52, 设置为在第一映射模块 52映射的资 源单元上发送所述 ePDCCH。
优选地, 一个物理资源块包括 n个 eREG, 不同物理资源块上 n个 eREG对应的 物理资源块内资源单元位置不同, 其中, n为大于或等于 1的整数。
第一映射模块 52包括- 第一划分模块 521, 设置为将传输的 ePDCCH对应的调制符号划分为资源组; 排 序模块 522,耦合至第一划分模块 521, 设置为按照预定规则对第一划分模块 521划分 的资源组中的调制符号进行排序; 第二映射模块 523, 耦合至排序模块 522, 设置为将 排序模块 522排序后的调制符号映射到资源单元上; 或
第二划分模块 524, 设置为将 ePDCCH对应的物理资源块对划分为 eREG; 第三 映射模块 525, 耦合至第二划分模块 524, 设置为将所述 ePDCCH映射到第二划分模 块 524划分的 eREG。
第一映射模块 52还包括: 移位模块 526, 设置为对所述排序后的调制符号进行循 环移位。
优选地, 第二划分模块 524包括: 编号模块 5242, 设置为将用于 ePDCCH的资源 单元按照先时域再频域, 或者, 先频域再时域的顺序编号; 第三划分模块 5244, 耦合 至编号模块 5242, 设置为将编号模块 5242编号后的资源单元划分为 eREG。
本优选实施例提供了一种 UE, 图 9是根据本发明实施例的用户设备的结构框图, 如图 9所示,该基站包括图 7所示的 ePDCCH接收装置 4,该装置包括:确定模块 72, 接收模块 74, 下面对上述结构进行详细描述。
确定模块 72, 设置为确定 ePDCCH对应的 eREG映射的资源单元, 其中, 所述 ePDCCH对应的 eREG中的每一个 eREG位于一个物理资源块对中; 接收模块 74, 耦 合至确定模块 72, 设置为在确定模块 72确定的资源单元上接收所述 ePDCCH。 下面将结合优选实施例进行说明, 以下优选实施例结合了上述实施例及优选实施 方式。
优选实施例一
本优选实施例提供了一种 ePDCCH发送方法, 该方法包括如下步骤:
步骤 1 : 将调制后的符号划分为资源组;
按照增强的资源单元组编号, 将每 n个增强的资源单元组对应的调制后的符号划 分为一个资源组, 各资源组包含的增强的资源单元组不同, 其中, n 为相应物理资源 块对对应的增强的资源单元组数量; 或者, 将调制后的符号, 以预定义的参数 X为单 位划分资源组,各资源组包含的调制符号不同,其中,各资源组对应的 X值可以相同, 也可以不同。
所述 X值为相应物理资源块对应的子载波数量;
所述资源组划分后还包括, 资源组中添加 Null调制符号, 其中, 添加 Null调制符 号数量为大于等于 0的整数, 添加 Null调制符号后的资源组与相应的物理资源块上资 源单元数量相同;
当所有资源组添加的 Null调制符号固定为 0时, 相当于该步骤不存在; 所述各资源组添加的 Null调制符号可以相同, 也可以不同;
优选地, 一个物理资源块包含 n个 eREG, 其中, 常规循环前缀子帧与扩展循环 前缀子帧对应的 n值相同, 或者, 一个物理资源块包含 n个 eREG, 根据预定义场景 确定 n值, 其中, 所述预定义场景包括以下至少之一: 扩展循环前缀配置的一般子帧, 常规循环前缀配置的一般子帧, 扩展循环前缀配置的特殊子帧集合 1, 扩展循环前缀 配置的特殊子帧集合 2, 常规循环前缀配置的特殊子帧集合 1, 常规循环前缀配置的特 殊子帧集合 2中一个或多个;
优选地, 常规循环前缀配置的特殊子帧集合 1包括特殊子帧配置 3, 4, 8; 或者, 扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 6, 7, 3, 4, 8;
常规循环前缀配置的特殊子帧集合 2包括特殊子帧配置 1, 2, 6, 7;
扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 3, 5, 6; 或者, 扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 3, 4, 5, 6;
扩展循环前缀配置的特殊子帧集合 2包括特殊子帧配置 4。
下面结合多个实例进行说明。
实例 1 : 常规循环前缀子帧与扩展循环前缀子帧对应的 n值相同, n为 8;
实例 2: 扩展循环前缀配置的一般子帧时, n为 4; 常规循环前缀配置的一般子帧 时, n为 8; 特殊子帧集合 1, n为 4; 特殊子帧集合 2, n为 2; 其中, 特殊子帧集合 1包括下行子帧采用常规循环前缀配置的特殊子帧配置 3, 4, 8和下行子帧采用扩展 循环前缀配置的特殊子帧配置 4; 特殊子帧集合 2包括下行子帧采用常规循环前缀配 置的特殊子帧配置 1, 2, 6, 7和下行子帧采用扩展循环前缀配置的特殊子帧配置 1, 2, 3, 5, 6。
实例 3 : 常规循环前缀配置的一般子帧时, n为 8; 特殊子帧和扩展循环前缀配置 的一般子帧时, n为 4。
实例 4: 扩展循环前缀配置的一般子帧时, n为 4; 常规循环前缀配置的一般子帧 时, n为 8; 特殊子帧集合 1, n为 4; 特殊子帧集合 2, n为 2; 其中, 特殊子帧集合 1包括下行子帧采用常规循环前缀配置的特殊子帧配置 2, 6, 7, 3 , 4, 8和下行子帧 采用扩展循环前缀配置的特殊子帧配置 2, 3, 4, 6; 特殊子帧集合 2包括下行子帧采 用常规循环前缀配置的特殊子帧配置 1, 6和下行子帧采用扩展循环前缀配置的特殊子 帧配置 1, 5。
上述分类不包括新载波类型下的场景定义。
步骤 2: 对于资源组中符号进行排序。
本步骤中排序 可以采用如下方式:
方式 1 : 保持已有调制后的符号顺序不改变;
方式 2: 分别对各增强的资源单元组内对应的调制后的符号编号, 则, 每个调制 后的符号对应一个增强的资源单元组序号和一个增强的资源单元组内序号, 按照先增 强的资源单元组号再所述增强的资源单元组内序号的顺序重新排序;
方式 3 : 将所有调制后的符号输入子块交织器, 按照子块交织器输出后的顺序排 序;
在经过上述排序后, 还可以对所述各资源组排序后的符号进行循环移位, 或者, 不进行循环移位直接输出。
优选地, 对各资源组排序后的符号进行循环移位, 具体包括, 根据所述资源组序 号、 所述资源组对应的物理资源块序号、 小区标识、 子帧序号、 循环移位指示信令中 至少之一进行所述循环移位;
如: 按照所述资源组对应的物理资源块序号进行循环移位, 或者, 按照所述资源 组对应的物理资源块序号与子帧序号之和进行循环移位, 或者, 按照所述资源组对应 的物理资源块序号与循环指示信令之和进行循环移位, 或者, 按照所述资源组对应的 物理资源块序号、 子帧序号、 小区标识之和进行循环移位;
步骤 3 : 将排序后的符号映射到物理资源上。
在本步骤中, 可以按照先时域再频域, 或者, 先频域再时域的顺序, 逐个物理资 源块对进行映射。
在实施时, 按照物理资源块的编号, 逐个物理资源块映射, 在每个物理资源块内 映射时, 按照所述顺序 (先时域再频域, 或者, 先频域再时域) 映射。 优选地, ePDCCH对应的物理资源的时域起始位置与所述 ePDCCH所在服务小区 上 PDSCH的时域起始位置相关。
例如: ePDCCH对应的物理资源的时域起始位置与所述 ePDCCH调度的物理下行 共享信道 PDSCH的时域起始位置相同, 其中, 所述 ePDCCH和所述 PDSCH在相同 的服务小区上;当服务小区的 PDSCH对应的下行控制信息通过所述 ePDCCH承载时, 所述服务小区的 PDSCH的时域起始位置根据起始符号指示信令确定。
在实施时, 起始符号指示信令包括服务小区的 PDSCH/ePDCCH的时域起始位置 是否是根据 PCFICH 获得的, 如果不是, 起始符号指示信令给出该服务小区的 PDSCH/ePDCCH的时域起始位置。如果 UE没有收到起始符号指示信令, 服务小区的 PDSCH/ePDCCH的时域起始位置可以根据 PCFICH获得。
或者在实施时, 起始符号指示信令包括服务小区的 PDSCH/ePDCCH的时域起始 位置。 其中, PDSCH是被 ePDCCH调度的。
频域 ePDCCH的频域位置为信令配置, 或者, 预定义位置; 该预定义位置包括: 固定中心频带 N个物理资源块,或者,系统带宽两个边带,每个边带 N个物理资源块, 或者, 间隔的映射系统带宽上 N个物理资源块, 或者, 所述系统带宽中心的 N个物理 资源块;
物理资源块与辅同步信道所在的物理资源块相同时, 物理资源块对应的 eREG不 用作传输 ePDCCH,发送端按照除去所述物理资源块后的物理资源对 ePDCCH进行编 码。
优选实施例二
本优选实施例提供了一种 ePDCCH发送方法, 在本实施例中, 将 Y个 ePDCCH 编码后的比特复用在一起。 ePDCCH对应的 eREG确定,具体包括:虚拟 eREG到 eREG 的映射, 其中, eREG对应具体的物理资源, 虚拟 eREG对应于 ePDCCH的逻辑单元, 其中, 所述逻辑单元设置为给 ePDCCH分配资源, 或者, 所述逻辑单元为设置为承载 ePDCCH编码后的比特信息。将 ePDCCH编码后的比特映射到相应的虚拟增强的资源 单元组; 将 ePDCCH对应的虚拟增强的资源单元组映射到增强的资源单元组。 Y为大 于 1的正整数, Y可以是当前子帧当前服务小区需要传输的所有 ePDCCH的数量, 也 可以是当前子帧当前服务小区需要传输的所有 ePDCCH的数量的部分。
