WO2018190254A1 - Plano-convex lens, fiber array module and light receiving module - Google Patents

Plano-convex lens, fiber array module and light receiving module Download PDF

Info

Publication number
WO2018190254A1
WO2018190254A1 PCT/JP2018/014672 JP2018014672W WO2018190254A1 WO 2018190254 A1 WO2018190254 A1 WO 2018190254A1 JP 2018014672 W JP2018014672 W JP 2018014672W WO 2018190254 A1 WO2018190254 A1 WO 2018190254A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
convex
light
convex surface
array
Prior art date
Application number
PCT/JP2018/014672
Other languages
French (fr)
Japanese (ja)
Inventor
基博 中原
博 照井
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to TW107112696A priority Critical patent/TW201843484A/en
Publication of WO2018190254A1 publication Critical patent/WO2018190254A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to a plano-convex lens having two convex surfaces, a fiber array module including the same, and a light receiving module.
  • Patent Documents 1 and 2 A light receiving module for optical communication has been proposed (see, for example, Patent Documents 1 and 2).
  • the light receiving modules of Patent Documents 1 and 2 collimate the beam emitted from the first optical fiber by the lens array, reflect a part of the beam collimated by the lens array to the lens array by the filter, and pass to the second fiber. return.
  • a part of the beam branched by the filter is received by the light receiving element installed in the subsequent stage.
  • Patent Document 1 published after Patent Document 2, the distance between the first optical fiber and the second optical fiber is 500 ⁇ m, and the distance between the lens arrays is also 500 ⁇ m.
  • miniaturization of modules for optical communication has progressed, and it is required to arrange optical fibers at intervals smaller than 500 ⁇ m such as 250 ⁇ m and 127 ⁇ m.
  • the present disclosure provides a reflection-type lens-optical fiber coupling system that uses a filter without using a lens material having a high refractive index even when the distance between the first optical fiber and the second optical fiber is narrow.
  • the object is to efficiently couple the reflected beam into the second fiber.
  • the plano-convex lens of the present disclosure is A plano-convex lens having a flat surface and a lens surface,
  • the lens surface includes a first convex surface and a second convex surface having a spherical shape disposed on a flat base surface,
  • the diameter of the first virtual circle formed on the base surface by the first convex surface and the diameter of the second virtual circle formed on the base surface by the second convex surface are the first virtual circle and the It is larger than the distance between the centers of the second virtual circles.
  • plano-convex lens of the present disclosure may further include a flange portion that relaxes a shape change at a boundary between the first convex surface and the second convex surface between the first convex surface and the second convex surface.
  • the first convex surface and the second convex surface are respectively a first straight line passing through a vertex of the first convex surface and a center of the first virtual circle, a vertex of the second convex surface, and the second convex surface.
  • Two lights emitted from the first position and the second position in a predetermined plane including two straight lines of the second straight line passing through the center of the two imaginary circles are converted into parallel light, and are incident from the first convex surface.
  • the second convex surface may collect the parallel light at the second position.
  • the first convex surface and the second convex surface are respectively a first straight line passing through a vertex of the first convex surface and a center of the first virtual circle, a vertex of the second convex surface, and the second convex surface.
  • a first position within a predetermined plane including two straight lines of a second straight line passing through the center of two virtual circles, and the light incident on the flat surface from the second position is converted into parallel light and the first position
  • the parallel light emitted from the first convex surface at a predetermined distance from the second position so as to converge on one point of the reflecting surface perpendicular to the first straight line and the second straight line.
  • the second convex surface may collect the parallel light at the second position.
  • a filter unit that transmits a part of the parallel light incident from the first convex surface and reflects a part of the parallel light to the second convex surface is provided on the reflective surface. Also good.
  • the fiber array module of the present disclosure includes a plurality of plano-convex lenses according to the present disclosure, and a plurality of the first convex surfaces and the second convex surfaces are arranged on a common base surface, and A fiber array having two optical fibers with respect to the plano-convex lens, and an end face of each optical fiber being disposed at the first position or the second position of each plano-convex lens. .
  • the fiber array module of the present disclosure includes a fiber array module according to the present disclosure and a plurality of through holes that transmit the parallel light transmitted from the reflection surface, and each of the parallel light transmitted from the reflection surface
  • An optical component that is incident on one end of the different through-holes and emits parallel light after passing through the through-holes from the other end of each through-hole, and each light emitted from the other end of the plurality of through-holes A second lens array that collects light at a point determined for each through hole.
  • the light receiving module of the present disclosure includes a fiber array module according to the present disclosure and a light receiving element array that receives each light collected by the second lens array.
  • light that should be returned to the optical fiber after being partially branched for monitoring can be efficiently supplied to the optical fiber without using a lens material having a high refractive index. Can be combined.
  • plano-convex lens of this indication An example of the virtual circle formed on a base surface by a convex surface is shown.
  • die of a planoconvex lens is shown.
  • die of a planoconvex lens is shown.
  • An example of the twin peak plano-convex lens which concerns on 1st Embodiment is shown.
  • the structural example of the fiber array module which concerns on 2nd Embodiment is shown. It is explanatory drawing about the optical system in 1st and 2nd embodiment.
  • 1st and 2nd embodiment it is a graph explaining the conditions which comprise the optical system without vignetting in case the period space
  • An example of the angle dependence in a filter part is shown.
  • An example of the single-peaked plano-convex lens according to the third embodiment is shown.
  • the structural example of the fiber array module which concerns on 3rd Embodiment is shown. It is explanatory drawing about the optical system in 3rd Embodiment.
  • An example of the twin peak plano-convex lens which concerns on 4th Embodiment is shown.
  • the structural example of the fiber array module which concerns on 5th Embodiment is shown. It is explanatory drawing about the optical system in 4th and 5th embodiment.
  • An example of the fiber array module which concerns on 8th Embodiment is shown.
  • An example of the light reception module which concerns on 8th Embodiment is shown.
  • An example of the connection surface seen from the z direction of the fiber array in a 9th embodiment is shown.
  • An example of the structure seen from the x direction of the light reception module in 9th Embodiment is shown.
  • FIG. 1 shows a perspective view of the optical system of the present embodiment.
  • the optical system of the present disclosure includes a bimodal plano-convex lens 20, two optical fibers 11 ⁇ / b> A and 11 ⁇ / b> B, and a filter unit 4.
  • the end face P1 of the optical fiber 11A is disposed at the first position, and functions as the first optical fiber.
  • the optical fiber 11B has the end face P2 disposed at the second position, and functions as a second optical fiber.
  • the surface of the filter unit 4 on the plano-convex lens 20 side functions as a reflecting surface.
  • the plano-convex lens 20 of the present disclosure has a lens surface 23 on a base surface 21B of a flat substrate 21 made of a rectangular lens material having sides parallel to the xyz orthogonal coordinate axes in the drawing.
  • the lens surface 23 includes a spherical convex surface A1 that functions as a first convex surface, a spherical convex surface A2 that functions as a second convex surface, and a flange A3.
  • the convex surface A1 is a part of a spherical surface having a first straight line R1 parallel to the z-axis as a rotation center and an intersection with the straight line R1 as a peak P6.
  • the convex surface A2 is a part of a spherical surface having a second straight line R2 parallel to the z-axis as a rotation center and an intersection with the straight line R2 as a peak P8.
  • the convex surface A2 is a part of a spherical surface having a shape obtained by translating the convex surface A1 in the x direction by the peak interval dp.
  • FIG. 2 shows an example of a virtual circle formed on the base surface 21B by the convex surfaces A1 and A2.
  • the convex surface A1 forms a first virtual circle centered on the point C1 on the straight line R1 and having a diameter D1.
  • a second virtual circle having a diameter D2 and a point C2 on the straight line R2 as the center point is formed on the base surface 21B.
  • the vertex P6 of the convex surface A1 and the center point C1 of the first virtual circle pass through the first straight line R1, and the vertex P8 of the convex surface A2 and the center point C2 of the second virtual circle pass through the second straight line R2.
  • the lens diameters of the two convex surfaces A1 and A2 that perform these lens functions are set larger than the peak interval dp. That is, the peak interval dp is smaller than the diameters D1 and D2, and the first virtual circle and the second virtual circle are arranged so as to overlap each other.
  • the diameters D1 and D2 are equal is shown, but the present disclosure is not limited to this, and the diameters D1 and D2 may be different.
  • the flange portion A3 also protrudes from the base surface 21B and is configured to smoothly connect the two convex portions A1 and A2.
  • the lens surface 23 composed of the convex surfaces A1 and A2 and the flange A3 has a straight line passing through the midpoint between the two peaks P6 and P8 and parallel to the z-axis as the lens center axis Ac.
  • a straight line passing through the two peaks P6 and P8 and parallel to the x-axis is hereinafter referred to as a peak line Bc.
  • the optical fiber 11A having an optical axis parallel to the z-axis is disposed so that the optical axis intersects the peak line Bc at a predetermined distance outside the straight line R1 that is the center of the convex surface A1.
  • the outgoing light from the optical fiber 11A is incident on the peak P6 of the convex surface A1 with an offset to the outside.
  • the incident light is reflected by a predetermined amount of intensity by a mechanism described later, and is collected and incident on the optical fiber 11B arranged symmetrically with respect to the lens center axis Ac with respect to the optical fiber 11A. Yes.
  • FIG. 3 shows a contour map of the mold viewed from the z-axis direction in the mold manufacturing process.
  • concave surfaces corresponding to the convex surfaces A1 and A2 are formed on the mold surface.
  • the overlapping parts become deeper concave surfaces of the other party, and a ridge line is formed at the boundary.
  • mass transfer during the molding operation is hindered. Therefore, as shown in FIG.
  • the boundary is cut away so as not to be projected onto the xy-plane projected portion Pd of the light intensity distribution pattern emitted from the optical fiber, and the shape change at the boundary is alleviated.
  • a shape having a flange A3 as shown in FIG. 1 is obtained.
  • FIG. 5 is a cross-sectional view taken along a plane Pc including straight lines R1 and R2.
  • the optical fibers 11A and 11B are disposed on the lens surface 23 side, and the filter unit 4 is disposed on the flat surface 21A side.
  • the end face P1 of the optical fiber 11A and the end face P2 of the optical fiber 11B are disposed at the first position and the second position, respectively.
  • Longitudinal direction of the optical fiber 11A and 11B are arranged in parallel to the lens center axis A C plano 20 in the plane P C.
  • Plane P C is a plane formed by the optical fibers 11A and 11B.
  • this embodiment is referred to as Type I.
  • the plano-convex lens 20 has two convex surfaces A1 and A2 on the lens surface 23.
  • the convex surface A1 is a rotating curved surface that is parallel to the lens center axis Ac and has a straight line R1 included in the plane Pc formed by the optical fibers 11A and 11B, and the convex surface A2 is also parallel to the lens center axis Ac and light.
  • It is a rotation curved surface with a straight line R2 included in a plane Pc formed by the fibers 11A and 11B as a rotation center, and the straight lines R1 and R2 are symmetrical with respect to the lens center axis Ac and are two fiber center lines. It is offset inward by a predetermined distance.
  • the light emitted from the end face P1 of the optical fiber 11A enters the plano-convex lens 20 from the convex surface A1.
  • the convex surface A1 makes the light emitted from the end surface P1 of the optical fiber 11A parallel light.
  • the light that has become parallel light on the convex surface A1 passes through the plano-convex lens 20, and part of the light is reflected toward the convex surface A2 by the filter unit 4 disposed on the flat surface 21A.
  • the convex surface A2 condenses the parallel light reflected by the filter unit 4 on the end surface P2 of the optical fiber 11B. Thereby, the parallel light reflected by the filter unit 4 enters the optical fiber 11B.
  • the plano-convex lens 20 according to the present embodiment collects the parallel light reflected by the filter unit 4 on the end face P2 of the optical fiber 11B. For this reason, the plano-convex lens 20 according to this embodiment can efficiently couple the light after the monitor light is partially branched (hereinafter expressed as tapped) to the optical fiber 11B.
  • FIG. 6 shows a configuration example of the fiber array module according to the present embodiment. This corresponds to the case where type I plano-convex lenses 20 are arrayed.
  • the fiber array module according to this embodiment includes a fiber array 1 in which optical fibers 11A-1 to 11A-4 and 11B-1 to 11B-4 are alternately arranged, and a plurality of lens surfaces 23 of the first embodiment. And lens array 2 in which -1 to 23-4 are arranged.
  • the lens array 2 functions as a first lens array.
  • spacers 22 are disposed on both ends of the plurality of lens surfaces 23-1 to 23-4.
  • the spacer 22 may be formed in the mold by forming a spacer-corresponding recess at the same time as the lens-corresponding recess, and may be formed by a molding method at the same time as the lens is formed, or a plate having a predetermined thickness may be sandwiched.
  • Fiber array 1 and the lens array 2 has four fibers in the first embodiment - a lens optical system, are arranged in parallel on a plane P C.
  • the lens array 2 includes the plurality of lens surfaces 23-1 to 23-4 of the first embodiment.
  • Each twin peak plano-convex lens 20 provided in the lens array 2 includes the fiber lens optical system of the first embodiment as a basic unit.
  • Lens center axis A C of the lens surfaces 23 are arranged in parallel in a plane P C.
  • the fiber array 1 has two optical fibers 11A and 11B for each of the twin peak lens surfaces 23-1 to 23-4.
  • the end faces PL11 of the fiber array 1 on which the end faces of the optical fibers 11A-1 to 11A-4 and the end faces of 11B-1 to 11B-4 are arranged are arranged in parallel with the peak line Bc.
  • the optical system in FIGS. 5 and 6 will be described with reference to FIG. Hereinafter, the directions will be described following the orthogonal xyz coordinate axes in the drawing.
  • the left side of the figure, in the xz plane, is parallel to the z-axis, the fiber array 1 optical fibers 11A and 11B are arranged at intervals d f in the x-axis direction is disposed.
  • the fiber array 1 is configured to be held by a housing such as Tempax glass with a plane parallel to the x-axis and forming a predetermined angle with respect to the y-axis as an end surface.
  • the convex surface A1 is a rotating curved surface centered on a straight line R1 that is included in the plane Pc formed of the fiber array and is parallel to the z axis, and has a lens action. Moreover, it is offset inward (to the lens center axis Ac side) by a predetermined distance with respect to the optical axis of the optical fiber 11A.
  • Convex A2 from the lens center axis Ac is formed in a symmetrical shape with convex surface A1 across the saddle A3 width w s.
  • the distance d p of the straight line R1 and the line R2 of the convex surface A1 and A2 (hereinafter referred to as peak interval d p), is set to the interval d f is less than the distance.
  • the end surface PL11 of the fiber array 1 and the lens surface 23 of the lens array 2 are disposed with an air layer 3 having a thickness equal to the convex focal length fv interposed therebetween.
  • the distance between the lens surface 23 and the flat surface 21A, that is, the thickness t l of the lens is set to a thick predetermined value than the concave side focal length f c.
  • the relative position of the fiber array 1 and the lens array 2, x-axis direction, the lens center axis A C is the center line of the adjacent fibers to each other of the fiber array 1 (in this figure, the center line of the optical fiber 11A and the optical fiber 11B) to as match, y direction is so formed with an array of lens center axis a C plane is a plane with said matching formed at the centerline of the fiber array 1, and z directions, the end face of the fiber array 1 the distance between the peak P6 and P8 of PL11 and the lens array 2 is set such that the matching convex side focal length f v plano 20.
  • a filter unit 4 having a function of reflecting / transmitting light of a predetermined wavelength at a desired ratio may be provided on the surface of the lens array 2 on the flat surface 21A side.
  • the path of light emitted from the end face P1 of the optical fiber 11A will be considered by light ray approximation.
  • the end face P1 of the optical fiber 11A is located on the convex focal plane PL23V, and the straight line R1 in the lens surface 23 is offset in the x direction with respect to the fiber center line as described above.
  • the end face P1 of the fiber 11A as a point light source, and refracted light to the lens center axis a C side incident on the convex surface A1 of the lens array 2 emitted therefrom, parallel constituting the lens center axis a C at a predetermined angle ⁇ It travels through the lens as a light beam.
  • light or central ray in parallel to emit from the end of the optical fiber 11A to the z-axis is a lens center axis A C is incident on the plano-convex lens 20, thus passing through the concave side focus.
  • Lens thickness t l is thicker than the concave side focal length f c, yet have been set to a predetermined value which is located a flat surface 21A at the point where the central ray of the above crosses the lens center axis A c, on the flat surface 21A
  • a predetermined intensity component of the parallel light travels straight at an angle ⁇ relative to the lens center axis a C passes through the filter portion 4, but the rest of the intensity component in the filter section 4 It reflected and reaches the convex A2 in a symmetric x position relative to the lens center axis a C.
  • the reflected light reaches the convex A2 is a parallel light having passed through the concave side focal, emitted from the optical fiber 11A, follows a symmetrical path with respect to twin-peak flat optical path incident on the convex lens 20 and the lens center axis A C , it will be focused on the end surface P2 of the optical fiber 11B in the optical fiber 11A and symmetrical positions with respect to the end lens center axis a C.
  • the lens thickness t 1 is smaller than the predetermined value, the reflected light from the filter unit 4 reaches the surface of the convex surface A2 on the lens central axis AC side, where the parallel light converges. Instead, it spreads at the end face P2 of the optical fiber 11B.
  • the lens thickness t 1 is thicker than the above-mentioned predetermined value, the reflected light from the filter unit 4 reaches the outer surface of the convex surface A2, and the parallel light is excessively converged, so that the end surface of the optical fiber 11B. It spreads at P2. In either case, the optical axis of the reflected light beam at the filter unit 4 also deviates from the end face P2 of the optical fiber 11B.
  • the thickness t l of the lens thicker than the concave side focal length f c, moreover flat surface 21A to the point where the central ray of the above crosses the lens center axis A c needs to be set to a predetermined value situated.
  • the refractive index of the adjacent medium is given the same as the refractive index n v of the air layer 3 is emitted at an angle [psi.
  • the refractive index of the adjacent medium is the same as the refractive index of the lens array 2, the light is emitted at an angle ⁇ .
  • the focal length f c to PL23C includes a fiber spacing d f, at the exit angle of peak intervals d p of the convex surface A1 and convex A2, the angle is an incident angle to the peak P6 [psi, and the peak P6 to the lens array 2 From the value of a certain angle ⁇ , it is determined by the following equations (2) and (3).
  • f c ⁇ (d f ⁇ d p ) cot ⁇ / 2 (3)
  • Convex A1 and convex A2 constituting the twin peaks are both but not may satisfy the equation (1) to (5), satisfy these relationships, symmetry axis parallel to the lens center axis A C
  • the rotation curved surface can be most easily approximated by a spherical surface having a radius of R p obtained by Equation (5).
  • the equations (2) and (3) The focal lengths f v and f c of the convex / concave lens 20 of the plano-convex lens 20 are determined, that is, the distance between the optical fibers 11A and 11B and the plano-convex lens 20 and the lens thickness t 1 are determined from the equation (4).
  • the peak curvature radius which becomes the shape standard of the mold used in the molding process, which is the lens manufacturing process, is also known from the equation (5).
  • the conditions for establishing such an optical system will be described.
  • the outgoing light from the optical fiber 11A spreads according to the NA of the optical fiber, but the spread is often expressed as the propagation of a Gaussian beam with the end of the optical fiber as the beam waist position.
  • the power distribution of the Gaussian beam emitted from the end face P1 of the optical fiber 11A and reaching the convex surface A1 is 99.75% of the total power in the range from the beam center to 1.73 times the beam radius ⁇ . Therefore, if the range up to this point is the beam diameter BD of the beam that has reached the convex surface A1, it is given by the following equation.
  • ⁇ 0 and ⁇ are the mode radius of the optical fiber 11A and the wavelength of light, respectively.
  • the conditions required for the beam diameter on the lens surface 23 from the configuration of the lens will be considered according to FIG.
  • the peak interval d p between the convex surface A1 and the convex surface A2 is increased, as shown in FIG. 8A, the convex surface A1 and the convex surface A2 are overlapped to form two individual convex surfaces. That is, the flange portion A3 is disposed on the same plane as the base surface 21B. This is called a two-piece state, and is considered by comparing this with a twin peak state.
  • the condition without vignetting is that the distances D C and D E between the fiber center line and both ends of the outer edge of the lens in the x-axis direction in FIG. Must be larger than half of the beam diameter BD, (Equation 8) BD ⁇ d f ⁇ max (d n , w s ) (8) Must hold. As will be described later, this condition is a wider condition including conditional expression (7).
  • the twin peak shape is not necessarily required.
  • the beam area on the lens surface extends on both sides of the peaks P6 and P8, but as shown in FIG. 9A, the beam area is distributed only outside the peaks P6 and P8. If you want to. This case corresponds to a case where the beam diameter BD on the lens surface is sufficiently small to satisfy the conditions of the expressions (7) and (8) and the following expression. (Equation 9) BD ⁇ d f ⁇ d p (9)
  • the lens shape does not need to be a twin peak, and may be a trapezoidal shape as shown in FIG. 9B or the contour map of FIG. 10, and this is easier to mold and more durable. high.
  • R p (n c ⁇ n v ) f v / n v ⁇ 150 ⁇ m (10)
  • the plano-convex lens 20 which is the subject of the present disclosure can be manufactured by a molding method.
  • This method is a method in which raw glass is pressed into a concave hole formed in a mold and the concave shape is transferred to the convex shape of the glass, and the radius of curvature of the lens surface 23 is that of the machine tool for producing the mold.
  • the radius of curvature of the lens surface 23 is that of the machine tool for producing the mold.
  • it is assumed to be 150 ⁇ m or more. That is, it means that a depth of a small radius of curvature below this cannot be formed.
  • Fiber interval d f The fiber period interval often used in the fiber array 1 is 250 ⁇ m matched to a general-purpose 250 ⁇ m pitch tape fiber, and 127 ⁇ m arrayed by nesting it vertically. Again, these two values were examined.
  • Mode radius ⁇ 0 It was set to 5.2 ⁇ m, which is a typical value at a wavelength of 1.55 ⁇ m of a single mode optical fiber.
  • Lens refractive index n c The refractive index of the optical glass used for the lens is distributed from 1.4 of the low refractive index side crown glass to 2.0 of the high refractive index side flint glass. Here, therefore, a lens refractive index n c is considering to 2.0 from 1.4.
  • Air refractive index n v The outside of the lens is usually air, so it was set to 1.0.
  • Wear width w s and adjacent interval d n When a lens is manufactured by a glass mold method, a lens-shaped hole is dug into a mold, but a flat portion of about 10 to 20 ⁇ m is formed between adjacent holes. is required.
  • the filter portion 4 is assumed to be a dielectric multilayer film in which an optical thickness is ⁇ / 4 and a low refractive index transparent material and a high refractive index transparent material are alternately laminated. In terms of structure, the multi-layer film is incident obliquely, but the problem here is the polarization dependence of the transmitted tap light.
  • the angle ⁇ which is the reflection angle at the filter unit 4
  • the angle ⁇ which is the reflection angle at the filter unit 4 is set to 2 degrees in consideration of the influence of the refractive index and film thickness variation in actual fabrication.
  • Figure 11 is the structure of type I, for the case the fiber spacing d f of 250 [mu] m, is a graph plotting the relationship between the lens refractive index n c and the peak radius of curvature R p for each peak interval d p.
  • equation (1) to (5) for each peak interval d p, a peak radius of curvature R p for increasing light folding capability with increasing lens refractive index n c is larger.
  • the radius of curvature R p decreases to keep the same refractive power because the rays are closer to the peak center.
  • the three dotted lines in the graph apply the conditions of equations (7) to (8) and (10) to this graph.
  • the dotted line L 2C comes from the two-piece condition of Equation (7), and below this straight line is a region (n c ⁇ R p ) where a two-piece optical system without vignetting can be constructed.
  • Dotted L 2K topmost are those coming from the twin peaks condition of Equation (8), is an area of the below the straight line can be constructed an optical system without twin peaks form vignetting (n c -R p) .
  • Parallel dashed lines L PC in the graph horizontal axis and the bottom, which come from the mold processing conditions of the formula (10), above the the straight line is the region of possible configurations (n c -R p).
  • the two-piece configuration is possible only in the region surrounded by the dotted line L 2C and the dotted line L PC
  • the twin peak configuration is possible in the wide region surrounded by the dotted line L 2K and the dotted line L PC. It can be seen that the degree of freedom in design is more than twice as wide.
  • twin peak conditions it is possible to construct an optical system under conditions where the radius of curvature Rp is larger, which means that the difficulty of mold processing is low.
  • the width of the peak interval d p is capable of an optical system configuration of 91.7 ⁇ 95.6 ⁇ m and narrow, twin peaks form It can be seen that can cope with downsizing.
  • n c is only possible in a very limited area of 107 ⁇ m from 1.81 or more in addition peak interval d p also 105.
  • the high refractive index region in terms of reliability is a region where occurrence of scorch is a problem, it is inevitable said practical applicability is low, the fiber spacing d f of 127 [mu] m, 2-piece form It can be said that it is not applicable.
  • FIG. 14 shows the optical system of this embodiment.
  • the light emitted from the optical fiber 11A and the incident light beam to the optical fiber 11B overlap each other on the surface and inside of the plano-convex lens in the first embodiment.
  • the fiber spacing d f narrow, thus corresponding to when the angle ⁇ is the reflection angle at the filter section 4 is small.
  • the convex surface A1 and the convex surface A2 naturally overlap and become a single-peak lens convex surface.
  • Such a configuration is effective for reducing the reflection angle ⁇ in order to reduce the wavelength dependence and polarization dependence of the transmitted light in the filter unit 4.
  • the first virtual circle and the second virtual circle formed on the base surface 21B by the convex surface A1 and the convex surface A2 are part of a common spherical surface, and the lens surface 23 does not include the flange portion A3.
  • the distance between the centers of the first virtual circle and the second virtual circle is zero.
  • the present disclosure may include a case where the distance between the centers of the first virtual circle and the second virtual circle is zero.
  • FIG. 15 shows a configuration example of the fiber array module according to the present embodiment.
  • the fiber array 1 has an irregular pitch. This is in order to reduce the angle ⁇ is the reflection angle, because the narrowed than half of the lens distance d l of the lens array 2 to fiber distance d f.
  • the conditions required for the beam diameter BD on the lens surfaces of the optical fibers 11A-1 to 11 and 11B-1 to 4 are that the light beam does not reach the adjacent lens on the lens surface in FIG. Instead of (7) (Equation 31) BD ⁇ d 1 ⁇ d f (31) It becomes.
  • FIG. 17 shows the optical system of this embodiment.
  • the optical fibers 11A and 11B are disposed on the flat surface 21A side of the twin peak plano-convex lens 20, and the filter unit 4 is disposed on the lens surface 23 side with the air layer 3 having a predetermined thickness interposed therebetween.
  • the end face P1 of the optical fiber 11A is disposed at the first position, and functions as the first optical fiber.
  • the optical fiber 11B has the end face P2 disposed at the second position, and functions as a second optical fiber. Longitudinal direction of the optical fiber 11A and 11B are arranged in parallel to the lens center axis A C in the plane P C.
  • this embodiment is referred to as Type II.
  • the plano-convex lens 20 has, on the lens surface 23, a convex surface A1 that functions as a first convex surface, a convex surface A2 that functions as a second convex surface, and a flange A3.
  • the convex surface A1 is a spherical surface that is parallel to the lens center axis Ac and that is centered on the straight line R1 that is included in the plane Pc
  • the convex surface A2 is also parallel to the lens center axis Ac and that is centered on the straight line R2 that is included in the plane Pc
  • the straight lines R1 and R2 are symmetrical with respect to the lens center axis Ac and are offset by a predetermined distance inward.
  • the light emitted from the end face P1 of the optical fiber 11A enters the plano-convex lens 20 from the flat surface 21A.
  • the light incident on the plano-convex lens 20 is transmitted through the lens 20 and is emitted from the convex surface A1 into the air layer 3.
  • the convex surface A1 makes the light emitted into the air layer 3 parallel light.
  • the light that has become parallel light on the convex surface A1 passes through the air layer 3, and part of the light is reflected toward the convex surface A2 at one point P3 of the partial transmission film 41 provided in the filter unit 4.
  • the partial transmission film 41 functions as a reflection surface.
  • the parallel light reflected by the filter unit 4 enters the plano-convex lens 20 from the convex surface A2.
  • the convex surface A2 condenses the parallel light reflected by the filter unit 4 on the end surface P2 of the optical fiber 11B. Thereby, the parallel light reflected by the filter unit 4 enters the optical fiber 11B.
  • plano-convex lens 20 condenses the parallel light reflected by the convex surface A2 by the filter unit 4 on the end surface P2 of the optical fiber 11B, the light after tapping the monitor light is efficiently applied to the optical fiber 11B. Can be combined.
  • FIG. 18 shows a configuration example of the fiber array module according to the present embodiment. This corresponds to the case where the type II plano-convex lens 20 is arrayed.
  • the fiber array module includes a fiber array 1 in which optical fibers 11A-1 to 11A-4 and 11B-1 to 11B-4 are alternately arranged, and a plurality of lens surfaces 23-1 to 23- of the fourth embodiment. And a lens array 2 in which 4 are arranged. Similarly to the second embodiment, the lens array 2 functions as a first lens array, and a spacer 22 is disposed.
  • Fiber array 1 and the lens array 2 has four fibers of the fourth embodiment - lens optical system, are arranged in parallel on a predetermined plane P C.
  • the lens array 2 includes the plurality of lens surfaces 23-1 to 23-4 of the fourth embodiment.
  • Each twin peak plano-convex lens 20 provided in the lens array 2 includes the fiber lens optical system of the fourth embodiment as a basic unit.
  • Lens center axis A C of the lens surfaces 23 are arranged in parallel in a plane P C.
  • the fiber array 1 has two optical fibers 11A and 11B for each lens surface 23-1 to 23-4.
  • the end faces PL11 of the fiber array 1 on which the end faces of the optical fibers 11A-1 to 11A-4 and the end faces of 11B-1 to 11B-4 are arranged are arranged in parallel with the peak line Bc.
  • the optical system in FIGS. 17 and 18 will be described with reference to FIG. Hereinafter, the directions will be described following the orthogonal xyz coordinate axes in the drawing.
  • the left end of the figure, in the xz plane, is parallel to the z-axis, the fiber array 1 the optical fiber are arranged at intervals d f in the x-axis direction is disposed.
  • the fiber array 1 is configured to be held by a housing such as Tempax glass with a plane parallel to the x-axis and forming a predetermined angle with respect to the y-axis as an end surface.
  • the flat surface 21A side of the twin peak lens array 2 is directly attached to the end surface PL11 of the fiber array 1,
  • the lens surface 23 side having a period twice that of the fiber array 1 faces the opposite side.
  • Lens surface 23, z has a lens center axis A C parallel to the axis, a common plane plane perpendicular to the z-axis, the x-axis direction in the fiber array 1 times the spacing 2d f, and and adjacent lenses They are arrayed at a distance between the adjacent d n.
  • the lens surface 23 includes a convex surface A1 and a convex surface A2.
  • the convex surface A1 is a rotating curved surface centered on a straight line R1 that is included in the plane Pc of the fiber array 1 and is parallel to the z axis, and has a lens action. Moreover, it is offset inward (to the lens center axis Ac side) by a predetermined distance with respect to the optical axis of the fiber 11A.
  • Convex A2 from the lens center axis Ac is formed in a symmetrical shape with convex surface A1 across the saddle A3 width w s. Peak interval d p is the distance between the straight line R1 and the line R2 is given is set by a small distance in length than the fiber spacing d f.
  • a filter unit 4 having a partial transmission film 41 perpendicular to the z-axis with the air layer 3 interposed therebetween is disposed on the lens surface 23 side of the lens array 2.
  • the distance between the lens surface 23 and the partial transmission film 41, that is, the thickness t r of the air layer is set to a thick predetermined value than the convex side focal length f v.
  • the relative position of the fiber array 1 and the lens array 2, x-axis direction, the lens center axis A C is the center line of the adjacent fibers to each other of the fiber array 1 (in this figure, the center line of the optical fiber 11A and the optical fiber 11B) to as match, y-direction, as formed by an array of lens center axis a C plane coincides with the plane formed by the center line of the fiber array 1, and z directions, the end face of the fiber array 1 PL11 the distance between the peak P6 and P8 are set to match the concave side focal length f c of plano-convex lens 20 and.
  • f c concave side focal length
  • the partially transmissive film 41 is directly loaded on the flat surface 21A side of the lens array 2, but in this embodiment, the partially transparent film 41 has the same refractive index as that of the lens array 2 separately.
  • the glass substrate 42 is loaded.
  • the path of light emitted from the end face of the optical fiber 11A will be considered by light ray approximation.
  • the end surface of the optical fiber 11A is located on the concave focal plane PL23C, and as described above, the straight line R1 that is the center line of the convex surface A1 of the lens surface 23 is offset in the x direction with respect to the fiber center line. ing. Therefore, emitted an end face of the optical fiber 11A as a point light source, transmitted through the lens array 2, light incident on the convex surface A1 is refracted in the lens center axis A C side, the lens center axis A C at a predetermined angle It travels through the air layer 3 as parallel rays forming ⁇ .
  • the thickness t r of the air layer is thicker than the convex side focal length f v, and since the partial transmission film 41 in that the central ray of the above crosses the lens center axis A c is configured to position, parallel light strength component is straight with an angle of ⁇ with respect to the partial transmission film 41 lens center axis a C passes through the, remaining strength component is reflected by the partial transmission film 41, symmetrical with respect to the lens center axis a C
  • the convex surface A2 is reached at a position in the x direction.
  • the reflected light reaches the convex A2 is a parallel light having passed through the convex side focal, emitted from the optical fiber 11A, follows a symmetrical path with respect to the optical path and the lens center axis A C incident on the convex surface A1, eventually lens It will be focused on the end surface P2 of the optical fiber 11B in the optical fiber 11A and symmetrical positions with respect to the central axis a C.
  • the light reflected at the filter section 4 is made to reach a lens center axis A C-side surface of the convex A2, the parallel light is converged therein However, it spreads at the end face P2 of the optical fiber 11B.
  • the thickness t r of the air layer 3 is thicker than a predetermined value, the light reflected at the filter section 4 is made to reach to the outer surface of convex A2, and the parallel light too is converged, the end face of the optical fiber 11B It spreads at P2.
  • the optical axis of the reflected light beam at the filter unit 4 also deviates from the end face P2 of the optical fiber 11B. Therefore, the thickness t r of the air layer is thicker than the convex side focal length f v, yet is partially transmitting film 41 in that the central ray of the above crosses the lens center axis A c has to be positioned.
  • the transmitted light in the partial transmission film 41 if the same as the refractive index n c of the refractive index of the lens array 2 of the glass substrate 42, which is by adhering partially transmitting film 41, although not shown, the angle The light is emitted at ⁇ . If the glass substrate 42 to which the partially permeable film 41 is attached is a parallel substrate, when the light is finally emitted to the air layer 3, it is emitted at an angle ⁇ .
  • the focal length f v to the convex side focal plane PL23V, and concave focal plane the focal length f c to PL23C includes a fiber spacing d f, the peak interval d p of the convex surface A1 and convex A2, angle ⁇ is a lens central incident angle, and the value of the angle ⁇ is the emission angle, the following formula ( 12), determined by equation (13).
  • Convex A1 and convex A2 constituting the twin peaks are both but not may satisfy the above formula (11) to Formula (14) satisfies these relationships, symmetry axis parallel to the lens center axis A C
  • the rotation curved surface can be most easily approximated by a spherical surface having a radius of R p obtained by Expression (15).
  • Figure 20 is in the configuration of Type II, the case is a fiber spacing d f of 250 [mu] m, is a graph plotting the relationship between the lens refractive index n c and the peak radius of curvature R p for each peak interval d p. Equation (11) to (13), the equation (16) to (17), for each peak interval d p, a peak curvature in order to increase the light folding capability with increasing lens refractive index n c the radius R p Will grow. The peak interval, as increases, the beam becomes smaller peak radius of curvature R p to keep the same refractive ability to become closer to the peak center.
  • the three dotted lines in the graph apply the conditions of equations (7) to (8) and equation (17) to this graph.
  • the dotted line L 2C comes from the two-piece condition of Equation (7), and below this straight line is a region (n c ⁇ R p ) where a two-piece optical system without vignetting can be constructed.
  • Dotted L 2K topmost are those coming from the twin peaks condition of Equation (8), is an area of the below the straight line can be constructed an optical system without twin peaks form vignetting (n c -R p) .
  • a dotted line L PC parallel to the horizontal axis of the lowermost graph comes from the die machining conditions of the equation (17), and the region above this straight line is a configurable (n c ⁇ R p ) region.
  • twin peak configuration Comparing the twin peak and the two-piece configuration, the two-piece configuration is possible only in the area surrounded by the dotted line L 2C and the dotted line L PC , whereas the twin peak configuration is surrounded by the dotted line L 2K and the dotted line L PC. It can be seen in a wide area, and the design freedom is about twice as wide. In particular, under twin peak conditions, it is possible to construct an optical system under conditions where the radius of curvature Rp is larger, which means that the difficulty of mold processing is low.
  • the case in the configuration of Type II, the case is a fiber spacing d f narrower 127 ⁇ m than 20 is a graph plotting the relationship between the peak interval d lens refractive index for each p n c and the peak radius of curvature R p.
  • the peak curvature radius is increased because the refractive power of the light increases as the lens refractive index increases for each peak interval, as in FIG. Rp increases.
  • the peak interval d p the light beam approaches the center of the peak as it increases, so that the peak radius of curvature R p decreases to maintain the same refractive power.
  • the three dotted lines in the graph apply the conditions of equations (7) to (8) and (17) to this graph.
  • the region surrounded by the dotted line L 2K and the dotted line L PC capable of twin peak form is overwhelming compared to the region surrounded by the dotted line L 2C and the dotted line L PC capable of two piece form. Wide.
  • the region of possible (n c ⁇ R p ) becomes narrower as the fiber interval d f becomes narrower, and the twin peak form is possible because of the dotted line of the twin peak condition and the mold processing condition becomes a triangular area surrounded by the lens refractive index n c is not configured at 1.44 or less.
  • the refractive index 1.501 of a representative glass material reliable borosilicate glass BK7 the width of the peak interval d p is capable of an optical system configuration of 103.5 ⁇ 106.1 ⁇ m and narrow, Twin It can be seen that the peak shape can correspond to miniaturization.
  • n c is only possible a limited area from 1.64 or more in addition peak intervals also 111 of 116Myuemu.
  • the high refractive index region in terms of reliability also includes regions where occurrence of scorch is a problem, the practical applicability is forced to not give say much lower, the d f 127 [mu] m, 2-piece form Can be said to have very limited application.
  • Two lenses refractive index is a key parameter n c and when considering the peak radius of curvature R p, towards the twin-peak configuration, 2-3 times n c -R p region of the two-piece construction is wide, free design High degree.
  • the direction of the twin-peak structure is also possible to correspond to a smaller fiber spacing d f, is suitable for miniaturization.
  • the direction of the twin peaks configurations can select the peak radius of curvature R p is a large value, since the lens diameter can be increased, fiber-to-fiber coupling efficiency can be kept high.
  • the twin peak configuration is easier to make because the radius of curvature of the hole when making the mold is larger.
  • FIG. 22 shows the optical system of this embodiment.
  • the light emitted from the optical fiber 11A and the incident light beam to the optical fiber 11B are overlapped on the surface of the plano-convex lens and the outside in the fourth embodiment.
  • the convex surface A1 and the convex surface A2 naturally overlap and become a single-peak lens convex surface.
  • Such a configuration is effective for reducing the reflection angle ⁇ in order to reduce the wavelength dependency and polarization dependency of the transmitted light in the partial transmission film 41.
  • the first virtual circle and the second virtual circle formed on the base surface 21B by the convex surface A1 and the convex surface A2 are part of a common spherical surface, and the lens surface 23 does not include the flange portion A3.
  • the distance between the centers of the first virtual circle and the second virtual circle is zero.
  • the present disclosure may include a case where the distance between the centers of the first virtual circle and the second virtual circle is zero.
  • FIG. 23 shows a configuration example of the fiber array module according to the present embodiment.
  • the fiber array 1 has an irregular regular pitch. This is in order to reduce the angle ⁇ is the reflection angle, because the narrowed than half of the lens distance d l of the lens array 2 to fiber distance d f.
  • the condition required for the beam diameter BD on the lens surface of the optical fibers 11A-1 to 4 and 11B-1 to 4 is that in FIG. 24 the light beam does not reach the adjacent lens on the lens surface.
  • the equation (31) described in the third embodiment is obtained.
  • FIG. 25 shows an example of a fiber array module according to this embodiment.
  • the fiber array module shown in FIG. 25 includes the fiber array module shown in FIG. 6, a light shielding plate 7, and a lens array 9.
  • the light shielding plate 7 functions as an optical component
  • the lens array 9 functions as a second lens array.
  • the light shielding plate 7 has a plurality of through holes 71. Each parallel light transmitted from the filter unit 4 enters one end of a different through hole 71. Then, the parallel light after passing through the through holes 71 is emitted from the other end of each through hole 71.
  • the lens array 9 condenses each light emitted from the other end of the plurality of through holes 71 at a point determined for each through hole 71. At this point, the light receiving surface of the light receiving element 81 is disposed.
  • FIG. 26 shows an example of a light receiving module according to the present embodiment.
  • the light receiving module shown in FIG. 26 includes the fiber array module shown in FIG. 25 and the light receiving element array 8.
  • Each light receiving element 81 provided in the light receiving element array 8 receives each light condensed by the lens array 9.
  • the light receiving module shown in FIG. 26 can be used as a four-array optical tap monitor module.
  • the application area of this embodiment is, for example, a wavelength 1.55 ⁇ m band optical communication system.
  • the module includes a fiber array 1, a lens array 2, a filter unit 4, a light shielding plate 7, a lens array 9, and a light receiving element array 8 from the left side of the figure.
  • the various parameters, including fiber spacing d f adopts the value in line with the type I described so far.
  • the light shielding plate 7 has a size that is the same as the outer shape of the lens array 2, and a through hole 71 having the beam diameter is formed in the center of the light shielding plate 7 in accordance with the tap optical path.
  • a lens array 9, which is the same as the lens array 2, is installed in the rear stage of the light shielding plate 7 with the direction opposite to that of the lens array 2.
  • the lens array 9 condenses the tap light beam that propagates through the space of the through hole 71 and spreads on the light receiving surface of the light receiving element 81.
  • Fiber array 1 For the fiber array 1, eight arrays of wavelength 1.3 / 1.55 ⁇ m single mode tape fibers were used as optical fiber members. This was aligned with a 60-degree V-groove plate using Tempax glass, covered with an upper lid, fixed with UV adhesive, and end-face polished to produce a connecting fiber array 1. Fiber distance d f is the same as the tape fiber used.
  • the optical fiber optical axis is in the z direction, and the connection end surface with other elements is parallel to the x axis, and is set to be inclined by 8 degrees with respect to the y axis direction in order to reduce return light due to end surface reflection. .
  • the 8 ° oblique end surface has an AR coating for a wavelength of 1.55 ⁇ m.
  • Lens array 2 made of borosilicate glass, and lens surfaces 23 are formed at a predetermined array interval.
  • Spacers 22 that are integrally formed at the time of lens molding are installed at both ends of the lens array 2 in the x direction.
  • the spacer 22 is a trapezoidal convex part, and the surface thereof is similarly inclined by 8 degrees in accordance with the 8 degree oblique end face of the fiber array 1.
  • the height of the spacer 22 is preferably is set to be a predetermined convex side focal length f v at the position of for example, a lens central axis Ac.
  • a filter unit 4 having an angle ⁇ set to 2 degrees is attached to the flat surface 21A of the lens array 2.
  • the reflection / transmission ratio is preferably 95% / 5%, and examples of the material include a SiO 2 —Ta 2 O 5 multilayer film formed by ion beam assisted deposition.
  • Shading plate 7 is made of square infrared absorbing glass. In the central portion, a through hole 71 is formed in parallel with the xz plane and forming an angle ⁇ between the z-axis direction and the lens center incident direction in accordance with the optical path of the tap light.
  • the x direction array pitch is the same as the lens array 2.
  • the tap light beam propagates without contacting the wall of the through hole 71 of the light shielding plate 7, but irregular reflection components due to structural irregularities generated by reflection and transmission at the lens array 2 and the filter unit 4 in the previous stage are reflected by this light shielding plate. 7 to prevent the cross-talk from reaching the light receiving element array 8.
  • Lens array 9 Here, the same lens array 9 as the lens array 2 is used. Moreover, only one of the twin peaks is used. Usually, since the light receiving surface of the light receiving element 81 is separated from the package surface, a focal length adjusting resin 91 is inserted between the lens array 9 and the light receiving element array 8 to make the lens array 2 have a longer focal length. The light is collected on the light receiving surface of the light receiving element 81. The reason why the lens array 9 is opposite to the lens array 2 is that the focal length adjusting resin 91 fills the space between the lens array 9 and the light receiving element array 8.
  • the lens array 9 is preferably AR coated only on the flat surface 21A side.
  • the light receiving element array 8 is, for example, a four-array InGaAs photodiode array.
  • the diode array is preferably sealed.
  • the light receiving element array 8 is connected to the lens array 9 with an inclination of 8 degrees from the optical axis which is the z-axis direction.
  • connection interface from the fiber array 1 to the light receiving element array 8 is all kept oblique, it has a structure that prevents reflected return light.
  • the process has three processes.
  • the first step is connection between the fiber array 1 and the lens array 2. This is because the alignment light is incident from the optical fiber 11A-1 and the optical fiber 11A-4 at both ends of the fiber array 1 in the optical fiber waveguide connection device, and is transmitted from the optical fiber 11B-1 and the optical fiber 11B-4.
  • the connection was made in the same process as the normal optical fiber waveguide connection in which the two-axis alignment was fixed while monitoring the light.
  • the connection point is between the spacer 22 and the fiber array 1.
  • the second step is connection of the light shielding plate 7, the lens array 9, and the light receiving element array 8.
  • connections are placed in the order of the light receiving element array 8, the lens array 9, and the light shielding plate 7 under the microscope, and are aligned by a visual alignment method so that the light receiving surface of the light receiving element 81 can be seen from the through hole of the light shielding plate 7. Fix the adhesive.
  • the lens array 2 with the fiber array 1, the light receiving element array 8, and the light shielding plate 7 with the lens array 9 are incident on the optical fiber 11A-1 and the optical fiber 11A-4.
  • the connection is fixed while monitoring the output of the light receiving element array 8.
  • the characteristics of the fabricated 4-channel tap monitor module at a wavelength of 1.55 ⁇ m were an insertion loss of 0.4 to 0.5 dB, a return loss of 46 dB or more, and a light receiving sensitivity of 50 to 60 mA / W. Adjacent crosstalk was also 45 dB or more.
  • FIG. 27 shows an example of a fiber array module according to this embodiment.
  • the fiber array module illustrated in FIG. 27 includes the fiber array module illustrated in FIG. 18, the light shielding plate 7, and the lens array 9.
  • the light shielding plate 7 functions as an optical component
  • the lens array 9 functions as a second lens array.
  • the light shielding plate 7 has a plurality of through holes 71. Each parallel light transmitted from the filter unit 4 enters one end of a different through hole 71. Then, the parallel light after passing through the through holes 71 is emitted from the other end of each through hole 71.
  • the lens array 9 condenses each light emitted from the other end of the plurality of through holes 71 at a point determined for each through hole 71. At this point, the light receiving surface of the light receiving element 81 is disposed.
  • FIG. 28 shows an example of the light receiving module according to the present embodiment.
  • the light receiving module shown in FIG. 28 includes the fiber array module shown in FIG. 27 and the light receiving element array 8.
  • Each light receiving element 81 provided in the light receiving element array 8 receives each light condensed by the lens array 9.
  • the light receiving module shown in FIG. 28 can be used as a 4-array optical tap monitor module.
  • the application area is an optical communication system with a wavelength of 1.55 ⁇ m.
  • the module includes a fiber array 1, a lens array 2, a filter unit 4, a light shielding plate 7, a lens array 9, and a light receiving element array 8 from the left side of the figure.
  • the various parameters, including fiber spacing d f adopts the value in line with the type II that have been described so far.
  • the light shielding plate 7 has a size that is the same as the outer shape of the lens array 2, and a through hole 71 having the beam diameter is formed in the center of the light shielding plate 7 in accordance with the tap optical path.
  • a lens array 9, which is the same as the lens array 2, is installed behind the light shielding plate 7 with the same orientation as the lens array 2.
  • the lens array 9 condenses the tap light beam that propagates through the space and spreads on the light receiving surface of the light receiving element 81.
  • Fiber array 1 Unlike the seventh embodiment, the AR coating is not applied to the surface of the end face that is oblique by 8 degrees.
  • Lens array 2 It is made of borosilicate glass, and the lens surface 23 is formed in a positive direction of the z axis at a predetermined array interval. Spacers 22 are provided at both ends of the lens array 2 in the x direction. The spacer 22 is a flat plate of the same material as the lens thickness the sum of the thickness t r and Renzusagu volume of air layer given by Equation (12).
  • the flat surface 21A of the lens array 2 is parallel to the end surface PL11 of the fiber array 1 and is inclined by 8 degrees with respect to the y-axis.
  • Partial transmission film 41 and the glass substrate 42 In this configuration, the partial transmission film 41 and the lens array 2 as having separate transparent glass substrate 42 is provided that the same refractive index n c, are by adhering to BK7 plate . On the glass substrate 42 whose both surfaces are parallel, a partial transmission film 41 having an angle ⁇ is adhered.
  • the reflection / transmission ratio is preferably 95% / 5%, and examples of the material include a SiO 2 —Ta 2 O 5 multilayer film formed by ion beam assisted deposition.
  • Shading plate 7 is made of square infrared absorbing glass. In the central portion, a through hole 71 is formed parallel to the xz plane and having an angle ⁇ between the z-axis direction and the lens center incident direction in accordance with the optical path of the tap light.
  • the x-direction array pitch is 500 ⁇ m, which is the same as the lens array 2.
  • the tap light beam propagates without contacting the wall of the through-hole 71 of the light shielding plate 7, but the irregular reflection component due to the structural irregularity generated by the reflection transmission through the lens array 2 or the partial transmission film 41 in the previous stage is blocked by this light shielding. It is blocked by the plate 7 and is prevented from reaching the light receiving element array 8 and causing crosstalk.
  • connection interface from the fiber array 1 to the light receiving element array 8 is all kept oblique, it has a structure that prevents reflected return light.
  • the characteristics of the fabricated 4-channel tap monitor module at a wavelength of 1.55 ⁇ m were an insertion loss of 0.4 to 0.5 dB, a return loss of 46 dB or more, and a light receiving sensitivity of 50 to 60 mA / W. Adjacent crosstalk was also 45 dB or more.
  • the array is a one-dimensional array, but a two-dimensional array is also possible.
  • the fiber array modules shown in FIG. 6 or 18 are arranged in parallel in the y direction.
  • the connection surface seen from the z direction is shown in FIG.
  • the fiber array 1 shown in FIG. 29 includes V-groove plates 13-2 to 13-5 having 60-degree V-grooves 14 for the fiber array.
  • the V-groove plates 13-2 to 13-5 are provided with V-grooves 15-1 and 15-2 for vertical alignment on both sides of the V-groove 14 array.
  • Alignment grooves 15-3 and 15-4 are formed on the back surfaces of the V-groove plates 13-2 to 13-5 at the same position in the x direction as the front surface side.
  • the alignment optical fiber 12 may be the same as the optical fibers 11A and 11B shown in the figure.
  • the alignment grooves 15-1, 15-2, 15-3, and 15-4 must have the same position in the x direction on the front and back of the V-groove plate.
  • the perpendicularity of the upper and lower focusing axes of the groove formation position observation lens barrel to the processing surface may be adjusted in advance.
  • the fiber array 1 is preferably subjected to partial oblique processing only in the vicinity of the optical fiber core. This is because, if the entire surface of the end face of the array is inclined, it is extremely difficult to make all the components after the lens array 2 and subsequent stages into a two-dimensional array.
  • a dual head dicing saw can be used for processing. This is a device that is equipped with two dicing heads in tandem and can be continuously processed using two different blades in one process.
  • the lens arrays 2 and 9 other than the fiber array 1, the light shielding plate 7, and the light receiving element array 8 are also made into a 2D array, which is a 4 ⁇ 4 array.
  • a side view of the produced 4 ⁇ 4 tap monitor module is shown in FIG.
  • the top view is exactly the same as FIG. 26, and the side view has a form of being stacked in the y direction.
  • the plane P C consisting convenience lens optical axis A C and the fiber optical axis was parallel.
  • the fiber end face is set obliquely as shown in the explanatory diagram of the present disclosure to prevent reflection, in type I, the tilt adjustment around the axis parallel to the x axis is performed between the fiber array 1 and the lens array 2. It is desirable to do.
  • the lens surface is twin-peaked as described in the present disclosure, so that the two peak positions can be divided into the input position and the output position even in the input / output structure offset from the lens center axis. Since it can be optimized for each, high-efficiency optical coupling can be realized. In addition, even if the device is miniaturized and integrated, the lens aperture on the working surface can be kept large, which is suitable for miniaturization. Since it has a plano-convex structure, there is an advantage that it is not necessary to perform front / rear double-sided positioning work such as a biconvex lens and mass production can be easily performed in a single-sided molding process. Since the flat surface 21A side of the plano-convex lens can directly connect front and rear elements, a small optical module can also be configured in this respect. From these facts, it is clear that it contributes greatly to the economics of optical communication devices.
  • This disclosure can be applied to the information and communication industry.

