WO2014038514A1 - Optical fiber connector between multicore fiber and single mode fiber - Google Patents

Optical fiber connector between multicore fiber and single mode fiber Download PDF

Info

Publication number
WO2014038514A1
WO2014038514A1 PCT/JP2013/073553 JP2013073553W WO2014038514A1 WO 2014038514 A1 WO2014038514 A1 WO 2014038514A1 JP 2013073553 W JP2013073553 W JP 2013073553W WO 2014038514 A1 WO2014038514 A1 WO 2014038514A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
lens
core
single mode
optical connector
Prior art date
Application number
PCT/JP2013/073553
Other languages
French (fr)
Japanese (ja)
Inventor
小林 哲也
裕作 鳥取
Original Assignee
株式会社オプトクエスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オプトクエスト filed Critical 株式会社オプトクエスト
Priority to JP2014534347A priority Critical patent/JP6219288B2/en
Publication of WO2014038514A1 publication Critical patent/WO2014038514A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres

Definitions

  • the present invention relates to an optical connector of a multi-core fiber and a single mode fiber.
  • Patent Document 1 International Publication WO2010 / 038861 pamphlet
  • Patent Document 2 International Publication WO2010 / 038863 pamphlet
  • Non-Patent Document 1 discloses a technique in which a bundle fiber is stretched in a tapered shape and a 7-core multicore fiber and a single mode fiber are coupled. In this technology, multiple single-mode fibers are bundled and stretched, and fusion-bonded with multi-core fibers.
  • Non-Patent Document 1 it is necessary to match the cores of a multi-core fiber and a single mode fiber on the submicron order. For this reason, this method requires extremely high processing accuracy in order to optically connect the multi-core fiber and the single mode fiber.
  • Non-Patent Document 1 uses an adhesive to connect the multi-core fiber and the single mode fiber. For this reason, even if an optical optical connector is obtained by this method, it cannot be used for applications in which communication is performed using high-power light. It is also necessary to consider how to deal with deterioration of the adhesive over time. Furthermore, since this method bundles and extends a plurality of single mode fibers, there is a problem that the strength of the fibers is impaired.
  • an object of the present invention is to provide a multi-core fiber and a single mode fiber optical connector that can handle high-power input light without requiring high processing accuracy and that has sufficient strength.
  • the end face of a multi-core fiber is arranged near the focal point of one lens system, and further, a roof-type prism and a lens array are arranged so that the emitted light from each core of the multi-core fiber is collimated light. Based on the knowledge that light from each core can be guided to the corresponding single-mode fiber core.
  • the diameter of a multi-core fiber is smaller than the diameter of an assembly of a plurality of single mode fibers.
  • the optical connector of the present invention can be separated by widening the light flux interval from each multi-core fiber core and leading to a corresponding single mode fiber.
  • the present invention relates to an optical connector of a multi-core fiber and a single mode fiber.
  • This optical connector includes a first lens 15, a second lens 17, and a lens array 19.
  • the optical connector can guide the light from each core of the multi-core fiber to the corresponding single mode fiber.
  • the emitted light from the plurality of cores 13 a and 13 b included in the multicore fiber 11 enters the first lens 15. Then, light emitted from the first lens 15 enters the second lens 17. Light emitted from the second lens 17 enters the lens array 19. Light emitted from the constituent lenses 21a, 21b, and 21c included in the lens array 19 enters the corresponding single mode fibers 23a, 23b, and 23c.
  • the optical connector of the present invention can optically connect the multi-core fiber and the single mode fiber.
  • the optical connector of the present invention is composed of the optical elements as described above. For this reason, incident light in an arbitrary direction and outgoing light in an arbitrary direction can be handled. Moreover, since no adhesive or resin material is included in the optical path, high power light can be handled.
  • the end face 12 of the multi-core fiber 11 is disposed at the focal position of the first lens 15.
  • the second lens 17 is installed at a position where the emitted light emitted radially from the first lens 15 can be incident.
  • the second lens 17 emits a plurality of lights from the plurality of cores 13 a and 13 b included in the multicore fiber 11 as collimated light.
  • the optical connector of this aspect allows the light from the outer core of the multi-core fiber to pass through the off-axis portion of the second lens 17, thereby increasing the distance between the light from the multi-core fiber and the single pitch having a wide pitch interval. Light can be propagated to the mode fiber.
  • the second lens 17 is a roof prism.
  • the constituent lenses 21a, 21b, and 21c receive light from any of the plurality of cores 13a and 13b.
  • the second aspect of the present invention relates to an optical communication system including any one of the optical connectors described above.
  • This optical communication system includes one of the optical connectors described above, a multi-core fiber 11 and single mode fibers 23a, 23b, and 23c.
  • optical connector of the present invention can be composed of optical elements, it does not require high processing accuracy, can handle high-power input light, and has sufficient strength for multi-core fibers and single-mode fibers.
  • a connector can be provided.
  • FIG. 1 is a conceptual diagram for explaining the elements of the present invention.
  • FIG. 2A is a diagram illustrating a cross-sectional example of a seven-core multicore fiber.
  • FIG. 2B is a diagram showing a cross-sectional example of a 19-core multi-core fiber.
  • FIG. 3 is a conceptual diagram showing elements of the optical connector in the embodiment.
  • FIG. 1 is a conceptual diagram for explaining elements of the present invention.
  • the multi-core fiber and single mode fiber optical connector of the present invention includes a first lens 15, a second lens 17, a lens array 19, Have
  • the emitted light from the plurality of cores 13 a and 13 b included in the multicore fiber 11 enters the first lens 15. Then, light emitted from the first lens 15 enters the second lens 17. Light emitted from the second lens 17 enters the lens array 19. Light emitted from the constituent lenses 21a, 21b, and 21c included in the lens array 19 enters the corresponding single mode fibers 23a, 23b, and 23c.
  • the optical connector of the present invention can optically connect the multi-core fiber and the single mode fiber.