其中, 虚拟增强的资源单元组包括连续虚拟增强的资源单元组和离散的虚拟增强 的资源单元组;
连续的虚拟增强的资源单元组直接映射到与其序号相同的增强的资源单元组上; 离散的虚拟增强的资源单元组直接映射到预定义的增强的资源单元组上; 优选地, 预定义映射关系确定如下: 将离散的虚拟增强的资源单元组划分为离散的虚拟增强的资源单元组集合, 不同 离散的虚拟增强的资源单元组集合包含的离散的虚拟增强的资源单元组不同; 如: 顺 序划分的方式。
将增强的资源单元组划分为增强的资源单元组集合; 不同增强的资源单元组集合 包含的增强的资源单元组不同; 如: 可以采用顺序划分的方式, 或者, 间隔抽取的方 式;
离散的虚拟增强的资源单元组集合与所述增强的资源单元组集合之间一一对应; 如: 离散的虚拟增强的资源单元组集合 #k对应于增强的资源单元组集合#1^;
离散的虚拟增强的资源单元组集合包含的离散的虚拟增强的资源单元组数量等于 增强的资源单元组集合包含的增强的资源单元组数量相同;
当增强的资源单元组集合包含的增强的资源单元组数量为 32时,假设,所述增强 的资源单元组集合中增强的资源单元组编号为 a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31, 离散的虚拟增强的资源单元组集合中的离散的 虚拟增强的资源单元组编号为 b0, bl, b2, b3, b4, b5, b6, b7, b8, b9, bl0, bll, bl2, M3, bl4, M5, bl6, bl7, M8, bl9, b20, b21, b22, b23, b24, b25, b26, b27, b28, b29, b30, b31, 离散的虚拟 eREG集合内离散的虚拟 eREG与 eREG集合 内的 eREG之间对应关系: a0, al, a2, a3, a4, a5, a6, al, a8, a9, alO, all, al2, al3, al4, al5, al6, all , al8, al9, a20, all, a.22, a.23, a24, a25, a26, all , a28, a29, a30, a31 对应于 b0, bl6, bl, bl7, b2, bl8, b3, bl9, b4, b20, b5, b21, b6, b22, bl, b23, b8, b24, b9, b25, bl0, b26, bll, b27, bl2, b28, bl3, b29, bl4, b30, M5, b31, 或者, a0, al , a2, a3, a4, a5, a6, a7, a8, a9, al0, all, al2, al3, al4, a\5, al6, al7, al8, al9, a20, all, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31对应于 b0, bl6, b4, b20, b2, bl8, b6, b22, bl, bl7, b5, b21, b3, bl9, bl, b23, b8, b24, bl2, b28, bl0, b26, bl4, b30, b9, b25, bl3, b29, bll, b27, M5, b31, 或者, a0, al , a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, a\5, al6, al7, al8, al9, a20, all, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31依次对应于 b0, bl6, b4, b20, bl, bl7, b5, b21, b2, bl8, b6, b22, b3, bl9, bl, b23, b8, b24, bl2, b28, b9, b25, M3, b29, blO, b26, bl4, b30, bll, b27, M5, b31, 或者, a0, al, ..·, a31依次对应于 b0, bl6, b2, bl8, bl, bl7, b3, bl9, b4, b20, b6, b22, b5, b21, bl, b23, b8, b24, blO, b26, b9, b26, bll, b27, bl2, b28, bl4, b30, M3, b29, M5, b31, 或者, a0, al , a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, a\5, al6, al7, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31依次对应 于 b0, bl6, b8, b24, bl, bl7, b9, b25, b2, bl8, bl0, b26, b3, bl9, bll, b27, b4, b20, bl2, b28, b5, b21, M3, b29, b6, b22, M4, b30, bl, b23, M5, b31, 或者, a0, al, .. ·, a31依次对应于 b0, bl6, b8, b24, hi, bl8, bl0, b26, bl, bl7, b9, b25, b3, bl9, bl l, b27, b4, b20, bl2, b28, b6, b22, bl4, b30, b5, b21, bl3, b29, hi, b23, M5, b31, 或者, a0, al, .. ·, a31依次对应于 b0, bl6, b8, b24, b4, b20, M2, b28, bl, M7, b9, b25, b5, b21, M3, b29, hi, M8, blO, b26, b6, b22, bl4, b30, b3, bl9, bl l, b27, hi, b23, M5, b31 ;
当增强的资源单元组集合包含的增强的资源单元组数量为 16时,假设,所述离散 的虚拟增强的资源单元组集合中的离散的虚拟增强的资源单元组编号为 a0, al , ..., al5, 所述增强的资源单元组集合中增强的资源单元组编号为 b0, bl, ..., Μ5, 所述 离散的虚拟 eREG集合内离散的虚拟 eREG与所述 eREG集合内的 eREG之间对应关 系: a0, al , .. ·, al5对应于 b0, b8, bl, b9, hi, M0, b3, bll, b4, M2, b5, bl3, b6, M4, hi, M5, 或者, a0, al , a2, a3, a4, a5, a6, a7, a8, a9, alO, all , al2, al3, al4, al5对应于 b0, b8, hi, blO, bl, b9, b3, bl l, b4, M2, b6, M4, b5, bl3, hi, bl5, 或者, a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all , al2, al3, al4, al5对应于 b0, b8, b4, bl2, bl, b9, b5, M3, hi, bl0, b6, M4, b3, bl l, hi, bl5, 或者, a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all , al2, al3, al4, al5对应于 b0, b8, b4, bl2, hi, blO, b6, bl4, bl, b9, b5, M3, b3, bl l, hi, M5。
当增强的资源单元组集合包含的增强的资源单元组数量为 8时,假设, 所述离散 的虚拟增强的资源单元组集合中的离散的虚拟增强的资源单元组编号为 a0, al , a2, 3, 4,^, 6,, 7,所述增强的资源单元组集合中增强的资源单元组编号为1)0,1)1, ..., hi, 所述离散的虚拟 eREG集合内离散的虚拟 eREG与所述 eREG集合内的 eREG之 间对应关系为: a0, al , a2, a3, a4, a5, a6, a7对应于 b0, b4, bl, b5, hi, b6, b3, hi, 或者, a0, al , a2, a3, a4, a5, a6, a7对应于 b0, b4, hi, b6, bl, b5, b3, b7。
下面结合多个实例进行说明:
实例 1 :
当基站配置用于 ePDCCH传输的物理资源块对为 8个时,一个物理资源块对包括 8个 eREG, 总共有 64个 eREG, 贝 ij, eREG集合包含的 eREG数量可以是 32, 即所有 eREG划分为 2个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 16, 即所有 eREG划分为 4个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 8, 即所有 eREG划分为 8个 eREG集合。
实例 2:
当基站配置用于 ePDCCH传输的物理资源块对为 4个时,一个物理资源块对包括 8个 eREG, 总共有 32个 eREG, 贝 ij, eREG集合包含的 eREG数量可以是 32, 即所有 eREG划分为 1个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 16, 即所有 eREG划分为 2个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 8, 即所有 eREG划分为 4个 eREG集合。