Abstract

This disclosure relates to a plano-convex lens 20 provided with a flat surface 21A and a lens surface 23, wherein the lens surface 23 is provided with a first convex surface A1 and a second convex surface A2 that are disposed on a flat base surface 21B and have a spherical shape, and the diameter D1 of a first virtual circle formed on the base surface 21B by the first convex surface A1 and the diameter D2 of a second virtual circle formed on the base surface 21B by the second convex surface A2 are larger than a center-to-center distance dp between the first virtual circle and the second virtual circle.

Description

平凸レンズ、ファイバアレイモジュール及び受光モジュールPlano-convex lens, fiber array module and light receiving module
 本開示は、2つの凸面を有する平凸レンズ及びこれを備えるファイバアレイモジュール並びに受光モジュールに関する。 The present disclosure relates to a plano-convex lens having two convex surfaces, a fiber array module including the same, and a light receiving module.
 光通信用の受光モジュールが提案されている(例えば、特許文献1及び2参照。)。特許文献1及び2の受光モジュールは、第1の光ファイバから出射したビームをレンズアレイでコリメートし、レンズアレイでコリメートされたビームの一部をフィルタでレンズアレイに反射し、第2のファイバへ戻す。一方で、伝送路中の光をモニタするために、フィルタで分岐したビームの一部を、後段に設置された受光素子で受光する。 A light receiving module for optical communication has been proposed (see, for example, Patent Documents 1 and 2). The light receiving modules of Patent Documents 1 and 2 collimate the beam emitted from the first optical fiber by the lens array, reflect a part of the beam collimated by the lens array to the lens array by the filter, and pass to the second fiber. return. On the other hand, in order to monitor the light in the transmission path, a part of the beam branched by the filter is received by the light receiving element installed in the subsequent stage.
 特許文献2の後に公開されている特許文献1において、第1の光ファイバと第2の光ファイバとの間隔は500μmであり、レンズアレイの間隔も500μmである。しかし、光通信用のモジュールの小型化が進み、250μmや127μmなどの500μmよりも狭い間隔で光ファイバを配列することが求められている。 In Patent Document 1 published after Patent Document 2, the distance between the first optical fiber and the second optical fiber is 500 μm, and the distance between the lens arrays is also 500 μm. However, miniaturization of modules for optical communication has progressed, and it is required to arrange optical fibers at intervals smaller than 500 μm such as 250 μm and 127 μm.
特開2009-093131号公報JP 2009-093131 A 特開2005-043762号公報JP 2005-037662 A
 球面レンズは、設計及び製造が容易であるため、レンズアレイに用いることが望ましい。しかし、特許文献1及び2のような反射型のレンズ-光ファイバ結合系において、光ファイバの間隔を狭くしようとすると、フィルタで反射されたビームの第2のファイバへの結合効率が低下する問題が生じた。一方で、レンズアレイの屈折率を上げることでレンズ径を小さくすることも考えられるが、屈折率の高いレンズ材は実用的でない。 Since spherical lenses are easy to design and manufacture, it is desirable to use them for lens arrays. However, in the reflection type lens-optical fiber coupling system as in Patent Documents 1 and 2, if the interval between the optical fibers is narrowed, the coupling efficiency of the beam reflected by the filter to the second fiber decreases. Occurred. On the other hand, it is conceivable to reduce the lens diameter by increasing the refractive index of the lens array, but a lens material having a high refractive index is not practical.
 本開示は、反射型のレンズ-光ファイバ結合系において、第1の光ファイバと第2の光ファイバとの間隔が狭い場合であっても、屈折率の高いレンズ材を用いずに、フィルタで反射されたビームを第2のファイバへ効率よく結合させることを目的とする。 The present disclosure provides a reflection-type lens-optical fiber coupling system that uses a filter without using a lens material having a high refractive index even when the distance between the first optical fiber and the second optical fiber is narrow. The object is to efficiently couple the reflected beam into the second fiber.
 本開示の平凸レンズは、
 平坦面及びレンズ面を備える平凸レンズであって、
 前記レンズ面は、平坦なベース面上に配置された、球面形状を有する第1凸面及び第2凸面を備え、
 前記第1凸面によって前記ベース面上に形成される第1仮想円の直径、及び、前記第2凸面によって前記ベース面上に形成される第2仮想円の直径が、前記第1仮想円及び前記第2仮想円の中心間距離よりも大きい。
The plano-convex lens of the present disclosure is
A plano-convex lens having a flat surface and a lens surface,
The lens surface includes a first convex surface and a second convex surface having a spherical shape disposed on a flat base surface,
The diameter of the first virtual circle formed on the base surface by the first convex surface and the diameter of the second virtual circle formed on the base surface by the second convex surface are the first virtual circle and the It is larger than the distance between the centers of the second virtual circles.
 本開示の平凸レンズは、前記第1凸面と前記第2凸面との間に、前記第1凸面及び前記第2凸面の境界における形状変化を緩和する鞍部をさらに備えていてもよい。 The plano-convex lens of the present disclosure may further include a flange portion that relaxes a shape change at a boundary between the first convex surface and the second convex surface between the first convex surface and the second convex surface.
 本開示の平凸レンズは、前記第1凸面及び前記第2凸面は、それぞれ、前記第1凸面の頂点及び前記第1仮想円の中心を通る第1の直線と前記第2凸面の頂点及び前記第2仮想円の中心を通る第2の直線の2本の直線を含む所定平面内の第1の位置及び第2の位置から出射された光を平行光にし、前記第1凸面から入射された平行光が前記平坦面に配置された反射面で反射された場合、前記第2凸面が当該平行光を前記第2の位置に集光してもよい。 In the plano-convex lens of the present disclosure, the first convex surface and the second convex surface are respectively a first straight line passing through a vertex of the first convex surface and a center of the first virtual circle, a vertex of the second convex surface, and the second convex surface. Two lights emitted from the first position and the second position in a predetermined plane including two straight lines of the second straight line passing through the center of the two imaginary circles are converted into parallel light, and are incident from the first convex surface. When the light is reflected by the reflecting surface arranged on the flat surface, the second convex surface may collect the parallel light at the second position.
 本開示の平凸レンズは、前記第1凸面及び前記第2凸面は、それぞれ、前記第1凸面の頂点及び前記第1仮想円の中心を通る第1の直線と前記第2凸面の頂点及び前記第2仮想円の中心を通る第2の直線の2本の直線を含む所定平面内の第1の位置及び第2の位置から前記平坦面に入射された光を平行光にしかつ前記第1の位置及び前記第2の位置から予め定められた所定距離に前記第1の直線及び前記第2の直線に垂直な反射面の一点に集光するように出射し、前記第1凸面から出射された平行光が前記一点で反射された場合、前記第2凸面が当該平行光を前記第2の位置に集光してもよい。 In the plano-convex lens of the present disclosure, the first convex surface and the second convex surface are respectively a first straight line passing through a vertex of the first convex surface and a center of the first virtual circle, a vertex of the second convex surface, and the second convex surface. A first position within a predetermined plane including two straight lines of a second straight line passing through the center of two virtual circles, and the light incident on the flat surface from the second position is converted into parallel light and the first position And the parallel light emitted from the first convex surface at a predetermined distance from the second position so as to converge on one point of the reflecting surface perpendicular to the first straight line and the second straight line. When the light is reflected at the one point, the second convex surface may collect the parallel light at the second position.
 本開示の平凸レンズは、前記反射面に、前記第1凸面から入射された平行光の一部を透過し、前記平行光の一部を前記第2凸面に反射するフィルタ部が設けられていてもよい。 In the plano-convex lens of the present disclosure, a filter unit that transmits a part of the parallel light incident from the first convex surface and reflects a part of the parallel light to the second convex surface is provided on the reflective surface. Also good.
 本開示のファイバアレイモジュールは、本開示に係る複数の平凸レンズを有し、複数の前記第1凸面及び前記第2凸面が共通の前記ベース面上に配列されている第1レンズアレイと、各々の前記平凸レンズに対して2本の光ファイバを有し、各光ファイバの端面が各々の前記平凸レンズの前記第1の位置又は前記第2の位置に配置されているファイバアレイと、を備える。 The fiber array module of the present disclosure includes a plurality of plano-convex lenses according to the present disclosure, and a plurality of the first convex surfaces and the second convex surfaces are arranged on a common base surface, and A fiber array having two optical fibers with respect to the plano-convex lens, and an end face of each optical fiber being disposed at the first position or the second position of each plano-convex lens. .
 本開示のファイバアレイモジュールは、本開示に係るファイバアレイモジュールと、前記反射面から透過された平行光を透過する複数の貫通孔を有し、前記反射面から透過された各々の前記平行光が異なる前記貫通孔の一端に入射され、前記貫通孔を通過後の平行光を各貫通孔の他端から出射する光部品と、前記複数の貫通孔の前記他端から出射された各光を前記貫通孔ごとに定められた点に集光する第2レンズアレイと、を備える。 The fiber array module of the present disclosure includes a fiber array module according to the present disclosure and a plurality of through holes that transmit the parallel light transmitted from the reflection surface, and each of the parallel light transmitted from the reflection surface An optical component that is incident on one end of the different through-holes and emits parallel light after passing through the through-holes from the other end of each through-hole, and each light emitted from the other end of the plurality of through-holes A second lens array that collects light at a point determined for each through hole.
 本開示の受光モジュールは、本開示に係るファイバアレイモジュールと、前記第2レンズアレイで集光された各光を受光する受光素子アレイと、を備える。 The light receiving module of the present disclosure includes a fiber array module according to the present disclosure and a light receiving element array that receives each light collected by the second lens array.
 本開示によれば、反射型のレンズ-光ファイバ結合系において、屈折率の高いレンズ材を用いずに、モニタ用に一部分岐された後の再び光ファイバに戻るべき光を光ファイバに効率よく結合させることができる。 According to the present disclosure, in a reflection type lens-optical fiber coupling system, light that should be returned to the optical fiber after being partially branched for monitoring can be efficiently supplied to the optical fiber without using a lens material having a high refractive index. Can be combined.
本開示の平凸レンズの斜視図である。It is a perspective view of the plano-convex lens of this indication. 凸面によってベース面上に形成される仮想円の一例を示す。An example of the virtual circle formed on a base surface by a convex surface is shown. 平凸レンズの金型の第1例を示す。The 1st example of the metal mold | die of a planoconvex lens is shown. 平凸レンズの金型の第2例を示す。The 2nd example of the metal mold | die of a planoconvex lens is shown. 第1の実施形態に係るツインピーク平凸レンズの一例を示す。An example of the twin peak plano-convex lens which concerns on 1st Embodiment is shown. 第2の実施形態に係るファイバアレイモジュールの構成例を示す。The structural example of the fiber array module which concerns on 2nd Embodiment is shown. 第1及び第2の実施形態における光学系についての説明図である。It is explanatory drawing about the optical system in 1st and 2nd embodiment. 2ピース形態と本開示のツインピーク形態との違いを説明する図であり、(a)は2ピース形態を示し、(b)はツインピーク形態を示す。It is a figure explaining the difference with the two-piece form and the twin peak form of this indication, (a) shows a two-piece form, (b) shows a twin peak form. 鞍部のバリエーションを説明する図であり、(a)は鞍部がピークよりも低い形態を示し、(b)は鞍部とピークが同じ高さである形態を示す。It is a figure explaining the variation of a buttocks, (a) shows the form where a buttocks is lower than a peak, and (b) shows the form where a peak and a peak are the same height. 平凸レンズの金型の第3例を示す。The 3rd example of the metal mold | die of a planoconvex lens is shown. 第1及び第2の実施形態において、ファイバ間周期間隔が250μmの場合のケラレの無い光学系を構成する条件を説明するグラフである。In 1st and 2nd embodiment, it is a graph explaining the conditions which comprise the optical system without vignetting in case the period space | interval between fibers is 250 micrometers. 第1及び第2の実施形態において、ファイバ間周期間隔が127μmの場合のケラレの無い光学系を構成する条件を説明するグラフである。In 1st and 2nd embodiment, it is a graph explaining the conditions which comprise the optical system without vignetting in case the period space | interval between fibers is 127 micrometers. フィルタ部における角度依存性の一例を示す。An example of the angle dependence in a filter part is shown. 第3の実施形態に係るシングルピーク化した平凸レンズの一例を示す。An example of the single-peaked plano-convex lens according to the third embodiment is shown. 第3の実施形態に係るファイバアレイモジュールの構成例を示す。The structural example of the fiber array module which concerns on 3rd Embodiment is shown. 第3の実施形態における光学系についての説明図である。It is explanatory drawing about the optical system in 3rd Embodiment. 第4の実施形態に係るツインピーク平凸レンズの一例を示す。An example of the twin peak plano-convex lens which concerns on 4th Embodiment is shown. 第5の実施形態に係るファイバアレイモジュールの構成例を示す。The structural example of the fiber array module which concerns on 5th Embodiment is shown. 第4及び第5の実施形態における光学系についての説明図である。It is explanatory drawing about the optical system in 4th and 5th embodiment. 第4及び第5の実施形態において、ファイバ間周期間隔が250μmの場合のケラレの無い光学系を構成する条件を説明するグラフである。In 4th and 5th embodiment, it is a graph explaining the conditions which comprise the optical system without vignetting in case the periodic space | interval between fibers is 250 micrometers. 第4及び第5の実施形態において、ファイバ間周期間隔が127μmの場合のケラレの無い光学系を構成する条件を説明するグラフである。In 4th and 5th embodiment, it is a graph explaining the conditions which comprise the optical system without vignetting in case the period space | interval between fibers is 127 micrometers. 第6の実施形態に係るシングルピーク化した平凸レンズの一例を示す。An example of the single-peaked plano-convex lens according to the sixth embodiment is shown. 第6の実施形態に係るファイバアレイモジュールの構成例を示す。The structural example of the fiber array module which concerns on 6th Embodiment is shown. 第6の実施形態における光学系についての説明図である。It is explanatory drawing about the optical system in 6th Embodiment. 第7の実施形態に係るファイバアレイモジュールの一例を示す。An example of the fiber array module which concerns on 7th Embodiment is shown. 第7の実施形態に係る受光モジュールの一例を示す。An example of the light reception module which concerns on 7th Embodiment is shown. 第8の実施形態に係るファイバアレイモジュールの一例を示す。An example of the fiber array module which concerns on 8th Embodiment is shown. 第8の実施形態に係る受光モジュールの一例を示す。An example of the light reception module which concerns on 8th Embodiment is shown. 第9の実施形態におけるファイバアレイのz方向からみた接続面の一例を示す。An example of the connection surface seen from the z direction of the fiber array in a 9th embodiment is shown. 第9の実施形態における受光モジュールのx方向からみた構成の一例を示す。An example of the structure seen from the x direction of the light reception module in 9th Embodiment is shown.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In addition, this indication is not limited to embodiment shown below. These embodiments are merely examples, and the present disclosure can be implemented in various modifications and improvements based on the knowledge of those skilled in the art. In the present specification and drawings, the same reference numerals denote the same components.
(第1の実施形態)
 図1に、本実施形態の光学系の斜視図を示す。本開示の光学系は、双峰型の平凸レンズ20と2本の光ファイバ11A、11B、及びフィルタ部4を備える。光ファイバ11Aは、端面P1が第1の位置に配置され、第1の光ファイバとして機能する。光ファイバ11Bは、端面P2が第2の位置に配置され、第2の光ファイバとして機能する。フィルタ部4の平凸レンズ20側の面は反射面として機能する。
(First embodiment)
FIG. 1 shows a perspective view of the optical system of the present embodiment. The optical system of the present disclosure includes a bimodal plano-convex lens 20, two optical fibers 11 </ b> A and 11 </ b> B, and a filter unit 4. The end face P1 of the optical fiber 11A is disposed at the first position, and functions as the first optical fiber. The optical fiber 11B has the end face P2 disposed at the second position, and functions as a second optical fiber. The surface of the filter unit 4 on the plano-convex lens 20 side functions as a reflecting surface.
 まず、平凸レンズ20について述べる。本開示の平凸レンズ20は、図中のxyz直交座標軸に平行な辺を持つ長方形状のレンズ材質から成る平坦基板21のベース面21B上にレンズ面23を有する。レンズ面23は、第1凸面として機能する球面形状の凸面A1、第2凸面として機能する球面形状の凸面A2、及び鞍部A3を有する。 First, the plano-convex lens 20 will be described. The plano-convex lens 20 of the present disclosure has a lens surface 23 on a base surface 21B of a flat substrate 21 made of a rectangular lens material having sides parallel to the xyz orthogonal coordinate axes in the drawing. The lens surface 23 includes a spherical convex surface A1 that functions as a first convex surface, a spherical convex surface A2 that functions as a second convex surface, and a flange A3.
 凸面A1は、z軸に平行な第1の直線R1を回転中心とし、且つ直線R1との交点をピークP6とする球面の一部である。凸面A2は、z軸に平行な第2の直線R2を回転中心とし、且つ直線R2との交点をピークP8とする球面の一部である。凸面A2は、凸面A1をx方向にピーク間隔dpだけ平行移動した形状の球面の一部である。 The convex surface A1 is a part of a spherical surface having a first straight line R1 parallel to the z-axis as a rotation center and an intersection with the straight line R1 as a peak P6. The convex surface A2 is a part of a spherical surface having a second straight line R2 parallel to the z-axis as a rotation center and an intersection with the straight line R2 as a peak P8. The convex surface A2 is a part of a spherical surface having a shape obtained by translating the convex surface A1 in the x direction by the peak interval dp.
 図2に、凸面A1及びA2によってベース面21B上に形成される仮想円の一例を示す。ベース面21B上には、凸面A1によって、直線R1上の点C1を中心としかつ直径D1の第1仮想円が形成される。凸面A2についても、ベース面21B上に直線R2上の点C2を中心点としかつ直径D2の第2仮想円が形成される。凸面A1の頂点P6及び第1仮想円の中心点C1は第1の直線R1を通り、凸面A2の頂点P8及び第2仮想円の中心点C2は第2の直線R2を通る。 FIG. 2 shows an example of a virtual circle formed on the base surface 21B by the convex surfaces A1 and A2. On the base surface 21B, the convex surface A1 forms a first virtual circle centered on the point C1 on the straight line R1 and having a diameter D1. Also for the convex surface A2, a second virtual circle having a diameter D2 and a point C2 on the straight line R2 as the center point is formed on the base surface 21B. The vertex P6 of the convex surface A1 and the center point C1 of the first virtual circle pass through the first straight line R1, and the vertex P8 of the convex surface A2 and the center point C2 of the second virtual circle pass through the second straight line R2.
 これらレンズ作用をなす二つの凸面A1,A2のレンズ径は、ピーク間隔dpに比較して大きく設定されている。すなわち、ピーク間隔dpが直径D1及びD2よりも小さく、第1仮想円と第2仮想円とは互いに重なり合うように配置されている。実施形態においては直径D1及びD2が等しい例を示すが、本開示はこれに限らず、直径D1及びD2は異なっていてもよい。 The lens diameters of the two convex surfaces A1 and A2 that perform these lens functions are set larger than the peak interval dp. That is, the peak interval dp is smaller than the diameters D1 and D2, and the first virtual circle and the second virtual circle are arranged so as to overlap each other. In the embodiment, an example in which the diameters D1 and D2 are equal is shown, but the present disclosure is not limited to this, and the diameters D1 and D2 may be different.
 第1仮想円と第2仮想円との重なりあった部分には図1に示すように、幅wの鞍部A3が設けられている。鞍部A3も、図1中の点線で示す等高線から判るように、ベース面21Bからは突き出ていて、2つの凸部A1、A2を滑らかに接続する形態となっている。全体として、凸面A1、A2及び鞍部A3から成るレンズ面23は、2つのピークP6及びP8の中点を通りz軸に平行な直線をレンズ中心軸Acとすることになる。2つのピークP6及びP8を通るx軸に平行な直線を以下ピーク線Bcと称する。 A first virtual circle overlap each other part of the second imaginary circle as shown in FIG. 1, is provided with saddle A3 width w s. As can be seen from the contour lines indicated by the dotted lines in FIG. 1, the flange portion A3 also protrudes from the base surface 21B and is configured to smoothly connect the two convex portions A1 and A2. As a whole, the lens surface 23 composed of the convex surfaces A1 and A2 and the flange A3 has a straight line passing through the midpoint between the two peaks P6 and P8 and parallel to the z-axis as the lens center axis Ac. A straight line passing through the two peaks P6 and P8 and parallel to the x-axis is hereinafter referred to as a peak line Bc.
 z軸に平行な光軸を有する光ファイバ11Aが、その光軸が凸面A1の中心である直線R1より所定の距離だけ外側でピーク線Bcに交わるように配置されている。光ファイバ11Aからの出射光は凸面A1のピークP6に対して外側にオフセットして入射するようになっている。入射した光は、その所定量強度分が、後述する仕組みで反射して、光ファイバ11Aとはレンズ中心軸Acに対して対称に配置された光ファイバ11Bに集光、入射するようになっている。 The optical fiber 11A having an optical axis parallel to the z-axis is disposed so that the optical axis intersects the peak line Bc at a predetermined distance outside the straight line R1 that is the center of the convex surface A1. The outgoing light from the optical fiber 11A is incident on the peak P6 of the convex surface A1 with an offset to the outside. The incident light is reflected by a predetermined amount of intensity by a mechanism described later, and is collected and incident on the optical fiber 11B arranged symmetrically with respect to the lens center axis Ac with respect to the optical fiber 11A. Yes.
 かような形態のレンズは、金型を用いたガラスモールド法で作製することができる。図3に金型作製工程での、金型をz軸方向から観た等高線図を示す。まず図3のように、金型面に凸面A1,A2に対応した凹面を形成する。凹面形状作製工程で、重なりあった部分は、互いに相手方のより深い凹面になって、境界には稜線ができる。金型内部にこのような稜線が存在すると、モールド作業中の物質移動が妨げられる可能性がある。そこで図4に示すように、境界を光ファイバからの出射光強度分布パターンのxy面への射影部分Pdにかからないように削り取り、境界における形状変化を緩和する。これにより、図1に示すような鞍部A3を持つ形状になるわけである。 Such a lens can be produced by a glass mold method using a mold. FIG. 3 shows a contour map of the mold viewed from the z-axis direction in the mold manufacturing process. First, as shown in FIG. 3, concave surfaces corresponding to the convex surfaces A1 and A2 are formed on the mold surface. In the concave shape manufacturing process, the overlapping parts become deeper concave surfaces of the other party, and a ridge line is formed at the boundary. When such a ridge line exists in the mold, there is a possibility that mass transfer during the molding operation is hindered. Therefore, as shown in FIG. 4, the boundary is cut away so as not to be projected onto the xy-plane projected portion Pd of the light intensity distribution pattern emitted from the optical fiber, and the shape change at the boundary is alleviated. As a result, a shape having a flange A3 as shown in FIG. 1 is obtained.
 次に、本実施形態の光学系をよりわかりやすく説明するため、直線R1,R2を含む平面Pcで切った断面図である図5で説明する。本実施形態では、レンズ面23側に光ファイバ11A及び11Bが配置され、平坦面21A側にフィルタ部4が配置されている。光ファイバ11Aの端面P1及び光ファイバ11Bの端面P2は、それぞれ第1の位置及び第2の位置に配置されている。光ファイバ11A及び11Bの長手方向は、平面P内で平凸レンズ20のレンズ中心軸Aと平行に配置されている。平面Pは、光ファイバ11Aおよび11Bで構成される平面である。以下、この実施形態をタイプIと称する。 Next, in order to explain the optical system of the present embodiment more easily, it will be described with reference to FIG. 5 which is a cross-sectional view taken along a plane Pc including straight lines R1 and R2. In the present embodiment, the optical fibers 11A and 11B are disposed on the lens surface 23 side, and the filter unit 4 is disposed on the flat surface 21A side. The end face P1 of the optical fiber 11A and the end face P2 of the optical fiber 11B are disposed at the first position and the second position, respectively. Longitudinal direction of the optical fiber 11A and 11B are arranged in parallel to the lens center axis A C plano 20 in the plane P C. Plane P C is a plane formed by the optical fibers 11A and 11B. Hereinafter, this embodiment is referred to as Type I.
 本実施形態に係る平凸レンズ20は、レンズ面23に凸面A1,A2の2か所の凸面を有する。凸面A1は、レンズ中心軸Acと平行で光ファイバ11Aおよび11Bで形成される平面Pcに含まれる直線R1を回転中心とする回転曲面であり、凸面A2も同様にレンズ中心軸Acと平行で光ファイバ11Aおよび11Bで形成される平面Pcに含まれる直線R2を回転中心とする回転曲面であり、直線R1、R2は、レンズ中心軸Acに対して対称に、2本のファイバ中心線に対して内側に所定の距離だけオフセットされている。 The plano-convex lens 20 according to the present embodiment has two convex surfaces A1 and A2 on the lens surface 23. The convex surface A1 is a rotating curved surface that is parallel to the lens center axis Ac and has a straight line R1 included in the plane Pc formed by the optical fibers 11A and 11B, and the convex surface A2 is also parallel to the lens center axis Ac and light. It is a rotation curved surface with a straight line R2 included in a plane Pc formed by the fibers 11A and 11B as a rotation center, and the straight lines R1 and R2 are symmetrical with respect to the lens center axis Ac and are two fiber center lines. It is offset inward by a predetermined distance.
