WO2014038636A1 - Silicoaluminophosphate salt and nitrogen oxide reduction catalyst using same - Google Patents

Silicoaluminophosphate salt and nitrogen oxide reduction catalyst using same Download PDF

Info

Publication number
WO2014038636A1
WO2014038636A1 PCT/JP2013/073975 JP2013073975W WO2014038636A1 WO 2014038636 A1 WO2014038636 A1 WO 2014038636A1 JP 2013073975 W JP2013073975 W JP 2013073975W WO 2014038636 A1 WO2014038636 A1 WO 2014038636A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicoaluminophosphate
nitrogen oxide
intergrowth
oxide reduction
crystal
Prior art date
Application number
PCT/JP2013/073975
Other languages
French (fr)
Japanese (ja)
Inventor
岡庭 宏
敬助 徳永
良和 永井
英和 青山
平野 茂
満明 吉光
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012230882A external-priority patent/JP5983290B2/en
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2014038636A1 publication Critical patent/WO2014038636A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a silicoaluminophosphate having a CHA structure and an AEI structure. More specifically, the present invention relates to a silicoaluminophosphate having a metal-containing CHA structure and an AEI structure suitable for a nitrogen oxide reduction catalyst.
  • Patent Document 1 As a silicoaluminophosphate having two types of skeletal structures, a continuous crystal in which part of the CHA structure of SAPO-34 and part of the AEI structure of SAPO-18 is laminated has been reported (for example, Patent Document 1). . Further, it has been reported that such a continuous crystal can be used as a nitrogen oxide purification catalyst (Patent Document 2). For example, Patent Literature 2 reports that a metal is contained in silicoaluminophosphate having a ratio of CHA structure to AEI structure of 90:10 and used as a nitrogen oxide reduction catalyst.
  • the nitrogen oxide reduction catalyst comprising a silicoaluminophosphate continuous crystal disclosed in Patent Document 2
  • the crystallinity of the catalyst decreases with time.
  • the nitrogen oxide reduction catalyst has a solid acid amount that decreases with a decrease in crystallinity due to hydration.
  • the conventional nitrogen oxide reduction catalyst composed of a continuous crystal of silicoaluminophosphate has a problem that the nitrogen oxide reduction rate is remarkably reduced during storage and use.
  • the present invention is to solve these problems and to provide a silicoaluminophosphate that has a low reduction in nitrogen oxide reduction rate even when exposed to an atmosphere containing moisture.
  • the present inventors have intensively studied.
  • the silicoaluminophosphate containing a CHA structure and an AEI structure and containing a large amount of the AEI structure contains a metal, which reduces the reduction rate of nitrogen oxides even when exposed to an atmosphere containing moisture.
  • the present invention has been completed. That is, the gist of the present invention is the following [1] to [5].
  • the continuous crystal silicoaluminophosphate of the present invention provides a nitrogen oxide reduction catalyst that causes little reduction in the nitrogen oxide reduction rate even when exposed to an atmosphere containing moisture, and a nitrogen oxide reduction method using the same.
  • the continuous crystal silicoaluminophosphate of the present invention has a nitrogen oxide reduction rate at a low temperature of less than 500 ° C., further 200 ° C. or less, or even 150 ° C. or less even when exposed to an atmosphere containing moisture.
  • a nitrogen oxide reduction catalyst with little decrease can be provided.
  • the intergrowth silicoaluminophosphate of the present invention and the nitrogen oxide reduction catalyst using the same have little deterioration in nitrogen oxide reduction characteristics even after being exposed to moisture-containing atmosphere, so-called water resistance.
  • the production method of the present invention can provide a method for producing silicoaluminophosphate with little reduction in nitrogen oxide reduction rate even when exposed to an atmosphere containing moisture.
  • the present adsorbent / desorbent has a high water vapor adsorption amount, and can be used for a water vapor adsorbent / desorbent such as an adsorption heat pump system, a desiccant air conditioning system, a humidity adjusting wall agent, and a humidity adjusting sheet.
  • FIG. 1 It is a figure which shows the SEM photograph of the continuous-crystal silicoaluminophosphate obtained in Example 1 (a scale is 5 micrometers in the figure).
  • 2 is a diagram showing an X-ray diffraction pattern of a continuous crystal silicoaluminophosphate obtained in Example 1.
  • FIG. It is a figure which shows the water vapor
  • FIG. It is a figure which shows the water vapor
  • the present invention relates to silicoaluminophosphate.
  • Silicoaluminophosphate is a zeolite-related substance containing silicon (Si), aluminum (Al), phosphorus (P) and oxygen (O) as main components.
  • the composition of silicoaluminophosphate can be represented by the following formula (1).
  • the silicoaluminophosphate of the present invention has a CHA structure and an AEI structure.
  • the CHA structure is a structure that becomes a CHA type when expressed by the IUPAC structure code (hereinafter, simply referred to as “structure code”) defined by the Structure Commission of the International Zeolite Society (IZA).
  • structure code defined by the Structure Commission of the International Zeolite Society
  • the AEI structure is a structure that becomes an AEI type when expressed by a structure code.
  • the silicoaluminophosphate of the present invention has a silicoaluminophosphate having two crystal structures of a CHA structure and an AEI structure in its crystal structure, that is, a CHA structure and an interphase of an AEI structure (Intergrowth phase).
  • the intergrowth silicoaluminophosphate of the present invention has a CHA structure and an AEI structure, and the proportion of the CHA structure and the AEI structure in the crystal (hereinafter referred to as “intergrowth ratio”) is determined by the AEI structure. Over 50%. That is, the intergrowth silicoaluminophosphate of the present invention is a intergrowth silicoaluminophosphate having a larger AEI structure than a CHA structure in the crystal.
  • the intergrowth silicoaluminophosphate of the present invention has CHA / AEI ⁇ 1 when the intergrowth ratio is expressed in CHA / AEI.
  • the proportion of AEI structure is 50% or less, that is, when CHA / AEI ⁇ 1, when such a silicoaluminophosphate is used as a nitrogen oxide reduction catalyst in an atmosphere containing water, nitrogen The reduction in the oxide reduction rate becomes significant.
  • the structure of the intergrowth silicoaluminophosphate of the present invention has an AEI structure of 55% or more (CHA / AEI ⁇ 0.82).
  • the intergrowth silicoaluminophosphate of the present invention has a high temperature. Even if it is exposed to the bottom, its nitrogen oxide reduction characteristics are unlikely to deteriorate.
  • the intergrowth ratio can be obtained by the DIFFaX program.
  • the DIFFaX program is a simulation program for simulating an XRD powder pattern for a continuous crystal such as zeolite, and is a program marketed by IZA.
  • the peak corresponding to the interplanar spacing of 4.16 ⁇ 0.05% may be stronger than the peak corresponding to the interplanar spacing of 5.22 ⁇ 0.1%. is there.
  • composition of the intergrowth silicoaluminophosphate of the present invention is preferably a composition represented by the following formula.
  • the nitrogen oxide reduction rate becomes higher.
  • the intergrowth silicoaluminophosphate of the present invention has a high nitrogen oxide reduction rate and water. Even when exposed to an atmosphere containing nitrogen, the nitrogen oxide reduction rate is likely to be a nitrogen oxide reduction catalyst that is unlikely to decrease.
  • the intergrowth silicoaluminophosphate of the present invention only needs to have a particle size that can be used as a nitrogen oxide reduction catalyst.
  • a particle size examples include an average particle size of 10 ⁇ m or less, further 7 ⁇ m or less, and further 5 ⁇ m or less.
  • the average particle size is 0.5 ⁇ m or more
  • the operability (handling) when applied to a catalyst carrier such as a honeycomb is increased.
  • the average particle diameter may be 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the average particle diameter is an average of the particle diameters of primary particles.
  • the average particle size is, for example, randomly selected from a plurality of (for example, 100 or more) particles of intergrowth silicoaluminophosphate observed by observation with a scanning electron microscope (hereinafter referred to as “SEM”). It can be measured by determining the average particle diameter obtained by measuring the particle diameter.
  • the surface area of the intergrowth silicoaluminophosphate of the present invention may be such that a nitrogen oxide reduction reaction is efficiently generated.
  • Examples of the BET specific surface area of the intergrowth silicoaluminophosphate of the present invention include 500 m 2 / g or more and 800 m 2 / g or less.
  • the intergrowth silicoaluminophosphate of the present invention has a so-called porous structure having many pores. Therefore, in the intergrowth silicoaluminophosphate of the present invention, there is substantially no correlation between the size of the surface area and the size of the average particle diameter.
  • the intergrowth silicoaluminophosphate of the present invention contains a metal.
  • the metal contained in the intergrowth silicoaluminophosphate of the present invention is at least one selected from the group consisting of Group VIIIB elements, Group IB elements and Group VIIB elements of the periodic table, and includes platinum (Pt) and palladium (Pd). , Rhodium (Rh), iron (Fe), copper (Cu), cobalt (Co), manganese (Mn), and indium (In), and preferably copper. preferable.
  • the inclusion of these metals in the intergrowth silicoaluminophosphate of the present invention tends to be a catalyst having a particularly high nitrogen oxide reduction rate when used as a nitrogen oxide reduction catalyst.
  • the intergrowth silicoaluminophosphate of the present invention contains copper, it is likely to be a nitrogen oxide reduction catalyst that exhibits a high nitrogen oxide reduction rate not only at a high temperature of 500 ° C. or higher but also at a low temperature below that. .
  • the metal content is arbitrary, for example, the weight of the metal contained is 0.3 wt% or more, further 0.6 wt% or more, based on the weight of the continuous silicoaluminophosphate of the present invention. Furthermore, it can mention that it is 0.8 weight% or more. On the other hand, if the metal content is 5% by weight or less, further 4% by weight or less, and further 3% by weight or less, the effect of improving the nitrogen oxide reduction characteristics due to the metal content is easily obtained.
  • the method for producing a continuous silicoaluminophosphate according to the present invention includes a metal-containing step of containing a metal in a silicoaluminophosphate having a CHA structure and an AEI structure, wherein the proportion of the AEI structure exceeds 50%. It is a manufacturing method characterized by having.
  • a crystallization step of crystallizing a mixture containing a tertiary amine, and the proportion of the AEI structure obtained by the crystallization step exceeds 50%.
  • the metal-containing process which makes a silicoaluminophosphate which has the CHA structure and AEI structure characterized by including a metal can be mentioned.
  • the production method of the present invention is characterized in that the proportion of AEI structure exceeds 50% (CHA / AEI ⁇ 1), and silicoaluminophosphate having a CHA structure and an AEI structure (intergranular silicoaluminophosphate).
  • a metal-containing step of containing a metal By containing the metal, the resulting intergranular silicoaluminophosphate becomes a nitrogen oxide reduction catalyst with little reduction in nitrogen oxide reduction rate even when exposed to an atmosphere containing moisture.
  • the metal contained in the intergrowth silicoaluminophosphate is at least one selected from the group consisting of group VIIIB elements, group IB elements and group VIIB elements of the periodic table, and includes platinum (Pt), palladium (Pd), rhodium ( Rh), iron (Fe), copper (Cu), cobalt (Co), manganese (Mn) and at least one selected from the group of indium (In) are preferable, and copper is more preferable.
  • the intergrowth silicoaluminophosphate contained copper, that is, the intergrowth silicoaluminophosphate was a copper-containing intergrowth silicoaluminophosphate, which was used as a nitrogen oxide reduction catalyst.
  • the catalyst tends to be a nitrogen oxide reduction catalyst exhibiting a high nitrogen oxide reduction rate not only at a high temperature of 500 ° C. or higher, but also at a low temperature lower than that.
  • the intergrowth silicoaluminophosphate used in the metal-containing process is at least one of proton type (H + type) silicoaluminophosphate or ammonia type (NH 4 + type) intergrowth silicoaluminophosphate. It is preferable that Thereby, it exists in the tendency which can contain the metal to a continuous crystal silicoaluminophosphate more efficiently.
  • the continuous crystal silicoaluminophosphate In order to convert the continuous crystal silicoaluminophosphate into a proton-type (H + -type) continuous crystal silicoaluminophosphate, for example, before the metal-containing step, the continuous crystal silicoaluminophosphate is converted to 400 in the atmosphere. Firing at a temperature of 0 ° C. or higher is mentioned.
  • the continuous crystal silicoaluminophosphate into an ammonia type (NH 4 + type) continuous crystal silicoaluminophosphate for example, the intergranular silicoaluminophosphate is converted into an ammonium chloride aqueous solution before the metal-containing step. Ion exchange.
  • the raw material used in the metal-containing step is any one selected from the group consisting of nitrates, sulfates, acetates, chlorides, complex salts, oxides and complex oxides containing metals to be included in the intergrowth silicoaluminophosphate, and Mixtures of these can be used.
  • a metal is contained in the intergrowth silicoaluminophosphate
  • an arbitrary method can be selected as the containing method.
  • the content method include an ion exchange method, an impregnation support method, an evaporation to dryness method, a coprecipitation method, a precipitation method, or a physical mixing method.
  • the metal content is arbitrary.
  • the weight of the metal contained is 0.3% by weight or more, further 0.6% by weight or more, or further, based on the weight of the intergrowth silicoaluminophosphate.
  • the metal is contained in the intergrowth silicoaluminophosphate so that the metal content is 5% by weight or less, further 4% by weight or less, and further 3% by weight or less, nitrogen oxidation due to metal content There is a tendency that improvement of the product reduction characteristic is easily obtained.
  • the manufacturing method of this invention it is preferable to have a calcination process which calcinates the continuous-crystal silicoaluminate obtained by the metal containing process. Thereby, it becomes easy to bond a continuous crystal silicoaluminophosphate and a metal more firmly.
  • any method can be applied as the calcination method.
  • the calcination method for example, intergranular silicoalumino acid obtained in the metal-containing step at a temperature of 400 ° C. or higher and 1000 ° C. or lower in an atmosphere or an oxidizing atmosphere such as oxygen gas or an inert atmosphere such as nitrogen or helium. Treating the salt.
  • the intergrowth silicoaluminophosphate used in the metal-containing step has an AEI structure ratio of more than 50%, that is, the intergrowth silicoaluminoline having a larger AEI structure than the CHA structure in the structure. Acid salt.
  • X-ray diffraction peak having a peak top at 0 °.
  • the peak corresponding to the interplanar spacing of 4.16 ⁇ 0.05% may be higher in intensity than the peak corresponding to the interplanar spacing of 5.22 ⁇ 0.1%. is there.
  • the intergrowth silicoaluminophosphate used in the metal-containing step has a powder X-ray diffraction pattern shown in Table 1 below.
  • the continuous silicoaluminophosphate used in the metal-containing step has a high amount of solid acid.
  • the amount of the solid acid is high, the obtained metal-containing intergrowth silicoaluminophosphate is likely to be a nitrogen oxide reduction catalyst exhibiting a high nitrogen oxide reduction rate. Therefore, the solid acid amount of the intergrowth silicoaluminophosphate used for the metal-containing step is preferably 0.5 mmol / g or more, more preferably 0.6 mmol / g or more, and 0.7 mmol / g or more. More preferably.
  • the obtained metal-containing continuous crystal silicoaluminophosphate is likely to be a nitrogen oxide reduction catalyst exhibiting a higher nitrogen oxide reduction rate.
  • the nitrogen oxide reduction rate tends to increase.
  • the crystal structure may become unstable. Therefore, when the solid acid amount is 1.4 mmol / g or less, further 1.2 mmol / g or less, or even 1.0 mmol / g or less, the obtained metal-containing intergrowth silicoaluminophosphate is nitrogen.
  • the oxide reduction rate is high, and the crystal structure tends to be stable.
  • the “solid acid” is an index for evaluating the catalytic activity of silicoaluminophosphate.
  • the solid acid can be confirmed and quantified by a general NH 3 -TPD method.
  • the solid acid has a property of adsorbing ammonia (NH 3 ).
  • the NH 3 -TPD method is a measurement method using this property, in which ammonia is adsorbed and desorbed from silicoaluminophosphate, and the ammonia desorbed from silicoaluminate in a specific temperature range is confirmed and quantified, This is a measurement method for confirming and quantifying this as a solid acid.
  • NH 3 -TPD method a method having the following three steps can be exemplified.
  • an inert gas can be circulated through the silicoaluminophosphate at a treatment temperature of 400 to 600 ° C.
  • an inert gas containing 1 to 20% by volume of ammonia can be circulated through the silicoaluminophosphate at a treatment temperature of 100 to 150 ° C.
  • the temperature can be raised to about 100 ° C. to 700 ° C. while circulating an inert gas through the silicoaluminophosphate.
  • the solid acid can be confirmed and quantified by confirming and quantifying the desorbed ammonia.
  • the ammonia adsorbed on the silicoaluminophosphate includes ammonia that is physically adsorbed and ammonia that is adsorbed by a solid acid.
  • the solid acid is confirmed and quantified, it is necessary to separate both of them.
  • the presence of a solid acid can be confirmed with an ammonia peak desorbed at a temperature of 250 to 450 ° C., and the amount of ammonia corresponding to the peak is quantified, and this is regarded as the solid acid amount.
  • the intergrowth silicoaluminophosphate used in the metal-containing step only needs to have a particle size that can be used as a nitrogen oxide reduction catalyst.
  • a particle size examples include an average particle size of 10 ⁇ m or less, further 7 ⁇ m or less, and further 5 ⁇ m or less.
  • the average particle size is 0.5 ⁇ m or more
  • the operability (handling) when applied to a catalyst carrier such as a honeycomb is increased.
  • the average particle diameter may be 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • a continuous crystal silicoaluminophosphate preferable for use in the metal-containing step can be obtained, for example, by a production method having a crystallization step of crystallizing a mixture containing a tertiary amine.
  • a quaternary amine such as tetraethylammonium hydroxide (hereinafter referred to as “SDA”) is used as an organic mineralizing agent (Structure directing agents; hereinafter referred to as “SDA”). It was essential to crystallize using a compound containing “TEAOH”.
  • the intergrowth silicoaluminophosphate can be crystallized without using a compound containing a quaternary amine as an essential component. it can.
  • the tertiary amine is preferably at least one selected from the group consisting of triethylamine, methyldiethylamine, diethylpropylamine, ethyldipropylamine, and diethylisopropylamine, and more preferably triethylamine.
  • the crystallization step it is preferable to crystallize a mixture containing triethylamine as SDA and containing a silicon (Si) source, a phosphorus (P) source, an aluminum (Al) source and water (H 2 O).
  • Si silicon
  • P phosphorus
  • Al aluminum
  • the raw materials for the silicon source, phosphorus source and aluminum source can be selected arbitrarily. The following can be illustrated as these raw materials.
  • the silicon source at least one water-soluble silicon compound consisting of colloidal silica, silica sol and water glass, or at least one kind consisting of silicon compound dispersed in a solvent, amorphous silica, fumed silica and sodium silicate.
  • Examples of the phosphorus source include one or more water-soluble phosphorus compounds of orthophosphoric acid and phosphorous acid, one or more solid phosphorus compounds of condensed phosphoric acid such as pyrophosphoric acid and calcium phosphate, and mixtures thereof. be able to.
  • At least one water-soluble aluminum compound selected from the group consisting of aluminum sulfate solution, sodium aluminate solution and alumina sol, or an aluminum compound dispersed in a solvent, amorphous alumina, pseudoboehmite, boehmite, aluminum hydroxide, sulfuric acid
  • a compound containing two or more selected from the group of silicon, phosphorus and aluminum can also be used as a raw material.
  • examples of such compounds include aluminophosphate gel and silicoaluminophosphate gel.
  • a mixture is obtained by mixing these raw materials with water and SDA.
  • Arbitrary methods can be used for mixing raw materials and the like when obtaining the mixture. For example, each raw material, water, and SDA may be mixed one by one in order, or two or more raw materials may be mixed simultaneously.
  • an acid such as hydrochloric acid, sulfuric acid or hydrofluoric acid, or an alkali such as sodium hydroxide, potassium hydroxide or ammonium hydroxide may be mixed into the mixture.
  • the composition of silicon, phosphorus, aluminum, water and SDA of the mixture is as follows when the silicon, phosphorus and aluminum in the mixture are regarded as SiO 2 , P 2 O 5 and Al 2 O 3 respectively. A composition is preferred.
  • each ratio in the said composition is molar ratio.
  • P 2 O 5 / Al 2 O 3 is preferably 0.7 or more and more preferably 0.8 or more in terms of molar ratio.
  • P 2 O 5 / Al 2 O 3 is 0.7 or more, the yield of the obtained continuous crystal silicoaluminophosphate tends to increase.
  • P 2 O 5 / Al 2 O 3 is 1.5 or less, and further 1.2 or less, it is easy to obtain a continuous crystal silicoaluminophosphate in a shorter crystallization time.
  • the ratio of silicon and aluminum in the mixture is preferably such that SiO 2 / Al 2 O 3 is 0.1 or more and more preferably 0.2 or more in terms of molar ratio.
  • SiO 2 / Al 2 O 3 When SiO 2 / Al 2 O 3 is 0.1 or more, a continuous crystal silicoaluminophosphate having a larger amount of solid acid is easily obtained. On the other hand, if SiO 2 / Al 2 O 3 is 1.2 or less, and further 0.8 or less, a continuous crystal silicoaluminophosphate is easily obtained in a shorter crystallization time.
  • H 2 O / Al 2 O 3 is preferably 5 or more and more preferably 15 or more in terms of molar ratio.
  • H 2 O / Al 2 O 3 is 5 or more, the resulting mixture becomes rich in fluidity. Thereby, the mixture tends to be more excellent in operability.
  • H 2 O / Al 2 O 3 in the mixture is small, H 2 O / Al 2 O 3 is 100 or less, if more than 70 or less, a mixture having a fluidity suitable for crystallization become.
  • H 2 O / Al 2 O 3 is 60 or less, crystallization can be performed at a higher concentration, which tends to be advantageous in industrial production.
  • the ratio of SDA and aluminum in the mixture is preferably such that SDA / Al 2 O 3 is 0.5 or more, and more preferably 1 or more in terms of molar ratio. This makes it easier to obtain a continuous silicoaluminophosphate having a higher amount of solid acid.
  • the mixture preferably contains seed crystals. When the mixture contains seed crystals, intergranular silicoaluminophosphate can be easily obtained in a short crystallization time.
  • the mixture preferably contains 0.05% by weight or more of seed crystals, more preferably 0.1% by weight or more, and still more preferably 0.5% by weight or more.
  • the crystallization time is easily shortened.
  • the crystal grain size of the obtained continuous crystal silicoaluminophosphate tends to be uniform. If the crystal grain size of the obtained continuous crystal silicoaluminophosphate becomes uniform, the seed crystal content in the mixture is arbitrary. Therefore, the upper limit of the seed crystal content can be, for example, 10% by weight or less, further 5% by weight or less, and further 2% by weight or less.
  • the content (% by weight) of the seed crystals contained in the mixture is when silicon, phosphorus and aluminum in the mixture excluding the seed crystals are regarded as SiO 2 , P 2 O 5 and Al 2 O 3 , respectively.
  • the type of seed crystal is preferably silicoaluminophosphate, more preferably intergrowth silicoaluminophosphate, and intergrowth silicoaluminophosphate having an AEI structure exceeding 50%. Further preferred.
  • a mixture having the following composition can be exemplified.
  • P 2 O 5 / Al 2 O 3 0.8 or more, 1.2 or less SiO 2 / Al 2 O 3 0.2 or more, 0.8 or less H 2 O / Al 2 O 3 15 or more, 60 or less SDA / Al 2 O 3 1 or more, 3 or less Seed crystal 0 wt% or more, 5 wt% or less
  • each ratio in the said composition is a molar ratio
  • SDA is a triethylamine
  • a seed crystal is a continuous crystal silicoaluminophosphate.
  • the crystallization method can be appropriately selected.
  • a preferred crystallization method is hydrothermal treatment of the mixture. Hydrothermal treatment may be performed by placing the mixture in a sealed pressure resistant container and heating the mixture.
  • the crystallization temperature is preferably 130 ° C. or higher, and more preferably 150 ° C. or higher. If the crystallization temperature is 130 ° C. or higher, the intergrowth silicoaluminophosphate crystallizes in a relatively short crystallization time, for example, 100 hours or less, and further 80 hours or less. The higher the crystallization temperature, the shorter the crystallization time. However, for example, if the crystallization temperature is 220 ° C. or lower, further 200 ° C.
  • the crystallization time is 5 hours or longer, 10 hours or longer, or even 15 hours or longer, the intergrowth silicon aluminum Norolinate is easily crystallized.
  • the manufacturing method of the continuous crystal silicoaluminophosphate preferable to use for a metal containing process you may have a washing
  • the washing step the crystallized continuous silicoaluminophosphate is separated from the liquid phase by any solid-liquid separation method such as filtration, decantation or centrifugation.
  • the intergrowth silicoaluminophosphate after solid-liquid separation may be washed with water as appropriate.
  • the drying step the filtered silicoaluminophosphate after drying is dried. Examples of the drying method include a method of drying at 90 ° C. or higher and 120 ° C. or lower for 5 hours or longer in the air.
  • the method may have a firing step and a re-washing step.
  • the firing process the dried silicoaluminophosphate is fired.
  • SDA taken into the silicoaluminophosphate during crystallization can be removed.
  • any firing method can be applied as long as SDA can be removed from the intergrowth silicoaluminophosphate. Examples of such a firing method include firing at a firing temperature of 400 ° C. or more and 800 ° C. or less in the atmosphere or in an oxidizing atmosphere such as oxygen gas.
  • the intergrowth silicoaluminophosphate is re-cleaned.
  • the metal derived from the raw material such as alkali metal remains on the surface or pores of intergrowth silicoaluminophosphate.
  • any cleaning method can be applied as long as the metal derived from the raw material remaining in the intergrowth silicoaluminophosphate can be removed therefrom. Examples of such re-cleaning methods include acid cleaning and ion exchange.
  • Said baking process and re-washing process can be performed as needed. Therefore, you may perform any one of only a baking process or only a re-washing process. Moreover, when performing both a baking process and a re-washing process, you may perform any of these order first.
  • the thus obtained intergrowth silicoaluminophosphate is subjected to a metal-containing step, that is, a crystallization step of crystallizing a mixture containing a tertiary amine, and the crystallization step. It is more preferable to use a metal-containing step of containing a metal in the obtained continuous crystal silicoaluminophosphate.
  • the continuous crystal silicoaluminophosphate used for a metal containing process can be used as a water vapor
  • the water adsorbed on the water vapor adsorbing / desorbing agent is desorbed by heating, whereby the water vapor adsorbing / desorbing agent is dried.
  • the dried water vapor adsorbing / desorbing agent is cooled to the adsorption temperature and used again for water adsorption. In this system, such adsorption and desorption of water vapor (hereinafter referred to as “adsorption / desorption”) is repeated.
  • Japanese Unexamined Patent Publication No. 2003-340236 reports a water vapor adsorption / desorption agent for adsorption heat pumps containing a zeolite-related substance.
  • the zeolite-related material was a zeolite-related material containing aluminum, phosphorus and silicon in the skeleton structure and having a structure code of CHA.
  • the water vapor adsorption / desorption agent containing the zeolite-related substance has a water adsorption amount change of 0.15 when the relative vapor pressure is changed by 0.15 in the range of the relative vapor pressure of 0.05 to 0.30 on the water vapor adsorption isotherm. It had a relative vapor pressure range of 18 g / g or more.
  • Japanese Patent Application Laid-Open No. 2007-181795 discloses an adsorption / desorption agent composed of a zeolite-related substance containing at least Al and P as elements constituting the skeleton and Mg or Si.
  • the zeolite-related substance has a one-dimensional structure in which pores have a diameter of 3.8 to 7.1 angstroms, and the crystal structure is an ATS structure, ATN structure, AWW structure, LTL structure, or SAS structure. It had any crystal structure.
  • the water vapor adsorption / desorption agents proposed so far have not been sufficient in the amount of water vapor adsorption / desorption.
  • a water vapor adsorbing and desorbing agent (hereinafter referred to as “the present adsorbing and desorbing agent”) containing intergrowth silicoaluminophosphate solves the above problems, and uses an adsorption heat pump system, a desiccant air conditioning system, a humidity adjusting wall agent, and humidity. It is possible to provide a water vapor adsorbing / desorbing agent useful for an adjustment sheet. That is, when this adsorption / desorption agent is used as a moisture removal system, a vapor adsorption / desorption agent having a high vapor adsorption / desorption amount can be provided.
  • the present inventor examined the crystal structure and water vapor adsorption / desorption characteristics of silicoaluminophosphate.
  • the intergranular ratio of the CHA structure and the AEI structure contained in the silicoaluminophosphate is controlled. It has been found that it has excellent water vapor adsorption and desorption characteristics. That is, this adsorption / desorption agent is represented by the following general formula (2), and is a crystal comprising a CHA structure and an AEI structure characterized by a powder X-ray diffraction (hereinafter referred to as “XRD”) pattern shown in Table 2 below.
  • XRD powder X-ray diffraction
  • This adsorbent / desorbent is a water vapor adsorbent / desorbent containing a silicoaluminophosphate having a crystal structure composed of a CHA structure and an AEI structure (hereinafter referred to as “continuous crystal SAPO”). It may be an adsorption / desorption agent.
  • the intergrowth SAPO has a crystal structure composed of a CHA structure and an AEI structure (hereinafter referred to as “continuous crystal structure”).
  • intergrowth SAPO is also different from silicoaluminophosphate obtained by mixing a silicoaluminophosphate having a CHA structure and a silicoaluminophosphate having an AEI structure.
  • Intergrowth SAPO contained in this adsorption / desorption agent has the XRD pattern shown in Table 2.
  • These broad peaks indicate that the intergrowth SAPO contained in the present adsorption / desorption agent has a intergranular crystal structure.
  • the interstitial SAPO contained in the present adsorption / desorption agent preferably has a crystal structure retention of 50% or more and 100% or less.
  • the crystal structure retention is the ratio of the crystallinity after storage to the crystallinity before storage in 80 ° C. saturated water vapor for 8 days.
  • the crystallinity can be determined from the total peak intensity of main peaks in the XRD pattern of silicoaluminophosphate.
  • ⁇ 0.2 ° the value (°) of 2 ⁇ in the present adsorption / desorption agent is a value when copper K ⁇ rays are used as a radiation source.
  • the ratio of CHA structure and AEI structure of intergrowth SAPO contained in the adsorption / desorption agent is 80/20 to 20/80 in CHA / AEI ratio. It is preferably 50/50 to 30/70, more preferably 45/55 to 30/70. If the intergrowth ratio is within this range as the CHA / AEI ratio, the water resistance of the intergrowth SAPO is unlikely to decrease, and the crystal structure retention rate is unlikely to decrease. Further, the interstitial SAPO contained in the present adsorption / desorption agent has a Si mole fraction x of 0.05 ⁇ x ⁇ 0.10 and an Al mole fraction y of 0.47 ⁇ in the general formula (2). It is preferable that y ⁇ 0.52 and the molar fraction z of P is 0.40 ⁇ z ⁇ 0.46. If the composition is in the above range, the crystal structure retention tends to be higher.
  • the adsorption / desorption agent of the present invention preferably has a solid acid amount after hydration treatment (hereinafter referred to as “solid acid retention rate”) of 50% or more with respect to the solid acid amount before hydration treatment. If the solid acid retention rate is 50% or more, the water resistance of the adsorption / desorption agent is likely to be higher. The solid acid becomes an active site for water vapor adsorption. Therefore, the higher the solid acid retention rate before and after the hydration treatment, the higher the water resistance and the more preferable properties as a water vapor adsorption / desorption agent.
  • the solid acid can be confirmed and quantified by a general NH 3 -TPD method.
  • the solid acid has a property of adsorbing ammonia (NH 3 ).
  • the NH 3 -TPD method is a measurement method using this property, in which ammonia is adsorbed and desorbed from silicoaluminophosphate, and the ammonia desorbed from silicoaluminate in a specific temperature range is confirmed and quantified, This is a measurement method for confirming and quantifying this as a solid acid.
  • NH 3 -TPD method a method having the following three steps can be exemplified. 1) Pretreatment process to remove gas and moisture adsorbed on silicoaluminophosphate 2) Ammonia adsorption process to adsorb ammonia on silicoaluminophosphate, and 3) Ammonia adsorbed on silicoaluminophosphate , Ammonia desorption process to desorb from there
  • an inert gas can be circulated through the silicoaluminophosphate at a treatment temperature of 400 to 600 ° C.
  • the ammonia adsorption step it is possible to exemplify that an inert gas containing 1 to 20% by volume of ammonia is circulated through the silicoaluminophosphate at a treatment temperature of 100 to 150 ° C.
  • the temperature can be raised to about 100 ° C. to 700 ° C. while circulating an inert gas through the silicoaluminophosphate.
  • the solid acid can be confirmed and quantified by confirming and quantifying the desorbed ammonia.
  • the ammonia adsorbed on the silicoaluminophosphate includes ammonia that is physically adsorbed and ammonia that is adsorbed by a solid acid.
  • the solid acid is confirmed and quantified, it is necessary to separate both of them.
  • the presence of a solid acid can be confirmed with an ammonia peak desorbed at a temperature of 250 to 450 ° C., and the amount of ammonia corresponding to the peak is quantified, and this is regarded as the solid acid amount.
  • the present adsorption / desorption agent may contain intergrowth SAPO on which an alkaline earth metal is supported.
  • intergrowth SAPO an alkaline earth metal
  • cycle hydration treatment a decrease in the amount of solid acid after the treatment (hereinafter referred to as “cycle hydration treatment”) that has been subjected to multiple hydration treatments is easily suppressed.
  • cycle hydration treatment for example, after the treatment for allowing the water vapor adsorbent / desorbent to stand in a saturated water vapor atmosphere of 60 ° C. or higher and 100 ° C.
  • a treatment for allowing the water vapor adsorbent / desorbent to stand for 1 hour or more and 60 days or less in a dry atmosphere (ie, an atmosphere having a water content of 0.05% by volume or less) at 1 ° C. or less is defined as 1 cycle. Repeating 10 times or more and 50 times or less.
  • the alkaline earth metal is preferably at least one selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba), and more preferably calcium.
  • the alkaline earth metal is calcium
  • the calcium loading is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and even more preferably 0.4% by weight or more. If the amount of calcium supported is within this range, the decrease in the amount of solid acid after the cycle hydration treatment is more easily suppressed. Further, if the calcium content is 2.5% by weight or less, further 2% by weight or less, and further 1.5% by weight or less, an effect of suppressing a sufficient decrease in the amount of solid acid can be obtained.
  • the content should just be a quantity comparable as the amount of substances (mol) corresponding to said calcium content (weight%).
  • This adsorption / desorption agent can be in any form.
  • it may be used as a powder, or may be used as a coating or a molded body.
  • the present adsorbent / desorbent may be used as a powder slurry and coated on a substrate such as a honeycomb rotor.
  • a binder or molding aid may be mixed with the present adsorption / desorption agent and used as a granular molded body.
  • it may be integrally formed with other materials, or may be formed into a sheet by mixing with paper or resin.
  • This adsorbent / desorbent can be obtained by any production method as long as it contains intergrowth SAPO.
  • the intergrowth SAPO is preferably obtained by a production method in which a reaction mixture having the following molar composition ratio is held at a temperature of 130 ° C. or higher and 220 ° C. or lower for 5 hours or longer and 100 hours or shorter.
  • the silicon source is not particularly limited, and examples thereof include a water-soluble or water-dispersed silicon source, a solid silicon source, or an organic silicon source.
  • the water-soluble silicon source is at least one selected from the group of colloidal silica, silica sol, and water glass
  • the solid silicon source is at least one selected from the group of amorphous silica, fumed silica, and sodium silicate.
  • Examples of the seed and organosilicon source include ethyl orthosilicate.
  • the phosphorus source examples include a water-soluble phosphorus source such as orthophosphoric acid or phosphorous acid, a condensed phosphoric acid such as pyrophosphoric acid, and a solid phosphorus source such as calcium phosphate.
  • the aluminum source examples include a water-soluble or water-dispersed aluminum source, a solid aluminum source, and an organic aluminum source.
  • a water-soluble aluminum source at least one selected from the group consisting of an aluminum sulfate solution, a sodium aluminate solution, and an alumina sol, and as a solid aluminum source, amorphous alumina, pseudoboehmite, boehmite, aluminum hydroxide, aluminum sulfate, and alumine
  • Aluminum isopropoxide can be exemplified as at least one selected from the group of sodium acid and an organoaluminum source.
  • tertiary amine for example, tertiary amine, further triethylamine, methyldiethylamine, diethylpropylamine, ethyldipropylamine, and diethylisopropylamine, at least one tertiary amine, or even triethylamine is used.
  • triethylamine is used as the organic mineralizer
  • a tertiary amine other than triethylamine or another organic mineralizer used for the synthesis of silicoaluminophosphate and triethylamine may be used in combination.
  • Examples of the other organic mineralizer include one or more selected from the group consisting of tetraethylammonium salt, diethylamine, methylbutylamine, morpholine, cyclohexylamine, and propylamine.
  • the order of adding these silicon source, phosphorus source, aluminum source, water, and organic mineralizer is not particularly limited.
  • the reaction mixture may be prepared by adding each of them individually or by simultaneously mixing two or more raw materials.
  • an amorphous aluminophosphate gel and an amorphous silicoaluminophosphate gel are prepared in advance, and a reaction mixture is prepared by adding and mixing water and an organic mineralizer and, if necessary, a silicon source, a phosphorus source and an aluminum source. It may be prepared.
  • the reaction mixture may be adjusted to pH with an acid such as hydrochloric acid, sulfuric acid, hydrofluoric acid, sodium hydroxide, potassium hydroxide, ammonium hydroxide, or an alkali.
  • the phosphorus source and the aluminum source are mixed so that the P 2 O 5 / Al 2 O 3 molar ratio is 0.7 to 1.5 in terms of oxide. If the P 2 O 5 / Al 2 O 3 molar ratio is 0.7 or more, a decrease in yield can be prevented. When the P 2 O 5 / Al 2 O 3 molar ratio is 1.5 or less, the crystallization speed is hardly lowered, and crystallization can be performed in a short time.
  • a preferred P 2 O 5 / Al 2 O 3 molar ratio is 0.8 to 1.2.
  • the silicon source and the aluminum source are mixed so that the SiO 2 / Al 2 O 3 molar ratio is 0.1 to 1.2 in terms of oxide.
  • SiO 2 / Al 2 O 3 molar ratio is 0.1 or more, there is no shortage of the solid acid amount.
