WO2013031836A1 - Coupling optical system and coupling method - Google Patents

Coupling optical system and coupling method Download PDF

Info

Publication number
WO2013031836A1
WO2013031836A1 PCT/JP2012/071848 JP2012071848W WO2013031836A1 WO 2013031836 A1 WO2013031836 A1 WO 2013031836A1 JP 2012071848 W JP2012071848 W JP 2012071848W WO 2013031836 A1 WO2013031836 A1 WO 2013031836A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
light
coupling
pitch
deflection
Prior art date
Application number
PCT/JP2012/071848
Other languages
French (fr)
Japanese (ja)
Inventor
橋村 淳司
史生 長井
幸宏 尾関
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2013031836A1 publication Critical patent/WO2013031836A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres

Definitions

  • the present invention relates to a coupling optical system and a coupling method for coupling optical elements used for optical communication and the like.
  • a multi-core fiber that is an optical fiber in which a plurality of cores are provided in one clad can be used (see Patent Documents 1 and 2). Since the multi-core fiber has a plurality of cores, it is possible to perform large-capacity data communication compared to the single-core fiber.
  • such a multi-core fiber may be used by being optically coupled with, for example, a fiber bundle in which a plurality of single-core fibers are bundled, a light emitting element such as a laser diode, or a light receiving element such as a photodiode. is there.
  • a light emitting element such as a laser diode
  • a light receiving element such as a photodiode.
  • all or part of the multi-core fiber, the fiber bundle, the light emitting element, and the light receiving element may be referred to as “optical element”.
  • the cores When connecting multi-core fibers having the same number of cores, the cores can be reliably connected by aligning the multi-core fibers. Therefore, it is difficult to cause coupling loss, and high coupling efficiency can be achieved.
  • the cores of the multi-core fiber are arranged at a distance narrower than the diameter of each single-core fiber of the fiber bundle. Therefore, when the fiber bundle and the multi-core fiber are coupled, it is difficult to reliably couple the cores. Therefore, the coupling efficiency between the multi-core fiber and the fiber bundle is reduced.
  • the present invention solves the above problems, and provides a coupling optical system capable of suppressing a decrease in coupling efficiency when coupling a multi-core fiber and another optical element, and a coupling method using the same. With the goal.
  • the coupling optical system according to claim 1 includes a plurality of light sources, a plurality of light receiving elements, and any one of a plurality of optical elements bundled with a plurality of single core fibers and a plurality of light elements.
  • the core is disposed between the multi-core fiber covered with the clad and optically couples the optical element and the multi-core fiber.
  • the numerical aperture of each of the plurality of lights incident from the incident side element consisting of one of the optical element and the multi-core fiber is equal to the numerical aperture of each of the plurality of lights exiting toward the exit side element consisting of the other. It is comprised so that it may become.
  • a coupling optical system is the coupling optical system according to the first aspect, and includes a first optical system and a second optical system.
  • the first optical system converges each of the plurality of lights.
  • the second optical system changes the interval between the plurality of lights.
  • the coupling optical system according to claim 3 is the coupling optical system according to claim 2, wherein the first optical system is disposed closer to the optical element than the second optical system. ing.
  • the coupling optical system according to claim 4 can be applied to the coupling optical system according to claim 3.
  • the coupling optical system according to claim 5 is the coupling optical system according to claim 2, wherein the first optical system has a configuration in which a plurality of lenses are arranged in an array. is there.
  • the coupling optical system according to claim 5 can be applied to the coupling optical system according to claim 3 or 4.
  • the coupling optical system according to claim 6 is the coupling optical system according to claim 5, wherein the pitch between the plurality of lenses is the pitch between the plurality of light sources and the plurality of light receptions. It is equal to either the pitch between elements or the pitch between single core fibers.
  • the coupling optical system according to claim 7 is the coupling optical system according to claim 2, and the second optical system is a double-sided telecentric optical system.
  • the coupling optical system according to the seventh aspect can be applied to the coupling optical system according to any one of the third to sixth aspects.
  • the coupling optical system according to claim 8 is the coupling optical system according to claim 2, wherein the magnification of the second optical system is such that the pitch between the plurality of light sources and the plurality of light receptions. It is equal to the ratio of either the pitch between the elements or the pitch between the plurality of single core fibers to the pitch between the cores of the multicore fiber.
  • the coupling optical system according to claim 8 can be applied to the coupling optical system according to any one of claims 3 to 7.
  • a coupling optical system according to a ninth aspect is the coupling optical system according to the first aspect, and includes a deflection optical system. The deflection optical system individually deflects a plurality of incident light.
  • a coupling optical system is the coupling optical system according to the ninth aspect, and includes a collimating lens.
  • the collimating lens collimates light from any of the incident side elements.
  • the deflection optical system deflects light collimated by the collimating lens.
  • the coupling optical system according to claim 11 is the coupling optical system according to claim 10, and the collimating lens has a configuration in which a plurality of collimating lenses are arranged in an array. .
  • the coupling optical system according to claim 12 is the coupling optical system according to claim 11, wherein a pitch between the plurality of collimating lenses is a pitch between the plurality of light sources, a plurality of the plurality of light sources. It is equal to either the pitch between single-core fibers or the pitch between cores of multi-core fibers.
  • the coupling optical system according to claim 13 is the coupling optical system according to claim 10, wherein the deflection optical system includes a first deflection optical system, a second deflection optical system, and including. The first deflection optical system deflects a plurality of incident light.
  • the second deflection optical system further deflects the plurality of lights deflected by the first deflection optical system.
  • the coupling optical system according to the thirteenth aspect can be applied to the coupling optical system according to the eleventh or twelfth aspect.
  • the coupling optical system according to claim 14 is the coupling optical system according to claim 13, wherein one surface of the first deflection optical system and the second deflection optical system is convex. The other side is formed in a concave shape.
  • the coupling optical system according to claim 15 is the coupling optical system according to claim 13, wherein the first deflection optical system and the second deflection optical system are at least one surface of each.
  • the coupling optical system according to claim 16 is the coupling optical system according to claim 13, wherein at least one of the first deflection optical system and the second deflection optical system is a collimating lens. It is a deflecting prism that deflects the light collimated in the above.
  • the coupling optical system according to claim 16 can be applied to the coupling optical system according to claim 14.
  • the coupling optical system according to claim 17 is the coupling optical system according to claim 13, wherein the first deflection optical system and the second deflection optical system have the same degree of deflection.
  • the coupling optical system according to claim 17 can be applied to the coupling optical system according to any one of claims 14 to 16.
  • the coupling optical system according to claim 18 is the coupling optical system according to claim 9, wherein the deflection degree of the deflection optical system is such that the pitch between the plurality of light sources and the plurality of light receptions. It is equal to the ratio of either the pitch between the elements or the pitch between the plurality of single core fibers to the pitch between the cores of the multicore fiber. Note that the coupling optical system according to claim 18 can be applied to the coupling optical system according to any one of claims 10 to 17.
  • a coupling optical system is the coupling optical system according to the tenth aspect, and includes an imaging optical lens.
  • the imaging optical lens forms an image of the light deflected by the deflection optical system on any of the emission side elements.
  • the coupling optical system according to claim 19 can be applied to the coupling optical system according to any of claims 11 to 18.
  • the coupling optical system according to claim 20 is the coupling optical system according to claim 19, and the imaging optical lens has a configuration in which a plurality of lenses are arranged in an array. is there.
  • the coupling optical system according to claim 21 is the coupling optical system according to claim 20, wherein a pitch between the imaging optical lenses is a pitch between a plurality of single core fibers, It is equal to either the pitch between the light receiving elements or the pitch between the cores of the multi-core fiber.
  • a coupling optical system according to a twenty-second aspect is the coupling optical system according to the nineteenth aspect, in which the focal length of the collimating lens is equal to the focal length of the imaging optical lens. Note that the coupling optical system according to claim 22 can be applied to the coupling optical system according to claim 20 or 21.
  • the coupling optical system according to claim 23 is the coupling optical system according to claim 1, wherein the incident side element, the coupling optical system, and the output side element are arranged on the incident side.
  • Each principal ray of light from the element is incident perpendicularly to the incident surface of the coupling optical system, and each principal ray of light emitted from the exit surface of the coupling optical system is perpendicular to the light receiving surface of the emitting element. The arrangement is incident.
  • the coupling optical system according to claim 23 can be applied to the coupling optical system according to any one of claims 2 to 22.
  • the coupling method according to claim 24 uses the coupling optical system according to any one of claims 1 to 23, and uses a coupling optical system according to any one of claims 1 to 23 to obtain a numerical aperture for each of a plurality of lights incident from an incident side element. And the optical element and the multi-core fiber are coupled so that the numerical apertures of the plurality of lights emitted toward the emission side element are equal.
  • the numerical apertures of the plurality of lights incident from the incident side element are equal to the numerical apertures of the plurality of lights emitted toward the emission side element. Designed to be Accordingly, it is possible to suppress a decrease in coupling efficiency when coupling the multi-core fiber and another optical element.
  • FIG. 10 is a view showing a coupling member according to Modifications 2 to 4 common to the first to third embodiments.
  • FIG. 10 is a diagram showing multicore fibers according to Modifications 2 to 4 common to the first to third embodiments.
  • FIG. 6 is a view showing a multi-core fiber and a coupling member according to Modifications 2 to 4 common to the first to third embodiments.
  • FIG. 1 is a perspective view of the multi-core fiber 1. In FIG. 1, only the tip portion of the multi-core fiber 1 is shown.
  • the multi-core fiber 1 is made of a material having a high light transmittance such as quartz glass or plastic.
  • the core C k is a transmission path for transmitting light from a light source (not shown).
  • the core C k is made of a material in which germanium oxide (GeO 2 ) is added to, for example, quartz glass.
  • FIG. 1 shows a configuration having seven cores C 1 to C 7 , the number of cores C k may be at least two.
  • the clad 2 is a member that covers the plurality of cores Ck .
  • Cladding 2 has a function to confine light from a light source (not shown) in the core C k.
  • the clad 2 has an end face 2a.
  • the end surface Ek of the core Ck and the end surface 2a of the clad 2 form the same surface (the end surface 1b of the multicore fiber 1).
  • the cladding 2 material a low refractive index material is used than the core C k material.
  • quartz glass is used as the material of the clad 2.
  • the refractive index of the core C k higher than the refractive index of the cladding 2
  • the light from the light source (not shown) is totally reflected at the interface between the core C k and the cladding 2. Therefore, light can be transmitted in the core Ck .
  • FIG. 2 is a sectional view in the axial direction of the coupling optical system 20, the fiber bundle 10, and the multicore fiber 1.
  • the fiber bundle 10 includes a plurality of single core fibers 100.
  • the single core fiber 100 includes a core C inside a clad 101.
  • the core C is a transmission path for transmitting light from a light source (not shown).
  • the light emitted from the end surface Ca of the core C is incident on the incident surface (described later) of the coupling optical system 20 with a predetermined numerical aperture NA.
  • N is a refractive index.
  • is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light beam) emitted from the end face Ca enters the coupling optical system 20.
  • the coupling optical system 20 includes a first optical system 21 and a second optical system 22.
  • the first optical system 21 has a function of converging each of the plurality of lights.
  • the second optical system 22 has a function of changing the interval between the plurality of lights.
  • the first optical system 21 in the present embodiment has a function of converging each of a plurality of lights from the fiber bundle 10.
  • the first optical system 21 includes a plurality of convex lenses 21a arranged in an array.
  • the plurality of convex lenses 21 a are provided in the same number as the single core fibers 100 included in the fiber bundle 10.
  • the first optical system 21 (convex lens 21a) is disposed at a position where each light (principal ray Pr) emitted from each end face Ca of the fiber bundle 10 enters perpendicularly to the surface of the corresponding convex lens 21a. (In this case, the end face Ca functions as a stop).
  • the plurality of convex lenses 21a has a pitch P m (a distance between optical axes of adjacent convex lenses 21a).
  • a pitch P out between a plurality of single core fibers 100 (a distance between optical axes of adjacent single core fibers 100.
  • a fiber bundle The distance between the optical axis of the core C of the fiber disposed at the center of the fiber 10 and the optical axis of the core C of the fiber disposed at the periphery thereof is disposed.
  • the first optical system 21 is disposed closer to the fiber bundle 10 than the second optical system 22.
  • the surface of the convex lens 21a on which the light from the fiber bundle 10 is incident is an example of an “incident surface”.
  • the plurality of convex lenses 21a in the present embodiment is an example of “a plurality of lenses”.
  • the magnification of the first optical system 21 is designed to be a predetermined magnification ⁇ m.
  • ⁇ ′ is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light beam) emitted from the first optical system 21 reaches the imaging point IP.
  • the second optical system 22 in the present embodiment has a function of narrowing the interval between the plurality of lights from the first optical system 21.
  • the second optical system 22 is constituted by a double-sided telecentric optical system including two convex lenses 22a and 22b.
  • the second optical system 22 is arranged at a position where each of the plurality of lights (principal rays Pr) from the first optical system 21 is perpendicularly incident on the end face E k of each core C k of the corresponding multi-core fiber 1. ing.
  • the light (light beam) emitted from the second optical system 22 is an angle principal ray Pr and marginal rays Mr forms as they enter the multi-core fiber 1 (end surface E k of each core C k).
  • the surface of the convex lens 22b from which the light from the first optical system 21 is emitted is an example of an “emission surface”.
  • the end surface E k is an example of a “light receiving surface”.
  • the second optical system 22 has a magnification ⁇ r of the pitch P out between the single core fibers 100 and the pitch P in between the cores C k of the multi-core fiber 1 (adjacent cores in the multi-core fiber 1).
  • C k of the distance between the optical axes are designed to be equal to the ratio of the distance) between the optical axes of the periphery of the core C 2 of the center of the core C 1 of the multi-core fiber 1.
  • the ratio of the magnification ⁇ r and the pitch P out to the pitch P in does not necessarily have to be equal depending on the tolerance of the optical element used and variations in design. Any value that can secure at least the coupling efficiency necessary for optical transmission, for example, a value satisfying the following expression (1) may be used.
  • the coupling optical system 20 is designed so that the numerical aperture NA is equal to the numerical aperture NA ′′.
  • magnification ⁇ m of the first optical system 21 and the magnification ⁇ r of the second optical system 22 are designed so as to satisfy the following expression (2).
  • magnification ⁇ m and the magnification ⁇ r does not necessarily satisfy the condition of the expression (2) due to the tolerance of the optical element used and variations in design. Any value that can secure at least the coupling efficiency necessary for optical transmission, for example, a value satisfying the following expression (3) may be used.
  • the configuration of the coupling optical system 20 arranged so that the light emitted from the first optical system 21 enters the second optical system 22 has been described.
  • the first optical system 21 and the second optical system 21 The arrangement of the system 22 may be reversed.
  • the magnification ⁇ m of the first optical system 21 and the magnification ⁇ r of the second optical system 22 need only satisfy the relationship of Expression (2) or Expression (3).
  • the fiber bundle 10 in the present embodiment is an example of an “incident side element”.
  • the multi-core fiber 1 in the present embodiment is an example of an “emission side element”.
  • each light (principal ray Pr) emitted from the end face Ca is incident on the first optical system 21 (the surface of the convex lens 21a) perpendicularly.
  • Each of the plurality of lights (principal rays Pr) incident on the first optical system 21 is perpendicularly incident on the second optical system 22 (surface of the convex lens 22a) with the imaging point IP as a secondary light source.
  • the numerical aperture (equal to NA ′) when each of the plurality of lights enters the second optical system 22 is smaller than the numerical aperture NA. Therefore, the configuration of the second optical system 22 can be simplified.
  • the second optical system 22 is formed of a bilateral telecentric optical system. Accordingly, the plurality of light beams (principal rays Pr) incident perpendicularly to the second optical system 22 are emitted vertically from the second optical system 22 (surface of the convex lens 22b) in a state where the distance between them is narrowed.
  • a fiber bundle 10 of pitch P out is 120 ⁇ m between the plurality of single-core fiber 100 will be described a case where the pitch P in between the core C k are attached to the multi-core fiber 1 of 40 [mu] m.
  • the corresponding light (principal ray Pr) can be vertically incident on the plurality of cores C k of the multi-core fiber 1.
  • the pitch P in and the pitch P out can be arbitrarily set when the multi-core fiber 1 and the fiber bundle 10 are optically designed.
  • the pitch P out can be set between about 100 to 150 ⁇ m.
  • the pitch P in for example, can be arbitrarily set between about 30 ⁇ 50 [mu] m.
  • the target for emitting the light is not limited thereto.
  • a plurality of light sources can be used instead of the fiber bundle 10.
  • the light source is an example of an “incident side element”.
  • the above-mentioned “P out ” is the pitch between adjacent light sources (for example, the distance between the center of the exit surface of the light source disposed at the center and the center of the exit surface of the light source disposed around the center).
  • the multi-core fiber 1 is an example of an “incident side element”.
  • the fiber bundle 10 or the light receiving element is an example of the “outgoing side element”.
  • the second optical system 22 in this modification has a function of widening the interval between a plurality of lights emitted from the multicore fiber 1.
  • the surface of the convex lens 22b on which the light from the multicore fiber 1 is incident is an example of an “incident surface”.
  • the first optical system 21 in this modification has a function of converging each of the plurality of lights from the second optical system 22. Each converged light (principal ray Pr) is perpendicularly incident on the end face Ca of the corresponding core C.
  • the surface of the first optical system 21 (convex lens 21a) from which the light from the second optical system 22 is emitted is an example of an “emission surface”.
  • the end surface Ca is an example of a “light receiving surface”.
  • [Theta] in this modification is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light flux) emitted from the first optical system 21 enters the fiber bundle 10 (each single core fiber 100).
  • ⁇ ′ is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light beam) emitted from the second optical system 22 reaches the imaging point IP.
  • ⁇ ′′ is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light beam) emitted from the multicore fiber 1 enters the second optical system 22.
  • the above “P out ” is arranged at the pitch between adjacent light receiving elements (for example, the center of the light receiving surface of the light receiving element arranged at the center and the periphery thereof). Distance from the center of the light receiving surface of the light receiving element.
  • the coupling optical system 20 includes an optical element including any one of a plurality of light sources, a plurality of light receiving elements, and a fiber bundle 10 in which a plurality of single core fibers 100 are bundled, and a plurality of cores C k are clad 2.
  • the optical element and the multi-core fiber 1 are optically coupled to each other.
  • the coupling optical system 20 includes a numerical aperture of each of a plurality of lights incident from an incident side element composed of one of the optical element and the multi-core fiber 1, and a numerical aperture of each of the plurality of lights emitted toward an output side element composed of the other. Are designed to be equal.
  • the coupling optical system 20 includes a first optical system 21 and a second optical system 22.
  • the first optical system 21 converges each of the plurality of lights.
  • the second optical system 22 changes (narrows / expands) the interval between the plurality of lights.
  • the coupling efficiency is obtained by combining the first optical system 21 and the second optical system 22 so that the numerical aperture of the light incident on the coupling optical system 20 and the numerical aperture of the light emitted from the coupling optical system 20 do not change.
  • Light can be transmitted without dropping light. That is, according to the coupling optical system 20 in the present embodiment, the optical element and the multicore fiber 1 can be optically coupled while suppressing a decrease in coupling efficiency.
  • the first optical system 21 is arranged closer to the optical element than the second optical system 22.
  • the numerical aperture NA ′ of light incident on the second optical system 22 from the first optical system 21 (or the aperture of light incident on the first optical system 21 from the second optical system 22).
  • the number NA ′) can be kept small, so that the configuration of the optical system can be simplified.
  • the first optical system 21 has a configuration in which a plurality of lenses 21a are arranged in an array.
  • the first optical system 21 can be designed with a simple configuration using a single lens of the same shape.
  • the pitch Pm between the plurality of lenses 21a are between the plurality of light sources pitch, the pitch P out between pitch and a plurality of single-core fiber 100 between the plurality of light receiving elements Designed to be equal to either.
  • each of the light (principal ray Pr) from the plurality of single core fibers 100 can be perpendicularly incident on the surface of the corresponding plurality of lenses 21a (that is, the light beam from the single core fiber 100 is axially coupled). Can be treated as the upper luminous flux).
  • each of the plurality of lights (principal rays Pr) emitted from the plurality of lenses 21a can be perpendicularly incident on the end surfaces Ca of the plurality of single core fibers 100 and the surfaces of the plurality of light receiving elements. Accordingly, it is possible to suppress a decrease in coupling efficiency.
  • the second optical system 22 is a double-sided telecentric optical system.
  • magnification ⁇ r of the second optical system 22 is any of the pitch between the plurality of light sources, the pitch between the plurality of light receiving elements, and the pitch P out between the plurality of single core fibers 100, and the multicore fiber 1. It is designed to be equal to the ratio of the pitch P in between the cores C k of the two.
  • each of the plurality of lights (principal rays Pr) from the coupling optical system 20 may be perpendicularly incident on the core C k (or the corresponding plurality of light receiving elements, the fiber bundle 10) of the corresponding multicore fiber 1. It becomes possible. Accordingly, it is possible to suppress a decrease in coupling efficiency.
  • FIG. 3 is a sectional view in the axial direction of the coupling optical system 30, the fiber bundle 10, and the multicore fiber 1. A detailed description of the configuration similar to that of the first embodiment, such as the configuration of the fiber bundle 10, may be omitted.
  • the coupling optical system 30 includes a collimating optical system 31, a deflection optical system 32, and an imaging optical system 33.
  • the collimating optical system 31 has a function of collimating each of a plurality of lights from the fiber bundle 10.
  • the collimating optical system 31 includes a plurality of collimating lenses 31a arranged in an array.
  • the plurality of collimating lenses 31 a are provided in the same number as the single core fibers 100 included in the fiber bundle 10.
  • the collimating optical system 31 (collimating lens 31a) is disposed at a position where light (principal ray Pr) emitted from each end face Ca enters perpendicularly to the surface of the corresponding collimating lens 31a. In this case, the end face Ca functions as a diaphragm).
  • the plurality of collimating lenses 31a has a pitch P cl (the distance between the optical axes of adjacent collimating lenses 31a.
  • P cl the distance between the optical axes of adjacent collimating lenses 31a.
  • the lens center of the collimating lens 31a disposed at the center and the lens center of the collimating lens 31a disposed at the periphery thereof. Is arranged to be equal to the pitch P out between the plurality of single core fibers 100 (the distance between the optical axes of adjacent single core fibers 100).
  • the collimating optical system 31 is arranged on the fiber bundle 10 side with respect to the deflection optical system 32.
  • the surface of the collimating lens 31a on which the light from the fiber bundle 10 is incident is an example of an “incident surface”.
  • the deflection optical system 32 has a function of individually deflecting a plurality of incident light (in this embodiment, light from the fiber bundle 10).
  • the deflection optical system 32 in this embodiment includes a first deflection prism 32a and a second deflection prism 32b.
  • the first deflection prism 32a in the present embodiment is an example of a “first deflection optical system”.
  • the second deflection prism 32b in the present embodiment is an example of a “second deflection optical system”.
  • the first deflection prism 32a in this embodiment has a function of deflecting each of a plurality of lights collimated by the collimating optical system 31 (collimating lens 31a) in a predetermined direction while being collimated. As shown in FIG. 3, the first deflection prism 32a is designed so that light passing through the center thereof is not deflected. The first deflection prism 32a has an incident surface 321a and an exit surface 322a corresponding to the number of incident light. The first deflecting prism 32a in the present embodiment is designed such that each of the plurality of lights (principal rays Pr) from the collimating optical system 31 is incident on the corresponding incident surface 321a perpendicularly.
  • the incident surface 321a is a flat surface.
  • the emission surface 322a is formed as a convex surface corresponding to the number of light beams.
  • the emission surface 322a is designed to be inclined by a predetermined angle ⁇ .
  • FIG. 4A is an enlarged view of a part of the cross section of the first deflection prism 32a.
  • the incident angle of light incident on the exit surface 322a of the first deflecting prism 32a (only the principal ray Pr is shown in the figure) is ⁇ in , and the light deflected by the first deflecting prism 32a and emitted (the principal ray Pr is shown in the figure).
  • emission angle gamma out only shown) a pitch between the plurality of single-core fiber 100 P out, the pitch between the cores C k of the multicore fiber 1 P in, the first deflecting prism 32a and the second deflecting prism 32b Let the interval be t.
  • the incident angle ⁇ in is equal to the tilt angle ⁇ .
  • the emission angle ⁇ out is determined by the following equation (4).
  • the incident angle ⁇ in satisfies the relationship of the following equation (5).
  • the emission angle ⁇ out is about 14.9 °.
  • the first deflecting prism 32a is formed of a material having a base material refractive index of 1.6 with respect to the emission angle ⁇ out , the incident angle ⁇ in is about 9.25 °. Therefore, the emission surface 322a of the first deflecting prism 32a can be designed so that the inclination angle ⁇ is about 9.25 °.
  • the incident surface 321a may be a convex surface.
  • the inclination angle ⁇ ′ is determined as follows, for example.
  • FIG. 4B is an enlarged view of a part of the cross section of the first deflecting prism 32a.
  • the incident angle of light incident on the incident surface 321a of the first deflecting prism 32a is ⁇ ′ in
  • the deflection angle of the incident light is ⁇ ′ 1
  • the perpendicular to the incident surface 321a The angle of the incident light is ⁇ ′ 2
  • the emission angle of the light that is deflected and emitted by the first deflecting prism 32 a is ⁇ ′ out
  • the pitch between the single core fibers 100 is P out
  • the pitch between the cores C k of the multi-core fiber 1 is P in
  • the interval between the first deflection prism 32a and the second deflection prism 32b is t.
  • the incident angle ⁇ ′ in is equal to the inclination angle ⁇ ′.
  • the emission angle ⁇ out is determined by the above equation (4).
  • the incident angle ⁇ ′ in , the deflection angle ⁇ ′ 1 , and the angle ⁇ ′ 2 have the relationship of the following formula (6).
  • the incident angle ⁇ ′ in and the angle ⁇ ′ 2 have the relationship of the following expression (8) according to Snell's law.
  • N′sin [ ⁇ ′ in ] N′sin [ ⁇ ′ 2 ] (8)
  • the emission angle ⁇ out is about 14.9 °.
  • the incident angle ⁇ in is about 24 °. Therefore, the incident surface 321a of the first deflection prism 32a can be designed so that the inclination angle ⁇ ′ is about 24 °.
  • the second deflection prism 32b in the present embodiment has a function of further deflecting each light deflected by the first deflection prism 32a.
  • each of the plurality of lights (principal rays Pr) from the second deflecting prism 32 b is deflected in a direction perpendicularly incident on the imaging optical system 33. Even when the light is deflected by the second deflecting prism 32b, the state in which each of the plurality of lights is collimated does not change.
  • the second deflection prism 32b is designed so that light passing through the center thereof is not deflected.
  • the second deflection prism 32b has an incident surface 321b and an exit surface 322b corresponding to the number of incident light.
  • the incident surface 321b is formed as a concave surface corresponding to the number of light beams.
  • the emission surface 322b is formed in a plane. Further, the emission surface 322b can be a concave surface.
  • the inclination angle of the concave surface of the second deflection prism 32b can be obtained by a method similar to the method for obtaining the inclination angle of the first deflection prism 32a described above.
  • the first deflecting prism 32a and the second deflecting prism 32b are separately configured.
  • the deflecting optical system 32 may be composed of one deflecting prism 32 ′.
  • An example is shown in FIG. FIG. 5 is a side view of the deflection prism 32 ′.
  • the deflecting prism 32 ′ is formed with an incident surface 32 ′ a on which light from the collimating optical system 31 is incident and an output surface 32 ′ b that emits light to the imaging optical system 33.
  • the incident surface 32′a is formed, for example, in the same manner as the emission surface 322a of the first deflection prism 32a described above.
  • the exit surface 32'b is formed, for example, in the same manner as the entrance surface 321b of the second deflection prism 32b described above.
  • the deflection optical system 32 has a predetermined degree of deflection R.
  • the degree of deflection R is the amount of change in the angle of the principal ray Pr incident on the deflection optical system 32 and the angle of the principal ray Pr emitted from the deflection optical system 32.
  • the degree of deflection can also be expressed by the ratio of the light flux height of light incident on the deflection optical system 32 (the distance from the central light flux to another light flux) and the light flux height of light emitted from the deflection optical system 32.
  • the degree of deflection R depends on the angle of the principal ray Pr incident on the first deflection prism 32a and the principal ray Pr emitted from the second deflection prism 32b. The amount of change in the angle. In this case, it can be said that the degree of deflection R is a combination of the degree of deflection R1 of the first deflection prism 32a and the degree of deflection R2 of the second deflection prism 32b.
  • the degree of deflection R1 of the first deflection prism 32a is designed to be equal to the degree of deflection R2 of the second deflection prism 32b.
  • the degree of deflection R (R1 + R2) is designed to be equal to the ratio of the pitch P out between the plurality of single core fibers 100 and the pitch P in between the cores C k of the multi-core fiber 1. Yes.
  • the imaging optical system 33 has a function of imaging each of a plurality of lights (light beams) deflected by the deflection optical system 32 on each core C k of the multi-core fiber 1.
  • the imaging optical system 33 includes a plurality of imaging optical lenses 33a arranged in an array.
  • the plurality of imaging optical lenses 33a are provided in the same number as each core C k of the multi-core fiber 1.
  • An imaging optical system 33 (the imaging optical lens 33a), the light emitted from the deflecting optical system 32 (main beam Pr) is disposed in a position that is incident perpendicularly to the end face E k of each core C k corresponding Has been.
  • the plurality of image forming optical lenses 33a are arranged at the pitch P im (the distance between the optical axes of adjacent image forming optical lenses 33a.
  • the center of the image forming optical lens 33a disposed at the center and the periphery thereof. distance between the lens center of the image-forming optical lens 33a) is arranged to be equal to the pitch P in between the core C k.
  • NA'', the light (light beam) emitted from the imaging optical system 33 is an angle principal ray Pr and marginal rays Mr forms as they enter the multi-core fiber 1 (end surface E k of each core C k).
  • the surface of the imaging optical lens 33a from which the light from the deflection optical system 32 is emitted is an example of an “emission surface”.
  • the end surface E k is an example of a “light receiving surface”.
  • the coupling optical system 30 is designed so that the numerical aperture NA and the numerical aperture NA ′′ are equal.
  • the focal length f cl of the collimating optical system 31 (collimating lens 31a) and the imaging optical system 33 (imaging optical lens 33a) are set.
  • the coupling optical system 30 is designed so that the focal length f im becomes equal.
  • the relationship between the focal length f cl and the focal length f im is not necessarily equal due to tolerances of optical elements used and variations in design. Any value that can secure at least the coupling efficiency necessary for optical transmission, for example, a value that satisfies the following equation (9) may be used.
  • the fiber bundle 10 in the present embodiment is an example of an “incident side element”.
  • the multi-core fiber 1 in the present embodiment is an example of an “emission side element”.
  • each end face Ca is emitted from the end face Ca of the core C provided in each of the plurality of single core fibers 100.
  • Light emitted from each end face Ca enters the collimating optical system 31 (collimating lens 31a) with a predetermined numerical aperture NA while being diffused.
  • each light (principal ray Pr) emitted from the end face Ca is incident perpendicularly to the collimating optical system 31 (the surface of the collimating lens 31a).
  • Each of the plurality of lights incident on the collimating optical system 31 is collimated and enters the first deflecting prism 32a.
  • the first deflection prism 32a individually deflects each of the plurality of lights with a predetermined degree of deflection R1.
  • Each deflected light is incident on the second deflecting prism 32b.
  • the second deflection prism 32b individually deflects a plurality of lights with a predetermined degree of deflection R2. Each light deflected by the second deflection prism 32 b enters the imaging optical system 33. Each light incident on the imaging optical system 33 is incident on the core C k of the corresponding multi-core fiber 1.
  • a fiber bundle 10 of pitch P out is 120 ⁇ m between the plurality of single-core fiber 100 will be described a case where the pitch P in between the core C k are attached to the multi-core fiber 1 of 40 [mu] m.
  • the pitch P cl is 120 ⁇ m and the pitch P im is 40 ⁇ m.
  • the pitch P in and the pitch P out can be arbitrarily set when the multi-core fiber 1 or the fiber bundle 10 is optically designed.
  • the pitch P out can be set between about 100 to 150 ⁇ m.
  • the pitch P in for example, can be arbitrarily set between about 30 ⁇ 50 [mu] m.
  • the target for emitting the light is not limited thereto.
  • a plurality of light sources can be used instead of the fiber bundle 10.
  • the light source is an example of an “incident side element”.
  • the above-mentioned “P out ” is a pitch between adjacent light sources.
  • the multi-core fiber 1 is an example of an “incident side element”.
  • the fiber bundle 10 or the light receiving element is an example of the “outgoing side element”.
  • the imaging optical system 33 in this modification has a function of collimating each of a plurality of lights emitted from the multicore fiber 1. That is, in the present modification, the imaging optical system 33 corresponds to the “collimating optical system”. In the present modification, the surface of the imaging optical lens 33a on which the light from the multicore fiber 1 is incident is an example of an “incident surface”. In addition, the pitch between the imaging optical lenses 33 a in this modification is equal to the pitch between the cores C k of the multicore fiber 1.
  • the deflection optical system 32 in this modification has a function of deflecting each of a plurality of lights from the imaging optical system 33.
  • Each deflected light (principal ray Pr) enters the collimating optical system 31 perpendicularly.
  • the collimating optical system 31 in this modification has a function of imaging each of a plurality of lights emitted from the deflection optical system 32 on the core C of the corresponding single core fiber 100. That is, in this modification, the collimating optical system 31 corresponds to the “imaging optical system”.
  • the surface of the collimating optical system 31 (collimating lens 31a) from which the light from the deflection optical system 32 is emitted is an example of an “exiting surface”.
  • the end surface Ca is an example of a “light receiving surface”.
  • the pitch between the collimating lenses 31 a is equal to the pitch between the cores C of the single core fiber 100.
  • the first deflection prism 32a is the “second deflection optical system”.
  • the second deflection prism 32b is an example of the “first deflection optical system”.
  • ⁇ in this modification is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light flux) emitted from the collimating optical system 31 enters the fiber bundle 10 (each single core fiber 100).
  • ⁇ ′′ is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light beam) emitted from the multicore fiber 1 enters the imaging optical system 33.
  • the degree of deflection R in the present modification is equal to the ratio between the pitch between the plurality of light receiving elements and the pitch between the cores C k of the multicore fiber 1.
  • the pitch between the collimating lenses 31a is equal to the pitch between the light receiving elements.
  • the coupling optical system 30 includes a deflection optical system 32 that individually deflects a plurality of incident light.
  • the deflection optical system 32 is used as the coupling optical system 30, light can be transmitted without reducing the coupling efficiency. That is, according to the coupling optical system 30 in the present embodiment, the optical element and the multicore fiber 1 can be optically coupled while suppressing a decrease in coupling efficiency.
  • the coupling optical system 30 includes a collimating optical system 31.
  • the collimating optical system 31 collimates light from any of the incident side elements.
  • the deflecting optical system 32 deflects the light collimated by the collimating optical system 31.
  • the collimating optical system 31 has a configuration in which a plurality of collimating lenses 31a are arranged in an array.
  • the collimating optical system 31 can be designed with a simple configuration using a single lens of the same shape.
  • the pitch P cl between the plurality of collimating lenses 31a is equal to any of the pitch between the plurality of light sources, the pitch P out between the plurality of single core fibers, and the pitch P in between the cores of the multicore fibers. Designed to be
  • each of the light (principal ray Pr) from the plurality of single core fibers 100 can be perpendicularly incident on the surface of the collimating lens 31a (that is, the light flux from the single core fiber 100 is treated as an axial light flux. be able to).
  • each of the plurality of lights (principal rays Pr) emitted from the collimator lens 31a can be perpendicularly incident on the end surfaces Ca of the plurality of single core fibers 100 and the surfaces of the plurality of light receiving elements. Accordingly, it is possible to suppress a decrease in coupling efficiency.
  • the deflection optical system 32 includes a first deflection optical system (first deflection prism 32a) and a second deflection optical system (second deflection prism 32b).
  • the first deflection optical system deflects a plurality of incident light.
  • the second deflection optical system further deflects the plurality of lights deflected by the first deflection optical system.
  • the optical element and the multicore fiber 1 can be optically coupled while suppressing a decrease in coupling efficiency.
  • one side is formed in a convex shape and the other side is formed in a concave shape.
  • the deflection optical system 32 according to the present embodiment is designed so that the degree of deflection R1 of the first deflection optical system is equal to the degree of deflection R2 of the second deflection optical system.
  • the deflection degree R of the deflection optical system 32 is any of the pitch between the plurality of light sources, the pitch between the plurality of light receiving elements, and the pitch P out between the plurality of single core fibers, and the multicore fiber 1. It is designed to be equal to the ratio between the pitch P in between the core C k.
  • each of the light (principal ray Pr) incident from the incident side element can be made to enter perpendicularly to the surface of the emission side element. That is, it is possible to suppress a decrease in coupling efficiency.
  • the coupling optical system 30 includes an imaging optical system 33 (imaging optical lens 33a).
  • the imaging optical system 33 forms an image of the light deflected by the deflection optical system 32 on one of the emission side elements.
  • the imaging optical lens 33a has a configuration in which a plurality of lenses are arranged in an array.
  • the pitch P im between the imaging optical lenses 33a is the pitch P out between the plurality of single core fibers 100, the pitch between the light receiving elements, and the pitch P in between the cores C k of the multi-core fiber 1. Designed to be equal to either.
  • each of the lights (principal rays Pr) emitted from the imaging optical system 33 can be made to enter perpendicularly to the surface of the emission side element. That is, it is possible to suppress a decrease in coupling efficiency.
  • the focal length f cl of the collimating lens 31a is designed to be equal to the focal length f im of the imaging optical lens 33a.
  • the numerical aperture of the light incident on the coupling optical system 30 and the numerical aperture of the light emitted from the coupling optical system 30 can be kept unchanged, so that light can be transmitted without reducing the coupling efficiency. I can do it. That is, according to the coupling optical system 30 in the present embodiment, the optical element and the multicore fiber 1 can be optically coupled while suppressing a decrease in coupling efficiency.
  • FIG. 6 is a cross-sectional view in the axial direction of the coupling optical system 30 ′, the fiber bundle 10, and the multicore fiber 1. Note that detailed description of the configuration of the fiber bundle 10 and the like similar to those of the first and second embodiments may be omitted.
  • the coupling optical system 30 ′ includes a collimating optical system 31, a deflection optical system 34, and an imaging optical system 33.
  • the collimating optical system 31 and the imaging optical system 33 have the same configuration as in the second embodiment.
  • the deflection optical system 34 in the present embodiment includes a first diffractive optical system 34a and a second diffractive optical system 34b.
  • the first diffractive optical system 34a in the present embodiment is an example of a “first deflection optical system”.
  • the second diffractive optical system 34b in the present embodiment is an example of a “second deflecting optical system”.
  • the first diffractive optical system 34a in this embodiment has a function of deflecting each of a plurality of lights collimated by the collimating optical system 31 (collimating lens 31a) in a predetermined direction by diffraction while being collimated. As shown in FIG. 6, the first diffractive optical system 34a is designed so that light passing through the center thereof is not deflected.
  • the first diffractive optical system 34a has an incident surface 341a and exit surfaces 342a and 343a corresponding to the number of incident light.
  • the first diffractive optical system 34a in the present embodiment is designed such that each of a plurality of lights (principal rays Pr) from the collimating optical system 31 is incident perpendicularly to the corresponding incident surface 341a.
  • the incident surface 341a is formed in a flat surface. Light from the collimating optical system 31 is incident on the incident surface 341a.
  • the exit surface 342a is formed as a diffraction grating composed of a sawtooth projection. On the other hand, no diffraction grating is formed on the exit surface 343a. Therefore, the light passing through the emission surface 343a is not deflected by diffraction.
  • FIG. 7 is a view of the emission surface 342a and the emission surface 343a as seen from the direction of arrow A in FIG.
  • the emission surface 342a and the emission surface 343a in this embodiment have seven surfaces F k (F 1 to F 7 ) for emitting light from the seven single core fibers 100, respectively.
  • the surface F 1 (the emission surface 343a) transmits the light from the single core fiber 100 without being deflected.
  • Diffraction gratings are formed on the surfaces F 2 to F 7 (outgoing surface 342a) with a pitch d (interval between projections). In this embodiment, the pitches d of the diffraction gratings are all equal.
  • This pitch d is determined as follows, for example.
  • the incident angle of light incident on the exit surface 342a is ⁇ in
  • the exit angle of light deflected by the exit surface 342a is ⁇ out
  • the base material refractive index of the first diffractive optical system 34a is N
  • the exit side The refractive index of the medium is N ′
  • the diffraction order is m
  • the wavelength of incident light is ⁇ .
  • the pitch d is determined by the following equation (10).
  • the light enters perpendicularly to the emission surface 342 a.
  • the second diffractive optical system 34b in the present embodiment has a function of further deflecting each light deflected by the first diffractive optical system 34a.
  • each of the plurality of lights (principal rays Pr) from the second diffractive optical system 34 b is deflected in a direction perpendicularly incident on the imaging optical system 33. Even when the light is deflected by the second diffractive optical system 34b, the state in which each of the plurality of lights is collimated does not change.
  • the second diffractive optical system 34b is designed so that light passing through the center thereof is not deflected.
  • the second diffractive optical system 34b has incident surfaces 341b and 342b and an emission surface 343b corresponding to the number of incident light.
  • the incident surface 341b is formed as a diffraction grating composed of a sawtooth projection. On the other hand, no diffraction grating is formed on the incident surface 342b. Therefore, the light passing through the incident surface 342b is not deflected by diffraction. Light from the first diffractive optical system 34a is incident on the incident surfaces 341b and 342b.
  • the emission surface 343b is formed in a plane.
  • Each of the plurality of lights (principal rays Pr) emitted from the emission surface 343b is perpendicularly incident on the imaging optical system 33 (imaging optical lens 33a).
  • the pitch in the second diffractive optical system 34b can be obtained by a method similar to the method for obtaining the pitch d in the first diffractive optical system 34a.
  • the fiber bundle 10 in the present embodiment is an example of an “incident side element”.
  • the multi-core fiber 1 in the present embodiment is an example of an “emission side element”.
  • each end face Ca is emitted from the end face Ca of the core C provided in each of the plurality of single core fibers 100.
  • Light emitted from each end face Ca enters the collimating optical system 31 (collimating lens 31a) with a predetermined numerical aperture NA while being diffused.
  • each light (principal ray Pr) emitted from the end face Ca is incident perpendicularly to the collimating optical system 31 (the surface of the collimating lens 31a).
  • Each of the plurality of lights incident on the collimating optical system 31 is collimated and enters the first diffractive optical system 34a.
  • the first diffractive optical system 34a individually deflects a plurality of incident light beams by a diffraction grating. Each deflected light enters the second diffractive optical system 34b.
  • the second diffractive optical system 34b deflects a plurality of incident light individually. Each light deflected by the second diffractive optical system 34 b enters the imaging optical system 33. Each light incident on the imaging optical system 33 is incident on the core C k of the corresponding multi-core fiber 1.
  • the target for emitting the light is not limited thereto.
  • a plurality of light sources can be used instead of the fiber bundle 10.
  • the light source is an example of an “incident side element”.
  • the above-mentioned “P out ” is a pitch between adjacent light sources.
  • the multi-core fiber 1 is an example of an “incident side element”.
  • the fiber bundle 10 or the light receiving element is an example of the “outgoing side element”.
  • the imaging optical system 33 in this modification has a function of collimating each of a plurality of lights emitted from the multicore fiber 1. That is, in the present modification, the imaging optical system 33 corresponds to the “collimating optical system”. In the present modification, the surface of the imaging optical lens 33a on which the light from the multicore fiber 1 is incident is an example of an “incident surface”. In addition, the pitch between the imaging optical lenses 33 a in this modification is equal to the pitch between the cores C k of the multicore fiber 1.
  • the deflection optical system 34 in this modification has a function of deflecting each of a plurality of lights from the imaging optical system 33 by a diffraction grating.
  • Each deflected light (principal ray Pr) enters the collimating optical system 31 perpendicularly.
  • the collimating optical system 31 in the present modification has a function of imaging each of a plurality of lights emitted from the deflection optical system 34 on the core C of the corresponding single core fiber 100. That is, in this modification, the collimating optical system 31 corresponds to the “imaging optical system”.
  • the surface of the collimating optical system 31 (collimating lens 31a) from which the light from the deflection optical system 34 is emitted is an example of an “exiting surface”.
  • the end surface Ca is an example of a “light receiving surface”.
  • the pitch between the collimating lenses 31 a is equal to the pitch between the cores C of the single core fiber 100.
  • first diffractive optical system 34a and second diffractive optical system 34b are used as the deflecting optical system 34 as in the embodiment
  • the first diffractive optical system 34a is “second deflecting optical system 34a”.
  • the second diffractive optical system 34b is an example of a “first deflecting optical system”.
  • ⁇ in this modification is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light flux) emitted from the collimating optical system 31 enters the fiber bundle 10 (each single core fiber 100).
  • ⁇ ′′ is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light beam) emitted from the multicore fiber 1 enters the imaging optical system 33.
  • the degree of deflection R in the present modification is equal to the ratio between the pitch between the plurality of light receiving elements and the pitch between the cores C k of the multicore fiber 1.
  • the pitch between the collimating lenses 31a is equal to the pitch between the light receiving elements.
  • the first deflecting optical system (first diffractive optical system 34a) and the second deflecting optical system (second diffractive optical system 34b) according to this embodiment are formed as diffraction gratings on at least a part of each one surface.
  • the diffractive optical system (the first diffractive optical system 34a and the second diffractive optical system 34b) is used as the deflection optical system, light can be transmitted without reducing the coupling efficiency. That is, according to the coupling optical system 30 ′ in this embodiment, the optical element and the multicore fiber 1 can be optically coupled while suppressing a decrease in coupling efficiency.
  • the optical system may be performed setting the degree of deflection depending on the position of the core C k.
  • deflecting prism 32a, 32b or the incident surface of 32 ' the angle of the exit surface, at each side, the same method as described in the second embodiment, To set the degree of deflection.
  • the pitch d of the diffraction gratings on the surfaces F k of the first diffractive optical system 34a and the second diffractive optical system 34b may be changed according to the position of the core C k .
  • FIG. 8 is a conceptual diagram showing an axial cross section of the coupling member 20, the fiber bundle 10, and the multicore fiber 1.
  • the coupling member 20 according to this modification has one end in contact with the fiber bundle 10 and the other end in contact with the multicore fiber 1.
  • the coupling member 20 is filled with a predetermined medium.
  • the predetermined medium is a medium other than air, and for example, quartz glass or BK7 is used.
  • the coupling member 20 and the fiber bundle 10 (multi-core fiber 1) are fixed to each other at their opposite end surfaces with an adhesive or the like.
  • the adhesive has a refractive index comparable to that of the core C (core Ca).
  • the coupling member 20 changes the mode field diameter of each light from each optical path (single core fiber 100) of the fiber bundle 10 and changes the interval of the light whose mode field diameter has been changed. Lead to each core (core C k ).
  • the mode field diameter refers to the diameter of light actually emitted from a certain target. For example, light passing through the core C of the single core fiber 100 slightly leaks to the cladding 101 side around the core C. Therefore, the light emitted from the single core fiber 100 is emitted not only from the core C but also from the cladding 101 around the core C. That is, the diameter of light emitted from the single core fiber 100 is larger than the diameter of the core C. This “diameter of light emitted from the single core fiber 100” is an example of a mode field diameter.
  • the coupling member 20 in the present modification includes a first optical system 21 and a second optical system 22.
  • the first optical system 21 changes the mode field diameter of each light incident from the single core fiber 100 and causes the light to enter the second optical system 22.
  • the second optical system 22 changes the interval of light incident from the first optical system 21 to match the interval of the cores C k of the multicore fiber 1.
  • the refractive index of the medium A2 constituting the lens portion of the first optical system 21 and the second optical system 22 is different from that of the medium A1 constituting the other portion.
  • the medium A1 is an example of a “first medium”.
  • the medium A2 is an example of a “second medium”.
  • the first optical system 21 and the second optical system 22 in this modification are integrally formed via the medium A1 (the first optical system 21 and the second optical system 22 are formed continuously). ).
  • Refractive index of the medium A1 is desirably equal material and the refractive index of the core C k of the refractive index or the multi-core fiber of the core C of single-core fiber 100.
  • the core C k of the multi-core fiber 1 is formed of a material in which germanium oxide (GeO 2 ) is added to quartz glass
  • germanium oxide GeO 2
  • the same material in which germanium oxide is added to quartz glass is used as the medium A1 (
  • another material having the same refractive index as the core C k may be used.
  • the first optical system 21 in this modification is an expansion optical system that expands the mode field diameter of each light from each single core fiber 100 of the fiber bundle 10.
  • the first optical system 21 includes a plurality of convex lens portions 21a arranged in an array.
  • the plurality of convex lens portions 21a are made of the medium A2, and are arranged in the medium A1. Since it is necessary to change the mode field diameter of each light from the fiber bundle 10, the plurality of convex lens portions 21 a is provided in the same number as the single core fibers 100 included in the fiber bundle 10.
  • the first optical system 21 (convex lens portion 21a) is disposed at a position where each principal ray Pr of light emitted from each end face Ca of the fiber bundle 10 enters perpendicularly to the surface of the corresponding convex lens portion 21a.
  • the convex lens portion 21a is disposed on the same optical axis as each core C).
  • the convex lens portion 21a has a diameter larger than the mode field diameter of the core C, and condenses light from the core C.
  • the plurality of convex lens portions 21a in this modification is an example of “a plurality of lenses”.
  • the second optical system 22 in this modification example is a reduction that leads to the cores C 1 to C 7 of the multi-core fiber 1 by narrowing the interval of the light from the first optical system 21 (a plurality of lights having an enlarged mode field diameter). It is an optical system.
  • the second optical system 22 is configured by a double-sided telecentric optical system including two convex lens portions (a convex lens portion 22a and a convex lens portion 22b). Convex lens part 22a and convex lens part 22b consist of medium A2, and are arranged in medium A1. The reason why only one set of the convex lens portion 22a and the convex lens portion 22b is provided is to change the interval of light from the plurality of convex lens portions 21a.
  • the second optical system 22 is disposed at a position where each principal ray Pr of the light from the first optical system 21 is perpendicularly incident on the end face E k of each core C k of the corresponding multi-core fiber 1.
  • each light emitted from each end face Ca enters the convex lens portion 21a with a predetermined mode field diameter while diffusing in the medium A1.
  • the principal ray Pr of each light emitted from the end face Ca is incident perpendicularly to the convex lens portion 21a.
  • Each light transmitted through the convex lens portion 21a forms an image at the image point IP with the mode field diameter being enlarged.
  • Each light transmitted through the convex lens portion 21a enters the convex lens portion 22a while diffusing in the medium A1 with the imaging point IP as a secondary light source.
  • the convex lens portion 22a and the convex lens portion 22b are formed as a both-side telecentric optical system. Accordingly, each of the principal rays Pr of light incident perpendicularly to the convex lens portion 22a passes through the medium A1 in a collimated state and enters the convex lens portion 22b. Each principal ray Pr of the light is emitted perpendicularly from the convex lens portion 22b in a state where the distance therebetween is narrowed, incident perpendicularly to the plurality of cores C k of the multi-core fiber 1 passes through the medium A1.
  • first optical system 21 and the second optical system 22 can be formed separately and combined to form the coupling member 20.
  • first optical system 21 and the second optical system 22 are respectively made of the medium A1 and the medium A2. Then, the end face of the first optical system 21 and the end face of the second optical system 22 are fixed with an adhesive, thereby forming an integral coupling member 20.
  • the adhesive has a refractive index comparable to that of the medium A1.
  • FIG. 9 is a conceptual diagram illustrating a cross section in the axial direction of the coupling member 20, the fiber bundle 10, and the multicore fiber 1.
  • a GRIN lens is used as the first optical system 21 and the second optical system 22 constituting the coupling member 20 shown in Modification 2 common to the first to third embodiments.
  • the coupling member 20 in this modification has a GRIN lens.
  • the GRIN lens is a refractive index distribution type lens that collects light by adjusting the refractive index distribution in the lens by bending the medium that constitutes the lens, and bending the diffused light.
  • the refractive index distribution can be adjusted by the ion exchange processing method.
  • a SELFOC lens (“SELFOC” is a registered trademark) can be used as the GRIN lens.
  • the first optical system 21 has a GRIN lens SL1.
  • the GRIN lens SL1 is formed of a medium whose refractive index is adjusted so as to change the mode field diameter of light from the fiber bundle 10 (single core fiber 100).
  • a plurality of GRIN lenses SL1 are provided corresponding to the number of single core fibers 100 forming the fiber bundle 10.
  • the GRIN lens SL1 is an example of a “first GRIN lens”.
  • each of the plurality of GRIN lenses SL1 in this modification includes a first optical member SL1a and a second optical member SL1b.
  • the first optical member SL1a is in contact with the fiber bundle 10 at one end, and the refractive index distribution is adjusted so as to collimate light that is incident from the single core fiber 100 and diffuses.
  • One end of the second optical member SL1b is in contact with the other end of the first optical member SL1a, and the refractive index distribution is adjusted so that the light collimated by the first optical member SL1a is converged.
  • the mode field diameter of the light (light at the imaging point IP) converged by the second optical member SL1b is larger than the mode field diameter of the light from the single core fiber 100.
  • the first optical member SL1a and the second optical member SL1b constitute an integral GRIN lens SL1 by being fixed by an adhesive or the like.
  • the adhesive has a refractive index comparable to that of the medium.
  • the second optical system 22 has a GRIN lens SL2.
  • the GRIN lens SL2 is formed of a medium whose refractive index is adjusted so as to change the interval of light whose mode field diameter has been changed. In this modification, only one GRIN lens SL2 is provided so that light from the plurality of GRIN lenses SL1 enters.
  • the GRIN lens SL2 is an example of a “second GRIN lens”.
  • the GRIN lens SL2 in the present modification includes a third optical member SL2a and a fourth optical member SL2b.
  • the third optical member SL2a has one end in contact with the other end of the second optical member SL1b, and the refractive index distribution is adjusted so as to collimate each light from the plurality of second optical members SL1b.
  • the fourth optical member SL2b has one end in contact with the other end of the third optical member SL2a and the other end in contact with the multi-core fiber 1.
  • the refractive index distribution of the fourth optical member SL2b is adjusted so as to converge the light from the third optical member SL2a.
  • the third optical member SL2a and the fourth optical member SL2b constitute an integral GRIN lens SL2 by being fixed by an adhesive or the like. Then, the second optical member SL1b and the third optical member SL2a are fixed with an adhesive or the like, so that the coupling member 20 is integrally formed.
  • the GRIN lens SL1 and the GRIN lens SL2 do not need to be formed of a plurality of optical members.
  • the GRIN lens SL1 and the GRIN lens SL2 only need to be formed from a medium whose refractive index is adjusted so that the respective functions can be achieved. That is, the GRIN lens SL1 and the GRIN lens SL2 may each be formed by one optical member. Alternatively, the GRIN lens SL1 and the GRIN lens SL2 can be formed from a single optical member.
  • each light emitted from each end face Ca is collimated by the first optical member SL1a and enters the second optical member SL1b.
  • the light incident on the second optical member SL1b is converged by the refractive index distribution of the medium constituting the second optical member SL1b.
  • Each of the lights transmitted through the second optical member SL1b forms an image at the image point IP with the mode field diameter being enlarged.
  • Each light transmitted through the second optical member SL1b is incident on the third optical member SL2a using the imaging point IP as a secondary light source (in this embodiment, the imaging point IP is between the GRIN lens SL1 and the GRIN lens SL2).
  • the refractive index of each GRIN lens is adjusted so that it is located at the boundary).
  • Each light incident on the third optical member SL2a passes through the third optical member SL2a in a state of being collimated based on the refractive index distribution of the medium constituting the third optical member SL2a, and enters the fourth optical member SL2b. . Then, the light incident on the fourth optical member SL2b is converged based on the refractive index distribution of the medium constituting the fourth optical member SL2b, and the plurality of cores C of the multi-core fiber 1 are narrowed with each other being narrowed. Incident to k .
  • FIG. 10 is a conceptual diagram illustrating a cross section in the axial direction of the coupling member 20, the fiber bundle 10, and the multicore fiber 1.
  • a plurality of fibers Fk are used as the first optical system 21 constituting the coupling member 20 and a GRIN lens SL2 is used as the second optical system 22 will be described.
  • the coupling member 20 in this modification includes a first optical system 21 and a second optical system 22.
  • One end of the fiber F k is in contact with the single core fiber 100 constituting the fiber bundle 10 and changes the mode field diameter of each light from the single core fiber 100.
  • the fiber F k includes a core C f that transmits light and a clad 3 that covers the core C f .
  • the diameter of the core C f at the incident end in contact with the single core fiber 100 is substantially the same as the diameter of the core C of the single core fiber 100.
  • the number of the fibers F k equal to the number of the single core fibers 100 constituting the fiber bundle 10 is provided.
  • the fiber F k has a different core diameter at the entrance end and the exit end. Specifically, the fiber F k is formed such that the diameter of the core C f at the exit end in contact with the GRIN lens SL2 is larger than the diameter of the core C f at the entrance end in contact with the single core fiber 100.
  • the light passing through the core C f of the fiber F k has a mode field diameter that increases as it approaches the exit end.
  • the fiber F k is manufactured by the following method, for example. First, heat is applied to a part of one fiber to cut the fiber. By performing the further heat treatment to the end face of the cut fiber may be a core diameter of one end to obtain a larger fiber F k than the core diameter of the other end.
  • the example in which the fiber F k constituting the first optical system 21 and the single core fiber 100 are separate is described.
  • a single core fiber 100 is manufactured. It is also possible to manufacture the core fiber 100 and the fiber Fk integrally. In this way, by producing integrally the single-core fiber 100 and fiber Fk, it becomes unnecessary alignment with a single core fiber 100 and the fiber F k.
  • the second optical system 22 in the present modification uses the GRIN lens SL2 shown in the third modification common to the first to third embodiments.
  • GRIN lens SL2 has one end in contact with the other end of the fiber F k, is formed from a medium refractive index is adjusted to change the spacing of a plurality of fibers F k light mode field diameter was changed in each.
  • Each of the lights incident on the GRIN lens SL2 is converged based on the refractive index distribution of the medium constituting the second optical system 22, and is spaced from each other with respect to the plurality of cores C k of the multicore fiber 1. Incident.
  • FIG. 11A is a diagram showing an end face of the coupling member 20.
  • FIG. 11B is a diagram illustrating an end face of the multi-core fiber 1.
  • FIG. 11C is a diagram showing an AA cross section in FIGS. 11A and 11B.
  • a fitting portion M ⁇ b> 1 is provided on the end surface of the coupling member 20 (the end surface on the side connected to the multi-core fiber 1).
  • a fitting portion M ⁇ b> 2 is provided on the end face 2 a (end face on the side connected to the coupling member 20) of the clad 2 of the multicore fiber 1.
  • three projections P 1 to P 3 corresponding to the hole H 1 to the hole H 3 are provided.
  • the size of the protrusion Pk is formed to be approximately the same as the size of the hole Hk .
  • the multicore fiber 1 with respect to the end surface of the coupling member 20 is connected by fitting so that the protrusions P k and the holes H k are fitted.
  • the position of the end face 1b is uniquely determined. That is, alignment adjustment in the rotation direction is not necessary. It is also possible to provide the fitting portion M2 on the end surface of the coupling member 20 and provide the fitted portion M1 on the end surface 2a of the clad 2.
  • the coupling member 20 has the GRIN lens SL1 in the second embodiment as the first optical system 21, and the both-side telecentric optical system (convex lens portion 22a, convex lens portion 22b) in the first embodiment as the second optical system 22. It is also possible to have.