 かような構成において、光ファイバ11Aの端面P1から出射した光は、凸面A1から平凸レンズ20に入射する。凸面A1は、光ファイバ11Aの端面P1から出射した光を平行光にする。凸面A1で平行光となった光は、平凸レンズ20を透過し、平坦面21Aに配置されているフィルタ部4で一部が凸面A2に向けて反射する。凸面A2は、フィルタ部4で反射した平行光を光ファイバ11Bの端面P2に集光する。これにより、フィルタ部4で反射した平行光は、光ファイバ11Bに入射する。 In such a configuration, the light emitted from the end face P1 of the optical fiber 11A enters the plano-convex lens 20 from the convex surface A1. The convex surface A1 makes the light emitted from the end surface P1 of the optical fiber 11A parallel light. The light that has become parallel light on the convex surface A1 passes through the plano-convex lens 20, and part of the light is reflected toward the convex surface A2 by the filter unit 4 disposed on the flat surface 21A. The convex surface A2 condenses the parallel light reflected by the filter unit 4 on the end surface P2 of the optical fiber 11B. Thereby, the parallel light reflected by the filter unit 4 enters the optical fiber 11B.
 本実施形態に係る平凸レンズ20は、フィルタ部4で反射した平行光を光ファイバ11Bの端面P2に集光する。このため、本実施形態に係る平凸レンズ20は、モニタ光を一部分岐された(以後タップされたと表現する)後の光を光ファイバ11Bに効率よく結合させることができる。 The plano-convex lens 20 according to the present embodiment collects the parallel light reflected by the filter unit 4 on the end face P2 of the optical fiber 11B. For this reason, the plano-convex lens 20 according to this embodiment can efficiently couple the light after the monitor light is partially branched (hereinafter expressed as tapped) to the optical fiber 11B.
(第2の実施形態)
 図6に、本実施形態に係るファイバアレイモジュールの構成例を示す。これは、タイプIの平凸レンズ20をアレイ化した場合に相当する。本実施形態に係るファイバアレイモジュールは、光ファイバ11A-1~11A-4及び11B-1~11B-4が交互に配列されているファイバアレイ1と、第1の実施形態の複数のレンズ面23-1~23-4が配列されているレンズアレイ2と、を備える。レンズアレイ2は第1レンズアレイとして機能する。
(Second Embodiment)
FIG. 6 shows a configuration example of the fiber array module according to the present embodiment. This corresponds to the case where type I plano-convex lenses 20 are arrayed. The fiber array module according to this embodiment includes a fiber array 1 in which optical fibers 11A-1 to 11A-4 and 11B-1 to 11B-4 are alternately arranged, and a plurality of lens surfaces 23 of the first embodiment. And lens array 2 in which -1 to 23-4 are arranged. The lens array 2 functions as a first lens array.
 レンズアレイ2は、複数のレンズ面23-1~23-4の両端に、スペーサ22が配置されている。スペーサ22は、金型にレンズ相当凹部と同時にスペーサ相当凹部を形成しておき、レンズ形成と同時にモールド法で形成してもよいし、あるいは所定の厚みの板を挟み込む形態でもよい。 In the lens array 2, spacers 22 are disposed on both ends of the plurality of lens surfaces 23-1 to 23-4. The spacer 22 may be formed in the mold by forming a spacer-corresponding recess at the same time as the lens-corresponding recess, and may be formed by a molding method at the same time as the lens is formed, or a plate having a predetermined thickness may be sandwiched.
 ファイバアレイ1及びレンズアレイ2は、第1の実施形態の4つのファイバ-レンズ光学系が、平面P上に並列に配置されている。具体的には、レンズアレイ2は、第1の実施形態の複数のレンズ面23-1~23-4を備える。レンズアレイ2に備わる各ツインピーク平凸レンズ20は、第1の実施形態のファイバーレンズ光学系を基本単位として備える。各レンズ面23のレンズ中心軸Aは、平面P内に並列に配列されている。ファイバアレイ1は、各々のツインピークレンズ面23-1~23-4に対して2本の光ファイバ11A及び11Bを有する。光ファイバ11A-1~11A-4の各端面及び11B-1~11B-4の各端面の配置されているファイバアレイ1の端面PL11は、ピーク線Bcと平行に配置される。 Fiber array 1 and the lens array 2 has four fibers in the first embodiment - a lens optical system, are arranged in parallel on a plane P C. Specifically, the lens array 2 includes the plurality of lens surfaces 23-1 to 23-4 of the first embodiment. Each twin peak plano-convex lens 20 provided in the lens array 2 includes the fiber lens optical system of the first embodiment as a basic unit. Lens center axis A C of the lens surfaces 23 are arranged in parallel in a plane P C. The fiber array 1 has two optical fibers 11A and 11B for each of the twin peak lens surfaces 23-1 to 23-4. The end faces PL11 of the fiber array 1 on which the end faces of the optical fibers 11A-1 to 11A-4 and the end faces of 11B-1 to 11B-4 are arranged are arranged in parallel with the peak line Bc.
 図7を参照しながら、図5及び図6における光学系について説明する。以下方向は図中の直交xyz座標軸に倣って説明する。図の左側には、xz平面内において、z軸に平行で、x軸方向に間隔dで光ファイバ11A及び11Bが並べられたファイバアレイ1が配置されている。ファイバアレイ1は、x軸に平行でy軸に対して所定の角度をなす平面を端面として、例えば、テンパックスガラス等の筐体によって保持されて構成されている。 The optical system in FIGS. 5 and 6 will be described with reference to FIG. Hereinafter, the directions will be described following the orthogonal xyz coordinate axes in the drawing. The left side of the figure, in the xz plane, is parallel to the z-axis, the fiber array 1 optical fibers 11A and 11B are arranged at intervals d f in the x-axis direction is disposed. The fiber array 1 is configured to be held by a housing such as Tempax glass with a plane parallel to the x-axis and forming a predetermined angle with respect to the y-axis as an end surface.
 z軸に平行なレンズ中心軸Aを有するレンズ面23が、z軸に垂直な面を共通平面として、x軸方向にファイバアレイ1の倍の間隔2dで、且つ隣接するレンズ面23とは隣接間隔dをおいてアレイ化されている。凸面A1は、ファイバアレイで成る平面Pcに含まれてz軸に平行な直線R1を中心とする回転曲面であり、レンズ作用をなす。しかも、光ファイバ11Aの光軸に対して、所定の距離だけ内側(レンズ中心軸Ac側)にオフセットされている。凸面A2は、レンズ中心軸Acに対して、幅wの鞍部A3を挟んで凸面A1とは対称な形状に形成されている。凸面A1及びA2の直線R1と直線R2の間隔dは(以後ピーク間隔dと称する)、間隔dより小さい距離に設定されている。 lens surface 23 having the lens center axis A C parallel to the z-axis, as a common plane plane perpendicular to the z-axis, the x-axis direction in the fiber array 1 times the spacing 2d f, and a lens surface 23 adjacent They are arrayed at a distance between the adjacent d n. The convex surface A1 is a rotating curved surface centered on a straight line R1 that is included in the plane Pc formed of the fiber array and is parallel to the z axis, and has a lens action. Moreover, it is offset inward (to the lens center axis Ac side) by a predetermined distance with respect to the optical axis of the optical fiber 11A. Convex A2 from the lens center axis Ac, is formed in a symmetrical shape with convex surface A1 across the saddle A3 width w s. The distance d p of the straight line R1 and the line R2 of the convex surface A1 and A2 (hereinafter referred to as peak interval d p), is set to the interval d f is less than the distance.
 ファイバアレイ1の端面PL11とレンズアレイ2のレンズ面23とは、凸側焦点距離fvに等しい厚みの空気層3を挟んで配置されている。レンズ面23と平坦面21Aとの距離、すなわちレンズの厚みtは、凹側焦点距離fよりも厚い所定値に設定されている。 The end surface PL11 of the fiber array 1 and the lens surface 23 of the lens array 2 are disposed with an air layer 3 having a thickness equal to the convex focal length fv interposed therebetween. The distance between the lens surface 23 and the flat surface 21A, that is, the thickness t l of the lens is set to a thick predetermined value than the concave side focal length f c.
 ファイバアレイ1とレンズアレイ2の相対位置は、x軸方向は、レンズ中心軸Aがファイバアレイ1の隣接ファイバ同士の中心線(この図では、光ファイバ11Aと光ファイバ11Bの中心線)に一致するように、y方向は、レンズ中心軸Aのアレイで形成された平面がファイバアレイ1の中心線で形成された平面と該一致するように、およびz方向は、ファイバアレイ1の端面PL11とレンズアレイ2のピークP6及びP8との距離が平凸レンズ20の凸側焦点距離fに該一致するように設定されている。 The relative position of the fiber array 1 and the lens array 2, x-axis direction, the lens center axis A C is the center line of the adjacent fibers to each other of the fiber array 1 (in this figure, the center line of the optical fiber 11A and the optical fiber 11B) to as match, y direction is so formed with an array of lens center axis a C plane is a plane with said matching formed at the centerline of the fiber array 1, and z directions, the end face of the fiber array 1 the distance between the peak P6 and P8 of PL11 and the lens array 2 is set such that the matching convex side focal length f v plano 20.
 レンズアレイ2の平坦面21A側の表面には、所定の波長の光を所望の比率で反射/透過する機能を有するフィルタ部4が設けられていてもよい。 A filter unit 4 having a function of reflecting / transmitting light of a predetermined wavelength at a desired ratio may be provided on the surface of the lens array 2 on the flat surface 21A side.
 このような構成において、光ファイバ11Aの端面P1から出射した光の経路を光線近似で考察する。光ファイバ11Aの端面P1は、凸側焦点面PL23V上に位置しており、且つ前述したようにレンズ面23の内の直線R1はファイバ中心線に対してx方向にオフセットしているので、光ファイバ11Aの端面P1を点光源として、そこから出射してレンズアレイ2の凸面A1に入射した光はレンズ中心軸A側に屈折して、レンズ中心軸Aと所定の角度φをなす平行光線となってレンズ中を進む。その内で、光ファイバ11Aの端からレンズ中心軸Aであるz軸に平行に出射した光線すなわち中心光線は、平凸レンズ20に入射した後、凹側焦点を通ることになる。 In such a configuration, the path of light emitted from the end face P1 of the optical fiber 11A will be considered by light ray approximation. The end face P1 of the optical fiber 11A is located on the convex focal plane PL23V, and the straight line R1 in the lens surface 23 is offset in the x direction with respect to the fiber center line as described above. the end face P1 of the fiber 11A as a point light source, and refracted light to the lens center axis a C side incident on the convex surface A1 of the lens array 2 emitted therefrom, parallel constituting the lens center axis a C at a predetermined angle φ It travels through the lens as a light beam. Among them, light or central ray in parallel to emit from the end of the optical fiber 11A to the z-axis is a lens center axis A C is incident on the plano-convex lens 20, thus passing through the concave side focus.
 レンズの厚みtが凹側焦点距離fよりも厚く、しかも上述の中心光線がレンズ中心軸Aと交わる点に平坦面21Aが位置する所定値に設定されていて、その平坦面21Aにフィルタ部4が設けられていると、当該平行光の所定の強度分はフィルタ部4を透過してレンズ中心軸Aに対して角度ψで直進するが、残りの強度分はフィルタ部4で反射して、レンズ中心軸Aに対して対称なx方向位置で凸面A2に達する。凸面A2に達した反射光は、凹側焦点を通ってきた平行光であり、光ファイバ11Aから出射、ツインピーク平凸レンズ20に入射した光路とレンズ中心軸Aに対して対称な経路をたどり、結局レンズ中心軸Aに対して光ファイバ11Aと対称な位置にある光ファイバ11Bの端面P2に集光することになる。 Lens thickness t l is thicker than the concave side focal length f c, yet have been set to a predetermined value which is located a flat surface 21A at the point where the central ray of the above crosses the lens center axis A c, on the flat surface 21A When the filter portion 4 is provided, a predetermined intensity component of the parallel light travels straight at an angle ψ relative to the lens center axis a C passes through the filter portion 4, but the rest of the intensity component in the filter section 4 It reflected and reaches the convex A2 in a symmetric x position relative to the lens center axis a C. The reflected light reaches the convex A2 is a parallel light having passed through the concave side focal, emitted from the optical fiber 11A, follows a symmetrical path with respect to twin-peak flat optical path incident on the convex lens 20 and the lens center axis A C , it will be focused on the end surface P2 of the optical fiber 11B in the optical fiber 11A and symmetrical positions with respect to the end lens center axis a C.
 ここで、もしもレンズの厚みtが前述の所定値より薄い場合、フィルタ部4での反射光は、凸面A2のレンズ中心軸A側の表面に達することになり、そこでは平行光は収束されず、光ファイバ11Bの端面P2では広がってしまう。一方、レンズの厚みtが前述の所定値より厚い場合、フィルタ部4での反射光は、凸面A2の外側の表面に達することになり、平行光は収束されすぎて、光ファイバ11Bの端面P2では広がってしまう。いずれの場合でも、フィルタ部4での反射光線の光軸も光ファイバ11Bの端面P2から外れてしまう。そのため、レンズの厚みtが凹側焦点距離fよりも厚く、しかも上述の中心光線がレンズ中心軸Aと交わる点に平坦面21Aが位置する所定値に設定されている必要がある。 Here, if the lens thickness t 1 is smaller than the predetermined value, the reflected light from the filter unit 4 reaches the surface of the convex surface A2 on the lens central axis AC side, where the parallel light converges. Instead, it spreads at the end face P2 of the optical fiber 11B. On the other hand, when the lens thickness t 1 is thicker than the above-mentioned predetermined value, the reflected light from the filter unit 4 reaches the outer surface of the convex surface A2, and the parallel light is excessively converged, so that the end surface of the optical fiber 11B. It spreads at P2. In either case, the optical axis of the reflected light beam at the filter unit 4 also deviates from the end face P2 of the optical fiber 11B. Therefore, the thickness t l of the lens thicker than the concave side focal length f c, moreover flat surface 21A to the point where the central ray of the above crosses the lens center axis A c needs to be set to a predetermined value situated.
 尚、フィルタ部4で透過した光線は、隣接媒質の屈折率が空気層3の屈折率nと同じであれば、角度ψで出射する。また、図には示さないが、隣接媒質の屈折率がレンズアレイ2の屈折率と同じであれば、角度φで出射する。 Note that light transmitted by the filter unit 4, the refractive index of the adjacent medium is given the same as the refractive index n v of the air layer 3 is emitted at an angle [psi. Although not shown in the figure, if the refractive index of the adjacent medium is the same as the refractive index of the lens array 2, the light is emitted at an angle φ.
 次に、上記説明を、数式を使って定式化する。図7において、凸側焦点面PL23Vに端面P1を有する光ファイバ11Aから出射して空気層3を通過してレンズ面23の凸面A1に入射した光線は、レンズ中心軸Aと角度φをなす平行光となる。それら光線の内、凸面A1のピークP6に入射した光線に対しては、入射点のレンズ表面接平面はレンズ中心軸Aに垂直なので、光線のピーク中心入射角である角度ψ、出射角である角度φと屈折率n、nの間には、次式で表されるスネル則が成り立つ。
(数1)
 nsinψ=nsinφ  (1)
 ここで、n及びnはそれぞれ空気屈折率及びレンズ屈折率である。
Next, the above description is formulated using mathematical expressions. 7, light rays are emitted from the optical fiber 11A and incident on the convex surface A1 of the lens surface 23 passes through the air layer 3 having an end face P1 to the convex side focal plane PL23V forms a lens center axis A C and the angle φ It becomes parallel light. Among them light, for light incident on the peak P6 convex A1, since the lens stitched plane of incidence point perpendicular to the lens center axis A C, a peak center angle of incidence of the ray angle [psi, an output angle Between a certain angle φ and the refractive indexes n v and n c , the Snell law expressed by the following equation is established.
(Equation 1)
n v sinψ = n c sinφ (1)
Here, n v and n c are each air refractive index and lens refractive index.
 また、ファイバアレイ1は間隔dで、レンズアレイ2はその倍の間隔2dでアレイ化されているわけであるから、凸側焦点面PL23Vまでの焦点距離f、及び、凹側焦点面PL23Cまでの焦点距離fは、ファイバ間隔dと、凸面A1と凸面A2のピーク間隔d、ピークP6への入射角である角度ψ、およびピークP6からレンズアレイ2内への出射角度である角度φの値から、以下の式(2)、式(3)で決まる。
(数2)
 f={(d-d)cotψ}/2  (2)
(数3)
 f={(d-d)cotφ}/2  (3)
Further, in the fiber array 1 is distance d f, since the lens array 2 is not being arrayed at the multiple of the spacing 2d f, the focal length f v to the convex side focal plane PL23V, and concave focal plane the focal length f c to PL23C includes a fiber spacing d f, at the exit angle of peak intervals d p of the convex surface A1 and convex A2, the angle is an incident angle to the peak P6 [psi, and the peak P6 to the lens array 2 From the value of a certain angle φ, it is determined by the following equations (2) and (3).
(Equation 2)
f v = {(d f −d p ) cotφ} / 2 (2)
(Equation 3)
f c = {(d f −d p ) cot φ} / 2 (3)
 また、レンズの厚みtについても同様に、
(数4)
 t=dcotφ/2  (4)
が成り立つ。
Similarly, the lens thickness t 1
(Equation 4)
t 1 = d f cot φ / 2 (4)
Holds.
 さらに、ピーク曲率半径Rは次式で与えられる。
(数5)
 R=(n-n)f/n  (5)
Further, the peak curvature radius R p is given by the following equation.
(Equation 5)
R p = (n c −n v ) f v / n v (5)
 ツインピークを構成する凸面A1及び凸面A2は、ともに上記式(1)~式(5)を満たせばよいわけであるが、これらの関係を満たし、レンズ中心軸Aに平行な軸を対称軸とする回転曲面は、最も簡単には、式(5)で得られるRを半径とする球面でよく近似できる。ファイバ間隔d、レンズのピーク間隔d、レンズ屈折率n、空気屈折率n、およびフィルタ部4での反射角である角度φを与えれば、式(2)と式(3)から平凸レンズ20の凸凹二つの焦点距離f及びfが決まり、すなわち光ファイバ11A及び11Bと平凸レンズ20の距離及び、式(4)からレンズの厚みtが決まる。また、レンズ作製工程であるモールド工程で使用する金型の形状目安となるピーク曲率半径も式(5)より判る。 Convex A1 and convex A2 constituting the twin peaks are both but not may satisfy the equation (1) to (5), satisfy these relationships, symmetry axis parallel to the lens center axis A C The rotation curved surface can be most easily approximated by a spherical surface having a radius of R p obtained by Equation (5). Given the fiber spacing d f , the lens peak spacing d p , the lens refractive index n c , the air refractive index n v , and the angle φ that is the reflection angle at the filter unit 4, the equations (2) and (3) The focal lengths f v and f c of the convex / concave lens 20 of the plano-convex lens 20 are determined, that is, the distance between the optical fibers 11A and 11B and the plano-convex lens 20 and the lens thickness t 1 are determined from the equation (4). Moreover, the peak curvature radius which becomes the shape standard of the mold used in the molding process, which is the lens manufacturing process, is also known from the equation (5).
 次に、このような光学系が成立するための条件について述べる。光ファイバ11A及び11Bとの間の低損失結合を実現するには、レンズ面23でのケラレを極力抑える必要がある。光ファイバ11Aからの出射光は光ファイバのNAに従って広がるわけであるが、その広がりは、光ファイバ端をビームウエスト位置とするガウシアンビームの伝搬としてよく表わされる。光ファイバ11Aの端面P1から出射して凸面A1に到達したガウシアンビームのパワー分布は、ビーム中心からビーム半径ωの1.73倍までの範囲で全パワーの99.75%となる。そこでここまでの範囲を凸面A1に達したビームのビーム径BDとすれば、それは次式で与えられる。 Next, the conditions for establishing such an optical system will be described. In order to realize low-loss coupling between the optical fibers 11A and 11B, it is necessary to suppress vignetting on the lens surface 23 as much as possible. The outgoing light from the optical fiber 11A spreads according to the NA of the optical fiber, but the spread is often expressed as the propagation of a Gaussian beam with the end of the optical fiber as the beam waist position. The power distribution of the Gaussian beam emitted from the end face P1 of the optical fiber 11A and reaching the convex surface A1 is 99.75% of the total power in the range from the beam center to 1.73 times the beam radius ω. Therefore, if the range up to this point is the beam diameter BD of the beam that has reached the convex surface A1, it is given by the following equation.
Figure JPOXMLDOC01-appb-M000001
ここで、ω及びλはそれぞれ光ファイバ11Aのモード半径および光の波長である。
Figure JPOXMLDOC01-appb-M000001
Here, ω 0 and λ are the mode radius of the optical fiber 11A and the wavelength of light, respectively.
 次に、レンズの構成から、レンズ面23でのビーム径に要求される条件を図8に従って考察する。凸面A1及び凸面A2のピーク間隔dを大きくしていくと、図8(a)に示すように、凸面A1及び凸面A2の重なりがとれて2個の個別凸面状態になる。すなわち、鞍部A3が、ベース面21Bと同一平面に配置される。これを2ピース状態と呼び、これとツインピーク状態との比較で考える。 Next, the conditions required for the beam diameter on the lens surface 23 from the configuration of the lens will be considered according to FIG. When the peak interval d p between the convex surface A1 and the convex surface A2 is increased, as shown in FIG. 8A, the convex surface A1 and the convex surface A2 are overlapped to form two individual convex surfaces. That is, the flange portion A3 is disposed on the same plane as the base surface 21B. This is called a two-piece state, and is considered by comparing this with a twin peak state.
 まず図8(a)に従って、2ピース状態について考える。2ピース状態において、ケラレがなく、低損失のファイバ-ファイバ結合を実現するためには、z軸に平行なファイバ中心線と当該中心線が寄った側のレンズ外縁とのx軸方向距離Dが、レンズ表面におけるビーム径BDの半分より大きくなければならないから、
(数7)
 BD/2<D=d/2-w/2-(d-d)/2=(2d-d-w)/2
 より
 BD<2d-d-w  (7)
が成立しなければならない。これが、2ピース条件である。ここで以下(2d-d-w)を2ピース条件指数と呼ぶ。式(7)の条件とは逆に、レンズ表面のビーム径BDが2ピース条件指数より大きければ、ケラレの無い光学系を構成するには、ツインピーク構成をとる必要があることになる。
First, a two-piece state will be considered according to FIG. In the two-piece state, in order to realize low-loss fiber-fiber coupling without vignetting, the distance D E in the x-axis direction between the fiber center line parallel to the z axis and the lens outer edge near the center line Must be larger than half of the beam diameter BD at the lens surface,
(Equation 7)
BD / 2 <D E = d p / 2-w s / 2- (d f −d p ) / 2 = (2d p −d f −w s ) / 2
BD <2d p −d f −w s (7)
Must hold. This is a two-piece condition. Here, the following (2d p −d f −w s ) is called a two-piece condition index. Contrary to the condition of Expression (7), if the beam diameter BD on the lens surface is larger than the two-piece condition index, it is necessary to take a twin peak configuration in order to construct an optical system without vignetting.
 一方、図8(b)に示すツインピーク系では、ケラレのない条件は、図8(b)において、ファイバ中心線とx軸方向レンズ外縁両端との間の距離D、Dのいずれもがビーム径BDの半分より大きくなければならないことから、
(数8)
 BD<d-max(d,w)  (8)
が成立しなければならない。この条件は、後述するように、条件式(7)を含むより広い条件となる。
On the other hand, in the twin peak system shown in FIG. 8B, the condition without vignetting is that the distances D C and D E between the fiber center line and both ends of the outer edge of the lens in the x-axis direction in FIG. Must be larger than half of the beam diameter BD,
(Equation 8)
BD <d f −max (d n , w s ) (8)
Must hold. As will be described later, this condition is a wider condition including conditional expression (7).
 ここで、必ずしもツインピーク形状でなくてもよい場合があることを述べておく。図8における2例では、いずれもレンズ表面でのビーム領域はピークP6及びP8の両側に渡っているが、図9(a)に示すように、ビーム領域がピークP6及びP8の外側のみに分布する場合も考えられる。この場合は、レンズ表面でのビーム径BDが十分小さくて、式(7)及び式(8)の条件を満たして、かつ次式を満たす場合に相当する。
(数9)
 BD<d-d  (9)
Here, it should be noted that the twin peak shape is not necessarily required. In both examples in FIG. 8, the beam area on the lens surface extends on both sides of the peaks P6 and P8, but as shown in FIG. 9A, the beam area is distributed only outside the peaks P6 and P8. If you want to. This case corresponds to a case where the beam diameter BD on the lens surface is sufficiently small to satisfy the conditions of the expressions (7) and (8) and the following expression.
(Equation 9)
BD <d f −d p (9)
 このような場合、レンズ形状はツインピークである必要はなく、図9(b)、あるいは図10の等高線図で示すような台形状でよく、またこの方が金型加工も容易で、耐久性も高い。 In such a case, the lens shape does not need to be a twin peak, and may be a trapezoidal shape as shown in FIG. 9B or the contour map of FIG. 10, and this is easier to mold and more durable. high.
 さらにもう一つ条件がある。それは、ピーク曲率半径Rに関し、次式で表される金型の作製条件である。
(数10)
 R=(n-n)f/n≧150μm  (10)
There is one more condition. It relates to a peak radius of curvature R p, which is a formation condition of the mold represented by the following formula.
(Equation 10)
R p = (n c −n v ) f v / n v ≧ 150 μm (10)
 その理由は以下である。本開示で対象としている平凸レンズ20は、モールド法によって作製され得る。この方法では、金型に形成された凹状の穴に原料ガラスをプレスして凹形状をガラスの凸形状に転写する方法であり、レンズ面23の曲率半径は、金型を作製する工作機械の可能な穴の曲率半径に依存し、それは150μm以上とされている。すなわち、これ以下の小さい曲率半径の深みは形成できないことを意味する。 The reason is as follows. The plano-convex lens 20 which is the subject of the present disclosure can be manufactured by a molding method. This method is a method in which raw glass is pressed into a concave hole formed in a mold and the concave shape is transferred to the convex shape of the glass, and the radius of curvature of the lens surface 23 is that of the machine tool for producing the mold. Depending on the possible radius of curvature of the hole, it is assumed to be 150 μm or more. That is, it means that a depth of a small radius of curvature below this cannot be formed.
 次に、上記したことを図11及び図12に示すグラフに表し、タイプIの光学系を構成できる条件について述べる。まず、算出に際して採用した数値について説明する。採用数値を以下に記す。
・ファイバ間隔d:ファイバアレイ1でよく採用されるファイバ周期間隔は、汎用250μmピッチテープファイバに合わせた250μmと、それを上下入れ子にしてアレイ化した127μmである。ここでもその2値について検討した。
・波長λ:光通信波長帯の代表的値である1.55μmとした。
・モード半径ω:シングルモード光ファイバの波長1.55μmにおける代表的値である5.2μmとした。
・レンズ屈折率n:レンズに用いられる光学ガラスの屈折率は、低屈折率側のクラウンガラスの1.4から高屈折率側のフリントガラスの2.0まで分布している。従ってここでは、レンズ屈折率nは1.4から2.0までを考慮した。空気屈折率n:レンズ外側は、通常空気であるので、1.0とした。
・鞍部幅wと隣接間隔d:ガラスモールド法でレンズを作製する場合、レンズ形状の穴を金型に掘りこむわけであるが、隣接する穴の間は、10~20μm程度の平坦部が必要である。その理由は、もしこれより幅が狭いとすると、隣接する穴の間に幅の狭い尖った凸部ができることになり、モールドプレス工程における高温高圧下(1MPa、450℃以上)で変形してしまい、金型としての耐久性が損なわれてしまうからである。そのため、ここでは、鞍部幅w、隣接間隔d、ともに17μmとした。