  • SiO 2 / Al 2 O 3 molar ratio is 1.2 or less, the crystallization speed is hardly lowered and crystallization can be performed in a short time.
  • a preferred SiO 2 / Al 2 O 3 molar ratio is 0.2 to 0.8.
  • H 2 O / Al 2 O 3 molar ratio is 5 to 100 in terms of oxide.
  • an aqueous solution such as colloidal silica or phosphoric acid
  • the amount of water in the aqueous solution must be H 2 O.
  • a smaller H 2 O / Al 2 O 3 molar ratio is preferred because it affects the yield of the product.
  • the H 2 O / Al 2 O 3 molar ratio is 5 or more, an increase in the viscosity of the reaction mixture can be suppressed.
  • the preferred H 2 O / Al 2 O 3 molar ratio is 10 to 100, more preferably 15 to 60.
  • the organic mineralizer (R) and the aluminum source are mixed so that the R / Al 2 O 3 molar ratio is 0.5 to 5 in terms of oxide.
  • the organic mineralizer preferably has a larger R / Al 2 O 3 molar ratio.
  • the crystallization time may be shortened by adding 0.05 to 10% by weight of silicoaluminophosphate as a seed crystal to the reaction mixture. At this time, it is more effective to use the silicoaluminophosphate of the present invention as a seed crystal after pulverization.
  • the seed crystal addition amount refers to the amounts of Si, P and Al of the silicon source, phosphorus source and aluminum source in the reaction mixture, respectively, and oxides (SiO 2 , P 2 O 5 , Al 2). It is the weight ratio of the seed crystal to the total weight when converted as O 3 ).
  • the seed crystal addition amount When the seed crystal addition amount is 0.05% by weight or more, the effect of shortening the crystallization time can be sufficiently obtained.
  • the upper limit of the seed crystal addition amount is not particularly limited, but the effect is not changed even if it exceeds 10 wt%. Therefore, a preferable seed crystal addition amount is 0.05 to 10% by weight, and more preferably 0.1 to 5% by weight.
  • the reaction mixture prepared as described above is placed in a sealed pressure vessel and kept at a temperature of 130 ° C. or higher and 220 ° C. or lower for 5 hours or longer and 100 hours or shorter.
  • the intergrowth SAPO contained in this adsorption / desorption agent can be manufactured.
  • the reaction mixture is preferably stirred during the holding.
  • the crystallization temperature is high, the reaction mixture can be crystallized in a short time.
  • a preferred crystallization temperature is 150 to 200 ° C.
  • the crystallized intergrowth SAPO can be separated from the crystallized mother liquor by conventional solid-liquid separation methods such as filtration, decantation, and centrifugation, washed with water if necessary, and then recovered by drying by conventional methods. Good.
  • the recovered dried silicoaluminophosphate contains the organic mineralizer used for crystallization in the pores.
  • the organic mineralizer contained can be removed by firing.
  • the organic mineralizer may be removed by firing at a temperature of 400 to 800 ° C. in an oxygen-containing atmosphere.
  • the organic mineralizer burns violently, so that the structure of the silicoaluminophosphate is destroyed and the temperature of the firing furnace cannot be controlled. In such a case, it is preferable to suppress combustion of the organic mineralizer in a low oxygen atmosphere or an oxygen-free atmosphere at the initial stage of firing.
  • the intergrowth SAPO obtained as described above may contain metal cations in the raw material such as alkali metals and alkaline earth metals at the ion exchange site. Therefore, if necessary, a metal cation can be removed by acid washing or ion exchange, or a desired metal cation can be contained.
  • the interstitial SAPO contained in the present adsorption / desorption agent may carry an alkaline earth metal thereon.
  • the alkaline earth metal element is preferably at least one selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba), and more preferably calcium.
  • the intergrowth SAPO used for supporting the alkaline earth metal is either a proton type (H + type) continuous crystal SAPO or an ammonia type (NH 4 + type) continuous crystal SAPO. As a result, there is a tendency that the alkaline earth metal can be more efficiently supported on the intergrowth SAPO.
  • the crystallized continuous SAPO may be fired at 400 ° C. or higher in the atmosphere.
  • the continuous crystal SAPO may be converted into the ammonia type (NH 4 + type) continuous crystal SAPO, for example, ion exchange of the crystallized continuous SAPO with an aqueous ammonium chloride solution can be mentioned.
  • the raw material of the alkaline earth metal is any one selected from the group consisting of nitrates, sulfates, acetates, chlorides, complex salts, oxides and complex oxides containing alkaline earth metals supported on the intergrowth SAPO, and these Mixtures can be used, preferably nitrates or acetates.
  • any method can be selected as the supporting method. Examples of the loading method include ion exchange method, impregnation loading method, evaporation to dryness method, precipitation loading method or physical mixing method, and the amount of alkaline earth metal supported on the intergrowth SAPO is easy to control.
  • the supporting method is preferably either an impregnation supporting method or an evaporation to dryness method.
  • These raw materials for alkaline earth metals may be used in an amount corresponding to the target loading amount.
  • the alkaline earth metal is calcium
  • the amount of calcium is 0.1% by weight or more, further 0.2% by weight or more, and further 0.4% by weight or more with respect to the weight of the intergrowth SAPO. Can be mentioned.
  • the amount of calcium relative to the weight of the intergrowth SAPO is 2.5% by weight or less, further 2% by weight or less, and further 1.5% by weight or less.
  • the alkaline earth metal in the raw material of the alkaline earth metal has an amount equivalent to the amount of substance (mol) corresponding to the above calcium amount (% by weight). That is, the raw material may be used.
  • the silicoaluminophosphate having the CHA structure and AEI structure of the present invention is a nitrogen oxide reduction catalyst, preferably a selective catalytic reduction catalyst of nitrogen oxide (hereinafter referred to as “selective catalytic reduction catalyst”). SCR catalyst ").
  • the intergrowth silicoaluminophosphate of the present invention can be used as it is as a nitrogen oxide reduction catalyst, but can also be used by adhering to a catalyst carrier such as a honeycomb.
  • the intergrowth silicoaluminophosphate of the present invention As a nitrogen oxide reduction catalyst or SCR catalyst (hereinafter referred to as “nitrogen oxide reduction catalyst etc.”), it is exposed to an atmosphere containing moisture. Thus, a nitrogen oxide reduction catalyst or the like having a small change in the nitrogen oxide reduction rate before and after being formed.
  • the intergrowth silicoaluminophosphate of the present invention has, for example, a nitrogen oxide reduction rate after hydration treatment relative to a nitrogen oxide reduction rate before hydration treatment (hereinafter referred to as “hydration reduction maintenance rate”).
  • the hydration reduction maintenance rate at 500 ° C. is 90% or more
  • the hydration reduction maintenance rate at 300 ° C. is 85% or more
  • the hydration reduction maintenance rate at 200 ° C. is 85% or more
  • 150 ° C It is mentioned that the hydration reduction maintenance rate in is 75% or more.
  • the hydration treatment is a treatment in which silicoaluminophosphate is exposed to an atmosphere containing moisture, and there is no generalized or standardized condition.
  • An example of the hydration treatment is a treatment in which a continuous silicoaluminophosphate is left standing for 1 day or more and 100 days or less in a saturated water vapor atmosphere of 60 ° C. or higher and 90 ° C. or lower.
  • the intergrowth silicoaluminophosphate of the present invention is used as a nitrogen oxide reduction catalyst or the like, in addition to the small change in the nitrogen oxide reduction rate before and after being exposed to an atmosphere containing moisture, it is exposed to high temperatures. In this case, it is preferable that the nitrogen oxide reduction rate is high even when exposed to a high temperature containing moisture.
  • the nitrogen oxide reduction rate after the endurance treatment of the intergrowth silicoaluminophosphate of the present invention is, for example, 70% or more at 500 ° C.
  • the intergrowth silicoaluminophosphate of the present invention preferably has a high nitrogen oxide reduction rate after endurance treatment at low temperatures, and the nitrogen oxide reduction rate after endurance treatment is 85% or more at 300 ° C. Yes, it may be 80% or more at 200 ° C.
  • the intergrowth silicoaluminophosphate of the present invention has a high nitrogen oxide reduction rate at a lower temperature.
  • the nitrogen oxide reduction rate at 150 ° C. is 65% or more, and more than 70%. Furthermore, it is mentioned that it is 72% or more.
  • the durability treatment is a treatment in which the intergrowth silicoalumino salt is exposed to a high temperature, that is, a state equivalent to a state after using the intergrowth silicoaluminophosphate as a nitrogen oxide reduction catalyst for a long time at a high temperature. It is a process to make. There is no generalized or standardized condition for the durability treatment.
  • the endurance treatment for example, interstitial silicoaluminophosphate is added at 800 ° C. or more and 1000 ° C. or less for 1 hour or more and 24 hours or less under the flow of gas containing 10% by volume or more and 20% by volume or less of water vapor. It can be mentioned that the treatment is carried out by standing.
  • the nitrogen oxide reduction rate refers to the concentration of nitrogen oxides in the processing gas before the contact when the processing gas containing nitrogen oxides is brought into contact with the nitrogen oxide reduction catalyst or the like. This is the concentration of nitrogen oxides in the reduced process gas. This can be obtained by the following equation (3).
  • Nitrogen oxide reduction rate (%) ⁇ 1- (nitrogen oxide concentration in the processing gas after contact / nitrogen oxide concentration in the processing gas before contact) ⁇ ⁇ 100 (3)
  • the nitrogen oxide reduction rate of the SCR catalyst There is no generalized or standardized condition for the method for evaluating the nitrogen oxide reduction rate of the SCR catalyst.
  • an evaluation method of the nitrogen oxide reduction rate of the SCR catalyst for example, the method shown in the examples, or a gas mixture containing nitrogen oxide and ammonia in a volume ratio of 1: 1 is circulated through the catalyst.
  • the nitrogen oxide in the mixed gas is reduced, the concentration of nitrogen oxide in the mixed gas before and after circulation is measured, and the above formula (3) is obtained.
  • ammonia is used as a reducing agent. Therefore, the nitrogen oxide reduction rate in this case is a value of the nitrogen oxide reduction rate as a so-called ammonia SCR catalyst.
  • the intergrowth silicoaluminophosphate of the present invention shows little reduction in nitrogen oxide reduction rate even when exposed to an atmosphere containing moisture. Therefore, the nitrogen oxide reduction catalyst composed of the continuous crystal silicoaluminophosphate of the present invention can be used, for example, in an exhaust gas treatment system such as factory exhaust gas or automobile exhaust gas.
  • the composition analysis was performed by inductively coupled plasma emission spectrometry (ICP method). That is, the sample was dissolved in a mixed solution of hydrofluoric acid and nitric acid to prepare a measurement solution. The composition of the sample was measured by measuring the obtained measurement solution using a general inductively coupled plasma emission spectrometer (trade name: OPTIMA 3000 DV, manufactured by PERKIN ELMER), and the copper content was determined.
  • ICP method inductively coupled plasma emission spectrometry
  • the solid acid amount of the sample was measured by the NH 3 -TPD method shown below. Prior to measurement, the sample was pressure-molded, pulverized, and sized to 20-30 mesh. 0.1 g of the sized sample was weighed and charged into a fixed-bed atmospheric pressure reaction tube (hereinafter simply referred to as “reaction tube”). This was heated to 500 ° C. while flowing helium gas through the reaction tube filled with the sample. Thereby, the sample and helium gas were brought into contact. After holding at 500 ° C. for 1 hour, the reaction tube filled with the sample was cooled to 100 ° C.
  • an ammonia-helium mixed gas containing 10% by volume of ammonia was allowed to flow therethrough at a flow rate of 60 mL / min for 1 hour.
  • ammonia was adsorbed on the sample.
  • the ammonia-helium mixed gas was stopped, and instead, helium gas was allowed to flow at 60 mL / min for 1 hour. Thereby, ammonia gas remaining in the atmosphere of the reaction tube, that is, ammonia not adsorbed on the sample was removed from the reaction tube. Thereafter, the sample was heated from 100 ° C. to 700 ° C.
  • a peak derived from desorption of ammonia by physically adsorbing a desorption peak having a peak top at a desorption temperature of 100 ° C. or higher and lower than 250 ° C. hereinafter referred to as “physical adsorption peak”.
  • the desorption peak having a peak top at a desorption temperature of 250 ° C. or higher and 450 ° C. or lower was regarded as a peak derived from the solid acid of the sample (hereinafter referred to as “solid acid peak”).
  • the peak area of the solid acid peak in the desorption spectrum was obtained, and the peak area of the NH 3 -TPD peak of a gas whose ammonia amount (mmol) was measured in advance (known as 30 mL of 10 vol% ammonia-helium mixed gas). The ratio of was calculated. Thus, the ammonia desorption amount (mmol) corresponding to the solid acid peak was determined, and the solid acid amount of the sample was determined by the following equation.
  • Sample solid acid content (mmol / g) Ammonia desorption amount (mmol) corresponding to the solid acid peak Silicoaluminophosphate mass (g) having / CHA structure and AEI structure
  • the BET surface area of the sample was measured using a general surface area measuring device (trade name: OMISORP 360CX type, manufactured by Coulter).
  • the sample was pretreated at 350 ° C. for 2 hours under vacuum. After weighing about 0.1 g of the pretreated sample, the BET surface area was calculated from the nitrogen adsorption amount in the range of 0.01 to 0.05 relative pressure of the nitrogen adsorption isotherm of the sample at the liquid nitrogen temperature.
  • the nitrogen oxide reduction rate of the sample was measured by the ammonia SCR method shown below. Prior to measurement, the sample was pressure-molded, pulverized, and then sized to 12 to 20 mesh. 1.5 mL of the sized sample was weighed and filled into a reaction tube to obtain a nitrogen oxide reduction catalyst. Then, the process gas which consists of the following compositions containing nitrogen oxide was distribute
  • SV space velocity
  • the nitrogen oxide concentration (ppm) in the processing gas after the sample flow is obtained with respect to the nitrogen oxide concentration (200 ppm) in the processing gas passed through the reaction tube, and the nitrogen oxide reduction rate is calculated according to the above equation (2). Asked.
  • Example 1 Preparation of silicoaluminophosphate 1690 g of water, 559 g of 85% phosphoric acid aqueous solution (special grade reagent, manufactured by Kishida Chemical), 284 g of 30% colloidal silica (ST-N30, manufactured by Nissan Chemical), triethylamine (hereinafter referred to as “TEA”; special grade reagent, manufactured by Kishida Chemical) 744 g and 77% pseudo boehmite (Pural SB, manufactured by Sasol) 322 g were mixed to prepare a reaction mixture having the following composition.
  • special grade reagent manufactured by Kishida Chemical
  • Pural SB pseudo boehmite
  • This reaction mixture was placed in a 4 L stainless steel sealed pressure vessel and kept at 180 ° C. for 69 hours while stirring at 270 rpm to crystallize it to obtain a product.
  • the obtained product was filtered, washed with water, and then dried in the atmosphere at 110 ° C. overnight.
  • the product after drying was calcined in air at 600 ° C. for 2 hours.
  • Table 3 shows the interplanar spacing value (d value) and relative intensity of the product after firing obtained from the powder X-ray diffraction pattern. In the table, only diffraction peaks having a relative intensity of 2% or more are shown.
  • the average particle diameter of the intergrowth silicoaluminophosphate was 4.3 ⁇ m
  • the amount of solid acid was 0.91 mmol / g
  • the BET surface area was 722 m 2 / g.
  • the obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours. 0.46 g of copper nitrate trihydrate (primary reagent, manufactured by Kishida Chemical Co., Ltd.) was dissolved in 2.9 g of pure water to obtain an aqueous copper nitrate solution. The entire amount of the copper nitrate aqueous solution obtained was added dropwise to 7.5 g of the baked sample, and then kneaded in a mortar for 10 minutes. The kneaded sample was dried at 110 ° C. overnight and then calcined in the atmosphere at 500 ° C. for 1 hour to obtain a copper-containing intergrowth silicoaluminophosphate. The copper content of the obtained copper-containing intergrowth silicoaluminophosphate was 1.6% by weight.
  • the nitrogen oxide reduction rate after firing was 90% or more at 300 ° C.
  • the intergrowth silicoaluminophosphate of the present invention had a high nitrogen oxide reduction rate at low temperatures.
  • the nitrogen oxide reduction rate after firing is 85% or higher at 200 ° C. and 70% or higher at 150 ° C.
  • the intergrowth silicoaluminophosphate of the present invention has a lower temperature of 200 ° C. or lower, more preferably 150 ° C. or lower. Even below, it was confirmed that it has a high nitrogen oxide reduction rate.
  • the nitrogen oxide reduction rate at each temperature is 90% or more at 300 ° C., 80% or more at 200 ° C., and 66% or more at 150 ° C. in the entire period after hydration after firing. It was confirmed that the intergranular silicoaluminophosphate has a high nitrogen oxide reduction rate even when exposed to an atmosphere containing water for a long time.
  • the hydration reduction maintenance rate at the time of performing the hydration process for 8 days and 20 days was nearly 100% at any temperature. From this, it was confirmed that the silicoaluminophosphate of the present invention becomes a nitrogen oxide reduction catalyst or the like in which the fluctuation of the nitrogen oxide reduction rate hardly occurs from the initial state. Furthermore, even when the hydration treatment is performed for 80 days, the hydration reduction maintenance rate at 300 ° C. and 200 ° C. is nearly 100%, and the nitrogen oxide reduction rate does not decrease. The sum reduction maintenance rate was 90% or more. From this, it was confirmed that the intergrowth silicoaluminophosphate of the present invention maintained a high nitrogen oxide reduction rate not only at a low temperature of 200 ° C. or lower but also at a lower temperature of 150 ° C. or lower.
  • Example 2 (Production of nitrogen oxide reduction catalyst) A continuous crystal silicoaluminophosphate was obtained in the same manner as in Example 1. The obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours. 10.0 g of the baked sample was weighed and dispersed in an aqueous copper acetate solution to obtain a slurry. The resulting slurry was adjusted to pH 7.5, and this was stirred at room temperature for 20 hours for ion exchange.
  • the aqueous solution of copper acetate was prepared by dissolving 1.01 g of copper acetate (II) monohydrate (primary reagent, manufactured by Kishida Chemical Co., Ltd.) in 100 g of pure water, and 25% aqueous ammonia was used for pH adjustment. (Special reagent grade, manufactured by Kishida Chemical) was used. The slurry after ion exchange was filtered, washed, and dried at 110 ° C. overnight to obtain a copper-containing intergrowth silicoaluminophosphate. The copper content of the obtained copper-containing continuous crystal silicoaluminophosphate was 2.7% by weight.
  • Example 3 (Production of nitrogen oxide reduction catalyst) A continuous crystal silicoaluminophosphate was obtained in the same manner as in Example 1. The obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours. 0.98 g of copper nitrate trihydrate was dissolved in 2.9 g of pure water to obtain an aqueous copper nitrate solution. The entire amount of the copper nitrate aqueous solution obtained was added dropwise to 7.5 g of the baked sample, and then kneaded in a mortar for 10 minutes. The kneaded intergranular silicoaluminophosphate was dried at 110 ° C. overnight and then fired at 500 ° C. for 1 hour in an air atmosphere to obtain a copper-containing silicoaluminophosphate. The copper content of the obtained copper-containing continuous crystal silicoaluminophosphate was 3.4% by weight.
  • Example 4 (Preparation of silicoaluminophosphate) 1698 g of water, 559 g of 85% phosphoric acid aqueous solution, 284 g of 30% colloidal silica, 736 g of triethylamine, 322 g of 77% pseudoboehmite, and 4.2 g of seed crystals were mixed to prepare a reaction mixture having the following composition.
  • the seed crystal used was a continuous crystal silicoaluminophosphate obtained in Example 1 that was wet-ground by a ball mill for 1 hour.
  • This reaction mixture was placed in a 4 L stainless steel sealed pressure vessel and kept at 180 ° C. for 64 hours while stirring at 270 rpm, and crystallized to obtain a product.
  • the obtained product was filtered, washed with water, and then dried in the atmosphere at 110 ° C. overnight.
  • the product after drying was calcined in air at 600 ° C. for 2 hours.
  • Table 5 shows the interplanar spacing value (d value) and relative intensity obtained from the powder X-ray diffraction pattern of the product after firing. In the table, only diffraction peaks having a relative intensity of 2% or more are shown.
  • the obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours. 0.37 g of copper nitrate trihydrate was dissolved in 2.9 g of pure water to obtain an aqueous copper nitrate solution. The entire amount of the copper nitrate aqueous solution obtained was added dropwise to 7.5 g of the baked sample, and then kneaded in a mortar for 10 minutes. The kneaded intergranular silicoaluminophosphate was dried at 110 ° C. overnight and then fired in an air atmosphere at 500 ° C. for 1 hour to obtain a copper-containing intergranular silicoaluminophosphate. The copper content of the obtained copper-containing continuous crystal silicoaluminophosphate was 1.3% by weight.
  • Example 5 (Preparation of silicoaluminophosphate) 29.4 g of water, 8.9 g of 85% phosphoric acid aqueous solution, 0.98 g of 30% colloidal silica, 11.7 g of triethylamine, 5.1 g of 77% pseudoboehmite, and 0.07 g of seed crystals were mixed. A reaction mixture was prepared. The seed crystal used was a continuous crystal silicoaluminophosphate obtained in Example 1 that was wet-ground by a ball mill for 1 hour.
  • This reaction mixture was put into an 80 ml stainless steel sealed pressure vessel, kept at 180 ° C. for 63 hours while rotating at 55 rpm around the horizontal axis, and crystallized to obtain a product.
  • the obtained product was filtered, washed with water, and then dried in the atmosphere at 110 ° C. overnight.
  • the product after drying was calcined in air at 600 ° C. for 2 hours.
  • Table 6 shows the spacing value (d value) and the relative intensity obtained from the powder X-ray diffraction pattern of the product after firing. In the table, only diffraction peaks having a relative intensity of 2% or more are shown.
  • the obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours. 0.37 g of copper nitrate trihydrate was dissolved in 2.9 g of pure water to obtain an aqueous copper nitrate solution. The entire amount of the copper nitrate aqueous solution obtained was added dropwise to 7.5 g of the baked sample, and then kneaded in a mortar for 10 minutes. The kneaded intergranular silicoaluminophosphate was dried at 110 ° C. overnight and then fired at 500 ° C. for 1 hour in an air atmosphere to obtain a copper-containing silicoaluminophosphate. The copper content of the obtained copper-containing silicoaluminophosphate was 1.3% by weight.
  • Example 6 (Production of nitrogen oxide reduction catalyst) A continuous crystal silicoaluminophosphate was obtained in the same manner as in Example 1. The obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours. 10.0 g of the calcined sample was weighed and dispersed in an aqueous copper nitrate solution to obtain a slurry. The obtained slurry was adjusted to pH 7.0, and ion exchange was performed by stirring the slurry at room temperature for 2 hours. The aqueous copper nitrate solution used was a solution of 0.63 g of copper (II) nitrate monohydrate in 100 g of pure water, and 25% aqueous ammonia was used for pH adjustment.
  • the slurry after ion exchange was filtered, washed, and dried at 110 ° C. overnight to obtain a copper-containing intergrowth silicoaluminophosphate.
  • the copper content of the obtained copper-containing silicoaluminophosphate was 0.3% by weight.
  • Comparative Example 1 Preparation of silicoaluminophosphate 244 g of water, 279 g of 85% aqueous phosphoric acid solution, 135 g of 30% colloidal silica, 1159 g of 35% tetraethylammonium hydroxide (TEAOH; industrial, manufactured by Alpha-Acer) and 183 g of 77% pseudoboehmite were mixed together. Prepared.
  • TEAOH tetraethylammonium hydroxide
  • Table 7 shows the interplanar spacing value (d value) and relative intensity obtained from the powder X-ray diffraction pattern of the product after firing. In the table, only diffraction peaks having a relative intensity of 2% or more are shown.
  • the obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours.
  • An aqueous copper nitrate solution in which 0.46 g of copper nitrate trihydrate was dissolved in 2.9 g of pure water was dropped onto 7.5 g of the calcined sample, and then kneaded in a mortar for 10 minutes.
  • the kneaded intergranular silicoaluminophosphate was dried at 110 ° C. overnight and then fired in an air atmosphere at 500 ° C. for 1 hour to obtain a copper-containing intergranular silicoaluminophosphate.
  • the copper content of the obtained copper-containing intergrowth silicoaluminophosphate was 1.6% by weight.
  • Example 1 and Comparative Example 1 show a nitrogen oxide reduction rate of 90% or more, and have equivalent nitrogen oxide reduction characteristics.
  • the hydration reduction maintenance rate of Comparative Example 1 after the hydration treatment for 80 days was 83%, which was lower than the hydration reduction maintenance rate of Example 1.
  • the intergrowth silicoaluminophosphate of the present invention has a nitrogen oxide reduction rate even at a low temperature of 300 ° C. or less, and even 200 ° C. or less, compared with the intergrowth silicoaluminophosphate containing many CHA structures. It turned out that there was little change of.
  • Example 1 was 74%, while Comparative Example 1 was 70%. Accordingly, at a lower temperature of 150 ° C. or lower, the intergrowth silicoaluminophosphate of the present invention has a higher nitrogen oxide reduction rate than intergrowth silicoaluminophosphate containing a large amount of CHA structure. It was confirmed that Further, the hydration reduction maintenance rate at 150 ° C. is 90% or more in Example 1, whereas it is 30% in Comparative Example 1, and the intergrowth silicoaluminophosphate of the present invention has a continuous CHA structure. It was confirmed that the hydration reduction maintenance rate was 3 times or more compared with the crystalline silicoaluminophosphate. Accordingly, it was confirmed that the intergrowth silicoaluminophosphate of the present invention has nitrogen oxide reduction characteristics with little change in nitrogen oxide reduction rate at a lower temperature of 150 ° C. or lower.
  • Comparative Example 2 (Preparation of silicoaluminophosphate) 64.3 g of water, 18.3 g of 85% phosphoric acid aqueous solution, 30% colloidal silica (6.9 g, N-ethyldiisopropylamine (hereinafter referred to as “EDIPA”; special grade reagent, manufactured by Kishida Chemical), and 11.7 g of 77% pseudo boehmite was mixed to prepare a reaction mixture having the following composition.
  • EDIPA N-ethyldiisopropylamine
  • Table 9 shows the interplanar spacing value (d value) and relative intensity obtained from the powder X-ray diffraction pattern of the product after firing. In the table, only diffraction peaks having a relative intensity of 2% or more are shown.
  • the composition of the silicoaluminophosphate was represented by the following formula. (Si 0.12 Al 0.50 P 0.39 ) O 2
  • the crystalline shape of the silicoaluminophosphate was an indefinite shape such as a columnar shape or a plate shape, and was a particle having a long side direction of about 1 ⁇ m, and the solid acid amount was 0.33 mmol / g.
  • the obtained silicoaluminophosphate was calcined at 600 ° C. for 2 hours.
  • An aqueous copper nitrate solution in which 0.46 g of copper nitrate trihydrate was dissolved in 2.9 g of pure water was dropped onto 7.5 g of the calcined sample, and then kneaded in a mortar for 10 minutes. After the kneaded silicoaluminophosphate was dried at 110 ° C. overnight, firing was performed at 500 ° C. for 1 hour in an air atmosphere to obtain a copper-containing silicoaluminophosphate.
  • the copper content of the obtained copper-containing silicoaluminophosphate was 1.6% by weight.
  • Example 10 Heat resistance evaluation The same durability treatment as in Example 1 was performed on the copper-containing intergrowth silicoaluminophosphates of Examples 1, 2, 4 and Comparative Example 1 and the copper-containing silicoaluminophosphate of Comparative Example 2. The nitrogen oxide reduction rate of these samples before and after the durability treatment was measured. The results are shown in Table 10.
  • the intergrowth silicoaluminophosphate of the examples has a nitrogen oxide reduction rate of 65% or more before endurance treatment at any of 150 ° C., 200 ° C., 300 ° C., and 500 ° C., It was confirmed that the nitrogen oxide reduction rate after the durability treatment was 70% or more, both having high nitrogen oxide reduction characteristics. In particular, it was confirmed that the copper-containing intergrowth silicoaluminophosphates of the examples showed a high value of the nitrogen oxide reduction rate at 150 ° C. exceeding 70% after the durability treatment. Further, the copper-containing intergrowth silicoaluminophosphate of Example 1 has the same amount of copper as the intergrowth silicoaluminophosphate of Comparative Example 1.
  • Example 1 the nitrogen oxide reduction rate of Example 1 was higher than that of Comparative Example 1 regardless of the endurance treatment.
  • the intergrowth silicoaluminophosphate of the present invention exhibits a higher nitrogen oxide reduction rate than the intergrowth silicoaluminophosphate containing a large amount of CHA structure, particularly the nitrogen oxide reduction rate at a low temperature of 150 ° C. Was confirmed to be high.
  • the present adsorbent / desorbent will be described more specifically by experimental examples, but the present adsorbent / desorbent is not limited to this.
  • the intergrowth ratio (CHA / AEI ratio) of the sample was determined by comparing the XRD simulation pattern using the DIFFaX program (v1.813) distributed by the International Zeolite Society and the XRD pattern of the sample.
  • the solid acid amount of the sample was measured by the NH 3 -TPD method shown below. Prior to measurement, the sample was pressure-molded, pulverized, and sized to 20-30 mesh. 0.1 g of the sized sample was weighed and filled into a fixed bed normal pressure flow type reaction tube (hereinafter simply referred to as “reaction tube”). This was heated to 500 ° C. while flowing helium gas through the reaction tube filled with the sample. Thereby, the sample and helium gas were brought into contact. After holding at 500 ° C. for 1 hour, the reaction tube filled with the sample was cooled to 100 ° C.
  • an ammonia-helium mixed gas containing 10% by volume of ammonia was passed at a flow rate of 60 mL / min for 1 hour.
  • ammonia was adsorbed on the sample.
  • the ammonia-helium mixed gas was stopped, and instead, helium gas was passed at 60 mL / min for 1 hour.
  • ammonia gas remaining in the atmosphere of the reaction tube that is, ammonia that was not adsorbed on the sample was removed from the reaction tube.
  • the temperature of the sample was increased from 100 ° C. to 700 ° C.
  • a desorption peak having a peak top at a desorption temperature of 100 ° C. or higher and lower than 250 ° C. is a peak derived from desorption of ammonia physically adsorbed on a sample (hereinafter referred to as “physical adsorption peak”).
  • the desorption peak having a peak top at a desorption temperature of 250 ° C. or higher and 450 ° C. or lower was regarded as a peak derived from the solid acid of the sample (hereinafter referred to as “solid acid peak”).
  • the peak area of the solid acid peak in the desorption spectrum was obtained, and the NH 3 -TPD peak of a gas having a known ammonia amount (mmol) (0.25 mL of 10 vol% ammonia-helium mixed gas) was measured in advance. The ratio with the area was determined. Thus, the ammonia desorption amount (mmol) corresponding to the solid acid peak was determined, and the solid acid amount of the sample was determined by the following equation.
  • Apparatus Magnetic floating balance (manufactured by Nippon Bell Co., Ltd.) Adsorption temperature: 25 ° C Air constant temperature: 80 ° C Initial introduction pressure: 5 kPa
  • the water vapor adsorption isotherm was obtained under the above conditions, and the water vapor adsorption amount at a relative pressure of 0.05 to 0.30 was determined from this.
  • the water vapor adsorption amount was determined as the water vapor adsorption amount (g / 100 g) with respect to 100 g of the sample.
  • Experimental example 1 29.4 g of water, 9.00 g of 85% phosphoric acid aqueous solution (Kishida Chemical: special grade reagent), 1.53 g of 30% colloidal silica (Nissan Chemical: ST-N30), 11.9 g of triethylamine (Kishida Chemical: special grade reagent), and 5.19 g of 77% pseudo boehmite (Sasol: Pural SB) and 0.075 g of seed crystals obtained by wet milling crystalline silicoaluminophosphate with a ball mill for 1 hour were mixed to prepare a reaction mixture having the following composition: did.
  • This reaction mixture was placed in an 80 ml stainless steel sealed pressure vessel and kept at 180 ° C. for 62 hours with stirring.
  • the product was filtered, washed with water, dried at 110 ° C. overnight, and then calcined at 600 ° C. for 2 hours.
  • the interplanar spacing value (d value) of the peak position and the relative intensity of the peak were determined from the XRD pattern obtained by an X-ray diffractometer (Mac Science: MPX3) using copper K ⁇ rays as the radiation source. Shown in
  • the obtained silicoaluminophosphate was calcined at 600 ° C. for 2 hours. As a result, the organic mineralizer was removed to obtain a proton type (H + type) silicoaluminophosphate.
  • the silicoaluminophosphate was weighed in a 0.5 g petri dish, and placed in a desiccator containing pure water at the bottom, and then the desiccator was sealed. By placing the desiccator in a dryer maintained at 80 ° C., the silicoaluminophosphate was placed in an atmosphere of saturated water vapor concentration (291 g / m 3 ) at 80 ° C. The silicoaluminophosphate was hydrated by standing in the atmosphere for 8 days.
  • the solid acid amounts of the silicoaluminophosphate after calcination (that is, the silicoaluminophosphate before hydration treatment) and the silicoaluminophosphate after hydration treatment were measured.
  • the solid acid amount of the silicoaluminophosphate after firing was 0.78 mmol / g
  • the solid acid amount of the silicoaluminophosphate after hydration treatment was 0.54 mmol / g.
  • the subsequent solid acid retention rate was 70%. From the water vapor adsorption isotherm, the water vapor adsorption amount at a relative pressure of 0.05 to 0.30 was 24.3 (g / 100 g). The water vapor adsorption isotherm measured at 25 ° C. is shown in FIG.
  • Experimental example 2 1698 g of water, 559 g of 85% phosphoric acid aqueous solution, 284 g of 30% colloidal silica, 736 g of triethylamine, 322 g of 77% pseudo-boehmite, and 4.2 g of seed crystals obtained by wet-grinding crystalline silicoaluminophosphate with a ball mill for 1 hour are mixed.
  • a reaction mixture of the following composition was prepared:
  • the reaction mixture was placed in a 4000 ml stainless steel sealed pressure vessel and held at 180 ° C. for 64 hours with stirring at 270 rpm.
  • the product was filtered, washed with water, dried at 110 ° C. overnight, and then calcined at 600 ° C. for 2 hours.
  • the interplanar spacing value (d value) of the peak position and the relative intensity of the peak were determined from the X-ray diffraction pattern obtained by a powder X-ray diffractometer (Mac Science: MPX3) using copper K ⁇ rays as the radiation source. Table 12 shows.
  • the product after drying was subjected to composition analysis using an inductively coupled plasma emission spectrometer (ICP), and had the following composition in terms of oxide.
  • ICP inductively coupled plasma emission spectrometer
  • the obtained silicoaluminophosphate had a CHA / AEI intergrowth ratio of 35/65 in CHA / AEI ratio.
  • the crystal structure retention rate was 100%, which was a high crystal structure retention rate.
  • the silicoaluminophosphate was calcined and hydrated by the same method as in Experimental Example 1, and the amount of the solid acid was measured.
  • the solid acid amount of the silicoaluminophosphate after firing was 0.80 mmol / g
  • the solid acid amount of the silicoaluminophosphate after hydration treatment was 0.51 mmol / g.
  • the subsequent solid acid retention rate was 64%. From the water vapor adsorption isotherm, the water vapor adsorption amount at a relative pressure of 0.05 to 0.30 was 22.16 (g / 100 g).
  • Experimental example 3 The same operation as in Experimental Example 2 was performed except that the crystallization temperature was 175 ° C.
  • the interplanar spacing value (d value) of the peak position and the relative intensity of the peak were determined from the X-ray diffraction pattern obtained by a powder X-ray diffractometer (Mac Science: MPX3) using copper K ⁇ rays as the radiation source. Table 13 shows.
  • the product after drying was subjected to composition analysis using an inductively coupled plasma emission spectrometer (ICP), and had the following composition in terms of oxide.
  • ICP inductively coupled plasma emission spectrometer
  • the resulting silicoaluminophosphate had a CHA / AEI intergrowth ratio of 40/60 in terms of CHA / AEI ratio.
  • the crystal structure retention rate was 83%, which was a high crystal structure retention rate.
  • the silicoaluminophosphate was calcined and hydrated by the same method as in Experimental Example 1, and the amount of the solid acid was measured. As a result, the solid acid amount of the silicoaluminophosphate after firing was 0.94 mmol / g, and the solid acid amount of the silicoaluminophosphate after hydration treatment was 0.55 mmol / g. The subsequent solid acid retention rate was 58%. From the water vapor adsorption isotherm, the water vapor adsorption amount at a relative pressure of 0.05 to 0.30 was 20.9 (g / 100 g).
  • Comparative Experiment Example 1 244 g of water, 279 g of 85% phosphoric acid aqueous solution (Kishida Chemical: Special Grade Reagent), 135 g of 30% colloidal silica (Nissan Chemical: ST-N30), 1159 g of 35% tetraethylammonium hydroxide (Alfa Acer), 77% pseudoboehmite (Sasol: Pural SB) 183 g was mixed to prepare a reaction mixture having the following composition.
  • TEAOH represents tetraethylammonium hydroxide used as an organic mineralizer.
  • the reaction mixture was placed in a 4000 mL stainless steel sealed pressure vessel and held at 200 ° C. for 92 hours with stirring at 270 rpm.
  • the product was filtered, washed with water, dried at 110 ° C. overnight, and then calcined at 600 ° C. for 2 hours.
  • the lattice spacing value (d value) of the peak position and the relative intensity of the peak were obtained from the XRD pattern obtained by a powder X-ray diffractometer (Mac Science: MPX3) using copper K ⁇ rays as the radiation source. Table 14 shows.
  • SAPO-34 had a lattice spacing-relative strength characteristic.
  • the product after drying was subjected to composition analysis using an inductively coupled plasma emission spectrometer (ICP), and had the following composition in terms of oxide. (Si 0.12 Al 0.49 P 0.39 ) O 2
  • the crystal structure retention rate was 41%, and the crystal structure retention rate was reduced.
  • Comparative Experimental Example 1 had a small amount of water vapor adsorption at a relative pressure of 0.05 to 0.30. From this, the silicoaluminophosphate of Experimental Example 1 has a higher crystal structure retention rate when stored in saturated steam at 80 ° C. for 8 days, and is excellent in water resistance. As a result, in the saturated steam at 80 ° C. The amount of water vapor adsorption after storage for 8 days is high.
  • the intergrowth silicoaluminophosphate of the present invention can be used as a nitrogen oxide reduction catalyst, particularly a nitrogen oxide reduction catalyst that selectively reduces nitrogen oxide using ammonia or the like as a reducing agent.
  • the nitrogen oxide reduction catalyst containing the intergrowth silicoaluminophosphate of the present invention includes, for example, exhaust gas containing oxygen from internal combustion engines such as diesel engines and gasoline engines and combustion facilities. It can be used for exhaust gas treatment systems such as automobile exhaust gas and factory exhaust gas.
  • This adsorption / desorption agent can be used as a water vapor adsorption / desorption agent for an adsorption heat pump system, a desiccant air conditioning system, a humidity adjusting wall agent, a humidity adjusting sheet and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Provided is a silicoaluminophosphate salt for which deterioration of the nitrogen oxide reduction rate is low even when exposed to an atmosphere containing moisture. A silicoaluminophosphate salt which comprises at least one type of metal selected from the group consisting of group VIIIB elements, group IB elements and group VIIB elements of the Periodic Table, and has a CHA structure and an AEI structure, the ratio of the AEI structure exceeding 50%. In this silicoaluminophosphate salt, the at least one type of metal from group VIIIB elements and group IB elements of the Periodic Table is preferably copper.