  • Multi-core fiber and single-mode fiber optical connectors mean optical connectors that can transmit output light from multi-core fibers having a plurality of cores to single-mode fibers corresponding to each core.
  • the number of cores of a multi-core fiber is n
  • light from the multi-core fiber is transmitted to n single mode fiber groups.
  • the single mode fiber group may be constituted by a plurality of cores and clads existing inside one coating, or may be a bundle of a plurality of single mode fibers.
  • the multi-core fiber 11 is an optical fiber including a plurality of cores in one fiber as disclosed in the patent documents and non-patent documents described above.
  • An example of the multi-core fiber 11 is a fiber having a central core and one or more cores existing around the central core.
  • the multi-core fiber 11 does not necessarily have a core at the center.
  • the multi-core fiber of the present invention may be a multi-core fiber having a core in which 2 to 4 (or more) cores are arranged symmetrically.
  • FIG. 2 (a) is a diagram showing a cross-sectional example of a seven-core multicore fiber.
  • FIG. 2B is a diagram showing a cross-sectional example of a 19-core multi-core fiber.
  • 13a represents the central core
  • 13b represents the surrounding core.
  • the central core means a core existing at the center position of the multi-core fiber.
  • the distance between the cores is, for example, 20 ⁇ m or more and 60 ⁇ m or less.
  • the distance between cores means the distance from the center of a core to the center of an adjacent core.
  • the first lens 15 is a convex lens. If the first lens is a convex lens, the interval between the light beams emitted from the multi-core fiber can be diffused (the diameter of the light beam can be increased).
  • the end face 12 of the multi-core fiber 11 is disposed at the focal position of the first lens 15.
  • the central core 13 a of the multi-core fiber is disposed at the focal position of the first lens 15.
  • the second lens 17 is a lens into which the light emitted from the first lens 15 enters. Therefore, the second lens 17 is installed at a position where the emitted light emitted radially from the first lens 15 can enter.
  • the second lens 17 is a lens for preventing the diameter of the light beam whose diameter is expanded by the first lens 15 from expanding beyond the diameter of the bundle of single mode fibers.
  • the optical connector of this aspect allows the light from the outer core of the multi-core fiber to pass through the off-axis portion of the second lens 17 to increase the distance between the light from the multi-core fiber and to increase the single pitch with a wide pitch interval. Light can be propagated to the mode fiber.
  • the second lens 17 is a roof-type prism (trapezoid prism).
  • the roof prism is known as disclosed in, for example, Japanese Patent Application Laid-Open No. 2010-256929.
  • light from the central core 13a of the multi-core fiber enters the position 18a corresponding to the roof portion (vertex portion) of the roof-type prism.
  • light from the surrounding core 13b of the multi-core fiber enters the oblique portion 18b of the roof of the roof-type prism.
  • the second lens 17 can emit a plurality of collimated lights from the plurality of cores 13a and 13b included in the multi-core fiber 11 as light arranged in parallel.
  • the lens array 19 condenses the emitted light from the second lens 17 such as a roof prism onto the corresponding single mode fibers 23a, 23b, and 23c.
  • Each of the constituent lenses 21a, 21b, and 21c constituting the lens array 19 may be a convex lens.
  • light from any of the plurality of cores 13a and 13b is incident on the constituent lenses 21a, 21b, and 21c.
  • single-mode fibers (cores) corresponding to the constituent lenses 21a, 21b, and 21c are arranged at the focal positions of the constituent lenses 21a, 21b, and 21c.
  • the constituent lenses 21a, 21b, and 21c can reduce the diameters of the light beams derived from the cores 13a and 13b.
  • the second aspect of the present invention relates to an optical communication system including any one of the optical connectors described above.
  • This optical communication system includes one of the optical connectors described above, a multi-core fiber 11 and single mode fibers 23a, 23b, and 23c.
  • This optical communication system only needs to have elements that a normal optical communication system has. Then, as in a normal optical communication system, information transmitted from the transmitting station can be transmitted to the receiving station via the multicore fiber and the single mode fiber.
  • FIG. 3 is a diagram showing an embodiment of the present invention, in which 31 is a multi-core fiber, 311 is a center core, 312 is an outer core, 32 is a single lens system, 33 is a roof prism, 34 is a lens array, 35 is A single mode fiber array 351 indicates a single mode fiber.
  • Light emitted from the center core 311 of the multicore fiber 31 placed parallel to the optical axis of the lens system 32 and at the front focal position thereof is collimated by the lens system 32 and travels coaxially with the optical axis of the lens system 32.
  • the collimated light passes through the center of the prism 33, enters the lens at the center of the lens array 34, and is input to the single mode fiber 351 at the center of the single mode fiber array 35.
  • the light emitted from the outer core 312 is emitted as collimated light passing through the rear focal point by the lens system 32 and enters the wedge portion of the prism 33.
  • the wedge angle is polished to an angle that is parallel to the optical axis of the lens array after the incident collimated light is transmitted.
  • the collimated light is incident on the lens on the outer periphery of the lens array 34, and the outer periphery of the single mode fiber array. To the single mode fiber 352.
  • the multi-core fiber 31 has a core-to-core spacing of 45 ⁇ m, seven cores, and a mode field diameter (MFD) of 10 ⁇ m (@ 1550 nm).
  • the lens 32 has a small off-axis aberration, a focal length of 1 A 12 mm aspheric lens was used.
  • the wedge angle of the prism 33 for making the emission angle parallel to the optical axis of the lens array 34 by the prism 33 can be calculated by Snell's law, and is 4.47 °.
  • the material of the prism was BK7, which has almost no absorption in the wavelength 1550 nm band.
  • the array interval between the lens array 34 and the fiber array 35 was 500 ⁇ m.
  • the focal length of the lens array 34 is 1.12 mm because the MDF of the single mode fiber is equivalent to the MDF of the multicore fiber.
  • the present invention can be used in the fields of optical equipment and optical information communication.

