WO2014040264A1 - 一种油井动液面的测量方法及系统 - Google Patents

一种油井动液面的测量方法及系统 Download PDF

Info

Publication number
WO2014040264A1
WO2014040264A1 PCT/CN2012/081380 CN2012081380W WO2014040264A1 WO 2014040264 A1 WO2014040264 A1 WO 2014040264A1 CN 2012081380 W CN2012081380 W CN 2012081380W WO 2014040264 A1 WO2014040264 A1 WO 2014040264A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil well
load
displacement
well
oil
Prior art date
Application number
PCT/CN2012/081380
Other languages
English (en)
French (fr)
Inventor
辛宏
朱天寿
徐永高
慕立俊
曾亚勤
杨瑞
甘庆明
黄伟
杨海涛
李明江
张磊
邱亮
李珍
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to PCT/CN2012/081380 priority Critical patent/WO2014040264A1/zh
Publication of WO2014040264A1 publication Critical patent/WO2014040264A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/04Measuring depth or liquid level
    • E21B47/047Liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm

Definitions

  • the invention relates to the technical field of oil field oil production, in particular to a method and a system for measuring the oil level of an oil well.
  • the oil well surface data directly reflects the liquid supply situation of the formation and the relationship between supply and discharge in the underground, which is an important basis for the evaluation and optimization of the oil recovery process.
  • equipment for testing the dynamic surface among which the most common ones are:
  • the echometer is composed of a sound-elastic type, a nitrogen-type wellhead connector and a comprehensive tester.
  • the device mainly uses the echo principle to detect the liquid level, and requires manual well-by-well testing, which has a large workload, poor timeliness, and safety hazards.
  • the wellhead tester which works in the same way as the echometer, has the advantage of directly installing the wellhead, using the casing gas as a source of vocal energy for testing, and uploading the results to the network using a wireless communication device. It can realize automatic, real-time and continuous monitoring of the moving liquid surface.
  • the disadvantage is that the well site needs to increase the equipment, and the cost is high, which is not conducive to large-scale popularization and application.
  • Embodiments of the present invention provide a method and system for measuring a moving face of an oil well, which can provide a real-time and continuous monitoring scheme for a moving liquid surface that is realized at a lower cost and is effective.
  • an embodiment of the present invention provides a method for measuring a hydrodynamic surface of an oil well, and the method for measuring a hydrodynamic surface of the oil well includes: The load and displacement of the sucker rod of the pumping unit are measured by the load sensor installed on the wellhead suspension and the displacement sensor below the beam of the pumping unit, and the load and time curves, and the displacement and time curves are acquired and acquired;
  • the depth of the oil level of the oil well is obtained by using the pump work diagram.
  • the load sensor and the displacement sensor under the beam of the pumping unit are installed on the wellhead suspension device, and the load and displacement of the sucker rod of the pumping unit are measured and collected. And obtaining the load and time curve, and the displacement and time curve, including: measuring the load and displacement of the sucker rod of the pumping well by the load sensor mounted on the wellhead suspension and the displacement sensor below the pumping beam.
  • the collected data is transmitted to the wellhead collector through the cable, and then uploaded to the well remote control system RTU through the wellhead collector, and then the data is collected through the well group antenna. It is optional to transmit to the center of the main station in the form of a wave.
  • the method for measuring the dynamic surface of the oil well includes : Designed and built a system network structure based on the client/server architecture and the browser/server architecture, so that the oil plant is Post depth of the well fluid level.
  • the obtaining the depth of the oil well surface by using the pump power diagram comprises: using the pump power diagram to establish a mathematical model of the dynamic liquid surface to obtain the oil well dynamic surface depth.
  • the calculating a mathematical model of the dynamic liquid surface by using the pump power map to obtain the depth of the oil well surface includes: forming the node with the sinking pressure A stroke fixed valve and a floating valve open a balance model acting on the plunger to perform force analysis on the plunger to obtain a first sinking pressure, and then the first sinking pressure is obtained from the oil ring annulus pressure distribution The second sinking pressure is compared to determine the depth of the oil well's moving surface.
  • an embodiment of the present invention provides a measurement system for an oil well dynamic liquid surface, and the oil well dynamic liquid surface measurement system includes:
  • a data acquisition device for measuring load and displacement of the sucker rod of the pumping well by a load sensor mounted on the wellhead suspension and a displacement sensor below the beam of the pumping unit, collecting and acquiring a load and time curve, and Displacement versus time curve;
  • a data processing device configured to obtain a light pole work diagram by using the load and time curve, and a displacement and time curve; obtaining a pump power map according to the obtained light pole work diagram; obtaining the oil well dynamic liquid by using the pump power map The depth of the face.
  • the data acquisition device loads and shifts the sucker rod of the pumping unit through a load sensor mounted on the wellhead suspension and a displacement sensor below the beam of the pumping unit
  • the collected data is transmitted to the wellhead collector through the cable, and then uploaded to the well remote control system RTU through the wellhead collector, and then through the well group antenna.
  • the collected data is transmitted in the form of a wave to the central station receiving antenna for reception by the data processing device.
  • the oil well dynamic surface measuring system further includes: a result issuing device, after the data processing device uses the pump power map to obtain the depth of the oil well moving surface,
  • the system network structure is designed and built with the client/server structure as the main and the browser/server structure as the supplement, so as to release the depth of the oil well surface in the oil production plant.
  • the data processing device is specifically configured to use the pump power map to establish a mathematical model for calculating a dynamic liquid surface to obtain a depth of the oil well surface.
  • the data processing device is further configured to use a sinking pressure as a node to establish a fixed stroke valve and a floating valve to act on the plunger. Balancing the model to obtain a first sinking pressure by stress analysis of the plunger, and then comparing the first sinking pressure with a second sinking pressure obtained by the oil jacket annulus pressure distribution to obtain the oil well dynamic surface depth.
  • FIG. 1 is a flow chart of a method for measuring a hydrodynamic surface of an oil well according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a measuring system of a liquid well dynamic liquid surface according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a measuring system of another oil well dynamic liquid surface according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing the force of a pumping pump in a wellbore according to an application example of the present invention
  • Figure 5 is a schematic diagram of a load-time curve of an application example of the present invention.
  • FIG. 6 is a schematic diagram of a displacement-time curve of an application example of the present invention.
  • Figure 7 is a schematic view of a pump work diagram of an application example of the present invention.
  • FIG. 8 is a schematic diagram of a total of 144 pump power diagrams throughout the day according to an application example of the present invention.