实例 3:
当基站配置用于 ePDCCH传输的物理资源块对为 8个时,一个物理资源块对包括 4个 eREG, 总共有 32个 eREG, 贝 ij, eREG集合包含的 eREG数量可以是 32, 即所有 eREG划分为 1个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 16, 即所有 eREG划分为 2个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 8, 即所有 eREG划分为 4个 eREG集合。
实例 4:
当基站配置用于 ePDCCH传输的物理资源块对为 4个时,一个物理资源块对包括
4个 eREG, 总共有 16个 eREG, 贝 ij, eREG集合包含的 eREG数量可以是 16, 即所有 eREG划分为 1个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 8, 即所有 eREG划分为 2个 eREG集合。
实例 5:
当基站配置用于 ePDCCH传输的物理资源块对为 8个时,一个物理资源块对包括
2个 eREG, 总共有 16个 eREG, 贝 ij, eREG集合包含的 eREG数量可以是 16, 即所有 eREG划分为 1个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 8, 即所有 eREG划分为 2个 eREG集合;
本优选实施例所包括的步骤如下:
步骤 1 : 将调制后的符号划分为资源组。
按照增强的资源单元组编号, 将每 n个增强的资源单元组对应的调制后的符号划 分为一个资源组, 各资源组包含的增强的资源单元组不同, 其中, n 为相应物理资源 块对对应的增强的资源单元组数量。
资源组划分后还包括, 资源组中添加 Null调制符号, 其中, 该添加 Null调制符号 数量为大于等于 0的整数, 添加 Null调制符号后的资源组与相应的物理资源块上资源 单元数量相同。
当所有资源组添加的 Null调制符号固定为 0时, 相当于该步骤不存在。
比较优的, 各资源组添加的 Null调制符号可以相同, 也可以不同。
常规循环前缀子帧与扩展循环前缀子帧对应的 n值相同, 或者, 所述 n值根据预 定义场景分别定义, 所述预定义场景包括以下至少之一: 扩展循环前缀配置的一般子 帧, 常规循环前缀配置的一般子帧, 扩展循环前缀配置的特殊子帧集合 1, 扩展循环 前缀配置的特殊子帧集合 2, 常规循环前缀配置的特殊子帧集合 1, 常规循环前缀配置 的特殊子帧集合 2中一个或多个; 例如: 扩展循环前缀配置的一般子帧为 2, 常规循环前缀配置的一般子帧为 4, 扩 展循环前缀配置的特殊子帧集合 1为 1,扩展循环前缀配置的特殊子帧集合 2为 2, 常 规循环前缀配置的特殊子帧集合 1为 2, 常规循环前缀配置的特殊子帧集合 2为 1 ; 或 者, 扩展循环前缀配置的一般子帧为 2, 常规循环前缀配置的一般子帧为 4, 扩展循环 前缀配置的特殊子帧集合 1为 1, 常规循环前缀配置的特殊子帧集合 1为 2, 常规循环 前缀配置的特殊子帧集合 2为 1。
优选地, 常规循环前缀配置的特殊子帧集合 1包括特殊子帧配置 3, 4, 8; 或者, 常规循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 6, 7, 3, 4, 8;
常规循环前缀配置的特殊子帧集合 2包括特殊子帧配置 1, 2, 6, 7;
扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 3, 5, 6; 或者, 扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 3, 4, 5, 6;
扩展循环前缀配置的特殊子帧集合 2包括特殊子帧配置 4。
步骤 2: 对于资源组中符号进行排序。
本步骤中排序 可以采用如下方式:
方式 1 : 保持已有调制后的符号顺序不改变。
方式 2: 分别对各增强的资源单元组内对应的调制后的符号编号, 则, 每个调制 后的符号对应一个增强的资源单元组序号和一个增强的资源单元组内序号, 按照先增 强的资源单元组号再所述增强的资源单元组内序号的顺序重新排序;
需要说明的是, 如果增强的资源单元组 #0包括的符号为 c0, cl , c2, c3, 对应编 号为 0, 1, 2, 3, 增强的资源单元组 #1包括的符号为 d0, dl, d2, d3, 对应编号为 0, 1, 2, 3, 贝 ij, 按照方式 2编号后的排序结果为 c0, d0, cl , dl, c2, d2, c3, d3; 方式 3: 将所有调制后的符号输入子块交织器, 按照子块交织器输出后的顺序排 序; 其中, 所述子块交织器为 TS36.212-V910版本标准 5.1.4.2.1章节定义的子块交织 器;
在经过上述排序后, 还可以对各资源组排序后的符号进行循环移位, 或者, 不进 行循环移位直接输出。
优选地, 对各资源组排序后的符号进行循环移位可以根据资源组序号、 资源组对 应的物理资源块序号、 小区标识、 子帧序号、 循环移位指示信令中至少之一进行循环 移位。
例如: 按照资源组对应的物理资源块序号进行循环移位, 或者, 按照资源组对应 的物理资源块序号与子帧序号之和进行循环移位, 或者, 按照资源组对应的物理资源 块序号与循环移位指示信令之和进行循环移位, 或者, 按照资源组对应的物理资源块 序号、 子帧序号、 小区标识之和进行循环移位;
歩骤 3: 将排序后的符号映射到物理资源上。 按照先时域再频域, 或者, 先频域再时域的顺序, 逐个物理资源块对进行映射。 再实施时, 可以按照物理资源块的编号, 逐个物理资源块映射, 在每个物理资源 块内映射时, 按照所述顺序 (先时域再频域, 或者, 先频域再时域) 映射。
优选地, ePDCCH对应的物理资源的时域起始位置与所述 ePDCCH所在服务小区 上 PDSCH的时域起始位置相关, 下面进行详细说明:
ePDCCH对应的物理资源的时域起始位置与所述 ePDCCH调度的物理下行共享信 道 PDSCH的时域起始位置相同, 其中, 所述 ePDCCH和所述 PDSCH在相同的服务 小区上;
当服务小区的 PDSCH对应的下行控制信息通过所述 ePDCCH承载时, 服务小区 的 PDSCH的时域起始位置根据起始符号指示信令确定。
在实施时, 起始符号指示信令包括服务小区的 PDSCH/ePDCCH的时域起始位置 是否是根据 PCFICH 获得的, 如果不是, 起始符号指示信令给出该服务小区的 PDSCH/ePDCCH的时域起始位置。如果 UE没有收到起始符号指示信令, 服务小区的 PDSCH/ePDCCH的时域起始位置可以根据 PCFICH获得。
或者在实施时, 起始符号指示信令包括服务小区的 PDSCH/ePDCCH的时域起始 位置。 其中, PDSCH是被 ePDCCH调度的。
优选地, 频域 ePDCCH的频域位置为信令配置, 或者, 预定义位置; 所述预定义 位置包括: 固定中心频带 N个物理资源块, 或者, 系统带宽两个边带, 每个边带 N个 物理资源块, 或者, 间隔的映射系统带宽上 N个物理资源块, 或者, 系统带宽中心的 N个物理资源块; N为大于或等于 1的正整数。
优选地, 物理资源块与辅同步信道所在的物理资源块相同时, 物理资源块对应的 eREG不用作传输 ePDCCH,发送端按照除去所述物理资源块后的物理资源对 ePDCCH 进行编码。
优选实施例三
本优选实施例提高了一种 ePDCCH映射方法, 该方法包括如下步骤:
步骤 1 : 将物理资源块对划分为增强的物理资源单元组。
步骤 2: 将 ePDCCH映射到相应的物理资源块的物理资源单元组上。
在实施时, 步骤 1中的物理资源块对划分为增强的资源单元组, 可以通过如下方 式实现: 将物理资源块上用于 ePDCCH的资源单元, 按照先时域再频域, 或者, 先频 域再时域的顺序编号, 然后, 将编号后的资源单元划分为 n个增强的资源单元组, 其 中, 将物理资源块上编号后的资源单元划分为 n个增强的资源单元组具体包括以下之 方式 1 : 顺序等间隔划分; 如: 资源单元索引模 n, 编号取模后值相同资源单元划 分为一组: 方式 2: 顺序连续划分; 如: 连续的划分, 各增强的物理资源单元组包含的资源 单元不同;
方式 3: 将编号后的资源单元输入子块交织器, 将子块交织器输出的资源单元顺 序划分为 n个增强的资源单元组;
方式 4: 将编号后的资源单元输入子块交织器, 将子块交织器输出的资源单元循 环移位后再顺序划分为 n个增强的资源单元组;
优选地, 循环移位可以根据所述物理资源块序号、 小区标识、 子帧序号、 循环移 位指示信令中至少之一进行循环移位。
例如: 按照资源组对应的物理资源块序号进行循环移位, 或者, 按照所述资源组 对应的物理资源块序号与子帧序号之和进行循环移位, 或者, 按照所述资源组对应的 物理资源块序号与循环移位指示信令之和进行循环移位, 或者, 按照所述资源组对应 的物理资源块序号、 子帧序号、 小区标识之和进行循环移位。
在本实施例中, ePDCCH对应的物理资源的时域起始位置与 ePDCCH所在服务小 区上 PDSCH的时域起始位置相关, 下面进行详细说明:
ePDCCH对应的物理资源的时域起始位置与 ePDCCH调度的物理下行共享信道