Description

シリコアルミノリン酸塩及びこれを用いた窒素酸化物還元触媒Silicoaluminophosphate and nitrogen oxide reduction catalyst using the same
 本発明は、CHA構造及びAEI構造を有するシリコアルミノリン酸塩に係る。より詳細には、本発明は、窒素酸化物還元触媒に適した、金属を含有するCHA構造及びAEI構造を有するシリコアルミノリン酸塩に係る。 The present invention relates to a silicoaluminophosphate having a CHA structure and an AEI structure. More specifically, the present invention relates to a silicoaluminophosphate having a metal-containing CHA structure and an AEI structure suitable for a nitrogen oxide reduction catalyst.
 2種類の骨格構造を有するシリコアルミノリン酸塩として、SAPO-34のCHA構造の一部とSAPO-18のAEI構造の一部が積層した連晶体が報告されている(例えば、特許文献1)。
 また、このような連晶体は、窒素酸化物浄化触媒として利用できることが報告されている(特許文献2)。例えば、特許文献2では、CHA構造とAEI構造との割合が90:10であるシリコアルミノリン酸塩に金属を含有させ、これを窒素酸化物還元触媒として使用させることが報告されている。
As a silicoaluminophosphate having two types of skeletal structures, a continuous crystal in which part of the CHA structure of SAPO-34 and part of the AEI structure of SAPO-18 is laminated has been reported (for example, Patent Document 1). .
Further, it has been reported that such a continuous crystal can be used as a nitrogen oxide purification catalyst (Patent Document 2). For example, Patent Literature 2 reports that a metal is contained in silicoaluminophosphate having a ratio of CHA structure to AEI structure of 90:10 and used as a nitrogen oxide reduction catalyst.
日本国特表2004-524252号公報Japanese National Table 2004-524252 WO2011/112949号公報WO2011-112949 Publication
 特許文献2において開示されたシリコアルミノリン酸塩の連晶体からなる窒素酸化物還元触媒は、水分を含む雰囲気に晒されると、その結晶性が経時的に低下する。これに加え、当該窒素酸化物還元触媒は、水和による結晶性の低下とともに固体酸量が低下する。これにより、従来のシリコアルミノリン酸塩の連晶体からなる窒素酸化物還元触媒は、保管や使用の間に窒素酸化物還元率が著しく低下するという問題を有していた。
 本発明はこれらの課題を解決し、水分を含む雰囲気に晒されても窒素酸化物還元率の低下が少ないシリコアルミノリン酸塩を提供することにある。
When the nitrogen oxide reduction catalyst comprising a silicoaluminophosphate continuous crystal disclosed in Patent Document 2 is exposed to an atmosphere containing moisture, the crystallinity of the catalyst decreases with time. In addition, the nitrogen oxide reduction catalyst has a solid acid amount that decreases with a decrease in crystallinity due to hydration. As a result, the conventional nitrogen oxide reduction catalyst composed of a continuous crystal of silicoaluminophosphate has a problem that the nitrogen oxide reduction rate is remarkably reduced during storage and use.
The present invention is to solve these problems and to provide a silicoaluminophosphate that has a low reduction in nitrogen oxide reduction rate even when exposed to an atmosphere containing moisture.
 上記課題に鑑み、本発明者らは鋭意検討した。その結果、CHA構造及びAEI構造を含み、なおかつ、AEI構造を多く含むシリコアルミノリン酸塩が金属を含有することで、これが、水分を含む雰囲気下に晒されても窒素酸化物還元率の低下の少ない触媒となることを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨は以下の[1]乃至[5]である。
In view of the above problems, the present inventors have intensively studied. As a result, the silicoaluminophosphate containing a CHA structure and an AEI structure and containing a large amount of the AEI structure contains a metal, which reduces the reduction rate of nitrogen oxides even when exposed to an atmosphere containing moisture. As a result, the present invention has been completed.
That is, the gist of the present invention is the following [1] to [5].
[1] 周期表のVIIIB族元素、IB族元素及びVIIB族元素の群から選ばれる少なくとも1種の金属を有し、AEI構造の割合が50%を超える、CHA構造及びAEI構造を有するシリコアルミノリン酸塩。
[2] 周期表のVIIIB族元素、IB族元素及びVIIB族元素の群から選ばれる少なくとも1種の金属が銅である上記[1]に記載のシリコアルミノリン酸塩。
[3] 3級アミンを含む混合物を結晶化する結晶化工程、該結晶化工程により得られたCHA構造及びAEI構造を有するシリコアルミノリン酸塩であって、AEI構造の割合が50%を超えるシリコアルミノリン酸塩に金属を含有させる金属含有工程、を有する、上記[1]又は[2]に記載のシリコアルミノリン酸塩の製造方法。
[4] 上記[1]又は[2]に記載のシリコアルミノリン酸塩を使用する窒素酸化物還元触媒の製造方法。
[5] 上記[1]又は[2]に記載のシリコアルミノリン酸塩を使用することを特徴とする窒素酸化物の還元方法。
[1] Silicoaluminum having a CHA structure and an AEI structure, having at least one metal selected from the group of Group VIIIB elements, Group IB elements, and Group VIIB elements of the periodic table, and the proportion of the AEI structure exceeds 50% Norphosphate.
[2] The silicoaluminophosphate according to the above [1], wherein at least one metal selected from the group of Group VIIIB elements, Group IB elements and Group VIIB elements of the periodic table is copper.
[3] A crystallization step of crystallizing a mixture containing a tertiary amine, a silicoaluminophosphate having a CHA structure and an AEI structure obtained by the crystallization step, and the proportion of the AEI structure exceeds 50% The method for producing a silicoaluminophosphate according to the above [1] or [2], comprising a metal-containing step of incorporating a metal into the silicoaluminophosphate.
[4] A method for producing a nitrogen oxide reduction catalyst using the silicoaluminophosphate according to [1] or [2].
[5] A method for reducing a nitrogen oxide, comprising using the silicoaluminophosphate according to [1] or [2].
 本発明により、水分を含む雰囲気に晒されても窒素酸化物還元率の低下が少ないシリコアルミノリン酸塩を提供することができる。
 さらに、本発明の連晶シリコアルミノリン酸塩により、水分を含む雰囲気に晒されても窒素酸化物還元率の低下が少ない窒素酸化物還元触媒、及びこれを用いた窒素酸化物の還元方法を提供することができる。特に、本発明の連晶シリコアルミノリン酸塩により、水分を含む雰囲気に晒されても、500℃未満、更には200℃以下、また更には150℃以下の低温下における窒素酸化物還元率の低下が少ない窒素酸化物還元触媒を提供することができる。そのため、本発明の連晶シリコアルミノリン酸塩及びこれを用いた窒素酸化物還元触媒は、水分を含む雰囲気に晒された後であっても窒素酸化物還元特性の低下が少なく、いわゆる耐水性が高い窒素酸化物還元触媒とすることができる。
 さらに、本発明の製造方法により、水分を含む雰囲気に晒されても窒素酸化物還元率の低下が少ないシリコアルミノリン酸塩の製造方法を提供する事ができる。
 またさらに、本吸脱着剤は高い水蒸気吸着量を有しており、吸着式ヒートポンプシステム、デシカント空調システム、湿度調整壁剤、湿度調整用シートなどの水蒸気吸脱着剤に使用することができる。
According to the present invention, it is possible to provide a silicoaluminophosphate that is less likely to decrease the nitrogen oxide reduction rate even when exposed to an atmosphere containing moisture.
Furthermore, the continuous crystal silicoaluminophosphate of the present invention provides a nitrogen oxide reduction catalyst that causes little reduction in the nitrogen oxide reduction rate even when exposed to an atmosphere containing moisture, and a nitrogen oxide reduction method using the same. Can be provided. In particular, the continuous crystal silicoaluminophosphate of the present invention has a nitrogen oxide reduction rate at a low temperature of less than 500 ° C., further 200 ° C. or less, or even 150 ° C. or less even when exposed to an atmosphere containing moisture. A nitrogen oxide reduction catalyst with little decrease can be provided. Therefore, the intergrowth silicoaluminophosphate of the present invention and the nitrogen oxide reduction catalyst using the same have little deterioration in nitrogen oxide reduction characteristics even after being exposed to moisture-containing atmosphere, so-called water resistance. Can be a high nitrogen oxide reduction catalyst.
Furthermore, the production method of the present invention can provide a method for producing silicoaluminophosphate with little reduction in nitrogen oxide reduction rate even when exposed to an atmosphere containing moisture.
Furthermore, the present adsorbent / desorbent has a high water vapor adsorption amount, and can be used for a water vapor adsorbent / desorbent such as an adsorption heat pump system, a desiccant air conditioning system, a humidity adjusting wall agent, and a humidity adjusting sheet.
実施例1で得られた連晶シリコアルミノリン酸塩のSEM写真を示す図である(図中スケールは5μm)。It is a figure which shows the SEM photograph of the continuous-crystal silicoaluminophosphate obtained in Example 1 (a scale is 5 micrometers in the figure). 実施例1で得られた連晶シリコアルミノリン酸塩のX線回折パターンを示す図である。2 is a diagram showing an X-ray diffraction pattern of a continuous crystal silicoaluminophosphate obtained in Example 1. FIG. 実験例1で得られたシリコアルミノリン酸塩の25℃で測定した水蒸気吸着等温線を示す図である。It is a figure which shows the water vapor | steam adsorption isotherm measured at 25 degreeC of the silicoaluminophosphate obtained in Experimental example 1. FIG. 比較実験例1で得られたシリコアルミノリン酸塩の25℃で測定した水蒸気吸着等温線を示す図である。It is a figure which shows the water vapor | steam adsorption isotherm measured at 25 degreeC of the silicoaluminophosphate obtained in the comparative experiment example 1. FIG.
 以下、本発明のCHA構造及びAEI構造を有するシリコアルミノリン酸塩について説明する。
 本発明は、シリコアルミノリン酸塩に係る。シリコアルミノリン酸塩(Silicoaluminophosphate)とは、ケイ素(Si)、アルミニウム(Al)、リン(P)及び酸素(O)を、その骨格の主成分とするゼオライト類縁物質である。シリコアルミノリン酸塩の組成は、以下の(1)式で表すことができる。
Hereinafter, the silicoaluminophosphate having the CHA structure and the AEI structure of the present invention will be described.
The present invention relates to silicoaluminophosphate. Silicoaluminophosphate is a zeolite-related substance containing silicon (Si), aluminum (Al), phosphorus (P) and oxygen (O) as main components. The composition of silicoaluminophosphate can be represented by the following formula (1).
      (SiAl)O     (1) (Si x Al y P z) O 2 (1)
(但し、0.05<x≦0.2、0.45≦y≦0.55、0.4≦z≦0.45、及び、x+y+z=1) (However, 0.05 <x ≦ 0.2, 0.45 ≦ y ≦ 0.55, 0.4 ≦ z ≦ 0.45, and x + y + z = 1)
 本発明のシリコアルミノリン酸塩は、CHA構造及びAEI構造を有する。
 CHA構造とは、国際ゼオライト学会(IZA)のStructure Commissionが定めているIUPAC構造コード(以下、単に「構造コード」とする。)で表記した場合に、CHA型となる構造である。また、AEI構造とは、構造コードで表記した場合にAEI型となる構造である。従って、本発明のシリコアルミノリン酸塩は、その結晶構造中にCHA構造及びAEI構造の2種の結晶構造、すなわち、CHA構造及びAEI構造の連晶相(Intergrowth phase)を有するシリコアルミノリン酸塩(以下、「連晶シリコアルミノリン酸塩」ともいう。)である。
 本発明の連晶シリコアルミノリン酸塩はCHA構造及びAEI構造を有し、その結晶中に占めるCHA構造とAEI構造との割合(以下、「連晶比」とする。)は、AEI構造が50%を超える。すなわち、本発明の連晶シリコアルミノリン酸塩は、その結晶において、CHA構造よりもAEI構造が多い連晶シリコアルミノリン酸塩である。
The silicoaluminophosphate of the present invention has a CHA structure and an AEI structure.
The CHA structure is a structure that becomes a CHA type when expressed by the IUPAC structure code (hereinafter, simply referred to as “structure code”) defined by the Structure Commission of the International Zeolite Society (IZA). The AEI structure is a structure that becomes an AEI type when expressed by a structure code. Accordingly, the silicoaluminophosphate of the present invention has a silicoaluminophosphate having two crystal structures of a CHA structure and an AEI structure in its crystal structure, that is, a CHA structure and an interphase of an AEI structure (Intergrowth phase). Salt (hereinafter also referred to as “continuous-crystal silicoaluminophosphate”).
The intergrowth silicoaluminophosphate of the present invention has a CHA structure and an AEI structure, and the proportion of the CHA structure and the AEI structure in the crystal (hereinafter referred to as “intergrowth ratio”) is determined by the AEI structure. Over 50%. That is, the intergrowth silicoaluminophosphate of the present invention is a intergrowth silicoaluminophosphate having a larger AEI structure than a CHA structure in the crystal.
 本発明の連晶シリコアルミノリン酸塩は、その連晶比をCHA/AEIで表現した場合に、CHA/AEI<1となる。AEI構造の割合が50%以下である場合、すなわちCHA/AEI≧1である場合は、水を含有する雰囲気下でこのようなシリコアルミノリン酸塩を窒素酸化物還元触媒として使用した場合、窒素酸化物還元率の低下が著しくなる。水を含有する雰囲気下における窒素酸化物還元率の低下をより抑制する観点から、本発明の連晶シリコアルミノリン酸塩の構造は、AEI構造が55%以上(CHA/AEI≦0.82)であることが好ましく、60%以上(CHA/AEI≦0.67)であることがより好ましい。
 一方、AEI構造の割合が80%以下(CHA/AEI≧0.25)、更には70%以下(CHA/AEI≧0.43)であれば、本発明の連晶シリコアルミノリン酸塩が高温下に晒された場合であっても、その窒素酸化物還元特性が低下しにくくなる。
The intergrowth silicoaluminophosphate of the present invention has CHA / AEI <1 when the intergrowth ratio is expressed in CHA / AEI. When the proportion of AEI structure is 50% or less, that is, when CHA / AEI ≧ 1, when such a silicoaluminophosphate is used as a nitrogen oxide reduction catalyst in an atmosphere containing water, nitrogen The reduction in the oxide reduction rate becomes significant. From the viewpoint of further suppressing the reduction of the nitrogen oxide reduction rate in an atmosphere containing water, the structure of the intergrowth silicoaluminophosphate of the present invention has an AEI structure of 55% or more (CHA / AEI ≦ 0.82). It is preferable that it is 60% or more (CHA / AEI ≦ 0.67).
On the other hand, if the proportion of the AEI structure is 80% or less (CHA / AEI ≧ 0.25), and further 70% or less (CHA / AEI ≧ 0.43), the intergrowth silicoaluminophosphate of the present invention has a high temperature. Even if it is exposed to the bottom, its nitrogen oxide reduction characteristics are unlikely to deteriorate.
 本発明において、連晶比はDIFFaXプログラムにより求めることができる。DIFFaXプログラムとは、ゼオライト等の連晶に対するXRD粉末パターンをシミュレートするためのシミュレーションプログラムであり、IZAにより市販されているプログラムである。 In the present invention, the intergrowth ratio can be obtained by the DIFFaX program. The DIFFaX program is a simulation program for simulating an XRD powder pattern for a continuous crystal such as zeolite, and is a program marketed by IZA.
 本発明の連晶シリコアルミノリン酸塩は上記の連晶比を有する。そのため、本発明の連晶シリコアルミノリン酸塩は、その粉末X線回折パターンにおいて、面間隔(d値)5.22±0.1Åに相当するX線回折ピーク(CuKα線を線源とした場合の2θ=16.99±0.1°にピークトップを有するX線回折ピーク)を有し、なおかつ、面間隔5.16±0.1Åに相当するX線回折ピーク(CuKα線を線源とした場合の2θ=17.20±0.1°にピークトップを有するX線回折ピーク)を実質的に有さないパターンを示す。
 さらに、本発明の連晶シリコアルミノリン酸塩は、その粉末X線回折パターンにおいて、面間隔5.22±0.1Åに相当するピーク(CuKα線を線源とした場合の2θ=16.99±0.1°にピークトップを有するX線回折ピーク)と面間隔4.16±0.05Åに相当するピーク(CuKα線を線源とした場合の2θ=21.34±0.1°にピークトップを有するX線回折ピーク)とを有することが好ましい。なお、本発明の連晶シリコアルミノリン酸塩は、面間隔4.16±0.05Åに相当するピークが、面間隔5.22±0.1Åに相当するピークよりも強度が高くなる場合がある。
The intergrowth silicoaluminophosphate of the present invention has the above intergrowth ratio. Therefore, the intergrowth silicoaluminophosphate of the present invention has an X-ray diffraction peak corresponding to an interplanar spacing (d value) of 5.22 ± 0.1 mm (CuKα ray as a radiation source) in the powder X-ray diffraction pattern. X-ray diffraction peak (CuKα ray as a radiation source) corresponding to an interplanar spacing of 5.16 ± 0.1 θ. X-ray diffraction peak having a peak top at 2θ = 17.20 ± 0.1 °).
Further, the intergrowth silicoaluminophosphate of the present invention has a peak corresponding to an interplanar spacing of 5.22 ± 0.1 mm in the powder X-ray diffraction pattern (2θ = 16.99 when CuKα rays are used as a radiation source). X-ray diffraction peak having a peak top at ± 0.1 °) and a peak corresponding to an interplanar spacing of 4.16 ± 0.05 mm (when 2θ = 21.34 ± 0.1 ° using CuKα ray as a radiation source) X-ray diffraction peak having a peak top). In the intergrowth silicoaluminophosphate of the present invention, the peak corresponding to the interplanar spacing of 4.16 ± 0.05% may be stronger than the peak corresponding to the interplanar spacing of 5.22 ± 0.1%. is there.
 本発明の連晶シリコアルミノリン酸塩の組成は、以下の式で表される組成であることが好ましい。 The composition of the intergrowth silicoaluminophosphate of the present invention is preferably a composition represented by the following formula.
  (SiAl)O (Si x Al y P z) O 2
 (但し、x+y+z=1、0.05<x≦0.15) (However, x + y + z = 1, 0.05 <x ≦ 0.15)
 xが0.05を超えること、好ましくは0.07以上であることで、窒素酸化物還元率がより高くなる。一方、xが0.15以下、更には0.13以下、また更には0.12未満であることで、本発明の連晶シリコアルミノリン酸塩は窒素酸化物還元率が高く、なおかつ、水を含む雰囲気下に晒されても、その窒素酸化物還元率が低下しにくい窒素酸化物還元触媒となりやすい。 When x exceeds 0.05, preferably 0.07 or more, the nitrogen oxide reduction rate becomes higher. On the other hand, when x is 0.15 or less, further 0.13 or less, and further less than 0.12, the intergrowth silicoaluminophosphate of the present invention has a high nitrogen oxide reduction rate and water. Even when exposed to an atmosphere containing nitrogen, the nitrogen oxide reduction rate is likely to be a nitrogen oxide reduction catalyst that is unlikely to decrease.
 本発明の連晶シリコアルミノリン酸塩は、窒素酸化物還元触媒として使用できる程度の粒径を有していればよい。このような粒径として、平均粒径が10μm以下、更には7μm以下、また更には5μm以下を挙げることができる。また、平均粒径が0.5μm以上であることで、ハニカム等の触媒担体に塗布する際の操作性(ハンドリング)が高くなる。窒素酸化物還元特性と操作性のバランスをとる観点から、平均粒径は0.5μm以上であればよく、更には1μm以上であればよい。
 本発明において、平均粒径とは一次粒子の粒径を平均したものである。したがって、一次粒子が凝集して形成された二次粒子、いわゆる凝集粒子の粒子径を平均して得られるものとは異なる。平均粒径は、例えば、走査型電子顕微鏡(以下、「SEM」とする)観察により観察された連晶シリコアルミノリン酸塩の粒子を複数(例えば、100個以上)無作為に選択し、この粒子径を測定して得られた粒子径の平均を求めることで測定することができる。
The intergrowth silicoaluminophosphate of the present invention only needs to have a particle size that can be used as a nitrogen oxide reduction catalyst. Examples of such a particle size include an average particle size of 10 μm or less, further 7 μm or less, and further 5 μm or less. Further, when the average particle size is 0.5 μm or more, the operability (handling) when applied to a catalyst carrier such as a honeycomb is increased. From the viewpoint of balancing nitrogen oxide reduction characteristics and operability, the average particle diameter may be 0.5 μm or more, and more preferably 1 μm or more.
In the present invention, the average particle diameter is an average of the particle diameters of primary particles. Therefore, it is different from an average particle diameter of secondary particles formed by aggregation of primary particles, that is, so-called aggregate particles. The average particle size is, for example, randomly selected from a plurality of (for example, 100 or more) particles of intergrowth silicoaluminophosphate observed by observation with a scanning electron microscope (hereinafter referred to as “SEM”). It can be measured by determining the average particle diameter obtained by measuring the particle diameter.
 本発明の連晶シリコアルミノリン酸塩の表面積は、効率よく窒素酸化物還元反応が生じる程度であればよい。本発明の連晶シリコアルミノリン酸塩のBET比表面積として、例えば、500m/g以上、800m/g以下を挙げることができる。
 なお、本発明の連晶シリコアルミノリン酸塩は細孔を多く有する、いわゆる多孔構造である。そのため、本発明の連晶シリコアルミノリン酸塩においては、表面積の大小と平均粒径の大小とは、実質的に相関がない。
The surface area of the intergrowth silicoaluminophosphate of the present invention may be such that a nitrogen oxide reduction reaction is efficiently generated. Examples of the BET specific surface area of the intergrowth silicoaluminophosphate of the present invention include 500 m 2 / g or more and 800 m 2 / g or less.
The intergrowth silicoaluminophosphate of the present invention has a so-called porous structure having many pores. Therefore, in the intergrowth silicoaluminophosphate of the present invention, there is substantially no correlation between the size of the surface area and the size of the average particle diameter.
 本発明の連晶シリコアルミノリン酸塩は、金属を含有する。本発明の連晶シリコアルミノリン酸塩が含有する金属は、周期表のVIIIB族元素、IB族元素及びVIIB族元素の群から選ばれる少なくとも1種であり、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、鉄(Fe)、銅(Cu)、コバルト(Co)、マンガン(Mn)及びインジウム(In)の群から選ばれる少なくとも1種であることが好ましく、銅であることがより好ましい。これらの金属を本発明の連晶シリコアルミノリン酸塩が含有することで、これを窒素酸化物還元触媒として使用した場合に特に高い窒素酸化物還元率を有する触媒となりやすい。特に、本発明の連晶シリコアルミノリン酸塩が銅を含有することで、500℃以上の高温だけでなく、それ未満の低温においても高い窒素酸化物還元率を示す窒素酸化物還元触媒となりやすい。 The intergrowth silicoaluminophosphate of the present invention contains a metal. The metal contained in the intergrowth silicoaluminophosphate of the present invention is at least one selected from the group consisting of Group VIIIB elements, Group IB elements and Group VIIB elements of the periodic table, and includes platinum (Pt) and palladium (Pd). , Rhodium (Rh), iron (Fe), copper (Cu), cobalt (Co), manganese (Mn), and indium (In), and preferably copper. preferable. The inclusion of these metals in the intergrowth silicoaluminophosphate of the present invention tends to be a catalyst having a particularly high nitrogen oxide reduction rate when used as a nitrogen oxide reduction catalyst. In particular, since the intergrowth silicoaluminophosphate of the present invention contains copper, it is likely to be a nitrogen oxide reduction catalyst that exhibits a high nitrogen oxide reduction rate not only at a high temperature of 500 ° C. or higher but also at a low temperature below that. .
 金属の含有量は任意であるが、例えば、本発明の連晶シリコアルミノリン酸塩の重量に対して、含有する金属の重量が0.3重量%以上、更には0.6重量%以上、また更には0.8重量%以上であることを挙げることができる。一方、金属の含有量は5重量%以下、更には4重量%以下、また更には3重量%以下であれば、金属含有による窒素酸化物還元特性の向上効果が得られやすい。 Although the metal content is arbitrary, for example, the weight of the metal contained is 0.3 wt% or more, further 0.6 wt% or more, based on the weight of the continuous silicoaluminophosphate of the present invention. Furthermore, it can mention that it is 0.8 weight% or more. On the other hand, if the metal content is 5% by weight or less, further 4% by weight or less, and further 3% by weight or less, the effect of improving the nitrogen oxide reduction characteristics due to the metal content is easily obtained.
 次に、本発明の連晶シリコアルミノリン酸塩の製造方法について説明する。
 本発明の連晶シリコアルミノリン酸塩の製造方法は、AEI構造の割合が50%を超えることを特徴とする、CHA構造及びAEI構造を有するシリコアルミノリン酸塩に金属を含有させる金属含有工程を有することを特徴とする製造方法である。
 特に好ましい本発明の連晶シリコアルミノリン酸塩の製造方法として、3級アミンを含む混合物を結晶化する結晶化工程、該結晶化工程により得られたAEI構造の割合が50%を超えることを特徴とする、CHA構造及びAEI構造を有するシリコアルミノリン酸塩に金属を含有させる金属含有工程、を有することを特徴とする製造方法を挙げることができる。
Next, the manufacturing method of the intergranular silicoaluminophosphate of this invention is demonstrated.
The method for producing a continuous silicoaluminophosphate according to the present invention includes a metal-containing step of containing a metal in a silicoaluminophosphate having a CHA structure and an AEI structure, wherein the proportion of the AEI structure exceeds 50%. It is a manufacturing method characterized by having.
As a particularly preferred method for producing the intergrowth silicoaluminophosphate of the present invention, a crystallization step of crystallizing a mixture containing a tertiary amine, and the proportion of the AEI structure obtained by the crystallization step exceeds 50%. The metal-containing process which makes a silicoaluminophosphate which has the CHA structure and AEI structure characterized by including a metal can be mentioned.
 本発明の製造方法は、AEI構造の割合が50%を超えること(CHA/AEI<1)を特徴とする、CHA構造及びAEI構造を有するシリコアルミノリン酸塩(連晶シリコアルミノリン酸塩)に金属を含有させる金属含有工程を有する。金属を含有することにより、得られる連晶シリコアルミノリン酸塩が、水分を含む雰囲気下に晒されても窒素酸化物還元率の低下の少ない窒素酸化物還元触媒となる。 The production method of the present invention is characterized in that the proportion of AEI structure exceeds 50% (CHA / AEI <1), and silicoaluminophosphate having a CHA structure and an AEI structure (intergranular silicoaluminophosphate). A metal-containing step of containing a metal. By containing the metal, the resulting intergranular silicoaluminophosphate becomes a nitrogen oxide reduction catalyst with little reduction in nitrogen oxide reduction rate even when exposed to an atmosphere containing moisture.
 連晶シリコアルミノリン酸塩が含有する金属は、周期表のVIIIB族元素、IB族元素及びVIIB族元素の群から選ばれる少なくとも1種であり、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、鉄(Fe)、銅(Cu)、コバルト(Co)、マンガン(Mn)及びインジウム(In)の群から選ばれる少なくとも1種であることが好ましく、銅であることがより好ましい。これらの金属を含有することで、得られる連晶シリコアルミノリン酸塩が高い窒素酸化物還元率を有する窒素酸化物還元触媒となる。さらに、連晶シリコアルミノリン酸塩が銅を含有すること、すなわち、連晶シリコアルミノリン酸塩が銅含有連晶シリコアルミノリン酸塩であることで、これを窒素酸化物還元触媒として使用した場合、500℃以上の高温だけでなく、それ未満の低温においても高い窒素酸化物還元率を示す窒素酸化物還元触媒となりやすい。 The metal contained in the intergrowth silicoaluminophosphate is at least one selected from the group consisting of group VIIIB elements, group IB elements and group VIIB elements of the periodic table, and includes platinum (Pt), palladium (Pd), rhodium ( Rh), iron (Fe), copper (Cu), cobalt (Co), manganese (Mn) and at least one selected from the group of indium (In) are preferable, and copper is more preferable. By containing these metals, the intergrowth silicoaluminophosphate obtained becomes a nitrogen oxide reduction catalyst having a high nitrogen oxide reduction rate. Furthermore, the intergrowth silicoaluminophosphate contained copper, that is, the intergrowth silicoaluminophosphate was a copper-containing intergrowth silicoaluminophosphate, which was used as a nitrogen oxide reduction catalyst. In this case, the catalyst tends to be a nitrogen oxide reduction catalyst exhibiting a high nitrogen oxide reduction rate not only at a high temperature of 500 ° C. or higher, but also at a low temperature lower than that.
 金属含有工程に供する連晶シリコアルミノリン酸塩は、プロトン型(H型)のシリコアルミノリン酸塩又はアンモニア型(NH 型)の連晶シリコアルミノリン酸塩のいずれか1種以上であることが好ましい。これにより、連晶シリコアルミノリン酸塩への金属の含有がより効率的に行える傾向にある。 The intergrowth silicoaluminophosphate used in the metal-containing process is at least one of proton type (H + type) silicoaluminophosphate or ammonia type (NH 4 + type) intergrowth silicoaluminophosphate. It is preferable that Thereby, it exists in the tendency which can contain the metal to a continuous crystal silicoaluminophosphate more efficiently.
 連晶シリコアルミノリン酸塩をプロトン型(H型)の連晶シリコアルミノリン酸塩とするためには、例えば、金属含有工程の前に連晶シリコアルミノリン酸塩を、大気中、400℃以上で焼成することが挙げられる。また、連晶シリコアルミノリン酸塩をアンモニア型(NH 型)の連晶シリコアルミノリン酸塩にするには、例えば、金属含有工程の前に連晶シリコアルミノリン酸塩を塩化アンモニウム水溶液でイオン交換することを挙げられる。 In order to convert the continuous crystal silicoaluminophosphate into a proton-type (H + -type) continuous crystal silicoaluminophosphate, for example, before the metal-containing step, the continuous crystal silicoaluminophosphate is converted to 400 in the atmosphere. Firing at a temperature of 0 ° C. or higher is mentioned. In addition, in order to convert the continuous crystal silicoaluminophosphate into an ammonia type (NH 4 + type) continuous crystal silicoaluminophosphate, for example, the intergranular silicoaluminophosphate is converted into an ammonium chloride aqueous solution before the metal-containing step. Ion exchange.
 金属含有工程において使用する原料は、連晶シリコアルミノリン酸塩に含有させる金属を含む硝酸塩、硫酸塩、酢酸塩、塩化物、錯塩、酸化物及び複合酸化物の群から選ばれるいずれか、並びにこれらの混合物を使用することができる。 The raw material used in the metal-containing step is any one selected from the group consisting of nitrates, sulfates, acetates, chlorides, complex salts, oxides and complex oxides containing metals to be included in the intergrowth silicoaluminophosphate, and Mixtures of these can be used.
 金属含有工程において、連晶シリコアルミノリン酸塩に金属が含有されれば、その含有方法は任意の方法を選択することができる。含有方法として、イオン交換法、含浸担持法、蒸発乾固法、共沈法、析出沈殿法又は物理混合法などの方法を例示することができる。
 金属の含有量は任意であるが、例えば、連晶シリコアルミノリン酸塩の重量に対して、含有された金属の重量が0.3重量%以上、更には0.6重量%以上、また更には0.8重量%以上となるように連晶シリコアルミノリン酸塩に金属を含有させることを挙げることができる。一方、金属の含有量が5重量%以下、更には4重量%以下、また更には3重量%以下となるように金属を連晶シリコアルミノリン酸塩に含有させれば、金属含有による窒素酸化物還元特性の向上が得られやすくなる傾向にある。
In the metal-containing step, if a metal is contained in the intergrowth silicoaluminophosphate, an arbitrary method can be selected as the containing method. Examples of the content method include an ion exchange method, an impregnation support method, an evaporation to dryness method, a coprecipitation method, a precipitation method, or a physical mixing method.
The metal content is arbitrary. For example, the weight of the metal contained is 0.3% by weight or more, further 0.6% by weight or more, or further, based on the weight of the intergrowth silicoaluminophosphate. Can include a metal in intergrowth silicoaluminophosphate so that it may become 0.8 weight% or more. On the other hand, if the metal is contained in the intergrowth silicoaluminophosphate so that the metal content is 5% by weight or less, further 4% by weight or less, and further 3% by weight or less, nitrogen oxidation due to metal content There is a tendency that improvement of the product reduction characteristic is easily obtained.
 本発明の製造方法では、金属含有工程を得た連晶シリコアルミノ酸塩をか焼するか焼工程を有することが好ましい。これにより、連晶シリコアルミノリン酸塩と金属とがより強固に結合しやすくなる。
 金属含有工程において連晶シリコアルミノリン酸塩に取り込まれた硝酸、硫酸、酢酸等の塩類が除去できれば、か焼の方法は任意の方法を適用することができる。か焼方法として、例えば、大気中または酸素ガスなどの酸化雰囲気下、或いは窒素、ヘリウム等の不活性雰囲気下で、400℃以上、1000℃以下の温度で金属含有工程で得た連晶シリコアルミノ酸塩を処理することが挙げられる。
In the manufacturing method of this invention, it is preferable to have a calcination process which calcinates the continuous-crystal silicoaluminate obtained by the metal containing process. Thereby, it becomes easy to bond a continuous crystal silicoaluminophosphate and a metal more firmly.
As long as salts such as nitric acid, sulfuric acid, and acetic acid incorporated into the intergrowth silicoaluminophosphate in the metal-containing step can be removed, any method can be applied as the calcination method. As the calcination method, for example, intergranular silicoalumino acid obtained in the metal-containing step at a temperature of 400 ° C. or higher and 1000 ° C. or lower in an atmosphere or an oxidizing atmosphere such as oxygen gas or an inert atmosphere such as nitrogen or helium. Treating the salt.
 本発明の製造方法において、金属含有工程に供する連晶シリコアルミノリン酸塩は、AEI構造の割合が50%を超える、すなわち、その構造において、CHA構造よりもAEI構造が多い連晶シリコアルミノリン酸塩である。そのため、その粉末X線回折パターンにおいて、面間隔5.24±0.1Åに相当するX線回折ピーク(CuKα線を線源とした場合の2θ=16.93±0.1°にピークトップを有するX線回折ピーク)を有し、なおかつ、面間隔5.16±0.1Åに相当するX線回折ピーク(CuKα線を線源とした場合の2θ=17.18±0.1°にピークトップを有するX線回折ピーク)を実質的に有さないパターンを示す。 In the production method of the present invention, the intergrowth silicoaluminophosphate used in the metal-containing step has an AEI structure ratio of more than 50%, that is, the intergrowth silicoaluminoline having a larger AEI structure than the CHA structure in the structure. Acid salt. Therefore, in the powder X-ray diffraction pattern, an X-ray diffraction peak corresponding to an interplanar spacing of 5.24 ± 0.1 mm (peak top at 2θ = 16.93 ± 0.1 ° when CuKα ray is used as a radiation source) X-ray diffraction peak corresponding to an interplanar spacing of 5.16 ± 0.1 mm (peaked at 2θ = 17.18 ± 0.1 ° when CuKα ray is used as a radiation source). X-ray diffraction peak with a top) is shown.
 さらに、金属含有工程に供する連晶シリコアルミノリン酸塩は、その粉末X線回折パターンにおいて、面間隔5.24±0.1Åに相当するピーク(CuKα線を線源とした場合の2θ=16.93±0.1°にピークトップを有するX線回折ピーク)と面間隔4.17±0.05Åに相当するピーク(CuKα線を線源とした場合の2θ=21.31±0.1°にピークトップを有するX線回折ピーク)とを有することが好ましい。なお、このような連晶シリコアルミノリン酸塩は、面間隔4.16±0.05Åに相当するピークが、面間隔5.22±0.1Åに相当するピークよりも強度が高くなる場合がある。
 金属含有工程に供する連晶シリコアルミノリン酸塩は、以下の表1に示す粉末X線回折パターンを有することが更に好ましい。
Further, the intergrowth silicoaluminophosphate used in the metal-containing step has a peak corresponding to a surface spacing of 5.24 ± 0.1 mm in the powder X-ray diffraction pattern (2θ = 16 when CuKα ray is used as a radiation source). X-ray diffraction peak having a peak top at .93 ± 0.1 °) and a peak corresponding to an interplanar spacing of 4.17 ± 0.05 mm (2θ = 21.31 ± 0.1 using CuKα rays as a radiation source). X-ray diffraction peak having a peak top at 0 °. In such a continuous crystal silicoaluminophosphate, the peak corresponding to the interplanar spacing of 4.16 ± 0.05% may be higher in intensity than the peak corresponding to the interplanar spacing of 5.22 ± 0.1%. is there.
More preferably, the intergrowth silicoaluminophosphate used in the metal-containing step has a powder X-ray diffraction pattern shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の製造方法において、金属含有工程に供する連晶シリコアルミノリン酸塩は固体酸量が高いことが好ましい。固体酸量が高いことで、得られる金属含有連晶シリコアルミノリン酸塩が高い窒素酸化物還元率を示す窒素酸化物還元触媒となりやすい。従って、金属含有工程に供する連晶シリコアルミノリン酸塩の固体酸量は0.5mmol/g以上であることが好ましく、0.6mmol/g以上であることがより好ましく、0.7mmol/g以上であることが更に好ましい。固体酸量が0.5mmol/g以上であることで、得られる金属含有連晶シリコアルミノリン酸塩が、より高い窒素酸化物還元率を示す窒素酸化物還元触媒となりやすい。固体酸量が多いほど、窒素酸化物還元率は高くなる傾向にある。その一方で、固体酸量が多くなりすぎると結晶構造が不安定になる場合がある。そのため、固体酸量が1.4mmol/g以下、更には1.2mmol/g以下、また更には1.0mmol/g以下であることで、得られる金属含有連晶シリコアルミノリン酸塩が、窒素酸化物還元率が高く、なおかつ、結晶構造が安定したものとなりやすい。 In the production method of the present invention, it is preferable that the continuous silicoaluminophosphate used in the metal-containing step has a high amount of solid acid. When the amount of the solid acid is high, the obtained metal-containing intergrowth silicoaluminophosphate is likely to be a nitrogen oxide reduction catalyst exhibiting a high nitrogen oxide reduction rate. Therefore, the solid acid amount of the intergrowth silicoaluminophosphate used for the metal-containing step is preferably 0.5 mmol / g or more, more preferably 0.6 mmol / g or more, and 0.7 mmol / g or more. More preferably. When the amount of the solid acid is 0.5 mmol / g or more, the obtained metal-containing continuous crystal silicoaluminophosphate is likely to be a nitrogen oxide reduction catalyst exhibiting a higher nitrogen oxide reduction rate. As the amount of solid acid increases, the nitrogen oxide reduction rate tends to increase. On the other hand, if the amount of solid acid is too large, the crystal structure may become unstable. Therefore, when the solid acid amount is 1.4 mmol / g or less, further 1.2 mmol / g or less, or even 1.0 mmol / g or less, the obtained metal-containing intergrowth silicoaluminophosphate is nitrogen. The oxide reduction rate is high, and the crystal structure tends to be stable.