  • FIG. 9 is a schematic diagram of a full-day calculation curve of a liquid well surface of an oil well according to an application example of the present invention.
  • FIG. 10 is a statistical histogram of calculating the dynamic liquid surface under various working conditions of the oil well of the application example of the present invention. detailed description
  • FIG. 1 it is a flowchart of a method for measuring a hydrodynamic surface of an oil well according to an embodiment of the present invention, and the method for measuring the dynamic surface of the oil well includes:
  • the load sensor and the displacement sensor under the pumping beam are measured by a load sensor installed on the wellhead suspension device, and the load and displacement of the sucker rod of the pumping unit are measured, and the load and time curves are acquired and acquired, and
  • the displacement and time curve includes: measuring the load and displacement of the sucker rod of the pumping unit by the load sensor mounted on the wellhead suspension and the displacement sensor below the pumping beam, collecting the load and time curve, and the displacement After the time curve, the collected data is transmitted to the wellhead collector through the cable, and then uploaded to the well remote control system RTU through the wellhead collector, and then the collected data is transmitted to the main station in the form of waves through the well group antenna. Center receiving antenna.
  • the method for measuring the oil well surface includes: a client/server structure, and a browser/server structure as a supplement.
  • the system network structure is designed and built to release the depth of the oil well surface in the oil production plant.
  • the obtaining the depth of the oil well surface by using the pump power diagram comprises: establishing a mathematical model of the dynamic liquid surface by using the pump power diagram to obtain a depth of the oil well dynamic surface.
  • the mathematical model of calculating the dynamic liquid surface is established by using the pump power map to obtain the depth of the oil well surface, including: using a sinking pressure as a node, establishing a fixed valve in the stroke, swimming The valve opens a balance model acting on the plunger to perform force analysis on the plunger to obtain a first sinking pressure, and then compare the first sinking pressure with a second sinking pressure obtained by the oil collar annulus pressure distribution, In order to obtain the depth of the oil well surface.
  • FIG. 2 a schematic diagram of a structure of a measurement system for an oil well dynamic liquid surface is provided according to an embodiment of the present invention, and the measurement system of the oil well dynamic liquid surface includes:
  • the data collecting device 21 is configured to measure the load and displacement of the sucker rod of the pumping well through a load sensor mounted on the wellhead suspension and a displacement sensor under the beam of the pumping unit, and collect and acquire a load and time curve. And displacement versus time curves;
  • a data processing device 22 configured to use the load and time curve, and a displacement and time curve to obtain a polished light diagram; obtain a pump power map according to the obtained polished light diagram; and obtain a well motion using the pump power map The depth of the liquid level.
  • the data collection device 21 measures the load and displacement of the sucker rod of the pumping unit through a load sensor mounted on the wellhead suspension and a displacement sensor under the beam of the pumping unit, and collects the load and time. After the curve, and the displacement and time curve, the collected data is transmitted to the wellhead collector through the cable, and then uploaded to the well remote control system RTU through the wellhead collector, and then the collected data is in the form of waves through the well group antenna. The antenna is transmitted to the center of the primary station for reception by the data processing device 22.
  • FIG. 3 it is a schematic structural diagram of a measuring system of another oil well dynamic liquid surface according to an embodiment of the present invention.
  • the measuring system of the oil well moving surface includes: a data collecting device 21 and a data processing device 22
  • the method further includes: a result issuing device 23, after the data processing device 22 uses the pump power map to obtain the depth of the oil well surface, and is used for browsing the client/server structure
  • the system network structure is designed and built to release the depth of the oil well's moving surface in units of oil production plants.
  • the data processing device 22 is specifically configured to use the pump power map to establish a mathematical model of the dynamic liquid surface to obtain the depth of the oil well surface. Further, optionally, the data processing device 22 is further configured to use a sinking pressure as a node to establish a balance valve in the stroke, and a balancing model of the floating valve acting on the plunger to the plunger A force analysis is performed to obtain a first sinking pressure, and then the first sinking pressure is compared with a second sinking pressure obtained by the oil jacket annulus pressure distribution to determine the depth of the oil well moving surface.
  • the above method or system technical solution of the embodiment of the invention has the following beneficial effects:
  • the load and displacement of the sucker rod of the pumping unit are carried out by using a load sensor mounted on the wellhead suspension and a displacement sensor below the beam of the pumping unit. Measuring, acquiring and acquiring a load versus time curve, and a displacement versus time curve; using the load and time curve, and the displacement and time curve to obtain a polished rod power diagram; and obtaining a pump power map according to the obtained polished light diagram;
  • the technical method of obtaining the depth of the oil well surface by using the pump work diagram achieves the following technical effects: Provides a real-time and continuous monitoring scheme of the moving liquid surface which is realized at a lower cost and is effective, and changes the manual to The working mode of the working face of the machine well is solved on site, which solves the problem of long on-site operation period, high labor intensity and low representative value of instantaneous test value. It can achieve real-time acquisition of hydrodynamic surface at a lower cost, coordinate supply and
  • the application of the pump power diagram method for calculating the oil level of the oil well is composed of three parts: a data acquisition device, a data processing device and a result release device:
  • Data acquisition device Load sensor installed on the wellhead suspension, displacement sensor installed under the beam of the pumping unit, wellhead collector, RTU (Remote Terminal Control System), well group antenna And so on. Simultaneously collecting the instantaneous suspension load and displacement parameters of the pumping well;
  • Data processing device A platform for information exchange and analysis processing of each data acquisition device. Generally set at the gas station or the joint station. It is mainly composed of a central antenna, a central controller (data processor, long-distance communication module, wireless server, etc.), computer, power diagram calculation, and liquid level software; result publishing device: receiving calculation results and oil wells uploaded from the data processing device
  • the basic data consists of a database server, an application server, and a web server. It is responsible for storing all the well data and publishing webpage information in units of oil production plants.
  • the load and displacement electrical signals are transmitted to the wellhead collector through the cable line, and the data of each well is uploaded to the main RTU of the well site through the wellhead collector, and then the collected data is transmitted to the center of the main station by the well group antenna. Data reception.
  • the received signal is converted to a digital signal by the central controller of the data processing device and transmitted to the in-station computer.