Abstract

[Problem] To provide an optical fiber connector between a multicore fiber and a single mode fiber. [Solution] The present invention relates to an optical fiber connector between a multicore fiber and a single mode fiber. The optical fiber connector has a first lens (15), a second lens (17), and a lens array (19). The emission light from a plurality of cores (13a, 13b) included in a multicore fiber (11) is incident on the first lens (15). The emission light from the first lens (15) is incident on the second lens (17). The emission light from the second lens (17) is incident on the lens array (19). The emission light from constituent lenses (21a, 21b, 21c) included in the lens array (19) is incident on corresponding single mode fibers (23a, 23b, 23c). Thus, the optical fiber connector according to the present invention is capable of optically connecting a multicore fiber and a single mode fiber.

Description

マルチコアファイバとシングルモードファイバの光接続器Multi-core fiber and single-mode fiber optical connector
 本発明は,マルチコアファイバとシングルモードファイバの光接続器に関する。 The present invention relates to an optical connector of a multi-core fiber and a single mode fiber.
 例えば,国際公開WO2010/038861号パンフレット(特許文献1)及び国際公開WO2010/038863号パンフレット(特許文献2)には,マルチコアファイバが開示されている。 For example, International Publication WO2010 / 038861 pamphlet (Patent Document 1) and International Publication WO2010 / 038863 pamphlet (Patent Document 2) disclose multi-core fibers.
 マルチコアファイバを伝送路として用い,通信を行うためには,マルチコアファイバとシングルモードファイバとを接続するための光接続器が必要となる。 In order to communicate using multi-core fiber as a transmission line, an optical connector for connecting multi-core fiber and single mode fiber is required.
 非特許文献1には,バンドルファイバをテーパ状に引き延ばし,7コアのマルチコアファイバとシングルモードファイバを結合させる技術が開示されている。この技術は,複数本のシングルモードファイバを束ねて引き延ばし,マルチコアファイバと融着接合するものである。 Non-Patent Document 1 discloses a technique in which a bundle fiber is stretched in a tapered shape and a 7-core multicore fiber and a single mode fiber are coupled. In this technology, multiple single-mode fibers are bundled and stretched, and fusion-bonded with multi-core fibers.
国際公開WO2010/038861号パンフレットInternational Publication WO2010 / 038861 Pamphlet 国際公開WO2010/038863号パンフレットInternational Publication WO2010 / 038863 Pamphlet
 例えば,非特許文献1に開示された方法は,マルチコアファイバとシングルモードファイバのコアをサブミクロンオーダーであわせる必要が生ずる。このため,この方法は,マルチコアファイバとシングルモードファイバとを光学的に接続するために極めて高い加工精度が必要である。 For example, in the method disclosed in Non-Patent Document 1, it is necessary to match the cores of a multi-core fiber and a single mode fiber on the submicron order. For this reason, this method requires extremely high processing accuracy in order to optically connect the multi-core fiber and the single mode fiber.
 また,非特許文献1に開示された方法は,マルチコアファイバとシングルモードファイバを接続するため接着剤を用いる。このため,この方法で光学的な光接続器を得ても,ハイパワーな光を用いて通信を行う用途に用いることができない。また,接着剤の経時劣化に対する対処も考慮しなければならない。さらに,この方法は,複数本のシングルモードファイバを束ねて引き延ばすため,ファイバの強度が損なわれるという問題もある。 Also, the method disclosed in Non-Patent Document 1 uses an adhesive to connect the multi-core fiber and the single mode fiber. For this reason, even if an optical optical connector is obtained by this method, it cannot be used for applications in which communication is performed using high-power light. It is also necessary to consider how to deal with deterioration of the adhesive over time. Furthermore, since this method bundles and extends a plurality of single mode fibers, there is a problem that the strength of the fibers is impaired.
 そこで,本発明は,高い加工精度を必要とせず,ハイパワーな入力光にも対応でき,しかも十分な強度を有するマルチコアファイバとシングルモードファイバの光接続器を提供することを目的とする。 Therefore, an object of the present invention is to provide a multi-core fiber and a single mode fiber optical connector that can handle high-power input light without requiring high processing accuracy and that has sufficient strength.
 本発明は,基本的には,マルチコアファイバの端面をひとつのレンズ系の焦点付近に配置し,さらに屋根型プリズム,レンズアレイを配置することで,マルチコアファイバの各コアからの出射光をコリメート光として放出でき,これによりそれぞれのコア由来の光を対応するシングルモードファイバのコアへ導くことができるという知見に基づく。一般的に,マルチコアファイバの直径は,複数のシングルモードファイバの集合体の直径よりも小さい。本発明の光接続器は,各マルチコアファイバコアからの光束間隔を広げて分離させ,対応するシングルモードファイバへと導くことができる。 In the present invention, basically, the end face of a multi-core fiber is arranged near the focal point of one lens system, and further, a roof-type prism and a lens array are arranged so that the emitted light from each core of the multi-core fiber is collimated light. Based on the knowledge that light from each core can be guided to the corresponding single-mode fiber core. In general, the diameter of a multi-core fiber is smaller than the diameter of an assembly of a plurality of single mode fibers. The optical connector of the present invention can be separated by widening the light flux interval from each multi-core fiber core and leading to a corresponding single mode fiber.
 本発明は,マルチコアファイバとシングルモードファイバの光接続器に関する。この光接続器は,第1のレンズ15と,第2のレンズ17と,レンズアレイ19と,を有する。光接続器は,マルチコアファイバの各コアからの光を対応するシングルモードファイバへと導くことができる。 The present invention relates to an optical connector of a multi-core fiber and a single mode fiber. This optical connector includes a first lens 15, a second lens 17, and a lens array 19. The optical connector can guide the light from each core of the multi-core fiber to the corresponding single mode fiber.