 ここで、「固体酸」とは、シリコアルミノリン酸塩の触媒活性を評価する指標となるものである。
 固体酸は、一般的なNH-TPD法により確認及び定量することができる。固体酸はアンモニア(NH)を吸着する性質を有する。NH-TPD法は、この性質を利用した測定法であり、シリコアルミノリン酸塩にアンモニアを吸着及び脱離させ、特定の温度範囲においてシリコアルミノ酸塩から脱離されるアンモニアを確認及び定量し、これを固体酸として確認及び定量する測定方法である。
 NH-TPD法としては、以下の3つの工程を有する方法を例示することができる。
Here, the “solid acid” is an index for evaluating the catalytic activity of silicoaluminophosphate.
The solid acid can be confirmed and quantified by a general NH 3 -TPD method. The solid acid has a property of adsorbing ammonia (NH 3 ). The NH 3 -TPD method is a measurement method using this property, in which ammonia is adsorbed and desorbed from silicoaluminophosphate, and the ammonia desorbed from silicoaluminate in a specific temperature range is confirmed and quantified, This is a measurement method for confirming and quantifying this as a solid acid.
As the NH 3 -TPD method, a method having the following three steps can be exemplified.
  1)シリコアルミノリン酸塩に吸着したガスや水分等を除去する前処理工程、
  2)アンモニアをシリコアルミノリン酸塩に吸着させるアンモニア吸着工程、及び
  3)シリコアルミノリン酸塩に吸着されたアンモニアを、そこから脱離させるアンモニア脱離工程
1) a pretreatment process for removing gas or moisture adsorbed on silicoaluminophosphate,
2) Ammonia adsorption process for adsorbing ammonia on silicoaluminophosphate, and 3) Ammonia desorption process for desorbing ammonia adsorbed on silicoaluminophosphate therefrom
 前処理工程としては、処理温度400~600℃で不活性ガスをシリコアルミノリン酸塩に流通させることが例示できる。また、アンモニア吸着工程としては、処理温度100~150℃で、1~20容量%のアンモニアを含む不活性ガスをシリコアルミノリン酸塩に流通させることが例示できる。さらに、アンモニア脱離工程としては、不活性ガスをシリコアルミノリン酸塩に流通しながら100℃~700℃程度まで昇温することが例示できる。 As the pretreatment step, an inert gas can be circulated through the silicoaluminophosphate at a treatment temperature of 400 to 600 ° C. Further, as the ammonia adsorption step, an inert gas containing 1 to 20% by volume of ammonia can be circulated through the silicoaluminophosphate at a treatment temperature of 100 to 150 ° C. Further, as the ammonia desorption step, the temperature can be raised to about 100 ° C. to 700 ° C. while circulating an inert gas through the silicoaluminophosphate.
 アンモニア脱離工程において、脱離したアンモニアを確認及び定量することで、固体酸の確認及び定量ができる。なお、シリコアルミノリン酸塩に吸着されるアンモニアは、物理的に吸着されるアンモニアと、固体酸により吸着されるアンモニアがある。固体酸の確認及び定量を行う際は、この両者を分離する必要がある。例えば、250~450℃の温度で脱離したアンモニアのピークをもって固体酸の存在が確認でき、当該ピークに相当するアンモニア量を定量し、これを固体酸量とみなすことが挙げられる。 In the ammonia desorption process, the solid acid can be confirmed and quantified by confirming and quantifying the desorbed ammonia. The ammonia adsorbed on the silicoaluminophosphate includes ammonia that is physically adsorbed and ammonia that is adsorbed by a solid acid. When the solid acid is confirmed and quantified, it is necessary to separate both of them. For example, the presence of a solid acid can be confirmed with an ammonia peak desorbed at a temperature of 250 to 450 ° C., and the amount of ammonia corresponding to the peak is quantified, and this is regarded as the solid acid amount.
 金属含有工程に供する連晶シリコアルミノリン酸塩は、窒素酸化物還元触媒として使用できる程度の粒径を有していればよい。このような粒径として、平均粒径が10μm以下、更には7μm以下、また更には5μm以下を挙げることができる。また、平均粒径が0.5μm以上であることで、ハニカム等の触媒担体に塗布する際の操作性(ハンドリング)が高くなる。窒素酸化物還元特性と操作性のバランスをとる観点から、平均粒径は0.5μm以上であればよく、更には1μm以上であればよい。
 金属含有工程に供するのに好ましい連晶シリコアルミノリン酸塩は、例えば、3級アミンを含む混合物を結晶化する結晶化工程を有する製造方法により得ることができる。
The intergrowth silicoaluminophosphate used in the metal-containing step only needs to have a particle size that can be used as a nitrogen oxide reduction catalyst. Examples of such a particle size include an average particle size of 10 μm or less, further 7 μm or less, and further 5 μm or less. Further, when the average particle size is 0.5 μm or more, the operability (handling) when applied to a catalyst carrier such as a honeycomb is increased. From the viewpoint of balancing nitrogen oxide reduction characteristics and operability, the average particle diameter may be 0.5 μm or more, and more preferably 1 μm or more.
A continuous crystal silicoaluminophosphate preferable for use in the metal-containing step can be obtained, for example, by a production method having a crystallization step of crystallizing a mixture containing a tertiary amine.
 従来報告されている、連晶シリコアルミノリン酸塩の製造方法においては、有機鉱化剤(Structure directing agents;以下、「SDA」とする)として4級アミン、例えば、水酸化テトラエチルアンモニウム(以下、「TEAOH」とする)を含む化合物を使用して結晶化することが必須であった。これに対し、金属含有工程に供するのに好ましいシリコアルミノ酸塩を得る結晶化工程では、4級アミンを含む化合物を必須の成分とすることなく、連晶シリコアルミノリン酸塩を結晶化することができる。 In a conventionally reported method for producing intergrowth silicoaluminophosphate, a quaternary amine such as tetraethylammonium hydroxide (hereinafter referred to as “SDA”) is used as an organic mineralizing agent (Structure directing agents; hereinafter referred to as “SDA”). It was essential to crystallize using a compound containing “TEAOH”. On the other hand, in the crystallization step of obtaining a silicoalumino salt that is preferable for use in the metal-containing step, the intergrowth silicoaluminophosphate can be crystallized without using a compound containing a quaternary amine as an essential component. it can.
 結晶化工程では、3級アミンを含む混合物を結晶化する。これにより、本発明の金属含有工程に供するのに好ましい連晶シリコアルミノリン酸塩が得られる易くなる。
 結晶化工程において、3級アミンは、トリエチルアミン、メチルジエチルアミン、ジエチルプロピルアミン、エチルジプロピルアミン、及び、ジエチルイソプロピルアミンの群から選ばれる少なくとも1種であることが好ましく、トリエチルアミンであることがより好ましい。
In the crystallization step, a mixture containing a tertiary amine is crystallized. Thereby, it becomes easy to obtain a continuous crystal silicoaluminophosphate preferable for use in the metal-containing step of the present invention.
In the crystallization step, the tertiary amine is preferably at least one selected from the group consisting of triethylamine, methyldiethylamine, diethylpropylamine, ethyldipropylamine, and diethylisopropylamine, and more preferably triethylamine. .
 結晶化工程では、SDAとしてトリエチルアミン含み、かつ、ケイ素(Si)源、リン(P)源、アルミニウム(Al)源及び水(HO)を含む混合物を結晶化することが好ましい。 In the crystallization step, it is preferable to crystallize a mixture containing triethylamine as SDA and containing a silicon (Si) source, a phosphorus (P) source, an aluminum (Al) source and water (H 2 O).
 ケイ素源、リン源及びアルミニウム源の各原料は任意のものを選択することができる。これらの原料として以下のものを例示することができる。
 ケイ素源として、コロイダルシリカ、シリカゾル及び水ガラスの群からなる少なくとも1種の水溶性ケイ素化合物又は溶媒に分散されたケイ素化合物、無定形シリカ、フュームドシリカ及びケイ酸ナトリウムの群からなる少なくとも1種の固体状ケイ素化合物、及びオルトケイ酸エチルなどの有機ケイ素化合物、並びにこれらの混合物を挙げることができる。
The raw materials for the silicon source, phosphorus source and aluminum source can be selected arbitrarily. The following can be illustrated as these raw materials.
As the silicon source, at least one water-soluble silicon compound consisting of colloidal silica, silica sol and water glass, or at least one kind consisting of silicon compound dispersed in a solvent, amorphous silica, fumed silica and sodium silicate. And solid silicon compounds, organosilicon compounds such as ethyl orthosilicate, and mixtures thereof.
 リン源として、正リン酸及び亜リン酸のいずれか1種以上の水溶性リン化合物、ピロリン酸などの縮合リン酸及びリン酸カルシウムのいずれか1種以上の固体状リン化合物、並びにこれらの混合物を挙げることができる。
 アルミニウム源として、硫酸アルミニウム溶液、アルミン酸ソーダ溶液及びアルミナゾルの群から選ばれる少なくとも1種の水溶性アルミニウム化合物又は溶媒に分散されたアルミニウム化合物、無定形アルミナ、擬ベーマイト、ベーマイト、水酸化アルミニウム、硫酸アルミニウム及びアルミン酸ナトリウムの群から選ばれる少なくとも1種の固体状アルミニウム化合物、及び、アルミニウムイソプロポキシドなどの有機アルミニウム化合物、並びにこれらの混合物を挙げることができる。
Examples of the phosphorus source include one or more water-soluble phosphorus compounds of orthophosphoric acid and phosphorous acid, one or more solid phosphorus compounds of condensed phosphoric acid such as pyrophosphoric acid and calcium phosphate, and mixtures thereof. be able to.
As an aluminum source, at least one water-soluble aluminum compound selected from the group consisting of aluminum sulfate solution, sodium aluminate solution and alumina sol, or an aluminum compound dispersed in a solvent, amorphous alumina, pseudoboehmite, boehmite, aluminum hydroxide, sulfuric acid Mention may be made of at least one solid aluminum compound selected from the group of aluminum and sodium aluminate, organoaluminum compounds such as aluminum isopropoxide, and mixtures thereof.
 さらには、ケイ素、リン及びアルミニウムの群から選ばれる2種以上を含む化合物も、原料として使用することができる。このような化合物としては、アルミノリン酸ゲルや、シリコアルミノリン酸ゲルなどを例示することができる。
 混合物は、これら原料と水及びSDAを混合することによって得られる。混合物を得る際の原料等の混合方法は、任意の方法を使用することができる。例えば、各原料、水及びSDAを1つずつ順番に混合してもよく、2つ以上の原料等を同時に混合してもよい。
Furthermore, a compound containing two or more selected from the group of silicon, phosphorus and aluminum can also be used as a raw material. Examples of such compounds include aluminophosphate gel and silicoaluminophosphate gel.
A mixture is obtained by mixing these raw materials with water and SDA. Arbitrary methods can be used for mixing raw materials and the like when obtaining the mixture. For example, each raw material, water, and SDA may be mixed one by one in order, or two or more raw materials may be mixed simultaneously.
 得られた混合物は、必要に応じてpHを調整してもよい。混合物のpHを調整する場合は、例えば、塩酸、硫酸又はフッ酸などの酸、又は、水酸化ナトリウム、水酸化カリウム又は水酸化アンモニウムなどのアルカリを、混合物に混合すればよい。
 結晶化工程において、混合物のケイ素、リン、アルミニウム、水及びSDAの組成は、混合物中のケイ素、リン及びアルミニウムを、それぞれSiO、P及びAlとみなしたとき、以下の組成であることが好ましい。
You may adjust pH of the obtained mixture as needed. When adjusting the pH of the mixture, for example, an acid such as hydrochloric acid, sulfuric acid or hydrofluoric acid, or an alkali such as sodium hydroxide, potassium hydroxide or ammonium hydroxide may be mixed into the mixture.
In the crystallization process, the composition of silicon, phosphorus, aluminum, water and SDA of the mixture is as follows when the silicon, phosphorus and aluminum in the mixture are regarded as SiO 2 , P 2 O 5 and Al 2 O 3 respectively. A composition is preferred.
  P/Al   0.7以上、1.5以下
  SiO/Al   0.1以上、1.2以下
  HO/Al      5以上、100以下
  SDA/Al    0.5以上、5以下
P 2 O 5 / Al 2 O 3 0.7 or more, 1.5 or less SiO 2 / Al 2 O 3 0.1 or more, 1.2 or less H 2 O / Al 2 O 3 5 or more, 100 or less SDA / Al 2 O 3 0.5 or more and 5 or less
 なお、上記組成における各割合はモル比である。 In addition, each ratio in the said composition is molar ratio.
 混合物のリンとアルミニウムの割合は、モル比でP/Alが0.7以上であることが好ましく、0.8以上であることがより好ましい。P/Alが0.7以上であることで、得られる連晶シリコアルミノリン酸塩の収量が多くなりやすい。一方、P/Alが1.5以下、さらには1.2以下であれば、より短い結晶化時間で連晶シリコアルミノリン酸塩が得られやすくなる。
 混合物のケイ素とアルミニウムの割合は、モル比でSiO/Alが0.1以上であることが好ましく、0.2以上であることがより好ましい。SiO/Alが0.1以上であることで、固体酸量がより多い連晶シリコアルミノリン酸塩が得られやすくなる。一方、SiO/Alが1.2以下、さらには0.8以下であればより短い結晶化時間で連晶シリコアルミノリン酸塩が得られやすくなる。
As for the ratio of phosphorus and aluminum in the mixture, P 2 O 5 / Al 2 O 3 is preferably 0.7 or more and more preferably 0.8 or more in terms of molar ratio. When P 2 O 5 / Al 2 O 3 is 0.7 or more, the yield of the obtained continuous crystal silicoaluminophosphate tends to increase. On the other hand, if P 2 O 5 / Al 2 O 3 is 1.5 or less, and further 1.2 or less, it is easy to obtain a continuous crystal silicoaluminophosphate in a shorter crystallization time.
The ratio of silicon and aluminum in the mixture is preferably such that SiO 2 / Al 2 O 3 is 0.1 or more and more preferably 0.2 or more in terms of molar ratio. When SiO 2 / Al 2 O 3 is 0.1 or more, a continuous crystal silicoaluminophosphate having a larger amount of solid acid is easily obtained. On the other hand, if SiO 2 / Al 2 O 3 is 1.2 or less, and further 0.8 or less, a continuous crystal silicoaluminophosphate is easily obtained in a shorter crystallization time.
 混合物の水とアルミニウムの割合は、モル比でHO/Alが5以上であることが好ましく、15以上であることがより好ましい。HO/Alが5以上であることで、得られる混合物が、流動性に富んだものとなる。これにより、混合物がより操作性に優れたものになり易い。混合物中のHO/Alは小さいことが好ましいが、HO/Alが100以下、さらには70以下であれば、結晶化に適した流動性を有した混合物となる。更に、HO/Alが60以下となることで、より濃い濃度での結晶化が行えるため、工業的生産において有利になりやすい。 As for the ratio of water and aluminum in the mixture, H 2 O / Al 2 O 3 is preferably 5 or more and more preferably 15 or more in terms of molar ratio. When the H 2 O / Al 2 O 3 is 5 or more, the resulting mixture becomes rich in fluidity. Thereby, the mixture tends to be more excellent in operability. It is preferred H 2 O / Al 2 O 3 in the mixture is small, H 2 O / Al 2 O 3 is 100 or less, if more than 70 or less, a mixture having a fluidity suitable for crystallization Become. Furthermore, since H 2 O / Al 2 O 3 is 60 or less, crystallization can be performed at a higher concentration, which tends to be advantageous in industrial production.
 混合物中のSDAとアルミニウムの割合は、モル比でSDA/Alが0.5以上であることが好ましく、1以上であることがより好ましい。これにより、固体酸量がより多い連晶シリコアルミノリン酸塩が得られやすくなる。SDA/Alは大きいほど、連晶シリコアルミノリン酸塩がより得られやすくなる。SDA/Alが5以下、更には4以下、また更には3以下であれば、固体酸量の多い連晶シリコアルミノリン酸塩がより得られやすくなる。
 結晶化工程では、混合物は種晶を含んでいることが好ましい。混合物が種晶を含むことで、短い結晶化時間で連晶シリコアルミノリン酸塩が得られやすくなる。
The ratio of SDA and aluminum in the mixture is preferably such that SDA / Al 2 O 3 is 0.5 or more, and more preferably 1 or more in terms of molar ratio. This makes it easier to obtain a continuous silicoaluminophosphate having a higher amount of solid acid. The larger SDA / Al 2 O 3 is, the easier it is to obtain intergrowth silicoaluminophosphate. If SDA / Al 2 O 3 is 5 or less, further 4 or less, and further 3 or less, a continuous crystal silicoaluminophosphate having a large amount of solid acid is more easily obtained.
In the crystallization step, the mixture preferably contains seed crystals. When the mixture contains seed crystals, intergranular silicoaluminophosphate can be easily obtained in a short crystallization time.
 混合物は種晶を0.05重量%以上含むことが好ましく、0.1重量%以上含むことがより好ましく、0.5重量%以上含むことが更に好ましい。混合物が種晶を0.05重量%以上含むことで、結晶化の時間が短縮されやすくなる。これに加え、混合物が種晶を含むことで、得られる連晶シリコアルミノリン酸塩の結晶粒径が均一になりやすい。得られる連晶シリコアルミノリン酸塩の結晶粒径が均一になれば、混合物における種晶含有量は任意である。そのため、種晶含有量の上限として、例えば、10重量%以下、さらには5重量%以下、また更には2重量%以下を挙げることができる。 The mixture preferably contains 0.05% by weight or more of seed crystals, more preferably 0.1% by weight or more, and still more preferably 0.5% by weight or more. When the mixture contains 0.05% by weight or more of seed crystals, the crystallization time is easily shortened. In addition, when the mixture contains seed crystals, the crystal grain size of the obtained continuous crystal silicoaluminophosphate tends to be uniform. If the crystal grain size of the obtained continuous crystal silicoaluminophosphate becomes uniform, the seed crystal content in the mixture is arbitrary. Therefore, the upper limit of the seed crystal content can be, for example, 10% by weight or less, further 5% by weight or less, and further 2% by weight or less.
 なお、混合物に含まれる種晶の含有量(重量%)とは、当該種晶を除く混合物中のケイ素、リン及びアルミニウムを、それぞれSiO、P及びAlとみなしたときの合計重量に対する、種晶の重量の割合である。
 さらに、種晶の種類はシリコアルミノリン酸塩であることが好ましく、連晶シリコアルミノリン酸塩であることがより好ましく、AEI構造が50%を超える連晶シリコアルミノリン酸塩であることが更に好ましい。
The content (% by weight) of the seed crystals contained in the mixture is when silicon, phosphorus and aluminum in the mixture excluding the seed crystals are regarded as SiO 2 , P 2 O 5 and Al 2 O 3 , respectively. The ratio of the weight of the seed crystal to the total weight of
Furthermore, the type of seed crystal is preferably silicoaluminophosphate, more preferably intergrowth silicoaluminophosphate, and intergrowth silicoaluminophosphate having an AEI structure exceeding 50%. Further preferred.
 金属含有工程に供するのに好ましい連晶シリコアルミノリン酸塩を得るための好ましい混合物として以下の組成の混合物を例示することができる。 As a preferable mixture for obtaining a continuous crystal silicoaluminophosphate preferable for use in the metal-containing step, a mixture having the following composition can be exemplified.
  P/Al   0.8以上、1.2以下
  SiO/Al   0.2以上、0.8以下
  HO/Al    15以上、60以下
  SDA/Al    1以上、3以下
  種晶         0重量%以上、5重量%以下
P 2 O 5 / Al 2 O 3 0.8 or more, 1.2 or less SiO 2 / Al 2 O 3 0.2 or more, 0.8 or less H 2 O / Al 2 O 3 15 or more, 60 or less SDA / Al 2 O 3 1 or more, 3 or less Seed crystal 0 wt% or more, 5 wt% or less
 なお、上記組成における各割合はモル比であり、SDAはトリエチルアミン、種晶は連晶シリコアルミノリン酸塩である。 In addition, each ratio in the said composition is a molar ratio, SDA is a triethylamine, and a seed crystal is a continuous crystal silicoaluminophosphate.
 結晶化工程においては、混合物が結晶化すれば、その結晶化方法は適宜選択することができる。好ましい結晶化方法として、混合物を水熱処理することが挙げられる。水熱処理は、混合物を密閉耐圧容器に入れ、これを加熱すればよい。
 結晶化温度は130℃以上であることが好ましく、150℃以上であることがより好ましい。結晶化温度が130℃以上であれば、比較的短い結晶化時間、例えば、100時間以下、さらには80時間以下で連晶シリコアルミノリン酸塩が結晶化する。結晶化温度が高いほど、結晶化時間が短くなりやすい。しかしながら、例えば、結晶化温度が220℃以下、更には200℃以下であれば、5時間以上、さらには10時間以上、また更には15時間以上の結晶化時間であっても、連晶シリコアルミノリン酸塩が結晶化しやすくなる。
 結晶化工程では、混合物を攪拌しながら結晶化することが好ましい。これにより、得られる連晶シリコアルミノリン酸塩の粒径がより均一になりやすい。
In the crystallization step, if the mixture crystallizes, the crystallization method can be appropriately selected. A preferred crystallization method is hydrothermal treatment of the mixture. Hydrothermal treatment may be performed by placing the mixture in a sealed pressure resistant container and heating the mixture.
The crystallization temperature is preferably 130 ° C. or higher, and more preferably 150 ° C. or higher. If the crystallization temperature is 130 ° C. or higher, the intergrowth silicoaluminophosphate crystallizes in a relatively short crystallization time, for example, 100 hours or less, and further 80 hours or less. The higher the crystallization temperature, the shorter the crystallization time. However, for example, if the crystallization temperature is 220 ° C. or lower, further 200 ° C. or lower, even if the crystallization time is 5 hours or longer, 10 hours or longer, or even 15 hours or longer, the intergrowth silicon aluminum Norolinate is easily crystallized.
In the crystallization step, it is preferable to crystallize the mixture while stirring. Thereby, the particle diameter of the obtained intergrowth silicoaluminophosphate tends to be more uniform.
 金属含有工程に供するのに好ましい連晶シリコアルミノリン酸塩の製造方法では、さらに、洗浄工程及び乾燥工程を有していてもよい。
 洗浄工程では、結晶化後の連晶シリコアルミノリン酸塩は、ろ過、デカンテーション又は遠心分離などの任意の固液分離法により液相と分離される。固液分離後の連晶シリコアルミノリン酸塩は、適宜、水洗してもよい。
 乾燥工程では、ろ過後の連晶シリコアルミノリン酸塩を乾燥する。乾燥方法としては、大気中、90℃以上、120℃以下で、5時間以上乾燥する方法を例示することができる。
In the manufacturing method of the continuous crystal silicoaluminophosphate preferable to use for a metal containing process, you may have a washing | cleaning process and a drying process further.
In the washing step, the crystallized continuous silicoaluminophosphate is separated from the liquid phase by any solid-liquid separation method such as filtration, decantation or centrifugation. The intergrowth silicoaluminophosphate after solid-liquid separation may be washed with water as appropriate.
In the drying step, the filtered silicoaluminophosphate after drying is dried. Examples of the drying method include a method of drying at 90 ° C. or higher and 120 ° C. or lower for 5 hours or longer in the air.
 金属含有工程に供するのに好ましい連晶シリコアルミノリン酸塩の製造方法では、焼成工程及び再洗浄工程を有していてもよい。
 焼成工程においては、乾燥後の連晶シリコアルミノリン酸塩を焼成する。これにより、結晶化の際にシリコアルミノリン酸塩に取り込まれたSDAを除去することができる。連晶シリコアルミノリン酸塩からSDAが除去されることにより、窒素酸化物還元触媒として得られた連晶シリコアルミノリン酸塩を使用する場合に、これがより高い窒素酸化物還元特性を示しやすい。
 焼成工程では、連晶シリコアルミノリン酸塩からSDAが除去できれば任意の焼成方法を適用することができる。このような焼成方法として、例えば、大気中又は酸素ガスなどの酸化雰囲気下で、400℃以上、800℃以下の焼成温度で焼成することが挙げられる。
In a method for producing a continuous crystal silicoaluminophosphate preferable for use in the metal-containing step, the method may have a firing step and a re-washing step.
In the firing process, the dried silicoaluminophosphate is fired. As a result, SDA taken into the silicoaluminophosphate during crystallization can be removed. By removing SDA from the intergrowth silicoaluminophosphate, when the intergrowth silicoaluminophosphate obtained as a nitrogen oxide reduction catalyst is used, this tends to exhibit higher nitrogen oxide reduction characteristics.
In the firing step, any firing method can be applied as long as SDA can be removed from the intergrowth silicoaluminophosphate. Examples of such a firing method include firing at a firing temperature of 400 ° C. or more and 800 ° C. or less in the atmosphere or in an oxidizing atmosphere such as oxygen gas.
 また、再洗浄工程においては、連晶シリコアルミノリン酸塩を再洗浄する。原料としてアルカリ金属等を含むものを使用して連晶シリコアルミノリン酸塩を結晶化した場合、これらアルカリ金属等の原料由来の金属が連晶シリコアルミノリン酸塩の表面や細孔など残存することがある。
 再洗浄工程では、連晶シリコアルミノリン酸塩に残存した原料由来の金属を、そこから除去することができれば任意の洗浄方法を適用することができる。このような再洗浄方法として、例えば、酸洗浄やイオン交換を挙げることができる。
 上記の焼成工程及び再洗浄工程は、必要に応じて行うことができる。そのため、焼成工程のみ若しくは再洗浄工程のみの、いずれか一方を行ってもよい。また、焼成工程及び再洗浄工程の両者を行う場合、これらの順番はいずれを先に行ってもよい。
In the re-cleaning step, the intergrowth silicoaluminophosphate is re-cleaned. When intergrowth silicoaluminophosphate is crystallized using a material containing alkali metal or the like as a raw material, the metal derived from the raw material such as alkali metal remains on the surface or pores of intergrowth silicoaluminophosphate. Sometimes.
In the re-cleaning step, any cleaning method can be applied as long as the metal derived from the raw material remaining in the intergrowth silicoaluminophosphate can be removed therefrom. Examples of such re-cleaning methods include acid cleaning and ion exchange.
Said baking process and re-washing process can be performed as needed. Therefore, you may perform any one of only a baking process or only a re-washing process. Moreover, when performing both a baking process and a re-washing process, you may perform any of these order first.
 本発明の製造方法では、このようにして得られた連晶シリコアルミノリン酸塩を金属含有工程に供すること、すなわち、3級アミンを含む混合物を結晶化する結晶化工程、該結晶化工程により得られた連晶シリコアルミノリン酸塩に金属を含有する金属含有工程とすることがより好ましい。 In the production method of the present invention, the thus obtained intergrowth silicoaluminophosphate is subjected to a metal-containing step, that is, a crystallization step of crystallizing a mixture containing a tertiary amine, and the crystallization step. It is more preferable to use a metal-containing step of containing a metal in the obtained continuous crystal silicoaluminophosphate.
 なお、金属含有工程に供する連晶シリコアルミノリン酸塩は、これを水蒸気吸脱着剤として使用することができる。
 すなわち、吸着式ヒートポンプシステム、デシカント空調システム等のシステムにおいては、システム系外に水蒸気を排出するための水蒸気吸脱着剤が用いられている。当該システムでは、25℃~40℃の吸着温度で水蒸気吸脱着剤に水蒸気(水)を吸着させた後、これを60℃~100℃の脱離温度まで加熱する。水蒸気吸脱着剤に吸着した水は加熱により脱離し、これにより、水蒸気吸脱着剤が乾燥する。乾燥した水蒸気吸脱着剤は吸着温度まで冷却されて、再度、水の吸着に使用される。当該システムでは、この様な水蒸気の吸着及び脱離(以下、「吸脱着」とする。)が繰返される。この様なシステムに使用される水蒸気吸脱着剤として、吸着温度から脱離温度の温度範囲における水蒸気吸脱着量が多い吸着剤が望まれており、様々な吸着剤が提案されている。
In addition, the continuous crystal silicoaluminophosphate used for a metal containing process can be used as a water vapor | steam adsorption / desorption agent.
That is, in a system such as an adsorption heat pump system and a desiccant air conditioning system, a water vapor adsorption / desorption agent for discharging water vapor to the outside of the system system is used. In this system, water vapor (water) is adsorbed on the water vapor adsorbing / desorbing agent at an adsorption temperature of 25 ° C. to 40 ° C., and then heated to a desorption temperature of 60 ° C. to 100 ° C. The water adsorbed on the water vapor adsorbing / desorbing agent is desorbed by heating, whereby the water vapor adsorbing / desorbing agent is dried. The dried water vapor adsorbing / desorbing agent is cooled to the adsorption temperature and used again for water adsorption. In this system, such adsorption and desorption of water vapor (hereinafter referred to as “adsorption / desorption”) is repeated. As a water vapor adsorption / desorption agent used in such a system, an adsorbent having a large amount of water vapor adsorption / desorption in the temperature range from the adsorption temperature to the desorption temperature is desired, and various adsorbents have been proposed.
 日本国特開2003-340236号には、ゼオライト類縁物質を含む吸着ヒートポンプ用水蒸気吸脱着剤が報告されている。当該ゼオライト類縁物質はアルミニウム、リンおよびケイ素を骨格構造に含み、なおかつ、構造コードがCHAのゼオライト類縁物質であった。当該ゼオライト類縁物質を含む水蒸気吸脱着剤は、水蒸気吸着等温線において相対蒸気圧0.05以上0.30以下の範囲で相対蒸気圧が0.15変化したときの水の吸着量変化が0.18g/g以上の相対蒸気圧域を有するものであった。 Japanese Unexamined Patent Publication No. 2003-340236 reports a water vapor adsorption / desorption agent for adsorption heat pumps containing a zeolite-related substance. The zeolite-related material was a zeolite-related material containing aluminum, phosphorus and silicon in the skeleton structure and having a structure code of CHA. The water vapor adsorption / desorption agent containing the zeolite-related substance has a water adsorption amount change of 0.15 when the relative vapor pressure is changed by 0.15 in the range of the relative vapor pressure of 0.05 to 0.30 on the water vapor adsorption isotherm. It had a relative vapor pressure range of 18 g / g or more.
 日本国特開2007-181795号には、骨格を構成する元素として少なくともAlとPを含み、なおかつ、MgまたはSiを含むゼオライト類縁物質からなる吸脱着剤が開示されている。当該ゼオライト類縁物質は、細孔が3.8から7.1オングストロームの径を有する1次元構造を有し、なおかつ、その結晶構造がATS構造、ATN構造、AWW構造、LTL構造、及びSAS構造の何れかの結晶構造を有するものであった。 Japanese Patent Application Laid-Open No. 2007-181795 discloses an adsorption / desorption agent composed of a zeolite-related substance containing at least Al and P as elements constituting the skeleton and Mg or Si. The zeolite-related substance has a one-dimensional structure in which pores have a diameter of 3.8 to 7.1 angstroms, and the crystal structure is an ATS structure, ATN structure, AWW structure, LTL structure, or SAS structure. It had any crystal structure.
 これまで提案されている水蒸気吸脱着剤は、その水蒸気吸脱着量が十分なものではなかった。
 連晶シリコアルミノリン酸塩を含む水蒸気吸脱着剤(以下、「本吸脱着剤」とする。)により、上記の課題を解決し、吸着式ヒートポンプシステム、デシカント空調システム、湿度調整壁剤、湿度調整用シート等に有用な水蒸気吸脱着剤を提供することができる。すなわち、本吸脱着剤により水分除去システムとして使用した場合に、高い水蒸気吸脱着量を有する水蒸気吸脱着剤を提供することができる。
The water vapor adsorption / desorption agents proposed so far have not been sufficient in the amount of water vapor adsorption / desorption.
A water vapor adsorbing and desorbing agent (hereinafter referred to as “the present adsorbing and desorbing agent”) containing intergrowth silicoaluminophosphate solves the above problems, and uses an adsorption heat pump system, a desiccant air conditioning system, a humidity adjusting wall agent, and humidity. It is possible to provide a water vapor adsorbing / desorbing agent useful for an adjustment sheet. That is, when this adsorption / desorption agent is used as a moisture removal system, a vapor adsorption / desorption agent having a high vapor adsorption / desorption amount can be provided.
 本発明者は、シリコアルミノリン酸塩の結晶構造と水蒸気吸脱着特性について検討した。その結果、CHA構造とAEI構造とからなる結晶構造を有するシリコアルミノリン酸塩において、シリコアルミノリン酸塩に含まれるCHA構造とAEI構造の連晶比(Intergrowth ratio)が制御されたものが、優れた水蒸気吸脱着特性を有することを見出した。
 すなわち、本吸脱着剤は下記一般式(2)で表され、下記表2に示す粉末X線回折(以下、「XRD」とする。)パターンを特徴とするCHA構造とAEI構造とからなる結晶構造を有するシリコアルミノリン酸塩を含む水蒸気吸脱着剤である。
The present inventor examined the crystal structure and water vapor adsorption / desorption characteristics of silicoaluminophosphate. As a result, in the silicoaluminophosphate having a crystal structure composed of a CHA structure and an AEI structure, the intergranular ratio of the CHA structure and the AEI structure contained in the silicoaluminophosphate is controlled. It has been found that it has excellent water vapor adsorption and desorption characteristics.
That is, this adsorption / desorption agent is represented by the following general formula (2), and is a crystal comprising a CHA structure and an AEI structure characterized by a powder X-ray diffraction (hereinafter referred to as “XRD”) pattern shown in Table 2 below. A water vapor adsorption / desorption agent comprising silicoaluminophosphate having a structure.
  (SiAl)O     (2) (Si x Al y P z) O 2 (2)
(式中、xはSiのモル分率、yはAlのモル分率、zはPのモル分率、x+y+z=1を表す。) (In the formula, x represents the mole fraction of Si, y represents the mole fraction of Al, z represents the mole fraction of P, and x + y + z = 1).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以下、本吸脱着剤について説明する。
 本吸脱着剤は、CHA構造とAEI構造とからなる結晶構造を有するシリコアルミノリン酸塩(以下、「連晶SAPO」とする。)を含む水蒸気吸脱着剤であり、連晶SAPOからなる水蒸気吸脱着剤であってもよい。
 連晶SAPOは、その結晶構造が、CHA構造とAEI構造とからなる結晶構造(以下、「連晶体結晶構造」とする。)である。したがって、結晶構造がCHA構造のみからなるシリコアルミノリン酸塩、あるいは結晶構造がAEI構造のみからなるシリコアルミノリン酸塩と、連晶SAPOとは異なる。さらに、連晶SAPOは、CHA構造のシリコアルミノリン酸塩とAEI構造のシリコアルミノリン酸塩とを混合して得られるシリコアルミノリン酸塩とも異なる。
Hereinafter, this adsorption / desorption agent will be described.
This adsorbent / desorbent is a water vapor adsorbent / desorbent containing a silicoaluminophosphate having a crystal structure composed of a CHA structure and an AEI structure (hereinafter referred to as “continuous crystal SAPO”). It may be an adsorption / desorption agent.
The intergrowth SAPO has a crystal structure composed of a CHA structure and an AEI structure (hereinafter referred to as “continuous crystal structure”). Therefore, silicoaluminophosphate whose crystal structure consists only of the CHA structure, or silicoaluminophosphate whose crystal structure consists only of the AEI structure is different from the intergrowth SAPO. Furthermore, intergrowth SAPO is also different from silicoaluminophosphate obtained by mixing a silicoaluminophosphate having a CHA structure and a silicoaluminophosphate having an AEI structure.
 本吸脱着剤に含まれる連晶SAPOは、表2に示すXRDパターンを有する。
 このXRDパターンは、SAPO-34シリコアルミノリン酸塩のXRDパターンには存在しないブロードピークを、面間隔6.60Å付近(回折角2θ=13.4°付近)、5.24Å付近(回折角2θ=16.9°付近)、及び4.17Å付近(回折角2θ=21.3°付近)に有する。これらのブロードピークは、本吸脱着剤に含まれる連晶SAPOが、連晶体結晶構造を有することを示している。
Intergrowth SAPO contained in this adsorption / desorption agent has the XRD pattern shown in Table 2.
This XRD pattern shows a broad peak that does not exist in the XRD pattern of SAPO-34 silicoaluminophosphate, with a surface spacing of 6.60 mm (diffraction angle 2θ = 13.4 °), 5.24 mm (diffraction angle 2θ). = 16.9 °) and 4.17 ° (diffraction angle 2θ = 21.3 °). These broad peaks indicate that the intergrowth SAPO contained in the present adsorption / desorption agent has a intergranular crystal structure.
 さらに、本吸脱着剤に含まれる連晶SAPOは、結晶構造保持率が50%以上100%以下であることが好ましい。結晶構造保持率とは、80℃の飽和水蒸気中に8日間保存する前の結晶化度に対する、当該保存後の結晶化度の割合である。
 本吸脱着剤において結晶化度はシリコアルミノリン酸塩のXRDパターンにおける主なピークのピーク強度の合計値から求めることができる。連晶SAPOであれば、そのXRDパターンにおける主なピークは2θ=16.1±0.2°、19.1±0.2°、20.7±0.2°、及び26.1±0.2°の4つである。また、SAPO-34であれば、そのXRDパターンにおける主なピークは2θ=16.1±0.2°、17.8±0.2°、20.8±0.2°、及び25.1±0.2°の4つである。なお、本吸脱着剤における2θの値(°)は、いずれも銅Kα線を線源とした場合の値である。
Furthermore, the interstitial SAPO contained in the present adsorption / desorption agent preferably has a crystal structure retention of 50% or more and 100% or less. The crystal structure retention is the ratio of the crystallinity after storage to the crystallinity before storage in 80 ° C. saturated water vapor for 8 days.
In the present adsorbent / desorbent, the crystallinity can be determined from the total peak intensity of main peaks in the XRD pattern of silicoaluminophosphate. For intergrowth SAPO, the main peaks in the XRD pattern are 2θ = 16.1 ± 0.2 °, 19.1 ± 0.2 °, 20.7 ± 0.2 °, and 26.1 ± 0. 4 of 2 °. For SAPO-34, the main peaks in the XRD pattern are 2θ = 16.1 ± 0.2 °, 17.8 ± 0.2 °, 20.8 ± 0.2 °, and 25.1. Four of ± 0.2 °. In addition, the value (°) of 2θ in the present adsorption / desorption agent is a value when copper Kα rays are used as a radiation source.
 また、本吸脱着剤に含まれる連晶SAPOのCHA構造とAEI構造の割合(Intergrowth ratio;以下、「連晶比」とする。)は、CHA/AEI比で80/20~20/80であることが好ましく、50/50~30/70であることがさらに好ましく、45/55~30/70であることがより好ましい。連晶比がCHA/AEI比でこの範囲であれば、連晶SAPOの耐水性が低下しにくくなり、なおかつ、結晶構造保持率が低くなりにくい。
 また、本吸脱着剤に含まれる連晶SAPOは、上記一般式(2)において、Siのモル分率xが0.05<x≦0.10、Alのモル分率yが0.47≦y≦0.52、及びPのモル分率zが0.40≦z≦0.46であることが好ましい。上記の範囲の組成であれば、結晶構造保持率がより高くなりやすい。
The ratio of CHA structure and AEI structure of intergrowth SAPO contained in the adsorption / desorption agent (intergrowth ratio; hereinafter referred to as “intergrowth ratio”) is 80/20 to 20/80 in CHA / AEI ratio. It is preferably 50/50 to 30/70, more preferably 45/55 to 30/70. If the intergrowth ratio is within this range as the CHA / AEI ratio, the water resistance of the intergrowth SAPO is unlikely to decrease, and the crystal structure retention rate is unlikely to decrease.