Abstract

Provided is a coupling optical system and a coupling method using the same, whereby a reduction in coupling efficiency can be suppressed when coupling a multi-core fiber and another optical element. The present invention optically couples an optical element and a multi-core fiber, and is placed between a multi-core fiber in which a plurality of cores are covered by a cladding, and an optical element that is any of a plurality of light sources, a plurality of light-receiving elements, or a fiber bundle in which a plurality of single-core fibers are bundled. The coupling optical system is configured so that the numerical aperture of each of a plurality of lights incident from an incidence-side element that is either the optical element or the multi-core fiber, and the numerical aperture of each of a plurality of lights emitted toward an emission-side element that is the other of the optical element or the multi-core fiber are equal.

Description

結合光学系及び結合方法Coupling optical system and coupling method
 この発明は、光通信等に用いられる光学素子を結合させる結合光学系及び結合方法に関する。 The present invention relates to a coupling optical system and a coupling method for coupling optical elements used for optical communication and the like.
 スマートフォンやタブレット端末等の普及により、莫大な情報量を有するデータの通信が要求されている。それに伴い、光通信の更なる大容量化が望まれている。 With the spread of smartphones and tablet terminals, data communication with a huge amount of information is required. Accordingly, further increase in capacity of optical communication is desired.
 従来の光通信は、クラッド内に一つのコアが設けられたシングルコアファイバを用いて行われている。しかし、一つのシングルコアファイバで通信を行う場合には容量の限界があるため、それを超える容量のデータ通信を行うための手段が要求されている。 Conventional optical communication is performed using a single core fiber in which one core is provided in a clad. However, since there is a capacity limit when communication is performed using one single core fiber, means for performing data communication with a capacity exceeding that is required.
 これに関し、たとえば、一つのクラッド内に複数のコアが設けられた光ファイバであるマルチコアファイバを用いることができる(特許文献1、2参照)。マルチコアファイバは複数のコアを有するため、シングルコアファイバに比べ、大容量のデータ通信を行うことが可能となる。 In this regard, for example, a multi-core fiber that is an optical fiber in which a plurality of cores are provided in one clad can be used (see Patent Documents 1 and 2). Since the multi-core fiber has a plurality of cores, it is possible to perform large-capacity data communication compared to the single-core fiber.
 光通信においては、このようなマルチコアファイバを、たとえば、シングルコアファイバを複数本束ねたファイバ束や、レーザーダイオード等の発光素子、フォトダイオード等の受光素子と光学的に結合させて使用する場合がある。以下、マルチコアファイバ、ファイバ束、発光素子及び受光素子の全て或いは一部を「光学素子」という場合がある。 In optical communication, such a multi-core fiber may be used by being optically coupled with, for example, a fiber bundle in which a plurality of single-core fibers are bundled, a light emitting element such as a laser diode, or a light receiving element such as a photodiode. is there. Hereinafter, all or part of the multi-core fiber, the fiber bundle, the light emitting element, and the light receiving element may be referred to as “optical element”.
特開平10-104443号公報JP-A-10-104443 特開平8-119656号公報JP-A-8-119656
 ここで、マルチコアファイバと他の光学素子とを光学的に結合する際には、結合効率の確保が問題となる。 Here, when optically coupling the multi-core fiber and other optical elements, securing the coupling efficiency becomes a problem.
 同じコア数のマルチコアファイバ同士を結合する場合、マルチコアファイバ同士の位置合わせを行うことで、コア同士を確実に結合することができる。従って、結合損失を生じ難く、高い結合効率を達成することができる。 When connecting multi-core fibers having the same number of cores, the cores can be reliably connected by aligning the multi-core fibers. Therefore, it is difficult to cause coupling loss, and high coupling efficiency can be achieved.
 一方、マルチコアファイバと他の光学素子とを結合する場合には、結合効率が低下するという問題がある。たとえば、一般的に、マルチコアファイバの各コアは、ファイバ束の各シングルコアファイバの径より狭い間隔で配列されている。従って、ファイバ束とマルチコアファイバとを結合する場合にそのコア同士を確実に結合することが困難となる。よって、マルチコアファイバとファイバ束との間の結合効率が低下する。 On the other hand, when the multi-core fiber and another optical element are coupled, there is a problem that coupling efficiency is lowered. For example, in general, the cores of the multi-core fiber are arranged at a distance narrower than the diameter of each single-core fiber of the fiber bundle. Therefore, when the fiber bundle and the multi-core fiber are coupled, it is difficult to reliably couple the cores. Therefore, the coupling efficiency between the multi-core fiber and the fiber bundle is reduced.
 この発明は上記の問題点を解決するものであり、マルチコアファイバと他の光学素子とを結合する際に、結合効率の低下を抑制可能な結合光学系及びそれを用いた結合方法を提供することを目的とする。 The present invention solves the above problems, and provides a coupling optical system capable of suppressing a decrease in coupling efficiency when coupling a multi-core fiber and another optical element, and a coupling method using the same. With the goal.
 上記課題を解決するために、請求項1記載の結合光学系は、複数の光源、複数の受光素子、及び複数のシングルコアファイバを束ねたファイバ束のうちのいずれかの光学素子と、複数のコアがクラッドで覆われたマルチコアファイバとの間に配置され、光学素子とマルチコアファイバとを光学的に結合する。結合光学系は、光学素子及びマルチコアファイバの一方からなる入射側素子から入射する複数の光それぞれの開口数と、他方からなる出射側素子に向けて出射する複数の光それぞれの開口数とが等しくなるよう構成されている。
 また、上記課題を解決するために、請求項2記載の結合光学系は、請求項1記載の結合光学系であって、第1光学系と、第2光学系とを含む。第1光学系は、複数の光それぞれを収束させる。第2光学系は、複数の光の間隔を変更する。
 また、上記課題を解決するために、請求項3記載の結合光学系は、請求項2記載の結合光学系であって、第1光学系は、第2光学系よりも光学素子側に配置されている。
 また、上記課題を解決するために、請求項4記載の結合光学系は、請求項2記載の結合光学系であって、第1光学系の倍率及び第2光学系の倍率は、以下の式を満たす値である。
βm×βr=1
但し、
βm:第1光学系の倍率
βr:第2光学系の倍率
 なお、請求項4に記載の結合光学系を請求項3に記載の結合光学系に適用することも可能である。
 また、上記課題を解決するために、請求項5記載の結合光学系は、請求項2記載の結合光学系であって、第1光学系は、複数のレンズがアレイ状に配置された構成である。なお、請求項5に記載の結合光学系を請求項3または4に記載の結合光学系に適用することも可能である。
 また、上記課題を解決するために、請求項6記載の結合光学系は、請求項5記載の結合光学系であって、複数のレンズ間のピッチが、複数の光源間のピッチ、複数の受光素子間のピッチ及び複数のシングルコアファイバ間のピッチのいずれかと等しい。
 また、上記課題を解決するために、請求項7記載の結合光学系は、請求項2記載の結合光学系であって、第2光学系は、両側テレセントリック光学系である。なお、請求項7に記載の結合光学系を請求項3~6のいずれかに記載の結合光学系に適用することも可能である。
 また、上記課題を解決するために、請求項8記載の結合光学系は、請求項2記載の結合光学系であって、第2光学系の倍率は、複数の光源間のピッチ、複数の受光素子間のピッチ及び複数のシングルコアファイバ間のピッチのいずれかと、マルチコアファイバのコア間のピッチとの比に等しい。なお、請求項8に記載の結合光学系を請求項3~7のいずれかに記載の結合光学系に適用することも可能である。
 また、上記課題を解決するために、請求項9記載の結合光学系は、請求項1記載の結合光学系であって、偏向光学系を含む。偏向光学系は、入射する複数の光を個別に偏向する。
 また、上記課題を解決するために、請求項10記載の結合光学系は、請求項9記載の結合光学系であって、コリメートレンズを有する。コリメートレンズは、入射側素子のいずれかからの光をコリメートする。偏向光学系は、コリメートレンズでコリメートされた光を偏向する。
 また、上記課題を解決するために、請求項11記載の結合光学系は、請求項10記載の結合光学系であって、コリメートレンズは、複数のコリメートレンズがアレイ状に配置された構成である。
 また、上記課題を解決するために、請求項12記載の結合光学系は、請求項11記載の結合光学系であって、複数のコリメートレンズ間のピッチは、複数の光源間のピッチ、複数のシングルコアファイバ間のピッチ及びマルチコアファイバのコア間のピッチのいずれかと等しい。
 また、上記課題を解決するために、請求項13記載の結合光学系は、請求項10記載の結合光学系であって、偏向光学系は、第1偏向光学系と、第2偏向光学系とを含む。第1偏向光学系は、入射する複数の光を偏向する。第2偏向光学系は、第1偏向光学系により偏向された複数の光を更に偏向する。なお、請求項13に記載の結合光学系を請求項11または12記載の結合光学系に適用することも可能である。
 また、上記課題を解決するために、請求項14記載の結合光学系は、請求項13記載の結合光学系であって、第1偏向光学系及び第2偏向光学系の一方の片面が凸形状に形成されており、他方の片面が凹形状に形成されている。
 また、上記課題を解決するために、請求項15記載の結合光学系は、請求項13記載の結合光学系であって、第1偏向光学系及び第2偏向光学系は、それぞれの片面の少なくとも一部が回折格子として形成されている。
 また、上記課題を解決するために、請求項16記載の結合光学系は、請求項13記載の結合光学系であって、第1偏向光学系及び第2偏向光学系の少なくとも一方は、コリメートレンズでコリメートされた光を偏向する偏向プリズムである。なお、請求項16に記載の結合光学系を請求項14記載の結合光学系に適用することも可能である。
 また、上記課題を解決するために、請求項17記載の結合光学系は、請求項13記載の結合光学系であって、第1偏向光学系と第2偏向光学系の偏向度が等しい。なお、請求項17に記載の結合光学系を請求項14~16のいずれかに記載の結合光学系に適用することも可能である。
 また、上記課題を解決するために、請求項18記載の結合光学系は、請求項9記載の結合光学系であって、偏向光学系の偏向度は、複数の光源間のピッチ、複数の受光素子間のピッチ及び複数のシングルコアファイバ間のピッチのいずれかと、マルチコアファイバのコア間のピッチとの比に等しい。なお、請求項18に記載の結合光学系を請求項10~17のいずれかに記載の結合光学系に適用することも可能である。
 また、上記課題を解決するために、請求項19記載の結合光学系は、請求項10記載の結合光学系であって、結像光学レンズを含む。結像光学レンズは、偏向光学系により偏向された光を、出射側素子のいずれかに結像させる。なお、請求項19に記載の結合光学系を請求項11~18のいずれかに記載の結合光学系に適用することも可能である。
 また、上記課題を解決するために、請求項20記載の結合光学系は、請求項19記載の結合光学系であって、結像光学レンズは、複数のレンズがアレイ状に配置された構成である。
 また、上記課題を解決するために、請求項21記載の結合光学系は、請求項20記載の結合光学系であって、結像光学レンズ間のピッチは、複数のシングルコアファイバ間のピッチ、受光素子間のピッチ及びマルチコアファイバのコア間のピッチのいずれかと等しい。
 また、上記課題を解決するために、請求項22記載の結合光学系は、請求項19記載の結合光学系であって、コリメートレンズの焦点距離と結像光学レンズの焦点距離とが等しい。なお、請求項22に記載の結合光学系を請求項20または21に記載の結合光学系に適用することも可能である。
 また、上記課題を解決するために、請求項23記載の結合光学系は、請求項1記載の結合光学系であって、入射側素子と、結合光学系と、出射側素子とは、入射側素子からの光の主光線それぞれが結合光学系の入射面に対して垂直に入射し、結合光学系の出射面から出射された光の主光線それぞれが出射側素子の受光面に対して垂直に入射する配置となっている。なお、請求項23に記載の結合光学系を請求項2~22のいずれかに記載の結合光学系に適用することも可能である。
 また、上記課題を解決するために、請求項24記載の結合方法は、請求項1~23のいずれかに記載の結合光学系を用いて、入射側素子から入射する複数の光それぞれの開口数と、出射側素子に向けて出射する複数の光それぞれの開口数とが等しくなるよう、光学素子とマルチコアファイバとを結合させる。
In order to solve the above-described problem, the coupling optical system according to claim 1 includes a plurality of light sources, a plurality of light receiving elements, and any one of a plurality of optical elements bundled with a plurality of single core fibers and a plurality of light elements. The core is disposed between the multi-core fiber covered with the clad and optically couples the optical element and the multi-core fiber. In the coupling optical system, the numerical aperture of each of the plurality of lights incident from the incident side element consisting of one of the optical element and the multi-core fiber is equal to the numerical aperture of each of the plurality of lights exiting toward the exit side element consisting of the other. It is comprised so that it may become.
In order to solve the above problem, a coupling optical system according to a second aspect is the coupling optical system according to the first aspect, and includes a first optical system and a second optical system. The first optical system converges each of the plurality of lights. The second optical system changes the interval between the plurality of lights.
In order to solve the above problem, the coupling optical system according to claim 3 is the coupling optical system according to claim 2, wherein the first optical system is disposed closer to the optical element than the second optical system. ing.
In order to solve the above problem, the coupling optical system according to claim 4 is the coupling optical system according to claim 2, wherein the magnification of the first optical system and the magnification of the second optical system are expressed by the following equations: It is a value that satisfies
βm × βr = 1
However,
βm: magnification of the first optical system βr: magnification of the second optical system The coupling optical system according to claim 4 can be applied to the coupling optical system according to claim 3.
In order to solve the above problem, the coupling optical system according to claim 5 is the coupling optical system according to claim 2, wherein the first optical system has a configuration in which a plurality of lenses are arranged in an array. is there. Note that the coupling optical system according to claim 5 can be applied to the coupling optical system according to claim 3 or 4.
In order to solve the above problem, the coupling optical system according to claim 6 is the coupling optical system according to claim 5, wherein the pitch between the plurality of lenses is the pitch between the plurality of light sources and the plurality of light receptions. It is equal to either the pitch between elements or the pitch between single core fibers.
In order to solve the above problem, the coupling optical system according to claim 7 is the coupling optical system according to claim 2, and the second optical system is a double-sided telecentric optical system. Note that the coupling optical system according to the seventh aspect can be applied to the coupling optical system according to any one of the third to sixth aspects.
In order to solve the above problem, the coupling optical system according to claim 8 is the coupling optical system according to claim 2, wherein the magnification of the second optical system is such that the pitch between the plurality of light sources and the plurality of light receptions. It is equal to the ratio of either the pitch between the elements or the pitch between the plurality of single core fibers to the pitch between the cores of the multicore fiber. Note that the coupling optical system according to claim 8 can be applied to the coupling optical system according to any one of claims 3 to 7.
In order to solve the above problem, a coupling optical system according to a ninth aspect is the coupling optical system according to the first aspect, and includes a deflection optical system. The deflection optical system individually deflects a plurality of incident light.
In order to solve the above problem, a coupling optical system according to a tenth aspect is the coupling optical system according to the ninth aspect, and includes a collimating lens. The collimating lens collimates light from any of the incident side elements. The deflection optical system deflects light collimated by the collimating lens.
In order to solve the above problem, the coupling optical system according to claim 11 is the coupling optical system according to claim 10, and the collimating lens has a configuration in which a plurality of collimating lenses are arranged in an array. .
In order to solve the above problem, the coupling optical system according to claim 12 is the coupling optical system according to claim 11, wherein a pitch between the plurality of collimating lenses is a pitch between the plurality of light sources, a plurality of the plurality of light sources. It is equal to either the pitch between single-core fibers or the pitch between cores of multi-core fibers.
In order to solve the above problem, the coupling optical system according to claim 13 is the coupling optical system according to claim 10, wherein the deflection optical system includes a first deflection optical system, a second deflection optical system, and including. The first deflection optical system deflects a plurality of incident light. The second deflection optical system further deflects the plurality of lights deflected by the first deflection optical system. Note that the coupling optical system according to the thirteenth aspect can be applied to the coupling optical system according to the eleventh or twelfth aspect.
In order to solve the above problem, the coupling optical system according to claim 14 is the coupling optical system according to claim 13, wherein one surface of the first deflection optical system and the second deflection optical system is convex. The other side is formed in a concave shape.
In order to solve the above problem, the coupling optical system according to claim 15 is the coupling optical system according to claim 13, wherein the first deflection optical system and the second deflection optical system are at least one surface of each. A part is formed as a diffraction grating.
In order to solve the above problem, the coupling optical system according to claim 16 is the coupling optical system according to claim 13, wherein at least one of the first deflection optical system and the second deflection optical system is a collimating lens. It is a deflecting prism that deflects the light collimated in the above. The coupling optical system according to claim 16 can be applied to the coupling optical system according to claim 14.
In order to solve the above problem, the coupling optical system according to claim 17 is the coupling optical system according to claim 13, wherein the first deflection optical system and the second deflection optical system have the same degree of deflection. The coupling optical system according to claim 17 can be applied to the coupling optical system according to any one of claims 14 to 16.
In order to solve the above problem, the coupling optical system according to claim 18 is the coupling optical system according to claim 9, wherein the deflection degree of the deflection optical system is such that the pitch between the plurality of light sources and the plurality of light receptions. It is equal to the ratio of either the pitch between the elements or the pitch between the plurality of single core fibers to the pitch between the cores of the multicore fiber. Note that the coupling optical system according to claim 18 can be applied to the coupling optical system according to any one of claims 10 to 17.
In order to solve the above problem, a coupling optical system according to a nineteenth aspect is the coupling optical system according to the tenth aspect, and includes an imaging optical lens. The imaging optical lens forms an image of the light deflected by the deflection optical system on any of the emission side elements. The coupling optical system according to claim 19 can be applied to the coupling optical system according to any of claims 11 to 18.
In order to solve the above problem, the coupling optical system according to claim 20 is the coupling optical system according to claim 19, and the imaging optical lens has a configuration in which a plurality of lenses are arranged in an array. is there.
In order to solve the above problem, the coupling optical system according to claim 21 is the coupling optical system according to claim 20, wherein a pitch between the imaging optical lenses is a pitch between a plurality of single core fibers, It is equal to either the pitch between the light receiving elements or the pitch between the cores of the multi-core fiber.
In order to solve the above problem, a coupling optical system according to a twenty-second aspect is the coupling optical system according to the nineteenth aspect, in which the focal length of the collimating lens is equal to the focal length of the imaging optical lens. Note that the coupling optical system according to claim 22 can be applied to the coupling optical system according to claim 20 or 21.
In order to solve the above problem, the coupling optical system according to claim 23 is the coupling optical system according to claim 1, wherein the incident side element, the coupling optical system, and the output side element are arranged on the incident side. Each principal ray of light from the element is incident perpendicularly to the incident surface of the coupling optical system, and each principal ray of light emitted from the exit surface of the coupling optical system is perpendicular to the light receiving surface of the emitting element. The arrangement is incident. Note that the coupling optical system according to claim 23 can be applied to the coupling optical system according to any one of claims 2 to 22.
In order to solve the above-described problem, the coupling method according to claim 24 uses the coupling optical system according to any one of claims 1 to 23, and uses a coupling optical system according to any one of claims 1 to 23 to obtain a numerical aperture for each of a plurality of lights incident from an incident side element. And the optical element and the multi-core fiber are coupled so that the numerical apertures of the plurality of lights emitted toward the emission side element are equal.
 光学素子とマルチコアファイバとを光学的に結合する結合光学系は、入射側素子から入射する複数の光それぞれの開口数と、出射側素子に向けて出射する複数の光それぞれの開口数とが等しくなるよう設計されている。従って、マルチコアファイバと他の光学素子とを結合する際に、結合効率の低下を抑制可能となる。 In the coupling optical system that optically couples the optical element and the multi-core fiber, the numerical apertures of the plurality of lights incident from the incident side element are equal to the numerical apertures of the plurality of lights emitted toward the emission side element. Designed to be Accordingly, it is possible to suppress a decrease in coupling efficiency when coupling the multi-core fiber and another optical element.
実施形態に共通のマルチコアファイバを示す図である。It is a figure which shows the multi-core fiber common to embodiment. 第1実施形態に係る結合光学系を示す図である。It is a figure which shows the coupling optical system which concerns on 1st Embodiment. 第2実施形態に係る結合光学系を示す図である。It is a figure which shows the coupling optical system which concerns on 2nd Embodiment. 第2実施形態に係る偏向光学系を示す図である。It is a figure which shows the deflection optical system which concerns on 2nd Embodiment. 第2実施形態に係る偏向光学系の別例を示す図である。It is a figure which shows another example of the deflection | deviation optical system which concerns on 2nd Embodiment. 第2実施形態に係る偏向光学系の別例を示す図である。It is a figure which shows another example of the deflection | deviation optical system which concerns on 2nd Embodiment. 第3実施形態に係る結合光学系を示す図である。It is a figure which shows the coupling optical system which concerns on 3rd Embodiment. 第3実施形態に係る偏向光学系を示す図である。It is a figure which shows the deflection optical system which concerns on 3rd Embodiment. 第1実施形態から第3実施形態に共通の変形例2に係る結合部材を示す図である。It is a figure which shows the coupling member which concerns on the modification 2 common to 3rd Embodiment from 1st Embodiment. 第1実施形態から第3実施形態に共通の変形例3に係る結合部材を示す図である。It is a figure which shows the coupling member which concerns on the modification 3 common to 3rd Embodiment from 1st Embodiment. 第1実施形態から第3実施形態に共通の変形例4に係る結合部材を示す図である。It is a figure which shows the coupling member which concerns on the modification 4 common to 3rd Embodiment from 1st Embodiment. 第1実施形態から第3実施形態に共通の変形例2~4に係る結合部材を示す図である。FIG. 10 is a view showing a coupling member according to Modifications 2 to 4 common to the first to third embodiments. 第1実施形態から第3実施形態に共通の変形例2~4に係るマルチコアファイバを示す図である。FIG. 10 is a diagram showing multicore fibers according to Modifications 2 to 4 common to the first to third embodiments. 第1実施形態から第3実施形態に共通の変形例2~4に係るマルチコアファイバ及び結合部材を示す図である。FIG. 6 is a view showing a multi-core fiber and a coupling member according to Modifications 2 to 4 common to the first to third embodiments.
[マルチコアファイバの構成]
 図1を参照して、マルチコアファイバ1の構成について説明する。マルチコアファイバ1は、一般に可撓性を有する長尺の円柱部材である。図1は、マルチコアファイバ1の斜視図である。図1では、マルチコアファイバ1の先端部分のみを示している。
[Configuration of multi-core fiber]
The configuration of the multicore fiber 1 will be described with reference to FIG. The multi-core fiber 1 is generally a long cylindrical member having flexibility. FIG. 1 is a perspective view of the multi-core fiber 1. In FIG. 1, only the tip portion of the multi-core fiber 1 is shown.
 マルチコアファイバ1は、たとえば石英ガラスやプラスチック等、光の透過性が高い素材により形成されている。マルチコアファイバ1は、複数のコアC(k=1~n)と、クラッド2を含んで構成されている。 The multi-core fiber 1 is made of a material having a high light transmittance such as quartz glass or plastic. The multicore fiber 1 includes a plurality of cores C k (k = 1 to n) and a clad 2.
 コアCは、光源(図示なし)からの光を伝送する伝送路である。コアCはそれぞれ端面E(k=1~n)を有する。端面Eからは、光源(図示なし)で発せられた光が出射される。クラッド2よりも屈折率を高めるために、コアCは、たとえば石英ガラスに酸化ゲルマニウム(GeO)が添加された素材により形成されている。なお、図1では7つのコアC~Cを有する構成を示したが、コアCの数は少なくとも2つ以上であればよい。 The core C k is a transmission path for transmitting light from a light source (not shown). Each of the cores C k has an end face E k (k = 1 to n). From the end surface E k, the light source light emitted by the (not shown) is emitted. In order to increase the refractive index as compared with the clad 2, the core C k is made of a material in which germanium oxide (GeO 2 ) is added to, for example, quartz glass. Although FIG. 1 shows a configuration having seven cores C 1 to C 7 , the number of cores C k may be at least two.
 クラッド2は、複数のコアCを覆う部材である。クラッド2は、光源(図示なし)からの光をコアC内に閉じ込める役割を有する。クラッド2は端面2aを有する。コアCの端面E及びクラッド2の端面2aは同一面(マルチコアファイバ1の端面1b)を形成している。クラッド2の素材としては、コアCの素材よりも屈折率が低い素材が用いられる。たとえば、コアCの素材が石英ガラスと酸化ゲルマニウムからなる場合には、クラッド2の素材としては石英ガラスを用いる。このように、コアCの屈折率をクラッド2の屈折率よりも高くすることで、光源(図示なし)からの光をコアCとクラッド2の境界面で全反射させる。よって、コアC内に光を伝送させることができる。 The clad 2 is a member that covers the plurality of cores Ck . Cladding 2 has a function to confine light from a light source (not shown) in the core C k. The clad 2 has an end face 2a. The end surface Ek of the core Ck and the end surface 2a of the clad 2 form the same surface (the end surface 1b of the multicore fiber 1). The cladding 2 material, a low refractive index material is used than the core C k material. For example, when the material of the core C k is made of quartz glass and germanium oxide, quartz glass is used as the material of the clad 2. Thus, by making the refractive index of the core C k higher than the refractive index of the cladding 2, the light from the light source (not shown) is totally reflected at the interface between the core C k and the cladding 2. Therefore, light can be transmitted in the core Ck .
<第1実施形態>
 次に、図2を参照して、第1実施形態に係る結合光学系20の構成例を説明する。本実施形態では、ファイバ束10と、マルチコアファイバ1とを結合する場合について述べる。図2は、結合光学系20、ファイバ束10及びマルチコアファイバ1の軸方向の断面図である。
<First Embodiment>
Next, a configuration example of the coupling optical system 20 according to the first embodiment will be described with reference to FIG. In the present embodiment, a case where the fiber bundle 10 and the multi-core fiber 1 are coupled will be described. FIG. 2 is a sectional view in the axial direction of the coupling optical system 20, the fiber bundle 10, and the multicore fiber 1.
[ファイバ束の構成]
 ファイバ束10は、複数のシングルコアファイバ100を含んで構成されている。ファイバ束10は、結合するマルチコアファイバ1のコア数(本実施形態では7つ)と等しい数のシングルコアファイバ100(本実施形態では7本)が束ねられている。図2では3本のシングルコアファイバ100のみを示している。シングルコアファイバ100は、クラッド101の内部にコアCを含んで構成されている。コアCは、光源(図示なし)からの光を伝送する伝送路である。コアCの端面Caから出射された光は、所定の開口数NAで結合光学系20の入射面(後述)に入射する。なお、開口数NAは、Nsinθで定義される(NA=Nsinθ)。Nは屈折率である。θは、端面Caから出射された光(光束)が結合光学系20に入射する際の主光線Pr及びマージナル光線Mrがなす角度である。
[Configuration of fiber bundle]
The fiber bundle 10 includes a plurality of single core fibers 100. In the fiber bundle 10, the same number of single core fibers 100 (seven in this embodiment) as the number of cores of the multi-core fibers 1 to be coupled (seven in this embodiment) are bundled. In FIG. 2, only three single core fibers 100 are shown. The single core fiber 100 includes a core C inside a clad 101. The core C is a transmission path for transmitting light from a light source (not shown). The light emitted from the end surface Ca of the core C is incident on the incident surface (described later) of the coupling optical system 20 with a predetermined numerical aperture NA. The numerical aperture NA is defined by N sin θ (NA = N sin θ). N is a refractive index. θ is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light beam) emitted from the end face Ca enters the coupling optical system 20.
[結合光学系の構成]
 本実施形態に係る結合光学系20は、第1光学系21と、第2光学系22とを含んで構成されている。第1光学系21は、複数の光それぞれを収束させる機能を有している。第2光学系22は、複数の光の間隔を変更する機能を有している。
[Configuration of coupling optical system]
The coupling optical system 20 according to the present embodiment includes a first optical system 21 and a second optical system 22. The first optical system 21 has a function of converging each of the plurality of lights. The second optical system 22 has a function of changing the interval between the plurality of lights.