  • the system network structure is designed based on the client/server structure and the browser/server structure is supplemented.
  • the computer installed in the site calculates the dynamic liquid surface software to solve the dynamic liquid surface.
  • the result distribution device is installed in each oil production plant, and is composed of a database server, an application server, and a web server.
  • the calculation result and the oil well basic data uploaded from the data processing device are received, and all the data is stored and the webpage information is released in units of the oil production plant.
  • the pumping power diagram calculates the dynamic liquid surface method: First, the light rod indicator diagram is obtained by using the variation of the sucker rod load and the displacement and time. Secondly, through the polished rod diagram to solve the pump diagram, first establish the sucker rod, tubing finite element model and liquid column difference calculation model, and then iteratively solve the relationship between the load at the deep well pump port and the sucker rod load and displacement with time. Figure, that is, get the pump work diagram. Finally, a mathematical model for calculating the dynamic surface is established. Using the submerged pressure as a node, a balanced model of the fixed valve in the stroke and the opening of the swimming valve on the plunger is established.
  • the mathematical model for real-time calculation of the dynamic liquid surface is to calculate the hydrodynamic surface by the pump power diagram opening and the sinking pressure at the closing point.
  • the force analysis of the plunger is a schematic diagram of the force of the pump in the wellbore of the application example of the invention, establishing a balance equation of the fixed valve in the stroke and the opening of the swimming valve on the plunger: the fixed valve is opened
  • the instantaneous pump load of the swimming valve is open:
  • F d P p (f p -f r )-(p p + Ap 2 )f p + W p -f subtraction of two equations, burial force
  • P render (P p + - + (1)
  • N upper pressure of the swimming valve, Pa; w "- plunger weight, N; - friction between the plunger and the pump cylinder, N ; f p, fr - plunger, sucker rod cross-sectional area, m 2 ; A Pl - the pressure drop of the swimming valve, Pa; Ap 2 - the pressure drop of the fixed valve, Pa
  • the sinking pressure is calculated by using the oil jacket annulus.
  • the sinking pressure is the sum of the pressures of the gas column section and the gas column section:
  • Difficulties calculated in the above process include the determination of the liquid density in the oil pipe, and the determination of the load value of the pump power map swimming valve and the fixed valve opening point:
  • Difficulties 1 Determination of liquid density in the tubing:
  • Suspended point load inversion density method The suspended point load contains information on the liquid density in the tubing.
  • the liquid density can be calculated by using the suspended point load inversion.
  • P max is the maximum load of the pumping unit, N; P mm – the minimum load of the pumping unit, N; – the gravity of the sucker rod in the air, N; p i – the gravity of the liquid column on the area of the plunger , N, s - stroke, m; n strokes, 1/mino
  • Difficult point 2 Solve the pump power map swimming valve, fixed valve opening point load value:
  • the application example of the present invention installs a load and a displacement sensor through a wellhead, and collects a light pole indicator diagram all day, the data signal is sent to the site through a cable and a wireless transmission device, and the site is installed with a power diagram to calculate the dynamic liquid surface software, which is first collected every 10 minutes.
  • the light pole dynamometer is converted into a pump power diagram.
  • a total of 144 pump power maps are used throughout the day.
  • the mathematical model of the dynamic liquid surface is calculated by the power map, and the oil-liquid surface is calculated.
  • the calculation curve of the dynamic liquid surface can be drawn throughout the day.
  • a weighted average yields an oil well moving surface. As shown in Fig.
  • FIG. 8 it is a schematic diagram of a total of 144 pump power diagrams throughout the day for the application example of the present invention; as shown in Fig. 9, it is a schematic diagram of the full-day calculation curve of the oil well dynamic surface of the application example of the present invention.
  • the statistical histogram of the dynamic liquid surface is calculated under various working conditions of the oil well of the application example of the present invention, wherein the absolute error of the calculated and measured hydrodynamic surface of 258 oil wells is ⁇ 75111, accounting for 86% of the total number of oil wells. According to the working conditions of the oil well, the calculation results are found. Under the conditions of slight liquid supply, normal operation of the oil well and slight waxing, the calculation is relatively accurate. It can be combined with the further research under other working conditions to continuously improve the model to improve the calculation. Accuracy. Pump hanging, measuring liquid level, calculating liquid level
  • the application example of the present invention measures the load and displacement of the sucker rod of the pumping unit by using a load sensor mounted on the wellhead suspension and a displacement sensor below the beam of the pumping unit, and collects and acquires a load and time curve, and Displacement and time curve; using the load and time curve, and the displacement and time curve to obtain a light pole work diagram; obtaining a pump power map according to the obtained light pole work diagram; obtaining the oil well dynamic liquid surface by using the pump power map
  • the technical means of the depth so as to achieve the following technical effects: Provide a real-time, continuous monitoring solution for the dynamic liquid surface achieved at a lower cost, and change the manual to the field to test the working face of the machine
  • the method solves the problem that the on-site operation cycle is long, the labor intensity is large, and the instantaneous test value is not representative, and the goal of realizing the liquid surface in real time at a lower cost, coordinating the supply and discharge relationship, and improving the production efficiency of the oil well is solved.
  • the various illustrative logic blocks, or units described in the embodiments of the invention may be implemented by general purpose processors, digital signal processors, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic. Device, discrete gate or transistor logic, discrete hardware components, Or any combination of the above is designed to implement or operate the described functionality.
  • the general purpose processor may be a microprocessor, which may alternatively be any conventional processor, controller, microcontroller or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present invention may be directly embedded in hardware, a software module executed by a processor, or a combination of the two.
  • the software modules can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be disposed in the ASIC, and the ASIC can be disposed in the user terminal. Alternatively, the processor and the storage medium may also be provided in different components in the user terminal.
  • the above-described functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer readable medium, or transmitted in a form or code, on a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
  • the storage medium can be any available media that any general purpose or special computer can access.
  • Such computer readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general purpose or special processor.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote resource through a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in a defined computer readable medium.
  • DSL digital subscriber line
  • the disk and the disc include a compressed disk, Laser discs, discs, DVDs, floppy discs, and Blu-ray discs. Disks typically replicate data magnetically, while discs typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