PDSCH的时域起始位置相同,其中, 所述 ePDCCH和所述 PDSCH在相同的服务小区 上;
当服务小区的 PDSCH 对应的下行控制信息通过 ePDCCH承载时, 服务小区的 PDSCH的时域起始位置根据起始符号指示信令确定。
在实施时, 起始符号指示信令包括服务小区的 PDSCH/ePDCCH的时域起始位置 是否是根据 PCFICH 获得的, 如果不是, 起始符号指示信令给出该服务小区的 PDSCH/ePDCCH的时域起始位置。如果 UE没有收到起始符号指示信令, 服务小区的 PDSCH/ePDCCH的时域起始位置可以根据 PCFICH获得。
或者在实施时, 起始符号指示信令包括服务小区的 PDSCH/ePDCCH的时域起始 位置。 其中, PDSCH是被 ePDCCH调度的。
优选地, 频域 ePDCCH的频域位置为信令配置, 或者, 预定义位置; 预定义位置 包括: 固定中心频带 N个物理资源块, 或者, 系统带宽两个边带, 每个边带 N个物理 资源块, 或者, 间隔的映射系统带宽上 N个物理资源块, 或者, 系统带宽中心的 N个 物理资源块; N为大于或等于 1的正整数;
预设物理资源块与辅同步信道所在的物理资源块相同时, 预设物理资源块对应的 eREG不用作传输 ePDCCH,发送端按照除去预设物理资源块后的物理资源对 ePDCCH 进行编码。
常规循环前缀子帧与扩展循环前缀子帧对应的 n值相同, 或者, 常规循环前缀子 帧与扩展循环前缀子帧对应的 n值根据预定义场景分别定义, 预定义场景包括以下至 少之一: 扩展循环前缀配置的一般子帧, 常规循环前缀配置的一般子帧, 扩展循环前 缀配置的特殊子帧集合 1,扩展循环前缀配置的特殊子帧集合 2, 常规循环前缀配置的 特殊子帧集合 1, 常规循环前缀配置的特殊子帧集合 2中一个或多个。
例如: 扩展循环前缀配置的一般子帧为 2, 常规循环前缀配置的一般子帧为 4, 扩 展循环前缀配置的特殊子帧集合 1为 1,扩展循环前缀配置的特殊子帧集合 2为 2, 常 规循环前缀配置的特殊子帧集合 1为 2, 常规循环前缀配置的特殊子帧集合 2为 1 ; 或 者, 扩展循环前缀配置的一般子帧为 2, 常规循环前缀配置的一般子帧为 4, 扩展循环 前缀配置的特殊子帧集合 1为 1, 常规循环前缀配置的特殊子帧集合 1为 2, 常规循环 前缀配置的特殊子帧集合 2为 1。
优选地, 常规循环前缀配置的特殊子帧集合 1包括特殊子帧配置 3, 4, 8; 或者, 常规循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 6, 7, 3, 4, 8;
常规循环前缀配置的特殊子帧集合 2包括特殊子帧配置 1, 2, 6, 7;
扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 3, 5, 6; 或者, 扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 3, 4, 5, 6;
扩展循环前缀配置的特殊子帧集合 2包括特殊子帧配置 4。
根据调度情况, 将 ePDCCH映射到相应的物理资源块的物理资源单元组上。 优选实施例四
本优选实施例提供了一种 ePDCCH的发送方法, 该方法包括: 将物理资源块对划 分为增强的物理资源单元组; 将 ePDCCH映射到相应的物理资源块的物理资源单元组 上。
在本优选实施例中, 物理资源块对划分为增强的资源单元组, 具体包括, 将物理 资源块上用于 ePDCCH的资源单元, 按照先时域再频域, 或者, 先频域再时域的顺序 编号, 然后, 将编号后的资源单元划分为 n个增强的资源单元组, 其中, 将物理资源 块上编号后的资源单元划分为 n个增强的资源单元组具体包括以下之一:
方式 1 : 顺序等间隔划分; 如: 资源单元索引模!!, 编号取模后值相同资源单元划 分为一组。
方式 2: 顺序连续划分; 如: 连续的划分, 各增强的物理资源单元组包含的资源 单元不同。
方式 3: 将编号后的资源单元输入子块交织器, 将子块交织器输出的资源单元顺 序划分为 n个增强的物理资源单元组。
方式 4: 将编号后的资源单元输入子块交织器, 将子块交织器输出的资源单元循 环移位后再顺序划分为 n个增强的物理资源单元组。
循环移位, 具体包括, 根据物理资源块序号、 小区标识、 子帧序号、 循环移位指 示信令中至少之一进行所述循环移位。 例如: 按照所述资源组对应的物理资源块序号进行循环移位, 或者, 按照所述资 源组对应的物理资源块序号与子帧序号之和进行循环移位, 或者, 按照所述资源组对 应的物理资源块序号与循环移位指示信令之和进行循环移位, 或者, 按照所述资源组 对应的物理资源块序号、 子帧序号、 小区标识之和进行循环移位。
优选地, ePDCCH对应的物理资源的时域起始位置与所述 ePDCCH所在服务小区 上 PDSCH的时域起始位置相关, 下面进行详细说明:
ePDCCH对应的物理资源的时域起始位置与所述 ePDCCH调度的物理下行共享信 道 PDSCH的时域起始位置相同, 其中, 所述 ePDCCH和所述 PDSCH在相同的服务 小区上;
当服务小区的 PDSCH对应的下行控制信息通过所述 ePDCCH承载时, 所述服务 小区的 PDSCH的时域起始位置根据起始符号指示信令确定。
在实施时, 起始符号指示信令包括服务小区的 PDSCH/ePDCCH的时域起始位置 是否是根据 PCFICH 获得的, 如果不是, 起始符号指示信令给出该服务小区的 PDSCH/ePDCCH的时域起始位置。如果 UE没有收到起始符号指示信令, 服务小区的 PDSCH/ePDCCH的时域起始位置可以根据 PCFICH获得。
或者在实施时, 起始符号指示信令包括服务小区的 PDSCH/ePDCCH的时域起始 位置。 其中, PDSCH是被 ePDCCH调度的。
频域 ePDCCH的频域位置为信令配置,或者,预定义位置;所述预定义位置包括: 固定中心频带 N个物理资源块,或者,系统带宽两个边带,每个边带 N个物理资源块, 或者, 间隔的映射系统带宽上 N个物理资源块, 或者, 所述系统带宽中心的 N个物理 资源块; N为正大于或等于 1的整数。
优选地, 物理资源块与辅同步信道所在的物理资源块相同时, 物理资源块对应的 eREG不用作传输 ePDCCH,发送端按照除去所述物理资源块后的物理资源对 ePDCCH 进行编码。
优选地, 常规循环前缀子帧与扩展循环前缀子帧对应的 n值相同, 或者, n值根 据预定义场景分别定义, 所述预定义场景包括以下至少之一: 扩展循环前缀配置的一 般子帧, 常规循环前缀配置的一般子帧, 扩展循环前缀配置的特殊子帧集合 1, 扩展 循环前缀配置的特殊子帧集合 2, 常规循环前缀配置的特殊子帧集合 1, 常规循环前缀 配置的特殊子帧集合 2中一个或多个。
例如: 扩展循环前缀配置的一般子帧为 2, 常规循环前缀配置的一般子帧为 4, 扩 展循环前缀配置的特殊子帧集合 1为 1,扩展循环前缀配置的特殊子帧集合 2为 2, 常 规循环前缀配置的特殊子帧集合 1为 2, 常规循环前缀配置的特殊子帧集合 2为 1 ; 或 者, 扩展循环前缀配置的一般子帧为 2, 常规循环前缀配置的一般子帧为 4, 扩展循环 前缀配置的特殊子帧集合 1为 1, 常规循环前缀配置的特殊子帧集合 1为 2, 常规循环 前缀配置的特殊子帧集合 2为 1 ; 优选地, 常规循环前缀配置的特殊子帧集合 1包括特殊子帧配置 3, 4, 8; 或者, 扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 6, 7, 3, 4, 8;
常规循环前缀配置的特殊子帧集合 2包括特殊子帧配置 1, 2, 6, 7;
扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 3, 5, 6; 或者, 扩展循环前缀配置的特殊子帧集合 1包括特殊子帧配置 1, 2, 3, 4, 5, 6;
扩展循环前缀配置的特殊子帧集合 2包括特殊子帧配置 4。
确定 ePDCCH对应的 eREG, 可以通过如下方式:
虚拟 eREG到 eREG的映射, 其中, eREG对应具体的物理资源, 虚拟 eREG对应 于 ePDCCH的逻辑单元, 其中, 所述逻辑单元设置为给 ePDCCH分配资源, 或者, 所 述逻辑单元设置为承载 ePDCCH编码后的比特信息;先根据调度情况将 ePDCCH映射 到虚拟的增强的物理资源单元组, 再将所述虚拟增强的资源单元组到所述物理资源单 元组的映射, 其中, 所述虚拟增强的资源单元组包括连续虚拟增强的资源单元组和离 散的虚拟增强的资源单元组;
按照物理资源块的序号对对所述 ePDCCH对应的所有物理资源单元组编号, 将所 述虚拟增强的资源单元组到所述物理资源单元组的具体映射包括:
连续的虚拟增强的资源单元组直接映射到与其序号相同的增强的资源单元组上; 离散的虚拟增强的资源单元组直接映射到预定义的增强的资源单元组上; 所述离散的虚拟增强的资源单元组直接映射到预定义的增强的资源单元组上, 具 体包括:
将离散的虚拟增强的资源单元组划分为离散的虚拟增强的资源单元组集合, 不同 离散的虚拟增强的资源单元组集合包含的离散的虚拟增强的资源单元组不同; 如: 顺 序划分的方式;
将所述增强的资源单元组划分为增强的资源单元组集合; 不同增强的资源单元组 集合包含的增强的资源单元组不同; 如: 可以采用顺序划分的方式, 或者, 间隔抽取 的方式;