・角度φ:フィルタ部4には、光学厚みがλ/4で低屈折率透明材料と高屈折率透明材料を交互に積層した誘電体多層膜の使用を想定した。構造上、この多層膜に斜めに入射することになるが、そこで問題となるのが透過したタップ光の偏波依存性である。図13に、低屈折率材料としてSiO(屈折率1.44)、高屈折率材料としてTa(屈折率2.12)を用いた場合の計算例を示す。この計算例によれば、透過したタップ光の偏波依存性を0.05dB以下にするには、フィルタ部4での反射角である角度φを4度以下にすることが好ましい。そのため、ここでは、実際の作製での屈折率や膜厚の変動による影響も考慮して、フィルタ部4での反射角である角度φを2度とした。
Next, the above description is shown in the graphs shown in FIG. 11 and FIG. First, numerical values adopted in the calculation will be described. The numbers adopted are listed below.
Fiber interval d f : The fiber period interval often used in the fiber array 1 is 250 μm matched to a general-purpose 250 μm pitch tape fiber, and 127 μm arrayed by nesting it vertically. Again, these two values were examined.
-Wavelength [lambda]: 1.55 [mu] m, which is a typical value of the optical communication wavelength band.
Mode radius ω 0 : It was set to 5.2 μm, which is a typical value at a wavelength of 1.55 μm of a single mode optical fiber.
Lens refractive index n c : The refractive index of the optical glass used for the lens is distributed from 1.4 of the low refractive index side crown glass to 2.0 of the high refractive index side flint glass. Here, therefore, a lens refractive index n c is considering to 2.0 from 1.4. Air refractive index n v : The outside of the lens is usually air, so it was set to 1.0.
・ Wear width w s and adjacent interval d n : When a lens is manufactured by a glass mold method, a lens-shaped hole is dug into a mold, but a flat portion of about 10 to 20 μm is formed between adjacent holes. is required. The reason is that if the width is narrower than this, a narrow convex part is formed between the adjacent holes, and it deforms under high temperature and high pressure (1 MPa, 450 ° C. or higher) in the mold press process. This is because the durability as a mold is impaired. Therefore, here, the heel width w s and the adjacent interval d n are both set to 17 μm.
Angle φ: The filter portion 4 is assumed to be a dielectric multilayer film in which an optical thickness is λ / 4 and a low refractive index transparent material and a high refractive index transparent material are alternately laminated. In terms of structure, the multi-layer film is incident obliquely, but the problem here is the polarization dependence of the transmitted tap light. FIG. 13 shows a calculation example in the case of using SiO 2 (refractive index 1.44) as the low refractive index material and Ta 2 O 5 (refractive index 2.12) as the high refractive index material. According to this calculation example, in order to make the polarization dependence of the transmitted tap light 0.05 dB or less, it is preferable to set the angle φ, which is the reflection angle at the filter unit 4, to 4 degrees or less. Therefore, here, the angle φ, which is the reflection angle at the filter unit 4, is set to 2 degrees in consideration of the influence of the refractive index and film thickness variation in actual fabrication.
 図11は、タイプIの構成において、ファイバ間隔dが250μmの場合について、ピーク間隔dごとにレンズ屈折率nとピーク曲率半径Rの関係をプロットしたグラフである。式(1)~式(5)によって、各ピーク間隔dに対して、レンズ屈折率nの増加とともに光線屈折能力が増すためにピーク曲率半径Rは大きくなる。ピーク間隔dについては、大きくなるにつれて、光線はピーク中心に近くなるために同じ屈折能力を保つために曲率半径Rは小さくなる。 Figure 11 is the structure of type I, for the case the fiber spacing d f of 250 [mu] m, is a graph plotting the relationship between the lens refractive index n c and the peak radius of curvature R p for each peak interval d p. By equation (1) to (5), for each peak interval d p, a peak radius of curvature R p for increasing light folding capability with increasing lens refractive index n c is larger. As the peak distance d p increases, the radius of curvature R p decreases to keep the same refractive power because the rays are closer to the peak center.
 このグラフに式(7)~式(8)、式(10)の条件を適用したのがグラフ中の3本の点線である。点線L2Cは式(7)の2ピース条件からくるものであり、この直線より下がケラレの無い2ピース形態の光学系が構成できる(n-R)の領域である。一番上の点線L2Kは式(8)のツインピーク条件からくるものであり、この直線より下がケラレの無いツインピーク形態の光学系が構成できる(n-R)の領域である。一番下のグラフ横軸に平行な点線LPCは、式(10)の型加工条件からくるものであり、この直線より上方が構成可能な(n-R)の領域となる。 The three dotted lines in the graph apply the conditions of equations (7) to (8) and (10) to this graph. The dotted line L 2C comes from the two-piece condition of Equation (7), and below this straight line is a region (n c −R p ) where a two-piece optical system without vignetting can be constructed. Dotted L 2K topmost are those coming from the twin peaks condition of Equation (8), is an area of the below the straight line can be constructed an optical system without twin peaks form vignetting (n c -R p) . Parallel dashed lines L PC in the graph horizontal axis and the bottom, which come from the mold processing conditions of the formula (10), above the the straight line is the region of possible configurations (n c -R p).
 これらのことから、2ピース形態は点線L2Cと点線LPCで囲まれた領域でのみ可能であるのに対して、ツインピーク形態は点線L2Kと点線LPCで囲まれた広い領域で可能であり、設計自由度が2倍以上広いことが判る。特に、ツインピーク条件では、曲率半径Rがより大きい条件での光学系構成が可能であり、これは型加工の難易度が低いことを意味する。 Therefore, the two-piece configuration is possible only in the region surrounded by the dotted line L 2C and the dotted line L PC , while the twin peak configuration is possible in the wide region surrounded by the dotted line L 2K and the dotted line L PC. It can be seen that the degree of freedom in design is more than twice as wide. In particular, under twin peak conditions, it is possible to construct an optical system under conditions where the radius of curvature Rp is larger, which means that the difficulty of mold processing is low.
 図12は、タイプIの構成において、ファイバ間隔dが127μmの場合について、ピーク間隔dごとにレンズ屈折率nとピーク曲率半径Rの関係をプロットしたグラフである。式(1)~式(5)によって、図11と同様に、各ピーク間隔に対して、レンズ屈折率の増加とともに光線屈折能力が増すためにピーク曲率半径は大きくなる。ピーク間隔dについては、大きくなるにつれて光線はピーク中心に近くなるため、同じ屈折能力を保つためには曲率半径Rは小さくなる。 12, in the configuration of type I, for the case the fiber spacing d f of 127 [mu] m, is a graph plotting the relationship between the peak interval d lens refractive index for each p n c and the peak radius of curvature R p. According to the formulas (1) to (5), as in FIG. 11, the peak curvature radius increases for each peak interval due to the increase in the refractive index of the light as the lens refractive index increases. With respect to the peak interval d p , the ray becomes closer to the center of the peak as it increases, so that the radius of curvature R p decreases to maintain the same refractive power.
 このグラフに図11と同様に、式(7)~式(8)、式(10)の条件を適用したのがグラフ中の3本の点線である。一見してわかるように、ツインピーク形態の可能な点線L2Kと点線LPCで囲まれた領域は、2ピース形態の可能な点線L2Cと点線LPCで囲まれた領域に比較して圧倒的に広い。ファイバ間隔dが図11に示す250μmの場合と比較すれば、間隔dが狭くなるにつれて可能な(n-R)の領域も狭くなり、ツインピーク形態が可能なのは、点線L2Kと点線LPCで囲まれた領域となり、レンズ屈折率nが1.44以下では構成できない。しかし、信頼性の高いボロシリケートガラスの代表であるBK7の屈折率1.501では、ピーク間隔dの幅は91.7~95.6μmと狭いものの光学系構成が可能であり、ツインピーク形態は、小型化に対応し得ることが判る。 As in FIG. 11, the three dotted lines in the graph apply the conditions of equations (7) to (8) and (10) to this graph. As can be seen at a glance, the region surrounded by the dotted line L 2K and the dotted line L PC in the twin peak form is overwhelming compared to the region surrounded by the two-piece form the possible dotted line L 2C and the dotted line L PC. Wide. In comparison with the case fiber distance d p is 250μm shown in FIG. 11, also becomes narrower region of possible as distance d f is narrowed (n c -R p), the possible twin peaks form, and dotted L 2K becomes the area surrounded by a dotted line L PC, lens refractive index n c is not configured at 1.44 or less. However, the refractive index 1.501 of BK7, which is a representative of high borosilicate glass reliable, the width of the peak interval d p is capable of an optical system configuration of 91.7 ~ 95.6μm and narrow, twin peaks form It can be seen that can cope with downsizing.
 一方2ピース条件に至っては、僅かにnが1.81以上でしかもピーク間隔dも105から107μmのごく限られた領域でのみ可能となる。この高屈折率領域は、信頼性の点ではヤケの発生等が問題となる領域であり、実用上の適用性は低いと言わざるを得ず、127μmのファイバ間隔dでは、2ピース形態は適用できないと言える。 On the other hand it led to 2-piece condition, slightly n c is only possible in a very limited area of 107μm from 1.81 or more in addition peak interval d p also 105. The high refractive index region, in terms of reliability is a region where occurrence of scorch is a problem, it is inevitable said practical applicability is low, the fiber spacing d f of 127 [mu] m, 2-piece form It can be said that it is not applicable.
(第3の実施形態)
 図14に本実施形態の光学系を示す。本実施形態は、第1の実施形態において、光ファイバ11Aからの出射光と光ファイバ11Bへの入射光ビームが平凸レンズの表面、および内部において重なる場合である。これは、図7において、ファイバ間隔dが狭く、従ってフィルタ部4での反射角である角度φが小さい場合に相当する。この場合、凸面A1と凸面A2も当然重なり合い、シングルピークのレンズ凸面となる。このような構成は、フィルタ部4における透過光の波長依存性や偏波依存性を低減させるために、反射角φを小さくしようとする場合に有効である。
(Third embodiment)
FIG. 14 shows the optical system of this embodiment. In the first embodiment, the light emitted from the optical fiber 11A and the incident light beam to the optical fiber 11B overlap each other on the surface and inside of the plano-convex lens in the first embodiment. This is because, in FIG. 7, the fiber spacing d f narrow, thus corresponding to when the angle φ is the reflection angle at the filter section 4 is small. In this case, the convex surface A1 and the convex surface A2 naturally overlap and become a single-peak lens convex surface. Such a configuration is effective for reducing the reflection angle φ in order to reduce the wavelength dependence and polarization dependence of the transmitted light in the filter unit 4.
 本実施形態では、凸面A1及び凸面A2によってベース面21B上に形成される第1仮想円及び第2仮想円は共通の球面の一部であり、レンズ面23は鞍部A3を備えない。第1仮想円及び第2仮想円の中心間距離はゼロとなる。このように、本開示は、第1仮想円及び第2仮想円の中心間距離はゼロとなる場合も包含しうる。 In the present embodiment, the first virtual circle and the second virtual circle formed on the base surface 21B by the convex surface A1 and the convex surface A2 are part of a common spherical surface, and the lens surface 23 does not include the flange portion A3. The distance between the centers of the first virtual circle and the second virtual circle is zero. As described above, the present disclosure may include a case where the distance between the centers of the first virtual circle and the second virtual circle is zero.
 図15に、本実施形態に係るファイバアレイモジュールの構成例を示す。本実施形態では、第2の実施形態とは異なり、ファイバアレイ1が変則等ピッチとなる。これは、反射角である角度φを小さくするために、ファイバ間隔dをレンズアレイ2のレンズ間隔dの2分の1より狭めたためである。この場合、光ファイバ11A-1~4、11B-1~4のレンズ表面上でのビーム径BDに要求される条件は、図16においてレンズ表面で光ビームが隣接レンズに及ばない必要から、前述の式(7)に替わり、
(数31)
 BD<d-d  (31)
となる。
FIG. 15 shows a configuration example of the fiber array module according to the present embodiment. In the present embodiment, unlike the second embodiment, the fiber array 1 has an irregular pitch. This is in order to reduce the angle φ is the reflection angle, because the narrowed than half of the lens distance d l of the lens array 2 to fiber distance d f. In this case, the conditions required for the beam diameter BD on the lens surfaces of the optical fibers 11A-1 to 11 and 11B-1 to 4 are that the light beam does not reach the adjacent lens on the lens surface in FIG. Instead of (7)
(Equation 31)
BD <d 1 −d f (31)
It becomes.
(第4の実施形態)
 図17に、本実施形態の光学系を示す。本実施形態では、ツインピーク平凸レンズ20の平坦面21A側に光ファイバ11A及び11Bが配置され、レンズ面23側に所定の厚みの空気層3を挟んでフィルタ部4が配置されている。光ファイバ11Aは、端面P1が第1の位置に配置され、第1の光ファイバとして機能する。光ファイバ11Bは、端面P2が第2の位置に配置され、第2の光ファイバとして機能する。光ファイバ11A及び11Bの長手方向は、平面P内でレンズ中心軸Aと平行に配置されている。以下、この実施形態をタイプIIと称する。
(Fourth embodiment)
FIG. 17 shows the optical system of this embodiment. In the present embodiment, the optical fibers 11A and 11B are disposed on the flat surface 21A side of the twin peak plano-convex lens 20, and the filter unit 4 is disposed on the lens surface 23 side with the air layer 3 having a predetermined thickness interposed therebetween. The end face P1 of the optical fiber 11A is disposed at the first position, and functions as the first optical fiber. The optical fiber 11B has the end face P2 disposed at the second position, and functions as a second optical fiber. Longitudinal direction of the optical fiber 11A and 11B are arranged in parallel to the lens center axis A C in the plane P C. Hereinafter, this embodiment is referred to as Type II.
 本実施形態に係る平凸レンズ20は、レンズ面23に、第1凸面として機能する凸面A1、第2凸面として機能する凸面A2、及び鞍部A3を有する。凸面A1は、レンズ中心軸Acと平行で平面Pcに含まれる直線R1を回転中心とする球面であり、凸面A2も同様にレンズ中心軸Acと平行で平面Pcに含まれる直線R2を回転中心とする球面であり、直線R1、R2は、レンズ中心軸Acに対して対称に、内側に所定の距離だけオフセットされている。 The plano-convex lens 20 according to the present embodiment has, on the lens surface 23, a convex surface A1 that functions as a first convex surface, a convex surface A2 that functions as a second convex surface, and a flange A3. The convex surface A1 is a spherical surface that is parallel to the lens center axis Ac and that is centered on the straight line R1 that is included in the plane Pc, and the convex surface A2 is also parallel to the lens center axis Ac and that is centered on the straight line R2 that is included in the plane Pc The straight lines R1 and R2 are symmetrical with respect to the lens center axis Ac and are offset by a predetermined distance inward.
 かような構成において、光ファイバ11Aの端面P1から出射した光は、平坦面21Aから平凸レンズ20に入射する。平凸レンズ20に入射した光は、レンズ20内を透過し、凸面A1から空気層3中に出射する。このとき、凸面A1は、空気層3中に出射する光を平行光にする。 In such a configuration, the light emitted from the end face P1 of the optical fiber 11A enters the plano-convex lens 20 from the flat surface 21A. The light incident on the plano-convex lens 20 is transmitted through the lens 20 and is emitted from the convex surface A1 into the air layer 3. At this time, the convex surface A1 makes the light emitted into the air layer 3 parallel light.
 凸面A1で平行光となった光は、空気層3中を通過し、フィルタ部4に備わる部分透過膜41の一点P3で一部が凸面A2に向けて反射する。部分透過膜41は、反射面として機能する。フィルタ部4で反射した平行光は、凸面A2から平凸レンズ20に入射する。凸面A2は、フィルタ部4で反射した平行光を光ファイバ11Bの端面P2に集光する。これにより、フィルタ部4で反射した平行光は、光ファイバ11Bに入射する。 The light that has become parallel light on the convex surface A1 passes through the air layer 3, and part of the light is reflected toward the convex surface A2 at one point P3 of the partial transmission film 41 provided in the filter unit 4. The partial transmission film 41 functions as a reflection surface. The parallel light reflected by the filter unit 4 enters the plano-convex lens 20 from the convex surface A2. The convex surface A2 condenses the parallel light reflected by the filter unit 4 on the end surface P2 of the optical fiber 11B. Thereby, the parallel light reflected by the filter unit 4 enters the optical fiber 11B.
 本実施形態に係る平凸レンズ20は、凸面A2がフィルタ部4で反射した平行光を光ファイバ11Bの端面P2に集光するため、モニタ光をタップされた後の光を光ファイバ11Bに効率よく結合させることができる。 Since the plano-convex lens 20 according to the present embodiment condenses the parallel light reflected by the convex surface A2 by the filter unit 4 on the end surface P2 of the optical fiber 11B, the light after tapping the monitor light is efficiently applied to the optical fiber 11B. Can be combined.
(第5の実施形態)
 図18に、本実施形態に係るファイバアレイモジュールの構成例を示す。これは、タイプIIの平凸レンズ20をアレイ化した場合に相当する。ファイバアレイモジュールは、光ファイバ11A-1~11A-4及び11B-1~11B-4が交互に配列されているファイバアレイ1と、第4の実施形態の複数のレンズ面23-1~23-4が配列されているレンズアレイ2とを備える。レンズアレイ2は、第2の実施形態と同様に、第1レンズアレイとして機能し、スペーサ22が配置されている。
(Fifth embodiment)
FIG. 18 shows a configuration example of the fiber array module according to the present embodiment. This corresponds to the case where the type II plano-convex lens 20 is arrayed. The fiber array module includes a fiber array 1 in which optical fibers 11A-1 to 11A-4 and 11B-1 to 11B-4 are alternately arranged, and a plurality of lens surfaces 23-1 to 23- of the fourth embodiment. And a lens array 2 in which 4 are arranged. Similarly to the second embodiment, the lens array 2 functions as a first lens array, and a spacer 22 is disposed.
 ファイバアレイ1及びレンズアレイ2は、第4の実施形態の4つのファイバ-レンズ光学系が、所定平面P上に並列に配置されている。具体的には、レンズアレイ2は、第4の実施形態の複数のレンズ面23-1~23-4を備える。レンズアレイ2に備わる各ツインピーク平凸レンズ20は、第4の実施形態のファイバーレンズ光学系を基本単位として備える。各レンズ面23のレンズ中心軸Aは、平面P内に並列に配列されている。ファイバアレイ1は、各々のレンズ面23-1~23-4に対して2本の光ファイバ11A及び11Bを有する。光ファイバ11A-1~11A-4の各端面及び11B-1~11B-4の各端面の配置されているファイバアレイ1の端面PL11は、ピーク線Bcと平行に配置される。 Fiber array 1 and the lens array 2 has four fibers of the fourth embodiment - lens optical system, are arranged in parallel on a predetermined plane P C. Specifically, the lens array 2 includes the plurality of lens surfaces 23-1 to 23-4 of the fourth embodiment. Each twin peak plano-convex lens 20 provided in the lens array 2 includes the fiber lens optical system of the fourth embodiment as a basic unit. Lens center axis A C of the lens surfaces 23 are arranged in parallel in a plane P C. The fiber array 1 has two optical fibers 11A and 11B for each lens surface 23-1 to 23-4. The end faces PL11 of the fiber array 1 on which the end faces of the optical fibers 11A-1 to 11A-4 and the end faces of 11B-1 to 11B-4 are arranged are arranged in parallel with the peak line Bc.
 図19を参照しながら、図17及び図18における光学系について説明する。以下方向は図中の直交xyz座標軸に倣って説明する。図の左端には、xz平面内において、z軸に平行で、x軸方向に間隔dで光ファイバが並べられたファイバアレイ1が配置されている。当該ファイバアレイ1は、x軸に平行でy軸に対して所定の角度をなす平面を端面として、例えば、テンパックスガラス等の筐体によって保持されて構成されている。 The optical system in FIGS. 17 and 18 will be described with reference to FIG. Hereinafter, the directions will be described following the orthogonal xyz coordinate axes in the drawing. The left end of the figure, in the xz plane, is parallel to the z-axis, the fiber array 1 the optical fiber are arranged at intervals d f in the x-axis direction is disposed. The fiber array 1 is configured to be held by a housing such as Tempax glass with a plane parallel to the x-axis and forming a predetermined angle with respect to the y-axis as an end surface.
 さて、図19では、第1の実施形態から第3の実施形態の光学系とは異なり、ファイバアレイ1の端面PL11には、ツインピークレンズアレイ2の平坦面21A側が直接貼り付けられており、ファイバアレイ1の2倍の周期のレンズ面23側は、その反対側を向いている。レンズ面23は、z軸に平行なレンズ中心軸Aを有し、z軸に垂直な面を共通平面として、x軸方向にファイバアレイ1の倍の間隔2dで、且つ隣接するレンズとは隣接間隔dをおいてアレイ化されている。 In FIG. 19, unlike the optical systems of the first to third embodiments, the flat surface 21A side of the twin peak lens array 2 is directly attached to the end surface PL11 of the fiber array 1, The lens surface 23 side having a period twice that of the fiber array 1 faces the opposite side. Lens surface 23, z has a lens center axis A C parallel to the axis, a common plane plane perpendicular to the z-axis, the x-axis direction in the fiber array 1 times the spacing 2d f, and and adjacent lenses They are arrayed at a distance between the adjacent d n.
 レンズ面23は、凸面A1及び凸面A2を備える。凸面A1は、ファイバアレイ1で成る平面Pcに含まれてz軸に平行な直線R1を中心とする回転曲面であり、レンズ作用をなす。しかも、ファイバ11Aの光軸に対して、所定の距離だけ内側(レンズ中心軸Ac側)にオフセットされている。凸面A2は、レンズ中心軸Acに対して、幅wの鞍部A3を挟んで凸面A1とは対称な形状に形成されている。直線R1と直線R2の間隔であるピーク間隔dは、ファイバ間隔dより所定の長さだけ小さい距離に設定されている。 The lens surface 23 includes a convex surface A1 and a convex surface A2. The convex surface A1 is a rotating curved surface centered on a straight line R1 that is included in the plane Pc of the fiber array 1 and is parallel to the z axis, and has a lens action. Moreover, it is offset inward (to the lens center axis Ac side) by a predetermined distance with respect to the optical axis of the fiber 11A. Convex A2 from the lens center axis Ac, is formed in a symmetrical shape with convex surface A1 across the saddle A3 width w s. Peak interval d p is the distance between the straight line R1 and the line R2 is given is set by a small distance in length than the fiber spacing d f.
 レンズアレイ2のレンズ面23側には、空気層3を挟んでz軸に垂直な部分透過膜41を有するフィルタ部4が配置されている。レンズ面23と部分透過膜41との距離、すなわち空気層の厚みtは、凸側焦点距離fよりも厚い所定値に設定されている。 On the lens surface 23 side of the lens array 2, a filter unit 4 having a partial transmission film 41 perpendicular to the z-axis with the air layer 3 interposed therebetween is disposed. The distance between the lens surface 23 and the partial transmission film 41, that is, the thickness t r of the air layer is set to a thick predetermined value than the convex side focal length f v.
 ファイバアレイ1とレンズアレイ2の相対位置は、x軸方向は、レンズ中心軸Aがファイバアレイ1の隣接ファイバ同士の中心線(この図では、光ファイバ11Aと光ファイバ11Bの中心線)に一致するように、y方向は、レンズ中心軸Aのアレイで形成された平面がファイバアレイ1の中心線で形成された平面と一致するように、およびz方向は、ファイバアレイ1の端面PL11とピークP6及びP8との距離が平凸レンズ20の凹側焦点距離fに一致するように設定されている。図19の右側には、所定の間隔の空気層3を挟んで、レンズ中心軸Aと平行なz軸に垂直に所定の波長の光を所望の比率で反射/透過する機能を有する部分透過膜41が設置されている。第1の実施形態から第3の実施形態では、部分透過膜41は、レンズアレイ2の平坦面21A側に直接装荷されていたが、本実施形態では、別個にレンズアレイ2と同じ屈折率のガラス基板42に装荷されたものとなっている。 The relative position of the fiber array 1 and the lens array 2, x-axis direction, the lens center axis A C is the center line of the adjacent fibers to each other of the fiber array 1 (in this figure, the center line of the optical fiber 11A and the optical fiber 11B) to as match, y-direction, as formed by an array of lens center axis a C plane coincides with the plane formed by the center line of the fiber array 1, and z directions, the end face of the fiber array 1 PL11 the distance between the peak P6 and P8 are set to match the concave side focal length f c of plano-convex lens 20 and. On the right side of FIG. 19, across the air layer 3 of a predetermined distance, a partial transmission with perpendicular to the lens center axis A C parallel z-axis light in a predetermined wavelength a function of reflecting / transmitting in a desired ratio A membrane 41 is installed. In the first to third embodiments, the partially transmissive film 41 is directly loaded on the flat surface 21A side of the lens array 2, but in this embodiment, the partially transparent film 41 has the same refractive index as that of the lens array 2 separately. The glass substrate 42 is loaded.
 このような構成において、光ファイバ11Aの端面から出射した光の経路を光線近似で考察する。光ファイバ11Aの端面は、凹側焦点面PL23C上に位置しており、前述したようにレンズ面23の内の凸面A1の中心線である直線R1はファイバ中心線に対してx方向にオフセットしている。このため、光ファイバ11Aの端面を点光源として出射され、レンズアレイ2を透過し、凸面A1に入射した光は、レンズ中心軸A側に屈折して、レンズ中心軸Aと所定の角度φをなす平行光線となって空気層3中を進む。その内で、光ファイバ11Aからレンズ中心軸Aであるz軸に平行に出射した光線すなわち出射光の中心光線は、凸面A1から出射した後、フィルタ部4で反射され、凸面A2を通ることになる。 In such a configuration, the path of light emitted from the end face of the optical fiber 11A will be considered by light ray approximation. The end surface of the optical fiber 11A is located on the concave focal plane PL23C, and as described above, the straight line R1 that is the center line of the convex surface A1 of the lens surface 23 is offset in the x direction with respect to the fiber center line. ing. Therefore, emitted an end face of the optical fiber 11A as a point light source, transmitted through the lens array 2, light incident on the convex surface A1 is refracted in the lens center axis A C side, the lens center axis A C at a predetermined angle It travels through the air layer 3 as parallel rays forming φ. Among them, from the optical fiber 11A is a lens center axis A C z axis center ray of the light beam i.e. the outgoing light was parallel to the exit, the after exiting the convex surface A1, is reflected by the filter unit 4, to pass through the convex surface A2 become.