一种油井动液面的测量方法,采用通过安装在井口悬绳器上的载荷传感器和抽油机游梁下方的位移传感器,对抽油机井抽油杆载荷和位移进行测量,采集并获取载荷与时间曲线,和位移与时间曲线(101);利用所述载荷与时间曲线,和位移与时间曲线,获取光杆示功图(102),根据获取的所述光杆示功图得到泵功图(103),利用所述泵功图获取油井动液面的深度(104)的技术手段,一种实施上述油井动液面测量方法的测量系统,达到了如下技术效果:提供了一种以较低成本实现且有效的动液面实时、连续监测方案,改变了人工到现场进行机采井动液面测试的工作方式,解决了现场操作周期长,劳动强度大,瞬时测试值代表性不强的问题,达到以较低成本实时获取动液面、协调供排关系、提高油井生产效率的目标。

Description

一种油井动液面的测量方法及系统 技术领域
本发明涉及油田采油技术领域, 尤其涉及一种油井动液面的测量方法及 系统。
背景技术
油井动液面数据直接反应了地层的供液情况及井下供排关系, 是进行采 油工艺适应性评价和优化的重要依据。 目前动液面测试的设备种类较多, 其 中最常见的有:
回声仪, 由声弹型, 氮气型井口连接器和综合测试仪组成, 该设备主要 利用回声原理探测液面, 需要人工上井逐口井进行测试, 工作量大, 时效性 差, 并且存在安全隐患。
井口测试仪, 和回声仪工作原理相同, 优点在于直接安装井口, 利用采 集套管气作为发声能量源进行测试, 并利用无线通讯装置将结果上传至网 络。 可以实现对动液面的自动、 实时、 连续监测, 缺点在于井场需要增加设 备, 成本高, 不利于大规模推广应用。
光纤井下测试动液面, 该方法最直接, 目前处于试验阶段, 设备昂贵。 在实现本发明过程中, 发明人发现现有技术中至少存在如下问题: 目前 缺少一种以较低成本实现且有效的动液面实时、 连续监测方案。 发明内容
本发明实施例提供一种油井动液面的测量方法及系统, 可以提供一种以 较低成本实现且有效的动液面实时、 连续监测方案。
一方面, 本发明实施例提供了一种油井动液面的测量方法, 所述油井动 液面的测量方法包括: 通过安装在井口悬绳器上的载荷传感器和抽油机游梁下方的位移传感 器, 对抽油机井抽油杆载荷和位移进行测量, 采集并获取载荷与时间曲线, 和位移与时间曲线;
利用所述载荷与时间曲线, 和位移与时间曲线, 获取光杆示功图; 根据获取的所述光杆示功图得到泵功图;
利用所述泵功图获取油井动液面的深度。
可选的, 在本发明一实施例中, 所述通过安装在井口悬绳器上的载荷传 感器和抽油机游梁下方的位移传感器, 对抽油机井抽油杆载荷和位移进行测 量, 采集并获取载荷与时间曲线, 和位移与时间曲线, 包括: 通过安装在井 口悬绳器上的载荷传感器和抽油机游梁下方的位移传感器, 对抽油机井抽油 杆载荷和位移进行测量, 采集载荷与时间曲线, 和位移与时间曲线后, 将采 集数据通过电缆线传至井口采集器, 再通过井口采集器上传至井场主远程终 端控制系统 RTU, 再通过井组天线, 将采集数据以波的形式传至主站中心接 可选的, 在本发明一实施例中, 所述利用所述泵功图获取油井动液面的 深度后, 所述油井动液面的测量方法还包括: 以客户机 /服务器结构为主、 浏 览器 /服务器结构为辅, 设计并建立系统网络结构, 以便以采油厂为单位发布 所述油井动液面的深度。
可选的, 在本发明一实施例中, 所述利用所述泵功图获取油井动液面的 深度, 包括: 利用所述泵功图建立动液面计算数学模型, 以获取油井动液面 的深度。
进一歩地, 可选的, 在本发明一实施例中, 所述利用所述泵功图建立动 液面计算数学模型, 以获取油井动液面的深度, 包括: 以沉没压力作为节 点, 建立一个冲程内固定阀、 游动阀开启作用在柱塞上的平衡模型, 以对柱 塞进行受力分析获取第一沉没压力, 然后将所述第一沉没压力与由油套环空 压力分布得到的第二沉没压力进行比较, 以求取油井动液面的深度。 另一方面, 本发明实施例提供了一种油井动液面的测量系统, 所述油井 动液面的测量系统包括:
数据采集装置, 用于通过安装在井口悬绳器上的载荷传感器和抽油机游 梁下方的位移传感器, 对抽油机井抽油杆载荷和位移进行测量, 采集并获取 载荷与时间曲线, 和位移与时间曲线;
数据处理装置, 用于利用所述载荷与时间曲线, 和位移与时间曲线, 获 取光杆示功图; 根据获取的所述光杆示功图得到泵功图; 利用所述泵功图获 取油井动液面的深度。
可选的, 在本发明一实施例中, 所述数据采集装置, 通过安装在井口悬 绳器上的载荷传感器和抽油机游梁下方的位移传感器, 对抽油机井抽油杆载 荷和位移进行测量, 采集载荷与时间曲线, 和位移与时间曲线后, 将采集数 据通过电缆线传至井口采集器, 再通过井口采集器上传至井场主远程终端控 制系统 RTU, 再通过井组天线, 将采集数据以波的形式传至主站中心接收天 线, 以便数据处理装置接收。
可选的, 在本发明一实施例中, 所述油井动液面的测量系统还包括: 结 果发布装置, 在所述数据处理装置利用所述泵功图获取油井动液面的深度 后, 用于以客户机 /服务器结构为主、 浏览器 /服务器结构为辅, 设计并建立 系统网络结构, 以便以采油厂为单位发布所述油井动液面的深度。
可选的, 在本发明一实施例中, 所述数据处理装置, 具体用于利用所述 泵功图建立动液面计算数学模型, 以获取油井动液面的深度。
进一歩地, 可选的, 在本发明一实施例中, 所述数据处理装置, 进一歩 具体用于以沉没压力作为节点, 建立一个冲程内固定阀、 游动阀开启作用在 柱塞上的平衡模型, 以对柱塞进行受力分析获取第一沉没压力, 然后将所述 第一沉没压力与由油套环空压力分布得到的第二沉没压力进行比较, 以求取 油井动液面的深度。
上述技术方案具有如下有益效果: 因为采用通过安装在井口悬绳器上的 载荷传感器和抽油机游梁下方的位移传感器, 对抽油机井抽油杆载荷和位移 进行测量, 采集并获取载荷与时间曲线, 和位移与时间曲线; 利用所述载荷 与时间曲线, 和位移与时间曲线, 获取光杆示功图; 根据获取的所述光杆示 功图得到泵功图; 利用所述泵功图获取油井动液面的深度的技术手段, 所以 达到了如下的技术效果: 提供了一种以较低成本实现且有效的动液面实时、 连续监测方案, 改变了人工到现场进行机采井动液面测试的工作方式, 解决 了现场操作周期长, 劳动强度大, 瞬时测试值代表性不强的问题, 达到以较 低成本实时获取动液面、 协调供排关系、 提高油井生产效率的目标。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一种油井动液面的测量方法流程图;
图 2为本发明实施例提供了一种油井动液面的测量系统组成结构示意 图;
图 3为本发明实施例另一种油井动液面的测量系统组成结构示意图; 图 4为本发明应用实例井筒内抽油泵受力示意图;
图 5为本发明应用实例载荷 -时间曲线示意图;
图 6为本发明应用实例位移 -时间曲线示意图;
图 7为本发明应用实例泵功图示意图;