 本実施形態における第1光学系21は、ファイバ束10からの複数の光それぞれを収束させる機能を有している。第1光学系21は、アレイ状に配置された複数の凸レンズ21aを含んで構成されている。複数の凸レンズ21aは、ファイバ束10に含まれるシングルコアファイバ100と等しい数だけ設けられている。第1光学系21(凸レンズ21a)は、ファイバ束10の各端面Caから出射された光(主光線Pr)それぞれが、対応する凸レンズ21aの面に対して垂直に入射する位置に配置されている(なお、この場合には端面Caが絞りとして機能している)。複数の凸レンズ21aは、そのピッチP(隣り合う凸レンズ21aの光軸間距離)が複数のシングルコアファイバ100間のピッチPout(隣り合うシングルコアファイバ100の光軸間距離。たとえば、ファイバ束10の中心に配置されたファイバのコアCの光軸と、その周辺に配置されたファイバのコアCの光軸との間隔)と等しくなるよう配置されている。なお、第1光学系21は、第2光学系22よりもファイバ束10側に配置されている。本実施形態において、ファイバ束10からの光が入射する凸レンズ21aの面は、「入射面」の一例である。また、本実施形態における複数の凸レンズ21aは、「複数のレンズ」の一例である。 The first optical system 21 in the present embodiment has a function of converging each of a plurality of lights from the fiber bundle 10. The first optical system 21 includes a plurality of convex lenses 21a arranged in an array. The plurality of convex lenses 21 a are provided in the same number as the single core fibers 100 included in the fiber bundle 10. The first optical system 21 (convex lens 21a) is disposed at a position where each light (principal ray Pr) emitted from each end face Ca of the fiber bundle 10 enters perpendicularly to the surface of the corresponding convex lens 21a. (In this case, the end face Ca functions as a stop). The plurality of convex lenses 21a has a pitch P m (a distance between optical axes of adjacent convex lenses 21a). A pitch P out between a plurality of single core fibers 100 (a distance between optical axes of adjacent single core fibers 100. For example, a fiber bundle. The distance between the optical axis of the core C of the fiber disposed at the center of the fiber 10 and the optical axis of the core C of the fiber disposed at the periphery thereof is disposed. Note that the first optical system 21 is disposed closer to the fiber bundle 10 than the second optical system 22. In the present embodiment, the surface of the convex lens 21a on which the light from the fiber bundle 10 is incident is an example of an “incident surface”. The plurality of convex lenses 21a in the present embodiment is an example of “a plurality of lenses”.
 第1光学系21(各凸レンズ21a)の倍率は、所定の倍率βmとなるよう設計されている。また、第1光学系21(各凸レンズ21a)は、出射した光の開口数NA´(=Nsinθ´)が入射した光の開口数NAよりも小さくなるよう設計されている。θ´は、第1光学系21から出射した光(光束)が結像点IPに到達する際の主光線Pr及びマージナル光線Mrがなす角度である。 The magnification of the first optical system 21 (each convex lens 21a) is designed to be a predetermined magnification βm. The first optical system 21 (each convex lens 21a) is designed so that the numerical aperture NA ′ (= N sin θ ′) of the emitted light is smaller than the numerical aperture NA of the incident light. θ ′ is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light beam) emitted from the first optical system 21 reaches the imaging point IP.
 本実施形態における第2光学系22は、第1光学系21からの複数の光の間隔を狭める機能を有している。第2光学系22は、2枚の凸レンズ22a、22bを含む両側テレセントリック光学系により構成されている。第2光学系22は、第1光学系21からの複数の光(主光線Pr)それぞれが、対応するマルチコアファイバ1の各コアCの端面Eに対して垂直に入射する位置に配置されている。第2光学系22は、第2光学系22から出射した光(光束)が所定の開口数NA´´(=Nsinθ´´)となるよう設計されている。θ´´は、第2光学系22から出射された光(光束)がマルチコアファイバ1(各コアCの端面E)に入射する際の主光線Pr及びマージナル光線Mrがなす角度である。本実施形態において、第1光学系21からの光が出射される凸レンズ22bの面は、「出射面」の一例である。また、本実施形態において、端面Eは、「受光面」の一例である。 The second optical system 22 in the present embodiment has a function of narrowing the interval between the plurality of lights from the first optical system 21. The second optical system 22 is constituted by a double-sided telecentric optical system including two convex lenses 22a and 22b. The second optical system 22 is arranged at a position where each of the plurality of lights (principal rays Pr) from the first optical system 21 is perpendicularly incident on the end face E k of each core C k of the corresponding multi-core fiber 1. ing. The second optical system 22 is designed so that light (light flux) emitted from the second optical system 22 has a predetermined numerical aperture NA ″ (= Nsin θ ″). θ'', the light (light beam) emitted from the second optical system 22 is an angle principal ray Pr and marginal rays Mr forms as they enter the multi-core fiber 1 (end surface E k of each core C k). In the present embodiment, the surface of the convex lens 22b from which the light from the first optical system 21 is emitted is an example of an “emission surface”. In the present embodiment, the end surface E k is an example of a “light receiving surface”.
 また、本実施形態において、第2光学系22は、その倍率βrが複数のシングルコアファイバ100間のピッチPoutとマルチコアファイバ1のコアC間のピッチPin(マルチコアファイバ1における隣り合うコアCの光軸間距離。たとえば、マルチコアファイバ1の中心のコアCの光軸と周辺のコアCの光軸との間隔)との比と等しくなるよう設計されている。なお、倍率βrと、ピッチPoutとピッチPinとの比は、用いる光学素子の公差や設計上のバラツキにより、必ずしも等しくなる必要はない。少なくとも光伝送に必要な結合効率を確保できる値、たとえば、以下の式(1)を満たす値であればよい。 In the present embodiment, the second optical system 22 has a magnification βr of the pitch P out between the single core fibers 100 and the pitch P in between the cores C k of the multi-core fiber 1 (adjacent cores in the multi-core fiber 1). C k of the distance between the optical axes. for example, are designed to be equal to the ratio of the distance) between the optical axes of the periphery of the core C 2 of the center of the core C 1 of the multi-core fiber 1. Note that the ratio of the magnification βr and the pitch P out to the pitch P in does not necessarily have to be equal depending on the tolerance of the optical element used and variations in design. Any value that can secure at least the coupling efficiency necessary for optical transmission, for example, a value satisfying the following expression (1) may be used.
 0.9βr<Pin/Pout<1.1βr・・・(1) 0.9βr <P in / P out <1.1βr (1)
 また、第1光学系21に入射する光の開口数NAと第2光学系22から出射される光の開口数NA´´が異なると結合効率の低下を招く。従って、本実施形態では、開口数NAと開口数NA´´が等しくなるよう結合光学系20が設計されている。 Also, if the numerical aperture NA of the light incident on the first optical system 21 is different from the numerical aperture NA ″ of the light emitted from the second optical system 22, the coupling efficiency is lowered. Therefore, in this embodiment, the coupling optical system 20 is designed so that the numerical aperture NA is equal to the numerical aperture NA ″.
 更に、本実施形態においては、以下の式(2)を満たすように、第1光学系21の倍率βm及び第2光学系22の倍率βrが設計されている。 Furthermore, in this embodiment, the magnification βm of the first optical system 21 and the magnification βr of the second optical system 22 are designed so as to satisfy the following expression (2).
 βm×βr=1・・・(2) Βm × βr = 1 (2)
 なお、倍率βmと倍率βrとの関係は、用いる光学素子の公差や設計上のバラツキにより、必ずしも式(2)の条件を満たす必要はない。少なくとも光伝送に必要な結合効率を確保できる値、たとえば、以下の式(3)を満たす値であればよい。 It should be noted that the relationship between the magnification βm and the magnification βr does not necessarily satisfy the condition of the expression (2) due to the tolerance of the optical element used and variations in design. Any value that can secure at least the coupling efficiency necessary for optical transmission, for example, a value satisfying the following expression (3) may be used.
 0.9<βm×βr<1.1・・・(3) 0.9 <βm × βr <1.1 (3)
 また、上記説明では、第1光学系21から出射された光が第2光学系22に入射するように配置された結合光学系20の構成について述べたが、第1光学系21と第2光学系22の配置を逆にしてもよい。この場合も、第1光学系21の倍率βm及び第2光学系22の倍率βrは式(2)または式(3)の関係を満たせばよい。 In the above description, the configuration of the coupling optical system 20 arranged so that the light emitted from the first optical system 21 enters the second optical system 22 has been described. However, the first optical system 21 and the second optical system 21 The arrangement of the system 22 may be reversed. Also in this case, the magnification βm of the first optical system 21 and the magnification βr of the second optical system 22 need only satisfy the relationship of Expression (2) or Expression (3).
[光の進み方について]
 次に、図2を参照して、本実施形態に係る光の進み方について説明する。本実施形態では、ファイバ束10から光が出射する構成について説明する。すなわち、本実施形態におけるファイバ束10は、「入射側素子」の一例である。一方、本実施形態におけるマルチコアファイバ1は、「出射側素子」の一例である。
[How light travels]
Next, how light travels according to the present embodiment will be described with reference to FIG. In the present embodiment, a configuration in which light is emitted from the fiber bundle 10 will be described. That is, the fiber bundle 10 in the present embodiment is an example of an “incident side element”. On the other hand, the multi-core fiber 1 in the present embodiment is an example of an “emission side element”.
 まず、複数のシングルコアファイバ100内それぞれに設けられたコアCの端面Caから光が出射される。各端面Caから出射された光は、それぞれ拡散しながら、所定の開口数NAで第1光学系21(凸レンズ21a)に入射する。上述の通り、本実施形態では、端面Caから出射されたそれぞれの光(主光線Pr)は、第1光学系21(凸レンズ21aの面)に対して垂直に入射される。 First, light is emitted from the end face Ca of the core C provided in each of the plurality of single core fibers 100. Light emitted from each end face Ca enters the first optical system 21 (convex lens 21a) with a predetermined numerical aperture NA while being diffused. As described above, in the present embodiment, each light (principal ray Pr) emitted from the end face Ca is incident on the first optical system 21 (the surface of the convex lens 21a) perpendicularly.
 第1光学系21に入射した複数の光(主光線Pr)それぞれは、結像点IPを二次光源として第2光学系22(凸レンズ22aの面)に垂直に入射する。複数の光それぞれが第2光学系22に入射する場合の開口数(NA´に等しい)は、開口数NAよりも小さくなっている。従って、第2光学系22の構成を簡素化することが可能となる。 Each of the plurality of lights (principal rays Pr) incident on the first optical system 21 is perpendicularly incident on the second optical system 22 (surface of the convex lens 22a) with the imaging point IP as a secondary light source. The numerical aperture (equal to NA ′) when each of the plurality of lights enters the second optical system 22 is smaller than the numerical aperture NA. Therefore, the configuration of the second optical system 22 can be simplified.
 また、第2光学系22は両側テレセントリックな光学系で形成されている。従って、第2光学系22に垂直に入射した複数の光(主光線Pr)は、互いの間隔が狭められた状態で第2光学系22(凸レンズ22bの面)から垂直に出射される。 Further, the second optical system 22 is formed of a bilateral telecentric optical system. Accordingly, the plurality of light beams (principal rays Pr) incident perpendicularly to the second optical system 22 are emitted vertically from the second optical system 22 (surface of the convex lens 22b) in a state where the distance between them is narrowed.
 このとき、本実施形態では、第1光学系21の倍率βm及び第2光学系22の倍率βrが式(2)の関係を満たしている。従って、各端面Caから出射された光それぞれの開口数NAを変えることなく(NA=NA´´)マルチコアファイバ1の複数のコアC(端面E)に対し、対応する光(主光線Pr)を垂直に入射させることが可能となる。従って、光学素子間の結合効率が高い状態を維持したまま光の伝送が可能となる。 At this time, in the present embodiment, the magnification βm of the first optical system 21 and the magnification βr of the second optical system 22 satisfy the relationship of Expression (2). Accordingly, the light (principal ray Pr) corresponding to the plurality of cores C k (end faces E k ) of the multi-core fiber 1 without changing the numerical aperture NA of the light emitted from each end face Ca (NA = NA ″). ) Can be incident vertically. Therefore, it is possible to transmit light while maintaining a high coupling efficiency between the optical elements.
 具体例として、複数のシングルコアファイバ100間のピッチPoutが120μmのファイバ束10と、コアC間のピッチPinが40μmのマルチコアファイバ1とを結合する場合について説明する。この場合、ピッチが1/3に縮小されるため、第1光学系21の倍率βmを3とし、第2光学系22の倍率βrを1/3とすれば、開口数NAを変えることなく(NA=NA´´)マルチコアファイバ1の複数のコアCに対し、対応する光(主光線Pr)を垂直入射させることが可能となる。 As a specific example, a fiber bundle 10 of pitch P out is 120μm between the plurality of single-core fiber 100 will be described a case where the pitch P in between the core C k are attached to the multi-core fiber 1 of 40 [mu] m. In this case, since the pitch is reduced to 1/3, if the magnification βm of the first optical system 21 is 3 and the magnification βr of the second optical system 22 is 1/3, the numerical aperture NA is not changed ( NA = NA ″) The corresponding light (principal ray Pr) can be vertically incident on the plurality of cores C k of the multi-core fiber 1.
 ピッチPin及びピッチPoutは、マルチコアファイバ1やファイバ束10の光学設計時に任意に設定することができる。たとえば、ピッチPoutは、100~150μm程度の間で設定できる。また、ピッチPinは、たとえば、30~50μm程度の間で任意に設定できる。 The pitch P in and the pitch P out can be arbitrarily set when the multi-core fiber 1 and the fiber bundle 10 are optically designed. For example, the pitch P out can be set between about 100 to 150 μm. The pitch P in, for example, can be arbitrarily set between about 30 ~ 50 [mu] m.
[変形例1]
 本実施形態では、ファイバ束10から出射された複数の光を、結合光学系20を介してマルチコアファイバ1に導く例について説明したが、光を出射する対象はこれに限られない。たとえば、ファイバ束10の代わりに複数の光源を用いることも可能である。この場合、光源が「入射側素子」の一例である。また、この場合、上述の「Pout」は、隣り合う光源間のピッチ(たとえば、中心に配置される光源の出射面の中心と、その周辺に配置される光源の出射面の中心との距離)となる。
[Modification 1]
In the present embodiment, the example in which a plurality of lights emitted from the fiber bundle 10 are guided to the multicore fiber 1 via the coupling optical system 20 has been described. However, the target for emitting the light is not limited thereto. For example, a plurality of light sources can be used instead of the fiber bundle 10. In this case, the light source is an example of an “incident side element”. In this case, the above-mentioned “P out ” is the pitch between adjacent light sources (for example, the distance between the center of the exit surface of the light source disposed at the center and the center of the exit surface of the light source disposed around the center). )
[変形例2]
 或いは、上述の結合光学系20を用い、マルチコアファイバ1(複数のコアC)から出射される複数の光それぞれを、ファイバ束10又は受光素子(図示なし)に導くことも可能である。この場合、マルチコアファイバ1が、「入射側素子」の一例である。また、ファイバ束10又は受光素子が「出射側素子」の一例である。以下、マルチコアファイバ1から出射される光それぞれを、ファイバ束10に導く例について述べる。
[Modification 2]
Alternatively, it is also possible to guide each of a plurality of lights emitted from the multi-core fiber 1 (a plurality of cores C k ) to the fiber bundle 10 or a light receiving element (not shown) using the above-described coupling optical system 20. In this case, the multi-core fiber 1 is an example of an “incident side element”. Further, the fiber bundle 10 or the light receiving element is an example of the “outgoing side element”. Hereinafter, an example in which each light emitted from the multicore fiber 1 is guided to the fiber bundle 10 will be described.
 本変形例における第2光学系22は、マルチコアファイバ1から出射される複数の光の間隔を広げる機能を有している。本変形例において、マルチコアファイバ1からの光が入射する凸レンズ22bの面は、「入射面」の一例である。 The second optical system 22 in this modification has a function of widening the interval between a plurality of lights emitted from the multicore fiber 1. In the present modification, the surface of the convex lens 22b on which the light from the multicore fiber 1 is incident is an example of an “incident surface”.
 本変形例における第1光学系21は、第2光学系22からの複数の光それぞれを収束させる機能を有している。収束された光(主光線Pr)それぞれは、対応するコアCの端面Caに垂直に入射する。本変形例において、第2光学系22からの光が出射される第1光学系21(凸レンズ21a)の面は、「出射面」の一例である。また、本実施形態において、端面Caは、「受光面」の一例である。 The first optical system 21 in this modification has a function of converging each of the plurality of lights from the second optical system 22. Each converged light (principal ray Pr) is perpendicularly incident on the end face Ca of the corresponding core C. In the present modification, the surface of the first optical system 21 (convex lens 21a) from which the light from the second optical system 22 is emitted is an example of an “emission surface”. In the present embodiment, the end surface Ca is an example of a “light receiving surface”.
 本変形例におけるθは、第1光学系21から出射された光(光束)がファイバ束10(各シングルコアファイバ100)に入射する際の主光線Pr及びマージナル光線Mrがなす角度である。θ´は、第2光学系22から出射された光(光束)が結像点IPに到達する際の主光線Pr及びマージナル光線Mrがなす角度である。θ´´は、マルチコアファイバ1から出射された光(光束)が第2光学系22に入射する際の主光線Pr及びマージナル光線Mrがなす角度である。 [Theta] in this modification is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light flux) emitted from the first optical system 21 enters the fiber bundle 10 (each single core fiber 100). θ ′ is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light beam) emitted from the second optical system 22 reaches the imaging point IP. θ ″ is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light beam) emitted from the multicore fiber 1 enters the second optical system 22.
 なお、受光素子が「出射側素子」に当たる場合、上述の「Pout」は、隣り合う受光素子間のピッチ(たとえば、中心に配置される受光素子の受光面の中心と、その周辺に配置される受光素子の受光面の中心との距離)となる。 When the light receiving element hits the “outgoing side element”, the above “P out ” is arranged at the pitch between adjacent light receiving elements (for example, the center of the light receiving surface of the light receiving element arranged at the center and the periphery thereof). Distance from the center of the light receiving surface of the light receiving element.
[作用・効果]
 本実施形態(変形例を含む)の作用及び効果について説明する。
[Action / Effect]
The operation and effects of the present embodiment (including modifications) will be described.
 本実施形態に係る結合光学系20は、複数の光源、複数の受光素子、及び複数のシングルコアファイバ100を束ねたファイバ束10のいずれかを含む光学素子と、複数のコアCがクラッド2で覆われたマルチコアファイバ1との間に配置され、光学素子とマルチコアファイバ1とを光学的に結合する。結合光学系20は、光学素子及びマルチコアファイバ1の一方からなる入射側素子から入射する複数の光それぞれの開口数と、他方からなる出射側素子に向けて出射する複数の光それぞれの開口数とが等しくなるよう設計されている。 The coupling optical system 20 according to the present embodiment includes an optical element including any one of a plurality of light sources, a plurality of light receiving elements, and a fiber bundle 10 in which a plurality of single core fibers 100 are bundled, and a plurality of cores C k are clad 2. The optical element and the multi-core fiber 1 are optically coupled to each other. The coupling optical system 20 includes a numerical aperture of each of a plurality of lights incident from an incident side element composed of one of the optical element and the multi-core fiber 1, and a numerical aperture of each of the plurality of lights emitted toward an output side element composed of the other. Are designed to be equal.
 より具体的には、本実施形態に係る結合光学系20は、第1光学系21と、第2光学系22とを含む。第1光学系21は、複数の光それぞれを収束させる。第2光学系22は、複数の光の間隔を変更(狭める・広げる)する。 More specifically, the coupling optical system 20 according to the present embodiment includes a first optical system 21 and a second optical system 22. The first optical system 21 converges each of the plurality of lights. The second optical system 22 changes (narrows / expands) the interval between the plurality of lights.
 また、第1光学系21の倍率βm及び第2光学系22の倍率βrは、以下の式(2)を満たす値に設計される。
βm×βr=1・・・・・(2)
The magnification βm of the first optical system 21 and the magnification βr of the second optical system 22 are designed to satisfy the following formula (2).
βm × βr = 1 (2)
 このように、結合光学系20に入射する光の開口数と結合光学系20から出射する光の開口数とが変わらないよう第1光学系21と第2光学系22を組み合わせることにより、結合効率を落とすことなく光を伝送することが出来る。すなわち、本実施形態における結合光学系20によれば、結合効率の低下を抑制しつつ、光学素子とマルチコアファイバ1とを光学的に結合することができる。 Thus, the coupling efficiency is obtained by combining the first optical system 21 and the second optical system 22 so that the numerical aperture of the light incident on the coupling optical system 20 and the numerical aperture of the light emitted from the coupling optical system 20 do not change. Light can be transmitted without dropping light. That is, according to the coupling optical system 20 in the present embodiment, the optical element and the multicore fiber 1 can be optically coupled while suppressing a decrease in coupling efficiency.
 また、本実施形態に係る結合光学系20は、第1光学系21は、第2光学系22よりも光学素子側に配置されている。 Further, in the coupling optical system 20 according to the present embodiment, the first optical system 21 is arranged closer to the optical element than the second optical system 22.
 光学系をこのように配置することで、第1光学系21から第2光学系22に入射する光の開口数NA´(又は第2光学系22から第1光学系21に入射する光の開口数NA´)を小さく抑えることができるため、光学系の構成を簡素化することが可能となる。 By arranging the optical system in this way, the numerical aperture NA ′ of light incident on the second optical system 22 from the first optical system 21 (or the aperture of light incident on the first optical system 21 from the second optical system 22). The number NA ′) can be kept small, so that the configuration of the optical system can be simplified.
 また、本実施形態に係る第1光学系21は、複数のレンズ21aがアレイ状に配置された構成である。 Further, the first optical system 21 according to the present embodiment has a configuration in which a plurality of lenses 21a are arranged in an array.
 この場合、第1光学系21を同形状の単玉レンズを用いた簡素な構成で設計できる。 In this case, the first optical system 21 can be designed with a simple configuration using a single lens of the same shape.
 また、本実施形態に係る結合光学系20は、複数のレンズ21a間のピッチPmが、複数の光源間のピッチ、複数の受光素子間のピッチ及び複数のシングルコアファイバ100間のピッチPoutのいずれかと等しくなるよう設計されている。 The coupling optical system 20 according to this embodiment, the pitch Pm between the plurality of lenses 21a are between the plurality of light sources pitch, the pitch P out between pitch and a plurality of single-core fiber 100 between the plurality of light receiving elements Designed to be equal to either.
 この場合、たとえば、複数のシングルコアファイバ100からの光(主光線Pr)それぞれを、対応する複数のレンズ21aの面に垂直に入射させることができる(すなわち、シングルコアファイバ100からの光束を軸上光束として扱うことができる)。或いは、複数のレンズ21aから出射された複数の光(主光線Pr)それぞれを複数のシングルコアファイバ100の端面Caや複数の受光素子の面に垂直に入射させることができる。従って、結合効率の低下を抑制することが可能となる。 In this case, for example, each of the light (principal ray Pr) from the plurality of single core fibers 100 can be perpendicularly incident on the surface of the corresponding plurality of lenses 21a (that is, the light beam from the single core fiber 100 is axially coupled). Can be treated as the upper luminous flux). Alternatively, each of the plurality of lights (principal rays Pr) emitted from the plurality of lenses 21a can be perpendicularly incident on the end surfaces Ca of the plurality of single core fibers 100 and the surfaces of the plurality of light receiving elements. Accordingly, it is possible to suppress a decrease in coupling efficiency.
 また、本実施形態に係る第2光学系22は、両側テレセントリック光学系である。 Further, the second optical system 22 according to this embodiment is a double-sided telecentric optical system.
 また、本実施形態に係る第2光学系22の倍率βrは、複数の光源間のピッチ、複数の受光素子間のピッチ及び複数のシングルコアファイバ100間のピッチPoutのいずれかと、マルチコアファイバ1のコアC間のピッチPinとの比に等しくなるよう設計されている。 In addition, the magnification βr of the second optical system 22 according to the present embodiment is any of the pitch between the plurality of light sources, the pitch between the plurality of light receiving elements, and the pitch P out between the plurality of single core fibers 100, and the multicore fiber 1. It is designed to be equal to the ratio of the pitch P in between the cores C k of the two.
 この場合、結合光学系20からの複数の光(主光線Pr)それぞれを、対応するマルチコアファイバ1のコアC(或いは、対応する複数の受光素子、ファイバ束10)に垂直に入射させることが可能となる。従って、結合効率の低下を抑制することが可能となる。 In this case, each of the plurality of lights (principal rays Pr) from the coupling optical system 20 may be perpendicularly incident on the core C k (or the corresponding plurality of light receiving elements, the fiber bundle 10) of the corresponding multicore fiber 1. It becomes possible. Accordingly, it is possible to suppress a decrease in coupling efficiency.
<第2実施形態>
 次に、図3~図6を参照して、第2実施形態に係る結合光学系30の構成例を説明する。本実施形態では、ファイバ束10と、マルチコアファイバ1とを結合する場合について述べる。図3は、結合光学系30、ファイバ束10及びマルチコアファイバ1の軸方向の断面図である。なお、ファイバ束10の構成等、第1実施形態と同様の構成等については詳細な説明を省略する場合がある。
<Second Embodiment>
Next, a configuration example of the coupling optical system 30 according to the second embodiment will be described with reference to FIGS. In the present embodiment, a case where the fiber bundle 10 and the multi-core fiber 1 are coupled will be described. FIG. 3 is a sectional view in the axial direction of the coupling optical system 30, the fiber bundle 10, and the multicore fiber 1. A detailed description of the configuration similar to that of the first embodiment, such as the configuration of the fiber bundle 10, may be omitted.
[結合光学系の構成]
 本実施形態に係る結合光学系30は、コリメート光学系31と、偏向光学系32と、結像光学系33とを含んで構成されている。
[Configuration of coupling optical system]
The coupling optical system 30 according to the present embodiment includes a collimating optical system 31, a deflection optical system 32, and an imaging optical system 33.
 コリメート光学系31は、ファイバ束10からの複数の光それぞれをコリメートさせる機能を有している。コリメート光学系31は、アレイ状に配置された複数のコリメートレンズ31aを含んで構成されている。複数のコリメートレンズ31aは、ファイバ束10に含まれるシングルコアファイバ100と等しい数だけ設けられている。コリメート光学系31(コリメートレンズ31a)は、各端面Caから出射された光(主光線Pr)が、対応するコリメートレンズ31aの面に対して垂直に入射する位置に配置されている(なお、この場合には端面Caが絞りとして機能している)。複数のコリメートレンズ31aは、そのピッチPcl(隣り合うコリメートレンズ31aの光軸間距離。たとえば、中心に配置されたコリメートレンズ31aのレンズ中心と、その周辺に配置されたコリメートレンズ31aのレンズ中心との間隔)が複数のシングルコアファイバ100間のピッチPout(隣り合うシングルコアファイバ100の光軸間距離)と等しくなるよう配置されている。なお、コリメート光学系31は、偏向光学系32よりもファイバ束10側に配置されている。本実施形態において、ファイバ束10からの光が入射するコリメートレンズ31aの面は、「入射面」の一例である。 The collimating optical system 31 has a function of collimating each of a plurality of lights from the fiber bundle 10. The collimating optical system 31 includes a plurality of collimating lenses 31a arranged in an array. The plurality of collimating lenses 31 a are provided in the same number as the single core fibers 100 included in the fiber bundle 10. The collimating optical system 31 (collimating lens 31a) is disposed at a position where light (principal ray Pr) emitted from each end face Ca enters perpendicularly to the surface of the corresponding collimating lens 31a. In this case, the end face Ca functions as a diaphragm). The plurality of collimating lenses 31a has a pitch P cl (the distance between the optical axes of adjacent collimating lenses 31a. For example, the lens center of the collimating lens 31a disposed at the center and the lens center of the collimating lens 31a disposed at the periphery thereof. Is arranged to be equal to the pitch P out between the plurality of single core fibers 100 (the distance between the optical axes of adjacent single core fibers 100). The collimating optical system 31 is arranged on the fiber bundle 10 side with respect to the deflection optical system 32. In the present embodiment, the surface of the collimating lens 31a on which the light from the fiber bundle 10 is incident is an example of an “incident surface”.
 偏向光学系32は、入射する複数の光(本実施形態では、ファイバ束10からの光)を個別に偏向する機能を有している。本実施形態における偏向光学系32は、第1偏向プリズム32a及び第2偏向プリズム32bを含んで構成されている。本実施形態における第1偏向プリズム32aは、「第1偏向光学系」の一例である。本実施形態における第2偏向プリズム32bは、「第2偏向光学系」の一例である。 The deflection optical system 32 has a function of individually deflecting a plurality of incident light (in this embodiment, light from the fiber bundle 10). The deflection optical system 32 in this embodiment includes a first deflection prism 32a and a second deflection prism 32b. The first deflection prism 32a in the present embodiment is an example of a “first deflection optical system”. The second deflection prism 32b in the present embodiment is an example of a “second deflection optical system”.
 本実施形態における第1偏向プリズム32aは、コリメート光学系31(コリメートレンズ31a)でコリメートされた複数の光それぞれをコリメートされたまま所定の方向に偏向させる機能を有している。なお、図3に示すように、第1偏向プリズム32aは、その中央を通過する光は偏向されないよう設計されている。第1偏向プリズム32aは、入射する光の数に対応した入射面321a及び出射面322aを有している。また、本実施形態における第1偏向プリズム32aは、コリメート光学系31からの複数の光(主光線Pr)それぞれが、対応する入射面321aに対して垂直に入射されるよう設計されている。 The first deflection prism 32a in this embodiment has a function of deflecting each of a plurality of lights collimated by the collimating optical system 31 (collimating lens 31a) in a predetermined direction while being collimated. As shown in FIG. 3, the first deflection prism 32a is designed so that light passing through the center thereof is not deflected. The first deflection prism 32a has an incident surface 321a and an exit surface 322a corresponding to the number of incident light. The first deflecting prism 32a in the present embodiment is designed such that each of the plurality of lights (principal rays Pr) from the collimating optical system 31 is incident on the corresponding incident surface 321a perpendicularly.