 マルチコアファイバ11に含まれる複数のコア13a,13bからの出射光が第1のレンズ15へ入射する。そして,第1のレンズ15からの出射光が第2のレンズ17へ入射する。第2のレンズ17からの出射光がレンズアレイ19へ入射する。レンズアレイ19に含まれる構成レンズ21a,21b,21cからの出射光が対応するシングルモードファイバ23a,23b,23cへ入射する。このようにして,本発明の光接続器は,マルチコアファイバとシングルモードファイバとを光学的に接続できる。 The emitted light from the plurality of cores 13 a and 13 b included in the multicore fiber 11 enters the first lens 15. Then, light emitted from the first lens 15 enters the second lens 17. Light emitted from the second lens 17 enters the lens array 19. Light emitted from the constituent lenses 21a, 21b, and 21c included in the lens array 19 enters the corresponding single mode fibers 23a, 23b, and 23c. Thus, the optical connector of the present invention can optically connect the multi-core fiber and the single mode fiber.
 本発明の光接続器は,上記のような光学素子により構成される。このため,任意の方向の入射光と任意の方向の出射光を取り扱うことができる。また,光路中に接着剤や樹脂材料を含まないため,ハイパワーな光も取り扱うことができる。 The optical connector of the present invention is composed of the optical elements as described above. For this reason, incident light in an arbitrary direction and outgoing light in an arbitrary direction can be handled. Moreover, since no adhesive or resin material is included in the optical path, high power light can be handled.
 本発明の光接続器の好ましい態様は,マルチコアファイバ11の端面12が,第1のレンズ15の焦点位置に配置されるものである。 In a preferred embodiment of the optical connector of the present invention, the end face 12 of the multi-core fiber 11 is disposed at the focal position of the first lens 15.
 本発明の光接続器の好ましい態様は,第2のレンズ17が,第1のレンズ15から放射状に出射された出射光を入射させることができる位置に設置されるものである。そして,第2のレンズ17は,マルチコアファイバ11に含まれる複数のコア13a,13bからの複数の光をコリメート光として出射する。この態様の光接続器は,例えば,マルチコアファイバの外周コアからの光を第2のレンズ17の軸外部分を経由させることで,マルチコアファイバからの光の間隔を拡大させ,ピッチ間隔の広いシングルモードファイバへ光を伝播することができる。 In a preferred aspect of the optical connector of the present invention, the second lens 17 is installed at a position where the emitted light emitted radially from the first lens 15 can be incident. The second lens 17 emits a plurality of lights from the plurality of cores 13 a and 13 b included in the multicore fiber 11 as collimated light. The optical connector of this aspect, for example, allows the light from the outer core of the multi-core fiber to pass through the off-axis portion of the second lens 17, thereby increasing the distance between the light from the multi-core fiber and the single pitch having a wide pitch interval. Light can be propagated to the mode fiber.
 本発明の光接続器の好ましい態様は,第2のレンズ17が屋根型プリズムである。 In a preferred embodiment of the optical connector of the present invention, the second lens 17 is a roof prism.
 本発明の光接続器の好ましい態様は,構成レンズ21a,21b,21cが,複数のコア13a,13bのいずれかからの光が入射するものである。 In a preferred aspect of the optical connector of the present invention, the constituent lenses 21a, 21b, and 21c receive light from any of the plurality of cores 13a and 13b.
 本発明の第2の側面は,上記したいずれかの光接続器を含む光通信システムに関する。この光通信システムは,上記したいずれかの光接続器と,マルチコアファイバ11及びシングルモードファイバ23a,23b,23cを有する。 The second aspect of the present invention relates to an optical communication system including any one of the optical connectors described above. This optical communication system includes one of the optical connectors described above, a multi-core fiber 11 and single mode fibers 23a, 23b, and 23c.
 本発明の光接続器は,光学素子により構成することができるため,高い加工精度を必要とせず,ハイパワーな入力光にも対応でき,しかも十分な強度を有するマルチコアファイバとシングルモードファイバの光接続器を提供できる。 Since the optical connector of the present invention can be composed of optical elements, it does not require high processing accuracy, can handle high-power input light, and has sufficient strength for multi-core fibers and single-mode fibers. A connector can be provided.
図1は,本発明の要素を説明するための概念図である。FIG. 1 is a conceptual diagram for explaining the elements of the present invention. 図2(a)は,7芯のマルチコアファイバの断面例を示す図である。図2(b)は,19芯のマルチコアファイバの断面例を示す図である。FIG. 2A is a diagram illustrating a cross-sectional example of a seven-core multicore fiber. FIG. 2B is a diagram showing a cross-sectional example of a 19-core multi-core fiber. 図3は,実施例における光接続器の要素を示す概念図である。FIG. 3 is a conceptual diagram showing elements of the optical connector in the embodiment.
 図1は,本発明の要素を説明するための概念図である。図1に示されるように,本発明のマルチコアファイバとシングルモードファイバの光接続器(本発明の光接続器)は,第1のレンズ15と,第2のレンズ17と,レンズアレイ19と,を有する。 FIG. 1 is a conceptual diagram for explaining elements of the present invention. As shown in FIG. 1, the multi-core fiber and single mode fiber optical connector of the present invention (the optical connector of the present invention) includes a first lens 15, a second lens 17, a lens array 19, Have
 マルチコアファイバ11に含まれる複数のコア13a,13bからの出射光が第1のレンズ15へ入射する。そして,第1のレンズ15からの出射光が第2のレンズ17へ入射する。第2のレンズ17からの出射光がレンズアレイ19へ入射する。レンズアレイ19に含まれる構成レンズ21a,21b,21cからの出射光が対応するシングルモードファイバ23a,23b,23cへ入射する。このようにして,本発明の光接続器は,マルチコアファイバとシングルモードファイバとを光学的に接続できる。 The emitted light from the plurality of cores 13 a and 13 b included in the multicore fiber 11 enters the first lens 15. Then, light emitted from the first lens 15 enters the second lens 17. Light emitted from the second lens 17 enters the lens array 19. Light emitted from the constituent lenses 21a, 21b, and 21c included in the lens array 19 enters the corresponding single mode fibers 23a, 23b, and 23c. Thus, the optical connector of the present invention can optically connect the multi-core fiber and the single mode fiber.
