WO2013031563A1 - Coupling structure for multicore fiber - Google Patents

Coupling structure for multicore fiber Download PDF

Info

Publication number
WO2013031563A1
WO2013031563A1 PCT/JP2012/070957 JP2012070957W WO2013031563A1 WO 2013031563 A1 WO2013031563 A1 WO 2013031563A1 JP 2012070957 W JP2012070957 W JP 2012070957W WO 2013031563 A1 WO2013031563 A1 WO 2013031563A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
core
optical system
core fiber
light sources
Prior art date
Application number
PCT/JP2012/070957
Other languages
French (fr)
Japanese (ja)
Inventor
史生 長井
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2013031563A1 publication Critical patent/WO2013031563A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details

Definitions

  • Embodiments of the present invention relate to a coupling structure for coupling an optical element used for optical communication or the like and a multi-core fiber.
  • a multi-core fiber that is an optical fiber in which a plurality of cores are provided in one clad can be used (see Patent Documents 1 and 2). Since the multi-core fiber has a plurality of cores, it is possible to perform large-capacity data communication compared to the single-core fiber.
  • such a multi-core fiber may be used by being optically coupled with, for example, a fiber bundle in which a plurality of single-core fibers are bundled, a light emitting element such as a laser diode, or a light receiving element such as a photodiode. is there.
  • a light emitting element such as a laser diode
  • a light receiving element such as a photodiode.
  • all or part of the multi-core fiber, the fiber bundle, the light emitting element, and the light receiving element may be referred to as “optical element”.
  • the cores When connecting multi-core fibers having the same number of cores, the cores can be reliably connected by aligning the multi-core fibers. Therefore, it is difficult to cause coupling loss, and high coupling efficiency can be achieved.
  • the present invention solves the above-described problems, and an object of the present invention is to provide a coupling structure that can suppress a decrease in coupling efficiency when a multi-core fiber and another optical element are coupled.
  • a multi-core fiber coupling structure includes an optical element, a multi-core fiber, and a coupling optical system.
  • the optical element is any one of a plurality of light sources, a plurality of light receiving elements, and a fiber bundle obtained by bundling a plurality of single core fibers.
  • a multi-core fiber a plurality of cores are covered with a clad.
  • the coupling optical system is disposed between the optical element and the multicore fiber, and optically couples the optical element and the multicore fiber.
  • the coupling optical system includes a reflecting element and an imaging optical system.
  • the reflection element has a reflection surface that reflects light emitted from an emission-side element that is one of an optical element and a multi-core fiber.
  • the imaging optical system causes the light reflected by the reflecting element to enter the other incident side element.
  • the multi-core fiber coupling structure according to claim 2 is the multi-core fiber coupling structure according to claim 1, wherein the output side element or the incident side element includes a plurality of light sources or a plurality of light sources.
  • the multi-core fiber coupling structure according to claim 3 is the multi-core fiber coupling structure according to claim 1 or 2, wherein the reflecting element has two or more reflecting surfaces. It is formed of at least one member.
  • the coupling structure of the multi-core fiber of Claim 4 is a coupling structure of the multi-core fiber of Claim 3, Comprising: A reflective surface is the light radiate
  • the multi-core fiber coupling structure according to claim 5 is the multi-core fiber coupling structure according to claim 3, wherein the reflecting surface is formed in a stepped shape.
  • the multi-core fiber coupling structure according to claim 6 is the multi-core fiber coupling structure according to any one of claims 1 to 5, wherein the imaging optical system includes a plurality of imaging optical systems. The microlenses are arranged in an array.
  • the multi-core fiber coupling structure according to claim 7 is the multi-core fiber coupling structure according to any one of claims 1 to 6, wherein the coupling optical system is a relay lens optical system. Has a system. The relay lens optical system guides the light emitted from the emission side element to the imaging optical system. By moving any of the exit side element, the entrance side element, the relay lens optical system, and the reflection element, the position of the exit side element and the entrance side element can be adjusted.