 本実施形態において、入射面321aは平面で形成されている。出射面322aは、複数の光の数に対応した凸面に形成されている。ここで、出射面322aは、所定の角度γだけ傾斜するよう設計されている。 In the present embodiment, the incident surface 321a is a flat surface. The emission surface 322a is formed as a convex surface corresponding to the number of light beams. Here, the emission surface 322a is designed to be inclined by a predetermined angle γ.
 この傾斜角度γは、たとえば以下のようにして決定される。図4Aは、第1偏向プリズム32aの断面の一部を拡大した図である。ここでは、第1偏向プリズム32aの出射面322aに入射する光(図では主光線Prのみ示す)の入射角度をγin、第1偏向プリズム32aにより偏向されて出射する光(図では主光線Prのみ示す)の出射角度をγout、複数のシングルコアファイバ100間のピッチをPout、マルチコアファイバ1のコアC間のピッチをPin、第1偏向プリズム32aと第2偏向プリズム32bとの間隔をtとする。なお、入射角度γinは、傾斜角度γと等しい。 This inclination angle γ is determined as follows, for example. FIG. 4A is an enlarged view of a part of the cross section of the first deflection prism 32a. Here, the incident angle of light incident on the exit surface 322a of the first deflecting prism 32a (only the principal ray Pr is shown in the figure) is γ in , and the light deflected by the first deflecting prism 32a and emitted (the principal ray Pr is shown in the figure). emission angle gamma out only shown), a pitch between the plurality of single-core fiber 100 P out, the pitch between the cores C k of the multicore fiber 1 P in, the first deflecting prism 32a and the second deflecting prism 32b Let the interval be t. The incident angle γ in is equal to the tilt angle γ.
 このとき、出射角度γoutは、以下の式(4)により決定される。 At this time, the emission angle γ out is determined by the following equation (4).
 Tan[γout]=(Pout-Pin)/t・・・(4) Tan [γ out ] = (P out −P in ) / t (4)
 また、第1偏向プリズム32aの母材屈折率をN、出射側の媒質の屈折率をN´とした場合、入射角度γinは、以下の式(5)の関係が成り立つ。 Further, when the refractive index of the base material of the first deflecting prism 32a is N and the refractive index of the medium on the exit side is N ′, the incident angle γ in satisfies the relationship of the following equation (5).
 Nsin[γin]=N´sin[γout]・・・(5) Nsin [γ in ] = N′sin [γ out ] (5)
 たとえば、Poutが120μm、Pinが40μm、tが0.3mmで設計される場合、出射角度γoutは、約14.9°となる。また、ここでは出射側の媒質は空気(N´=1)であるとする。この出射角度γoutに対し、第1偏向プリズム32aを母材屈折率が1.6の材料で形成するときには、入射角度γinは、約9.25°となる。従って、傾斜角度γが約9.25°となるよう、第1偏向プリズム32aの出射面322aを設計することができる。 For example, when P out is designed to be 120 μm, P in is 40 μm, and t is 0.3 mm, the emission angle γ out is about 14.9 °. Here, the medium on the emission side is assumed to be air (N ′ = 1). When the first deflecting prism 32a is formed of a material having a base material refractive index of 1.6 with respect to the emission angle γ out , the incident angle γ in is about 9.25 °. Therefore, the emission surface 322a of the first deflecting prism 32a can be designed so that the inclination angle γ is about 9.25 °.
 なお、入射面321aを凸面とすることも可能である。この場合、傾斜角度γ´は、たとえば以下のようにして決定される。図4Bは、第1偏向プリズム32aの断面の一部を拡大した図である。ここでは、第1偏向プリズム32aの入射面321aに入射する光(図では主光線Prのみ示す)の入射角度をγ´in、入射した光の偏向角度をγ´、入射面321aの垂線に対する入射した光の角度をγ´、第1偏向プリズム32aにより偏向されて出射する光(図では主光線Prのみ示す)の出射角度をγ´out、複数のシングルコアファイバ100間のピッチをPout、マルチコアファイバ1のコアC間のピッチをPin、第1偏向プリズム32aと第2偏向プリズム32bとの間隔をtとする。なお、入射角度γ´inは、傾斜角度γ´と等しい。 Note that the incident surface 321a may be a convex surface. In this case, the inclination angle γ ′ is determined as follows, for example. FIG. 4B is an enlarged view of a part of the cross section of the first deflecting prism 32a. Here, the incident angle of light incident on the incident surface 321a of the first deflecting prism 32a (only the principal ray Pr is shown in the figure) is γ ′ in , the deflection angle of the incident light is γ ′ 1 , and the perpendicular to the incident surface 321a The angle of the incident light is γ ′ 2 , the emission angle of the light that is deflected and emitted by the first deflecting prism 32 a (only the principal ray Pr is shown in the figure) is γ ′ out , and the pitch between the single core fibers 100 is P out , the pitch between the cores C k of the multi-core fiber 1 is P in , and the interval between the first deflection prism 32a and the second deflection prism 32b is t. The incident angle γ ′ in is equal to the inclination angle γ ′.
 このとき、出射角度γoutは、上記式(4)により決定される。 At this time, the emission angle γ out is determined by the above equation (4).
 また、入射角度γ´in、偏向角度γ´、角度γ´は、以下の式(6)の関係となっている。 Further, the incident angle γ ′ in , the deflection angle γ ′ 1 , and the angle γ ′ 2 have the relationship of the following formula (6).
 γ´=γ´in-γ´・・・(6) γ ′ 2 = γ ′ in −γ ′ 1 (6)
 また、第1偏向プリズム32aの母材屈折率をN、出射側の媒質の屈折率をN´とした場合、以下の式(7)が成り立つ。 Further, when the refractive index of the base material of the first deflecting prism 32a is N and the refractive index of the medium on the exit side is N ′, the following equation (7) is established.
 Nsin[γ´]=N´sin[γ´out]・・・(7) Nsin [γ ′ 1 ] = N′sin [γ ′ out ] (7)
 更に、入射角度γ´inと角度γ´は、スネルの法則により以下の式(8)の関係が成り立つ。 Further, the incident angle γ ′ in and the angle γ ′ 2 have the relationship of the following expression (8) according to Snell's law.
 N´sin[γ´in]=N´sin[γ´]・・・(8) N′sin [γ ′ in ] = N′sin [γ ′ 2 ] (8)
 たとえば、Poutが120μm、Pinが40μm、tが0.3mmで設計される場合、出射角度γoutは、約14.9°となる。また、ここでは出射側の媒質は空気(N´=1)であるとする。この出射角度γoutに対し、第1偏向プリズム32aを母材屈折率が1.6の材料で形成するときには、入射角度γinは、約24°となる。従って、傾斜角度γ´が約24°となるよう、第1偏向プリズム32aの入射面321aを設計することができる。 For example, when P out is designed to be 120 μm, P in is 40 μm, and t is 0.3 mm, the emission angle γ out is about 14.9 °. Here, the medium on the emission side is assumed to be air (N ′ = 1). When the first deflecting prism 32a is formed of a material having a base material refractive index of 1.6 with respect to the emission angle γ out , the incident angle γ in is about 24 °. Therefore, the incident surface 321a of the first deflection prism 32a can be designed so that the inclination angle γ ′ is about 24 °.
 本実施形態における第2偏向プリズム32bは、第1偏向プリズム32aにより偏向された光それぞれを更に偏向させる機能を有している。本実施形態では、第2偏向プリズム32bからの複数の光(主光線Pr)それぞれが、結像光学系33に対して垂直に入射する方向に偏向させる。第2偏向プリズム32bで偏向された場合でも、複数の光それぞれがコリメートされた状態は変わらない。なお、図3に示すように、第2偏向プリズム32bは、その中央を通過する光は偏向されないよう設計されている。第2偏向プリズム32bは、入射する光の数に対応した入射面321b及び出射面322bを有している。本実施形態において、入射面321bは複数の光の数に対応した凹面で形成されている。出射面322bは、平面に形成されている。また、出射面322bを凹面とすることもできる。なお、第2偏向プリズム32bの凹面の傾斜角度は、上述の第1偏向プリズム32aの傾斜角度を求める方法と同様の手法により求めることができる。 The second deflection prism 32b in the present embodiment has a function of further deflecting each light deflected by the first deflection prism 32a. In the present embodiment, each of the plurality of lights (principal rays Pr) from the second deflecting prism 32 b is deflected in a direction perpendicularly incident on the imaging optical system 33. Even when the light is deflected by the second deflecting prism 32b, the state in which each of the plurality of lights is collimated does not change. As shown in FIG. 3, the second deflection prism 32b is designed so that light passing through the center thereof is not deflected. The second deflection prism 32b has an incident surface 321b and an exit surface 322b corresponding to the number of incident light. In the present embodiment, the incident surface 321b is formed as a concave surface corresponding to the number of light beams. The emission surface 322b is formed in a plane. Further, the emission surface 322b can be a concave surface. The inclination angle of the concave surface of the second deflection prism 32b can be obtained by a method similar to the method for obtaining the inclination angle of the first deflection prism 32a described above.
 なお、本実施形態では、第1偏向プリズム32aと第2偏向プリズム32bが別体の構成について説明したが、偏向光学系32は、1つの偏向プリズム32´で構成されていてもよい。図5にその一例を示す。図5は、偏向プリズム32´の側面図である。偏向プリズム32´は、コリメート光学系31からの光が入射する入射面32´a及び結像光学系33に対して光を出射する出射面32´bが形成されている。入射面32´aは、たとえば上述の第1偏向プリズム32aの出射面322aと同様に形成されている。出射面32´bは、たとえば上述の第2偏向プリズム32bの入射面321bと同様に形成されている。 In the present embodiment, the first deflecting prism 32a and the second deflecting prism 32b are separately configured. However, the deflecting optical system 32 may be composed of one deflecting prism 32 ′. An example is shown in FIG. FIG. 5 is a side view of the deflection prism 32 ′. The deflecting prism 32 ′ is formed with an incident surface 32 ′ a on which light from the collimating optical system 31 is incident and an output surface 32 ′ b that emits light to the imaging optical system 33. The incident surface 32′a is formed, for example, in the same manner as the emission surface 322a of the first deflection prism 32a described above. The exit surface 32'b is formed, for example, in the same manner as the entrance surface 321b of the second deflection prism 32b described above.
 また、偏向光学系32は、所定の偏向度Rを有している。偏向度Rとは、偏向光学系32に入射する主光線Prの角度と偏向光学系32から出射した主光線Prの角度の変化量である。偏向度は、偏向光学系32に入射する光の光束高さ(中心の光束から他の光束までの距離)と偏向光学系32から出射する光の光束高さの比で表すこともできる。 The deflection optical system 32 has a predetermined degree of deflection R. The degree of deflection R is the amount of change in the angle of the principal ray Pr incident on the deflection optical system 32 and the angle of the principal ray Pr emitted from the deflection optical system 32. The degree of deflection can also be expressed by the ratio of the light flux height of light incident on the deflection optical system 32 (the distance from the central light flux to another light flux) and the light flux height of light emitted from the deflection optical system 32.
 偏向光学系32が第1偏向プリズム32a及び第2偏向プリズム32bからなる場合、偏向度Rは、第1偏向プリズム32aに入射する主光線Prの角度と第2偏向プリズム32bから出射した主光線Prの角度の変化量である。なお、この場合、偏向度Rは、第1偏向プリズム32aの偏向度R1及び第2偏向プリズム32bの偏向度R2を合成したものともいえる。 When the deflection optical system 32 includes the first deflection prism 32a and the second deflection prism 32b, the degree of deflection R depends on the angle of the principal ray Pr incident on the first deflection prism 32a and the principal ray Pr emitted from the second deflection prism 32b. The amount of change in the angle. In this case, it can be said that the degree of deflection R is a combination of the degree of deflection R1 of the first deflection prism 32a and the degree of deflection R2 of the second deflection prism 32b.
 本実施形態においては、第1偏向プリズム32aの偏向度R1と第2偏向プリズム32bの偏向度R2とが等しくなるよう設計されている。また、本実施形態においては、偏向度R(R1+R2)が、複数のシングルコアファイバ100間のピッチPoutとマルチコアファイバ1のコアC間のピッチPinとの比に等しくなるよう設計されている。 In the present embodiment, the degree of deflection R1 of the first deflection prism 32a is designed to be equal to the degree of deflection R2 of the second deflection prism 32b. In the present embodiment, the degree of deflection R (R1 + R2) is designed to be equal to the ratio of the pitch P out between the plurality of single core fibers 100 and the pitch P in between the cores C k of the multi-core fiber 1. Yes.
 結像光学系33は、偏向光学系32により偏向された複数の光(光束)それぞれを、マルチコアファイバ1の各コアCに結像させる機能を有している。結像光学系33は、アレイ状に配置された複数の結像光学レンズ33aを含んで構成されている。複数の結像光学レンズ33aは、マルチコアファイバ1の各コアCと等しい数だけ設けられている。結像光学系33(結像光学レンズ33a)は、偏向光学系32から出射された光(主光線Pr)が、対応する各コアCの端面Eに対して垂直に入射する位置に配置されている。複数の結像光学レンズ33aは、そのピッチPim(隣り合う結像光学レンズ33aの光軸間距離。たとえば、中心に配置された結像光学レンズ33aのレンズ中心と、その周辺に配置された結像光学レンズ33aのレンズ中心との間隔)が各コアC間のピッチPinと等しくなるよう配置されている。結像光学系33は、出射した光(光束)が所定の開口数NA´´(=Nsinθ´´)となるよう設計されている。θ´´は、結像光学系33から出射された光(光束)がマルチコアファイバ1(各コアCの端面E)に入射する際の主光線Pr及びマージナル光線Mrがなす角度である。本実施形態において、偏向光学系32からの光が出射される結像光学レンズ33aの面は、「出射面」の一例である。また、本実施形態において、端面Eは、「受光面」の一例である。 The imaging optical system 33 has a function of imaging each of a plurality of lights (light beams) deflected by the deflection optical system 32 on each core C k of the multi-core fiber 1. The imaging optical system 33 includes a plurality of imaging optical lenses 33a arranged in an array. The plurality of imaging optical lenses 33a are provided in the same number as each core C k of the multi-core fiber 1. An imaging optical system 33 (the imaging optical lens 33a), the light emitted from the deflecting optical system 32 (main beam Pr) is disposed in a position that is incident perpendicularly to the end face E k of each core C k corresponding Has been. The plurality of image forming optical lenses 33a are arranged at the pitch P im (the distance between the optical axes of adjacent image forming optical lenses 33a. For example, the center of the image forming optical lens 33a disposed at the center and the periphery thereof. distance between the lens center of the image-forming optical lens 33a) is arranged to be equal to the pitch P in between the core C k. The imaging optical system 33 is designed so that the emitted light (light beam) has a predetermined numerical aperture NA ″ (= Nsin θ ″). θ'', the light (light beam) emitted from the imaging optical system 33 is an angle principal ray Pr and marginal rays Mr forms as they enter the multi-core fiber 1 (end surface E k of each core C k). In the present embodiment, the surface of the imaging optical lens 33a from which the light from the deflection optical system 32 is emitted is an example of an “emission surface”. In the present embodiment, the end surface E k is an example of a “light receiving surface”.
 また、コリメート光学系31に入射する光の開口数NAと結像光学系33から出射される光の開口数NA´´が異なると結合効率の低下を招く。従って、本実施形態では、開口数NAと開口数NA´´とが等しくなるよう結合光学系30が設計されている。 Further, if the numerical aperture NA of the light incident on the collimating optical system 31 and the numerical aperture NA ″ of the light emitted from the imaging optical system 33 are different, the coupling efficiency is lowered. Therefore, in this embodiment, the coupling optical system 30 is designed so that the numerical aperture NA and the numerical aperture NA ″ are equal.
 また、本実施形態では、開口数NAと開口数NA´´とを等しくするため、コリメート光学系31(コリメートレンズ31a)の焦点距離fclと結像光学系33(結像光学レンズ33a)の焦点距離fimとが等しくなるよう結合光学系30が設計されている。 In this embodiment, in order to make the numerical aperture NA equal to the numerical aperture NA ″, the focal length f cl of the collimating optical system 31 (collimating lens 31a) and the imaging optical system 33 (imaging optical lens 33a) are set. The coupling optical system 30 is designed so that the focal length f im becomes equal.
 なお、焦点距離fclと焦点距離fimとの関係は、用いる光学素子の公差や設計上のバラツキにより、必ずしも等しくする必要はない。少なくとも光伝送に必要な結合効率を確保できる値、たとえば、以下の式(9)を満たす値であればよい。 Note that the relationship between the focal length f cl and the focal length f im is not necessarily equal due to tolerances of optical elements used and variations in design. Any value that can secure at least the coupling efficiency necessary for optical transmission, for example, a value that satisfies the following equation (9) may be used.
 0.9<fim/fcl<1.1・・・(9) 0.9 <f im / f cl <1.1 (9)
[光の進み方について]
 次に、図3を参照して、本実施形態に係る光の進み方について説明する。本実施形態では、ファイバ束10から光が出射する構成について説明する。すなわち、本実施形態におけるファイバ束10は、「入射側素子」の一例である。一方、本実施形態におけるマルチコアファイバ1は、「出射側素子」の一例である。
[How light travels]
Next, how light travels according to the present embodiment will be described with reference to FIG. In the present embodiment, a configuration in which light is emitted from the fiber bundle 10 will be described. That is, the fiber bundle 10 in the present embodiment is an example of an “incident side element”. On the other hand, the multi-core fiber 1 in the present embodiment is an example of an “emission side element”.
 まず、複数のシングルコアファイバ100内それぞれに設けられたコアCの端面Caから光が出射される。各端面Caから出射された光は、それぞれ拡散しながら、所定の開口数NAでコリメート光学系31(コリメートレンズ31a)に入射する。本実施形態では、端面Caから出射されたそれぞれの光(主光線Pr)は、コリメート光学系31(コリメートレンズ31aの面)に対して垂直に入射される。 First, light is emitted from the end face Ca of the core C provided in each of the plurality of single core fibers 100. Light emitted from each end face Ca enters the collimating optical system 31 (collimating lens 31a) with a predetermined numerical aperture NA while being diffused. In the present embodiment, each light (principal ray Pr) emitted from the end face Ca is incident perpendicularly to the collimating optical system 31 (the surface of the collimating lens 31a).
 コリメート光学系31に入射した複数の光それぞれは、コリメートされ、第1偏向プリズム32aに入射する。第1偏向プリズム32aは、所定の偏向度R1で複数の光それぞれを個別に偏向させる。偏向された光それぞれは、第2偏向プリズム32bに入射する。 Each of the plurality of lights incident on the collimating optical system 31 is collimated and enters the first deflecting prism 32a. The first deflection prism 32a individually deflects each of the plurality of lights with a predetermined degree of deflection R1. Each deflected light is incident on the second deflecting prism 32b.
 第2偏向プリズム32bは、所定の偏向度R2で複数の光を個別に偏向させる。第2偏向プリズム32bで偏向された光それぞれは、結像光学系33に入射する。結像光学系33に入射した光それぞれは、対応するマルチコアファイバ1のコアCに入射する。 The second deflection prism 32b individually deflects a plurality of lights with a predetermined degree of deflection R2. Each light deflected by the second deflection prism 32 b enters the imaging optical system 33. Each light incident on the imaging optical system 33 is incident on the core C k of the corresponding multi-core fiber 1.
 このとき、本実施形態では、焦点距離fclと焦点距離fimとが等しくなっている。従って、各端面Caから出射された光それぞれの開口数NAを変えることなく(NA=NA´´)マルチコアファイバ1の複数のコアC(端面E)に対し、対応する光(主光線Pr)を垂直に入射させることが可能となる。従って、光学素子間の結合効率が高い状態を維持したまま光の伝送が可能となる。 At this time, in this embodiment, the focal length f cl and the focal length f im are equal. Accordingly, the light (principal ray Pr) corresponding to the plurality of cores C k (end faces E k ) of the multi-core fiber 1 without changing the numerical aperture NA of the light emitted from each end face Ca (NA = NA ″). ) Can be incident vertically. Therefore, it is possible to transmit light while maintaining a high coupling efficiency between the optical elements.
 具体例として、複数のシングルコアファイバ100間のピッチPoutが120μmのファイバ束10と、コアC間のピッチPinが40μmのマルチコアファイバ1とを結合する場合について説明する。この場合、ピッチが1/3に縮小されるため、第1偏向プリズム32aの偏向度R1と第2偏向プリズム32bの偏向度R2を合成した値が3となるように設計すれば、開口数NAを変えることなく(NA=NA´´)マルチコアファイバ1の複数のコアCに対し、対応する光(主光線Pr)を垂直入射させることが可能となる。この場合、ピッチPclは120μm、ピッチPimは40μmであることが望ましい。 As a specific example, a fiber bundle 10 of pitch P out is 120μm between the plurality of single-core fiber 100 will be described a case where the pitch P in between the core C k are attached to the multi-core fiber 1 of 40 [mu] m. In this case, since the pitch is reduced to 1/3, if the design is made such that the value obtained by combining the deflection degree R1 of the first deflection prism 32a and the deflection degree R2 of the second deflection prism 32b is 3, the numerical aperture NA Without changing (NA = NA ″), the corresponding light (principal ray Pr) can be vertically incident on the plurality of cores C k of the multi-core fiber 1. In this case, it is desirable that the pitch P cl is 120 μm and the pitch P im is 40 μm.
 なお、ピッチPin及びピッチPoutは、マルチコアファイバ1やファイバ束10の光学設計時に任意に設定することができる。たとえば、ピッチPoutは、100~150μm程度の間で設定できる。また、ピッチPinは、たとえば、30~50μm程度の間で任意に設定できる。 Note that the pitch P in and the pitch P out can be arbitrarily set when the multi-core fiber 1 or the fiber bundle 10 is optically designed. For example, the pitch P out can be set between about 100 to 150 μm. The pitch P in, for example, can be arbitrarily set between about 30 ~ 50 [mu] m.
[変形例3]
 本実施形態では、ファイバ束10から出射された複数の光を、結合光学系30を介してマルチコアファイバ1に導く例について説明したが、光を出射する対象はこれに限られない。たとえば、ファイバ束10の代わりに複数の光源を用いることも可能である。この場合、光源が「入射側素子」の一例である。また、この場合、上述の「Pout」は、隣り合う光源間のピッチとなる。
[Modification 3]
In the present embodiment, the example in which a plurality of lights emitted from the fiber bundle 10 are guided to the multicore fiber 1 via the coupling optical system 30 has been described. However, the target for emitting the light is not limited thereto. For example, a plurality of light sources can be used instead of the fiber bundle 10. In this case, the light source is an example of an “incident side element”. In this case, the above-mentioned “P out ” is a pitch between adjacent light sources.
[変形例4]
 或いは、上述の結合光学系30を用い、マルチコアファイバ1(複数のコアC)から出射される複数の光それぞれを、ファイバ束10又は受光素子(図示なし)に導くことも可能である。この場合、マルチコアファイバ1が、「入射側素子」の一例である。また、ファイバ束10又は受光素子が「出射側素子」の一例である。以下、マルチコアファイバ1から出射される光それぞれを、ファイバ束10に導く例について述べる。
[Modification 4]
Alternatively, it is also possible to guide each of a plurality of lights emitted from the multi-core fiber 1 (a plurality of cores C k ) to the fiber bundle 10 or a light receiving element (not shown) using the above-described coupling optical system 30. In this case, the multi-core fiber 1 is an example of an “incident side element”. Further, the fiber bundle 10 or the light receiving element is an example of the “outgoing side element”. Hereinafter, an example in which each light emitted from the multicore fiber 1 is guided to the fiber bundle 10 will be described.
 本変形例における結像光学系33は、マルチコアファイバ1から出射される複数の光それぞれをコリメートする機能を有している。すなわち、本変形例においては、結像光学系33が「コリメート光学系」に当たる。本変形例において、マルチコアファイバ1からの光が入射する結像光学レンズ33aの面は、「入射面」の一例である。また、本変形例における結像光学レンズ33a間のピッチは、マルチコアファイバ1のコアC間のピッチと等しくなっている。 The imaging optical system 33 in this modification has a function of collimating each of a plurality of lights emitted from the multicore fiber 1. That is, in the present modification, the imaging optical system 33 corresponds to the “collimating optical system”. In the present modification, the surface of the imaging optical lens 33a on which the light from the multicore fiber 1 is incident is an example of an “incident surface”. In addition, the pitch between the imaging optical lenses 33 a in this modification is equal to the pitch between the cores C k of the multicore fiber 1.
 本変形例における偏向光学系32は、結像光学系33からの複数の光それぞれを偏向ささせる機能を有している。偏向された光(主光線Pr)それぞれは、コリメート光学系31に垂直に入射する。 The deflection optical system 32 in this modification has a function of deflecting each of a plurality of lights from the imaging optical system 33. Each deflected light (principal ray Pr) enters the collimating optical system 31 perpendicularly.
 本変形例におけるコリメート光学系31は、偏向光学系32から出射される複数の光それぞれを、対応するシングルコアファイバ100のコアCに結像する機能を有している。すなわち、本変形例においては、コリメート光学系31が「結像光学系」に当たる。本変形例において、偏向光学系32からの光が出射されるコリメート光学系31(コリメートレンズ31a)の面は、「出射面」の一例である。また、本変形例において、端面Caは、「受光面」の一例である。また、本変形例において、コリメートレンズ31a間のピッチは、シングルコアファイバ100のコアC間のピッチと等しくなっている。 The collimating optical system 31 in this modification has a function of imaging each of a plurality of lights emitted from the deflection optical system 32 on the core C of the corresponding single core fiber 100. That is, in this modification, the collimating optical system 31 corresponds to the “imaging optical system”. In the present modification, the surface of the collimating optical system 31 (collimating lens 31a) from which the light from the deflection optical system 32 is emitted is an example of an “exiting surface”. In the present modification, the end surface Ca is an example of a “light receiving surface”. Further, in this modification, the pitch between the collimating lenses 31 a is equal to the pitch between the cores C of the single core fiber 100.
 本変形例において、偏向光学系32として実施形態と同様、複数の偏向光学系(第1偏向プリズム32a、第2偏向プリズム32b)を用いる場合、第1偏向プリズム32aが「第2偏向光学系」の一例となる。また、第2偏向プリズム32bが「第1偏向光学系」の一例となる。 In the present modification, when a plurality of deflection optical systems (first deflection prism 32a and second deflection prism 32b) are used as the deflection optical system 32, the first deflection prism 32a is the “second deflection optical system”. An example. The second deflection prism 32b is an example of the “first deflection optical system”.
 本変形例におけるθは、コリメート光学系31から出射された光(光束)がファイバ束10(各シングルコアファイバ100)に入射する際の主光線Pr及びマージナル光線Mrがなす角度である。θ´´は、マルチコアファイバ1から出射された光(光束)が結像光学系33に入射する際の主光線Pr及びマージナル光線Mrがなす角度である。 Θ in this modification is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light flux) emitted from the collimating optical system 31 enters the fiber bundle 10 (each single core fiber 100). θ ″ is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light beam) emitted from the multicore fiber 1 enters the imaging optical system 33.
 また、「出射側素子」として受光素子を用いる場合、本変形例における偏向度Rは、複数の受光素子間のピッチと、マルチコアファイバ1のコアC間のピッチとの比に等しい。また、この場合、コリメートレンズ31a間のピッチは、受光素子間のピッチと等しくなっている。 When a light receiving element is used as the “emission side element”, the degree of deflection R in the present modification is equal to the ratio between the pitch between the plurality of light receiving elements and the pitch between the cores C k of the multicore fiber 1. In this case, the pitch between the collimating lenses 31a is equal to the pitch between the light receiving elements.
[作用・効果]
 本実施形態(変形例を含む)の作用及び効果について説明する。
[Action / Effect]
The operation and effects of the present embodiment (including modifications) will be described.
 本実施形態に係る結合光学系30は、入射する複数の光を個別に偏向する偏向光学系32を含む。 The coupling optical system 30 according to the present embodiment includes a deflection optical system 32 that individually deflects a plurality of incident light.
 このように、結合光学系30に偏向光学系32を用いた場合にも結合効率を落とすことなく光を伝送することが出来る。すなわち、本実施形態における結合光学系30によれば、結合効率の低下を抑制しつつ、光学素子とマルチコアファイバ1とを光学的に結合することができる。 As described above, even when the deflection optical system 32 is used as the coupling optical system 30, light can be transmitted without reducing the coupling efficiency. That is, according to the coupling optical system 30 in the present embodiment, the optical element and the multicore fiber 1 can be optically coupled while suppressing a decrease in coupling efficiency.
 また、本実施形態に係る結合光学系30は、コリメート光学系31を有する。コリメート光学系31(コリメートレンズ31a)は、入射側素子のいずれかからの光をコリメートする。偏向光学系32は、コリメート光学系31でコリメートされた光を偏向する。 Further, the coupling optical system 30 according to the present embodiment includes a collimating optical system 31. The collimating optical system 31 (collimating lens 31a) collimates light from any of the incident side elements. The deflecting optical system 32 deflects the light collimated by the collimating optical system 31.
 コリメート光学系31をこのように配置することで、結合光学系30の構成を簡素化することが可能となる。 By arranging the collimating optical system 31 in this way, the configuration of the coupling optical system 30 can be simplified.
 また、本実施形態に係るコリメート光学系31は、複数のコリメートレンズ31aがアレイ状に配置された構成である。 Further, the collimating optical system 31 according to the present embodiment has a configuration in which a plurality of collimating lenses 31a are arranged in an array.
 この場合、コリメート光学系31を同形状の単玉レンズを用いた簡素な構成で設計できる。 In this case, the collimating optical system 31 can be designed with a simple configuration using a single lens of the same shape.
 また、本実施形態に係る複数のコリメートレンズ31a間のピッチPclは、複数の光源間のピッチ、複数のシングルコアファイバ間のピッチPout及びマルチコアファイバのコア間のピッチPinのいずれかと等しくなるよう設計されている。 In addition, the pitch P cl between the plurality of collimating lenses 31a according to the present embodiment is equal to any of the pitch between the plurality of light sources, the pitch P out between the plurality of single core fibers, and the pitch P in between the cores of the multicore fibers. Designed to be