 マルチコアファイバとシングルモードファイバの光接続器とは,複数のコアを有するマルチコアファイバからの出力光を,それぞれのコアに対応したシングルモードファイバへと伝えることができる光接続器を意味する。本発明の好ましい例は,マルチコアファイバのコア数がn個の場合,マルチコアファイバからの光をn個のシングルモードファイバ群へと伝えるものである。シングルモードファイバ群は1つの被覆内部に存在する複数のコア及びクラッドにより構成されても良いし,シングルモードファイバを複数本束ねたものであっても良い。 Multi-core fiber and single-mode fiber optical connectors mean optical connectors that can transmit output light from multi-core fibers having a plurality of cores to single-mode fibers corresponding to each core. In a preferred example of the present invention, when the number of cores of a multi-core fiber is n, light from the multi-core fiber is transmitted to n single mode fiber groups. The single mode fiber group may be constituted by a plurality of cores and clads existing inside one coating, or may be a bundle of a plurality of single mode fibers.
 マルチコアファイバ11は,先に説明した特許文献や非特許文献に開示されるとおり,ひとつのファイバ内に複数のコアを含む光ファイバである。マルチコアファイバ11の例は,中心コアと中心コアの周囲に存在する1又は複数のコアを有するファイバである。マルチコアファイバ11は,必ずしも中心にコアが存在するものでなくてもよい。たとえば,本発明のマルチコアファイバは,2から4つ(又はそれ以上)のコアが対称的に並べられたコアを有するマルチコアファイバであってもよい。 The multi-core fiber 11 is an optical fiber including a plurality of cores in one fiber as disclosed in the patent documents and non-patent documents described above. An example of the multi-core fiber 11 is a fiber having a central core and one or more cores existing around the central core. The multi-core fiber 11 does not necessarily have a core at the center. For example, the multi-core fiber of the present invention may be a multi-core fiber having a core in which 2 to 4 (or more) cores are arranged symmetrically.
 図2(a)は,7芯のマルチコアファイバの断面例を示す図である。図2(b)は,19芯のマルチコアファイバの断面例を示す図である。図中13aは中心コアを示し,13bは周囲コアを示す。中心コアは,マルチコアファイバの中心位置に存在するコアを意味する。コア間の距離は,例えば20μm以上60μm以下である。コア間の距離とは,コアの中心から隣接するコアの中心までの距離を意味する。 FIG. 2 (a) is a diagram showing a cross-sectional example of a seven-core multicore fiber. FIG. 2B is a diagram showing a cross-sectional example of a 19-core multi-core fiber. In the figure, 13a represents the central core, and 13b represents the surrounding core. The central core means a core existing at the center position of the multi-core fiber. The distance between the cores is, for example, 20 μm or more and 60 μm or less. The distance between cores means the distance from the center of a core to the center of an adjacent core.
 第1のレンズ15の例は,凸レンズである。第1のレンズが凸レンズであればマルチコアファイバから出射した光束の間隔を拡散させる(光束の径を広げる)ことができる。 An example of the first lens 15 is a convex lens. If the first lens is a convex lens, the interval between the light beams emitted from the multi-core fiber can be diffused (the diameter of the light beam can be increased).
 本発明の光接続器の好ましい態様は,マルチコアファイバ11の端面12が,第1のレンズ15の焦点位置に配置されるものである。特に,マルチコアファイバの中心コア13aが第1のレンズ15の焦点位置に配置されるものが好ましい。 In a preferred embodiment of the optical connector of the present invention, the end face 12 of the multi-core fiber 11 is disposed at the focal position of the first lens 15. In particular, it is preferable that the central core 13 a of the multi-core fiber is disposed at the focal position of the first lens 15.
 第2のレンズ17は,第1のレンズ15からの出射光が入射するレンズである。このため,第2のレンズ17は,第1のレンズ15から放射状に出射された出射光を入射させることができる位置に設置される。第2のレンズ17は,第1のレンズ15により径が広められた光束の径がシングルモードファイバの束の径以上に広がらないようにするためのレンズである。 The second lens 17 is a lens into which the light emitted from the first lens 15 enters. Therefore, the second lens 17 is installed at a position where the emitted light emitted radially from the first lens 15 can enter. The second lens 17 is a lens for preventing the diameter of the light beam whose diameter is expanded by the first lens 15 from expanding beyond the diameter of the bundle of single mode fibers.
 この態様の光接続器は,例えば,マルチコアファイバの外周コアからの光を第2のレンズ17の軸外部分を経由させることで,マルチコアファイバからの光の間隔を拡大させ,ピッチ間隔の広いシングルモードファイバへ光を伝播することができる。 The optical connector of this aspect, for example, allows the light from the outer core of the multi-core fiber to pass through the off-axis portion of the second lens 17 to increase the distance between the light from the multi-core fiber and to increase the single pitch with a wide pitch interval. Light can be propagated to the mode fiber.
 第2のレンズ17の例は,屋根型プリズム(台形プリズム)である。屋根型プリズムは例えば特開2010-256929号公報に開示されたとおり公知である。例えば,屋根型プリズムの屋根部分(頂点部分)に対応する位置18aに,マルチコアファイバの中心コア13aからの光が入射する。一方,マルチコアファイバの周囲コア13bからの光は,屋根型プリズムの屋根のうち斜め部分18bへ入射する。このようにして,この場合,第2のレンズ17は,マルチコアファイバ11に含まれる複数のコア13a,13bからの複数のコリメート光を平行に配列した光として出射することができる。 An example of the second lens 17 is a roof-type prism (trapezoid prism). The roof prism is known as disclosed in, for example, Japanese Patent Application Laid-Open No. 2010-256929. For example, light from the central core 13a of the multi-core fiber enters the position 18a corresponding to the roof portion (vertex portion) of the roof-type prism. On the other hand, light from the surrounding core 13b of the multi-core fiber enters the oblique portion 18b of the roof of the roof-type prism. Thus, in this case, the second lens 17 can emit a plurality of collimated lights from the plurality of cores 13a and 13b included in the multi-core fiber 11 as light arranged in parallel.