所述离散的虚拟增强的资源单元组集合与所述增强的资源单元组集合之间一一对 应; 如: 离散的虚拟增强的资源单元组集合 #1^对应于增强的资源单元组集合 #k;
所述离散的虚拟增强的资源单元组集合包含的离散的虚拟增强的资源单元组数量 等于所述增强的资源单元组集合包含的增强的资源单元组数量相同;
当增强的资源单元组集合包含的增强的资源单元组数量为 32时,假设,所述增强 的资源单元组集合中增强的资源单元组编号为 a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, al l , al2, al3, al4, al5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31 , 离散的虚拟增强的资源单元组集合中的离散的 虚拟增强的资源单元组编号为 b0, bl , b2, b3 , b4, b5 , b6, b7, b8 , b9, blO, bl l , bl2, M3, bl4, M5, bl6, bl7, M8, bl9, b20, b21, b22, b23, b24, b25, b26, b27, b28, b29, b30, b31,所述离散的虚拟 eREG集合内离散的虚拟 eREG与所述 eREG 集合内的 eREG之间对应关系: a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5, al6, al7, al8, al9, a20, a21, a22, a23, a24, a25, a26, all, a28, a29, a30, a31 依次对应于 b0, bl6, bl, bl7, hi, bl8, b3, bl9, b4, b20, b5, b21, b6, b22, hi, b23, b8, b24, b9, b25, blO, b26, bll, b27, bl2, b28, M3, b29, M4, b30, M5, b31, 或者, a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5, al6, al7, al8, al9, a20, sill, a22, a23, a24, a25, a26, all, a28, a29, a30, a31依次对应于 b0, bl6, b4, b20, b2, M8, b6, b22, bl, M7, b5, b21, b3, M9, bl, b23, b8, b24, M2, b28, blO, b26, bl4, b30, b9, b25, M3, b29, bll, b27, M5, b31, 或者, a0, al, a2, a3, a4, a5, a6, al, a8, a9, alO, all, al2, al3, al4, al5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, all, a28, a29, a30, a31依次对应于 b0, bl6, b4, b20, bl, bl7, b5, b21, b2, M8, b6, b22, b3, M9, bl, b23, b8, b24, M2, b28, b9, b25, bl3, b29, blO, b26, M4, b30, bll, b27, M5, b31, 或者, a0, al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all, al2, al3, al4, al5, al6, al7, al8, al9, a20, a21, a22, a23, a24, a25, a26, all, a28, a29, a30, a31依次对应于 b0, bl6, b2, bl8, bl, M7, b3, M9, b4, b20, b6, b22, b5, b21, bl, b23, b8, b24, M0, b26, b9, b26, bll, bll, M2, b28, M4, b30, bl3, b29, M5, b31, 或者, a0, al, a2, a3, a4, a5, a6, al, a8, a9, alO, all, al2, al3, al4, al5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, all, a28, a29, a30, a31依次对应于 b0, bl6, b8, b24, bl, M7, b9, b25, b2, M8, blO, b26, b3, M9, bll, bll, b4, b20, bl2, b28, b5, b21, M3, b29, b6, b22, M4, b30, bl, b23, M5, b31, 或者, a0, al, ..·, a31依次对应于 b0, bl6, b8, b24, b2, bl8, blO, b26, bl, bl7, b9, b25, b3, bl9, bll, bll, b4, b20, M2, b28, b6, b22, M4, b30, b5, b21, M3, b29, bl, b23, bl5, b31, 或者, a0, al , a2, a3, a4, a5, a6, a7, a8, a9, alO, all , al2, al3, al4, al5, al6, all, al8, al9, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31依次对应于 b0, bl6, b8, b24, b4, b20, bl2, b28, bl, bl7, b9, b25, b5, b21, M3, b29, b2, bl8, blO, b26, b6, b22, bl4, b30, b3, bl9, bll, b27, bl, b23, M5, b31。
当增强的资源单元组集合包含的增强的资源单元组数量为 16时,增强的资源单元 组集合中增强的资源单元组编号为 a0, al, al, a2, a3, a4, a5, a6, al, a8, a9, alO, all, al2, al3, al4, al5, 所述离散的虚拟增强的资源单元组集合中的离散的虚拟增 强的资源单元组编号为 b0, bl, b2, b3, b4, b5, b6, b7, b8, b9, blO, bll, bl2, bl3, M4, M5, 所述离散的虚拟 eREG集合内离散的虚拟 eREG与所述 eREG集合内 的 eREG之间对应关系: a0, al, a2, a3, a4, a5, a6, al, a8, a9, alO, all, al2, al3, al4, al5对应于 b0, b8, bl, b9, b2, blO, b3, bll, b4, bl2, b5, M3, b6, bl4, hi, M5, 或者, a0, al , a2, a3, a4, a5, a6, a7, a8, a9, alO, all , al2, al3, al4, al5对应于 b0, b8, hi, blO, bl, b9, b3, bl l, b4, M2, b6, M4, b5, bl3, hi, M5, 或者, a0, al , a2, a3, a4, a5, a6, a7, a8, a9, alO, all , al2, al3, al4, al5对应于 b0, b8, b4, bl2, bl, b9, b5, M3, hi, blO, b6, M4, b3, bl l, hi, M5, 或者, a0, al , a2, a3, a4, a5, a6, a7, a8, a9, alO, all , al2, al3, al4, al5对应于 b0, b8, b4, bl2, hi, blO, b6, bl4, bl, b9, b5, M3, b3, bl l, hi, bl5;
当增强的资源单元组集合包含的增强的资源单元组数量为 8时, 假设, 所述增强 的资源单元组集合中增强的资源单元组编号为 a0, al , a2, a3, a4, a5, a6, a7, 所 述离散的虚拟增强的资源单元组集合中的离散的虚拟增强的资源单元组编号为 b0, bl, hi, b3, b4, b5, b6, hi, 离散的虚拟 eREG集合内离散的虚拟 eREG与所述 eREG 集合内的 eREG之间对应关系为: a0, al , a2, a3, a4, a5, a6, a7对应于 b0, b4, bl, b5, hi, b6, b3, hi, 或者, a0, al , a2, a3, a4, a5, a6, a7对应于 b0, b4, hi, b6, bl, b5, b3, b7;
下面结合多个实例进行说明。
实例 1 :
当基站配置用于 ePDCCH传输的物理资源块对为 8个时,一个物理资源块对包括 8个 eREG, 总共有 64个 eREG, 贝 ij, eREG集合包含的 eREG数量可以是 32, 即所有 eREG划分为 2个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 16, 即所有 eREG划分为 4个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 8, 即所有 eREG划分为 8个 eREG集合。
实例 2:
当基站配置用于 ePDCCH传输的物理资源块对为 4个时,一个物理资源块对包括 8个 eREG, 总共有 32个 eREG, 贝 ij, eREG集合包含的 eREG数量可以是 32, 即所有 eREG划分为 1个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 16, 即所有 eREG划分为 2个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 8, 即所有 eREG划分为 4个 eREG集合;
实例 3:
当基站配置用于 ePDCCH传输的物理资源块对为 8个时,一个物理资源块对包括 4个 eREG, 总共有 32个 eREG, 贝 ij, eREG集合包含的 eREG数量可以是 32, 即所有 eREG划分为 1个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 16, 即所有 eREG划分为 2个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 8, 即所有 eREG划分为 4个 eREG集合。
实例 4: 当基站配置用于 ePDCCH传输的物理资源块对为 4个时,一个物理资源块对包括 4个 eREG, 总共有 16个 eREG, 贝 ij, eREG集合包含的 eREG数量可以是 16, 即所有 eREG划分为 1个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 8, 即所有 eREG划分为 2个 eREG集合。
实例 5:
当基站配置用于 ePDCCH传输的物理资源块对为 8个时,一个物理资源块对包括 2个 eREG, 总共有 16个 eREG, 贝 ij, eREG集合包含的 eREG数量可以是 16, 即所有 eREG划分为 1个 eREG集合, 或者, eREG集合包含的 eREG数量可以是 8, 即所有 eREG划分为 2个 eREG集合。
通过上述实施例, 提供了一种 ePDCCH映射、接收方法及装置、基站、用户设备, 采用不同物理资源块上 n个 eREG对应的物理资源块内资源单元位置不同、 物理资源 块对应的资源单元离散划分为 eREG, 解决了 ePDCCH对应的各 eREG之间性能均衡 的问题, 进而保证了 ePDCCH的传输性能稳定, 并且, 降低了调度的复杂度, 提高了 资源利用率。 需要说明的是, 这些技术效果并不是上述所有的实施方式所具有的, 有 些技术效果是某些优选实施方式才能取得的。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而可以将 它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限 制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种增强物理下行控制信道 ePDCCH发送方法, 包括: 基站将 ePDCCH对应的增强资源单元组 eREG映射到不同的资源单元上, 其中,所述 ePDCCH对应的 eREG中的每一个 eREG位于一个物理资源块对中, 所述基站将 ePDCCH对应的 eREG映射到不同的资源单元上包括:所述基站将 ePDCCH对应的物理资源块对划分为 eREG, 以及所述基站将所述 ePDCCH映 射到预设的 eREG; 所述基站在所述资源单元上发送所述 ePDCCH。
2. 根据权利要求 1所述的方法, 其中, 所述一个物理资源块对包括 n个 eREG, 不同物理资源块上所述 n个 eREG对应的物理资源块内资源单元位置不同, 其 中, n为大于或等于 1的整数。
3. 根据权利要求 1所述的方法, 其中, 所述基站将 ePDCCH对应的物理资源块对 划分为 eREG包括: 所述基站将用于 ePDCCH的资源单元按照先时域再频域, 或者, 先频域再 时域的顺序编号; 将所述编号后的资源单元划分为 eREG。
4. 根据权利要求 3所述的方法, 其中, 将所述编号后的资源单元划分为 eREG包 括以下之一: 将所述编号后的资源单元按照等间隔划分为所述 eREG; 将所述编号后的资源单元按照顺序连续划分为所述 eREG; 将所述编号后的资源单元输入子块交织器, 将所述子块交织器输出的资源 单元顺序划分为所述 eREG; 将所述编号后的资源单元输入所述子块交织器, 将所述子块交织器输出的 资源单元进行循环移位后, 再划分为所述 eREG。
5. 根据权利要求 1至 4中任一项所述的方法, 其中, 所述 ePDCCH对应的物理资源的时域起始位置与所述 ePDCCH调度的物 理下行共享信道 PDSCH 的时域起始位置相同, 其中, 所述 ePDCCH和所述 PDSCH在相同的服务小区上。
6. 根据权利要求 1至 4中任一项所述的方法, 其中, 所述 ePDCCH的对应的物理 资源的频域位置为信令配置或者预设的位置, 其中, 所述预设的位置包括以下 之一: 系统带宽的两个边带、 所述系统带宽的两个边带的每个边带的 N个物理 资源块、间隔的映射系统上 N个物理资源块、所述系统带宽中心的 N个物理资 源块, 其中, N为大于 0的整数。
7. 根据权利要求 1至 4中任一项所述的方法, 其中, 当服务小区的 PDSCH对应 的下行控制信息通过所述 ePDCCH承载时, 所述服务小区的 PDSCH的时域起 始位置根据起始符号指示信令确定。
8. 根据权利要求 1至 4中任一项所述的方法, 其中, 所述基站按照除去预设物理 资源块后的物理资源对所述 ePDCCH进行编码, 其中, 所述预设物理资源块与 辅同步信道所在的物理资源块相同, 所述预设物理资源块对应的 eREG不承载 所述 ePDCCH。
9. 根据权利要求 1至 4中任一项所述的方法, 其中, 将 ePDCCH对应的 eREG映 射到不同的资源单元上包括: 虚拟 eREG到所述 eREG的映射, 其中, 所述 eREG对应于物理资源, 所 述虚拟 eREG对应于 ePDCCH的逻辑单元; 所述虚拟 eREG包括连续的虚拟 eREG和离散的虚拟 eREG, 所述连续的 虚拟 eREG映射到与该连续的虚拟 eREG的序号相同的 eREG上, 所述离散的 虚拟 eREG映射到预设的 eREG上。
10. 根据权利要求 9所述的方法,其中,所述离散的虚拟 eREG映射到预设的 eREG 上包括: 将所述离散的 eREG划分为离散的虚拟 eREG集合; 将所述 eREG划分为 eREG集合; 将所述离散的虚拟 eREG集合与所述 eREG集合一一对应, 且所述离散的 虚拟 eREG集合包含的离散的虚拟 eREG数量等于所述 eREG集合包含的 eREG 数量。
11. 根据权利要求 1至 4中任一项所述的方法, 其中, 所述一个物理资源块对包含 n个 eREG,其中, 常规循环前缀子帧与扩展循环前缀子帧的物理资源块对应的 n值相同, 或者, 所述一个物理资源块包含 n个 eREG, 根据预定义场景确定 n 值, 其中, 所述预定义场景包括以下至少之一: 扩展循环前缀配置的一般子帧, 常规循环前缀配置的一般子帧, 扩展循环前缀配置的特殊子帧集合 1, 扩展循 环前缀配置的特殊子帧集合 2,常规循环前缀配置的特殊子帧集合 1,常规循环 前缀配置的特殊子帧集合 2中一个或多个, n为大于或等于 1的整数。
12. 一种增强物理下行控制信道 ePDCCH接收方法, 包括: 用户设备 UE确定 ePDCCH对应的增强资源单元组 eREG映射的资源单元, 其中,所述 ePDCCH对应的 eREG中的每一个 eREG位于一个物理资源块对中; 所述 UE在所述资源单元上接收所述 ePDCCH。
13. 根据权利要求 12所述的方法, 将 ePDCCH对应的 eREG通过以下方式映射到 不同的资源单元上: 所述基站将 ePDCCH对应的物理资源块对划分为 eREG; 所述基站将所述 ePDCCH映射到预设的 eREG。
14. 根据权利要求 13所述的方法, 其中, 所述基站将 ePDCCH对应的物理资源块 对划分为 eREG包括: 所述基站将用于 ePDCCH的资源单元按照先时域再频域, 或者, 先频域再 时域的顺序编号; 将所述编号后的资源单元划分为 eREG。
15. 根据权利要求 14所述的方法,其中,将所述编号后的资源单元划分为 eREG包 括以下之一: 将所述编号后的资源单元按照等间隔划分为所述 eREG; 将所述编号后的资源单元按照顺序连续划分为所述 eREG; 将所述编号后的资源单元输入子块交织器, 将所述子块交织器输出的资源 单元顺序划分为所述 eREG; 将所述编号后的资源单元输入所述子块交织器, 将所述子块交织器输出的 资源单元进行循环移位后, 再划分为所述 eREG。
16. 根据权利要求 12至 15中任一项所述的方法, 其中, 所述 ePDCCH对应的物理资源的时域起始位置与所述 ePDCCH调度的物 理下行共享信道 PDSCH 的时域起始位置相同, 其中, 所述 ePDCCH和所述 PDSCH在相同的服务小区上。
17. 根据权利要求 12至 15中任一项所述的方法, 其中, 将 ePDCCH对应的 eREG 映射到不同的资源单元上包括: 虚拟 eREG到所述 eREG的映射, 其中, 所述 eREG对应于物理资源, 所 述虚拟 eREG对应于 ePDCCH的逻辑单元; 所述虚拟 eREG包括连续的虚拟 eREG和离散的虚拟 eREG, 所述连续的 虚拟 eREG映射到与该连续的虚拟 eREG的序号相同的 eREG上, 所述离散的 虚拟 eREG映射到预设的 eREG上。