Further, the interstitial SAPO contained in the present adsorption / desorption agent has a Si mole fraction x of 0.05 <x ≦ 0.10 and an Al mole fraction y of 0.47 ≦ in the general formula (2). It is preferable that y ≦ 0.52 and the molar fraction z of P is 0.40 ≦ z ≦ 0.46. If the composition is in the above range, the crystal structure retention tends to be higher.
 さらに、本吸脱着剤は、水和処理前の固体酸量に対する水和処理後の固体酸量(以下、「固体酸維持率」とする。)が50%以上であることが好ましい。固体酸維持率が50%以上であれば、本吸脱着剤の耐水性がより高くなりやすい。固体酸は水蒸気吸着の活性点となる。そのため、水和処理前後の固体酸維持率が高いほど耐水性が高く、水蒸気吸脱着剤として好ましい特性を有する。 Furthermore, the adsorption / desorption agent of the present invention preferably has a solid acid amount after hydration treatment (hereinafter referred to as “solid acid retention rate”) of 50% or more with respect to the solid acid amount before hydration treatment. If the solid acid retention rate is 50% or more, the water resistance of the adsorption / desorption agent is likely to be higher. The solid acid becomes an active site for water vapor adsorption. Therefore, the higher the solid acid retention rate before and after the hydration treatment, the higher the water resistance and the more preferable properties as a water vapor adsorption / desorption agent.
 固体酸は、一般的なNH-TPD法により確認及び定量することができる。固体酸はアンモニア(NH)を吸着する性質を有する。NH-TPD法は、この性質を利用した測定法であり、シリコアルミノリン酸塩にアンモニアを吸着及び脱離させ、特定の温度範囲においてシリコアルミノ酸塩から脱離されるアンモニアを確認及び定量し、これを固体酸として確認及び定量する測定方法である。 The solid acid can be confirmed and quantified by a general NH 3 -TPD method. The solid acid has a property of adsorbing ammonia (NH 3 ). The NH 3 -TPD method is a measurement method using this property, in which ammonia is adsorbed and desorbed from silicoaluminophosphate, and the ammonia desorbed from silicoaluminate in a specific temperature range is confirmed and quantified, This is a measurement method for confirming and quantifying this as a solid acid.
 NH-TPD法としては、以下の3つの工程を有する方法を例示することができる。
  1)シリコアルミノリン酸塩に吸着したガスや水分等を除去する前処理工程
  2)アンモニアをシリコアルミノリン酸塩に吸着させるアンモニア吸着工程、及び
  3)シリコアルミノリン酸塩に吸着されたアンモニアを、そこから脱離させるアンモニア脱離工程
As the NH 3 -TPD method, a method having the following three steps can be exemplified.
1) Pretreatment process to remove gas and moisture adsorbed on silicoaluminophosphate 2) Ammonia adsorption process to adsorb ammonia on silicoaluminophosphate, and 3) Ammonia adsorbed on silicoaluminophosphate , Ammonia desorption process to desorb from there
 前処理工程としては、処理温度400~600℃で不活性ガスをシリコアルミノリン酸塩に流通させることが例示できる。また、アンモニア吸着工程としては、処理温度100~150℃で、1~20容量%のアンモニアを含む不可性ガスをシリコアルミノリン酸塩に流通させることが例示できる。さらに、アンモニア脱離工程としては、不活性ガスをシリコアルミノリン酸塩に流通しながら100℃~700℃程度まで昇温することが例示できる。 As the pretreatment step, an inert gas can be circulated through the silicoaluminophosphate at a treatment temperature of 400 to 600 ° C. Further, as the ammonia adsorption step, it is possible to exemplify that an inert gas containing 1 to 20% by volume of ammonia is circulated through the silicoaluminophosphate at a treatment temperature of 100 to 150 ° C. Further, as the ammonia desorption step, the temperature can be raised to about 100 ° C. to 700 ° C. while circulating an inert gas through the silicoaluminophosphate.
 アンモニア脱離工程において、脱離したアンモニアを確認及び定量することで、固体酸の確認及び定量ができる。なお、シリコアルミノリン酸塩に吸着されるアンモニアは、物理的に吸着されるアンモニアと、固体酸により吸着されるアンモニアがある。固体酸の確認及び定量を行う際は、この両者を分離する必要がある。例えば、250~450℃の温度で脱離したアンモニアのピークをもって固体酸の存在が確認でき、当該ピークに相当するアンモニア量を定量し、これを固体酸量とみなすことが挙げられる。 In the ammonia desorption process, the solid acid can be confirmed and quantified by confirming and quantifying the desorbed ammonia. The ammonia adsorbed on the silicoaluminophosphate includes ammonia that is physically adsorbed and ammonia that is adsorbed by a solid acid. When the solid acid is confirmed and quantified, it is necessary to separate both of them. For example, the presence of a solid acid can be confirmed with an ammonia peak desorbed at a temperature of 250 to 450 ° C., and the amount of ammonia corresponding to the peak is quantified, and this is regarded as the solid acid amount.
 さらに、本吸脱着剤は、アルカリ土類金属が担持された連晶SAPOを含んでいてもよい。連晶SAPOにアルカリ土類金属が担持されることで、複数回の水和処理を施した処理(以下、「サイクル水和処理」とする。)後の固体酸量の低下が抑制されやすくなる。
 ここで、サイクル水和処理として、例えば、60℃以上、100℃以下の飽和水蒸気雰囲気下に水蒸気吸脱着剤を1時間以上、60日間以下、静置する処理をした後に、60℃以上、200℃以下の乾燥雰囲気下(すなわち、水分含有量0.05体積%以下の雰囲気下)に水蒸気吸脱着剤を1時間以上、60日間以下、静置する処理をすること1サイクルとし、当該サイクルを10回以上、50回以下繰り返すこと、が挙げられる。
Furthermore, the present adsorption / desorption agent may contain intergrowth SAPO on which an alkaline earth metal is supported. By supporting an alkaline earth metal on the intergrowth SAPO, a decrease in the amount of solid acid after the treatment (hereinafter referred to as “cycle hydration treatment”) that has been subjected to multiple hydration treatments is easily suppressed. .
Here, as the cycle hydration treatment, for example, after the treatment for allowing the water vapor adsorbent / desorbent to stand in a saturated water vapor atmosphere of 60 ° C. or higher and 100 ° C. or lower for 1 hour or longer and 60 days or shorter, A treatment for allowing the water vapor adsorbent / desorbent to stand for 1 hour or more and 60 days or less in a dry atmosphere (ie, an atmosphere having a water content of 0.05% by volume or less) at 1 ° C. or less is defined as 1 cycle. Repeating 10 times or more and 50 times or less.
 アルカリ土類金属は、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)群から選ばれる少なくともいずれか1種であることが好ましく、カルシウムであることがより好ましい。
 アルカリ土類金属がカルシウムである場合、カルシウム担持量は0.1重量%以上、更には0.2重量%以上、また更には0.4重量%以上であることが好ましい。カルシウム担持量がこの範囲であれば、サイクル水和処理後の固体酸量の低下がより抑制されやすくなる。また、カルシウム含有量は、2.5重量%以下、更には2重量%以下、また更には1.5重量%以下であれば、十分な固体酸量の低下を抑制する効果が得られる。なお、アルカリ土類金属がカルシウム以外である場合、その含有量は、上記のカルシウム含有量(重量%)に対応する物質量(mol)と同程度の量、であればよい。
The alkaline earth metal is preferably at least one selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba), and more preferably calcium.
When the alkaline earth metal is calcium, the calcium loading is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and even more preferably 0.4% by weight or more. If the amount of calcium supported is within this range, the decrease in the amount of solid acid after the cycle hydration treatment is more easily suppressed. Further, if the calcium content is 2.5% by weight or less, further 2% by weight or less, and further 1.5% by weight or less, an effect of suppressing a sufficient decrease in the amount of solid acid can be obtained. In addition, when alkaline-earth metal is other than calcium, the content should just be a quantity comparable as the amount of substances (mol) corresponding to said calcium content (weight%).
 本吸脱着剤は、これを任意の形態とすることができる。例えば、これを粉末で使用してもよく、コーティングや成形体として使用してもよい。コーティングとして使用する場合、本吸脱着剤を粉末スラリーとし、これをハニカムローターなどの基材にコーティングすればよい。
 成形体として使用する場合、バインダーや成形助剤を本吸脱着剤に混合して粒状成形体として使用すればよい。さらに、他の材料と一体成型してもよく、紙又は樹脂に混合することによりシート状にしてもよい。
This adsorption / desorption agent can be in any form. For example, it may be used as a powder, or may be used as a coating or a molded body. When used as a coating, the present adsorbent / desorbent may be used as a powder slurry and coated on a substrate such as a honeycomb rotor.
When used as a molded body, a binder or molding aid may be mixed with the present adsorption / desorption agent and used as a granular molded body. Furthermore, it may be integrally formed with other materials, or may be formed into a sheet by mixing with paper or resin.
 本吸脱着剤の製造方法を以下に説明する。
 本吸脱着剤は、連晶SAPOを含ませれば任意の製造方法により得ることができる。さらに、連晶SAPOは、以下のモル組成比を有する反応混合物を130℃以上220℃以下の温度に5時間以上100時間以下保持する製造方法により得られるものであることが好ましい。
The manufacturing method of this adsorption / desorption agent is demonstrated below.
This adsorbent / desorbent can be obtained by any production method as long as it contains intergrowth SAPO. Furthermore, the intergrowth SAPO is preferably obtained by a production method in which a reaction mixture having the following molar composition ratio is held at a temperature of 130 ° C. or higher and 220 ° C. or lower for 5 hours or longer and 100 hours or shorter.
  P/Al(モル比)=0.7~1.5
  SiO/Al(モル比)=0.1~1.2
  HO/Al(モル比)=5~100
  R/Al(モル比)=0.5~5
(Rは、有機鉱化剤を表す。)
P 2 O 5 / Al 2 O 3 (molar ratio) = 0.7 to 1.5
SiO 2 / Al 2 O 3 (molar ratio) = 0.1 to 1.2
H 2 O / Al 2 O 3 (molar ratio) = 5 to 100
R / Al 2 O 3 (molar ratio) = 0.5-5
(R represents an organic mineralizer.)
 ケイ素源は特に限定されないが、水溶性または水に分散されたケイ素源、固体状のケイ素源、又は有機ケイ素源などが挙げられる。水溶性のケイ素源としては、コロイダルシリカ、シリカゾル、及び水ガラスの群から選ばれる少なくとも1種、固体状ケイ素源としては、無定形シリカ、フュームドシリカ、及び珪酸ナトリウムの群から選ばれる少なくとも1種、有機ケイ素源としては、オルトケイ酸エチルを例示することができる。 The silicon source is not particularly limited, and examples thereof include a water-soluble or water-dispersed silicon source, a solid silicon source, or an organic silicon source. The water-soluble silicon source is at least one selected from the group of colloidal silica, silica sol, and water glass, and the solid silicon source is at least one selected from the group of amorphous silica, fumed silica, and sodium silicate. Examples of the seed and organosilicon source include ethyl orthosilicate.
 燐源として、例えば、正リン酸又は亜リン酸など水溶性の燐源、ピロリン酸などの縮合リン酸、リン酸カルシウムなどの固体状の燐源が挙げられる。
 アルミニウム源として、例えば、水溶性または水に分散されたアルミニウム源、固体状アルミニウム源、有機アルミニウム源などが挙げられる。水溶性アルミニウム源として、硫酸アルミニウム溶液、アルミン酸ソーダ溶液、及びアルミナゾルの群から選ばれる少なくとも1種、固体状アルミニウム源として、無定形アルミナ、擬ベーマイト、ベーマイト、水酸化アルミニウム、硫酸アルミニウム、及びアルミン酸ナトリウムの群から選ばれる少なくとも1種、有機アルミニウム源としてアルミニウムイソプロポキシドを例示することができる。
Examples of the phosphorus source include a water-soluble phosphorus source such as orthophosphoric acid or phosphorous acid, a condensed phosphoric acid such as pyrophosphoric acid, and a solid phosphorus source such as calcium phosphate.
Examples of the aluminum source include a water-soluble or water-dispersed aluminum source, a solid aluminum source, and an organic aluminum source. As a water-soluble aluminum source, at least one selected from the group consisting of an aluminum sulfate solution, a sodium aluminate solution, and an alumina sol, and as a solid aluminum source, amorphous alumina, pseudoboehmite, boehmite, aluminum hydroxide, aluminum sulfate, and alumine Aluminum isopropoxide can be exemplified as at least one selected from the group of sodium acid and an organoaluminum source.
 有機鉱化剤として、例えば、3級アミン、更にはトリエチルアミン、メチルジエチルアミン、ジエチルプロピルアミン、エチルジプロピルアミン、及びジエチルイソプロピルアミンの群から選ばれる少なくとも1種の3級アミン、また更にはトリエチルアミンを挙げることができる。有機鉱化剤としてトリエチルアミンを使用する場合、トリエチルアミン以外の3級アミン、あるいはシリコアルミノリン酸塩の合成に使用される他の有機鉱化剤とトリエチルアミンとを混合して使用してもよい。上記の他の有機鉱化剤としては、例えば、テトラエチルアンモニウム塩、ジエチルアミン、メチルブチルアミン、モルフォリン、シクロへキシルアミン、及びプロピルアミンの群から選ばれるいずれか1つ以上を挙げることができる。 As the organic mineralizer, for example, tertiary amine, further triethylamine, methyldiethylamine, diethylpropylamine, ethyldipropylamine, and diethylisopropylamine, at least one tertiary amine, or even triethylamine is used. Can be mentioned. When triethylamine is used as the organic mineralizer, a tertiary amine other than triethylamine or another organic mineralizer used for the synthesis of silicoaluminophosphate and triethylamine may be used in combination. Examples of the other organic mineralizer include one or more selected from the group consisting of tetraethylammonium salt, diethylamine, methylbutylamine, morpholine, cyclohexylamine, and propylamine.
 これらケイ素源、燐源、アルミニウム源、水、及び有機鉱化剤の添加順序は特に限定されない。それぞれを個別に、あるいは2原料以上を同時に添加混合することにより、反応混合物を調製してもよい。さらには、あらかじめ無定形のアルミノ燐酸ゲル、無定形のシリコアルミノ燐酸ゲルを調製し、これに水と有機鉱化剤、必要によりケイ素源、燐源、アルミニウム源を追加、混合することにより反応混合物を調製してもよい。反応混合物は、必要により、塩酸、硫酸、フッ酸、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウムなどの酸、アルカリによりpHを調製してもよい。 The order of adding these silicon source, phosphorus source, aluminum source, water, and organic mineralizer is not particularly limited. The reaction mixture may be prepared by adding each of them individually or by simultaneously mixing two or more raw materials. Furthermore, an amorphous aluminophosphate gel and an amorphous silicoaluminophosphate gel are prepared in advance, and a reaction mixture is prepared by adding and mixing water and an organic mineralizer and, if necessary, a silicon source, a phosphorus source and an aluminum source. It may be prepared. If necessary, the reaction mixture may be adjusted to pH with an acid such as hydrochloric acid, sulfuric acid, hydrofluoric acid, sodium hydroxide, potassium hydroxide, ammonium hydroxide, or an alkali.
 燐源とアルミニウム源は、酸化物換算でP/Alモル比が0.7~1.5となるよう混合する。P/Alモル比が0.7以上であれば収量の低下が防げる。P/Alモル比が1.5以下であれば、結晶化速度が低下しにくくなり、短時間で結晶化できる。好ましいP/Alモル比は0.8~1.2である。
 ケイ素源とアルミニウム源は、酸化物換算でSiO/Alモル比が0.1~1.2となるよう混合する。SiO/Alモル比が0.1以上であれば固体酸量の不足が生じない。SiO/Alモル比が1.2以下であれば結晶化速度が低下しにくくなり、短時間で結晶化できる。好ましいSiO/Alモル比は0.2~0.8である。
The phosphorus source and the aluminum source are mixed so that the P 2 O 5 / Al 2 O 3 molar ratio is 0.7 to 1.5 in terms of oxide. If the P 2 O 5 / Al 2 O 3 molar ratio is 0.7 or more, a decrease in yield can be prevented. When the P 2 O 5 / Al 2 O 3 molar ratio is 1.5 or less, the crystallization speed is hardly lowered, and crystallization can be performed in a short time. A preferred P 2 O 5 / Al 2 O 3 molar ratio is 0.8 to 1.2.
The silicon source and the aluminum source are mixed so that the SiO 2 / Al 2 O 3 molar ratio is 0.1 to 1.2 in terms of oxide. If the SiO 2 / Al 2 O 3 molar ratio is 0.1 or more, there is no shortage of the solid acid amount. When the SiO 2 / Al 2 O 3 molar ratio is 1.2 or less, the crystallization speed is hardly lowered and crystallization can be performed in a short time. A preferred SiO 2 / Al 2 O 3 molar ratio is 0.2 to 0.8.
 水とアルミニウム源は、酸化物換算でHO/Alモル比が5~100となるよう混合する。原料としてコロイダルシリカやリン酸などの水溶液を使用する際には水溶液中の水を含めた量をHOとする必要がある。HO/Alモル比は、生成物の収量に影響するため小さい方が好ましい。しかしながら、HO/Alモル比は5以上であれば反応混合物の粘度の上昇が抑えられる。好ましいHO/Alモル比は10~100、さらには15~60である。
 有機鉱化剤(R)とアルミニウム源は、酸化物換算でR/Alモル比が0.5~5となるように混合する。有機鉱化剤は、R/Alモル比は大きい方が好ましい。R/Alモル比が0.5以上とすることで、本吸脱着剤に含まれる連晶SAPOが得られやすくなる。一方、R/Alモル比が5以下であれば、十分な構造形成効果が得られる。好ましいR/Alモル比は1~3である。
Water and an aluminum source are mixed so that the H 2 O / Al 2 O 3 molar ratio is 5 to 100 in terms of oxide. When an aqueous solution such as colloidal silica or phosphoric acid is used as a raw material, the amount of water in the aqueous solution must be H 2 O. A smaller H 2 O / Al 2 O 3 molar ratio is preferred because it affects the yield of the product. However, if the H 2 O / Al 2 O 3 molar ratio is 5 or more, an increase in the viscosity of the reaction mixture can be suppressed. The preferred H 2 O / Al 2 O 3 molar ratio is 10 to 100, more preferably 15 to 60.
The organic mineralizer (R) and the aluminum source are mixed so that the R / Al 2 O 3 molar ratio is 0.5 to 5 in terms of oxide. The organic mineralizer preferably has a larger R / Al 2 O 3 molar ratio. By setting the R / Al 2 O 3 molar ratio to 0.5 or more, it is easy to obtain intergrowth SAPO contained in the present adsorption / desorption agent. On the other hand, if the R / Al 2 O 3 molar ratio is 5 or less, a sufficient structure forming effect can be obtained. The preferred R / Al 2 O 3 molar ratio is 1-3.
 連晶SAPOの製造に際しては、反応混合物にシリコアルミノリン酸塩を種晶として0.05~10重量%添加することにより、結晶化時間の短縮化を図ってもよい。この際、種晶とする本発明のシリコアルミノリン酸塩は粉砕して使用することがより効果的である。
 ここでの種晶添加量(重量%)は、反応混合物中のケイ素源、燐源、及びアルミニウム源のSi、P及びAlの量を、それぞれ酸化物(SiO、P、Al)として換算した場合の総重量に対する、種晶の重量割合である。種晶添加量が0.05重量%以上であれば、結晶化時間の短縮化の効果が十分に得られる。一方、種晶添加量の上限は特に限定されないが、10重量%を超えて添加しても効果が変わらない。したがって、好ましい種晶添加量は0.05~10重量%であり、より好ましくは0.1~5重量%である。
In the production of intergrowth SAPO, the crystallization time may be shortened by adding 0.05 to 10% by weight of silicoaluminophosphate as a seed crystal to the reaction mixture. At this time, it is more effective to use the silicoaluminophosphate of the present invention as a seed crystal after pulverization.
Here, the seed crystal addition amount (% by weight) refers to the amounts of Si, P and Al of the silicon source, phosphorus source and aluminum source in the reaction mixture, respectively, and oxides (SiO 2 , P 2 O 5 , Al 2). It is the weight ratio of the seed crystal to the total weight when converted as O 3 ). When the seed crystal addition amount is 0.05% by weight or more, the effect of shortening the crystallization time can be sufficiently obtained. On the other hand, the upper limit of the seed crystal addition amount is not particularly limited, but the effect is not changed even if it exceeds 10 wt%. Therefore, a preferable seed crystal addition amount is 0.05 to 10% by weight, and more preferably 0.1 to 5% by weight.
 以上のように調製された反応混合物を密閉耐圧容器に入れ、130℃以上220℃以下の温度に5時間以上100時間以下保持する。これにより、本吸脱着剤に含まれる連晶SAPOを製造することができる。生成物の組成や結晶径を均一にするために、反応混合物は保持中に撹拌することが好ましい。
 結晶化温度が高いと反応混合物を短時間で結晶化させることが可能である。好ましい結晶化温度は150~200℃である。
 結晶化された連晶SAPOは、ろ過、デカンテーション、遠心分離など常法の固液分離法により結晶化母液と分離し、必要により水洗を行った後、常法により乾燥することにより回収すればよい。
The reaction mixture prepared as described above is placed in a sealed pressure vessel and kept at a temperature of 130 ° C. or higher and 220 ° C. or lower for 5 hours or longer and 100 hours or shorter. Thereby, the intergrowth SAPO contained in this adsorption / desorption agent can be manufactured. In order to make the composition and crystal size of the product uniform, the reaction mixture is preferably stirred during the holding.
When the crystallization temperature is high, the reaction mixture can be crystallized in a short time. A preferred crystallization temperature is 150 to 200 ° C.
The crystallized intergrowth SAPO can be separated from the crystallized mother liquor by conventional solid-liquid separation methods such as filtration, decantation, and centrifugation, washed with water if necessary, and then recovered by drying by conventional methods. Good.
 回収された乾燥状態のシリコアルミノリン酸塩は、結晶化に使用した有機鉱化剤を細孔内に含有している。水蒸気吸脱着剤として、得られたシリコアルミノリン酸塩を使用するためには、含有する有機鉱化剤の焼成除去を行うことができる。有機鉱化剤は、含酸素雰囲気下で400~800℃の温度で焼成することにより除去すればよい。酸素濃度が高い雰囲気で焼成を行うと、有機鉱化剤が激しく燃焼するために、シリコアルミノリン酸塩の構造が破壊され、焼成炉の温度制御ができなくなることがある。このような場合には、焼成初期は低酸素雰囲気あるいは無酸素雰囲気として有機鉱化剤の燃焼を抑制することが好ましい。 The recovered dried silicoaluminophosphate contains the organic mineralizer used for crystallization in the pores. In order to use the obtained silicoaluminophosphate as a water vapor adsorbing / desorbing agent, the organic mineralizer contained can be removed by firing. The organic mineralizer may be removed by firing at a temperature of 400 to 800 ° C. in an oxygen-containing atmosphere. When firing in an atmosphere having a high oxygen concentration, the organic mineralizer burns violently, so that the structure of the silicoaluminophosphate is destroyed and the temperature of the firing furnace cannot be controlled. In such a case, it is preferable to suppress combustion of the organic mineralizer in a low oxygen atmosphere or an oxygen-free atmosphere at the initial stage of firing.
 以上のようにして得られた連晶SAPOは、使用する原料によっては、アルカリ金属、アルカリ土金属など原料中の金属カチオンをイオン交換サイトに含有することがある。そのため、必要により、酸洗浄、あるいはイオン交換により金属カチオンを除去、あるいは所望の金属カチオンを含有させることができる。 Depending on the raw material used, the intergrowth SAPO obtained as described above may contain metal cations in the raw material such as alkali metals and alkaline earth metals at the ion exchange site. Therefore, if necessary, a metal cation can be removed by acid washing or ion exchange, or a desired metal cation can be contained.
 本吸脱着剤に含まれる連晶SAPOは、これにアルカリ土類金属を担持させてもよい。
 アルカリ土類金属元素としては、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)群から選ばれる少なくともいずれか1種であることが好ましく、カルシウムであることがより好ましい。
 アルカリ土類金属担持に供する連晶SAPOを、プロトン型(H型)の連晶SAPO、またはアンモニア型(NH 型)の連晶SAPOのいずれかとすることが好ましい。これにより、連晶SAPOへのアルカリ土類金属の担持がより効率的に行える傾向にある。
 連晶SAPOをプロトン型(H型)の連晶SAPOとするためには、例えば、結晶化後の連晶SAPOを、大気中、400℃以上で焼成することが挙げられる。また、連晶SAPOをアンモニア型(NH 型)の連晶SAPOにするには、例えば、結晶化後の連晶SAPOを塩化アンモニウム水溶液でイオン交換することを挙げられる。
The interstitial SAPO contained in the present adsorption / desorption agent may carry an alkaline earth metal thereon.
The alkaline earth metal element is preferably at least one selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba), and more preferably calcium.
It is preferable that the intergrowth SAPO used for supporting the alkaline earth metal is either a proton type (H + type) continuous crystal SAPO or an ammonia type (NH 4 + type) continuous crystal SAPO. As a result, there is a tendency that the alkaline earth metal can be more efficiently supported on the intergrowth SAPO.
In order to convert the continuous crystal SAPO into a proton type (H + type) continuous crystal SAPO, for example, the crystallized continuous SAPO may be fired at 400 ° C. or higher in the atmosphere. In addition, in order to convert the continuous crystal SAPO into the ammonia type (NH 4 + type) continuous crystal SAPO, for example, ion exchange of the crystallized continuous SAPO with an aqueous ammonium chloride solution can be mentioned.
 アルカリ土類金属の原料は、連晶SAPOに担持させるアルカリ土類金属を含む硝酸塩、硫酸塩、酢酸塩、塩化物、錯塩、酸化物及び複合酸化物の群から選ばれるいずれか、並びにこれらの混合物を使用することができ、硝酸塩または酢酸塩であることが好ましい。
 アルカリ土類金属が担持されれば、その担持方法は任意の方法を選択することができる。担持方法として、イオン交換法、含浸担持法、蒸発乾固法、沈殿担持法又は物理混合法などの方法を例示することができ、連晶SAPOに担持するアルカリ土類金属量が制御しやすいため、担持方法は含浸担持法、又は蒸発乾固法のいずれかであることが好ましい。
The raw material of the alkaline earth metal is any one selected from the group consisting of nitrates, sulfates, acetates, chlorides, complex salts, oxides and complex oxides containing alkaline earth metals supported on the intergrowth SAPO, and these Mixtures can be used, preferably nitrates or acetates.
As long as the alkaline earth metal is supported, any method can be selected as the supporting method. Examples of the loading method include ion exchange method, impregnation loading method, evaporation to dryness method, precipitation loading method or physical mixing method, and the amount of alkaline earth metal supported on the intergrowth SAPO is easy to control. The supporting method is preferably either an impregnation supporting method or an evaporation to dryness method.
 これらのアルカリ土類金属の原料は、目的とする担持量となる量を使用すればよい。例えば、アルカリ土類金属がカルシウムである場合、連晶SAPOの重量に対するカルシウムの重量が0.1重量%以上、更には0.2重量%以上、また更には0.4重量%以上となる量を挙げることができる。一方、連晶SAPOの重量に対するカルシウムの重量が2.5重量%以下、更には2重量%以下、また更には1.5重量%以下となる量を用いればよい。なお、アルカリ土類金属がカルシウム以外である場合、当該アルカリ土類金属の原料中のアルカリ土類金属が、上記のカルシウム量(重量%)に対応する物質量(mol)と同程度の量となるように、当該原料を使用すればよい。 These raw materials for alkaline earth metals may be used in an amount corresponding to the target loading amount. For example, when the alkaline earth metal is calcium, the amount of calcium is 0.1% by weight or more, further 0.2% by weight or more, and further 0.4% by weight or more with respect to the weight of the intergrowth SAPO. Can be mentioned. On the other hand, the amount of calcium relative to the weight of the intergrowth SAPO is 2.5% by weight or less, further 2% by weight or less, and further 1.5% by weight or less. When the alkaline earth metal is other than calcium, the alkaline earth metal in the raw material of the alkaline earth metal has an amount equivalent to the amount of substance (mol) corresponding to the above calcium amount (% by weight). That is, the raw material may be used.
 本発明のCHA構造及びAEI構造を有するシリコアルミノリン酸塩(連晶シリコアルミノリン酸塩)は窒素酸化物還元触媒、好ましくは窒素酸化物の選択的接触還元触媒(Selective catalytic reduction;以下、「SCR触媒」とする。)とすることができる。本発明の連晶シリコアルミノリン酸塩はそのままでも窒素酸化物還元触媒として使用することができるが、ハニカム等の触媒担体に付着等させて使用することもできる。 The silicoaluminophosphate having the CHA structure and AEI structure of the present invention (continuous crystal silicoaluminophosphate) is a nitrogen oxide reduction catalyst, preferably a selective catalytic reduction catalyst of nitrogen oxide (hereinafter referred to as “selective catalytic reduction catalyst”). SCR catalyst "). The intergrowth silicoaluminophosphate of the present invention can be used as it is as a nitrogen oxide reduction catalyst, but can also be used by adhering to a catalyst carrier such as a honeycomb.
 本発明の連晶シリコアルミノリン酸塩を、窒素酸化物還元触媒又はSCR触媒(以下、これらを合わせて「窒素酸化物還元触媒等」とする)とすることにより、水分を含む雰囲気にこれが晒された前後の窒素酸化物還元率の変化が小さい窒素酸化物還元触媒等となる。本発明の連晶シリコアルミノリン酸塩は、例えば、水和処理前の窒素酸化物還元率に対する水和処理後の窒素酸化物還元率(以下、「水和還元維持率」とする。)は、例えば、500℃における水和還元維持率は90%以上であり、300℃における水和還元維持率は85%以上であり、200℃における水和還元維持率が85%以上であり、150℃における水和還元維持率が75%以上であることが挙げられる。 By using the intergrowth silicoaluminophosphate of the present invention as a nitrogen oxide reduction catalyst or SCR catalyst (hereinafter referred to as “nitrogen oxide reduction catalyst etc.”), it is exposed to an atmosphere containing moisture. Thus, a nitrogen oxide reduction catalyst or the like having a small change in the nitrogen oxide reduction rate before and after being formed. The intergrowth silicoaluminophosphate of the present invention has, for example, a nitrogen oxide reduction rate after hydration treatment relative to a nitrogen oxide reduction rate before hydration treatment (hereinafter referred to as “hydration reduction maintenance rate”). For example, the hydration reduction maintenance rate at 500 ° C. is 90% or more, the hydration reduction maintenance rate at 300 ° C. is 85% or more, the hydration reduction maintenance rate at 200 ° C. is 85% or more, and 150 ° C. It is mentioned that the hydration reduction maintenance rate in is 75% or more.
 ここで、水和処理とは、水分を含む雰囲気にシリコアルミノリン酸塩を晒す処理であり、その条件に一般化又は規格化されたものはない。水和処理として、60℃以上、90℃以下の飽和水蒸気雰囲気下に連晶シリコアルミノリン酸塩を1日以上、100日間以下、静置して処理することを例示することができる。
 本発明の連晶シリコアルミノリン酸塩を窒素酸化物還元触媒等として使用した場合、水分を含む雰囲気にこれが晒された前後の窒素酸化物還元率の変化が小さいことに加え、高温下に晒された場合、更には水分を含む高温下に晒された場合であっても、窒素酸化物還元率が高いことが好ましい。
Here, the hydration treatment is a treatment in which silicoaluminophosphate is exposed to an atmosphere containing moisture, and there is no generalized or standardized condition. An example of the hydration treatment is a treatment in which a continuous silicoaluminophosphate is left standing for 1 day or more and 100 days or less in a saturated water vapor atmosphere of 60 ° C. or higher and 90 ° C. or lower.
When the intergrowth silicoaluminophosphate of the present invention is used as a nitrogen oxide reduction catalyst or the like, in addition to the small change in the nitrogen oxide reduction rate before and after being exposed to an atmosphere containing moisture, it is exposed to high temperatures. In this case, it is preferable that the nitrogen oxide reduction rate is high even when exposed to a high temperature containing moisture.
 従って、本発明の連晶シリコアルミノリン酸塩の、耐久処理後の窒素酸化物還元率は、例えば、500℃において70%以上であることが挙げられる。特に、本発明の連晶シリコアルミノリン酸塩は、低温下における耐久処理後の窒素酸化物還元率が高いことが好ましく、耐久処理後の窒素酸化物還元率は、300℃において85%以上であり、200℃おいて80%以上であることが挙げられる。更には、本発明の連晶シリコアルミノリン酸塩は、より低温下での窒素酸化物還元率が高く、例えば、150℃における窒素酸化物還元率は、65%以上、更には70%を超え、また更には72%以上であることが挙げられる。 Therefore, the nitrogen oxide reduction rate after the endurance treatment of the intergrowth silicoaluminophosphate of the present invention is, for example, 70% or more at 500 ° C. In particular, the intergrowth silicoaluminophosphate of the present invention preferably has a high nitrogen oxide reduction rate after endurance treatment at low temperatures, and the nitrogen oxide reduction rate after endurance treatment is 85% or more at 300 ° C. Yes, it may be 80% or more at 200 ° C. Further, the intergrowth silicoaluminophosphate of the present invention has a high nitrogen oxide reduction rate at a lower temperature. For example, the nitrogen oxide reduction rate at 150 ° C. is 65% or more, and more than 70%. Furthermore, it is mentioned that it is 72% or more.
 ここで、耐久処理とは、連晶シリコアルミノ酸塩を高温下に晒す処理、すなわち、連晶シリコアルミノリン酸塩を窒素酸化物還元触媒として高温下で長期間使用した後の状態と同等の状態にするための処理である。耐久処理には、一般化又は規格化された条件はない。耐久処理として、例えば、10体積%以上、20体積%以下の水蒸気を含有ガスの流通下に、800℃以上、1000℃以下で、1時間以上、24時間以下で連晶シリコアルミノリン酸塩を静置して処理することを挙げることができる。 Here, the durability treatment is a treatment in which the intergrowth silicoalumino salt is exposed to a high temperature, that is, a state equivalent to a state after using the intergrowth silicoaluminophosphate as a nitrogen oxide reduction catalyst for a long time at a high temperature. It is a process to make. There is no generalized or standardized condition for the durability treatment. As the endurance treatment, for example, interstitial silicoaluminophosphate is added at 800 ° C. or more and 1000 ° C. or less for 1 hour or more and 24 hours or less under the flow of gas containing 10% by volume or more and 20% by volume or less of water vapor. It can be mentioned that the treatment is carried out by standing.
 ここで、窒素酸化物還元率とは、窒素酸化物を含有する処理ガスを窒素酸化物還元触媒等に接触させる場合において、当該接触前の処理ガス中の窒素酸化物の濃度に対する、当該接触により還元された処理ガス中の窒素酸化物の濃度である。これは、以下の式(3)により求めることができる。 Here, the nitrogen oxide reduction rate refers to the concentration of nitrogen oxides in the processing gas before the contact when the processing gas containing nitrogen oxides is brought into contact with the nitrogen oxide reduction catalyst or the like. This is the concentration of nitrogen oxides in the reduced process gas. This can be obtained by the following equation (3).
  窒素酸化物還元率(%)
 ={1-(接触後の処理ガス中の窒素酸化物濃度/接触前の処理ガス中の窒素酸化物濃度)}×100         (3)
Nitrogen oxide reduction rate (%)
= {1- (nitrogen oxide concentration in the processing gas after contact / nitrogen oxide concentration in the processing gas before contact)} × 100 (3)
 SCR触媒の窒素酸化物還元率の評価方法は、一般化又は規格化された条件はない。SCR触媒の窒素酸化物還元率の評価方法として、例えば、実施例に示した方法や、窒素酸化物を含有するガスとアンモニアを体積比で1対1で含有する混合ガスを触媒に流通し、これにより混合ガス中の窒素酸化物を還元させ、流通前後の混合ガス中の窒素酸化物濃度を測定し、上記の式(3)より求めることが挙げられる。
 なお、このSCR触媒反応の場合、還元剤としてアンモニアを使用している。そのため、この場合の窒素酸化物還元率は、いわゆるアンモニアSCR触媒として窒素酸化物還元率の値である。
There is no generalized or standardized condition for the method for evaluating the nitrogen oxide reduction rate of the SCR catalyst. As an evaluation method of the nitrogen oxide reduction rate of the SCR catalyst, for example, the method shown in the examples, or a gas mixture containing nitrogen oxide and ammonia in a volume ratio of 1: 1 is circulated through the catalyst. As a result, the nitrogen oxide in the mixed gas is reduced, the concentration of nitrogen oxide in the mixed gas before and after circulation is measured, and the above formula (3) is obtained.
In the case of this SCR catalytic reaction, ammonia is used as a reducing agent. Therefore, the nitrogen oxide reduction rate in this case is a value of the nitrogen oxide reduction rate as a so-called ammonia SCR catalyst.
 本発明の連晶シリコアルミノリン酸塩は水分を含む雰囲気下に晒されても窒素酸化物還元率の低下が少ない。そのため、本発明の連晶シリコアルミノリン酸塩からなる窒素酸化物還元触媒等は、例えば、工場排ガスや自動車排ガスなどの排気ガス処理システムに使用することができる。 The intergrowth silicoaluminophosphate of the present invention shows little reduction in nitrogen oxide reduction rate even when exposed to an atmosphere containing moisture. Therefore, the nitrogen oxide reduction catalyst composed of the continuous crystal silicoaluminophosphate of the present invention can be used, for example, in an exhaust gas treatment system such as factory exhaust gas or automobile exhaust gas.
 次に、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって何等限定されるものではない。 Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 (組成、銅含有量の測定)
 組成分析は誘導結合プラズマ発光分析法(ICP法)により行った。すなわち、試料をフッ酸と硝酸の混合溶液に溶解させ、測定溶液を調製した。一般的な誘導結合プラズマ発光分析装置(商品名:OPTIMA3000DV、PERKIN ELMER製)を用いて、得られた測定溶液を測定することで、試料の組成を測定し、銅の含有量を求めた。
(Measurement of composition and copper content)
The composition analysis was performed by inductively coupled plasma emission spectrometry (ICP method). That is, the sample was dissolved in a mixed solution of hydrofluoric acid and nitric acid to prepare a measurement solution. The composition of the sample was measured by measuring the obtained measurement solution using a general inductively coupled plasma emission spectrometer (trade name: OPTIMA 3000 DV, manufactured by PERKIN ELMER), and the copper content was determined.
 (平均結晶粒径の測定)