 この場合、たとえば、複数のシングルコアファイバ100からの光(主光線Pr)それぞれをコリメートレンズ31aの面に垂直に入射させることができる(すなわち、シングルコアファイバ100からの光束を軸上光束として扱うことができる)。或いは、コリメートレンズ31aから出射された複数の光(主光線Pr)それぞれを複数のシングルコアファイバ100の端面Caや複数の受光素子の面に垂直に入射させることができる。従って、結合効率の低下を抑制することが可能となる。 In this case, for example, each of the light (principal ray Pr) from the plurality of single core fibers 100 can be perpendicularly incident on the surface of the collimating lens 31a (that is, the light flux from the single core fiber 100 is treated as an axial light flux. be able to). Alternatively, each of the plurality of lights (principal rays Pr) emitted from the collimator lens 31a can be perpendicularly incident on the end surfaces Ca of the plurality of single core fibers 100 and the surfaces of the plurality of light receiving elements. Accordingly, it is possible to suppress a decrease in coupling efficiency.
 また、本実施形態に係る偏向光学系32は、第1偏向光学系(第1偏向プリズム32a)及び第2偏向光学系(第2偏向プリズム32b)を含んで構成されている。第1偏向光学系は、入射する複数の光を偏向する。第2偏向光学系は、第1偏向光学系により偏向された複数の光を更に偏向する。 The deflection optical system 32 according to the present embodiment includes a first deflection optical system (first deflection prism 32a) and a second deflection optical system (second deflection prism 32b). The first deflection optical system deflects a plurality of incident light. The second deflection optical system further deflects the plurality of lights deflected by the first deflection optical system.
 このように、複数の偏向光学系を用いる場合にも結合効率を落とすことなく光を伝送することが出来る。すなわち、本実施形態における結合光学系30によれば、結合効率の低下を抑制しつつ、光学素子とマルチコアファイバ1とを光学的に結合することができる。 Thus, even when a plurality of deflection optical systems are used, light can be transmitted without reducing the coupling efficiency. That is, according to the coupling optical system 30 in the present embodiment, the optical element and the multicore fiber 1 can be optically coupled while suppressing a decrease in coupling efficiency.
 また、本実施形態に係る第1偏向光学系及び第2偏向光学系は、一方の片面が凸形状に形成されており、他方の片面が凹形状に形成されている。 Also, in the first deflecting optical system and the second deflecting optical system according to the present embodiment, one side is formed in a convex shape and the other side is formed in a concave shape.
 また、本実施形態に係る偏向光学系32は、第1偏向光学系の偏向度R1と第2偏向光学系の偏向度R2が等しくなるよう設計されている。 Further, the deflection optical system 32 according to the present embodiment is designed so that the degree of deflection R1 of the first deflection optical system is equal to the degree of deflection R2 of the second deflection optical system.
 また、本実施形態に係る偏向光学系32の偏向度Rは、複数の光源間のピッチ、複数の受光素子間のピッチ及び複数のシングルコアファイバ間のピッチPoutのいずれかと、マルチコアファイバ1のコアC間のピッチPinとの比に等しくなるよう設計されている。 In addition, the deflection degree R of the deflection optical system 32 according to the present embodiment is any of the pitch between the plurality of light sources, the pitch between the plurality of light receiving elements, and the pitch P out between the plurality of single core fibers, and the multicore fiber 1. It is designed to be equal to the ratio between the pitch P in between the core C k.
 偏向光学系32をこのように構成することにより、入射側素子から入射した光(主光線Pr)それぞれを出射側素子の面に対して垂直に入射させることができる。すなわち、結合効率の低下を抑制することが可能となる。 By configuring the deflection optical system 32 in this way, each of the light (principal ray Pr) incident from the incident side element can be made to enter perpendicularly to the surface of the emission side element. That is, it is possible to suppress a decrease in coupling efficiency.
 また、本実施形態に係る結合光学系30は、結像光学系33(結像光学レンズ33a)を含む。結像光学系33は、偏向光学系32により偏向された光を、出射側素子のいずれかに結像させる。 Further, the coupling optical system 30 according to the present embodiment includes an imaging optical system 33 (imaging optical lens 33a). The imaging optical system 33 forms an image of the light deflected by the deflection optical system 32 on one of the emission side elements.
 また、本実施形態に係る結像光学レンズ33aは、複数のレンズがアレイ状に配置された構成である。 Further, the imaging optical lens 33a according to the present embodiment has a configuration in which a plurality of lenses are arranged in an array.
 また、本実施形態に係る結像光学レンズ33a間のピッチPimは、複数のシングルコアファイバ100間のピッチPout、受光素子間のピッチ及びマルチコアファイバ1のコアC間のピッチPinのいずれかと等しくなるよう設計されている。 Further, the pitch P im between the imaging optical lenses 33a according to the present embodiment is the pitch P out between the plurality of single core fibers 100, the pitch between the light receiving elements, and the pitch P in between the cores C k of the multi-core fiber 1. Designed to be equal to either.
 このように、結像光学系33を構成することにより、結像光学系33から出射する光(主光線Pr)それぞれを出射側素子の面に対して垂直に入射させることができる。すなわち、結合効率の低下を抑制することが可能となる。 As described above, by forming the imaging optical system 33, each of the lights (principal rays Pr) emitted from the imaging optical system 33 can be made to enter perpendicularly to the surface of the emission side element. That is, it is possible to suppress a decrease in coupling efficiency.
 また、本実施形態において、コリメートレンズ31aの焦点距離fclと結像光学レンズ33aの焦点距離fimとが等しくなるよう設計されている。 In the present embodiment, the focal length f cl of the collimating lens 31a is designed to be equal to the focal length f im of the imaging optical lens 33a.
 このような構成により、結合光学系30に入射する光の開口数と結合光学系30から出射する光の開口数とが変わらないようにできるため、結合効率を落とすことなく光を伝送することが出来る。すなわち、本実施形態における結合光学系30によれば、結合効率の低下を抑制しつつ、光学素子とマルチコアファイバ1とを光学的に結合することができる。 With this configuration, the numerical aperture of the light incident on the coupling optical system 30 and the numerical aperture of the light emitted from the coupling optical system 30 can be kept unchanged, so that light can be transmitted without reducing the coupling efficiency. I can do it. That is, according to the coupling optical system 30 in the present embodiment, the optical element and the multicore fiber 1 can be optically coupled while suppressing a decrease in coupling efficiency.
<第3実施形態>
 次に、図6及び図7を参照して、第3実施形態に係る結合光学系30´の構成例を説明する。本実施形態では、ファイバ束10と、マルチコアファイバ1とを結合する場合について述べる。図6は、結合光学系30´、ファイバ束10及びマルチコアファイバ1の軸方向の断面図である。なお、ファイバ束10の構成等、第1及び第2実施形態と同様の構成等については詳細な説明を省略する場合がある。
<Third Embodiment>
Next, with reference to FIGS. 6 and 7, a configuration example of the coupling optical system 30 ′ according to the third embodiment will be described. In the present embodiment, a case where the fiber bundle 10 and the multi-core fiber 1 are coupled will be described. FIG. 6 is a cross-sectional view in the axial direction of the coupling optical system 30 ′, the fiber bundle 10, and the multicore fiber 1. Note that detailed description of the configuration of the fiber bundle 10 and the like similar to those of the first and second embodiments may be omitted.
[結合光学系の構成]
 本実施形態に係る結合光学系30´は、コリメート光学系31と、偏向光学系34と、結像光学系33とを含んで構成されている。コリメート光学系31及び結像光学系33は第2実施形態と同様の構成である。
[Configuration of coupling optical system]
The coupling optical system 30 ′ according to the present embodiment includes a collimating optical system 31, a deflection optical system 34, and an imaging optical system 33. The collimating optical system 31 and the imaging optical system 33 have the same configuration as in the second embodiment.
 本実施形態における偏向光学系34は、第1回折光学系34a及び第2回折光学系34bを含んで構成されている。本実施形態における第1回折光学系34aは、「第1偏向光学系」の一例である。本実施形態における第2回折光学系34bは、「第2偏向光学系」の一例である。 The deflection optical system 34 in the present embodiment includes a first diffractive optical system 34a and a second diffractive optical system 34b. The first diffractive optical system 34a in the present embodiment is an example of a “first deflection optical system”. The second diffractive optical system 34b in the present embodiment is an example of a “second deflecting optical system”.
 本実施形態における第1回折光学系34aは、コリメート光学系31(コリメートレンズ31a)でコリメートされた複数の光それぞれをコリメートされたまま回折により所定の方向に偏向させる機能を有している。なお、図6に示すように、第1回折光学系34aは、その中央を通過する光は偏向されないよう設計されている。第1回折光学系34aは、入射する光の数に対応した入射面341a及び出射面342a・343aを有している。また、本実施形態における第1回折光学系34aは、コリメート光学系31からの複数の光(主光線Pr)それぞれが、対応する入射面341aに対して垂直に入射されるよう設計されている。 The first diffractive optical system 34a in this embodiment has a function of deflecting each of a plurality of lights collimated by the collimating optical system 31 (collimating lens 31a) in a predetermined direction by diffraction while being collimated. As shown in FIG. 6, the first diffractive optical system 34a is designed so that light passing through the center thereof is not deflected. The first diffractive optical system 34a has an incident surface 341a and exit surfaces 342a and 343a corresponding to the number of incident light. In addition, the first diffractive optical system 34a in the present embodiment is designed such that each of a plurality of lights (principal rays Pr) from the collimating optical system 31 is incident perpendicularly to the corresponding incident surface 341a.
 入射面341aは平面に形成されている。入射面341aには、コリメート光学系31からの光が入射する。 The incident surface 341a is formed in a flat surface. Light from the collimating optical system 31 is incident on the incident surface 341a.
 出射面342aは、鋸歯状の突起部からなる回折格子として形成されている。一方、出射面343aには、回折格子が形成されていない。従って、出射面343aを通過する光は、回折により偏向されることはない。 The exit surface 342a is formed as a diffraction grating composed of a sawtooth projection. On the other hand, no diffraction grating is formed on the exit surface 343a. Therefore, the light passing through the emission surface 343a is not deflected by diffraction.
 図7は、出射面342a及び出射面343aを図6の矢印A方向から見た図である。図7に示すように、本実施形態における出射面342a及び出射面343aは、7本のシングルコアファイバ100からの光それぞれを出射させる7つの面F(F~F)を有する。このうち、面F(出射面343a)は、シングルコアファイバ100からの光を偏向させずに透過させる。面F~F(出射面342a)には、ピッチd(突起部の間隔)で回折格子が形成されている。本実施形態において、回折格子のピッチdは全て等しいものとする。 FIG. 7 is a view of the emission surface 342a and the emission surface 343a as seen from the direction of arrow A in FIG. As shown in FIG. 7, the emission surface 342a and the emission surface 343a in this embodiment have seven surfaces F k (F 1 to F 7 ) for emitting light from the seven single core fibers 100, respectively. Among these, the surface F 1 (the emission surface 343a) transmits the light from the single core fiber 100 without being deflected. Diffraction gratings are formed on the surfaces F 2 to F 7 (outgoing surface 342a) with a pitch d (interval between projections). In this embodiment, the pitches d of the diffraction gratings are all equal.
 このピッチdは、たとえば以下のようにして決定される。ここでは、出射面342aに入射する光の入射角度をεin、出射面342aにより偏向されて出射する光の出射角度をεout、第1回折光学系34aの母材屈折率をN、出射側の媒質の屈折率をN´、回折次数をm、入射する光の波長をλとする。 This pitch d is determined as follows, for example. Here, the incident angle of light incident on the exit surface 342a is ε in , the exit angle of light deflected by the exit surface 342a is ε out , the base material refractive index of the first diffractive optical system 34a is N, and the exit side The refractive index of the medium is N ′, the diffraction order is m, and the wavelength of incident light is λ.
 このとき、ピッチdは、以下の式(10)により決定される。 At this time, the pitch d is determined by the following equation (10).
 Nsin[εin]-N´sin[εout]=mλ/d・・・(10) N sin [ε in ] −N ′ sin [ε out ] = mλ / d (10)
 ここで、図6に示すように、光が出射面342aに対して垂直に入射する。このとき、使用する回折次数を1とすれば、ピッチdは、以下の式(11)により決定される。なお、出射側の媒質は空気(N´=1)であるとする。 Here, as shown in FIG. 6, the light enters perpendicularly to the emission surface 342 a. At this time, if the diffraction order to be used is 1, the pitch d is determined by the following equation (11). Note that the medium on the emission side is air (N ′ = 1).
 N-sin[εout]=λ/d・・・(11) N-sin [ε out ] = λ / d (11)
 本実施形態における第2回折光学系34bは、第1回折光学系34aにより偏向された光それぞれを更に偏向させる機能を有している。本実施形態では、第2回折光学系34bからの複数の光(主光線Pr)それぞれが、結像光学系33に対して垂直に入射する方向に偏向させる。第2回折光学系34bで偏向された場合でも、複数の光それぞれがコリメートされた状態は変わらない。なお、図6に示すように、第2回折光学系34bは、その中央を通過する光は偏向されないよう設計されている。第2回折光学系34bは、入射する光の数に対応した入射面341b・342b及び出射面343bを有している。 The second diffractive optical system 34b in the present embodiment has a function of further deflecting each light deflected by the first diffractive optical system 34a. In the present embodiment, each of the plurality of lights (principal rays Pr) from the second diffractive optical system 34 b is deflected in a direction perpendicularly incident on the imaging optical system 33. Even when the light is deflected by the second diffractive optical system 34b, the state in which each of the plurality of lights is collimated does not change. As shown in FIG. 6, the second diffractive optical system 34b is designed so that light passing through the center thereof is not deflected. The second diffractive optical system 34b has incident surfaces 341b and 342b and an emission surface 343b corresponding to the number of incident light.
 入射面341bは、鋸歯状の突起部からなる回折格子として形成されている。一方、入射面342bには、回折格子が形成されていない。従って、入射面342bを通過する光は、回折により偏向されることはない。入射面341b・342bには、第1回折光学系34aからの光が入射する。 The incident surface 341b is formed as a diffraction grating composed of a sawtooth projection. On the other hand, no diffraction grating is formed on the incident surface 342b. Therefore, the light passing through the incident surface 342b is not deflected by diffraction. Light from the first diffractive optical system 34a is incident on the incident surfaces 341b and 342b.
 出射面343bは平面に形成されている。出射面343bから出射された複数の光(主光線Pr)それぞれは、結像光学系33(結像光学レンズ33a)に対して垂直に入射する。なお、第2回折光学系34bにおけるピッチは、上述の第1回折光学系34aにおいてピッチdを求める方法と同様の手法により求めることができる。 The emission surface 343b is formed in a plane. Each of the plurality of lights (principal rays Pr) emitted from the emission surface 343b is perpendicularly incident on the imaging optical system 33 (imaging optical lens 33a). The pitch in the second diffractive optical system 34b can be obtained by a method similar to the method for obtaining the pitch d in the first diffractive optical system 34a.
[光の進み方について]
 次に、図6を参照して、本実施形態に係る光の進み方について説明する。本実施形態では、ファイバ束10から光が出射する構成について説明する。すなわち、本実施形態におけるファイバ束10は、「入射側素子」の一例である。一方、本実施形態におけるマルチコアファイバ1は、「出射側素子」の一例である。
[How light travels]
Next, with reference to FIG. 6, how the light travels according to the present embodiment will be described. In the present embodiment, a configuration in which light is emitted from the fiber bundle 10 will be described. That is, the fiber bundle 10 in the present embodiment is an example of an “incident side element”. On the other hand, the multi-core fiber 1 in the present embodiment is an example of an “emission side element”.
 まず、複数のシングルコアファイバ100内それぞれに設けられたコアCの端面Caから光が出射される。各端面Caから出射された光は、それぞれ拡散しながら、所定の開口数NAでコリメート光学系31(コリメートレンズ31a)に入射する。本実施形態では、端面Caから出射されたそれぞれの光(主光線Pr)は、コリメート光学系31(コリメートレンズ31aの面)に対して垂直に入射される。 First, light is emitted from the end face Ca of the core C provided in each of the plurality of single core fibers 100. Light emitted from each end face Ca enters the collimating optical system 31 (collimating lens 31a) with a predetermined numerical aperture NA while being diffused. In the present embodiment, each light (principal ray Pr) emitted from the end face Ca is incident perpendicularly to the collimating optical system 31 (the surface of the collimating lens 31a).
 コリメート光学系31に入射した複数の光それぞれは、コリメートされ、第1回折光学系34aに入射する。第1回折光学系34aは、入射した複数の光を回折格子により個別に偏向させる。偏向された光それぞれは、第2回折光学系34bに入射する。 Each of the plurality of lights incident on the collimating optical system 31 is collimated and enters the first diffractive optical system 34a. The first diffractive optical system 34a individually deflects a plurality of incident light beams by a diffraction grating. Each deflected light enters the second diffractive optical system 34b.
 第2回折光学系34bは、入射した複数の光を個別に偏向させる。第2回折光学系34bで偏向された光それぞれは、結像光学系33に入射する。結像光学系33に入射した光それぞれは、対応するマルチコアファイバ1のコアCに入射する。 The second diffractive optical system 34b deflects a plurality of incident light individually. Each light deflected by the second diffractive optical system 34 b enters the imaging optical system 33. Each light incident on the imaging optical system 33 is incident on the core C k of the corresponding multi-core fiber 1.
 このとき、本実施形態では、焦点距離fclと焦点距離fimとが等しくなっている。従って、各端面Caから出射された光それぞれの開口数NAを変えることなく(NA=NA´´)マルチコアファイバ1の複数のコアC(端面E)に対し、対応する光(主光線Pr)を垂直に入射させることが可能となる。従って、光学素子間の結合効率が高い状態を維持したまま光の伝送が可能となる。 At this time, in this embodiment, the focal length f cl and the focal length f im are equal. Accordingly, the light (principal ray Pr) corresponding to the plurality of cores C k (end faces E k ) of the multi-core fiber 1 without changing the numerical aperture NA of the light emitted from each end face Ca (NA = NA ″). ) Can be incident vertically. Therefore, it is possible to transmit light while maintaining a high coupling efficiency between the optical elements.
[変形例5]
 本実施形態では、ファイバ束10から出射された複数の光を、結合光学系30´を介してマルチコアファイバ1に導く例について説明したが、光を出射する対象はこれに限られない。たとえば、ファイバ束10の代わりに複数の光源を用いることも可能である。この場合、光源が「入射側素子」の一例である。また、この場合、上述の「Pout」は、隣り合う光源間のピッチとなる。
[Modification 5]
In the present embodiment, the example in which a plurality of lights emitted from the fiber bundle 10 are guided to the multicore fiber 1 via the coupling optical system 30 ′ has been described, but the target for emitting the light is not limited thereto. For example, a plurality of light sources can be used instead of the fiber bundle 10. In this case, the light source is an example of an “incident side element”. In this case, the above-mentioned “P out ” is a pitch between adjacent light sources.
[変形例6]
 或いは、上述の結合光学系30´を用い、マルチコアファイバ1(複数のコアC)から出射される複数の光それぞれを、ファイバ束10又は受光素子(図示なし)に導くことも可能である。この場合、マルチコアファイバ1が、「入射側素子」の一例である。また、ファイバ束10又は受光素子が「出射側素子」の一例である。以下、マルチコアファイバ1から出射される光それぞれを、ファイバ束10に導く例について述べる。
[Modification 6]
Alternatively, it is possible to guide each of a plurality of lights emitted from the multi-core fiber 1 (a plurality of cores C k ) to the fiber bundle 10 or a light receiving element (not shown) using the above-described coupling optical system 30 ′. In this case, the multi-core fiber 1 is an example of an “incident side element”. Further, the fiber bundle 10 or the light receiving element is an example of the “outgoing side element”. Hereinafter, an example in which each light emitted from the multicore fiber 1 is guided to the fiber bundle 10 will be described.
 本変形例における結像光学系33は、マルチコアファイバ1から出射される複数の光それぞれをコリメートする機能を有している。すなわち、本変形例においては、結像光学系33が「コリメート光学系」に当たる。本変形例において、マルチコアファイバ1からの光が入射する結像光学レンズ33aの面は、「入射面」の一例である。また、本変形例における結像光学レンズ33a間のピッチは、マルチコアファイバ1のコアC間のピッチと等しくなっている。 The imaging optical system 33 in this modification has a function of collimating each of a plurality of lights emitted from the multicore fiber 1. That is, in the present modification, the imaging optical system 33 corresponds to the “collimating optical system”. In the present modification, the surface of the imaging optical lens 33a on which the light from the multicore fiber 1 is incident is an example of an “incident surface”. In addition, the pitch between the imaging optical lenses 33 a in this modification is equal to the pitch between the cores C k of the multicore fiber 1.
 本変形例における偏向光学系34は、結像光学系33からの複数の光それぞれを回折格子により偏向させる機能を有している。偏向された光(主光線Pr)それぞれは、コリメート光学系31に垂直に入射する。 The deflection optical system 34 in this modification has a function of deflecting each of a plurality of lights from the imaging optical system 33 by a diffraction grating. Each deflected light (principal ray Pr) enters the collimating optical system 31 perpendicularly.
 本変形例におけるコリメート光学系31は、偏向光学系34から出射される複数の光それぞれを、対応するシングルコアファイバ100のコアCに結像する機能を有している。すなわち、本変形例においては、コリメート光学系31が「結像光学系」に当たる。本変形例において、偏向光学系34からの光が出射されるコリメート光学系31(コリメートレンズ31a)の面は、「出射面」の一例である。また、本変形例において、端面Caは、「受光面」の一例である。また、本変形例において、コリメートレンズ31a間のピッチは、シングルコアファイバ100のコアC間のピッチと等しくなっている。 The collimating optical system 31 in the present modification has a function of imaging each of a plurality of lights emitted from the deflection optical system 34 on the core C of the corresponding single core fiber 100. That is, in this modification, the collimating optical system 31 corresponds to the “imaging optical system”. In this modification, the surface of the collimating optical system 31 (collimating lens 31a) from which the light from the deflection optical system 34 is emitted is an example of an “exiting surface”. In the present modification, the end surface Ca is an example of a “light receiving surface”. Further, in this modification, the pitch between the collimating lenses 31 a is equal to the pitch between the cores C of the single core fiber 100.
 本変形例において、偏向光学系34として実施形態と同様、複数の偏向光学系(第1回折光学系34a、第2回折光学系34b)を用いる場合、第1回折光学系34aが「第2偏向光学系」の一例となる。また、第2回折光学系34bが「第1偏向光学系」の一例となる。 In the present modification, when a plurality of deflection optical systems (first diffractive optical system 34a and second diffractive optical system 34b) are used as the deflecting optical system 34 as in the embodiment, the first diffractive optical system 34a is “second deflecting optical system 34a”. An example of “optical system”. The second diffractive optical system 34b is an example of a “first deflecting optical system”.
 本変形例におけるθは、コリメート光学系31から出射された光(光束)がファイバ束10(各シングルコアファイバ100)に入射する際の主光線Pr及びマージナル光線Mrがなす角度である。θ´´は、マルチコアファイバ1から出射された光(光束)が結像光学系33に入射する際の主光線Pr及びマージナル光線Mrがなす角度である。 Θ in this modification is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light flux) emitted from the collimating optical system 31 enters the fiber bundle 10 (each single core fiber 100). θ ″ is an angle formed by the principal ray Pr and the marginal ray Mr when the light (light beam) emitted from the multicore fiber 1 enters the imaging optical system 33.
 また、「出射側素子」として受光素子を用いる場合、本変形例における偏向度Rは、複数の受光素子間のピッチと、マルチコアファイバ1のコアC間のピッチとの比に等しい。また、この場合、コリメートレンズ31a間のピッチは、受光素子間のピッチと等しくなっている。 When a light receiving element is used as the “emission side element”, the degree of deflection R in the present modification is equal to the ratio between the pitch between the plurality of light receiving elements and the pitch between the cores C k of the multicore fiber 1. In this case, the pitch between the collimating lenses 31a is equal to the pitch between the light receiving elements.
[作用・効果]
 本実施形態(変形例を含む)の作用及び効果について説明する。
[Action / Effect]
The operation and effects of the present embodiment (including modifications) will be described.
 本実施形態に係る第1偏向光学系(第1回折光学系34a)及び第2偏向光学系(第2回折光学系34b)は、それぞれの片面の少なくとも一部が回折格子として形成されている。 The first deflecting optical system (first diffractive optical system 34a) and the second deflecting optical system (second diffractive optical system 34b) according to this embodiment are formed as diffraction gratings on at least a part of each one surface.
 このように、偏向光学系として回折光学系(第1回折光学系34a及び第2回折光学系34b)を用いた場合にも結合効率を落とすことなく光を伝送することが出来る。すなわち、本実施形態における結合光学系30´によれば、結合効率の低下を抑制しつつ、光学素子とマルチコアファイバ1とを光学的に結合することができる。 Thus, even when the diffractive optical system (the first diffractive optical system 34a and the second diffractive optical system 34b) is used as the deflection optical system, light can be transmitted without reducing the coupling efficiency. That is, according to the coupling optical system 30 ′ in this embodiment, the optical element and the multicore fiber 1 can be optically coupled while suppressing a decrease in coupling efficiency.
[第1実施形態から第3実施形態に共通の変形例1]
 上記実施形態では、マルチコアファイバ1のコアCの間隔が等しい場合について説明したが、コアCの間隔が各々異なっている場合や、コアCの内幾つかの間隔が等しく他は間隔が異なるといった、コアCの間隔について複数の間隔設定がある場合にも上記構成は応用可能である。この場合、それぞれのコアCの位置に応じて結合光学系20の設計を行えばよい。たとえば、第1実施形態においては、コアCの位置に応じて第1光学系21及び第2光学系22の倍率設定を行えばよい。この場合、それぞれのコアCの位置に応じて、式(2)または式(3)にある倍率関係で、それぞれのコアCに対する光学系を設計する。このとき、たとえば図2に示す第2光学系22をアレイ状に構成する等すれば、所望の要件を満たすことが可能となる。光学系第2実施形態においては、コアCの位置に応じて偏向度の設定を行えばよい。この場合、それぞれのコアCの位置に応じて、偏向プリズム32a、32b、または32´の複数の入射面、出射面の角度について、それぞれの面において、第2実施形態の説明と同様の方法で偏向度設定すればよい。第3実施形態においては、コアCの位置に応じ、第1回折光学系34a及び第2回折光学系34bそれぞれの面Fにおける回折格子のピッチdを変更すればよい。
[Modification 1 common to the first to third embodiments]
In the above embodiment, the case has been described where the interval of the core C k of the multi-core fiber 1 are equal, and if the distance between the core C k are different from each other, other equally inner some interval of the core C k is the distance The above configuration can also be applied when there are a plurality of interval settings for the intervals of the cores C k such as different. In this case, it is sufficient to design the coupling optical system 20 according to the position of each of the cores C k. For example, in the first embodiment may be performed first magnification setting of the optical system 21 and second optical system 22 in accordance with the position of the core C k. In this case, according to the position of each core C k, at a magnification relationship in Equation (2) or formula (3), to design the optical system for each of the core C k. At this time, for example, if the second optical system 22 shown in FIG. 2 is configured in an array, desired requirements can be satisfied. In the second embodiment the optical system may be performed setting the degree of deflection depending on the position of the core C k. In this case, according to the position of each core C k, deflecting prism 32a, 32b or the incident surface of 32 ', the angle of the exit surface, at each side, the same method as described in the second embodiment, To set the degree of deflection. In the third embodiment, the pitch d of the diffraction gratings on the surfaces F k of the first diffractive optical system 34a and the second diffractive optical system 34b may be changed according to the position of the core C k .
[第1実施形態から第3実施形態に共通の変形例2]
 ファイバ束10とマルチコアファイバ1との間を媒体で充填することも可能である。
[Variation 2 common to the first to third embodiments]
It is also possible to fill the space between the fiber bundle 10 and the multi-core fiber 1 with a medium.
[結合部材の構成]
 図8は、結合部材20、ファイバ束10及びマルチコアファイバ1の軸方向の断面を示す概念図である。本変形例に係る結合部材20は、一端がファイバ束10と接し、他端がマルチコアファイバ1と接する。結合部材20は、所定の媒体で充填されている。所定の媒体は、空気以外の媒体であり、たとえば、石英ガラスやBK7が用いられる。結合部材20とファイバ束10(マルチコアファイバ1)とは、対向する端面同士が接着剤等により固定される。接着剤は、コアC(コアCa)の屈折率と同程度の屈折率を有する。
[Composition of coupling member]
FIG. 8 is a conceptual diagram showing an axial cross section of the coupling member 20, the fiber bundle 10, and the multicore fiber 1. The coupling member 20 according to this modification has one end in contact with the fiber bundle 10 and the other end in contact with the multicore fiber 1. The coupling member 20 is filled with a predetermined medium. The predetermined medium is a medium other than air, and for example, quartz glass or BK7 is used. The coupling member 20 and the fiber bundle 10 (multi-core fiber 1) are fixed to each other at their opposite end surfaces with an adhesive or the like. The adhesive has a refractive index comparable to that of the core C (core Ca).