 レンズアレイ19は,屋根型プリズムなどの第2のレンズ17からの出射光を対応するシングルモードファイバ23a,23b,23cへ集光する。このレンズアレイ19を構成する構成レンズ21a,21b,21cは,それぞれが凸レンズであってもよい。構成レンズ21a,21b,21cへは,例えば,複数のコア13a,13bのいずれかからの光が入射する。 The lens array 19 condenses the emitted light from the second lens 17 such as a roof prism onto the corresponding single mode fibers 23a, 23b, and 23c. Each of the constituent lenses 21a, 21b, and 21c constituting the lens array 19 may be a convex lens. For example, light from any of the plurality of cores 13a and 13b is incident on the constituent lenses 21a, 21b, and 21c.
 構成レンズ21a,21b,21cの焦点位置に,それぞれの構成レンズ21a,21b,21cに対応したシングルモードファイバ(のコア)が配置されるものが好ましい。構成レンズ21a,21b,21cにより,各コア13a,13bに由来するそれぞれの光の径を小さくすることができる。 It is preferable that single-mode fibers (cores) corresponding to the constituent lenses 21a, 21b, and 21c are arranged at the focal positions of the constituent lenses 21a, 21b, and 21c. The constituent lenses 21a, 21b, and 21c can reduce the diameters of the light beams derived from the cores 13a and 13b.
 本発明の第2の側面は,上記したいずれかの光接続器を含む光通信システムに関する。この光通信システムは,上記したいずれかの光接続器と,マルチコアファイバ11及びシングルモードファイバ23a,23b,23cを有する。この光通信システムは,通常の光通信システムが有する要素を適宜有すればよい。すると,通常の光通信システムと同様,送信局から送信される情報を,マルチコアファイバとシングルモードファイバを介して,受信局へ送信することができる。 The second aspect of the present invention relates to an optical communication system including any one of the optical connectors described above. This optical communication system includes one of the optical connectors described above, a multi-core fiber 11 and single mode fibers 23a, 23b, and 23c. This optical communication system only needs to have elements that a normal optical communication system has. Then, as in a normal optical communication system, information transmitted from the transmitting station can be transmitted to the receiving station via the multicore fiber and the single mode fiber.
 図3は,本発明の実施例を示す図であり,31はマルチコアファイバ,311はセンターコア,312はアウターコア,32は単一レンズ系,33は屋根型プリズム,34はレンズアレイ,35はシングルモードファイバアレイ,351はシングルモードファイバを示す。レンズ系32の光軸に平行かつ,その前側焦点位置に置かれたマルチコアファイバ31のセンターコア311からの出射光は,レンズ系32によりコリメートされ,レンズ系32の光軸と同軸で進む。このコリメート光は,プリズム33の中央を通り,レンズアレイ34の中心のレンズへ入射され,シングルモードファイバアレイ35の中心のシングルモードファイバ351へ入力される。一方,アウターコア312からの出射光は,レンズ系32により後側焦点を通るコリメート光として出射され,プリズム33のウェッジ部へ入射する。このウェッジ角度は,入射するコリメート光透過後に,レンズアレイの光軸と平行になるような角度に研磨されており,コリメート光はレンズアレイ34の外周のレンズへ入射し,シングルモードファイバアレイの外周のシングルモードファイバ352へ入射される。 FIG. 3 is a diagram showing an embodiment of the present invention, in which 31 is a multi-core fiber, 311 is a center core, 312 is an outer core, 32 is a single lens system, 33 is a roof prism, 34 is a lens array, 35 is A single mode fiber array 351 indicates a single mode fiber. Light emitted from the center core 311 of the multicore fiber 31 placed parallel to the optical axis of the lens system 32 and at the front focal position thereof is collimated by the lens system 32 and travels coaxially with the optical axis of the lens system 32. The collimated light passes through the center of the prism 33, enters the lens at the center of the lens array 34, and is input to the single mode fiber 351 at the center of the single mode fiber array 35. On the other hand, the light emitted from the outer core 312 is emitted as collimated light passing through the rear focal point by the lens system 32 and enters the wedge portion of the prism 33. The wedge angle is polished to an angle that is parallel to the optical axis of the lens array after the incident collimated light is transmitted. The collimated light is incident on the lens on the outer periphery of the lens array 34, and the outer periphery of the single mode fiber array. To the single mode fiber 352.
 ここで,本実施例の具体例を示す。マルチコアファイバ31は,コア同士の間隔が45μmで,コア数が7つ,モードフィールド径(MFD)10μm(@1550nm)のものを使用し,レンズ32は,軸外の収差の少ない,焦点距離1.12mmの非球面レンズを用いた。レンズ32から放射状に出力されるコリメート光の出射角度θは,式d=f×tanθ(レンズ32の焦点距離:f,マルチコアファイバのコア間隔:d)に従うため,θ=2.3度である。この出射角度を,プリズム33にてレンズアレイ34の光軸に平行とするための,プリズム33のウェッジ角度は,スネルの法則により計算でき,4.47°である。なお,プリズムの材質は,波長1550nm帯にて吸収がほとんどない,BK7とした。レンズアレイ34,及びファイバアレイ35のアレイ間隔は,500μmとした。また,レンズアレイ34の焦点距離は,シングルモードファイバのMDFが,マルチコアファイバのMDFと同等であるため,1.12mmとした。 Here, a specific example of this embodiment is shown. The multi-core fiber 31 has a core-to-core spacing of 45 μm, seven cores, and a mode field diameter (MFD) of 10 μm (@ 1550 nm). The lens 32 has a small off-axis aberration, a focal length of 1 A 12 mm aspheric lens was used. The exit angle θ of the collimated light output radially from the lens 32 is θ = 2.3 degrees because it follows the formula d = f × tan θ (focal length of the lens 32: f, core interval of multi-core fiber: d). . The wedge angle of the prism 33 for making the emission angle parallel to the optical axis of the lens array 34 by the prism 33 can be calculated by Snell's law, and is 4.47 °. The material of the prism was BK7, which has almost no absorption in the wavelength 1550 nm band. The array interval between the lens array 34 and the fiber array 35 was 500 μm. The focal length of the lens array 34 is 1.12 mm because the MDF of the single mode fiber is equivalent to the MDF of the multicore fiber.
 本発明は,光学機器及び光情報通信の分野で利用されうる。 The present invention can be used in the fields of optical equipment and optical information communication.
 11 マルチコアファイバ
 13a,13b マルチコアファイバのコア
 15 第1のレンズ
 17 第2のレンズ
 19 レンズアレイ
 21a,21b,21c 構成レンズ
 23a,23b,23c シングルモードファイバ
 