18. 根据权利要求 17所述的方法,其中,所述离散的虚拟 eREG映射到预设的 eREG 上包括: 将所述离散的 eREG划分为离散的虚拟 eREG集合; 将所述 eREG划分为 eREG集合; 将所述离散的虚拟 eREG集合与所述 eREG集合一一对应, 且所述离散的 虚拟 eREG集合包含的离散的虚拟 eREG数量等于所述 eREG集合包含的 eREG 数量。
19. 根据权利要求 12至 15中任一项所述的方法, 其中, 所述一个物理资源块对包 含 n个 eREG, 其中, 常规循环前缀子帧与扩展循环前缀子帧的物理资源块对 应的 n值相同, 或者, 所述一个物理资源块包含 n个 eREG, 根据预定义场景 确定 n值, 其中, 所述预定义场景包括以下至少之一: 扩展循环前缀配置的一 般子帧, 常规循环前缀配置的一般子帧, 扩展循环前缀配置的特殊子帧集合 1, 扩展循环前缀配置的特殊子帧集合 2,常规循环前缀配置的特殊子帧集合 1,常 规循环前缀配置的特殊子帧集合 2中一个或多个, n为大于或等于 1的整数。
20. 一种增强物理下行控制信道 ePDCCH 发送装置, 应用于基站, 其中, 所述 ePDCCH发送装置包括: 第一映射模块, 设置为将 ePDCCH对应的增强资源单元组 eREG映射到不 同的资源单元上, 其中, 所述 ePDCCH对应的 eREG中的每一个 eREG位于一 个物理资源块对中,所述第一映射模块包括:第二划分模块,设置为将 ePDCCH 对应的物理资源块对划分为 eREG,以及第三映射模块,设置为将所述 ePDCCH 映射到预设的 eREG; 发送模块, 设置为在所述资源单元上发送所述 ePDCCH。
21. 根据权利要求 20所述的装置, 其中, 所述第二划分模块包括: 编号模块, 设置为将用于 ePDCCH的资源单元按照先时域再频域, 或者, 先频域再时域的顺序编号; 第三划分模块, 设置为将所述编号后的资源单元划分为 eREG。
22. 根据权利要求 21所述的装置,其中,所述第三划分模块设置为通过以下方式之 一将所述编号后的资源单元划分为 eREG: 将所述编号后的资源单元按照等间隔划分为所述 eREG; 将所述编号后的资源单元按照顺序连续划分为所述 eREG; 将所述编号后的资源单元输入子块交织器, 将所述子块交织器输出的资源 单元顺序划分为所述 eREG; 将所述编号后的资源单元输入所述子块交织器, 将所述子块交织器输出的 资源单元进行循环移位后, 再划分为所述 eREG。
23. 根据权利要求 20至 22中任一项所述的装置, 其中, 所述 ePDCCH对应的物理资源的时域起始位置与所述 ePDCCH调度的物 理下行共享信道 PDSCH 的时域起始位置相同, 其中, 所述 ePDCCH和所述 PDSCH在相同的服务小区上。
24. 根据权利要求 20至 22中任一项所述的装置, 其中, 所述第一映射模块设置为 通过以下方式将 ePDCCH对应的 eREG映射到不同的资源单元上: 虚拟 eREG到所述 eREG的映射, 其中, 所述 eREG对应于物理资源, 所 述虚拟 eREG对应于 ePDCCH的逻辑单元; 所述虚拟 eREG包括连续的虚拟 eREG和离散的虚拟 eREG, 所述连续的 虚拟 eREG映射到与该连续的虚拟 eREG的序号相同的 eREG上, 所述离散的 虚拟 eREG映射到预设的 eREG上。
25. 根据权利要求 24所述的装置,其中,所述第一映射模块设置为通过以下方式将 所述离散的虚拟 eREG映射到预设的 eREG上: 将所述离散的 eREG划分为离散的虚拟 eREG集合; 将所述 eREG划分为 eREG集合; 将所述离散的虚拟 eREG集合与所述 eREG集合一一对应, 且所述离散的 虚拟 eREG集合包含的离散的虚拟 eREG数量等于所述 eREG集合包含的 eREG 数量。
26. 根据权利要求 20至 22中任一项所述的装置, 其中, 所述一个物理资源块对包 含 n个 eREG, 其中, 常规循环前缀子帧与扩展循环前缀子帧的物理资源块对 应的 n值相同, 或者, 所述一个物理资源块包含 n个 eREG, 根据预定义场景 确定 n值, 其中, 所述预定义场景包括以下至少之一: 扩展循环前缀配置的一 般子帧, 常规循环前缀配置的一般子帧, 扩展循环前缀配置的特殊子帧集合 1, 扩展循环前缀配置的特殊子帧集合 2,常规循环前缀配置的特殊子帧集合 1,常 规循环前缀配置的特殊子帧集合 2中一个或多个, n为大于或等于 1的整数。
27. 一种基站, 包括权利要求 20 至 26 中任一项所述的增强物理下行控制信道 ePDCCH发送装置。
28. 一种增强物理下行控制信道 ePDCCH接收装置, 应用于用户设备 UE, 其中, 所述 ePDCCH接收装置包括: 确定模块,设置为确定 ePDCCH对应的增强 eREG映射的资源单元,其中, 所述 ePDCCH对应的 eREG中的每一个 eREG位于一个物理资源块对中; 接收模块, 设置为在所述资源单元上接收所述 ePDCCH。
29. 一种用户设备 UE, 包括权利要求 28所述的 ePDCCH接收装置。
PCT/CN2013/080485 2012-07-31 2013-07-31 ePDCCH发送、接收方法及装置、基站、用户设备 WO2013178184A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/417,422 US9609640B2 (en) 2012-07-31 2013-07-31 Method and device for sending and receiving EPDCCH, base station, and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210269125.5A CN103580834B (zh) 2012-07-31 2012-07-31 ePDCCH发送、接收方法及装置、基站、用户设备
CN201210269125.5 2012-07-31

Publications (2)

Publication Number Publication Date
WO2013178184A2 true WO2013178184A2 (zh) 2013-12-05
WO2013178184A3 WO2013178184A3 (zh) 2014-01-23

Family

ID=49673969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080485 WO2013178184A2 (zh) 2012-07-31 2013-07-31 ePDCCH发送、接收方法及装置、基站、用户设备

Country Status (3)

Country Link
US (1) US9609640B2 (zh)
CN (1) CN103580834B (zh)
WO (1) WO2013178184A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420685B (zh) * 2011-11-07 2014-08-06 电信科学技术研究院 一种传输控制信息的方法及装置
WO2015172364A1 (zh) 2014-05-15 2015-11-19 华为技术有限公司 一种基站、用户设备及通信信号的发送、接收方法
CN107294690B (zh) * 2016-04-12 2020-01-03 北京华为数字技术有限公司 一种调制符号传输方法及发送设备
WO2019028770A1 (zh) 2017-08-10 2019-02-14 华为技术有限公司 通信方法、终端设备和网络设备
CN115567974A (zh) 2017-08-11 2023-01-03 华为技术有限公司 一种信息的发送方法及设备
CN109525359B (zh) * 2017-09-18 2022-03-11 华为技术有限公司 数据传输的方法和设备
CN108307509B (zh) * 2018-01-19 2022-01-18 宇龙计算机通信科技(深圳)有限公司 下行时域资源调度方法和网络设备
CN111181884B (zh) * 2018-11-09 2021-09-07 华为技术有限公司 参考信号发送方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102395206A (zh) * 2011-11-08 2012-03-28 电信科学技术研究院 下行控制信息的传输方法和设备
CN102420685A (zh) * 2011-11-07 2012-04-18 电信科学技术研究院 一种传输控制信息的方法及装置
CN102612094A (zh) * 2012-04-01 2012-07-25 华为技术有限公司 一种控制信令资源单元确定方法、基站及用户设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5542290B2 (ja) * 2009-03-23 2014-07-09 エルジー エレクトロニクス インコーポレイティド 多重アンテナシステムにおける参照信号送信方法及び装置
US8681651B2 (en) * 2010-11-05 2014-03-25 Qualcomm Incorporated Reference signal reception and channel state information determination for multiple nodes in a wireless communication network