 また、結合部材20は、ファイバ束10の各光路(シングルコアファイバ100)からの光それぞれのモードフィールド径を変更し、且つモードフィールド径が変更された光の間隔を変更してマルチコアファイバ1の各コア(コアC)へ導く。なお、モードフィールド径とは、ある対象から実際に出射される光の直径をいう。たとえば、シングルコアファイバ100のコアC内を通過する光は、コアC周辺のクラッド101側にもわずかに漏れている。よって、シングルコアファイバ100から出射される光は、コアCからだけでなく、コアC周辺のクラッド101からも出射する。すなわち、シングルコアファイバ100から出射する光の径は、コアCの径よりも大きくなる。この「シングルコアファイバ100から出射する光の径」は、モードフィールド径の一例である。 Further, the coupling member 20 changes the mode field diameter of each light from each optical path (single core fiber 100) of the fiber bundle 10 and changes the interval of the light whose mode field diameter has been changed. Lead to each core (core C k ). The mode field diameter refers to the diameter of light actually emitted from a certain target. For example, light passing through the core C of the single core fiber 100 slightly leaks to the cladding 101 side around the core C. Therefore, the light emitted from the single core fiber 100 is emitted not only from the core C but also from the cladding 101 around the core C. That is, the diameter of light emitted from the single core fiber 100 is larger than the diameter of the core C. This “diameter of light emitted from the single core fiber 100” is an example of a mode field diameter.
 本変形例における結合部材20は、第1光学系21と、第2光学系22とを含んで構成されている。第1光学系21は、シングルコアファイバ100から入射される光それぞれのモードフィールド径を変更して第2光学系22へ入射させる。第2光学系22は、第1光学系21から入射される光の間隔を変更し、マルチコアファイバ1のコアCの間隔に合わせる。なお、第1光学系21及び第2光学系22のレンズ部分を構成する媒体A2とそれ以外の部分を構成する媒体A1とは屈折率が異なる。媒体A1は、「第1媒体」の一例である。媒体A2は、「第2媒体」の一例である。また、本変形例における第1光学系21及び第2光学系22は、媒体A1を介して一体に形成されている(第1光学系21及び第2光学系22は連続的に形成されている)。 The coupling member 20 in the present modification includes a first optical system 21 and a second optical system 22. The first optical system 21 changes the mode field diameter of each light incident from the single core fiber 100 and causes the light to enter the second optical system 22. The second optical system 22 changes the interval of light incident from the first optical system 21 to match the interval of the cores C k of the multicore fiber 1. Note that the refractive index of the medium A2 constituting the lens portion of the first optical system 21 and the second optical system 22 is different from that of the medium A1 constituting the other portion. The medium A1 is an example of a “first medium”. The medium A2 is an example of a “second medium”. In addition, the first optical system 21 and the second optical system 22 in this modification are integrally formed via the medium A1 (the first optical system 21 and the second optical system 22 are formed continuously). ).
 媒体A1の屈折率は、シングルコアファイバ100のコアCの屈折率またはマルチコアファイバ1のコアCの屈折率と等しい材料であることが望ましい。たとえば、マルチコアファイバ1のコアCが石英ガラスに酸化ゲルマニウム(GeO)が添加された素材により形成されている場合、媒体A1としても同じ石英ガラスに酸化ゲルマニウムが添加された材料が用いられる(或いは、コアCと屈折率が同程度になる別の材料を使用してもよい)。 Refractive index of the medium A1 is desirably equal material and the refractive index of the core C k of the refractive index or the multi-core fiber of the core C of single-core fiber 100. For example, when the core C k of the multi-core fiber 1 is formed of a material in which germanium oxide (GeO 2 ) is added to quartz glass, the same material in which germanium oxide is added to quartz glass is used as the medium A1 ( Alternatively, another material having the same refractive index as the core C k may be used.
 本変形例における第1光学系21は、ファイバ束10の各シングルコアファイバ100からの光それぞれのモードフィールド径を拡大する拡大光学系である。第1光学系21は、アレイ状に配置された複数の凸レンズ部21aを含んで構成されている。複数の凸レンズ部21aは、媒体A2からなり、媒体A1中に配置されている。複数の凸レンズ部21aは、ファイバ束10からの光それぞれのモードフィールド径を変更する必要があるため、ファイバ束10に含まれるシングルコアファイバ100と等しい数だけ設けられている。第1光学系21(凸レンズ部21a)は、ファイバ束10の各端面Caから出射された光の主光線Prそれぞれが、対応する凸レンズ部21aの面に対して垂直に入射する位置に配置されている(凸レンズ部21aは、各コアCと同じ光軸上に配置されている)。凸レンズ部21aは、コアCのモードフィールド径より大きな径を有し、コアCからの光を集光する。本変形例における複数の凸レンズ部21aは、「複数のレンズ」の一例である。 The first optical system 21 in this modification is an expansion optical system that expands the mode field diameter of each light from each single core fiber 100 of the fiber bundle 10. The first optical system 21 includes a plurality of convex lens portions 21a arranged in an array. The plurality of convex lens portions 21a are made of the medium A2, and are arranged in the medium A1. Since it is necessary to change the mode field diameter of each light from the fiber bundle 10, the plurality of convex lens portions 21 a is provided in the same number as the single core fibers 100 included in the fiber bundle 10. The first optical system 21 (convex lens portion 21a) is disposed at a position where each principal ray Pr of light emitted from each end face Ca of the fiber bundle 10 enters perpendicularly to the surface of the corresponding convex lens portion 21a. (The convex lens portion 21a is disposed on the same optical axis as each core C). The convex lens portion 21a has a diameter larger than the mode field diameter of the core C, and condenses light from the core C. The plurality of convex lens portions 21a in this modification is an example of “a plurality of lenses”.
 本変形例における第2光学系22は、第1光学系21からの光(モードフィールド径が拡大された複数の光)の間隔を狭めてマルチコアファイバ1のコアC~コアCに導く縮小光学系である。第2光学系22は、2枚の凸レンズ部(凸レンズ22部a、凸レンズ部22b)を含む両側テレセントリック光学系により構成されている。凸レンズ部22a及び凸レンズ部22bは、媒体A2からなり、媒体A1中に配置されている。凸レンズ部22a及び凸レンズ部22bが一組だけ設けられているのは、複数の凸レンズ部21aからの光の間隔を変更するためである。第2光学系22は、第1光学系21からの光の主光線Prそれぞれが、対応するマルチコアファイバ1の各コアCの端面Eに対して垂直に入射する位置に配置されている。 The second optical system 22 in this modification example is a reduction that leads to the cores C 1 to C 7 of the multi-core fiber 1 by narrowing the interval of the light from the first optical system 21 (a plurality of lights having an enlarged mode field diameter). It is an optical system. The second optical system 22 is configured by a double-sided telecentric optical system including two convex lens portions (a convex lens portion 22a and a convex lens portion 22b). Convex lens part 22a and convex lens part 22b consist of medium A2, and are arranged in medium A1. The reason why only one set of the convex lens portion 22a and the convex lens portion 22b is provided is to change the interval of light from the plurality of convex lens portions 21a. The second optical system 22 is disposed at a position where each principal ray Pr of the light from the first optical system 21 is perpendicularly incident on the end face E k of each core C k of the corresponding multi-core fiber 1.
[光の進み方について]
 次に、図8を参照して、本実施形態に係る光の進み方について説明する。本変形例では、ファイバ束10から光が出射する構成について説明する。
[How light travels]
Next, how light travels according to the present embodiment will be described with reference to FIG. In this modification, a configuration in which light is emitted from the fiber bundle 10 will be described.
 まず、複数のシングルコアファイバ100内それぞれに設けられたコアCの端面Caから光が出射される。各端面Caから出射された光それぞれは、媒体A1内を拡散しながら、所定のモードフィールド径で凸レンズ部21aに入射する。上述の通り、本実施形態では、端面Caから出射されたそれぞれの光の主光線Prは、凸レンズ部21aに対して垂直に入射される。凸レンズ部21aを透過した光それぞれは、モードフィールド径が拡大された状態で結像点IPにおいて結像する。 First, light is emitted from the end face Ca of the core C provided in each of the plurality of single core fibers 100. Each light emitted from each end face Ca enters the convex lens portion 21a with a predetermined mode field diameter while diffusing in the medium A1. As described above, in the present embodiment, the principal ray Pr of each light emitted from the end face Ca is incident perpendicularly to the convex lens portion 21a. Each light transmitted through the convex lens portion 21a forms an image at the image point IP with the mode field diameter being enlarged.
 凸レンズ部21aを透過した光それぞれは、結像点IPを二次光源として媒体A1内を拡散しながら凸レンズ部22aに入射する。 Each light transmitted through the convex lens portion 21a enters the convex lens portion 22a while diffusing in the medium A1 with the imaging point IP as a secondary light source.
 凸レンズ部22a及び凸レンズ部22bは両側テレセントリックな光学系として形成されている。従って、凸レンズ部22aに垂直に入射した光の主光線Prそれぞれは、コリメートされた状態で媒体A1内を通過し、凸レンズ部22bに入射する。光の主光線Prそれぞれは、互いの間隔が狭められた状態で凸レンズ部22bから垂直に出射され、媒体A1内を通過してマルチコアファイバ1の複数のコアCに対し垂直に入射する。 The convex lens portion 22a and the convex lens portion 22b are formed as a both-side telecentric optical system. Accordingly, each of the principal rays Pr of light incident perpendicularly to the convex lens portion 22a passes through the medium A1 in a collimated state and enters the convex lens portion 22b. Each principal ray Pr of the light is emitted perpendicularly from the convex lens portion 22b in a state where the distance therebetween is narrowed, incident perpendicularly to the plurality of cores C k of the multi-core fiber 1 passes through the medium A1.
 また、第1光学系21と第2光学系22とを別体で作成し、それらを組み合わせることで結合部材20を構成することも可能である。具体的には、第1光学系21及び第2光学系22それぞれを媒体A1及び媒体A2により作成する。そして、第1光学系21の端面及び第2光学系22の端面を接着剤で固定することにより、一体の結合部材20を形成する。接着剤は、媒体A1の屈折率と同程度の屈折率を有する。 Further, the first optical system 21 and the second optical system 22 can be formed separately and combined to form the coupling member 20. Specifically, the first optical system 21 and the second optical system 22 are respectively made of the medium A1 and the medium A2. Then, the end face of the first optical system 21 and the end face of the second optical system 22 are fixed with an adhesive, thereby forming an integral coupling member 20. The adhesive has a refractive index comparable to that of the medium A1.
[第1実施形態から第3実施形態に共通の変形例3]
 図9は、結合部材20、ファイバ束10及びマルチコアファイバ1の軸方向の断面を示す概念図である。本変形例では、第1実施形態から第3実施形態に共通の変形例2で示した結合部材20を構成する第1光学系21及び第2光学系22としてGRINレンズを使用する例を述べる。
[Variation 3 common to the first to third embodiments]
FIG. 9 is a conceptual diagram illustrating a cross section in the axial direction of the coupling member 20, the fiber bundle 10, and the multicore fiber 1. In this modification, an example in which a GRIN lens is used as the first optical system 21 and the second optical system 22 constituting the coupling member 20 shown in Modification 2 common to the first to third embodiments will be described.
[結合部材の構成]
 本変形例における結合部材20は、GRINレンズを有する。GRINレンズとは、レンズを構成する媒体をイオン交換処理することにより、レンズ内の屈折率分布を調整し、拡散する光を曲げて光を集める屈折率分布型のレンズである。イオン交換の処理方法により屈折率分布を調整することができる。GRINレンズとしては、たとえば、セルフォックレンズ(「セルフォック」は登録商標)を用いることができる。
[Composition of coupling member]
The coupling member 20 in this modification has a GRIN lens. The GRIN lens is a refractive index distribution type lens that collects light by adjusting the refractive index distribution in the lens by bending the medium that constitutes the lens, and bending the diffused light. The refractive index distribution can be adjusted by the ion exchange processing method. As the GRIN lens, for example, a SELFOC lens (“SELFOC” is a registered trademark) can be used.
 第1光学系21はGRINレンズSL1を有する。GRINレンズSL1は、ファイバ束10(シングルコアファイバ100)からの光のモードフィールド径を変更するよう屈折率が調整された媒体から形成されている。本実施形態において、GRINレンズSL1は、ファイバ束10を形成するシングルコアファイバ100の数に対応し、複数設けられている。GRINレンズSL1は、「第1GRINレンズ」の一例である。 The first optical system 21 has a GRIN lens SL1. The GRIN lens SL1 is formed of a medium whose refractive index is adjusted so as to change the mode field diameter of light from the fiber bundle 10 (single core fiber 100). In the present embodiment, a plurality of GRIN lenses SL1 are provided corresponding to the number of single core fibers 100 forming the fiber bundle 10. The GRIN lens SL1 is an example of a “first GRIN lens”.
 また、本変形例における複数のGRINレンズSL1それぞれは、第1光学部材SL1a及び第2光学部材SL1bを有する。第1光学部材SL1aは、一端がファイバ束10と接し、シングルコアファイバ100から入射して拡散する光をコリメートするよう屈折率分布が調整されている。第2光学部材SL1bは、一端が第1光学部材SL1aの他端と接し、第1光学部材SL1aでコリメートされた光を収束するよう屈折率分布が調整されている。第2光学部材SL1bで収束された光(結像点IPにおける光)のモードフィールド径は、シングルコアファイバ100からの光のモードフィールド径に比べ拡大されている。第1光学部材SL1a及び第2光学部材SL1bは、接着剤等により固定されることで一体のGRINレンズSL1を構成する。接着剤は、媒体の屈折率と同程度の屈折率を有する。 Further, each of the plurality of GRIN lenses SL1 in this modification includes a first optical member SL1a and a second optical member SL1b. The first optical member SL1a is in contact with the fiber bundle 10 at one end, and the refractive index distribution is adjusted so as to collimate light that is incident from the single core fiber 100 and diffuses. One end of the second optical member SL1b is in contact with the other end of the first optical member SL1a, and the refractive index distribution is adjusted so that the light collimated by the first optical member SL1a is converged. The mode field diameter of the light (light at the imaging point IP) converged by the second optical member SL1b is larger than the mode field diameter of the light from the single core fiber 100. The first optical member SL1a and the second optical member SL1b constitute an integral GRIN lens SL1 by being fixed by an adhesive or the like. The adhesive has a refractive index comparable to that of the medium.
 第2光学系22はGRINレンズSL2を有する。GRINレンズSL2は、モードフィールド径が変更された光の間隔を変更するよう屈折率が調整された媒体から形成されている。本変形例において、GRINレンズSL2は、複数のGRINレンズSL1からの光が入射するよう一つだけ設けられている。GRINレンズSL2は、「第2GRINレンズ」の一例である。 The second optical system 22 has a GRIN lens SL2. The GRIN lens SL2 is formed of a medium whose refractive index is adjusted so as to change the interval of light whose mode field diameter has been changed. In this modification, only one GRIN lens SL2 is provided so that light from the plurality of GRIN lenses SL1 enters. The GRIN lens SL2 is an example of a “second GRIN lens”.
 また、本変形例におけるGRINレンズSL2は、第3光学部材SL2a及び第4光学部材SL2bを有する。第3光学部材SL2aは、一端が第2光学部材SL1bの他端と接し、複数の第2光学部材SL1bからの光それぞれをコリメートするよう屈折率分布が調整されている。第4光学部材SL2bは、一端が第3光学部材SL2aの他端と接し、他端がマルチコアファイバ1と接する。第4光学部材SL2bは、第3光学部材SL2aからの光を収束するよう屈折率分布が調整されている。第4光学部材SL2bで収束された光は、対応するマルチコアファイバ1の各コアCに入射する。第3光学部材SL2a及び第4光学部材SL2bは、接着剤等により固定されることで一体のGRINレンズSL2を構成する。そして、第2光学部材SL1b及び第3光学部材SL2aが接着剤等により固定されることで、結合部材20は一体に形成される。 In addition, the GRIN lens SL2 in the present modification includes a third optical member SL2a and a fourth optical member SL2b. The third optical member SL2a has one end in contact with the other end of the second optical member SL1b, and the refractive index distribution is adjusted so as to collimate each light from the plurality of second optical members SL1b. The fourth optical member SL2b has one end in contact with the other end of the third optical member SL2a and the other end in contact with the multi-core fiber 1. The refractive index distribution of the fourth optical member SL2b is adjusted so as to converge the light from the third optical member SL2a. Light converged by the fourth optical member SL2b is incident on each core C k of the multi-core fiber 1 corresponds. The third optical member SL2a and the fourth optical member SL2b constitute an integral GRIN lens SL2 by being fixed by an adhesive or the like. Then, the second optical member SL1b and the third optical member SL2a are fixed with an adhesive or the like, so that the coupling member 20 is integrally formed.
 なお、GRINレンズSL1及びGRINレンズSL2は、複数の光学部材により形成されている必要はない。GRINレンズSL1及びGRINレンズSL2は、それぞれの機能を達成できるように屈折率が調整された媒体から形成されていればよい。すなわち、GRINレンズSL1及びGRINレンズSL2は、それぞれ一の光学部材で形成されていてもよい。或いは、GRINレンズSL1及びGRINレンズSL2を一の光学部材で形成することも可能である。 Note that the GRIN lens SL1 and the GRIN lens SL2 do not need to be formed of a plurality of optical members. The GRIN lens SL1 and the GRIN lens SL2 only need to be formed from a medium whose refractive index is adjusted so that the respective functions can be achieved. That is, the GRIN lens SL1 and the GRIN lens SL2 may each be formed by one optical member. Alternatively, the GRIN lens SL1 and the GRIN lens SL2 can be formed from a single optical member.
[光の進み方について]
 次に、図9を参照して、本変形例に係る光の進み方について説明する。本変形例では、ファイバ束10から光が出射する構成について説明する。
[How light travels]
Next, with reference to FIG. 9, how the light travels according to this modification will be described. In this modification, a configuration in which light is emitted from the fiber bundle 10 will be described.
 まず、複数のシングルコアファイバ100内それぞれに設けられたコアCの端面Caから光が出射される。各端面Caから出射された光それぞれは、第1光学部材SL1aでコリメートされ、第2光学部材SL1bに入射する。第2光学部材SL1bに入射した光は、第2光学部材SL1bを構成する媒体の屈折率分布により収束される。第2光学部材SL1bを透過した光それぞれは、モードフィールド径が拡大された状態で結像点IPにおいて結像する。 First, light is emitted from the end face Ca of the core C provided in each of the plurality of single core fibers 100. Each light emitted from each end face Ca is collimated by the first optical member SL1a and enters the second optical member SL1b. The light incident on the second optical member SL1b is converged by the refractive index distribution of the medium constituting the second optical member SL1b. Each of the lights transmitted through the second optical member SL1b forms an image at the image point IP with the mode field diameter being enlarged.
 第2光学部材SL1bを透過した光それぞれは、結像点IPを二次光源として第3光学部材SL2aに入射する(本実施形態では、結像点IPが、GRINレンズSL1とGRINレンズSL2との境界に位置するよう、各GRINレンズの屈折率が調整されている)。 Each light transmitted through the second optical member SL1b is incident on the third optical member SL2a using the imaging point IP as a secondary light source (in this embodiment, the imaging point IP is between the GRIN lens SL1 and the GRIN lens SL2). The refractive index of each GRIN lens is adjusted so that it is located at the boundary).
 第3光学部材SL2aに入射した光それぞれは、第3光学部材SL2aを構成する媒体の屈折率分布に基づいてコリメートされた状態で第3光学部材SL2aを通過し、第4光学部材SL2bに入射する。そして、第4光学部材SL2bに入射した光は、第4光学部材SL2bを構成する媒体の屈折率分布に基づいて収束され、且つ互いの間隔が狭められた状態でマルチコアファイバ1の複数のコアCに対し入射する。 Each light incident on the third optical member SL2a passes through the third optical member SL2a in a state of being collimated based on the refractive index distribution of the medium constituting the third optical member SL2a, and enters the fourth optical member SL2b. . Then, the light incident on the fourth optical member SL2b is converged based on the refractive index distribution of the medium constituting the fourth optical member SL2b, and the plurality of cores C of the multi-core fiber 1 are narrowed with each other being narrowed. Incident to k .
[第1実施形態から第3実施形態に共通の変形例4]
 図10は、結合部材20、ファイバ束10及びマルチコアファイバ1の軸方向の断面を示す概念図である。本変形例では、結合部材20を構成する第1光学系21として複数のファイバFを使用し、第2光学系22としてGRINレンズSL2を使用する例を述べる。
[Modification 4 common to the first to third embodiments]
FIG. 10 is a conceptual diagram illustrating a cross section in the axial direction of the coupling member 20, the fiber bundle 10, and the multicore fiber 1. In this modification, an example in which a plurality of fibers Fk are used as the first optical system 21 constituting the coupling member 20 and a GRIN lens SL2 is used as the second optical system 22 will be described.
[結合部材の構成]
 本変形例における結合部材20は、第1光学系21及び第2光学系22を有する。
[Composition of coupling member]
The coupling member 20 in this modification includes a first optical system 21 and a second optical system 22.
 第1光学系21は、媒体として、複数のファイバF(k=1~n)を有する。ファイバFは、一端がファイバ束10を構成するシングルコアファイバ100と接し、シングルコアファイバ100からの光それぞれのモードフィールド径を変更する。ファイバFは、光を伝送するコアC及びコアCを覆うクラッド3を含んで構成されている。シングルコアファイバ100と接する入射端におけるコアCの径は、シングルコアファイバ100のコアCの径とほぼ同じである。ファイバFは、ファイバ束10を構成するシングルコアファイバ100の数と等しい数だけ設けられる。 The first optical system 21 has a plurality of fibers F k (k = 1 to n) as a medium. One end of the fiber F k is in contact with the single core fiber 100 constituting the fiber bundle 10 and changes the mode field diameter of each light from the single core fiber 100. The fiber F k includes a core C f that transmits light and a clad 3 that covers the core C f . The diameter of the core C f at the incident end in contact with the single core fiber 100 is substantially the same as the diameter of the core C of the single core fiber 100. The number of the fibers F k equal to the number of the single core fibers 100 constituting the fiber bundle 10 is provided.
 また、ファイバFは、入射端と出射端でコア径が異なる。具体的に、ファイバFは、シングルコアファイバ100と接する入射端におけるコアCの径よりもGRINレンズSL2と接する出射端におけるコアCの径のほうが大きくなるよう形成されている。ファイバFのコアCを通過する光は、出射端に近づくにつれてモードフィールド径が大きくなる。 Further, the fiber F k has a different core diameter at the entrance end and the exit end. Specifically, the fiber F k is formed such that the diameter of the core C f at the exit end in contact with the GRIN lens SL2 is larger than the diameter of the core C f at the entrance end in contact with the single core fiber 100. The light passing through the core C f of the fiber F k has a mode field diameter that increases as it approaches the exit end.
 ファイバFは、たとえば以下の方法により製造される。まず、一本のファイバの一部に対して熱を加え、ファイバを切断する。切断したファイバの端面に対して更に熱処理を行うことにより、一端のコア径が他端のコア径より大きいファイバFを得ることができる。 The fiber F k is manufactured by the following method, for example. First, heat is applied to a part of one fiber to cut the fiber. By performing the further heat treatment to the end face of the cut fiber may be a core diameter of one end to obtain a larger fiber F k than the core diameter of the other end.
 なお、本変形例では、第1光学系21を構成するファイバFとシングルコアファイバ100とが別体である例について述べたが、上記製造方法でシングルコアファイバ100を製造することにより、シングルコアファイバ100とファイバFとを一体で製造することも可能である。このように、シングルコアファイバ100とファイバFkとを一体で製造することにより、シングルコアファイバ100とファイバFとのアライメント調整が不要となる。 In this modification, the example in which the fiber F k constituting the first optical system 21 and the single core fiber 100 are separate is described. However, by manufacturing the single core fiber 100 by the above manufacturing method, a single core fiber 100 is manufactured. It is also possible to manufacture the core fiber 100 and the fiber Fk integrally. In this way, by producing integrally the single-core fiber 100 and fiber Fk, it becomes unnecessary alignment with a single core fiber 100 and the fiber F k.
 本変形例における第2光学系22は、第1実施形態から第3実施形態に共通の変形例3で示したGRINレンズSL2が用いられる。GRINレンズSL2は、一端がファイバFの他端と接し、複数のファイバFそれぞれでモードフィールド径が変更された光の間隔を変更するよう屈折率が調整された媒体から形成されている。 The second optical system 22 in the present modification uses the GRIN lens SL2 shown in the third modification common to the first to third embodiments. GRIN lens SL2 has one end in contact with the other end of the fiber F k, is formed from a medium refractive index is adjusted to change the spacing of a plurality of fibers F k light mode field diameter was changed in each.
[光の進み方について]
 次に、図10を参照して、本変形例に係る光の進み方について説明する。本変形例では、ファイバ束10から光が出射する構成について説明する。
[How light travels]
Next, with reference to FIG. 10, how the light travels according to this modification will be described. In this modification, a configuration in which light is emitted from the fiber bundle 10 will be described.
 まず、複数のシングルコアファイバ100内それぞれに設けられたコアCの端面Caから光が出射される。各端面Caから出射された光それぞれは、ファイバFでモードフィールド径が拡大され、GRINレンズSL2に入射する。 First, light is emitted from the end face Ca of the core C provided in each of the plurality of single core fibers 100. Each light emitted from the end surfaces Ca, the mode field diameter at the fiber F k is enlarged, and enters the GRIN lens SL2.
 GRINレンズSL2に入射した光それぞれは、第2光学系22を構成する媒体の屈折率分布に基づいて収束され、且つ互いの間隔が狭められた状態でマルチコアファイバ1の複数のコアCに対し入射する。 Each of the lights incident on the GRIN lens SL2 is converged based on the refractive index distribution of the medium constituting the second optical system 22, and is spaced from each other with respect to the plurality of cores C k of the multicore fiber 1. Incident.
 なお、第1実施形態から第3実施形態に共通の変形例2~4において、結合部材20を介してマルチコアファイバ1とファイバ束10とを接続する場合、それぞれの接続部分で回転方向のアライメント調整が必要になる。本変形例では、アライメント調整が不要となる構成について説明する。以下、マルチコアファイバ1と結合部材20との接続に関して述べるが、結合部材20とファイバ束10との接続でも同様の構成を用いることが可能である。 In Modifications 2 to 4 common to the first to third embodiments, when the multi-core fiber 1 and the fiber bundle 10 are connected via the coupling member 20, the alignment adjustment in the rotational direction is performed at each connection portion. Is required. In this modification, a configuration that does not require alignment adjustment will be described. Hereinafter, although the connection between the multi-core fiber 1 and the coupling member 20 will be described, the same configuration can be used for the connection between the coupling member 20 and the fiber bundle 10.
 図11Aは、結合部材20の端面を示す図である。図11Bは、マルチコアファイバ1の端面を示す図である。図11Cは、図11A及び図11BにおけるA-A断面を示す図である。 FIG. 11A is a diagram showing an end face of the coupling member 20. FIG. 11B is a diagram illustrating an end face of the multi-core fiber 1. FIG. 11C is a diagram showing an AA cross section in FIGS. 11A and 11B.
 図11A及び図11Cに示すように、結合部材20の端面(マルチコアファイバ1と接続される側の端面)には、被嵌合部M1が設けられている。被嵌合部M1としては、たとえば、結合部材20の端面に少なくとも2つの穴部H(k=1~n)が設けられる。本変形例では、穴部H~穴部Hの3つが設けられている。 As shown in FIGS. 11A and 11C, a fitting portion M <b> 1 is provided on the end surface of the coupling member 20 (the end surface on the side connected to the multi-core fiber 1). As the fitted portion M1, for example, at least two holes H k (k = 1 to n) are provided on the end surface of the coupling member 20. In this modification, three holes H 1 to H 3 are provided.
 図11B及び図11Cに示すように、マルチコアファイバ1のクラッド2の端面2a(結合部材20と接続される側の端面)には、嵌合部M2が設けられている。嵌合部M2としては、たとえば、端面2aに少なくとも2つの突起部P(k=1~n)が設けられる。本変形例では、穴部H~穴部Hに対応する突起部P~突起部Pの3つが設けられている。突起部Pのサイズは、穴部Hのサイズとほぼ同じ大きさに形成されている。 As shown in FIGS. 11B and 11C, a fitting portion M <b> 2 is provided on the end face 2 a (end face on the side connected to the coupling member 20) of the clad 2 of the multicore fiber 1. As the fitting portion M2, for example, at least two protrusions P k (k = 1 to n) are provided on the end surface 2a. In the present modification, three projections P 1 to P 3 corresponding to the hole H 1 to the hole H 3 are provided. The size of the protrusion Pk is formed to be approximately the same as the size of the hole Hk .
 図11Cに示すように、結合部材20とマルチコアファイバ1とを接続する際、突起部Pと穴部Hとが嵌合するように接続することで、結合部材20の端面に対するマルチコアファイバ1の端面1bの位置は一意に決まる。すなわち、回転方向のアライメント調整が不要となる。なお、結合部材20の端面に嵌合部M2を設け、クラッド2の端面2aに被嵌合部M1を設けることも可能である。 As shown in FIG. 11C, when connecting the coupling member 20 and the multicore fiber 1, the multicore fiber 1 with respect to the end surface of the coupling member 20 is connected by fitting so that the protrusions P k and the holes H k are fitted. The position of the end face 1b is uniquely determined. That is, alignment adjustment in the rotation direction is not necessary. It is also possible to provide the fitting portion M2 on the end surface of the coupling member 20 and provide the fitted portion M1 on the end surface 2a of the clad 2.
 また、第1実施形態から第3実施形態に共通の変形例2~4における第1光学系21と第2光学系22とは任意の組み合わせが可能である。たとえば、結合部材20は、第1光学系21として第2実施形態におけるGRINレンズSL1を有し、第2光学系22として第1実施形態における両側テレセントリック光学系(凸レンズ部22a、凸レンズ部22b)を有することも可能である。 Further, the first optical system 21 and the second optical system 22 in Modifications 2 to 4 common to the first to third embodiments can be arbitrarily combined. For example, the coupling member 20 has the GRIN lens SL1 in the second embodiment as the first optical system 21, and the both-side telecentric optical system (convex lens portion 22a, convex lens portion 22b) in the first embodiment as the second optical system 22. It is also possible to have.
 1 マルチコアファイバ
 1b 端面
 2 クラッド
 2a 端面
 10 ファイバ束
 20 結合光学系
 21 第1光学系
 21a 凸レンズ
 22 第2光学系
 22a、22b 凸レンズ
 100 シングルコアファイバ
 101 クラッド
 C、C コア
 Ca、E 端面
DESCRIPTION OF SYMBOLS 1 Multi-core fiber 1b End surface 2 Clad 2a End surface 10 Fiber bundle 20 Coupling optical system 21 1st optical system 21a Convex lens 22 2nd optical system 22a, 22b Convex lens 100 Single core fiber 101 Cladding C, C k core Ca, E k End surface