 一般的な走査型電子顕微鏡(商品名:JSM-6390LV型、日本電子社製)を用い、試料を走査型電子顕微鏡(以下、「SEM」とする)観察した。SEM観察の倍率は1000~2000倍とした。SEM観察により得られた試料のSEM像から、150個の結晶粒子を任意に選択しその大きさを測定した。得られた測定値の平均値を求め、試料の平均結晶粒径とした。
(Measurement of average crystal grain size)
A general scanning electron microscope (trade name: JSM-6390LV, manufactured by JEOL Ltd.) was used, and the sample was observed with a scanning electron microscope (hereinafter referred to as “SEM”). The magnification of SEM observation was 1000 to 2000 times. From the SEM image of the sample obtained by SEM observation, 150 crystal particles were arbitrarily selected and their sizes were measured. The average value of the measured values obtained was determined and used as the average crystal grain size of the sample.
 (粉末X線回折測定)
 一般的なX線回折装置(商品名:MXP-3、マックサイエンス社製)を使用し、試料のX線回折測定をした。線源にはCuKα線(λ=1.5405Å)を用い、測定モードはステップスキャン、スキャン条件はステップ幅0.02°、計測時間は1秒、および測定範囲は2θとして5°から40°の範囲で測定した。
 得られた試料の粉末X線回折パターンの各ピーク強度は面間隔9.30±0.15Åのピーク強度に対する相対強度として求めた。
 更に、DIFFaXプログラム(v1.813)を使用して、得られたX線回折パターンを解析し、試料の連晶比を求めた。
(Powder X-ray diffraction measurement)
A general X-ray diffractometer (trade name: MXP-3, manufactured by Mac Science Co., Ltd.) was used to measure the X-ray diffraction of the sample. A CuKα ray (λ = 1.5405 mm) is used as the radiation source, the measurement mode is a step scan, the scan condition is a step width of 0.02 °, the measurement time is 1 second, and the measurement range is 2θ to 5 ° to 40 °. Measured in range.
Each peak intensity of the powder X-ray diffraction pattern of the obtained sample was determined as a relative intensity with respect to a peak intensity with an interplanar spacing of 9.30 ± 0.15 mm.
Further, using the DIFFaX program (v1.813), the obtained X-ray diffraction pattern was analyzed to obtain the intergrowth ratio of the sample.
 (固体酸量の測定)
 試料の固体酸量の測定は、以下に示したNH-TPD法により行った。
 測定に先立ち、試料を加圧成形し、粉砕した後、20~30メッシュに整粒した。整粒後の試料を0.1g量りとり、これを固定床常圧流通式反応管(以下、単に「反応管」とする)に充填した。
 試料が充填された反応管にヘリウムガスを流しながら、これを500℃まで加熱した。これにより、試料とヘリウムガスとを接触させた。500℃で1時間保持した後、試料が充填された反応管を100℃まで冷却した。
(Measurement of solid acid amount)
The solid acid amount of the sample was measured by the NH 3 -TPD method shown below.
Prior to measurement, the sample was pressure-molded, pulverized, and sized to 20-30 mesh. 0.1 g of the sized sample was weighed and charged into a fixed-bed atmospheric pressure reaction tube (hereinafter simply referred to as “reaction tube”).
This was heated to 500 ° C. while flowing helium gas through the reaction tube filled with the sample. Thereby, the sample and helium gas were brought into contact. After holding at 500 ° C. for 1 hour, the reaction tube filled with the sample was cooled to 100 ° C.
 冷却後、試料が充填された反応管の温度を100℃に保持しながら、10体積%のアンモニアを含むアンモニア-ヘリウム混合ガスを流速60mL/minで1時間これに流した。これにより、試料にアンモニアを吸着させた。試料へのアンモニア吸着後、アンモニア-ヘリウム混合ガスを止め、その代わりにヘリウムガスを60mL/minで1時間流した。これにより、反応管の雰囲気中に残存するアンモニアガス、すなわち、試料に吸着されていないアンモニアを、反応管から除去した。
 その後、流速60mL/minでヘリウムガスを流しながら、10℃/minの昇温速度で100℃から700℃まで試料を昇温した。これにより、試料に吸着されたアンモニアを、試料から脱離させた。試料から脱離されるアンモニアは、熱伝導度検出器(TCD)を備えたガスクロマトグラフによって連続的に定量され、これによりアンモニアの脱離スペクトルを得た。
After cooling, while maintaining the temperature of the reaction tube filled with the sample at 100 ° C., an ammonia-helium mixed gas containing 10% by volume of ammonia was allowed to flow therethrough at a flow rate of 60 mL / min for 1 hour. As a result, ammonia was adsorbed on the sample. After ammonia adsorption to the sample, the ammonia-helium mixed gas was stopped, and instead, helium gas was allowed to flow at 60 mL / min for 1 hour. Thereby, ammonia gas remaining in the atmosphere of the reaction tube, that is, ammonia not adsorbed on the sample was removed from the reaction tube.
Thereafter, the sample was heated from 100 ° C. to 700 ° C. at a rate of 10 ° C./min while flowing helium gas at a flow rate of 60 mL / min. Thereby, ammonia adsorbed on the sample was desorbed from the sample. Ammonia desorbed from the sample was continuously quantified by a gas chromatograph equipped with a thermal conductivity detector (TCD), thereby obtaining a desorption spectrum of ammonia.
 得られた脱離スペクトルにおいて、脱離温度100℃以上250℃未満にピークトップを持つ脱離ピークを試料へ物理吸着したアンモニアの脱離に由来するピーク(以下、「物理吸着ピーク」とする)とみなし、脱離温度250℃以上450℃以下にピークトップを持つ脱離ピークを試料の固体酸に由来するピーク(以下、「固体酸ピーク」とする)とみなした。
 脱離スペクトルにおける固体酸ピークのピーク面積を求め、これと、予め測定したアンモニア量(mmol)が既知のガス(30mLの10容量%アンモニア-ヘリウム混合ガス)のNH-TPDピークのピーク面積との比を求めた。これにより固体酸ピークに相当するアンモニア脱離量(mmol)を求め、以下の式により、試料の固体酸量を求めた。
In the obtained desorption spectrum, a peak derived from desorption of ammonia by physically adsorbing a desorption peak having a peak top at a desorption temperature of 100 ° C. or higher and lower than 250 ° C. (hereinafter referred to as “physical adsorption peak”). The desorption peak having a peak top at a desorption temperature of 250 ° C. or higher and 450 ° C. or lower was regarded as a peak derived from the solid acid of the sample (hereinafter referred to as “solid acid peak”).
The peak area of the solid acid peak in the desorption spectrum was obtained, and the peak area of the NH 3 -TPD peak of a gas whose ammonia amount (mmol) was measured in advance (known as 30 mL of 10 vol% ammonia-helium mixed gas). The ratio of was calculated. Thus, the ammonia desorption amount (mmol) corresponding to the solid acid peak was determined, and the solid acid amount of the sample was determined by the following equation.
 試料の固体酸量(mmol/g)
  =固体酸ピークに相当するアンモニア脱離量(mmol)
      /CHA構造及びAEI構造を有するシリコアルミノリン酸塩質量(g)
Sample solid acid content (mmol / g)
= Ammonia desorption amount (mmol) corresponding to the solid acid peak
Silicoaluminophosphate mass (g) having / CHA structure and AEI structure
 (BET表面積の測定)
 一般的な表面積測定装置(商品名:OMNISORP 360CX型、コールター社製)を用い、試料のBET表面積を測定した。試料は真空排気下、350℃で2時間の前処理をおこなった。前処理後の試料を約0.1g量りとった後、液体窒素温度における当該試料の窒素吸着等温線の相対圧0.01から0.05の範囲の窒素吸着量からBET表面積を算出した。
(Measurement of BET surface area)
The BET surface area of the sample was measured using a general surface area measuring device (trade name: OMISORP 360CX type, manufactured by Coulter). The sample was pretreated at 350 ° C. for 2 hours under vacuum. After weighing about 0.1 g of the pretreated sample, the BET surface area was calculated from the nitrogen adsorption amount in the range of 0.01 to 0.05 relative pressure of the nitrogen adsorption isotherm of the sample at the liquid nitrogen temperature.
 (窒素酸化物還元率の測定方法)
 試料の窒素酸化物還元率は、以下に示すアンモニアSCR方法により測定した。
 測定に先立ち、試料を加圧成形し、粉砕した後、12~20メッシュに整粒した。整粒した試料を1.5mL量りとり、これを反応管に充填して窒素酸化物還元触媒とした。その後、150℃、200℃、300℃、又は500℃のいずれかの温度で、窒素酸化物を含む以下の組成からなる処理ガスを当該反応管に流通させた。なお、その他の条件は、処理ガスの流量を1.5L/min、及び空間速度(SV)を60,000hr-1として測定を行った。
(Measurement method of nitrogen oxide reduction rate)
The nitrogen oxide reduction rate of the sample was measured by the ammonia SCR method shown below.
Prior to measurement, the sample was pressure-molded, pulverized, and then sized to 12 to 20 mesh. 1.5 mL of the sized sample was weighed and filled into a reaction tube to obtain a nitrogen oxide reduction catalyst. Then, the process gas which consists of the following compositions containing nitrogen oxide was distribute | circulated through the said reaction tube at the temperature in any one of 150 degreeC, 200 degreeC, 300 degreeC, or 500 degreeC. The other conditions were measured at a processing gas flow rate of 1.5 L / min and a space velocity (SV) of 60,000 hr −1 .
  処理ガス組成 NO  200ppm
         NH 200ppm
         O   10容量%
         HO   3容量%
         残部      N
Process gas composition NO 200ppm
NH 3 200ppm
O 2 10% by volume
H 2 O 3% by volume
Remaining N 2
 反応管に流通させた処理ガス中の窒素酸化物濃度(200ppm)に対する、試料流通後の処理ガス中の窒素酸化物濃度(ppm)を求め、上記(2)式に従って、窒素酸化物還元率を求めた。 The nitrogen oxide concentration (ppm) in the processing gas after the sample flow is obtained with respect to the nitrogen oxide concentration (200 ppm) in the processing gas passed through the reaction tube, and the nitrogen oxide reduction rate is calculated according to the above equation (2). Asked.
 実施例1
(シリコアルミノリン酸塩の作製)
 水1690g、85%リン酸水溶液(特級試薬、キシダ化学製)559g、30%コロイダルシリカ(ST-N30、日産化学製)284g、トリエチルアミン(以下、「TEA」とする;特級試薬、キシダ化学製)744g、及び、77%擬ベーマイト(Pural SB、サソール製)322gを混合し、次の組成の反応混合物を調製した。
Example 1
(Preparation of silicoaluminophosphate)
1690 g of water, 559 g of 85% phosphoric acid aqueous solution (special grade reagent, manufactured by Kishida Chemical), 284 g of 30% colloidal silica (ST-N30, manufactured by Nissan Chemical), triethylamine (hereinafter referred to as “TEA”; special grade reagent, manufactured by Kishida Chemical) 744 g and 77% pseudo boehmite (Pural SB, manufactured by Sasol) 322 g were mixed to prepare a reaction mixture having the following composition.
  P/Al=1.0
  SiO/Al=0.6
   HO/Al=50
   TEA/Al=3
P 2 O 5 / Al 2 O 3 = 1.0
SiO 2 / Al 2 O 3 = 0.6
H 2 O / Al 2 O 3 = 50
TEA / Al 2 O 3 = 3
 この反応混合物を4Lのステンレス製密閉耐圧容器に入れ、270rpmで撹拌しながら180℃で69時間保持することで、これを結晶化して生成物を得た。
 得られた生成物はろ過、水洗し、その後、大気中、110℃で一晩乾燥した。乾燥後の生成物を、空気中、600℃で2時間焼成した。
 粉末X線回折パターンから得られた、焼成後の生成物の面間隔値(d値)及び相対強度を表3に示す。なお、表は相対強度2%以上の回折ピークのみを記載した。
This reaction mixture was placed in a 4 L stainless steel sealed pressure vessel and kept at 180 ° C. for 69 hours while stirring at 270 rpm to crystallize it to obtain a product.
The obtained product was filtered, washed with water, and then dried in the atmosphere at 110 ° C. overnight. The product after drying was calcined in air at 600 ° C. for 2 hours.
Table 3 shows the interplanar spacing value (d value) and relative intensity of the product after firing obtained from the powder X-ray diffraction pattern. In the table, only diffraction peaks having a relative intensity of 2% or more are shown.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 得られたシリコアルミノリン酸塩の連晶比はAEI構造の割合が60%(CHA/AEI=0.667)であり、組成が以下の式で表される連晶シリコアルミノリン酸塩であった。 The resulting silicoaluminophosphate has a continuous crystal ratio of 60% (CHA / AEI = 0.667) in the AEI structure, and the composition is a continuous crystal silicoaluminophosphate represented by the following formula. It was.
  (Si0.09Al0.490.42)O (Si 0.09 Al 0.49 P 0.42 ) O 2
 また、当該連晶シリコアルミノリン酸塩の平均粒径は4.3μm、固体酸量は0.91mmol/g、BET表面積は722m/gであった。 Further, the average particle diameter of the intergrowth silicoaluminophosphate was 4.3 μm, the amount of solid acid was 0.91 mmol / g, and the BET surface area was 722 m 2 / g.
 (窒素酸化物還元触媒の作製)
 得られた連晶シリコアルミノリン酸塩を600℃で2時間焼成した。純水2.9gに硝酸銅三水和物(一級試薬、キシダ化学株式会社製)0.46gを溶解して硝酸銅水溶液を得た。焼成後の試料7.5gに得られた硝酸銅水溶液を全量滴下した後、乳鉢で10分間混練した。
 混練後の試料を110℃で一晩乾燥した後、大気中、500℃、1時間焼成して銅含有連晶シリコアルミノリン酸塩を得た。得られた銅含有連晶シリコアルミノリン酸塩の銅含有量は1.6重量%であった。
(Production of nitrogen oxide reduction catalyst)
The obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours. 0.46 g of copper nitrate trihydrate (primary reagent, manufactured by Kishida Chemical Co., Ltd.) was dissolved in 2.9 g of pure water to obtain an aqueous copper nitrate solution. The entire amount of the copper nitrate aqueous solution obtained was added dropwise to 7.5 g of the baked sample, and then kneaded in a mortar for 10 minutes.
The kneaded sample was dried at 110 ° C. overnight and then calcined in the atmosphere at 500 ° C. for 1 hour to obtain a copper-containing intergrowth silicoaluminophosphate. The copper content of the obtained copper-containing intergrowth silicoaluminophosphate was 1.6% by weight.
 (水和処理)
 得られた銅含有連晶シリコアルミノリン酸塩5gをシャーレに量りとり、底部に純水を含むデシケーターにこれを配置した後、デシケーターを密閉した。当該デシケーターを80℃に保持した乾燥機中に配置することにより、銅含有連晶シリコアルミノリン酸塩を80℃の飽和水蒸気濃度(291g/m)雰囲気下に置いた。当該雰囲気下に8日間、20日間、及び80日間静置することにより、銅含有連晶シリコアルミノリン酸塩を水和処理した。
 焼成後(すなわち、水和処理前)の銅含有連晶シリコアルミノリン酸塩、及び各期間で水和処理を施した後の銅含有連晶シリコアルミノリン酸塩について、以下の条件で耐久処理を施した。
(Hydration treatment)
5 g of the obtained copper-containing intergranular silicoaluminophosphate was weighed in a petri dish and placed in a desiccator containing pure water at the bottom, and the desiccator was sealed. By placing the desiccator in a dryer maintained at 80 ° C., the copper-containing continuous crystal silicoaluminophosphate was placed in an atmosphere of a saturated water vapor concentration (291 g / m 3 ) at 80 ° C. The copper-containing intergranular silicoaluminophosphate was hydrated by allowing it to stand in the atmosphere for 8 days, 20 days, and 80 days.
Endurance treatment of copper-containing intergranular silicoaluminophosphate after firing (ie, before hydration) and copper-containing intergranular silicoaluminophosphate after hydration treatment in each period under the following conditions Was given.
  処理ガス組成 HO 10容量%
         残部  Air
  処理ガス流量     0.3リットル/分
  処理ガス/触媒容量比 100/分
  触媒温度       900℃(昇温速度10℃/分)
  空間速度       6,000hr-1
  処理時間       1時間(900℃保持時間)
Process gas composition H 2 O 10% by volume
The rest Air
Process gas flow rate 0.3 l / min Process gas / catalyst volume ratio 100 / min Catalyst temperature 900 ° C (Temperature increase rate 10 ° C / min)
Space velocity 6,000hr -1
Processing time 1 hour (900 ° C holding time)
 耐久処理後、150℃、200℃、及び、300℃の各温度で、低温における窒素酸化物還元率及び水和還元維持率を評価した。結果を表4に示す。 After the endurance treatment, the nitrogen oxide reduction rate and the hydration reduction maintenance rate at low temperatures were evaluated at 150 ° C., 200 ° C., and 300 ° C., respectively. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4より、焼成後の窒素酸化物還元率が300℃において90%以上と、本発明の連晶シリコアルミノリン酸塩は低温下における窒素酸化物還元率が高いことが確認できた。特に、焼成後の窒素酸化物還元率は200℃において85%以上、150℃において70%以上であり、本発明の連晶シリコアルミノリン酸塩は200℃以下、更には150℃以下のより低温下であっても、高い窒素酸化物還元率を有していることが確認できた。
 さらに、焼成後から水和処理後の全期間において、各温度における窒素酸化物還元率が、300℃において90%以上、200℃において80%以上、及び150℃において66%以上と、本発明の連晶シリコアルミノリン酸塩は、水を含有する雰囲気下に長時間さらされた場合であっても、高い窒素酸化物還元率を有することが確認できた。
From Table 4, it was confirmed that the nitrogen oxide reduction rate after firing was 90% or more at 300 ° C., and that the intergrowth silicoaluminophosphate of the present invention had a high nitrogen oxide reduction rate at low temperatures. In particular, the nitrogen oxide reduction rate after firing is 85% or higher at 200 ° C. and 70% or higher at 150 ° C., and the intergrowth silicoaluminophosphate of the present invention has a lower temperature of 200 ° C. or lower, more preferably 150 ° C. or lower. Even below, it was confirmed that it has a high nitrogen oxide reduction rate.
Furthermore, the nitrogen oxide reduction rate at each temperature is 90% or more at 300 ° C., 80% or more at 200 ° C., and 66% or more at 150 ° C. in the entire period after hydration after firing. It was confirmed that the intergranular silicoaluminophosphate has a high nitrogen oxide reduction rate even when exposed to an atmosphere containing water for a long time.
 また、水和処理を8日間及び20日間施した場合の水和還元維持率が、いずれの温度でも、100%近くであった。これより、本発明のシリコアルミノリン酸塩は、初期状態から窒素酸化物還元率の変動がほとんど生じない窒素酸化物還元触媒等となることが確認できた。
 さらに、水和処理を80日間施した場合であっても、300℃及び200℃における水和還元維持率が100%近く、窒素酸化物還元率の低下がないだけでなく、150℃においても水和還元維持率が90%以上であった。これより、本発明の連晶シリコアルミノリン酸塩は、200℃以下の低温下だけでなく、150℃以下のより低い温度下においても高い窒素酸化物還元率を維持することが確認できた。
Moreover, the hydration reduction maintenance rate at the time of performing the hydration process for 8 days and 20 days was nearly 100% at any temperature. From this, it was confirmed that the silicoaluminophosphate of the present invention becomes a nitrogen oxide reduction catalyst or the like in which the fluctuation of the nitrogen oxide reduction rate hardly occurs from the initial state.
Furthermore, even when the hydration treatment is performed for 80 days, the hydration reduction maintenance rate at 300 ° C. and 200 ° C. is nearly 100%, and the nitrogen oxide reduction rate does not decrease. The sum reduction maintenance rate was 90% or more. From this, it was confirmed that the intergrowth silicoaluminophosphate of the present invention maintained a high nitrogen oxide reduction rate not only at a low temperature of 200 ° C. or lower but also at a lower temperature of 150 ° C. or lower.
 実施例2
(窒素酸化物還元触媒の作製)
 実施例1と同様な方法で連晶シリコアルミノリン酸塩を得た。得られた連晶シリコアルミノリン酸塩を600℃で2時間焼成した。焼成後の試料を10.0g量りとり、酢酸銅水溶液に分散させ、スラリーとした。得られたスラリーをpH7.5とし、これを室温で20時間攪拌することでイオン交換を行った。
 なお、酢酸銅水溶液には、純水100gに酢酸銅(II)一水和物(一級試薬、キシダ化学株式会社製)1.01gを溶解したものを使用し、pH調整には25%アンモニア水(試薬特級、キシダ化学製)を使用した。
 イオン交換後のスラリーをろ過、洗浄し、110℃で一晩乾燥することにより、銅含有連晶シリコアルミノリン酸塩を得た。得られた銅含有連晶シリコアルミノリン酸塩の銅含有量は2.7重量%であった。
Example 2
(Production of nitrogen oxide reduction catalyst)
A continuous crystal silicoaluminophosphate was obtained in the same manner as in Example 1. The obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours. 10.0 g of the baked sample was weighed and dispersed in an aqueous copper acetate solution to obtain a slurry. The resulting slurry was adjusted to pH 7.5, and this was stirred at room temperature for 20 hours for ion exchange.
The aqueous solution of copper acetate was prepared by dissolving 1.01 g of copper acetate (II) monohydrate (primary reagent, manufactured by Kishida Chemical Co., Ltd.) in 100 g of pure water, and 25% aqueous ammonia was used for pH adjustment. (Special reagent grade, manufactured by Kishida Chemical) was used.
The slurry after ion exchange was filtered, washed, and dried at 110 ° C. overnight to obtain a copper-containing intergrowth silicoaluminophosphate. The copper content of the obtained copper-containing continuous crystal silicoaluminophosphate was 2.7% by weight.
 実施例3
(窒素酸化物還元触媒の作製)
 実施例1と同様な方法で連晶シリコアルミノリン酸塩を得た。得られた連晶シリコアルミノリン酸塩を600℃で2時間焼成した。純水2.9gに硝酸銅三水和物0.98gを溶解して硝酸銅水溶液を得た。焼成後の試料7.5gに得られた硝酸銅水溶液を全量滴下した後、乳鉢で10分間混練した。
 混練後の連晶シリコアルミノリン酸塩を110℃で一晩乾燥した後、空気雰囲気下、500℃で1時間の焼成を行い、銅含有シリコアルミノリン酸塩を得た。得られた銅含有連晶シリコアルミノリン酸塩の銅含有量は3.4重量%であった。
Example 3
(Production of nitrogen oxide reduction catalyst)
A continuous crystal silicoaluminophosphate was obtained in the same manner as in Example 1. The obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours. 0.98 g of copper nitrate trihydrate was dissolved in 2.9 g of pure water to obtain an aqueous copper nitrate solution. The entire amount of the copper nitrate aqueous solution obtained was added dropwise to 7.5 g of the baked sample, and then kneaded in a mortar for 10 minutes.
The kneaded intergranular silicoaluminophosphate was dried at 110 ° C. overnight and then fired at 500 ° C. for 1 hour in an air atmosphere to obtain a copper-containing silicoaluminophosphate. The copper content of the obtained copper-containing continuous crystal silicoaluminophosphate was 3.4% by weight.
 実施例4
(シリコアルミノリン酸塩の作製)
 水1698g、85%リン酸水溶液559g、30%コロイダルシリカ284g、トリエチルアミン736g、77%擬ベーマイト322g、及び、種晶4.2gを混合し、次の組成の反応混合物を調製した。なお、種晶には、実施例1で得られた連晶シリコアルミノリン酸塩をボールミルで1時間湿式粉砕したものを使用した。
Example 4
(Preparation of silicoaluminophosphate)
1698 g of water, 559 g of 85% phosphoric acid aqueous solution, 284 g of 30% colloidal silica, 736 g of triethylamine, 322 g of 77% pseudoboehmite, and 4.2 g of seed crystals were mixed to prepare a reaction mixture having the following composition. The seed crystal used was a continuous crystal silicoaluminophosphate obtained in Example 1 that was wet-ground by a ball mill for 1 hour.
  P/Al=1.0
  SiO/Al=0.6
  HO/Al=50
  TEA/Al=3
  種晶0.5重量%
P 2 O 5 / Al 2 O 3 = 1.0
SiO 2 / Al 2 O 3 = 0.6
H 2 O / Al 2 O 3 = 50
TEA / Al 2 O 3 = 3
0.5% by weight of seed crystals
 この反応混合物を4Lのステンレス製密閉耐圧容器に入れ、270rpmで撹拌しながら180℃で64時間保持し、これを結晶化して生成物を得た。
 得られた生成物はろ過、水洗し、その後、大気中、110℃で一晩乾燥した。乾燥後の生成物を、空気中、600℃で2時間焼成した。
 焼成後の生成物の粉末X線回折パターンから得られた、面間隔値(d値)及び相対強度を表5に示す。なお、表は相対強度2%以上の回折ピークのみを記載した。
This reaction mixture was placed in a 4 L stainless steel sealed pressure vessel and kept at 180 ° C. for 64 hours while stirring at 270 rpm, and crystallized to obtain a product.
The obtained product was filtered, washed with water, and then dried in the atmosphere at 110 ° C. overnight. The product after drying was calcined in air at 600 ° C. for 2 hours.
Table 5 shows the interplanar spacing value (d value) and relative intensity obtained from the powder X-ray diffraction pattern of the product after firing. In the table, only diffraction peaks having a relative intensity of 2% or more are shown.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 得られたシリコアルミノリン酸塩の連晶比はAEI構造の割合が65%(CHA/AEI=0.538)であり、組成が以下の式で表される連晶シリコアルミノリン酸塩であった。
  (Si0.08Al0.500.42)O
 また、当該連晶シリコアルミノリン酸塩の平均粒径は1.2μm、固体酸量は0.80mmol/g、BET表面積は741m/gであった。
The resulting silicoaluminophosphate had a continuous crystal ratio of 65% (CHA / AEI = 0.538) in the AEI structure, and the composition was a continuous crystal silicoaluminophosphate represented by the following formula. It was.
(Si 0.08 Al 0.50 P 0.42 ) O 2
Moreover, the average particle diameter of the said continuous crystal silicoaluminophosphate was 1.2 micrometers, the amount of solid acids was 0.80 mmol / g, and the BET surface area was 741 m < 2 > / g.
 (窒素酸化物還元触媒の作製)
 得られた連晶シリコアルミノリン酸塩を600℃で2時間焼成した。純水2.9gに硝酸銅三水和物0.37gを溶解して硝酸銅水溶液を得た。焼成後の試料7.5gに得られた硝酸銅水溶液を全量滴下した後、乳鉢で10分間混練した。
 混練後の連晶シリコアルミノリン酸塩を110℃で一晩乾燥した後、空気雰囲気下、500℃で1時間の焼成を行い、銅含有連晶シリコアルミノリン酸塩を得た。得られた銅含有連晶シリコアルミノリン酸塩の銅含有量は1.3重量%であった。
(Production of nitrogen oxide reduction catalyst)
The obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours. 0.37 g of copper nitrate trihydrate was dissolved in 2.9 g of pure water to obtain an aqueous copper nitrate solution. The entire amount of the copper nitrate aqueous solution obtained was added dropwise to 7.5 g of the baked sample, and then kneaded in a mortar for 10 minutes.
The kneaded intergranular silicoaluminophosphate was dried at 110 ° C. overnight and then fired in an air atmosphere at 500 ° C. for 1 hour to obtain a copper-containing intergranular silicoaluminophosphate. The copper content of the obtained copper-containing continuous crystal silicoaluminophosphate was 1.3% by weight.
 実施例5
(シリコアルミノリン酸塩の作製)
 水29.4g、85%リン酸水溶液8.9g、30%コロイダルシリカ0.98g、トリエチルアミン11.7g、77%擬ベーマイト5.1g、及び、種晶0.07gを混合し、次の組成の反応混合物を調製した。なお、種晶には、実施例1で得られた連晶シリコアルミノリン酸塩をボールミルで1時間湿式粉砕したものを使用した。
Example 5
(Preparation of silicoaluminophosphate)
29.4 g of water, 8.9 g of 85% phosphoric acid aqueous solution, 0.98 g of 30% colloidal silica, 11.7 g of triethylamine, 5.1 g of 77% pseudoboehmite, and 0.07 g of seed crystals were mixed. A reaction mixture was prepared. The seed crystal used was a continuous crystal silicoaluminophosphate obtained in Example 1 that was wet-ground by a ball mill for 1 hour.
 P/Al=1.0
 SiO/Al=0.13
 HO/Al=50
 TEA/Al=3
 種晶0.6重量%
P 2 O 5 / Al 2 O 3 = 1.0
SiO 2 / Al 2 O 3 = 0.13
H 2 O / Al 2 O 3 = 50
TEA / Al 2 O 3 = 3
0.6% by weight of seed crystals
 この反応混合物を80mlのステンレス製密閉耐圧容器に入れ、水平軸廻りに55rpmで回転させながら180℃で63時間保持し、これを結晶化して生成物を得た。
 得られた生成物はろ過、水洗し、その後、大気中、110℃で一晩乾燥した。乾燥後の生成物を、空気中、600℃で2時間焼成した。
 焼成後の生成物の粉末X線回折パターンから得られた、面間隔値(d値)及び相対強度を表6に示す。なお、表は相対強度2%以上の回折ピークのみを記載した。
This reaction mixture was put into an 80 ml stainless steel sealed pressure vessel, kept at 180 ° C. for 63 hours while rotating at 55 rpm around the horizontal axis, and crystallized to obtain a product.
The obtained product was filtered, washed with water, and then dried in the atmosphere at 110 ° C. overnight. The product after drying was calcined in air at 600 ° C. for 2 hours.
Table 6 shows the spacing value (d value) and the relative intensity obtained from the powder X-ray diffraction pattern of the product after firing. In the table, only diffraction peaks having a relative intensity of 2% or more are shown.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 得られたシリコアルミノリン酸塩の連晶比はAEI構造の割合が60%(CHA/AEI=0.667)であり、組成が以下の式で表される連晶シリコアルミノリン酸塩であった。
  (Si0.06Al0.500.44)O
 また、当該連晶シリコアルミノリン酸塩の平均粒径は1.4μm、固体酸量は0.59mmol/g、BET表面積は749m/gであった。
The resulting silicoaluminophosphate has a continuous crystal ratio of 60% (CHA / AEI = 0.667) in the AEI structure, and the composition is a continuous crystal silicoaluminophosphate represented by the following formula. It was.
(Si 0.06 Al 0.50 P 0.44 ) O 2
Moreover, the average particle diameter of the said continuous crystal silicoaluminophosphate was 1.4 micrometers, the amount of solid acids was 0.59 mmol / g, and the BET surface area was 749 m < 2 > / g.
 (窒素酸化物還元触媒の作製)
 得られた連晶シリコアルミノリン酸塩を600℃で2時間焼成した。純水2.9gに硝酸銅三水和物0.37gを溶解して硝酸銅水溶液を得た。焼成後の試料7.5gに得られた硝酸銅水溶液を全量滴下した後、乳鉢で10分間混練した。
 混練後の連晶シリコアルミノリン酸塩を110℃で一晩乾燥した後、空気雰囲気下、500℃で1時間の焼成を行い、銅含有シリコアルミノリン酸塩を得た。得られた銅含有シリコアルミノリン酸塩の銅含有量は1.3重量%であった。
(Production of nitrogen oxide reduction catalyst)
The obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours. 0.37 g of copper nitrate trihydrate was dissolved in 2.9 g of pure water to obtain an aqueous copper nitrate solution. The entire amount of the copper nitrate aqueous solution obtained was added dropwise to 7.5 g of the baked sample, and then kneaded in a mortar for 10 minutes.
The kneaded intergranular silicoaluminophosphate was dried at 110 ° C. overnight and then fired at 500 ° C. for 1 hour in an air atmosphere to obtain a copper-containing silicoaluminophosphate. The copper content of the obtained copper-containing silicoaluminophosphate was 1.3% by weight.
 実施例6
(窒素酸化物還元触媒の作製)
 実施例1と同様な方法で連晶シリコアルミノリン酸塩を得た。得られた連晶シリコアルミノリン酸塩を600℃で2時間焼成した。焼成後の試料を10.0g量りとり、硝酸銅水溶液に分散させ、スラリーとした。得られたスラリーをpH7.0とし、これを室温度2時間攪拌することでイオン交換を行った。
 なお、硝酸銅水溶液には、純水100gに硝酸銅(II)一水和物0.63gを溶解したものを使用し、pH調整には25%アンモニア水を使用した。
 イオン交換後のスラリーをろ過、洗浄し、110℃で一晩乾燥することにより、銅含有連晶シリコアルミノリン酸塩を得た。得られた銅含有シリコアルミノリン酸塩の銅含有量は0.3重量%であった。
Example 6
(Production of nitrogen oxide reduction catalyst)
A continuous crystal silicoaluminophosphate was obtained in the same manner as in Example 1. The obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours. 10.0 g of the calcined sample was weighed and dispersed in an aqueous copper nitrate solution to obtain a slurry. The obtained slurry was adjusted to pH 7.0, and ion exchange was performed by stirring the slurry at room temperature for 2 hours.
The aqueous copper nitrate solution used was a solution of 0.63 g of copper (II) nitrate monohydrate in 100 g of pure water, and 25% aqueous ammonia was used for pH adjustment.
The slurry after ion exchange was filtered, washed, and dried at 110 ° C. overnight to obtain a copper-containing intergrowth silicoaluminophosphate. The copper content of the obtained copper-containing silicoaluminophosphate was 0.3% by weight.
 比較例1
(シリコアルミノリン酸塩の作製)
 水244g、85%リン酸水溶液279g、30%コロイダルシリカ135g、35%テトラエチルアンモニウムヒドロキサイド(TEAOH;工業用、アルファーエイサー製)1159g、77%擬ベーマイト183gを混合し、次の組成の反応混合物を調製した。
Comparative Example 1
(Preparation of silicoaluminophosphate)
244 g of water, 279 g of 85% aqueous phosphoric acid solution, 135 g of 30% colloidal silica, 1159 g of 35% tetraethylammonium hydroxide (TEAOH; industrial, manufactured by Alpha-Acer) and 183 g of 77% pseudoboehmite were mixed together. Prepared.
 P/Al=0.88
 SiO/Al=0.5
 HO/Al=50
 TEAOH/Al=2
P 2 O 5 / Al 2 O 3 = 0.88
SiO 2 / Al 2 O 3 = 0.5
H 2 O / Al 2 O 3 = 50
TEAOH / Al 2 O 3 = 2
 この反応混合物を4Lのステンレス製密閉耐圧容器に入れ、270rpmで撹拌しながら200℃で92時間保持した。
 生成物をろ過、水洗し、その後、大気中、110℃で一晩乾燥した。乾燥後の生成物を、空気中、600℃で2時間焼成した。
 焼成後の生成物の粉末X線回折パターンから得られた、面間隔値(d値)及び相対強度を表7に示す。なお、表は相対強度2%以上の回折ピークのみを記載した。
The reaction mixture was placed in a 4 L stainless steel sealed pressure vessel and held at 200 ° C. for 92 hours with stirring at 270 rpm.
The product was filtered, washed with water and then dried overnight at 110 ° C. in air. The product after drying was calcined in air at 600 ° C. for 2 hours.
Table 7 shows the interplanar spacing value (d value) and relative intensity obtained from the powder X-ray diffraction pattern of the product after firing. In the table, only diffraction peaks having a relative intensity of 2% or more are shown.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 得られたシリコアルミノリン酸塩の連晶比はAEI構造が10%(CHA/AEI=0.111)であり、組成が以下の式で表される連晶シリコアルミノリン酸塩であった。
  (Si0.12Al0.490.39)O
 また、当該連晶シリコアルミノリン酸塩の平均粒径は0.8μm、固体酸量は1.15mmol/gであった。
The resulting silicoaluminophosphate had a continuous crystal ratio of 10% (CHA / AEI = 0.111) for the AEI structure, and a continuous crystal silicoaluminophosphate represented by the following formula.
(Si 0.12 Al 0.49 P 0.39 ) O 2
Moreover, the average particle diameter of the said continuous crystal silicoaluminophosphate was 0.8 micrometer, and the amount of solid acids was 1.15 mmol / g.
 (窒素酸化物還元触媒の作製)
 得られた連晶シリコアルミノリン酸塩を600℃で2時間焼成した。純水2.9gに硝酸銅三水和物0.46gを溶解した硝酸銅水溶液を焼成後の試料7.5gに滴下した後、乳鉢で10分間混練した。
 混練後の連晶シリコアルミノリン酸塩を110℃で一晩乾燥した後、空気雰囲気下、500℃で1時間の焼成を行い、銅含有連晶シリコアルミノリン酸塩を得た。得られた銅含有連晶シリコアルミノリン酸塩の銅含有量は1.6重量%であった。
(Production of nitrogen oxide reduction catalyst)
The obtained continuous crystal silicoaluminophosphate was calcined at 600 ° C. for 2 hours. An aqueous copper nitrate solution in which 0.46 g of copper nitrate trihydrate was dissolved in 2.9 g of pure water was dropped onto 7.5 g of the calcined sample, and then kneaded in a mortar for 10 minutes.
The kneaded intergranular silicoaluminophosphate was dried at 110 ° C. overnight and then fired in an air atmosphere at 500 ° C. for 1 hour to obtain a copper-containing intergranular silicoaluminophosphate. The copper content of the obtained copper-containing intergrowth silicoaluminophosphate was 1.6% by weight.
 (水和処理)
 静置期間を80日間としたこと以外は実施例1と同様な方法で、得られた銅含有連晶シリコアルミノリン酸塩を水和処理した。水和処理後、実施例1と同様な方法で耐久処理をして得られた銅含有シリコアルミノリン酸塩及び、焼成後(すなわち、耐久処理前)の銅含有連晶シリコアルミノリン酸塩に施した後、150℃、200℃、300℃、及び500℃の各温度でその窒素酸化物還元率を評価した。結果を表8に示す。
(Hydration treatment)
The obtained copper-containing intergranular silicoaluminophosphate was hydrated in the same manner as in Example 1 except that the standing period was 80 days. After the hydration treatment, the copper-containing silicoaluminophosphate obtained by endurance treatment in the same manner as in Example 1 and the copper-containing intergrowth silicoaluminophosphate after firing (that is, before the endurance treatment) After the application, the nitrogen oxide reduction rate was evaluated at each temperature of 150 ° C., 200 ° C., 300 ° C., and 500 ° C. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8より、比較例1の500℃の高温下における窒素酸化物還元率は、実施例1のそれよりも高かった。しかしながら、水和処理を80日間施した後の実施例1の水和還元維持率は100%であるのに対し、比較例1のそれは77%であった。これより、本発明の連晶シリコアルミノリン酸塩は、CHA構造を多く含む連晶シリコアルミノリン酸塩と比べ、500℃以上の高温下において、窒素酸化物還元率の変化が少ないことが分かった。
 また、300℃及び200℃の窒素酸化物還元率において、焼成後は実施例1、比較例1のいずれも90%以上の窒素酸化物還元率を示し、同等の窒素酸化物還元特性を有することが確認できた。しかしながら、水和処理を80日間施した後の比較例1の水和還元維持率は83%であり、実施例1の水和還元維持率より低かった。これより、本発明の連晶シリコアルミノリン酸塩は、CHA構造を多く含む連晶シリコアルミノリン酸塩と比べ、300℃以下、更には200℃以下の低温下においても、窒素酸化物還元率の変化が少ないことが分かった。
From Table 8, the nitrogen oxide reduction rate of Comparative Example 1 at a high temperature of 500 ° C. was higher than that of Example 1. However, after the hydration treatment for 80 days, the hydration reduction maintenance rate of Example 1 was 100%, whereas that of Comparative Example 1 was 77%. From this, it can be seen that the intergrowth silicoaluminophosphate of the present invention has less change in the nitrogen oxide reduction rate at a high temperature of 500 ° C. or higher, compared to intergrowth silicoaluminophosphate containing a large amount of CHA structure. It was.
Moreover, in the nitrogen oxide reduction rates of 300 ° C. and 200 ° C., after firing, both Example 1 and Comparative Example 1 show a nitrogen oxide reduction rate of 90% or more, and have equivalent nitrogen oxide reduction characteristics. Was confirmed. However, the hydration reduction maintenance rate of Comparative Example 1 after the hydration treatment for 80 days was 83%, which was lower than the hydration reduction maintenance rate of Example 1. As a result, the intergrowth silicoaluminophosphate of the present invention has a nitrogen oxide reduction rate even at a low temperature of 300 ° C. or less, and even 200 ° C. or less, compared with the intergrowth silicoaluminophosphate containing many CHA structures. It turned out that there was little change of.