图 8为本发明应用实例全天共计 144张泵功图示意图;
图 9为本发明应用实例油井动液面全天计算曲线示意图;
图 10为本发明应用实例油井各种工况下计算动液面统计柱状图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
如图 1所示, 为本发明实施例一种油井动液面的测量方法流程图, 所述 油井动液面的测量方法包括:
101、 通过安装在井口悬绳器上的载荷传感器和抽油机游梁下方的位移 传感器, 对抽油机井抽油杆载荷和位移进行测量, 采集并获取载荷与时间曲 线, 和位移与时间曲线;
102、 利用所述载荷与时间曲线, 和位移与时间曲线, 获取光杆示功 图;
103、 根据获取的所述光杆示功图得到泵功图;
104、 利用所述泵功图获取油井动液面的深度。
可选的, 所述通过安装在井口悬绳器上的载荷传感器和抽油机游梁下方 的位移传感器, 对抽油机井抽油杆载荷和位移进行测量, 采集并获取载荷与 时间曲线, 和位移与时间曲线, 包括: 通过安装在井口悬绳器上的载荷传感 器和抽油机游梁下方的位移传感器, 对抽油机井抽油杆载荷和位移进行测 量, 采集载荷与时间曲线, 和位移与时间曲线后, 将采集数据通过电缆线传 至井口采集器, 再通过井口采集器上传至井场主远程终端控制系统 RTU, 再 通过井组天线, 将采集数据以波的形式传至主站中心接收天线。
可选的, 所述利用所述泵功图获取油井动液面的深度后, 所述油井动液 面的测量方法还包括: 以客户机 /服务器结构为主、 浏览器 /服务器结构为 辅, 设计并建立系统网络结构, 以便以采油厂为单位发布所述油井动液面的 深度。 可选的, 所述利用所述泵功图获取油井动液面的深度, 包括: 利用所述 泵功图建立动液面计算数学模型, 以获取油井动液面的深度。
进一歩地, 可选的, 所述利用所述泵功图建立动液面计算数学模型, 以 获取油井动液面的深度, 包括: 以沉没压力作为节点, 建立一个冲程内固定 阀、 游动阀开启作用在柱塞上的平衡模型, 以对柱塞进行受力分析获取第一 沉没压力, 然后将所述第一沉没压力与由油套环空压力分布得到的第二沉没 压力进行比较, 以求取油井动液面的深度。
如图 2所示, 为本发明实施例提供了一种油井动液面的测量系统组成结 构示意图, 所述油井动液面的测量系统包括:
数据采集装置 21, 用于通过安装在井口悬绳器上的载荷传感器和抽油机 游梁下方的位移传感器, 对抽油机井抽油杆载荷和位移进行测量, 采集并获 取载荷与时间曲线, 和位移与时间曲线;
数据处理装置 22, 用于利用所述载荷与时间曲线, 和位移与时间曲线, 获取光杆示功图; 根据获取的所述光杆示功图得到泵功图; 利用所述泵功图 获取油井动液面的深度。
可选的, 所述数据采集装置 21, 通过安装在井口悬绳器上的载荷传感器 和抽油机游梁下方的位移传感器, 对抽油机井抽油杆载荷和位移进行测量, 采集载荷与时间曲线, 和位移与时间曲线后, 将采集数据通过电缆线传至井 口采集器, 再通过井口采集器上传至井场主远程终端控制系统 RTU, 再通过 井组天线, 将采集数据以波的形式传至主站中心接收天线, 以便数据处理装 置 22接收。
可选的, 如图 3所示, 为本发明实施例另一种油井动液面的测量系统组 成结构示意图, 所述油井动液面的测量系统除包括: 数据采集装置 21和数 据处理装置 22外, 还包括: 结果发布装置 23, 在所述数据处理装置 22利用 所述泵功图获取油井动液面的深度后, 用于以客户机 /服务器结构为主、 浏览 器 /服务器结构为辅, 设计并建立系统网络结构, 以便以采油厂为单位发布所 述油井动液面的深度。
可选的, 所述数据处理装置 22, 具体用于利用所述泵功图建立动液面计 算数学模型, 以获取油井动液面的深度。 进一歩地, 可选的, 所述数据处理 装置 22, 进一歩具体用于以沉没压力作为节点, 建立一个冲程内固定阀、 游 动阀开启作用在柱塞上的平衡模型, 以对柱塞进行受力分析获取第一沉没压 力, 然后将所述第一沉没压力与由油套环空压力分布得到的第二沉没压力进 行比较, 以求取油井动液面的深度。
本发明实施例上述方法或系统技术方案具有如下有益效果: 因为采用通 过安装在井口悬绳器上的载荷传感器和抽油机游梁下方的位移传感器, 对抽 油机井抽油杆载荷和位移进行测量, 采集并获取载荷与时间曲线, 和位移与 时间曲线; 利用所述载荷与时间曲线, 和位移与时间曲线, 获取光杆示功 图; 根据获取的所述光杆示功图得到泵功图; 利用所述泵功图获取油井动液 面的深度的技术手段, 所以达到了如下的技术效果: 提供了一种以较低成本 实现且有效的动液面实时、 连续监测方案, 改变了人工到现场进行机采井动 液面测试的工作方式, 解决了现场操作周期长, 劳动强度大, 瞬时测试值代 表性不强的问题, 达到以较低成本实时获取动液面、 协调供排关系、 提高油 井生产效率的目标。 以下举应用实例进行详细说明:
本发明应用实例泵功图法计算油井动液面的测量系统由三部分组成: 数 据采集装置、 数据处理装置和结果发布装置:
数据采集装置: 由安装在井口悬绳器上的载荷传感器、 安装在抽油机游 梁下方的位移传感器、 井口采集器、 井场主 RTU ( Remote Terminal Unit, 远 程终端控制系统) 、 井组天线等组成。 同歩采集抽油机井的瞬时悬点载荷、 位移参量; 数据处理装置: 对各数据采集装置进行信息交换、 分析处理的平台。 一 般设置在转油站或联合站。 主要由中心天线、 中心控制器 (数据处理器、 远 距离通讯模块、 无线服务器等) 、 计算机、 功图计算动液面软件等组成; 结果发布装置: 接收来自数据处理装置上传的计算结果和油井基础数 据, 由数据库服务器、 应用程序服务器、 Web服务器组成, 负责以采油厂为 单位所有油井数据的存储、 网页信息发布。
具体实施过程如下:
①通过安装在井口悬绳器上的载荷传感器和游梁下方的位移传感器, 对 抽油机井抽油杆载荷和位移进行测量, 采集载荷与时间、 位移与时间曲线, 见图 5、 图 6所示。
②载荷和位移电信号通过电缆线传至井口采集器, 各油井数据再通过井 口采集器上传至井场主 RTU, 再通过井组天线, 将采集数据以波的形式传至 主站中心接收天线进行数据接收。
③通过数据处理装置的中心控制器将接收到的信号转换为数字信号传至 站内计算机。 建立以客户机 /服务器结构为主、 浏览器 /服务器结构为辅设计 了系统网络结构, 站点内计算机安装功图计算动液面软件, 求解动液面。
④结果发布装置设置在各采油厂, 由数据库服务器、 应用程序服务器、 Web服务器组成。 接收来自数据处理装置上传的计算结果和油井基础数据, 以采油厂为单元对所有数据进行存储、 网页信息发布。