  • each of the plurality of lights emitted from the emission side element can be guided to the corresponding incident side element via the reflection element. Therefore, the interval between the optical elements can be made wider than the interval between the plurality of cores of the multi-core fiber, and the arrangement can be simplified. This makes it less susceptible to physical interference between optical elements due to the size of the optical elements, and heat and electrical noise generated by the optical elements. That is, when the multi-core fiber 1 and another optical element are coupled, a decrease in coupling efficiency can be suppressed.
  • FIG. 1 is a perspective view of the multi-core fiber 1. In FIG. 1, only the tip portion of the multi-core fiber 1 is shown.
  • the multi-core fiber 1 is made of a material having a high light transmittance such as quartz glass or plastic.
  • the core C k is a transmission path for transmitting light from the light source D k (described later).
  • the core C k is made of a material in which germanium oxide (GeO 2 ) is added to, for example, quartz glass.
  • FIG. 1 shows a configuration having seven cores C 1 to C 7 , the number of cores C k may be at least two.
  • FIG. 1 shows a configuration in which the cores C 2 to C 7 are arranged on a concentric circle with the core C 1 as the center. However, the configuration is not limited to this as long as the core has at least two cores C k. Any arrangement is possible.
  • the clad 2 is a member that covers the plurality of cores Ck .
  • the clad 2 has a role of confining light from the light source D k (described later) in the core C k .
  • the clad 2 has an end face 2a.
  • the end surface Ek of the core Ck and the end surface 2a of the clad 2 form the same surface (the end surface 1b of the multicore fiber 1).
  • the cladding 2 material a low refractive index material is used than the core C k material.
  • quartz glass is used as the material of the clad 2.
  • the refractive index of the core C k higher than the refractive index of the cladding 2
  • the light from the light source D k (described later) is totally reflected at the boundary surface between the core C k and the cladding 2. Therefore, light can be transmitted in the core Ck .
  • FIG. 2 is a sectional view in the axial direction of the coupling optical system 10, the light source Dk, and the multi-core fiber 1.
  • FIG. 3 is a diagram of the coupling optical system 10 viewed from the direction of arrow A in FIG.
  • Coupling optics 10 is arranged between the light source D k and a multi-core fiber 1, coupling the light source D k and multi-core fiber 1 optically.
  • the coupling optical system 10 includes a relay lens system 11, a reflection element 12, a support member 13, and an imaging optical system 14.
  • the relay lens system 11 has a function of guiding the light emitted from the light source Dk to the imaging optical system 14 (via the reflection element 12).
  • the number of relay lens systems 11 is equal to the number of the light sources Dk (seven in this embodiment).
  • the relay lens system 11 includes two convex lenses 11a and 11b. By the convex lenses 11a and 11b, the light from the light source Dk is guided to the imaging optical system 14 in a condensed state (via the reflection element 12).
  • the relay lens system 11 is an example of a “relay lens optical system”.
  • the relay lens system 11 corresponding to the light source D 1 is configured to direct directly to the imaging optical system 14 in a state of being focused light from the light source D 1.
  • the relay lens system 11 is not limited to a condensing optical system using the convex lenses 11a and 11b.
  • a collimating optical system that collimates light emitted from the light source Dk may be used.
  • the reflection element 12 is an element that reflects the light guided from the light source Dk via the relay lens system 11 toward the imaging optical system 14.
  • the reflection element 12 is configured by, for example, a mirror or a prism.
  • the reflection element 12 has a reflection surface 12 a that reflects the light guided by the relay lens system 11.
  • the number of reflection elements 12 provided varies depending on the arrangement of the plurality of light sources Dk .
  • the light source D 1 is arranged on the optical axis of the core C 1 as in the present embodiment, six reflecting elements 12 are provided so as to correspond to the other light sources D 2 to D 7 .
  • the reflecting surface 12a has a predetermined angle with respect to the optical axis of the corresponding core Ck . This angle is determined by the arrangement of the light source D k , the core C k (multi-core fiber 1), and the imaging optical system 14. In the present embodiment, since the cores C 2 to C 7 are arranged on concentric circles centered on C 1 , the angles of the reflecting surfaces 12a are equal. On the other hand, when the core C k is not concentric, or when the core C k is arranged on a plurality of concentric circles having different diameters, the reflecting surface 12a is formed at different angles depending on the arrangement of the corresponding core C k. .