Claims (24)

  1.  複数の光源、複数の受光素子、及び複数のシングルコアファイバを束ねたファイバ束のうちのいずれかの光学素子と、複数のコアがクラッドで覆われたマルチコアファイバとの間に配置され、前記光学素子と前記マルチコアファイバとを光学的に結合する結合光学系であって、前記光学素子及び前記マルチコアファイバの一方からなる入射側素子から入射する複数の光それぞれの開口数と、他方からなる出射側素子に向けて出射する複数の光それぞれの開口数とが等しくなるよう構成されていることを特徴とする結合光学系。 The optical element is arranged between any one of a plurality of light sources, a plurality of light receiving elements, and a fiber bundle obtained by bundling a plurality of single core fibers, and a multi-core fiber in which a plurality of cores are covered with a cladding. A coupling optical system for optically coupling an element and the multi-core fiber, each of a plurality of light incident from an incident-side element composed of one of the optical element and the multi-core fiber, and an exit side composed of the other A coupling optical system, characterized in that each of a plurality of lights emitted toward the element has a numerical aperture equal to that of the light.
  2.  前記結合光学系は、
     前記複数の光それぞれを収束させる第1光学系と、
     前記複数の光の間隔を変更する第2光学系と、
     を含むことを特徴とする請求項1記載の結合光学系。
    The coupling optical system includes:
    A first optical system for converging each of the plurality of lights;
    A second optical system for changing an interval between the plurality of lights;
    The coupling optical system according to claim 1, comprising:
  3.  前記第1光学系は、前記第2光学系よりも前記光学素子側に配置されていることを特徴とする請求項2記載の結合光学系。 3. The coupling optical system according to claim 2, wherein the first optical system is disposed closer to the optical element than the second optical system.
  4.  前記第1光学系の倍率及び前記第2光学系の倍率は、以下の式を満たす値であることを特徴とする請求項2記載の結合光学系。
    βm×βr=1
    但し、
    βm:第1光学系の倍率
    βr:第2光学系の倍率
    The coupling optical system according to claim 2, wherein the magnification of the first optical system and the magnification of the second optical system are values satisfying the following expression.
    βm × βr = 1
    However,
    βm: magnification of the first optical system βr: magnification of the second optical system
  5.  前記第1光学系は、複数のレンズがアレイ状に配置された構成であることを特徴とする請求項2記載の結合光学系。 The coupling optical system according to claim 2, wherein the first optical system has a configuration in which a plurality of lenses are arranged in an array.
  6.  前記複数のレンズ間のピッチが、前記複数の光源間のピッチ、前記複数の受光素子間のピッチ及び前記複数のシングルコアファイバ間のピッチのいずれかと等しいことを特徴とする請求項5記載の結合光学系。 6. The coupling according to claim 5, wherein a pitch between the plurality of lenses is equal to any one of a pitch between the plurality of light sources, a pitch between the plurality of light receiving elements, and a pitch between the plurality of single core fibers. Optical system.
  7.  前記第2光学系は、両側テレセントリック光学系であることを特徴とする請求項2記載の結合光学系。 3. The coupling optical system according to claim 2, wherein the second optical system is a double-sided telecentric optical system.
  8.  前記第2光学系の倍率は、前記複数の光源間のピッチ、前記複数の受光素子間のピッチ及び前記複数のシングルコアファイバ間のピッチのいずれかと、前記マルチコアファイバのコア間のピッチとの比に等しいことを特徴とする請求項2記載の結合光学系。 The magnification of the second optical system is a ratio of a pitch between the plurality of light sources, a pitch between the plurality of light receiving elements, or a pitch between the plurality of single core fibers, and a pitch between the cores of the multicore fiber. The coupling optical system according to claim 2, wherein
  9.  前記結合光学系は、前記入射する複数の光を個別に偏向する偏向光学系を含むことを特徴とする請求項1記載の結合光学系。 The coupling optical system according to claim 1, wherein the coupling optical system includes a deflection optical system that individually deflects the plurality of incident light beams.
  10.  前記結合光学系は、前記入射側素子のいずれかからの光をコリメートするコリメートレンズを有し、
     前記偏向光学系は、前記コリメートレンズでコリメートされた光を偏向することを特徴とする請求項9記載の結合光学系。
    The coupling optical system has a collimating lens that collimates light from any of the incident side elements,
    10. The coupling optical system according to claim 9, wherein the deflecting optical system deflects light collimated by the collimating lens.
  11.  前記コリメートレンズは、複数のコリメートレンズがアレイ状に配置された構成であることを特徴とする請求項10記載の結合光学系。 The coupling optical system according to claim 10, wherein the collimating lens has a configuration in which a plurality of collimating lenses are arranged in an array.
  12.  前記複数のコリメートレンズ間のピッチは、前記複数の光源間のピッチ、前記複数のシングルコアファイバ間のピッチ及び前記マルチコアファイバのコア間のピッチのいずれかと等しいことを特徴とする請求項11記載の結合光学系。 The pitch between the plurality of collimating lenses is equal to any one of a pitch between the plurality of light sources, a pitch between the plurality of single core fibers, and a pitch between cores of the multicore fiber. Coupled optics.
  13.  前記偏向光学系は、
     前記入射する複数の光を偏向する第1偏向光学系と、
     前記第1偏向光学系により偏向された複数の光を更に偏向する第2偏向光学系と、
     を含んで構成されていることを特徴とする請求項10記載の結合光学系。
    The deflection optical system is
    A first deflection optical system for deflecting the plurality of incident light;
    A second deflection optical system for further deflecting a plurality of lights deflected by the first deflection optical system;
    The coupling optical system according to claim 10, comprising:
  14.  前記第1偏向光学系及び前記第2偏向光学系の一方の片面が凸形状に形成されており、他方の片面が凹形状に形成されていることを特徴とする請求項13記載の結合光学系。 14. The coupling optical system according to claim 13, wherein one side of the first deflection optical system and the second deflection optical system is formed in a convex shape, and the other side is formed in a concave shape. .
  15.  前記第1偏向光学系及び前記第2偏向光学系は、それぞれの片面の少なくとも一部が回折格子として形成されていることを特徴とする請求項13記載の結合光学系。 14. The coupling optical system according to claim 13, wherein at least a part of each of the first deflection optical system and the second deflection optical system is formed as a diffraction grating.
  16.  前記第1偏向光学系及び前記第2偏向光学系の少なくとも一方は、前記コリメートレンズでコリメートされた光を偏向する偏向プリズムであることを特徴とする請求項13記載の結合光学系。 14. The coupling optical system according to claim 13, wherein at least one of the first deflection optical system and the second deflection optical system is a deflection prism that deflects light collimated by the collimating lens.
  17.  前記第1偏向光学系と前記第2偏向光学系の偏向度が等しいことを特徴とする請求項13記載の結合光学系。 14. The coupling optical system according to claim 13, wherein the first deflection optical system and the second deflection optical system have the same degree of deflection.
  18.  前記偏向光学系の偏向度は、前記複数の光源間のピッチ、前記複数の受光素子間のピッチ及び前記複数のシングルコアファイバ間のピッチのいずれかと、前記マルチコアファイバのコア間のピッチとの比に等しいことを特徴とする請求項9記載の結合光学系。 The degree of deflection of the deflection optical system is a ratio of a pitch between the plurality of light sources, a pitch between the plurality of light receiving elements and a pitch between the plurality of single core fibers, and a pitch between the cores of the multicore fiber. The coupling optical system according to claim 9, wherein
  19.  前記結合光学系は、
     前記偏向光学系により偏向された光を、前記出射側素子のいずれかに結像させる結像光学レンズを含むことを特徴とする請求項10記載の結合光学系。
    The coupling optical system includes:
    The coupling optical system according to claim 10, further comprising an imaging optical lens that forms an image of the light deflected by the deflection optical system on any of the emission side elements.
  20.  前記結像光学レンズは、複数のレンズがアレイ状に配置された構成であることを特徴とする請求項19記載の結合光学系。 The coupling optical system according to claim 19, wherein the imaging optical lens has a configuration in which a plurality of lenses are arranged in an array.
  21.  結像光学レンズ間のピッチは、前記複数のシングルコアファイバ間のピッチ、前記受光素子間のピッチ及び前記マルチコアファイバのコア間のピッチのいずれかと等しいことを特徴とする請求項20記載の結合光学系。 21. The coupling optical system according to claim 20, wherein a pitch between the imaging optical lenses is equal to any of a pitch between the plurality of single core fibers, a pitch between the light receiving elements, and a pitch between cores of the multi-core fiber. system.
  22.  前記コリメートレンズの焦点距離と前記結像光学レンズの焦点距離とが等しいことを特徴とする請求項19記載の結合光学系。 The coupling optical system according to claim 19, wherein the focal length of the collimating lens is equal to the focal length of the imaging optical lens.
  23.  前記入射側素子と、前記結合光学系と、前記出射側素子とは、前記入射側素子からの光の主光線それぞれが前記結合光学系の入射面に対して垂直に入射し、前記結合光学系の出射面から出射された前記光の主光線それぞれが前記出射側素子の受光面に対して垂直に入射する配置となっていることを特徴とする請求項1記載の結合光学系。 The incident-side element, the coupling optical system, and the exit-side element are configured such that each principal ray of light from the incident-side element is incident perpendicularly to an incident surface of the coupling optical system, and the coupling optical system The coupling optical system according to claim 1, wherein each of the principal rays of the light emitted from the light emitting surface is incident perpendicularly to the light receiving surface of the light emitting side element.
  24.  前記請求項1~23のいずれかに記載の結合光学系を用いて、前記入射側素子から入射する複数の光それぞれの開口数と、前記出射側素子に向けて出射する複数の光それぞれの開口数とが等しくなるよう、前記光学素子と前記マルチコアファイバとを結合させることを特徴とする結合方法。 24. Using the coupling optical system according to any one of claims 1 to 23, the numerical aperture of each of the plurality of lights incident from the incident side element and the respective apertures of the plurality of lights output toward the emission side element A coupling method comprising coupling the optical element and the multi-core fiber so that the numbers are equal.
PCT/JP2012/071848 2011-09-01 2012-08-29 Coupling optical system and coupling method WO2013031836A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011190787 2011-09-01
JP2011-190787 2011-09-01
JP2012-188471 2012-08-29
JP2012188471A JP5831403B2 (en) 2011-09-01 2012-08-29 Coupling optical system and coupling method