泵功图计算动液面方法: 首先, 利用所述抽油杆载荷和位移与时间的变 化规律得到光杆示功图。 其次, 通过光杆示功图转求解泵功图, 首先建立抽 油杆、 油管有限元模型和液柱差分计算模型, 然后迭代求解出深井泵口处载 荷和抽油杆载荷和位移与时间的关系图, 即得到泵功图。 最后, 建立动液面 计算数学模型: 以沉没压力作为节点, 建立一个冲程内固定阀、 游动阀开启 作用在柱塞上的平衡模型。 求解沉没压力, 与利用油套环空计算的沉没压力 进行比较, 推算动液面的深度。 实时计算动液面数学模型是以泵功图开启、 闭合点时沉没压力为节点, 计算动液面:
第一歩:
对柱塞进行受力分析, 如图 4所示, 为本发明应用实例井筒内抽油泵受 力示意图, 建立一个冲程内固定阀、 游动阀开启作用在柱塞上的平衡方程: 固定阀开启瞬间泵载荷: Fu =Pp( P-frXpn- Pl)fp+Wp+f 游动阀开启瞬间泵载荷: Fd= Pp (fp -fr)-(pp+ Ap2 )fp + Wp-f 两式相减, 沉役 力 P„ = (Pp + - + (1)
Figure imgf000011_0001
式中
-固定阀开启瞬间泵载荷, N; Fd——游动阀开启瞬间泵载荷,
N; 游动阀上部压力, Pa; w"——柱塞重量, N; ——柱塞与泵筒 间的摩擦力, N; fp、 fr——柱塞、 抽油杆截面积, m2 ; APl——游动阀压力 降, Pa; Ap2——固定阀压力降, Pa
第二歩:
通过利用油套环空计算沉没压力。
沉没压力为气柱段和含气油柱段两段压力之和:
Figure imgf000011_0002
式中
-沉没压力, Pa; Pn—动液面处的压力, Pa; 动液面到 泵处的压力, Pa; ——井口套压, Pa; :柱平均温度, QC; T
-动液面处温度, QC; rg—天然气相对密度; :柱长度, m; Z- -气柱平均压力和平均温度下的压縮因子; Ρϋ——原油的密度, kg/m3; L
-泵挂深度, m; Lf 动液面, m。
第三歩:
将 (2) 式带入 (1) , 整理得到油井动液面:
~Fd -2f + (APl+Ap2+PD-Ph)fp
L
PlSfp
⑤上述过程中计算的难点包括油管内液体密度确定, 以及泵功图游动 阀、 固定阀开启点载荷值的确定:
难点 1: 油管内液体密度确定:
悬点载荷反演密度法: 悬点载荷包含油管内液体密度信息, 可利用悬点 载荷反演计算液体密度。
考虑定向井摩阻、 井筒结蜡等因素, 根据抽油机最大、 最小载荷的计算 公式:
sn
max =l'05(p杆 液) 1 +
1790 sn
Ϊ790 其中, Pmax——抽油机最大载荷 ,N; Pmm—抽油机最小载荷 ,N; — 抽油杆在空气中重力, N; pi——液柱在柱塞面积上的重力, N, s——冲 程, m; n 冲次, 1/mino
Figure imgf000012_0001
难点 2: 求解泵功图游动阀、 固定阀开启点载荷值: 通过泵功图 (见图 7 ) 分解出载荷-时间关系曲线 y = /^>, 求解载荷-时 间曲线的斜率的变化量, 找到斜率最大值, 即泵功图游动阀开启点载荷值^ 和固定阀开启点载荷值 。
max f'it - f'itj ^ + 0.1, 。 + 0.2, ...... ίο + ΟΛΜ} 最后, 由于服务器端配置了数据库服务器和 Web服务器, 采用浏览^ 服务器 (Browser/Server) 结构来建设网站, 在局域网内通过授权査看油井动 液面、 实时调参等功能。
例如, 本发明应用实例通过井口安装载荷、 位移传感器, 全天候采集光 杆示功图, 数据信号通过电缆和无线传输设备发送至站点, 站点安装了功图 计算动液面软件, 首先将每 10分钟采集的光杆示功图转化为泵功图, 全天 共计 144张泵功图, 通过功图计算动液面数学模型, 计算油井动液面, 全天 可以绘制一条动液面计算曲线, 还可以通过加权平均得到一个油井动液面。 如图 8所示, 为本发明应用实例全天共计 144张泵功图示意图; 如图 9所 示, 为本发明应用实例油井动液面全天计算曲线示意图。
试算 300口油井 (如下表 1中所示的数据) 。 如图 10所示, 为本发明应 用实例油井各种工况下计算动液面统计柱状图, 其中 258口油井计算与实测 动液面绝对误差<75111, 占油井总数的 86%。 按油井工况对计算结果进行分 析, 发现轻微供液不足、 油井工作正常、 轻微结蜡等工况下, 计算相对准 确, 可结合其它工况下的进一歩研究, 不断完善模型, 以提高计算准确度。 泵挂 实测液面 计算液面
序号 井名 绝对误差 油井工况
m m m
轻微供液不
1 高 11-15 1137 1127 1091 36
足, 严重结蜡
2 候 25-9 1291 1194 1120 74 工作基本正常
3 候 26-9 1231 1054 1016 38 气体影响 4 候 127-4 1 100 1033 1070 37 严重供液不足 严重供液不
300 1455 1221 1233 12
oo 足, 严重结蜡
表 1
本发明应用实例因为采用通过安装在井口悬绳器上的载荷传感器和抽油 机游梁下方的位移传感器, 对抽油机井抽油杆载荷和位移进行测量, 采集并 获取载荷与时间曲线, 和位移与时间曲线; 利用所述载荷与时间曲线, 和位 移与时间曲线, 获取光杆示功图; 根据获取的所述光杆示功图得到泵功图; 利用所述泵功图获取油井动液面的深度的技术手段, 所以达到了如下的技术 效果: 提供了一种以较低成本实现且有效的动液面实时、 连续监测方案, 改 变了人工到现场进行机采井动液面测试的工作方式, 解决了现场操作周期 长, 劳动强度大, 瞬时测试值代表性不强的问题, 达到以较低成本实时获取 动液面、 协调供排关系、 提高油井生产效率的目标。 在不增加任何采集仪器 设备的情况下, 实现了利用示功图实时计算动液面, 把动液面监测从"事后 录播"转变为"现场直播"。
本领域技术人员还可以了解到本发明实施例列出的各种说明性逻辑块
(illustrative logical block) , 单元, 和歩骤可以通过电子硬件、 电脑软件, 或两者的结合进行实现。 为清楚展示硬件和软件的可替换性
( interchangeability ) , 上述的各禾中说明性部件 ( illustrative components ) , 单元和歩骤已经通用地描述了它们的功能。 这样的功能是通过硬件还是软件 来实现取决于特定的应用和整个系统的设计要求。 本领域技术人员可以对于 每种特定的应用, 可以使用各种方法实现所述的功能, 但这种实现不应被理 解为超出本发明实施例保护的范围。
本发明实施例中所描述的各种说明性的逻辑块, 或单元都可以通过通用 处理器, 数字信号处理器, 专用集成电路 (ASIC) , 现场可编程门阵列 (FPGA) 或其它可编程逻辑装置, 离散门或晶体管逻辑, 离散硬件部件, 或上述任何组合的设计来实现或操作所描述的功能。 通用处理器可以为微处 理器, 可选地, 该通用处理器也可以为任何传统的处理器、 控制器、 微控制 器或状态机。 处理器也可以通过计算装置的组合来实现, 例如数字信号处理 器和微处理器, 多个微处理器, 一个或多个微处理器联合一个数字信号处理 器核, 或任何其它类似的配置来实现。