 空気層の厚みtが凸側焦点距離fよりも厚く、しかも上述の中心光線がレンズ中心軸Aと交わる点に部分透過膜41が位置するように設定されているので、平行光の強度分は部分透過膜41を透過してレンズ中心軸Aに対してψの角度で直進するが、残りの強度分は部分透過膜41で反射して、レンズ中心軸Aに対して対称なx方向位置で凸面A2に達する。凸面A2に達した反射光は、凸側焦点を通ってきた平行光であり、光ファイバ11Aから出射、凸面A1に入射した光路とレンズ中心軸Aに対して対称な経路をたどり、結局レンズ中心軸Aに対して光ファイバ11Aと対称な位置にある光ファイバ11Bの端面P2に集光することになる。 The thickness t r of the air layer is thicker than the convex side focal length f v, and since the partial transmission film 41 in that the central ray of the above crosses the lens center axis A c is configured to position, parallel light strength component is straight with an angle of ψ with respect to the partial transmission film 41 lens center axis a C passes through the, remaining strength component is reflected by the partial transmission film 41, symmetrical with respect to the lens center axis a C The convex surface A2 is reached at a position in the x direction. The reflected light reaches the convex A2 is a parallel light having passed through the convex side focal, emitted from the optical fiber 11A, follows a symmetrical path with respect to the optical path and the lens center axis A C incident on the convex surface A1, eventually lens It will be focused on the end surface P2 of the optical fiber 11B in the optical fiber 11A and symmetrical positions with respect to the central axis a C.
 ここで、もしも空気層の厚みtが所定値より薄い場合、フィルタ部4での反射光は、凸面A2のレンズ中心軸A側の表面に達することになり、そこでは平行光は収束されず、光ファイバ11Bの端面P2では広がってしまう。一方、空気層3の厚みtが所定値より厚い場合、フィルタ部4での反射光は、凸面A2の外側の表面に達することになり、平行光は収束されすぎて、光ファイバ11Bの端面P2では広がってしまう。いずれの場合でも、フィルタ部4での反射光線の光軸も光ファイバ11Bの端面P2から外れてしまう。そのため、空気層の厚みtが凸側焦点距離fよりも厚く、しかも上述の中心光線がレンズ中心軸Aと交わる点に部分透過膜41が位置する必要がある。 Here, if the if less than the predetermined value thickness t r is the air layer, the light reflected at the filter section 4 is made to reach a lens center axis A C-side surface of the convex A2, the parallel light is converged therein However, it spreads at the end face P2 of the optical fiber 11B. On the other hand, if the thickness t r of the air layer 3 is thicker than a predetermined value, the light reflected at the filter section 4 is made to reach to the outer surface of convex A2, and the parallel light too is converged, the end face of the optical fiber 11B It spreads at P2. In either case, the optical axis of the reflected light beam at the filter unit 4 also deviates from the end face P2 of the optical fiber 11B. Therefore, the thickness t r of the air layer is thicker than the convex side focal length f v, yet is partially transmitting film 41 in that the central ray of the above crosses the lens center axis A c has to be positioned.
 尚、部分透過膜41で透過した光線は、部分透過膜41の付着せしめられたガラス基板42の屈折率がレンズアレイ2の屈折率nと同じであれば、図には示さないが、角度ψで出射する。また部分透過膜41の付着せしめられたガラス基板42が平行基板であれば、最終的に空気層3に出射するときは、角度φで出射する。 Incidentally, the transmitted light in the partial transmission film 41, if the same as the refractive index n c of the refractive index of the lens array 2 of the glass substrate 42, which is by adhering partially transmitting film 41, although not shown, the angle The light is emitted at ψ. If the glass substrate 42 to which the partially permeable film 41 is attached is a parallel substrate, when the light is finally emitted to the air layer 3, it is emitted at an angle φ.
 次に、上記説明を数式を使って定式化する。図19において、凹側焦点面PL23Cに端面を有する光ファイバ11Aから出射してレンズアレイ2を通過してレンズ面23の凸面A1に入射した光線は、レンズ中心軸Aと角度φをなす平行光となる。それら光線の内、凸面A1のピークP6(中心線である直線R1と凸面A1の交点)に入射した光線に対しては、入射点のレンズ表面接平面はレンズ中心軸Aに垂直なので、光線のピーク中心入射角である角度ψ、出射角である角度φと屈折率n、nの間には、次式で表されるスネル則が成り立つ。
(数11)
 nsinψ=nsinφ  (11)
Next, the above description is formulated using mathematical expressions. 19, parallel to form a light beam incident on the convex surface A1 of the concave focal plane lens surface 23 is emitted from the optical fiber 11A passes through the lens array 2 having an end face to PL23C, the lens center axis A C and the angle φ It becomes light. Among them light, for light incident on the peak of the convex A1 P6 (the intersection of the straight line R1 and the convex A1 is the center line), since the lens stitched plane of incidence point perpendicular to the lens center axis A C, light angle ψ is a peak center incident angle of the exit angle at which the angle φ and the refractive index n v, between n c is Snell law holds represented by the following formula.
(Equation 11)
n c sinψ = n v sinφ (11)
 また、ファイバアレイ1は間隔dで、レンズアレイ2はその倍の間隔2dでアレイ化されているわけであるから、凸側焦点面PL23Vまでの焦点距離f、及び、凹側焦点面PL23Cまでの焦点距離fは、ファイバ間隔dと、凸面A1と凸面A2のピーク間隔d、レンズ中心入射角である角度ψ、および出射角である角度φの値から、以下の式(12)、式(13)で決まる。
(数12)
 f={(d-d)cotψ}/2  (12)
(数13)
 f=((d-d)cotφ)/2  (13)
Further, in the fiber array 1 is distance d f, since the lens array 2 is not being arrayed at the multiple of the spacing 2d f, the focal length f v to the convex side focal plane PL23V, and concave focal plane the focal length f c to PL23C includes a fiber spacing d f, the peak interval d p of the convex surface A1 and convex A2, angle ψ is a lens central incident angle, and the value of the angle φ is the emission angle, the following formula ( 12), determined by equation (13).
(Equation 12)
f c = {(d f −d p ) cotφ} / 2 (12)
(Equation 13)
f v = ((d f −d p ) cotφ) / 2 (13)
 また、空気層の厚みtについても同様に次式が成り立つ。
(数14)
 t=dcotφ/2  (14)
Similarly, the following equation holds true for the thickness t r of the air layer.
(Equation 14)
t r = d f cotφ / 2 (14)
 さらに、ピークの曲率半径Rは次式で与えられる。
(数15)
 R=(n-n)f/n  (15)
Further, the radius of curvature R p of the peak is given by the following equation.
(Equation 15)
R p = (n c −n v ) f c / n c (15)
 ツインピークを構成する凸面A1及び凸面A2は、ともに上記式(11)~式(14)を満たせばよいわけであるが、これらの関係を満たし、レンズ中心軸Aに平行な軸を対称軸とする回転曲面は、最も簡単には、式(15)で得られるRを半径とする球面でよく近似できる。ファイバ間隔d、レンズのピーク間隔d、レンズ屈折率n、空気屈折率n、およびフィルタ部4での反射角である角度φを与えれば、式(12)と式(13)からレンズ面23の凹凸二つの焦点距離f、fが決まり、式(14)から空気層の厚みtが決まる。また、レンズ作製工程において、モールド工程で使用する金型の形状目安となるピーク曲率半径も式(15)より判る。 Convex A1 and convex A2 constituting the twin peaks are both but not may satisfy the above formula (11) to Formula (14) satisfies these relationships, symmetry axis parallel to the lens center axis A C The rotation curved surface can be most easily approximated by a spherical surface having a radius of R p obtained by Expression (15). Given the fiber spacing d f , the lens peak spacing d p , the lens refractive index n c , the air refractive index n v , and the angle φ that is the reflection angle at the filter unit 4, the equations (12) and (13) the focal length f c of irregularities two lens surfaces 23, determines the f v, the thickness t r of the air layer from equation (14) is determined. Further, in the lens manufacturing process, the peak radius of curvature, which is a guide for the shape of the mold used in the molding process, can also be found from Expression (15).
 次に、このような光学系が成立するための条件について述べる。光ファイバ11A及び11Bとの間の低損失結合を実現するには、レンズ面23でのケラレを極力抑える必要がある。光ファイバ11Aからの出射光は光ファイバのNAに従って広がるわけであるが、その広がりは、光ファイバ端をビームウエスト位置とするガウシアンビームの伝搬としてよく表わされる。光ファイバ端から出射してレンズ面23に到達したガウシアンビームのパワー分布は、ビーム中心からビーム半径ωの1.73倍までの範囲で全パワーの99.75%となる。そこでここまでの範囲をレンズ面23に達したビームのビーム径BDとすれば、それは次式で与えられる。
Figure JPOXMLDOC01-appb-M000002
ここで、ω及びλはそれぞれ光ファイバ11Aのモード半径および光の波長である。
Next, conditions for establishing such an optical system will be described. In order to realize low-loss coupling between the optical fibers 11A and 11B, it is necessary to suppress vignetting on the lens surface 23 as much as possible. The outgoing light from the optical fiber 11A spreads according to the NA of the optical fiber, but the spread is often expressed as the propagation of a Gaussian beam with the end of the optical fiber as the beam waist position. The power distribution of the Gaussian beam emitted from the end of the optical fiber and reaching the lens surface 23 is 99.75% of the total power in the range from the beam center to 1.73 times the beam radius ω. Therefore, if the range up to here is the beam diameter BD of the beam reaching the lens surface 23, it is given by the following equation.
Figure JPOXMLDOC01-appb-M000002
Here, ω 0 and λ are the mode radius of the optical fiber 11A and the wavelength of light, respectively.
 次に、タイプIIでのレンズ表面でのビーム径BDに要求される条件についてであるが、これはタイプIについてと同様の考察が成り立ち、式(7)及び式(8)の条件は全く同じとなる。但し、ピーク曲率半径Rに要求される条件は
(数17)
 R=(n-n)f/n≧150μm  (17)
に替わる。
Next, regarding the conditions required for the beam diameter BD on the lens surface in Type II, the same considerations as in Type I hold, and the conditions of Equation (7) and Equation (8) are exactly the same. It becomes. However, the condition required for the peak curvature radius R p is (Equation 17)
R p = (n c −n v ) f c / n c ≧ 150 μm (17)
Instead of
 上記したことから、タイプIIの構成について、タイプIと同様に、ピーク間隔dと、ビーム径BD、ピーク曲率半径R(式(15)による)、および2ピース条件指数との関係をグラフ化したものが図20と図21である。算出に際して採用した値はタイプIと同じである。 From the above, regarding the configuration of type II, as with type I, the relationship between peak interval d p , beam diameter BD, peak curvature radius R p (according to equation (15)), and the two-piece condition index is a graph. FIG. 20 and FIG. 21 are obtained. The value adopted in the calculation is the same as type I.
 図20は、タイプIIの構成において、ファイバ間隔dが250μmの場合について、ピーク間隔dごとにレンズ屈折率nとピーク曲率半径Rの関係をプロットしたグラフである。式(11)~式(13)、式(16)~式(17)によって、各ピーク間隔dに対して、レンズ屈折率nの増加とともに光線屈折能力が増すためにピーク曲率半径Rは大きくなる。ピーク間隔については、大きくなるにつれて、光線はピーク中心に近くなるために同じ屈折能力を保つためにピーク曲率半径Rは小さくなる。 Figure 20 is in the configuration of Type II, the case is a fiber spacing d f of 250 [mu] m, is a graph plotting the relationship between the lens refractive index n c and the peak radius of curvature R p for each peak interval d p. Equation (11) to (13), the equation (16) to (17), for each peak interval d p, a peak curvature in order to increase the light folding capability with increasing lens refractive index n c the radius R p Will grow. The peak interval, as increases, the beam becomes smaller peak radius of curvature R p to keep the same refractive ability to become closer to the peak center.
 このグラフに式(7)~(8)、式(17)の条件を適用したのがグラフ中の3本の点線である。点線L2Cは式(7)の2ピース条件からくるものであり、この直線より下がケラレの無い2ピース形態の光学系が構成できる(n-R)の領域である。一番上の点線L2Kは式(8)のツインピーク条件からくるものであり、この直線より下がケラレの無いツインピーク形態の光学系が構成できる(n-R)の領域である。一番下のグラフ横軸に平行な点線LPCは、式(17)の型加工条件からくるものであり、この直線より上方が構成可能な(n-R)の領域となる。 The three dotted lines in the graph apply the conditions of equations (7) to (8) and equation (17) to this graph. The dotted line L 2C comes from the two-piece condition of Equation (7), and below this straight line is a region (n c −R p ) where a two-piece optical system without vignetting can be constructed. Dotted L 2K topmost are those coming from the twin peaks condition of Equation (8), is an area of the below the straight line can be constructed an optical system without twin peaks form vignetting (n c -R p) . A dotted line L PC parallel to the horizontal axis of the lowermost graph comes from the die machining conditions of the equation (17), and the region above this straight line is a configurable (n c −R p ) region.
 ツインピークと2ピース形態を比較すると、2ピース形態は点線L2Cと点線LPCで囲まれた領域でのみ可能であるのに対して、ツインピーク形態は点線L2Kと点線LPCで囲まれた広い領域で可能であり、設計自由度が2倍程度広いことが判る。特に、ツインピーク条件では、曲率半径Rがより大きい条件での光学系構成が可能であり、これは型加工の難易度が低いことを意味する。 Comparing the twin peak and the two-piece configuration, the two-piece configuration is possible only in the area surrounded by the dotted line L 2C and the dotted line L PC , whereas the twin peak configuration is surrounded by the dotted line L 2K and the dotted line L PC. It can be seen in a wide area, and the design freedom is about twice as wide. In particular, under twin peak conditions, it is possible to construct an optical system under conditions where the radius of curvature Rp is larger, which means that the difficulty of mold processing is low.
 図21は、タイプIIの構成において、ファイバ間隔dが図20より狭い127μmの場合について、ピーク間隔dごとにレンズ屈折率nとピーク曲率半径Rの関係をプロットしたグラフである。式(11)~式(13)、式(16)~式(17)によって、図20と同様に、各ピーク間隔に対して、レンズ屈折率の増加とともに光線屈折能力が増すためにピーク曲率半径Rは大きくなる。ピーク間隔dについては、大きくなるにつれて光線はピーク中心に近くなるため、同じ屈折能力を保つためにはピーク曲率半径Rは小さくなる。 21, in the configuration of Type II, the case is a fiber spacing d f narrower 127μm than 20 is a graph plotting the relationship between the peak interval d lens refractive index for each p n c and the peak radius of curvature R p. According to the equations (11) to (13) and (16) to (17), the peak curvature radius is increased because the refractive power of the light increases as the lens refractive index increases for each peak interval, as in FIG. Rp increases. Regarding the peak interval d p , the light beam approaches the center of the peak as it increases, so that the peak radius of curvature R p decreases to maintain the same refractive power.
 このグラフに図20と同様に、式(7)~式(8)、式(17)の条件を適用したのがグラフ中の3本の点線である。一見してわかるように、ツインピーク形態が可能な点線L2Kと点線LPCで囲まれた領域は、2ピース形態の可能な点線L2Cと点線LPCで囲まれた領域に比較して圧倒的に広い。ファイバ周期間隔250μmの場合と比較すれば、ファイバ間隔dが狭くなるにつれて可能な(n-R)の領域も狭くなり、ツインピーク形態が可能なのは、ツインピーク条件と型加工条件の点線で囲まれた三角形領域となり、レンズ屈折率nが1.44以下では構成できない。しかし、信頼性の高いボロシリケートガラスの代表的硝材であるBK7の屈折率1.501では、ピーク間隔dの幅は103.5~106.1μmと狭いものの光学系構成が可能であり、ツインピーク形態は、小型化に対応し得ることが判る。 As in FIG. 20, the three dotted lines in the graph apply the conditions of equations (7) to (8) and (17) to this graph. As can be seen at a glance, the region surrounded by the dotted line L 2K and the dotted line L PC capable of twin peak form is overwhelming compared to the region surrounded by the dotted line L 2C and the dotted line L PC capable of two piece form. Wide. Compared with the case where the fiber period interval is 250 μm, the region of possible (n c −R p ) becomes narrower as the fiber interval d f becomes narrower, and the twin peak form is possible because of the dotted line of the twin peak condition and the mold processing condition becomes a triangular area surrounded by the lens refractive index n c is not configured at 1.44 or less. However, the refractive index 1.501 of a representative glass material reliable borosilicate glass BK7, the width of the peak interval d p is capable of an optical system configuration of 103.5 ~ 106.1μm and narrow, Twin It can be seen that the peak shape can correspond to miniaturization.
 一方2ピース条件では、nが1.64以上でしかもピーク間隔も111から116μmの限られた領域でのみ可能となる。この高屈折率領域は、信頼性の点ではヤケの発生等が問題となる領域も含まれており、実用上の適用性はかなり低いと言わざるを得ず、d127μmでは、2ピース形態は極めて限られた適用しか可能でないと言える。 While in two-piece condition, n c is only possible a limited area from 1.64 or more in addition peak intervals also 111 of 116Myuemu. The high refractive index region, in terms of reliability also includes regions where occurrence of scorch is a problem, the practical applicability is forced to not give say much lower, the d f 127 [mu] m, 2-piece form Can be said to have very limited application.
 以上、2ピースとツインピーク構成を比較すると以下のことが言える。
 ・2つの主要パラメータであるレンズ屈折率nとピーク曲率半径Rを考慮した場合、ツインピーク構成の方が、2ピース構成の2~3倍程度n-R領域が広く、設計自由度が高い。
 ・ツインピーク構成の方が、より狭いファイバ間隔dにも対応でき、小型化に適している。
 ・ツインピーク構成の方が、ピーク曲率半径Rが大きい値を選択でき、レンズ径を大きくできるので、ファイバ間結合効率も高く保持できる。
 ・ツインピーク構成の方が、金型を作る際の穴の曲率半径が大きいため、作りやすい。
The following can be said by comparing the two-piece and twin peak configurations.
· Two lenses refractive index is a key parameter n c and when considering the peak radius of curvature R p, towards the twin-peak configuration, 2-3 times n c -R p region of the two-piece construction is wide, free design High degree.
- The direction of the twin-peak structure is also possible to correspond to a smaller fiber spacing d f, is suitable for miniaturization.
- The direction of the twin peaks configurations, can select the peak radius of curvature R p is a large value, since the lens diameter can be increased, fiber-to-fiber coupling efficiency can be kept high.
-The twin peak configuration is easier to make because the radius of curvature of the hole when making the mold is larger.
(第6の実施形態)
 図22に本実施形態の光学系を示す。本実施形態は、第4の実施形態において、光ファイバ11Aからの出射光と光ファイバ11Bへの入射光ビームが平凸レンズの表面、および外部において重なる場合である。これは、図19において、ファイバ間隔dが狭く、従って反射角φが小さい場合に相当する。この場合、凸面A1と凸面A2も当然重なり合い、シングルピークのレンズ凸面となる。このような構成は、部分透過膜41における透過光の波長依存性や偏波依存性を低減させるために、反射角φを小さくしようとする場合に有効である。
(Sixth embodiment)
FIG. 22 shows the optical system of this embodiment. In the fourth embodiment, the light emitted from the optical fiber 11A and the incident light beam to the optical fiber 11B are overlapped on the surface of the plano-convex lens and the outside in the fourth embodiment. This is 19, the fiber spacing d f narrow, thus corresponds to when the reflection angle φ is small. In this case, the convex surface A1 and the convex surface A2 naturally overlap and become a single-peak lens convex surface. Such a configuration is effective for reducing the reflection angle φ in order to reduce the wavelength dependency and polarization dependency of the transmitted light in the partial transmission film 41.
 本実施形態では、凸面A1及び凸面A2によってベース面21B上に形成される第1仮想円及び第2仮想円は共通の球面の一部であり、レンズ面23は鞍部A3を備えない。第1仮想円及び第2仮想円の中心間距離はゼロとなる。このように、本開示は、第1仮想円及び第2仮想円の中心間距離はゼロとなる場合も包含しうる。 In the present embodiment, the first virtual circle and the second virtual circle formed on the base surface 21B by the convex surface A1 and the convex surface A2 are part of a common spherical surface, and the lens surface 23 does not include the flange portion A3. The distance between the centers of the first virtual circle and the second virtual circle is zero. As described above, the present disclosure may include a case where the distance between the centers of the first virtual circle and the second virtual circle is zero.
 図23に、本実施形態に係るファイバアレイモジュールの構成例を示す。本実施形態では、第5の実施形態とは異なり、ファイバアレイ1が変則等ピッチとなる。これは、反射角である角度φを小さくするために、ファイバ間隔dをレンズアレイ2のレンズ間隔dの2分の1より狭めたためである。この場合、光ファイバ11A-1~4、11B-1~4のレンズ表面上でのビーム径BDに要求される条件は、図24において、レンズ表面で光ビームが隣接レンズに及ばない必要から、第3の実施形態に記載の式(31)となる。 FIG. 23 shows a configuration example of the fiber array module according to the present embodiment. In the present embodiment, unlike the fifth embodiment, the fiber array 1 has an irregular regular pitch. This is in order to reduce the angle φ is the reflection angle, because the narrowed than half of the lens distance d l of the lens array 2 to fiber distance d f. In this case, the condition required for the beam diameter BD on the lens surface of the optical fibers 11A-1 to 4 and 11B-1 to 4 is that in FIG. 24 the light beam does not reach the adjacent lens on the lens surface. The equation (31) described in the third embodiment is obtained.
(第7の実施形態)
 図25に、本実施形態に係るファイバアレイモジュールの一例を示す。図25に示すファイバアレイモジュールは、図6に示すファイバアレイモジュールと、遮光板7と、レンズアレイ9と、を備える。遮光板7は光部品として機能し、レンズアレイ9は第2レンズアレイとして機能する。
(Seventh embodiment)
FIG. 25 shows an example of a fiber array module according to this embodiment. The fiber array module shown in FIG. 25 includes the fiber array module shown in FIG. 6, a light shielding plate 7, and a lens array 9. The light shielding plate 7 functions as an optical component, and the lens array 9 functions as a second lens array.
 遮光板7は、複数の貫通孔71を有する。フィルタ部4から透過した各々の平行光が異なる貫通孔71の一端に入射する。そして、貫通孔71を通過後の平行光は各貫通孔71の他端から出射する。レンズアレイ9は、複数の貫通孔71の他端から出射した各光を貫通孔71ごとに定められた点に集光する。この点に、受光素子81の受光面が配置される。 The light shielding plate 7 has a plurality of through holes 71. Each parallel light transmitted from the filter unit 4 enters one end of a different through hole 71. Then, the parallel light after passing through the through holes 71 is emitted from the other end of each through hole 71. The lens array 9 condenses each light emitted from the other end of the plurality of through holes 71 at a point determined for each through hole 71. At this point, the light receiving surface of the light receiving element 81 is disposed.
 図26に、本実施形態に係る受光モジュールの一例を示す。図26に示す受光モジュールは、図25に示すファイバアレイモジュールと、受光素子アレイ8と、を備える。受光素子アレイ8に備わる各受光素子81は、レンズアレイ9で集光された各光を受光する。図26に示す受光モジュールは、4アレイ光タップモニタモジュールとして用いることができる。 FIG. 26 shows an example of a light receiving module according to the present embodiment. The light receiving module shown in FIG. 26 includes the fiber array module shown in FIG. 25 and the light receiving element array 8. Each light receiving element 81 provided in the light receiving element array 8 receives each light condensed by the lens array 9. The light receiving module shown in FIG. 26 can be used as a four-array optical tap monitor module.
 本実施形態の適用領域は、例えば、波長1.55μm帯光通信システムである。同モジュールは、図の左側から、ファイバアレイ1、レンズアレイ2、フィルタ部4、遮光板7、レンズアレイ9、および受光素子アレイ8を備える。ファイバ間隔dをはじめとする諸パラメータはこれまで述べてきたタイプIに即した値を採っている。 The application area of this embodiment is, for example, a wavelength 1.55 μm band optical communication system. The module includes a fiber array 1, a lens array 2, a filter unit 4, a light shielding plate 7, a lens array 9, and a light receiving element array 8 from the left side of the figure. The various parameters, including fiber spacing d f adopts the value in line with the type I described so far.
 まずモジュールの動作、機能について説明する。光ファイバ11Aからレンズアレイ2に入射した光線は、その95%がフィルタ部4での反射角である角度φで反射して光ファイバ11Bに入射し、入射光強度の5%をタップされて本線に戻る。5%強度のタップ光は、後段は空気層になっており、出射角である角度ψで出射していくわけであるが、フィルタ部4の後段には、空間を伝わるタップ光同士の混合によるクロストーク低下を防止するため、貫通孔71の空いた遮光板7が設置されている。遮光板7はレンズアレイ2と外形を合わせた寸法になっており、その中央部にタップ光路に合わせて該ビーム径の貫通孔71があいている。遮光板7の後段には、レンズアレイ2と同じものであるレンズアレイ9がレンズアレイ2とは向きを逆にして設置されている。レンズアレイ9は、貫通孔71の空間を伝搬してきて広がったタップ光ビームを受光素子81の受光面に集光させる。 First, the operation and function of the module will be explained. 95% of the light rays incident on the lens array 2 from the optical fiber 11A are reflected at an angle φ which is the reflection angle at the filter unit 4 and incident on the optical fiber 11B, and 5% of the incident light intensity is tapped to the main line. Return to. The tap light of 5% intensity is an air layer in the subsequent stage and is emitted at an angle ψ that is an emission angle. However, in the subsequent stage of the filter unit 4, the tap light transmitted through the space is mixed. In order to prevent a reduction in crosstalk, a light shielding plate 7 having a through hole 71 is provided. The light shielding plate 7 has a size that is the same as the outer shape of the lens array 2, and a through hole 71 having the beam diameter is formed in the center of the light shielding plate 7 in accordance with the tap optical path. A lens array 9, which is the same as the lens array 2, is installed in the rear stage of the light shielding plate 7 with the direction opposite to that of the lens array 2. The lens array 9 condenses the tap light beam that propagates through the space of the through hole 71 and spreads on the light receiving surface of the light receiving element 81.
 以下に上記の各構成要素について述べる。
 ファイバアレイ1:ファイバアレイ1は、8アレイの波長1.3/1.55μmシングルモードテープファイバを光ファイバ部材として用いた。これをテンパックスガラスで60度V溝板に整列させて上蓋をかぶせ、UV接着剤で固定、端面研磨して接続用ファイバアレイ1を作製した。ファイバ間隔dは用いたテープファイバと同じである。光ファイバ光軸はz方向であり、他素子との接続端面は、x軸に平行で、端面反射による戻り光を低減させるため、y軸方向とは8度斜めになるように設定されている。8度斜め端面表面は波長1.55μmに対するARコートが施されている。
The above components will be described below.