 
11 Multi-core fiber 13a, 13b Multi-core fiber core 15 First lens 17 Second lens 19 Lens array 21a, 21b, 21c Constituent lens 23a, 23b, 23c Single mode fiber

Claims (6)

  1.  マルチコアファイバ(11)に含まれる複数のコア(13a,13b)からの出射光が入射する第1のレンズ(15)と,
     前記第1のレンズ(15)からの出射光が入射する第2のレンズ(17)と,
     前記第2のレンズ(17)からの出射光が入射するレンズアレイ(19)と,を有し,
     前記レンズアレイ(19)に含まれる構成レンズ(21a,21b,21c)からの出射光が対応するシングルモードファイバ(23a,23b,23c)へ入射することで,マルチコアファイバとシングルモードファイバとを光学的に接続できる,
     マルチコアファイバとシングルモードファイバの光接続器。
    A first lens (15) on which light emitted from a plurality of cores (13a, 13b) included in the multi-core fiber (11) is incident;
    A second lens (17) on which light emitted from the first lens (15) is incident;
    A lens array (19) on which light emitted from the second lens (17) enters,
    The light emitted from the constituent lenses (21a, 21b, 21c) included in the lens array (19) is incident on the corresponding single mode fibers (23a, 23b, 23c), so that the multi-core fiber and the single mode fiber are optically transmitted. Can be connected,
    Multi-core fiber and single mode fiber optical connector.
  2.  請求項1に記載のマルチコアファイバとシングルモードファイバの光接続器であって,
     前記マルチコアファイバ(11)の端面(12)は,前記第1のレンズ(15)の焦点位置に配置される,
     光接続器。
    A multi-core fiber and single mode fiber optical connector according to claim 1,
    An end face (12) of the multi-core fiber (11) is disposed at a focal position of the first lens (15).
    Optical connector.
  3.  請求項1に記載のマルチコアファイバとシングルモードファイバの光接続器であって,
     前記第2のレンズ(17)は,前記第1のレンズ(15)から放射状に出射された出射光を入射させることができる位置に設置され,前記マルチコアファイバ(11)に含まれる複数のコア(13a,13b)からの複数の光をコリメート光として出射する,
     光接続器。
    A multi-core fiber and single mode fiber optical connector according to claim 1,
    The second lens (17) is installed at a position where the emitted light emitted radially from the first lens (15) can be incident, and the plurality of cores (11) included in the multi-core fiber (11) A plurality of lights from 13a, 13b) are emitted as collimated light,
    Optical connector.
  4.  請求項1に記載のマルチコアファイバとシングルモードファイバの光接続器であって,
     前記第2のレンズ(17)は,屋根型プリズムである,
     光結合器。
    A multi-core fiber and single mode fiber optical connector according to claim 1,
    The second lens (17) is a roof prism.
    Optical coupler.
  5.  請求項1に記載のマルチコアファイバとシングルモードファイバの光接続器であって,
     前記構成レンズ(21a,21b,21c)は,前記複数のコア(13a,13b)のいずれかからの光が入射する,
     光接続器。
    A multi-core fiber and single mode fiber optical connector according to claim 1,
    The component lenses (21a, 21b, 21c) receive light from any of the plurality of cores (13a, 13b).
    Optical connector.
  6.  請求項1に記載のマルチコアファイバとシングルモードファイバの光接続器を有する光通信システムであって,
     前記光接続器に接続されるマルチコアファイバ(11)と,
     前記光接続器に接続されるシングルモードファイバ(23a,23b,23c)と,を更に有する,
     光通信システム。
    An optical communication system comprising the multi-core fiber and the single-mode fiber optical connector according to claim 1,
    A multi-core fiber (11) connected to the optical connector;
    A single mode fiber (23a, 23b, 23c) connected to the optical connector;
    Optical communication system.
PCT/JP2013/073553 2012-09-06 2013-09-02 Optical fiber connector between multicore fiber and single mode fiber WO2014038514A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014534347A JP6219288B2 (en) 2012-09-06 2013-09-02 Multi-core fiber and single-mode fiber optical connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-196391 2012-09-06
JP2012196391 2012-09-06