本发明实施例中所描述的方法或算法的歩骤可以直接嵌入硬件、 处理器 执行的软件模块、 或者这两者的结合。 软件模块可以存储于 RAM存储器、 闪存、 ROM存储器、 EPROM存储器、 EEPROM存储器、 寄存器、 硬盘、 可 移动磁盘、 CD-ROM或本领域中其它任意形式的存储媒介中。 示例性地, 存 储媒介可以与处理器连接, 以使得处理器可以从存储媒介中读取信息, 并可 以向存储媒介存写信息。 可选地, 存储媒介还可以集成到处理器中。 处理器 和存储媒介可以设置于 ASIC中, ASIC可以设置于用户终端中。 可选地, 处 理器和存储媒介也可以设置于用户终端中的不同的部件中。
在一个或多个示例性的设计中, 本发明实施例所描述的上述功能可以在 硬件、 软件、 固件或这三者的任意组合来实现。 如果在软件中实现, 这些功 能可以存储与电脑可读的媒介上, 或以一个或多个指令或代码形式传输于电 脑可读的媒介上。 电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从 一个地方转移到其它地方的通信媒介。 存储媒介可以是任何通用或特殊电脑 可以接入访问的可用媒体。 例如, 这样的电脑可读媒体可以包括但不限于 RAM, ROM, EEPROM, CD-ROM或其它光盘存储、 磁盘存储或其它磁性 存储装置, 或其它任何可以用于承载或存储以指令或数据结构和其它可被通 用或特殊电脑、 或通用或特殊处理器读取形式的程序代码的媒介。 此外, 任 何连接都可以被适当地定义为电脑可读媒介, 例如, 如果软件是从一个网站 站点、 服务器或其它远程资源通过一个同轴电缆、 光纤电缆、 双绞线、 数字 用户线 (DSL) 或以例如红外、 无线和微波等无线方式传输的也被包含在所 定义的电脑可读媒介中。 所述的碟片 (disk) 和磁盘 (disc) 包括压縮磁盘、 镭射盘、 光盘、 DVD、 软盘和蓝光光盘, 磁盘通常以磁性复制数据, 而碟片 通常以激光进行光学复制数据。 上述的组合也可以包含在电脑可读媒介中。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一歩详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种油井动液面的测量方法, 其特征在于, 所述油井动液面的测量 方法包括:
通过安装在井口悬绳器上的载荷传感器和抽油机游梁下方的位移传感 器, 对抽油机井抽油杆载荷和位移进行测量, 采集并获取载荷与时间曲线, 和位移与时间曲线;
利用所述载荷与时间曲线, 和位移与时间曲线, 获取光杆示功图; 根据获取的所述光杆示功图得到泵功图;
利用所述泵功图获取油井动液面的深度。
2、 如权利要求 1所述油井动液面的测量方法, 其特征在于, 所述通过 安装在井口悬绳器上的载荷传感器和抽油机游梁下方的位移传感器, 对抽油 机井抽油杆载荷和位移进行测量, 采集并获取载荷与时间曲线, 和位移与时 间曲线, 包括:
通过安装在井口悬绳器上的载荷传感器和抽油机游梁下方的位移传感 器, 对抽油机井抽油杆载荷和位移进行测量, 采集载荷与时间曲线, 和位移 与时间曲线后, 将采集数据通过电缆线传至井口采集器, 再通过井口采集器 上传至井场主远程终端控制系统 RTU, 再通过井组天线, 将采集数据以波的 形式传至主站中心接收天线。
3、 如权利要求 1所述油井动液面的测量方法, 其特征在于, 所述利用 所述泵功图获取油井动液面的深度后, 所述油井动液面的测量方法还包括: 以客户机 /服务器结构为主、 浏览器 /服务器结构为辅, 设计并建立系统 网络结构, 以便以采油厂为单位发布所述油井动液面的深度。
4、 如权利要求 1所述油井动液面的测量方法, 其特征在于, 所述利用 所述泵功图获取油井动液面的深度, 包括:
利用所述泵功图建立动液面计算数学模型, 以获取油井动液面的深度。
5、 如权利要求 4所述油井动液面的测量方法, 其特征在于, 所述利用 所述泵功图建立动液面计算数学模型, 以获取油井动液面的深度, 包括: 以沉没压力作为节点, 建立一个冲程内固定阀、 游动阀开启作用在柱塞 上的平衡模型, 以对柱塞进行受力分析获取第一沉没压力, 然后将所述第一 沉没压力与由油套环空压力分布得到的第二沉没压力进行比较, 以求取油井 动液面的深度。
6、 一种油井动液面的测量系统, 其特征在于, 所述油井动液面的测量 系统包括:
数据采集装置, 用于通过安装在井口悬绳器上的载荷传感器和抽油机游 梁下方的位移传感器, 对抽油机井抽油杆载荷和位移进行测量, 采集并获取 载荷与时间曲线, 和位移与时间曲线;
数据处理装置, 用于利用所述载荷与时间曲线, 和位移与时间曲线, 获 取光杆示功图; 根据获取的所述光杆示功图得到泵功图; 利用所述泵功图获 取油井动液面的深度。
7、 如权利要求 6所述油井动液面的测量系统, 其特征在于, 所述数据 采集装置, 通过安装在井口悬绳器上的载荷传感器和抽油机游梁下方的位移 传感器, 对抽油机井抽油杆载荷和位移进行测量, 采集载荷与时间曲线, 和 位移与时间曲线后, 将采集数据通过电缆线传至井口采集器, 再通过井口采 集器上传至井场主远程终端控制系统 RTU, 再通过井组天线, 将采集数据以 波的形式传至主站中心接收天线, 以便数据处理装置接收。
8、 如权利要求 6所述油井动液面的测量系统, 其特征在于, 所述油井 动液面的测量系统还包括:
结果发布装置, 在所述数据处理装置利用所述泵功图获取油井动液面的 深度后, 用于以客户机 /服务器结构为主、 浏览器 /服务器结构为辅, 设计并 建立系统网络结构, 以便以采油厂为单位发布所述油井动液面的深度。
9、 如权利要求 6所述油井动液面的测量系统, 其特征在于, 所述数据处理装置, 具体用于利用所述泵功图建立动液面计算数学模 型, 以获取油井动液面的深度。
10、 如权利要求 9所述油井动液面的测量系统, 其特征在于,
所述数据处理装置, 进一歩具体用于以沉没压力作为节点, 建立一个冲 程内固定阀、 游动阀开启作用在柱塞上的平衡模型, 以对柱塞进行受力分析 获取第一沉没压力, 然后将所述第一沉没压力与由油套环空压力分布得到的 第二沉没压力进行比较, 以求取油井动液面的深度。
PCT/CN2012/081380 2012-09-14 2012-09-14 一种油井动液面的测量方法及系统 WO2014040264A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/081380 WO2014040264A1 (zh) 2012-09-14 2012-09-14 一种油井动液面的测量方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/081380 WO2014040264A1 (zh) 2012-09-14 2012-09-14 一种油井动液面的测量方法及系统