 さらに、150℃の窒素酸化物還元率において、焼成後は実施例1が74%であるのに対し、比較例1は70%であった。これより、150℃以下のより低温下においては、本発明の連晶シリコアルミノリン酸塩は、CHA構造を多く含む連晶シリコアルミノリン酸塩と比べて高い窒素酸化物還元率を有していることが確認できた。さらに150℃の水和還元維持率は実施例1が90%以上であるのに対し、比較例1は30%であり、本発明の連晶シリコアルミノリン酸塩は、CHA構造を多く含む連晶シリコアルミノリン酸塩と比べて3倍以上の水和還元維持率を示すことが確認できた。これにより、本発明の連晶シリコアルミノリン酸塩は、150℃以下のより低温下において、窒素酸化物還元率の変化が少ない窒素酸化物還元特性を有することが確認できた。 Furthermore, at a nitrogen oxide reduction rate of 150 ° C., after firing, Example 1 was 74%, while Comparative Example 1 was 70%. Accordingly, at a lower temperature of 150 ° C. or lower, the intergrowth silicoaluminophosphate of the present invention has a higher nitrogen oxide reduction rate than intergrowth silicoaluminophosphate containing a large amount of CHA structure. It was confirmed that Further, the hydration reduction maintenance rate at 150 ° C. is 90% or more in Example 1, whereas it is 30% in Comparative Example 1, and the intergrowth silicoaluminophosphate of the present invention has a continuous CHA structure. It was confirmed that the hydration reduction maintenance rate was 3 times or more compared with the crystalline silicoaluminophosphate. Accordingly, it was confirmed that the intergrowth silicoaluminophosphate of the present invention has nitrogen oxide reduction characteristics with little change in nitrogen oxide reduction rate at a lower temperature of 150 ° C. or lower.
 比較例2
(シリコアルミノリン酸塩の作製)
 水64.3g、85%リン酸水溶液18.3g、30%コロイダルシリカ(6.9g、N-エチルジイソプロピルアミン(以下、「EDIPA」とする;特級試薬、キシダ化学製)18.8g、及び、77%擬ベーマイト11.7gを混合し、次の組成の反応混合物を調製した。
Comparative Example 2
(Preparation of silicoaluminophosphate)
64.3 g of water, 18.3 g of 85% phosphoric acid aqueous solution, 30% colloidal silica (6.9 g, N-ethyldiisopropylamine (hereinafter referred to as “EDIPA”; special grade reagent, manufactured by Kishida Chemical), and 11.7 g of 77% pseudo boehmite was mixed to prepare a reaction mixture having the following composition.
  P/Al=0.9
  SiO/Al=0.4
  HO/Al=50
  EDIPA/Al=1.6
P 2 O 5 / Al 2 O 3 = 0.9
SiO 2 / Al 2 O 3 = 0.4
H 2 O / Al 2 O 3 = 50
EDIPA / Al 2 O 3 = 1.6
 この反応混合物を80mlのステンレス製密閉耐圧容器に入れ、水平軸廻りに55rpmで回転させながら160℃で91時間保持した。
 生成物をろ過、水洗し、その後、大気中、110℃で一晩乾燥した。乾燥後の生成物を、空気中、600℃で2時間焼成した。
 焼成後の生成物の粉末X線回折パターンから得られた、面間隔値(d値)及び相対強度を表9に示す。なお、表は相対強度2%以上の回折ピークのみを記載した。
The reaction mixture was placed in an 80 ml stainless steel sealed pressure vessel and kept at 160 ° C. for 91 hours while rotating at 55 rpm around the horizontal axis.
The product was filtered, washed with water and then dried overnight at 110 ° C. in air. The product after drying was calcined in air at 600 ° C. for 2 hours.
Table 9 shows the interplanar spacing value (d value) and relative intensity obtained from the powder X-ray diffraction pattern of the product after firing. In the table, only diffraction peaks having a relative intensity of 2% or more are shown.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 得られたシリコアルミノリン酸塩の連晶比はAEI構造が100%(CHA/AEI=0)であり、その構造中AEI構造のみを有するシリコアルミノリン酸塩であった。また、当該シリコアルミノリン酸塩の組成は以下の式で表されるものあった。
  (Si0.12Al0.500.39)O
 また、当該シリコアルミノリン酸塩の結晶形状は柱状や板状など不定形で、かつ、長辺方向が1μm程度の粒子であり、その固体酸量は0.33mmol/gであった。
The resulting silicoaluminophosphate had a continuous crystal ratio of 100% (CHA / AEI = 0) in the AEI structure, and a silicoaluminophosphate having only the AEI structure in the structure. Further, the composition of the silicoaluminophosphate was represented by the following formula.
(Si 0.12 Al 0.50 P 0.39 ) O 2
Further, the crystalline shape of the silicoaluminophosphate was an indefinite shape such as a columnar shape or a plate shape, and was a particle having a long side direction of about 1 μm, and the solid acid amount was 0.33 mmol / g.
 (窒素酸化物還元触媒の作製)
 得られたシリコアルミノリン酸塩を600℃で2時間焼成した。純水2.9gに硝酸銅三水和物0.46gを溶解した硝酸銅水溶液を焼成後の試料7.5gに滴下した後、乳鉢で10分間混練した。
 混練後のシリコアルミノリン酸塩を110℃で一晩乾燥した後、空気雰囲気下、500℃で1時間の焼成を行い、銅含有シリコアルミノリン酸塩を得た。得られた銅含有シリコアルミノリン酸塩の銅含有量は1.6重量%であった。
(Production of nitrogen oxide reduction catalyst)
The obtained silicoaluminophosphate was calcined at 600 ° C. for 2 hours. An aqueous copper nitrate solution in which 0.46 g of copper nitrate trihydrate was dissolved in 2.9 g of pure water was dropped onto 7.5 g of the calcined sample, and then kneaded in a mortar for 10 minutes.
After the kneaded silicoaluminophosphate was dried at 110 ° C. overnight, firing was performed at 500 ° C. for 1 hour in an air atmosphere to obtain a copper-containing silicoaluminophosphate. The copper content of the obtained copper-containing silicoaluminophosphate was 1.6% by weight.
 (耐熱性評価)
 実施例1、2、4及び比較例1の銅含有連晶シリコアルミノリン酸塩、並びに、比較例2の銅含有シリコアルミノリン酸塩について、実施例1と同様な耐久処理を施した。耐久処理前、及び、耐久処理後のこれらの試料の窒素酸化物還元率を測定した。結果を表10に示す。
(Heat resistance evaluation)
The same durability treatment as in Example 1 was performed on the copper-containing intergrowth silicoaluminophosphates of Examples 1, 2, 4 and Comparative Example 1 and the copper-containing silicoaluminophosphate of Comparative Example 2. The nitrogen oxide reduction rate of these samples before and after the durability treatment was measured. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10より、実施例の連晶シリコアルミノリン酸塩は、150℃、200℃、300℃、及び、500℃のいずれの温度においても、耐久処理前の窒素酸化物還元率が65%以上、耐久処理後の窒素酸化物還元率は70%以上と、いずれも高い窒素酸化物還元特性を有していることが確認できた。
 特に、実施例の銅含有連晶シリコアルミノリン酸塩は、耐久処理後における、150℃の窒素酸化物還元率は70%を超える高い値を示すことが確認できた。
 さらに、実施例1の銅含有連晶シリコアルミノリン酸塩は、比較例1の連晶シリコアルミノリン酸塩と銅の量が等しい。しかしながら、耐久処理前後によらず、実施例1の窒素酸化物還元率は、比較例1のそれよりも高かった。これより本発明の連晶シリコアルミノリン酸塩は、CHA構造を多く含有する連晶シリコアルミノリン酸塩よりも高い窒素酸化物還元率を示すこと、特に150℃という低温における窒素酸化物還元率が高くなることが確認できた。
From Table 10, the intergrowth silicoaluminophosphate of the examples has a nitrogen oxide reduction rate of 65% or more before endurance treatment at any of 150 ° C., 200 ° C., 300 ° C., and 500 ° C., It was confirmed that the nitrogen oxide reduction rate after the durability treatment was 70% or more, both having high nitrogen oxide reduction characteristics.
In particular, it was confirmed that the copper-containing intergrowth silicoaluminophosphates of the examples showed a high value of the nitrogen oxide reduction rate at 150 ° C. exceeding 70% after the durability treatment.
Further, the copper-containing intergrowth silicoaluminophosphate of Example 1 has the same amount of copper as the intergrowth silicoaluminophosphate of Comparative Example 1. However, the nitrogen oxide reduction rate of Example 1 was higher than that of Comparative Example 1 regardless of the endurance treatment. Thus, the intergrowth silicoaluminophosphate of the present invention exhibits a higher nitrogen oxide reduction rate than the intergrowth silicoaluminophosphate containing a large amount of CHA structure, particularly the nitrogen oxide reduction rate at a low temperature of 150 ° C. Was confirmed to be high.
 以下、実験例により本吸脱着剤をさらに具体的に説明するが、本吸脱着剤はこれに限定されるものではない。 Hereinafter, the present adsorbent / desorbent will be described more specifically by experimental examples, but the present adsorbent / desorbent is not limited to this.
(連晶比)
 国際ゼオライト学会より配布されているDIFFaXプログラム(v1.813)を用いたXRDシミュレーションパターンと試料のXRDパターンとの比較により、試料の連晶比(CHA/AEI比)を決定した。
(Intergrowth ratio)
The intergrowth ratio (CHA / AEI ratio) of the sample was determined by comparing the XRD simulation pattern using the DIFFaX program (v1.813) distributed by the International Zeolite Society and the XRD pattern of the sample.
(結晶構造保持率)
 シャーレに試料を約0.5g量り取った。これを80℃に保持した水を入れたデシケーター中で、80℃の飽和水蒸気中に8日間保存した。8日間保存の後、600℃×1時間の焼成を行い、X線回折の評価を行った。
 結晶構造保持率は、当該保存前後の試料について、銅Kα線を線源として測定したXRDパターンにおける主なピーク強度の総和を求めた。当該総和から、以下の式により結晶構造保持率を求めた。なお、実験例1、2及び3においては2θ=16.1°、19.1°、20.7°、及び26.1°の4本のピークを主なピークとした。一方、比較実験例1においては2θ=16.1°、17.8°、20.8°、及び25.1°の4本を主なピークとした。
 結晶構造保持率(%)=(保存後のピーク強度/保存前のピーク強度)×100
(Crystal structure retention)
About 0.5 g of a sample was weighed into a petri dish. This was stored for 8 days in saturated steam at 80 ° C. in a desiccator containing water kept at 80 ° C. After storage for 8 days, baking was performed at 600 ° C. for 1 hour, and X-ray diffraction was evaluated.
As for the crystal structure retention rate, the sum of main peak intensities in the XRD pattern measured using the copper Kα ray as a radiation source for the sample before and after the storage was obtained. From the total, the crystal structure retention rate was determined by the following formula. In Experimental Examples 1, 2, and 3, four peaks at 2θ = 16.1 °, 19.1 °, 20.7 °, and 26.1 ° were set as main peaks. On the other hand, in Comparative Experimental Example 1, four peaks at 2θ = 16.1 °, 17.8 °, 20.8 °, and 25.1 ° were set as main peaks.
Crystal structure retention rate (%) = (peak intensity after storage / peak intensity before storage) × 100
 (固体酸量の測定)
 試料の固体酸量の測定は、以下に示したNH-TPD法により行った。
 測定に先立ち、試料を加圧成形し、粉砕した後、20~30メッシュに整粒した。整粒後の試料を0.1g量りとり、これを固定床常圧流通式反応管(以下、単に「反応管」という)に充填した。
 試料が充填された反応管にヘリウムガスを流通しながら、これを500℃まで加熱した。これにより、試料とヘリウムガスとを接触させた。500℃で1時間保持した後、試料が充填された反応管を100℃まで冷却した。
(Measurement of solid acid amount)
The solid acid amount of the sample was measured by the NH 3 -TPD method shown below.
Prior to measurement, the sample was pressure-molded, pulverized, and sized to 20-30 mesh. 0.1 g of the sized sample was weighed and filled into a fixed bed normal pressure flow type reaction tube (hereinafter simply referred to as “reaction tube”).
This was heated to 500 ° C. while flowing helium gas through the reaction tube filled with the sample. Thereby, the sample and helium gas were brought into contact. After holding at 500 ° C. for 1 hour, the reaction tube filled with the sample was cooled to 100 ° C.
 冷却後、試料が充填された反応管の温度を100℃に保持しながら、10体積%のアンモニアを含むアンモニア-ヘリウム混合ガスを流速60mL/minで1時間流通させた。これにより、試料にアンモニアを吸着させた。試料へのアンモニア吸着後、アンモニア-ヘリウム混合ガスを止め、その代わりにヘリウムガスを60mL/minで1時間流通させた。これにより、反応管の雰囲気中に残存するアンモニアガス、すなわち、試料に吸着されなかったアンモニアを反応管から除去した。
 その後、流速60mL/minでヘリウムガスを流通しながら、10℃/minの昇温速度で100℃から700℃まで試料を昇温した。これにより、試料に吸着されたアンモニアを試料から脱離させた。試料から脱離されたアンモニアは、熱伝導度検出器(TCD)を備えたガスクロマトグラフによって連続的に定量され、これによりアンモニアの脱離スペクトルを得た。
After cooling, while maintaining the temperature of the reaction tube filled with the sample at 100 ° C., an ammonia-helium mixed gas containing 10% by volume of ammonia was passed at a flow rate of 60 mL / min for 1 hour. As a result, ammonia was adsorbed on the sample. After ammonia adsorption to the sample, the ammonia-helium mixed gas was stopped, and instead, helium gas was passed at 60 mL / min for 1 hour. Thereby, ammonia gas remaining in the atmosphere of the reaction tube, that is, ammonia that was not adsorbed on the sample was removed from the reaction tube.
Thereafter, the temperature of the sample was increased from 100 ° C. to 700 ° C. at a temperature increase rate of 10 ° C./min while flowing helium gas at a flow rate of 60 mL / min. Thereby, ammonia adsorbed on the sample was desorbed from the sample. Ammonia desorbed from the sample was continuously quantified by a gas chromatograph equipped with a thermal conductivity detector (TCD), thereby obtaining a desorption spectrum of ammonia.
 得られた脱離スペクトルにおいて、脱離温度100℃以上250℃未満にピークトップを持つ脱離ピークを、試料へ物理吸着したアンモニアの脱離に由来するピーク(以下、「物理吸着ピーク」という)とみなし、脱離温度250℃以上450℃以下にピークトップを持つ脱離ピークを、試料の固体酸に由来するピーク(以下、「固体酸ピーク」という)とみなした。
 脱離スペクトルにおける固体酸ピークのピーク面積を求め、これと、予め測定したアンモニア量(mmol)が既知のガス(0.25mLの10容量%アンモニア-ヘリウム混ガス)のNH-TPDピークのピーク面積との比を求めた。これにより固体酸ピークに相当するアンモニア脱離量(mmol)を求め、以下の式により、試料の固体酸量を求めた。
In the obtained desorption spectrum, a desorption peak having a peak top at a desorption temperature of 100 ° C. or higher and lower than 250 ° C. is a peak derived from desorption of ammonia physically adsorbed on a sample (hereinafter referred to as “physical adsorption peak”). The desorption peak having a peak top at a desorption temperature of 250 ° C. or higher and 450 ° C. or lower was regarded as a peak derived from the solid acid of the sample (hereinafter referred to as “solid acid peak”).
The peak area of the solid acid peak in the desorption spectrum was obtained, and the NH 3 -TPD peak of a gas having a known ammonia amount (mmol) (0.25 mL of 10 vol% ammonia-helium mixed gas) was measured in advance. The ratio with the area was determined. Thus, the ammonia desorption amount (mmol) corresponding to the solid acid peak was determined, and the solid acid amount of the sample was determined by the following equation.
 試料の固体酸量(mmol/g)
  =固体酸ピークに相当するアンモニア脱離量(mmol)/シリコアルミノリン酸塩質量(g)
Sample solid acid content (mmol / g)
= Ammonia desorption amount (mmol) corresponding to solid acid peak / silicoaluminophosphate mass (g)
(水蒸気吸着量の評価)
 測定に先立ち、試料を加圧成形し、粉砕した後、20~30メッシュに整粒し、これを350℃、2時間で前処理した。前処理後、以下の条件で水蒸気吸着量の評価を行った。
(Evaluation of water vapor adsorption amount)
Prior to the measurement, the sample was pressure-molded, pulverized, and sized to 20-30 mesh, and pretreated at 350 ° C. for 2 hours. After the pretreatment, the water vapor adsorption amount was evaluated under the following conditions.
   装置      :磁気浮遊式天秤(日本ベル株式会社製)
   吸着温度    :25℃
   空気恒温層温度 :80℃
   初期導入圧力  :5kPa
Apparatus: Magnetic floating balance (manufactured by Nippon Bell Co., Ltd.)
Adsorption temperature: 25 ° C
Air constant temperature: 80 ° C
Initial introduction pressure: 5 kPa
 当該条件により水蒸気吸着等温線を得、これより、相対圧力0.05~0.30における水蒸気吸着量を求めた。なお、水蒸気吸着量は、試料100gに対する水蒸気の吸着量(g/100g)として求めた。 The water vapor adsorption isotherm was obtained under the above conditions, and the water vapor adsorption amount at a relative pressure of 0.05 to 0.30 was determined from this. The water vapor adsorption amount was determined as the water vapor adsorption amount (g / 100 g) with respect to 100 g of the sample.
 実験例1
 水29.4g、85%リン酸水溶液(キシダ化学:特級試薬)9.00g、30%コロイダルシリカ(日産化学:ST-N30)1.53g、トリエチルアミン(キシダ化学:特級試薬)11.9g、及び77%擬ベーマイト(サソール:Pural SB)5.19g、結晶性シリコアルミノリン酸塩をボールミルで1時間湿式粉砕して得られた種晶0.075gを混合し、次の組成の反応混合物を調製した。
Experimental example 1
29.4 g of water, 9.00 g of 85% phosphoric acid aqueous solution (Kishida Chemical: special grade reagent), 1.53 g of 30% colloidal silica (Nissan Chemical: ST-N30), 11.9 g of triethylamine (Kishida Chemical: special grade reagent), and 5.19 g of 77% pseudo boehmite (Sasol: Pural SB) and 0.075 g of seed crystals obtained by wet milling crystalline silicoaluminophosphate with a ball mill for 1 hour were mixed to prepare a reaction mixture having the following composition: did.
 P/Al(モル比)=1.0
 SiO/Al(モル比)=0.20
 HO/Al(モル比)=50
 TEA/Al(モル比)=3
(TEAは、有機鉱化剤として使用するトリエチルアミンを表す。)
 種晶添加量=0.6重量%
P 2 O 5 / Al 2 O 3 (molar ratio) = 1.0
SiO 2 / Al 2 O 3 (molar ratio) = 0.20
H 2 O / Al 2 O 3 (molar ratio) = 50
TEA / Al 2 O 3 (molar ratio) = 3
(TEA represents triethylamine used as an organic mineralizer.)
Seed crystal addition amount = 0.6 wt%
 この反応混合物を80mlのステンレス製密閉耐圧容器に入れ、撹拌しながら180℃で62時間保持した。
 生成物をろ過、水洗後、110℃で一晩乾燥した後、600℃で2時間焼成した。
 生成物について、銅Kα線を線源とするX線回折装置(マックサイエンス:MPX3)により得たXRDパターンから、ピーク位置の面間隔値(d値)とそのピークの相対強度を求めて表11に示す。
This reaction mixture was placed in an 80 ml stainless steel sealed pressure vessel and kept at 180 ° C. for 62 hours with stirring.
The product was filtered, washed with water, dried at 110 ° C. overnight, and then calcined at 600 ° C. for 2 hours.
For the product, the interplanar spacing value (d value) of the peak position and the relative intensity of the peak were determined from the XRD pattern obtained by an X-ray diffractometer (Mac Science: MPX3) using copper Kα rays as the radiation source. Shown in
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11に示す通り、SAPO-34シリコアルミノリン酸塩の粉末X線回折パターンには存在しない面間隔6.60Å付近(回折角2θ=13.4°付近)、5.24Å付近(回折角2θ=16.9°付近)及び4.17Å付近(回折角2θ=21.3°付近)にブロードピークを有していた。
 乾燥後の生成物を誘導結合プラズマ発光分析装置(ICP)により組成分析を行ったところ、酸化物換算で下記の組成を有していた。
  (Si0.055Al0.500.44)O
 得られたシリコアルミノリン酸塩は、CHA構造とAEI構造の連晶比(Intergrowth ratio)がCHA/AEI比で40/60であった。
 結晶構造保持率は100%であり、高い結晶構造保持率であった。
As shown in Table 11, the spacing between 6.60 mm (diffraction angle 2θ = 13.4 °) and 5.24 mm (diffraction angle 2θ) not present in the powder X-ray diffraction pattern of SAPO-34 silicoaluminophosphate. = 16.9 °) and 4.17 ° (diffraction angle 2θ = 21.3 °) having broad peaks.
The product after drying was subjected to composition analysis using an inductively coupled plasma emission spectrometer (ICP), and had the following composition in terms of oxide.
(Si 0.055 Al 0.50 P 0.44 ) O 2
The resulting silicoaluminophosphate had a CHA / AEI intergrowth ratio of 40/60 in terms of CHA / AEI ratio.
The crystal structure retention rate was 100%, which was a high crystal structure retention rate.
 (水和処理)
 得られたシリコアルミノリン酸塩を600℃で2時間焼成した。これにより、有機鉱化剤を除去し、プロトン型(H型)のシリコアルミノリン酸塩とした。焼成後のシリコアルミノリン酸塩を0.5gシャーレに量りとり、底部に純水を含むデシケーターにこれを配置した後、デシケーターを密閉した。当該デシケーターを80℃に保持した乾燥機中に配置することにより、シリコアルミノリン酸塩を80℃の飽和水蒸気濃度(291g/m)雰囲気下に置いた。当該雰囲気下に8日間静置することにより、シリコアルミノリン酸塩を水和処理した。
(Hydration treatment)
The obtained silicoaluminophosphate was calcined at 600 ° C. for 2 hours. As a result, the organic mineralizer was removed to obtain a proton type (H + type) silicoaluminophosphate. After baking, the silicoaluminophosphate was weighed in a 0.5 g petri dish, and placed in a desiccator containing pure water at the bottom, and then the desiccator was sealed. By placing the desiccator in a dryer maintained at 80 ° C., the silicoaluminophosphate was placed in an atmosphere of saturated water vapor concentration (291 g / m 3 ) at 80 ° C. The silicoaluminophosphate was hydrated by standing in the atmosphere for 8 days.
 (固体酸量の測定)
 焼成後のシリコアルミノリン酸塩(すなわち、水和処理前のシリコアルミノリン酸塩)、及び、水和処理後のシリコアルミノリン酸塩のそれぞれの固体酸量を測定した。その結果、焼成後のシリコアルミノリン酸塩の固体酸量は0.78mmol/g、及び、水和処理後のシリコアルミノリン酸塩の固体酸量は0.54mmol/gであり、水和処理後の固体酸維持率は70%であった。
 水蒸気吸着等温線から、相対圧力0.05~0.30における水蒸気吸着量は24.3(g/100g)であった。25℃で測定した水蒸気吸着等温線を図3に示す。
(Measurement of solid acid amount)
The solid acid amounts of the silicoaluminophosphate after calcination (that is, the silicoaluminophosphate before hydration treatment) and the silicoaluminophosphate after hydration treatment were measured. As a result, the solid acid amount of the silicoaluminophosphate after firing was 0.78 mmol / g, and the solid acid amount of the silicoaluminophosphate after hydration treatment was 0.54 mmol / g. The subsequent solid acid retention rate was 70%.
From the water vapor adsorption isotherm, the water vapor adsorption amount at a relative pressure of 0.05 to 0.30 was 24.3 (g / 100 g). The water vapor adsorption isotherm measured at 25 ° C. is shown in FIG.
 実験例2
 水1698g、85%リン酸水溶液559g、30%コロイダルシリカ284g、トリエチルアミン736g、77%擬ベーマイト322g、結晶性シリコアルミノリン酸塩をボールミルで1時間湿式粉砕した種晶4.2gを混合し、次の組成の反応混合物を調製した。
Experimental example 2
1698 g of water, 559 g of 85% phosphoric acid aqueous solution, 284 g of 30% colloidal silica, 736 g of triethylamine, 322 g of 77% pseudo-boehmite, and 4.2 g of seed crystals obtained by wet-grinding crystalline silicoaluminophosphate with a ball mill for 1 hour are mixed. A reaction mixture of the following composition was prepared:
 P/Al(モル比)=1.0
 SiO/Al(モル比)=0.6
 HO/Al(モル比)=50
 TEA/Al(モル比)=3
(TEAは、有機鉱化剤として使用するトリエチルアミンを表す。)
 種晶0.5重量%
P 2 O 5 / Al 2 O 3 (molar ratio) = 1.0
SiO 2 / Al 2 O 3 (molar ratio) = 0.6
H 2 O / Al 2 O 3 (molar ratio) = 50
TEA / Al 2 O 3 (molar ratio) = 3
(TEA represents triethylamine used as an organic mineralizer.)
0.5% by weight of seed crystals
 この反応混合物を4000mlのステンレス製密閉耐圧容器に入れ、270rpmで撹拌しながら180℃で64時間保持した。
 生成物をろ過、水洗後、110℃で一晩乾燥した後、600℃で2時間焼成した。
 生成物について、銅Kα線を線源とする粉末X線回折装置(マックサイエンス:MPX3)により得たX回折パターンから、ピーク位置の面間隔値(d値)とそのピークの相対強度を求めて表12に示す。
The reaction mixture was placed in a 4000 ml stainless steel sealed pressure vessel and held at 180 ° C. for 64 hours with stirring at 270 rpm.
The product was filtered, washed with water, dried at 110 ° C. overnight, and then calcined at 600 ° C. for 2 hours.
For the product, the interplanar spacing value (d value) of the peak position and the relative intensity of the peak were determined from the X-ray diffraction pattern obtained by a powder X-ray diffractometer (Mac Science: MPX3) using copper Kα rays as the radiation source. Table 12 shows.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表12に示す通り、得られた生成物は、本発明の結晶性シリコアルミノリン酸塩の特徴を有していた。即ち、得られた生成物は、SAPO-34シリコアルミノリン酸塩のXRDパターンには存在しないブロードピークである、面間隔6.60Å付近(回折角2θ=13.4°付近)、5.24Å付近(回折角2θ=16.9°付近)及び4.17Å付近(回折角2θ=21.3°付近)にブロードピークを有していた。
 乾燥後の生成物を誘導結合プラズマ発光分析装置(ICP)により組成分析を行ったところ、酸化物換算で下記の組成を有していた。
  (Si0.08Al0.500.42)O
 得られたシリコアルミノリン酸塩は、CHA構造とAEI構造の連晶比(Intergrowth ratio)がCHA/AEI比で35/65であった。
 結晶構造保持率は100%であり、高い結晶構造保持率であった。
As shown in Table 12, the resulting product had the characteristics of the crystalline silicoaluminophosphate of the present invention. That is, the obtained product is a broad peak that does not exist in the XRD pattern of SAPO-34 silicoaluminophosphate, with an interplanar spacing of about 6.60 mm (diffraction angle 2θ = 13.4 °), 5.24 mm. It had broad peaks in the vicinity (diffraction angle 2θ = 16.9 °) and 4.17 ° (diffraction angle 2θ = 21.3 °).
The product after drying was subjected to composition analysis using an inductively coupled plasma emission spectrometer (ICP), and had the following composition in terms of oxide.
(Si 0.08 Al 0.50 P 0.42 ) O 2
The obtained silicoaluminophosphate had a CHA / AEI intergrowth ratio of 35/65 in CHA / AEI ratio.
The crystal structure retention rate was 100%, which was a high crystal structure retention rate.
 (固体酸量の測定)
 実験例1と同様な方法で、シリコアルミノリン酸塩を焼成、水和処理し、その固体酸量の測定を行った。その結果、焼成後のシリコアルミノリン酸塩の固体酸量は0.80mmol/g、及び、水和処理後のシリコアルミノリン酸塩の固体酸量は0.51mmol/gであり、水和処理後の固体酸維持率は64%であった。
 水蒸気吸着等温線から、相対圧力0.05~0.30における水蒸気吸着量は22.16(g/100g)であった。
(Measurement of solid acid amount)
The silicoaluminophosphate was calcined and hydrated by the same method as in Experimental Example 1, and the amount of the solid acid was measured. As a result, the solid acid amount of the silicoaluminophosphate after firing was 0.80 mmol / g, and the solid acid amount of the silicoaluminophosphate after hydration treatment was 0.51 mmol / g. The subsequent solid acid retention rate was 64%.
From the water vapor adsorption isotherm, the water vapor adsorption amount at a relative pressure of 0.05 to 0.30 was 22.16 (g / 100 g).
 実験例3
 結晶化の温度を175℃とした以外は、実験例2と同様の操作を行った。
 生成物について、銅Kα線を線源とする粉末X線回折装置(マックサイエンス:MPX3)により得たX回折パターンから、ピーク位置の面間隔値(d値)とそのピークの相対強度を求めて表13に示す。
Experimental example 3
The same operation as in Experimental Example 2 was performed except that the crystallization temperature was 175 ° C.
For the product, the interplanar spacing value (d value) of the peak position and the relative intensity of the peak were determined from the X-ray diffraction pattern obtained by a powder X-ray diffractometer (Mac Science: MPX3) using copper Kα rays as the radiation source. Table 13 shows.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表13に示す通り、本発明の結晶性シリコアルミノリン酸塩の特徴、即ち、SAPO-34シリコアルミノリン酸塩の粉末X線回折パターンには存在しない面間隔6.60Å付近(回折角2θ=13.4°付近)、5.24Å付近(回折角2θ=16.9°付近)及び4.17Å付近(回折角2θ=21.3°付近)にブロードピークを有していた。
 乾燥後の生成物を誘導結合プラズマ発光分析装置(ICP)により組成分析を行ったところ、酸化物換算で下記の組成を有していた。
  (Si0.08Al0.500.42)O
 得られたシリコアルミノリン酸塩は、CHA構造とAEI構造の連晶比(Intergrowth ratio)がCHA/AEI比で40/60であった。
 結晶構造保持率は83%であり、高い結晶構造保持率であった。
As shown in Table 13, the characteristics of the crystalline silicoaluminophosphate of the present invention, that is, the vicinity of 6.60 mm (diffraction angle 2θ = not present in the powder X-ray diffraction pattern of SAPO-34 silicoaluminophosphate) It had broad peaks in the vicinity of 13.4 °), 5.24 ° (diffraction angle 2θ = 16.9 °) and 4.17 ° (diffraction angle 2θ = 21.3 °).
The product after drying was subjected to composition analysis using an inductively coupled plasma emission spectrometer (ICP), and had the following composition in terms of oxide.
(Si 0.08 Al 0.50 P 0.42 ) O 2
The resulting silicoaluminophosphate had a CHA / AEI intergrowth ratio of 40/60 in terms of CHA / AEI ratio.
The crystal structure retention rate was 83%, which was a high crystal structure retention rate.
 (固体酸量の測定)
 実験例1と同様な方法で、シリコアルミノリン酸塩を焼成、水和処理し、その固体酸量の測定を行った。その結果、焼成後のシリコアルミノリン酸塩の固体酸量は0.94mmol/g、及び、水和処理後のシリコアルミノリン酸塩の固体酸量は0.55mmol/gであり、水和処理後の固体酸維持率は58%であった。
 水蒸気吸着等温線から、相対圧力0.05~0.30における水蒸気吸着量は20.9(g/100g)であった。
(Measurement of solid acid amount)
The silicoaluminophosphate was calcined and hydrated by the same method as in Experimental Example 1, and the amount of the solid acid was measured. As a result, the solid acid amount of the silicoaluminophosphate after firing was 0.94 mmol / g, and the solid acid amount of the silicoaluminophosphate after hydration treatment was 0.55 mmol / g. The subsequent solid acid retention rate was 58%.
From the water vapor adsorption isotherm, the water vapor adsorption amount at a relative pressure of 0.05 to 0.30 was 20.9 (g / 100 g).
 (カルシウム担持シリコアルミノリン酸塩の製造)
 焼成して水素型としたシリコアルミノリン酸塩を乾燥重量で7.0g量り取り、硝酸カルシウム四水和物(キシダ化学:試薬特級)0.38gを純水2.75gに溶解した硝酸カルシウム溶液をこれに滴下した後、乳鉢で10分間混練した。
 混練後の試料を110℃で一晩乾燥した後、空気中、550℃で2時間焼成してカルシウム含有シリコアルミノリン酸塩を得た。カルシウム担持量は0.91重量%であった。
 カルシウム担持シリコアルミノリン酸塩の水蒸気吸着等温線から、相対圧力0.05~0.30における水蒸気吸着量は21.8(g/100g)であった。
(Manufacture of calcium-supported silicoaluminophosphate)
Calcium nitrate solution in which 7.0g of dry weight silicoaluminophosphate was weighed out in dry weight and 0.38g of calcium nitrate tetrahydrate (Kishida Chemical Co., Ltd .: reagent grade) was dissolved in 2.75g of pure water. Was added dropwise thereto, and then kneaded for 10 minutes in a mortar.
The kneaded sample was dried at 110 ° C. overnight and then calcined in air at 550 ° C. for 2 hours to obtain a calcium-containing silicoaluminophosphate. The amount of calcium supported was 0.91% by weight.
From the water vapor adsorption isotherm of the calcium-supporting silicoaluminophosphate, the water vapor adsorption amount at a relative pressure of 0.05 to 0.30 was 21.8 (g / 100 g).
 比較実験例1
 水244g、85%リン酸水溶液(キシダ化学:特級試薬)279g、30%コロイダルシリカ(日産化学:ST-N30)135g、35%テトラエチルアンモニウムヒドロキサイド(アルファーエイサー)1159g、77%擬ベーマイト(サソール:Pural SB)183gを混合し、次の組成の反応混合物を調製した。
Comparative Experiment Example 1
244 g of water, 279 g of 85% phosphoric acid aqueous solution (Kishida Chemical: Special Grade Reagent), 135 g of 30% colloidal silica (Nissan Chemical: ST-N30), 1159 g of 35% tetraethylammonium hydroxide (Alfa Acer), 77% pseudoboehmite (Sasol: Pural SB) 183 g was mixed to prepare a reaction mixture having the following composition.
 P/Al(モル比)=0.88
 SiO/Al(モル比)=0.5
 HO/Al(モル比)=50
 TEAOH/Al(モル比)=2
P 2 O 5 / Al 2 O 3 (molar ratio) = 0.88
SiO 2 / Al 2 O 3 (molar ratio) = 0.5
H 2 O / Al 2 O 3 (molar ratio) = 50
TEAOH / Al 2 O 3 (molar ratio) = 2
(TEAOHは、有機鉱化剤として使用するテトラエチルアンモニウムヒドロキサイドを表す。) (TEAOH represents tetraethylammonium hydroxide used as an organic mineralizer.)
 この反応混合物を4000mLのステンレス製密閉耐圧容器に入れ、270rpmで撹拌しながら200℃で92時間保持した。
 生成物をろ過、水洗後、110℃で一晩乾燥した後、600℃で2時間焼成した。
 生成物について、銅Kα線を線源とする粉末X線回折装置(マックサイエンス:MPX3)により得たXRDパターンから、ピーク位置の格子面間隔値(d値)とそのピークの相対強度を求めて表14に示す。
The reaction mixture was placed in a 4000 mL stainless steel sealed pressure vessel and held at 200 ° C. for 92 hours with stirring at 270 rpm.
The product was filtered, washed with water, dried at 110 ° C. overnight, and then calcined at 600 ° C. for 2 hours.
About the product, the lattice spacing value (d value) of the peak position and the relative intensity of the peak were obtained from the XRD pattern obtained by a powder X-ray diffractometer (Mac Science: MPX3) using copper Kα rays as the radiation source. Table 14 shows.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表14に示す通り、SAPO-34の格子面間隔-相対強度の特徴を有していた。
 乾燥後の生成物を誘導結合プラズマ発光分析装置(ICP)により組成分析を行ったところ、酸化物換算で下記の組成を有していた。
  (Si0.12Al0.490.39)O
 結晶構造保持率は41%であり、結晶構造保持率が低下していた。
As shown in Table 14, SAPO-34 had a lattice spacing-relative strength characteristic.
The product after drying was subjected to composition analysis using an inductively coupled plasma emission spectrometer (ICP), and had the following composition in terms of oxide.
(Si 0.12 Al 0.49 P 0.39 ) O 2
The crystal structure retention rate was 41%, and the crystal structure retention rate was reduced.
 (固体酸量の測定)
 実験例1と同様な方法で、SAPO-34を焼成、水和処理し、その固体酸量の測定を行った。その結果、焼成後のSAPO-34の固体酸量は1.06mmol/g、及び、水和処理後のSAPO-34の固体酸量は0.42mmol/gであり、水和処理後の固体酸維持率は40%であった。
 水蒸気吸着等温線から、相対圧力0.05~0.30における水蒸気吸着量は15.6(g/100g)であり、低い吸着量であった。25℃で測定した水蒸気吸着等温線を図4に示す。
 図3の実験例1の水蒸気吸着等温線と比較すると、比較実験例1は、相対圧力0.05~0.30における水蒸気吸着量が小さかった。これより、実験例1のシリコアルミノリン酸塩の方が、80℃の飽和水蒸気中に8日間保存した時の結晶構造保持率が高く、耐水性に優れ、結果として80℃の飽和水蒸気中に8日間保存した後の水蒸気吸着量が高い。
(Measurement of solid acid amount)
SAPO-34 was calcined and hydrated by the same method as in Experimental Example 1, and the amount of the solid acid was measured. As a result, the solid acid amount of SAPO-34 after calcination was 1.06 mmol / g, and the solid acid amount of SAPO-34 after hydration treatment was 0.42 mmol / g. The maintenance rate was 40%.
From the water vapor adsorption isotherm, the water vapor adsorption amount at a relative pressure of 0.05 to 0.30 was 15.6 (g / 100 g), which was a low adsorption amount. The water vapor adsorption isotherm measured at 25 ° C. is shown in FIG.
Compared to the water vapor adsorption isotherm of Experimental Example 1 in FIG. 3, Comparative Experimental Example 1 had a small amount of water vapor adsorption at a relative pressure of 0.05 to 0.30. From this, the silicoaluminophosphate of Experimental Example 1 has a higher crystal structure retention rate when stored in saturated steam at 80 ° C. for 8 days, and is excellent in water resistance. As a result, in the saturated steam at 80 ° C. The amount of water vapor adsorption after storage for 8 days is high.
 本発明の連晶シリコアルミノリン酸塩は、窒素酸化物還元触媒、特に、アンモニア等を還元剤として窒素酸化物を選択的に還元する窒素酸化物還元触媒として使用することができる。このように、本発明の連晶シリコアルミノリン酸塩を含む窒素酸化物還元触媒等は、例えば、ディーゼルエンジンやガソリンエンジン等の内燃機関や燃焼設備等の酸素を含有する排気ガスをはじめとする自動車排ガスや、工場排ガスなどの排気ガス処理システムに使用することができる。
 本吸脱着剤は、吸着式ヒートポンプシステム、デシカント空調システム、湿度調整壁剤、湿度調整用シートなどの水蒸気吸脱着剤として使用することができる。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 なお、2012年10月18日に出願された日本特許出願2012-230882号、及び、2012年 9月 7日に出願された日本特許出願2012-197474号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The intergrowth silicoaluminophosphate of the present invention can be used as a nitrogen oxide reduction catalyst, particularly a nitrogen oxide reduction catalyst that selectively reduces nitrogen oxide using ammonia or the like as a reducing agent. Thus, the nitrogen oxide reduction catalyst containing the intergrowth silicoaluminophosphate of the present invention includes, for example, exhaust gas containing oxygen from internal combustion engines such as diesel engines and gasoline engines and combustion facilities. It can be used for exhaust gas treatment systems such as automobile exhaust gas and factory exhaust gas.
This adsorption / desorption agent can be used as a water vapor adsorption / desorption agent for an adsorption heat pump system, a desiccant air conditioning system, a humidity adjusting wall agent, a humidity adjusting sheet and the like.
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
The specification, claims and drawings of Japanese Patent Application No. 2012-230882 filed on October 18, 2012 and Japanese Patent Application No. 2012-197474 filed on September 7, 2012 The entire contents of the abstract are hereby incorporated by reference as the disclosure of the specification of the present invention.