Publications (1)

Publication Number Publication Date
WO2013031836A1 true WO2013031836A1 (en) 2013-03-07

Family

ID=47756316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071848 WO2013031836A1 (en) 2011-09-01 2012-08-29 Coupling optical system and coupling method

Country Status (2)

Country Link
JP (1) JP5831403B2 (en)
WO (1) WO2013031836A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038514A1 (en) * 2012-09-06 2014-03-13 株式会社オプトクエスト Optical fiber connector between multicore fiber and single mode fiber
CN111837063A (en) * 2018-03-12 2020-10-27 古河电气工业株式会社 Optical fiber bundle with beam overlapping mechanism
WO2020245705A1 (en) * 2019-06-03 2020-12-10 Alcon Inc. Aligning multi-wavelength laser beams with cores of a multi-core fiber
CN113167974A (en) * 2018-12-25 2021-07-23 株式会社藤仓 Connector system, optical connection method, and optical connection component
US11402585B2 (en) * 2019-03-05 2022-08-02 Sumitomo Electric Industries, Ltd. Optical connection structure
DE102022107005A1 (en) 2022-03-24 2023-09-28 Huber+Suhner Cube Optics Ag Optical multicoupler with correction element and manufacturing process therefor
US11822125B2 (en) 2018-09-18 2023-11-21 Mitsubishi Electric Corporation Multiplexing optical system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719960B1 (en) * 2014-07-31 2015-05-20 湖北工業株式会社 OPTICAL CONNECTION COMPONENT OF MULTI-CORE FIBER AND POLARIZATION MAINTENANCE FIBER AND METHOD FOR PRODUCING OPTICAL CONNECTION COMPONENT
JP6411899B2 (en) * 2015-01-15 2018-10-24 株式会社日立製作所 Multi-core fiber connection device and system
EP4299028A3 (en) * 2017-12-12 2024-04-03 Alcon Inc. Multiple-input-coupled illuminated multi-spot laser probe
JP7213499B2 (en) * 2018-08-02 2023-01-27 株式会社中原光電子研究所 optical coupler
JP7340230B2 (en) * 2019-05-08 2023-09-07 株式会社中原光電子研究所 optical combiner
JP7360694B2 (en) * 2019-10-02 2023-10-13 株式会社中原光電子研究所 Optical connection device
JP7270219B2 (en) 2019-10-07 2023-05-10 パナソニックIpマネジメント株式会社 Optical multiplexer and image projection device using the same
JP7371900B2 (en) 2019-11-01 2023-10-31 株式会社 オプトクエスト Bulk monitor and monitoring method for multi-core fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210313A (en) * 1981-06-22 1982-12-23 Nippon Telegr & Teleph Corp <Ntt> Branch circuit for multicore optical fiber
JP2001166172A (en) * 1999-12-07 2001-06-22 Hitachi Ltd Optical fiber, optical signal receiver and optical signal transmitter
JP2006337594A (en) * 2005-05-31 2006-12-14 Ricoh Opt Ind Co Ltd Luminous flux array density transformation method, luminous flux array density transformation member and light source device
JP2008176314A (en) * 2006-12-21 2008-07-31 Ricoh Co Ltd Light source unit, optical detection unit, optical head, optical driver, and information processing apparatus, optical scanner and image forming apparatus
JP2008197241A (en) * 2007-02-09 2008-08-28 Nippon Sheet Glass Co Ltd Optical module
JP2010286697A (en) * 2009-06-12 2010-12-24 Sumitomo Electric Ind Ltd Optical array conversion device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210313A (en) * 1981-06-22 1982-12-23 Nippon Telegr & Teleph Corp <Ntt> Branch circuit for multicore optical fiber
JP2001166172A (en) * 1999-12-07 2001-06-22 Hitachi Ltd Optical fiber, optical signal receiver and optical signal transmitter
JP2006337594A (en) * 2005-05-31 2006-12-14 Ricoh Opt Ind Co Ltd Luminous flux array density transformation method, luminous flux array density transformation member and light source device
JP2008176314A (en) * 2006-12-21 2008-07-31 Ricoh Co Ltd Light source unit, optical detection unit, optical head, optical driver, and information processing apparatus, optical scanner and image forming apparatus
JP2008197241A (en) * 2007-02-09 2008-08-28 Nippon Sheet Glass Co Ltd Optical module
JP2010286697A (en) * 2009-06-12 2010-12-24 Sumitomo Electric Ind Ltd Optical array conversion device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038514A1 (en) * 2012-09-06 2014-03-13 株式会社オプトクエスト Optical fiber connector between multicore fiber and single mode fiber
JPWO2014038514A1 (en) * 2012-09-06 2016-08-08 株式会社 オプトクエスト Multi-core fiber and single-mode fiber optical connector
JP7252198B2 (en) 2018-03-12 2023-04-04 古河電気工業株式会社 Optical fiber bundle with beam stacking mechanism
JPWO2019176953A1 (en) * 2018-03-12 2021-07-15 古河電気工業株式会社 Fiber optic bundle with beam stacking mechanism
EP3767350A4 (en) * 2018-03-12 2022-01-12 Furukawa Electric Co., Ltd. Optical fiber bundle provided with beam superposing mechanism
US11287574B2 (en) 2018-03-12 2022-03-29 Furukawa Electric Co., Ltd. Optical fiber bundle with beam overlapping mechanism
CN111837063A (en) * 2018-03-12 2020-10-27 古河电气工业株式会社 Optical fiber bundle with beam overlapping mechanism
US11822125B2 (en) 2018-09-18 2023-11-21 Mitsubishi Electric Corporation Multiplexing optical system
CN113167974A (en) * 2018-12-25 2021-07-23 株式会社藤仓 Connector system, optical connection method, and optical connection component
CN113167974B (en) * 2018-12-25 2023-05-12 株式会社藤仓 Connector system, optical connection method, and optical connection member
US11947170B2 (en) 2018-12-25 2024-04-02 Fujikura Ltd. Connector system, optical connection method, and optical connection member
US11402585B2 (en) * 2019-03-05 2022-08-02 Sumitomo Electric Industries, Ltd. Optical connection structure
WO2020245705A1 (en) * 2019-06-03 2020-12-10 Alcon Inc. Aligning multi-wavelength laser beams with cores of a multi-core fiber
DE102022107005A1 (en) 2022-03-24 2023-09-28 Huber+Suhner Cube Optics Ag Optical multicoupler with correction element and manufacturing process therefor

Also Published As

Publication number Publication date
JP5831403B2 (en) 2015-12-09
JP2013065002A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5831403B2 (en) Coupling optical system and coupling method
JP5717714B2 (en) Multiplexing device, multiplexing method, and LD module
US8942521B2 (en) Planar waveguide element
US20120328238A1 (en) Optical device
JP2008501144A (en) Optimal matching of the output of a two-dimensional laser array stack to an optical fiber
JP5758657B2 (en) Lens array and optical module having the same
JP5935465B2 (en) Optical device
JP6359848B2 (en) Optical receptacle and optical module having the same
JP5790428B2 (en) Coupling optics, fiber optics
JP6093388B2 (en) Multiplexer, method of manufacturing multiplexer, and LD module
WO2020153237A1 (en) Optical communication device, optical communication method, and optical communication system
WO2018190254A1 (en) Plano-convex lens, fiber array module and light receiving module
JP2005024617A (en) Optical transmitter
US9864147B2 (en) Optical modulator module
US6853767B1 (en) Methods for manufacturing optical coupling elements
TW201337370A (en) Optical coupler
WO2018042936A1 (en) Plano-convex lens, fiber array module, and light reception module
JP2002107566A (en) Optical functional module
JP7265819B1 (en) Optical element with attenuation region and manufacturing method thereof
WO2014016939A1 (en) Module in which light emitting element and optical fiber are coupled, and component therefor
US20220214554A1 (en) Optical combiner
WO2013031563A1 (en) Coupling structure for multicore fiber
JP2005215650A (en) Rod lens, manufacturing method therefor, and optical fiber equipped with same
JP2017156633A (en) Laser system
JP5787256B2 (en) Optical path switching device and optical signal optical path switching method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828550

Country of ref document: EP

Kind code of ref document: A1