Publications (1)

Publication Number Publication Date
WO2014038514A1 true WO2014038514A1 (en) 2014-03-13

Family

ID=50237123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073553 WO2014038514A1 (en) 2012-09-06 2013-09-02 Optical fiber connector between multicore fiber and single mode fiber

Country Status (2)

Country Link
JP (1) JP6219288B2 (en)
WO (1) WO2014038514A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133516A (en) * 2015-01-15 2016-07-25 株式会社日立製作所 Multi-core fiber connection device and system
US9664859B2 (en) 2014-07-28 2017-05-30 Citizen Watch Co., Ltd. Optical fiber connector, optical module, and fabricating method thereof
US20220091346A1 (en) * 2019-01-25 2022-03-24 Sony Group Corporation Optical connector, optical cable, and electronic apparatus
US11402585B2 (en) 2019-03-05 2022-08-02 Sumitomo Electric Industries, Ltd. Optical connection structure
DE102022107005A1 (en) 2022-03-24 2023-09-28 Huber+Suhner Cube Optics Ag Optical multicoupler with correction element and manufacturing process therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6864666B2 (en) 2018-12-25 2021-04-28 株式会社フジクラ Connector system, optical connection method and optical connection member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821927A (en) * 1994-07-08 1996-01-23 Ricoh Opt Ind Co Ltd Optical information synthesizing optical device
JP2012042819A (en) * 2010-08-20 2012-03-01 Fujikura Ltd Laser diode module and laser source
WO2012172968A1 (en) * 2011-06-17 2012-12-20 住友電気工業株式会社 Optical device
WO2013031836A1 (en) * 2011-09-01 2013-03-07 コニカミノルタアドバンストレイヤー株式会社 Coupling optical system and coupling method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821927A (en) * 1994-07-08 1996-01-23 Ricoh Opt Ind Co Ltd Optical information synthesizing optical device
JP2012042819A (en) * 2010-08-20 2012-03-01 Fujikura Ltd Laser diode module and laser source
WO2012172968A1 (en) * 2011-06-17 2012-12-20 住友電気工業株式会社 Optical device
WO2013031836A1 (en) * 2011-09-01 2013-03-07 コニカミノルタアドバンストレイヤー株式会社 Coupling optical system and coupling method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAKAGUCHI JUN ET AL.: "Propagation characteristics of seven-core fiber for spatial and wavelength division multiplexed 10-Gbit/s channels", OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION (OFC/NFOEC), 2011 AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, March 2011 (2011-03-01) *
SAKAGUCHI JUN ET AL.: "Space Division Multiplexed Transmission of 109-Tb/s Data Signals Using Homogeneous Seven-Core Fiber", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 30, no. 4, 15 February 2012 (2012-02-15), pages 658 - 665 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664859B2 (en) 2014-07-28 2017-05-30 Citizen Watch Co., Ltd. Optical fiber connector, optical module, and fabricating method thereof
JP2016133516A (en) * 2015-01-15 2016-07-25 株式会社日立製作所 Multi-core fiber connection device and system
US20220091346A1 (en) * 2019-01-25 2022-03-24 Sony Group Corporation Optical connector, optical cable, and electronic apparatus
US11402585B2 (en) 2019-03-05 2022-08-02 Sumitomo Electric Industries, Ltd. Optical connection structure
DE102022107005A1 (en) 2022-03-24 2023-09-28 Huber+Suhner Cube Optics Ag Optical multicoupler with correction element and manufacturing process therefor

Also Published As

Publication number Publication date
JPWO2014038514A1 (en) 2016-08-08
JP6219288B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP6219288B2 (en) Multi-core fiber and single-mode fiber optical connector
US20170363810A1 (en) Multimode beam combiner
JP5957718B2 (en) Multi-core multi-mode fiber coupler
JP2006201555A (en) Multimode wavelength multiplexing optical transceiver
Chen et al. 30Gbit/s 3× 3 optical mode group division multiplexing system with mode-selective spatial filtering
CN102253458B (en) Broad spectrum optical fiber collimator
US20160246015A1 (en) Multiple-beam microlen
CN111665594A (en) Optical connection structure
CN1334930A (en) Multiple port, fiber optic isolator
JP2016109887A (en) Optical connector
JP5870426B2 (en) Multi-core fiber coupler
JP2005070189A (en) Optical link for luminous flux multiplex communication, and optical link for two-way optical communication
JP2011164182A (en) Optical connector connection body
JP2016118750A (en) Chip type handle fiber multiplexer and chip type multi-wavelength light source
WO2014077069A1 (en) Optical multiplexer device
US10459169B2 (en) Dispersion-compensative optical assembly
JP2014052496A (en) Optical connector between multi-core fibers
US20130272658A1 (en) Multi-mode multi-fiber connection with expanded beam
JP2014013311A (en) Optical fiber and optical communication system
US11754788B2 (en) Multi-channel mode converters with silicon lenses
JP2007133239A (en) Collimator and optical filter device using the same
WO2014129280A1 (en) Optical connector device
US10054743B2 (en) Infrared fiber combiner
CN101634730B (en) Light transformation system and light transformation method
JP5154047B2 (en) Optical fiber coupling structure and coupling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014534347

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13834434

Country of ref document: EP

Kind code of ref document: A1