Claims (5)

  1.  周期表のVIIIB族元素、IB族元素及びVIIB族元素の群から選ばれる少なくとも1種の金属を有し、AEI構造の割合が50%を超える、CHA構造及びAEI構造を有するシリコアルミノリン酸塩。 A silicoaluminophosphate having a CHA structure and an AEI structure, having at least one metal selected from the group consisting of Group VIIIB elements, Group IB elements, and Group VIIB elements of the periodic table, and the proportion of the AEI structure exceeds 50% .
  2.  周期表のVIIIB族元素、IB族元素及びVIIB族元素の群から選ばれる少なくとも1種の金属が銅である請求項1に記載のシリコアルミノリン酸塩。 The silicoaluminophosphate according to claim 1, wherein at least one metal selected from the group consisting of Group VIIIB elements, Group IB elements, and Group VIIB elements of the periodic table is copper.
  3.  3級アミンを含む混合物を結晶化する結晶化工程、該結晶化工程により得られたCHA構造及びAEI構造を有するシリコアルミノリン酸塩であって、AEI構造の割合が50%を超えるシリコアルミノリン酸塩に金属を含有させる金属含有工程、を有する、請求項1又は2に記載のシリコアルミノリン酸塩の製造方法。 A crystallization step for crystallizing a mixture containing a tertiary amine, a silicoaluminophosphate having a CHA structure and an AEI structure obtained by the crystallization step, wherein the proportion of the AEI structure exceeds 50%. The manufacturing method of the silicoaluminophosphate of Claim 1 or 2 which has a metal containing process which makes a salt contain a metal.
  4.  請求項1又は2に記載のシリコアルミノリン酸塩を使用する窒素酸化物還元触媒の製造方法。 A method for producing a nitrogen oxide reduction catalyst using the silicoaluminophosphate according to claim 1 or 2.
  5.  請求項1又は2に記載のシリコアルミノリン酸塩を使用することを特徴とする窒素酸化物の還元方法。 A method for reducing nitrogen oxide, wherein the silicoaluminophosphate according to claim 1 or 2 is used.
PCT/JP2013/073975 2012-09-07 2013-09-05 Silicoaluminophosphate salt and nitrogen oxide reduction catalyst using same WO2014038636A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012197474 2012-09-07
JP2012-197474 2012-09-07
JP2012-230882 2012-10-18
JP2012230882A JP5983290B2 (en) 2012-10-18 2012-10-18 Silicoaluminophosphate and nitrogen oxide reduction catalyst using the same

Publications (1)

Publication Number Publication Date
WO2014038636A1 true WO2014038636A1 (en) 2014-03-13

Family

ID=50237242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073975 WO2014038636A1 (en) 2012-09-07 2013-09-05 Silicoaluminophosphate salt and nitrogen oxide reduction catalyst using same

Country Status (1)

Country Link
WO (1) WO2014038636A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196115A (en) * 2014-03-31 2015-11-09 株式会社キャタラー Scr catalyst and exhaust gas purification catalyst system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273710A (en) * 2005-03-03 2006-10-12 Mitsubishi Chemicals Corp Method for synthesizing aluminophosphates
WO2010121257A1 (en) * 2009-04-17 2010-10-21 Johnson Matthey Public Limited Company Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273710A (en) * 2005-03-03 2006-10-12 Mitsubishi Chemicals Corp Method for synthesizing aluminophosphates
WO2010121257A1 (en) * 2009-04-17 2010-10-21 Johnson Matthey Public Limited Company Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196115A (en) * 2014-03-31 2015-11-09 株式会社キャタラー Scr catalyst and exhaust gas purification catalyst system

Similar Documents

Publication Publication Date Title
JP6672849B2 (en) New zeolite
JP2020019703A (en) Aei type zeolite and use thereof
US9968917B2 (en) LEV-type zeolite and production method therefor
JP2019073435A (en) Metal-containing cha type zeolite and method for producing the same
JP6783098B2 (en) CHA-type zeolite containing phosphorus and its production method
JP2021524431A (en) Method for synthesizing high-purity AFX-structured zeolite in the presence of organic nitrogen-containing structuring agent
JP2010260777A (en) Method for producing phosphorus-containing beta type zeolite
JP2023014215A (en) β-TYPE ZEOLITE AND PRODUCTION METHOD THEREOF
EP3625171B1 (en) A process for preparing a zeolitic material having framework type aei
JP4886178B2 (en) Carbon-containing silicoaluminophosphate, production method thereof, adsorbent containing carbon-containing silicoaluminophosphate, heat utilization system, adsorption heat pump, and cold storage heat system
JP5983290B2 (en) Silicoaluminophosphate and nitrogen oxide reduction catalyst using the same
JP4886179B2 (en) Nitrogen-containing zeolite, production method thereof, adsorbent containing nitrogen-containing zeolite, heat utilization system, adsorption heat pump and cold storage heat system
EP3466879B1 (en) Chabazite zeolite with high hydrothermal resistance and method for producing same
JP6171559B2 (en) Silicoaluminophosphate, process for producing the same, and solid acid catalyst containing the same
JP6303842B2 (en) LEV type zeolite, nitrogen oxide reduction catalyst containing the same, and nitrogen oxide reduction method
WO2014038636A1 (en) Silicoaluminophosphate salt and nitrogen oxide reduction catalyst using same
JP6194689B2 (en) Silicoaluminophosphate and method for producing the same
CN112551544A (en) Process for preparing IZM-2 zeolite in the presence of a nitrogen-containing organic structuring agent in the hydroxide form, optionally in a fluorinated medium
WO2014038690A1 (en) Silicoaluminophosphate salt and nitrogen oxide reduction catalyst including same
US11851338B2 (en) Method for fast synthesis of an AFX-structure zeolite with a FAUjasite source
JP2014065029A (en) Water vapor adsorbing and desorbing agent containing silicoaluminophosphate
JP2023064657A (en) Cha-type zeolite and production method thereof
KR20220135693A (en) A manufacturing process using TEA and Zeolite using thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836070

Country of ref document: EP

Kind code of ref document: A1