Publications (1)

Publication Number Publication Date
WO2014040264A1 true WO2014040264A1 (zh) 2014-03-20

Family

ID=50277505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081380 WO2014040264A1 (zh) 2012-09-14 2012-09-14 一种油井动液面的测量方法及系统

Country Status (1)

Country Link
WO (1) WO2014040264A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103899300A (zh) * 2014-03-25 2014-07-02 中国石油天然气股份有限公司 一种基于示功图的二流量试井分析的方法及系统
CN104019774A (zh) * 2014-05-13 2014-09-03 湖北江汉石油仪器仪表股份有限公司 抽油机光杆位移测试方法及测试装置
CN105672980A (zh) * 2015-12-31 2016-06-15 山东天工石油装备有限公司 一种基于地面示功图计算油井产液量的方法
CN107608940A (zh) * 2017-08-28 2018-01-19 中国石油天然气股份有限公司 一种油井间抽周期确定方法
US10260500B2 (en) 2017-05-15 2019-04-16 General Electric Company Downhole dynamometer and method of operation
CN109899056A (zh) * 2017-12-07 2019-06-18 中国石油天然气股份有限公司 抽油机的参数确定方法、装置及计算机可读存储介质
CN110552685A (zh) * 2019-08-19 2019-12-10 大庆油田有限责任公司 一种结蜡井利用地面功图计算油井动液面的方法
CN111027638A (zh) * 2019-12-23 2020-04-17 燕山大学 一种基于流量的抽油机冲次及动液面信息监测方法及系统
CN111734393A (zh) * 2020-06-28 2020-10-02 中国石油天然气股份有限公司 一种油井动液面测试装置及操作方法
CN113218467A (zh) * 2021-05-17 2021-08-06 东营同博石油电子仪器有限公司 油井连续液位自动测试仪
CN113266340A (zh) * 2021-05-06 2021-08-17 东营钧辰石油设备有限责任公司 功图液面测试仪及其控制系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951209A (en) * 1975-06-09 1976-04-20 Shell Oil Company Method for determining the pump-off of a well
US4947936A (en) * 1989-06-14 1990-08-14 Marathon Oil Company Well unit dynamometer installation means and method
CA2054988A1 (en) * 1990-11-28 1992-05-29 H. Wade White Indicating device
EP0997608A2 (en) * 1998-10-20 2000-05-03 Julio César Olmedo A device to optimize the yield of oil wells
CA2309523A1 (en) * 1999-06-28 2000-12-28 Diagnostic Engineering Inc. Wireless pump jack dynamometer
CN2854136Y (zh) * 2005-11-29 2007-01-03 王洪亮 抽油机智能增效控制器
CN101135910A (zh) * 2007-09-29 2008-03-05 中国石油天然气股份有限公司 有杆抽油系统地面设备效率评价方法
CN201236695Y (zh) * 2008-07-22 2009-05-13 北京康达永宜科技有限公司 一种便携式油井参数综合测试系统
CN102094626A (zh) * 2010-12-20 2011-06-15 中国石油天然气股份有限公司 油井故障实时预警方法和系统
CN102425403A (zh) * 2011-11-03 2012-04-25 中国石油天然气股份有限公司 一种确定同轴式双空心抽油杆下入深度的方法
CN102877832A (zh) * 2012-09-14 2013-01-16 中国石油天然气股份有限公司 一种油井动液面的测量方法及系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951209A (en) * 1975-06-09 1976-04-20 Shell Oil Company Method for determining the pump-off of a well
US4947936A (en) * 1989-06-14 1990-08-14 Marathon Oil Company Well unit dynamometer installation means and method
CA2054988A1 (en) * 1990-11-28 1992-05-29 H. Wade White Indicating device
EP0997608A2 (en) * 1998-10-20 2000-05-03 Julio César Olmedo A device to optimize the yield of oil wells
CA2309523A1 (en) * 1999-06-28 2000-12-28 Diagnostic Engineering Inc. Wireless pump jack dynamometer
CN2854136Y (zh) * 2005-11-29 2007-01-03 王洪亮 抽油机智能增效控制器
CN101135910A (zh) * 2007-09-29 2008-03-05 中国石油天然气股份有限公司 有杆抽油系统地面设备效率评价方法
CN201236695Y (zh) * 2008-07-22 2009-05-13 北京康达永宜科技有限公司 一种便携式油井参数综合测试系统
CN102094626A (zh) * 2010-12-20 2011-06-15 中国石油天然气股份有限公司 油井故障实时预警方法和系统
CN102425403A (zh) * 2011-11-03 2012-04-25 中国石油天然气股份有限公司 一种确定同轴式双空心抽油杆下入深度的方法
CN102877832A (zh) * 2012-09-14 2013-01-16 中国石油天然气股份有限公司 一种油井动液面的测量方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, DI: "Research of Oil Well Data Acquisition System Based on PC_Based PLC", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE, CHINA MASTER'S S THESES FULL-TEXT DATABASE., 15 June 2006 (2006-06-15), pages 1140 - 130 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103899300A (zh) * 2014-03-25 2014-07-02 中国石油天然气股份有限公司 一种基于示功图的二流量试井分析的方法及系统
CN104019774A (zh) * 2014-05-13 2014-09-03 湖北江汉石油仪器仪表股份有限公司 抽油机光杆位移测试方法及测试装置
CN105672980A (zh) * 2015-12-31 2016-06-15 山东天工石油装备有限公司 一种基于地面示功图计算油井产液量的方法
US10260500B2 (en) 2017-05-15 2019-04-16 General Electric Company Downhole dynamometer and method of operation
CN107608940B (zh) * 2017-08-28 2020-08-07 中国石油天然气股份有限公司 一种油井间抽周期确定方法
CN107608940A (zh) * 2017-08-28 2018-01-19 中国石油天然气股份有限公司 一种油井间抽周期确定方法
CN109899056A (zh) * 2017-12-07 2019-06-18 中国石油天然气股份有限公司 抽油机的参数确定方法、装置及计算机可读存储介质
CN109899056B (zh) * 2017-12-07 2021-11-30 中国石油天然气股份有限公司 抽油机的参数确定方法、装置及计算机可读存储介质
CN110552685A (zh) * 2019-08-19 2019-12-10 大庆油田有限责任公司 一种结蜡井利用地面功图计算油井动液面的方法
CN110552685B (zh) * 2019-08-19 2022-08-19 大庆油田有限责任公司 一种结蜡井利用地面功图计算油井动液面的方法
CN111027638A (zh) * 2019-12-23 2020-04-17 燕山大学 一种基于流量的抽油机冲次及动液面信息监测方法及系统
CN111027638B (zh) * 2019-12-23 2022-03-01 燕山大学 一种基于流量的抽油机冲次及动液面信息监测方法及系统
CN111734393A (zh) * 2020-06-28 2020-10-02 中国石油天然气股份有限公司 一种油井动液面测试装置及操作方法
CN113266340A (zh) * 2021-05-06 2021-08-17 东营钧辰石油设备有限责任公司 功图液面测试仪及其控制系统
CN113218467A (zh) * 2021-05-17 2021-08-06 东营同博石油电子仪器有限公司 油井连续液位自动测试仪

Similar Documents

Publication Publication Date Title
WO2014040264A1 (zh) 一种油井动液面的测量方法及系统
CN102877832B (zh) 一种油井动液面的测量方法及系统
WO2015143626A1 (zh) 一种基于示功图的二流量试井分析的方法及系统
CN103899300A (zh) 一种基于示功图的二流量试井分析的方法及系统
CN102168551B (zh) 油井动液面深度连续测量和采出液连续计量装置及方法
CN104213904A (zh) 一种有杆抽油系统效率实时监测方法
CN101509372A (zh) 抽油井示功仪
CN103541723A (zh) 基于地面示功图面积变化的抽油机井实时工况诊断方法
CN111963147A (zh) 通过抽油机悬点静载荷监测动液面及动液面确定方法
CN203847097U (zh) 一种油井数据监测装置
CN202832505U (zh) 一种油井动液面的测量系统
CN104405365A (zh) 抽油机功图法产液量计量技术
CN108240215B (zh) 一种基于有限差分法的抽油井柱塞有效冲程确定方法
CN111963151A (zh) 一种通过抽油机悬点静载荷确定地层压力的方法
CN201963296U (zh) 油井动液面深度连续测量和采出液连续计量装置
CN111810120A (zh) 一种多参数油井状态监测方法及系统
CN209619984U (zh) 铁路高陡岩质边坡微震监测系统
CN201246157Y (zh) 固井参数综合采集系统
CN108397689B (zh) 一种基于物联网技术的污水管网质量快速判断装置及方法
CN116455946B (zh) 一种基于云端高频井口压力生产数据分析方法
CN203420705U (zh) 一种实时监测井底流压的系统
CN106593415A (zh) 一种基于改进多相流算法的油井动液面计量方法
CN205138931U (zh) 页岩气含气量测试仪
CN205561340U (zh) 地源热泵系统监测装置
CN107355214B (zh) 潜油直线电机往复泵闭环控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884636

Country of ref document: EP

Kind code of ref document: A1