Fiber array 1: For the fiber array 1, eight arrays of wavelength 1.3 / 1.55 μm single mode tape fibers were used as optical fiber members. This was aligned with a 60-degree V-groove plate using Tempax glass, covered with an upper lid, fixed with UV adhesive, and end-face polished to produce a connecting fiber array 1. Fiber distance d f is the same as the tape fiber used. The optical fiber optical axis is in the z direction, and the connection end surface with other elements is parallel to the x axis, and is set to be inclined by 8 degrees with respect to the y axis direction in order to reduce return light due to end surface reflection. . The 8 ° oblique end surface has an AR coating for a wavelength of 1.55 μm.
 レンズアレイ2:ボロシリケート系ガラスから成っており、所定のアレイ間隔でレンズ面23が形成されている。レンズアレイ2のx方向両端部には、レンズモールド加工時に一体で成形されたスペーサ22が設置されている。スペーサ22は台形の凸部であり、その表面はファイバアレイ1の8度斜め端面に合わせて同様に8度斜めとなっている。スペーサ22の高さは例えばレンズ中心軸Acの位置で所定の凸側焦点距離fになるように設定されていることが好ましい。 Lens array 2: made of borosilicate glass, and lens surfaces 23 are formed at a predetermined array interval. Spacers 22 that are integrally formed at the time of lens molding are installed at both ends of the lens array 2 in the x direction. The spacer 22 is a trapezoidal convex part, and the surface thereof is similarly inclined by 8 degrees in accordance with the 8 degree oblique end face of the fiber array 1. The height of the spacer 22 is preferably is set to be a predetermined convex side focal length f v at the position of for example, a lens central axis Ac.
 レンズアレイ2の平坦面21Aには、角度φを2度に設定したフィルタ部4が付着されている。その反射/透過の割合は、95%/5%であることが好ましく、その材質としては、例えば、イオンビームアシスト蒸着法によるSiO-Ta多層膜が例示できる。 A filter unit 4 having an angle φ set to 2 degrees is attached to the flat surface 21A of the lens array 2. The reflection / transmission ratio is preferably 95% / 5%, and examples of the material include a SiO 2 —Ta 2 O 5 multilayer film formed by ion beam assisted deposition.
 遮光板7:遮光板7は方形の赤外線吸収ガラスから成っている。その中央部には、タップ光の光路に合わせて、xz面に平行で、z軸方向とレンズ中心入射方向との角度ψをなす貫通孔71があけられている。x方向アレイピッチはレンズアレイ2と同じである。タップ光のビームは、遮光板7の貫通孔71の壁に接触することなく伝搬するが、前段のレンズアレイ2やフィルタ部4での反射透過で発生した構造不整による乱反射成分は、この遮光板7で阻止されて、受光素子アレイ8に達してクロストークになるのを防止する。 Shading plate 7: The shading plate 7 is made of square infrared absorbing glass. In the central portion, a through hole 71 is formed in parallel with the xz plane and forming an angle ψ between the z-axis direction and the lens center incident direction in accordance with the optical path of the tap light. The x direction array pitch is the same as the lens array 2. The tap light beam propagates without contacting the wall of the through hole 71 of the light shielding plate 7, but irregular reflection components due to structural irregularities generated by reflection and transmission at the lens array 2 and the filter unit 4 in the previous stage are reflected by this light shielding plate. 7 to prevent the cross-talk from reaching the light receiving element array 8.
 レンズアレイ9:ここでは、レンズアレイ9はレンズアレイ2と同じものを使用している。しかも、ツインピークのどちらか片方だけを使っている。通常、受光素子81の受光面はパッケージ表面から離れているため、レンズアレイ9と受光素子アレイ8の間に焦点距離調整樹脂91を挿入してレンズアレイ2より長焦点化し、受光素子アレイ8中の受光素子81の受光面内に集光されるようにしている。レンズアレイ9がレンズアレイ2と向きが反対であるのは、焦点距離調整樹脂91でレンズアレイ9と受光素子アレイ8の間を満たすためである。レンズアレイ9は、平坦面21A側にのみARコートを施すことが好ましい。 Lens array 9: Here, the same lens array 9 as the lens array 2 is used. Moreover, only one of the twin peaks is used. Usually, since the light receiving surface of the light receiving element 81 is separated from the package surface, a focal length adjusting resin 91 is inserted between the lens array 9 and the light receiving element array 8 to make the lens array 2 have a longer focal length. The light is collected on the light receiving surface of the light receiving element 81. The reason why the lens array 9 is opposite to the lens array 2 is that the focal length adjusting resin 91 fills the space between the lens array 9 and the light receiving element array 8. The lens array 9 is preferably AR coated only on the flat surface 21A side.
 受光素子アレイ8:受光素子81は、例えば、4アレイのInGaAsホトダイオードアレイである。ダイオードアレイは封止されていることが好ましい。側面図から判るように、受光素子アレイ8は、z軸方向である光軸より8度傾けてレンズアレイ9に接続されている。 Light receiving element array 8: The light receiving element 81 is, for example, a four-array InGaAs photodiode array. The diode array is preferably sealed. As can be seen from the side view, the light receiving element array 8 is connected to the lens array 9 with an inclination of 8 degrees from the optical axis which is the z-axis direction.
 側面図に示すように、ファイバアレイ1から受光素子アレイ8まで接続界面が全て斜めに保たれているため、反射戻り光を防ぐ構造となっている。 As shown in the side view, since the connection interface from the fiber array 1 to the light receiving element array 8 is all kept oblique, it has a structure that prevents reflected return light.
 組み立て工程:工程は3工程を有する。
 第1工程は、ファイバアレイ1とレンズアレイ2との接続である。これは、光ファイバ導波路接続装置にて、ファイバアレイ1の両端である光ファイバ11A-1及び光ファイバ11A-4から調芯光を入射し、光ファイバ11B-1、光ファイバ11B-4からの光をモニタしながら2軸調芯固定するという通常の光ファイバ導波路接続と同様の工程で接続した。接続箇所はスペーサ22とファイバアレイ1間である。
 第2工程は、遮光板7、レンズアレイ9、および受光素子アレイ8の接続である。これらの接続は、顕微鏡下に受光素子アレイ8、レンズアレイ9、遮光板7の順に置き、遮光板7の貫通孔から受光素子81の受光面が見えるように、ビジュアルアラインメント法で調芯し、接着剤固定する。
 第3工程は、ファイバアレイ1の付いたレンズアレイ2と受光素子アレイ8とレンズアレイ9の付いた遮光板7とを、光ファイバ11A-1と、光ファイバ11A-4に調芯光を入射させ、受光素子アレイ8の出力をモニタしながら接続固定する。
Assembly process: The process has three processes.
The first step is connection between the fiber array 1 and the lens array 2. This is because the alignment light is incident from the optical fiber 11A-1 and the optical fiber 11A-4 at both ends of the fiber array 1 in the optical fiber waveguide connection device, and is transmitted from the optical fiber 11B-1 and the optical fiber 11B-4. The connection was made in the same process as the normal optical fiber waveguide connection in which the two-axis alignment was fixed while monitoring the light. The connection point is between the spacer 22 and the fiber array 1.
The second step is connection of the light shielding plate 7, the lens array 9, and the light receiving element array 8. These connections are placed in the order of the light receiving element array 8, the lens array 9, and the light shielding plate 7 under the microscope, and are aligned by a visual alignment method so that the light receiving surface of the light receiving element 81 can be seen from the through hole of the light shielding plate 7. Fix the adhesive.
In the third step, the lens array 2 with the fiber array 1, the light receiving element array 8, and the light shielding plate 7 with the lens array 9 are incident on the optical fiber 11A-1 and the optical fiber 11A-4. The connection is fixed while monitoring the output of the light receiving element array 8.
 特性:作製した4chタップモニタモジュールの波長1.55μmでの特性は、挿入損失0.4~0.5dB、反射減衰量46dB以上、受光感度50~60mA/Wであった。隣接クロストークも45dB以上であった。 Characteristics: The characteristics of the fabricated 4-channel tap monitor module at a wavelength of 1.55 μm were an insertion loss of 0.4 to 0.5 dB, a return loss of 46 dB or more, and a light receiving sensitivity of 50 to 60 mA / W. Adjacent crosstalk was also 45 dB or more.
(第8の実施形態)
 図27に、本実施形態に係るファイバアレイモジュールの一例を示す。図27に示すファイバアレイモジュールは、図18に示すファイバアレイモジュールと、遮光板7と、レンズアレイ9と、を備える。遮光板7は光部品として機能し、レンズアレイ9は第2レンズアレイとして機能する。
(Eighth embodiment)
FIG. 27 shows an example of a fiber array module according to this embodiment. The fiber array module illustrated in FIG. 27 includes the fiber array module illustrated in FIG. 18, the light shielding plate 7, and the lens array 9. The light shielding plate 7 functions as an optical component, and the lens array 9 functions as a second lens array.
 遮光板7は、複数の貫通孔71を有する。フィルタ部4から透過した各々の平行光が異なる貫通孔71の一端に入射する。そして、貫通孔71を通過後の平行光は各貫通孔71の他端から出射する。レンズアレイ9は、複数の貫通孔71の他端から出射した各光を貫通孔71ごとに定められた点に集光する。この点に、受光素子81の受光面が配置される。 The light shielding plate 7 has a plurality of through holes 71. Each parallel light transmitted from the filter unit 4 enters one end of a different through hole 71. Then, the parallel light after passing through the through holes 71 is emitted from the other end of each through hole 71. The lens array 9 condenses each light emitted from the other end of the plurality of through holes 71 at a point determined for each through hole 71. At this point, the light receiving surface of the light receiving element 81 is disposed.
 図28に、本実施形態に係る受光モジュールの一例を示す。図28に示す受光モジュールは、図27に示すファイバアレイモジュールと、受光素子アレイ8と、を備える。受光素子アレイ8に備わる各受光素子81は、レンズアレイ9で集光された各光を受光する。図28に示す受光モジュールは、4アレイ光タップモニタモジュールとして用いることができる。 FIG. 28 shows an example of the light receiving module according to the present embodiment. The light receiving module shown in FIG. 28 includes the fiber array module shown in FIG. 27 and the light receiving element array 8. Each light receiving element 81 provided in the light receiving element array 8 receives each light condensed by the lens array 9. The light receiving module shown in FIG. 28 can be used as a 4-array optical tap monitor module.
 適用領域は、波長1.55μm帯光通信システムである。同モジュールは、図の左側から、ファイバアレイ1、レンズアレイ2、フィルタ部4、遮光板7、レンズアレイ9、および受光素子アレイ8を備える。ファイバ間隔dをはじめとする諸パラメータはこれまで述べてきたタイプIIに即した値を採っている。 The application area is an optical communication system with a wavelength of 1.55 μm. The module includes a fiber array 1, a lens array 2, a filter unit 4, a light shielding plate 7, a lens array 9, and a light receiving element array 8 from the left side of the figure. The various parameters, including fiber spacing d f adopts the value in line with the type II that have been described so far.
 まずモジュールの動作、機能について説明する。光ファイバ11Aから空気層を介さず、直接レンズアレイ2に平坦面21A側から入射してレンズ面23から出射した光線は、その95%がフィルタ部4で角度φで反射して再びレンズアレイ2に戻って光ファイバ11Bに入射し、入射光強度の5%をタップされて本線に戻る。5%強度のタップ光は、後段はフィルタ部4を経て空気層になっており、角度φで出射していくわけであるが、フィルタ部4の後段には、空間を伝わるタップ光同士の混合によるクロストーク低下を防止するため、貫通孔71の空いた遮光板7が設置されている。遮光板7はレンズアレイ2と外形を合わせた寸法になっており、その中央部にタップ光路に合わせて該ビーム径の貫通孔71があいている。遮光板7の後段には、レンズアレイ2と同じものであるレンズアレイ9がレンズアレイ2とは向きを同じにして設置されている。レンズアレイ9は、空間を伝搬してきて広がったタップ光ビームを受光素子81の受光面に集光させる。 First, the operation and function of the module will be explained. 95% of the light beam directly incident on the lens array 2 from the flat surface 21A side and exits from the lens surface 23 without passing through the air layer from the optical fiber 11A is reflected by the filter unit 4 at an angle φ, and again the lens array 2 Then, the light enters the optical fiber 11B, and 5% of the incident light intensity is tapped to return to the main line. The tap light of 5% intensity is an air layer through the filter unit 4 at the subsequent stage and is emitted at an angle φ. However, the tap light transmitted through the space is mixed at the subsequent stage of the filter unit 4. In order to prevent crosstalk from being reduced, a light shielding plate 7 having a through hole 71 is provided. The light shielding plate 7 has a size that is the same as the outer shape of the lens array 2, and a through hole 71 having the beam diameter is formed in the center of the light shielding plate 7 in accordance with the tap optical path. A lens array 9, which is the same as the lens array 2, is installed behind the light shielding plate 7 with the same orientation as the lens array 2. The lens array 9 condenses the tap light beam that propagates through the space and spreads on the light receiving surface of the light receiving element 81.
 以下に上記の各構成要素について第7の実施形態と重複しないところを述べる。
 ファイバアレイ1:第7の実施形態とは異なり、8度斜め端面表面にARコートは施されていない。
 レンズアレイ2:ボロシリケート系ガラスから成っており、所定のアレイ間隔でレンズ面23がz軸のプラス方向を向いて形成されている。レンズアレイ2のx方向両端部には、スペーサ22が設置されている。スペーサ22は式(12)で与えられる空気層の厚みtとレンズサグ量を足し合わせた厚みのレンズと同じ材質の平板である。
The following will describe each of the above components that does not overlap with the seventh embodiment.
Fiber array 1: Unlike the seventh embodiment, the AR coating is not applied to the surface of the end face that is oblique by 8 degrees.
Lens array 2: It is made of borosilicate glass, and the lens surface 23 is formed in a positive direction of the z axis at a predetermined array interval. Spacers 22 are provided at both ends of the lens array 2 in the x direction. The spacer 22 is a flat plate of the same material as the lens thickness the sum of the thickness t r and Renzusagu volume of air layer given by Equation (12).
 レンズアレイ2の平坦面21Aは、ファイバアレイ1の端面PL11に平行で、y軸に対して8度斜めとなっており、この斜め平坦面21Aとレンズ面23とのレンズ中心軸Ac上の距離が凹側焦点距離fとなるように設定されている。 The flat surface 21A of the lens array 2 is parallel to the end surface PL11 of the fiber array 1 and is inclined by 8 degrees with respect to the y-axis. The distance between the oblique flat surface 21A and the lens surface 23 on the lens center axis Ac. There has been set so that concave side focal length f c.
 部分透過膜41及びガラス基板42:本構成では、部分透過膜41はレンズアレイ2とは別個の透明なガラス基板42で但し同一屈折率nを持つものとして、BK7板に付着せしめられている。両面が平行なガラス基板42上には、角度φを設定した部分透過膜41が付着せしめられている。その反射/透過割合は、95%/5%であることが好ましく、その材質としては、例えば、イオンビームアシスト蒸着法によるSiO-Ta多層膜が例示できる。 Partial transmission film 41 and the glass substrate 42: In this configuration, the partial transmission film 41 and the lens array 2 as having separate transparent glass substrate 42 is provided that the same refractive index n c, are by adhering to BK7 plate . On the glass substrate 42 whose both surfaces are parallel, a partial transmission film 41 having an angle φ is adhered. The reflection / transmission ratio is preferably 95% / 5%, and examples of the material include a SiO 2 —Ta 2 O 5 multilayer film formed by ion beam assisted deposition.
 遮光板7:遮光板7は方形の赤外線吸収ガラスから成っている。その中央部には、タップ光の光路に合わせて、xz面に平行で、z軸方向とレンズ中心入射方向との角度φの角度をなす貫通孔71があけられている。x方向アレイピッチはレンズアレイ2と同じ500μmである。タップ光のビームは、遮光板7の貫通孔71の壁に接触することなく伝搬するが、前段のレンズアレイ2や部分透過膜41での反射透過で発生した構造不整による乱反射成分は、この遮光板7で阻止されて、受光素子アレイ8に達してクロストークになるのを防止する。 Shading plate 7: The shading plate 7 is made of square infrared absorbing glass. In the central portion, a through hole 71 is formed parallel to the xz plane and having an angle φ between the z-axis direction and the lens center incident direction in accordance with the optical path of the tap light. The x-direction array pitch is 500 μm, which is the same as the lens array 2. The tap light beam propagates without contacting the wall of the through-hole 71 of the light shielding plate 7, but the irregular reflection component due to the structural irregularity generated by the reflection transmission through the lens array 2 or the partial transmission film 41 in the previous stage is blocked by this light shielding. It is blocked by the plate 7 and is prevented from reaching the light receiving element array 8 and causing crosstalk.
 側面図に示すように、ファイバアレイ1から受光素子アレイ8まで接続界面が全て斜めに保たれているため、反射戻り光を防ぐ構造となっている。 As shown in the side view, since the connection interface from the fiber array 1 to the light receiving element array 8 is all kept oblique, it has a structure that prevents reflected return light.
 組み立て工程:前記した第7の実施形態と異なる点は、第1工程にてまずレンズアレイ2と部分透過膜41を接続しておくことである。これは、部分透過膜41はただの一様な平板であるので調芯作業は不要で、型合わせ作業のみで接続できる。他は前記した第7の実施形態と同様である。 Assembly process: The difference from the seventh embodiment described above is that the lens array 2 and the partial transmission film 41 are first connected in the first process. This is because the partially permeable membrane 41 is just a flat plate, and therefore alignment work is unnecessary, and connection can be made only by mold matching work. Others are the same as those in the seventh embodiment.
 特性:作製した4chタップモニタモジュールの波長1.55μmでの特性は、挿入損失0.4~0.5dB、反射減衰量46dB以上、受光感度50~60mA/Wであった。隣接クロストークも45dB以上であった。 Characteristics: The characteristics of the fabricated 4-channel tap monitor module at a wavelength of 1.55 μm were an insertion loss of 0.4 to 0.5 dB, a return loss of 46 dB or more, and a light receiving sensitivity of 50 to 60 mA / W. Adjacent crosstalk was also 45 dB or more.
(第9の実施形態)
 前述の実施形態では1次元配列のアレイであったが、2次元アレイも可能である。その場合、図6又は図18に示すファイバアレイモジュールがy方向に並列に配列される。
(Ninth embodiment)
In the above-described embodiment, the array is a one-dimensional array, but a two-dimensional array is also possible. In that case, the fiber array modules shown in FIG. 6 or 18 are arranged in parallel in the y direction.
 その際に一番問題となるのが、ファイバアレイであるが、ファイバアレイ1は、特許文献2によってできる。そのz方向からみた接続面を図29に示す。図29に示すファイバアレイ1は、ファイバアレイ用の60度のV溝14を施したV溝板13-2~13-5を備える。V溝板13-2~13-5には、V溝14のアレイの両脇に、上下位置合わせ用V溝15-1、15-2が設けられている。そして、このV溝板13-2~13-5の裏面にも表面側と同じx方向位置に位置合わせ溝15-3、15-4が形成されている。位置合わせ用光ファイバ12は、図に示す光ファイバ11A、11Bと同じものを使用すればよい。 At that time, the most serious problem is the fiber array. The connection surface seen from the z direction is shown in FIG. The fiber array 1 shown in FIG. 29 includes V-groove plates 13-2 to 13-5 having 60-degree V-grooves 14 for the fiber array. The V-groove plates 13-2 to 13-5 are provided with V-grooves 15-1 and 15-2 for vertical alignment on both sides of the V-groove 14 array. Alignment grooves 15-3 and 15-4 are formed on the back surfaces of the V-groove plates 13-2 to 13-5 at the same position in the x direction as the front surface side. The alignment optical fiber 12 may be the same as the optical fibers 11A and 11B shown in the figure.
 その場合、V溝14の開口幅をW14、位置合わせ溝15の開口幅W15とすると、それらは
(数18)
 W14=2(R√3-d/√3)  (18)
(数19)
 W15=(2R-d)/√3    (19)
と設定すればよい。そうすれば、位置合わせ溝15に丁度位置合わせ用光ファイバ12が勘合したときに、上板によって導波用光ファイバ11が上板で押さえられることになる。ここで、Rは光ファイバの半径、dはV溝板13-2~13-5と上板の距離である。
In that case, assuming that the opening width of the V-groove 14 is W 14 and the opening width W 15 of the alignment groove 15 is (Equation 18)
W 14 = 2 (R√3-d / √3) (18)
(Equation 19)
W 15 = (2R−d) / √3 (19)
Should be set. Then, when the alignment optical fiber 12 is just fitted into the alignment groove 15, the waveguide optical fiber 11 is pressed by the upper plate by the upper plate. Here, R is the radius of the optical fiber, and d is the distance between the V-groove plates 13-2 to 13-5 and the upper plate.
 位置合わせ溝15-1,15-2,15-3,15-4は、V溝板の表裏でx方向位置が一致している必要があるが、表裏の位置合わせは、スライサーやダイシングソーなどの溝加工装置において、溝形成位置観察鏡筒の上下ピント合わせ軸の加工面に対する垂直度を事前に調整しておけばよい。 The alignment grooves 15-1, 15-2, 15-3, and 15-4 must have the same position in the x direction on the front and back of the V-groove plate. In this groove processing apparatus, the perpendicularity of the upper and lower focusing axes of the groove formation position observation lens barrel to the processing surface may be adjusted in advance.
 ここで、ファイバアレイ1は、図30の側面図に示すように、光ファイバコア付近だけの部分斜め加工を施すことが好ましい。もし、アレイの端面全面にわたって斜めにすると、レンズアレイ2以下後段のすべての部品の2次元アレイ化が格段に困難になるためである。加工にはデュアルヘッドダイシングソーを用いることができる。これは、ダイシングヘッドを縦列に二機備えているものであり、1回の工程で異なる2種のブレードを用いて連続加工できる装置である。 Here, as shown in the side view of FIG. 30, the fiber array 1 is preferably subjected to partial oblique processing only in the vicinity of the optical fiber core. This is because, if the entire surface of the end face of the array is inclined, it is extremely difficult to make all the components after the lens array 2 and subsequent stages into a two-dimensional array. A dual head dicing saw can be used for processing. This is a device that is equipped with two dicing heads in tandem and can be continuously processed using two different blades in one process.
 ファイバアレイ1以外のレンズアレイ2,9や遮光板7、および受光素子アレイ8の2Dアレイ化も行い、4×4アレイである。作製した4×4タップモニタモジュールの側面図を図30に示す。外観は、上面図は図26と全く同様であり、側面図では、y方向に積み重ねられたような形態となっている。 The lens arrays 2 and 9 other than the fiber array 1, the light shielding plate 7, and the light receiving element array 8 are also made into a 2D array, which is a 4 × 4 array. A side view of the produced 4 × 4 tap monitor module is shown in FIG. As for the external appearance, the top view is exactly the same as FIG. 26, and the side view has a form of being stacked in the y direction.
 ここまでの説明では、便宜上レンズ光軸Aとファイバ光軸で成る平面Pは平行としていた。しかし、ファイバ端面が反射防止のために本開示の説明図のように斜めに設定されている場合、タイプIでは、ファイバアレイ1とレンズアレイ2間でx軸に平行な軸周りのあおり調整を行うことが望ましい。 In the description so far, the plane P C consisting convenience lens optical axis A C and the fiber optical axis was parallel. However, when the fiber end face is set obliquely as shown in the explanatory diagram of the present disclosure to prevent reflection, in type I, the tilt adjustment around the axis parallel to the x axis is performed between the fiber array 1 and the lens array 2. It is desirable to do.
(本開示の効果)
 以上述べたように、レンズ表面を本開示で述べたようにツインピーク化することによって、レンズ中心軸からオフセットした入出力構造でも、2か所のピーク位置を入力位置と出力位置の2か所それぞれに合わせて最適化できるため、高効率な光結合が実現できる。また、小型化、集積化されても、作用面でのレンズ口径を大きく保つことが可能であり、小型化に向いている。平凸構造なので、両凸レンズのような表裏両面位置合わせのような作業が不要で、片面モールド工程で容易にアレイ化したものが量産できるという利点もある。平凸レンズの平坦面21A側は、直接前後段の素子を接続できるのでその点でも小型な光モジュールを構成することができる。これらのことから、光通信用デバイスの経済化に資すること大であるのは明らかである。
(Effects of the present disclosure)
As described above, the lens surface is twin-peaked as described in the present disclosure, so that the two peak positions can be divided into the input position and the output position even in the input / output structure offset from the lens center axis. Since it can be optimized for each, high-efficiency optical coupling can be realized. In addition, even if the device is miniaturized and integrated, the lens aperture on the working surface can be kept large, which is suitable for miniaturization. Since it has a plano-convex structure, there is an advantage that it is not necessary to perform front / rear double-sided positioning work such as a biconvex lens and mass production can be easily performed in a single-sided molding process. Since the flat surface 21A side of the plano-convex lens can directly connect front and rear elements, a small optical module can also be configured in this respect. From these facts, it is clear that it contributes greatly to the economics of optical communication devices.
 本開示は情報通信産業に適用することができる。 This disclosure can be applied to the information and communication industry.
1、10:ファイバアレイ
11、11A、11A-1、11A-2、11A-3、11A-4、11A-11、11A-12、11A-13、11A-14、11A-21、11A-31、11A-41、11B、11B-1、11B-2、11B-3、11B-4、11B-11、11B-12、11B-13、11B-14、11B-21、11B-31、11B-41:光ファイバ
12-1、12-2:位置合わせ用光ファイバ
13-1、13-2、13-3、13-4、13-5:V溝板
14:V溝
15-1、15-2、15-3、15-4:位置合わせ溝
2、9:レンズアレイ
20:平凸レンズ
21:平坦基板
21A:平坦面
21B:ベース面
22:スペーサ
23:レンズ面
3:空気層
4:フィルタ部
41:部分透過膜
42:ガラス基板
7:遮光板
71:貫通孔
8:受光素子アレイ
81:受光素子
91:焦点距離調整樹脂
1, 10: Fiber arrays 11, 11A, 11A-1, 11A-2, 11A-3, 11A-4, 11A-11, 11A-12, 11A-13, 11A-14, 11A-21, 11A-31, 11A-41, 11B, 11B-1, 11B-2, 11B-3, 11B-4, 11B-11, 11B-12, 11B-13, 11B-14, 11B-21, 11B-31, 11B-41: Optical fibers 12-1, 12-2: Positioning optical fibers 13-1, 13-2, 13-3, 13-4, 13-5: V groove plate 14: V grooves 15-1, 15-2, 15-3, 15-4: Alignment grooves 2, 9: Lens array 20: Plano-convex lens 21: Flat substrate 21A: Flat surface 21B: Base surface 22: Spacer 23: Lens surface 3: Air layer 4: Filter unit 41: Partially permeable membrane 42: glass Substrate 7: shielding plate 71: through hole 8: photodetector array 81: light receiving elements 91: the focal length adjusting resin