EP2633333B1 (en) * 2010-11-15 2018-03-21 Huawei Technologies Co., Ltd. System and method for resource management in a communications system
WO2013006193A1 (en) * 2011-07-01 2013-01-10 Intel Corporation Layer shifting in open loop multiple-input, multiple-output communications
WO2013022261A2 (en) * 2011-08-11 2013-02-14 Samsung Electronics Co., Ltd. Extension of physical downlink control channels in a communication system
US9236991B2 (en) * 2011-11-04 2016-01-12 Telefonaktiebolaget L M Ericsson (Publ) Network node, user equipment and methods therein
CN102546134B (zh) * 2011-12-29 2015-07-22 电信科学技术研究院 基于增强phich传输反馈信息的方法及装置
US20130195067A1 (en) * 2012-01-27 2013-08-01 Sharp Laboratories Of America, Inc. Devices for signaling an enhanced physical control format indicator channel
WO2013112972A1 (en) * 2012-01-27 2013-08-01 Interdigital Patent Holdings, Inc. Systems and/or methods for providing epdcch in a multiple carrier based and/or quasi-collated network
KR102149758B1 (ko) * 2012-03-05 2020-09-01 삼성전자 주식회사 Harq-ack 신호의 송신 및 수신 방법 및 장치
US9445409B2 (en) * 2012-03-21 2016-09-13 Mediatek, Inc. Method for search space configuration of enhanced physical downlink control channel
KR102098055B1 (ko) * 2012-04-30 2020-04-07 삼성전자 주식회사 무선 통신 시스템의 제어 채널 송수신 방법 및 장치
US10448379B2 (en) * 2012-05-04 2019-10-15 Texas Instruments Incorporated Enhanced downlink control channel configuration for LTE
US20130301561A1 (en) * 2012-05-08 2013-11-14 Futurewei Technologies, Inc. System and Method for Antenna Port Association
EP2848073B1 (en) * 2012-05-09 2018-07-11 Telefonaktiebolaget LM Ericsson (publ) Network node, user equipment and methods therein for random access handling
US8982693B2 (en) * 2012-05-14 2015-03-17 Google Technology Holdings LLC Radio link monitoring in a wireless communication device
WO2013173967A1 (en) * 2012-05-21 2013-11-28 Renesas Mobile Corporation Interleaving for enhanced control channel having distributed physical resource blocks
US9055569B2 (en) * 2012-06-29 2015-06-09 Samsung Electronics Co., Ltd. Uplink hybrid acknowledgement signaling in wireless communications systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420685A (zh) * 2011-11-07 2012-04-18 电信科学技术研究院 一种传输控制信息的方法及装置
CN102395206A (zh) * 2011-11-08 2012-03-28 电信科学技术研究院 下行控制信息的传输方法和设备
CN102612094A (zh) * 2012-04-01 2012-07-25 华为技术有限公司 一种控制信令资源单元确定方法、基站及用户设备

Also Published As

Publication number Publication date
CN103580834B (zh) 2018-06-22
US20150215904A1 (en) 2015-07-30
US9609640B2 (en) 2017-03-28
WO2013178184A3 (zh) 2014-01-23
CN103580834A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
JP7214272B2 (ja) 無線通信システムにおいて上りリンク制御チャネルの送信装置及び方法
WO2013178184A2 (zh) ePDCCH发送、接收方法及装置、基站、用户设备
CN102611524B (zh) 一种传输信息的方法、系统及设备
JP6320370B2 (ja) 下り制御情報送信方法、検出方法、基地局及びユーザ機器
US11690052B2 (en) Method and apparatus for transmitting and receiving control information and data information in wireless communication system
EP3386259B1 (en) System and method for delay scheduling
CN102395206B (zh) 下行控制信息的传输方法和设备
WO2017050065A1 (zh) 一种配置信道状态测量导频的方法及装置
US20130301561A1 (en) System and Method for Antenna Port Association
WO2013159676A1 (zh) 一种e-pdcch传输及盲检的方法及装置
KR20150040979A (ko) ePDCCH 검색 공간 설계
WO2014032508A1 (zh) 下行数据的速率匹配方法及装置
KR20140036212A (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2013104277A1 (zh) 下行控制信息发送方法及装置
WO2014008830A1 (zh) 一种盲检方式确定方法、盲检方法及装置
WO2013013643A1 (zh) 控制信道的接收和发送方法和装置
WO2013097120A1 (zh) 下行控制信道的搜索空间的映射方法和装置
WO2018141180A1 (zh) 控制信息的传输方法、接收方法、装置、基站及终端
WO2013091234A1 (zh) 下行控制信道的资源映射方法和装置
WO2014000618A1 (zh) 下行用户专用dm-rs传输方法和ue及网络侧装置
CN102413090B (zh) 一种传输信息的方法、系统和设备
JP2023090877A (ja) 無線通信システムにおける制御情報、並びにデータ情報送受信方法及びその装置
WO2011000290A1 (zh) 指示信道配置的方法和接收数据的方法及设备
WO2014166045A1 (zh) 控制信道的发送方法、接收方法,以及用户设备和基站
WO2014067340A1 (zh) ePDCCH发送、接收方法及基站、用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797825

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14417422

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13797825

Country of ref document: EP

Kind code of ref document: A2