Claims (8)

  1.  平坦面及びレンズ面を備える平凸レンズであって、
     前記レンズ面は、平坦なベース面上に配置された、球面形状を有する第1凸面及び第2凸面を備え、
     前記第1凸面によって前記ベース面上に形成される第1仮想円の直径、及び、前記第2凸面によって前記ベース面上に形成される第2仮想円の直径が、前記第1仮想円及び前記第2仮想円の中心間距離よりも大きい、
     平凸レンズ。
    A plano-convex lens having a flat surface and a lens surface,
    The lens surface includes a first convex surface and a second convex surface having a spherical shape disposed on a flat base surface,
    The diameter of the first virtual circle formed on the base surface by the first convex surface and the diameter of the second virtual circle formed on the base surface by the second convex surface are the first virtual circle and the Greater than the center-to-center distance of the second virtual circle,
    Plano-convex lens.
  2.  前記第1凸面と前記第2凸面との間に、前記第1凸面及び前記第2凸面の境界における形状変化を緩和する鞍部をさらに備える、
     請求項1に記載の平凸レンズ。
    Further comprising a ridge between the first convex surface and the second convex surface to relieve a shape change at a boundary between the first convex surface and the second convex surface,
    The plano-convex lens according to claim 1.
  3.  前記第1凸面及び前記第2凸面は、それぞれ、前記第1凸面の頂点及び前記第1仮想円の中心を通る第1の直線と前記第2凸面の頂点及び前記第2仮想円の中心を通る第2の直線の2本の直線を含む所定平面内の第1の位置及び第2の位置から出射された光を平行光にし、
     前記第1凸面から入射された平行光が前記平坦面に配置された反射面で反射された場合、前記第2凸面が当該平行光を前記第2の位置に集光する、
     請求項1又は2に記載の平凸レンズ。
    The first convex surface and the second convex surface pass through the first straight line passing through the vertex of the first convex surface and the center of the first virtual circle, and the vertex of the second convex surface and the center of the second virtual circle, respectively. The light emitted from the first position and the second position in a predetermined plane including the two straight lines of the second straight line is converted into parallel light,
    When the parallel light incident from the first convex surface is reflected by the reflective surface disposed on the flat surface, the second convex surface condenses the parallel light at the second position;
    The plano-convex lens according to claim 1 or 2.
  4.  前記第1凸面及び前記第2凸面は、それぞれ、前記第1凸面の頂点及び前記第1仮想円の中心を通る第1の直線と前記第2凸面の頂点及び前記第2仮想円の中心を通る第2の直線の2本の直線を含む所定平面内の第1の位置及び第2の位置から前記平坦面に入射された光を平行光にしかつ前記第1の位置及び前記第2の位置から予め定められた所定距離に前記第1の直線及び前記第2の直線に垂直な反射面の一点に集光するように出射し、
     前記第1凸面から出射された平行光が前記一点で反射された場合、前記第2凸面が当該平行光を前記第2の位置に集光する、
     請求項1又は2に記載の平凸レンズ。
    The first convex surface and the second convex surface pass through the first straight line passing through the vertex of the first convex surface and the center of the first virtual circle, and the vertex of the second convex surface and the center of the second virtual circle, respectively. From the first position and the second position, the light incident on the flat surface from the first position and the second position in a predetermined plane including two straight lines of the second straight line is converted into parallel light. The light is emitted so as to be condensed at one point on the reflecting surface perpendicular to the first straight line and the second straight line at a predetermined distance.
    When the parallel light emitted from the first convex surface is reflected at the one point, the second convex surface condenses the parallel light at the second position.
    The plano-convex lens according to claim 1 or 2.
  5.  前記反射面に、前記第1凸面から入射された平行光の一部を透過し、前記平行光の一部を前記第2凸面に反射するフィルタ部が設けられている、
     請求項3又は4に記載の平凸レンズ。
    A filter portion that transmits a part of the parallel light incident from the first convex surface and reflects a part of the parallel light to the second convex surface is provided on the reflective surface.
    The plano-convex lens according to claim 3 or 4.
  6.  請求項1から5のいずれかに記載の複数の平凸レンズを有し、複数の前記第1凸面及び前記第2凸面が共通の前記ベース面上に配列されている第1レンズアレイと、
     各々の前記平凸レンズに対して2本の光ファイバを有し、各光ファイバの端面が各々の前記平凸レンズの前記第1の位置又は前記第2の位置に配置されているファイバアレイと、
     を備えるファイバアレイモジュール。
    A first lens array comprising a plurality of plano-convex lenses according to claim 1, wherein a plurality of the first convex surfaces and the second convex surfaces are arranged on the common base surface;
    A fiber array having two optical fibers for each plano-convex lens, and an end face of each optical fiber being disposed at the first position or the second position of each plano-convex lens;
    A fiber array module comprising:
  7.  請求項6に記載のファイバアレイモジュールと、
     前記反射面から透過された平行光を透過する複数の貫通孔を有し、前記反射面から透過された各々の前記平行光が異なる前記貫通孔の一端に入射され、前記貫通孔を通過後の平行光を各貫通孔の他端から出射する光部品と、
     前記複数の貫通孔の前記他端から出射された各光を前記貫通孔ごとに定められた点に集光する第2レンズアレイと、
     を備えるファイバアレイモジュール。
    The fiber array module according to claim 6,
    A plurality of through-holes that transmit the parallel light transmitted from the reflective surface; each parallel light transmitted from the reflective surface is incident on one end of the different through-hole, and after passing through the through-hole; An optical component that emits parallel light from the other end of each through hole; and
    A second lens array for condensing each light emitted from the other end of the plurality of through holes at a point determined for each through hole;
    A fiber array module comprising:
  8.  請求項7に記載のファイバアレイモジュールと、
     前記第2レンズアレイで集光された各光を受光する受光素子アレイと、
    を備える受光モジュール。
    A fiber array module according to claim 7,
    A light receiving element array for receiving each light condensed by the second lens array;
    A light receiving module comprising:
PCT/JP2018/014672 2017-04-14 2018-04-06 Plano-convex lens, fiber array module and light receiving module WO2018190254A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107112696A TW201843484A (en) 2017-04-14 2018-04-13 A plano-convex lens, fiber array module and optical receiving module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-080887 2017-04-14
JP2017080887A JP2018182108A (en) 2017-04-14 2017-04-14 Plano-convex lens, fiber array module and light receiving module

Publications (1)

Publication Number Publication Date
WO2018190254A1 true WO2018190254A1 (en) 2018-10-18

Family

ID=63792590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014672 WO2018190254A1 (en) 2017-04-14 2018-04-06 Plano-convex lens, fiber array module and light receiving module

Country Status (3)

Country Link
JP (1) JP2018182108A (en)
TW (1) TW201843484A (en)
WO (1) WO2018190254A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285841A (en) * 2020-02-14 2021-01-29 谷歌有限责任公司 Aperture for reducing dynamic crosstalk and stray light control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176788B1 (en) 2021-06-02 2022-11-22 サンテック株式会社 Optical device, optical device manufacturing method, and optical device chip manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138262A (en) * 1997-07-16 1999-02-12 Sumitomo Electric Ind Ltd Optical multiplexing/demultiplexing device
JP2001168376A (en) * 1999-12-03 2001-06-22 Matsushita Electronics Industry Corp Infrared data communication module
JP2005043762A (en) * 2003-07-24 2005-02-17 Sumitomo Electric Ind Ltd Optical power monitor device
JP2009093131A (en) * 2007-10-11 2009-04-30 Global Fiber Optics:Kk Array type tap photodiode module and its manufacturing method
WO2015093442A1 (en) * 2013-12-16 2015-06-25 京セラ株式会社 Light receiving/emitting element module and sensor device using same
US20150277209A1 (en) * 2013-03-15 2015-10-01 Luminit Llc Two-dimensional Planar Lightwave Circuit Integrated Spatial Filter Array and Method of Use Thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138262A (en) * 1997-07-16 1999-02-12 Sumitomo Electric Ind Ltd Optical multiplexing/demultiplexing device
JP2001168376A (en) * 1999-12-03 2001-06-22 Matsushita Electronics Industry Corp Infrared data communication module
JP2005043762A (en) * 2003-07-24 2005-02-17 Sumitomo Electric Ind Ltd Optical power monitor device
JP2009093131A (en) * 2007-10-11 2009-04-30 Global Fiber Optics:Kk Array type tap photodiode module and its manufacturing method
US20150277209A1 (en) * 2013-03-15 2015-10-01 Luminit Llc Two-dimensional Planar Lightwave Circuit Integrated Spatial Filter Array and Method of Use Thereof
WO2015093442A1 (en) * 2013-12-16 2015-06-25 京セラ株式会社 Light receiving/emitting element module and sensor device using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285841A (en) * 2020-02-14 2021-01-29 谷歌有限责任公司 Aperture for reducing dynamic crosstalk and stray light control
EP3865922A1 (en) * 2020-02-14 2021-08-18 Google LLC Apertures for reduced dynamic crosstalk and stray light control
US11561345B2 (en) 2020-02-14 2023-01-24 Google Llc Apertures for reduced dynamic crosstalk and stray light control
TWI817055B (en) * 2020-02-14 2023-10-01 美商谷歌有限責任公司 Collimator lens assembly, a system of transmitting information through a fiber optic data port, and a method of the same

Also Published As

Publication number Publication date
TW201843484A (en) 2018-12-16
JP2018182108A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
CN110045468B (en) Single-fiber bidirectional optical coupling assembly
JP5831403B2 (en) Coupling optical system and coupling method
EP0234369B1 (en) Optical branching filter
JP6395357B2 (en) Optical module
JP2010505133A (en) Optical module and manufacturing method thereof
US7114232B2 (en) Collimator and spectrophotometer
KR20030027781A (en) Aspherical rod lens and method of manufacturing aspherical rod lens
WO2018190254A1 (en) Plano-convex lens, fiber array module and light receiving module
US7577328B2 (en) Optical reflector, optical system and optical multiplexer/demultiplexer device
JP5758657B2 (en) Lens array and optical module having the same
JP6359848B2 (en) Optical receptacle and optical module having the same
JP2018036637A (en) Lens array, fiber ray module and light reception module
JP5790428B2 (en) Coupling optics, fiber optics
JP2017049613A (en) Lens array and optical module provided with the same
US10459169B2 (en) Dispersion-compensative optical assembly
WO2018042936A1 (en) Plano-convex lens, fiber array module, and light reception module
JP2008203546A (en) Lens assembly and optical module using the same
JP2003107276A (en) Optical fiber collimator, lens for optical fiber collimator and optical coupling parts
JP2005024617A (en) Optical transmitter
JP2017161578A (en) Optical receptacle and optical module
JP2018036635A (en) Optical component, fiber array module, light-receiving module, and method for manufacturing optical component
JP7028490B1 (en) Optical connection parts and optical parts
JP4416129B2 (en) Optical fiber with a lens having a high refractive index layer formed at the tip, and an optical coupling module using the optical fiber with a lens
JP2009258154A (en) Optical transmission module and manufacturing method therefor
JP2007271676A (en) Fiber type optical path, fiber type component and optical module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784704

Country of ref document: EP

Kind code of ref document: A1