  • the support member 13 is a plate-like member that supports at least two of the plurality of light sources D k (corresponding relay lens system 11 and reflection element 12).
  • the light sources D 2 to D 7 , the corresponding relay lens system 11 and the reflecting element 12 are supported by the support member 13.
  • the plurality of light sources D k (D 2 to D 7 ) have an interval p (a distance between light emitting ends of adjacent light sources D k (see FIG. 3)), and in this embodiment, each of the light sources D 2 to D 7 .
  • the intervals are assumed to be equal) so as to be wider than the interval P between the plurality of cores C k of the multi-core fiber 1 (the distance between the optical axes of adjacent cores C k (see FIG.
  • the hole 13a for passing the light from the light source D 1 is provided.
  • the light source D 1 is supported at a predetermined position (on the optical axis of the core C 1 ) by a member different from the support member 13.
  • the light source Dk supported by the support member 13 is arranged on the same plane.
  • a plurality of light sources D k corresponding relay lens system 11 and reflecting element 12
  • the positions of the light source D k , relay lens system 11 and reflecting element 12 in advance. Adjustments can be made. Therefore, the assembly of the coupling optical system 10 is facilitated (that is, the coupling between the multicore fiber 1 and the light source Dk is facilitated).
  • interval p between each light source Dk wider it is also possible to support each light source Dk with a different support member.
  • the multi-core fiber 1, the light source D k , the relay lens system 11, and the reflection element 12 perpendicular to the optical axis direction of the light source D k (or the optical axis direction of the multi-core fiber 1). is there.
  • the position of the light from the light source D k can be individually adjusted with respect to the core C k of the multi-core fiber 1. Thereby, the coupling efficiency can be improved.
  • the imaging optical system 14 has a function of condensing the light reflected by the reflecting element 12 and making it incident on the corresponding core C k .
  • a single convex lens is disposed as the imaging optical system 14.
  • the imaging optical system 14 also has a function of condensing light directly guided from the light source D 1 and causing the light to enter the core C 1 of the multicore fiber 1.
  • the plurality of light sources Dk in the present embodiment is an example of “emission-side element”.
  • the multi-core fiber 1 in the present embodiment is an example of an “incident side element”.
  • the emitted light is incident on the corresponding relay lens system 11 while being diffused.
  • the incident light is collected by the relay lens system 11 and emitted to the reflecting element 12.
  • the light from the light source D 1 is directly by the relay lens system 11, is guided to the imaging optical system 14.
  • Each light emitted from the relay lens system 11 corresponding to the plurality of light sources D 2 to D 7 is reflected by the reflecting surface 12 a of the corresponding reflecting element 12 and guided to the imaging optical system 14.
  • Each of the light reflected by the reflecting surface 12a is collected by the imaging optical system 14 and enters the corresponding cores C 2 to C 7 .
  • a fiber bundle (not shown) composed of a plurality of single core fibers is disposed between the plurality of light sources D k and the relay lens system 11, and the light from the plurality of light sources D k is indirectly guided to the multi-core fiber 1. It is also possible. In this case, the interval between the plurality of single core fibers (the distance between the optical axes of adjacent single core fibers) is arranged to be wider than the interval P between the plurality of cores C k of the multicore fiber 1.
  • a fiber bundle (a plurality of single core fibers) is an example of an “outgoing element”.
  • the multi-core fiber 1 is an example of an “emission side element”.
  • the light receiving element or the fiber bundle is an example of the “incident side element”.
  • the imaging optical system 14 has a function of guiding each light from the core C k of the multi-core fiber 1 to the corresponding reflecting element 12. That is, here, the imaging optical system 14 corresponds to a “relay lens optical system”.
  • the relay lens system 11 has a function of condensing the light reflected by the reflecting element 12 onto a light receiving element or a single core fiber forming a fiber bundle. That is, here, the relay lens system 11 corresponds to the “imaging optical system”.
  • the coupling structure of the multicore fiber 1 includes an optical element, the multicore fiber 1, and a coupling optical system 10.
  • the optical element includes any one of a plurality of light sources D k , a plurality of light receiving elements, and a fiber bundle obtained by bundling a plurality of single core fibers.
  • a plurality of cores C k are covered with a clad 2.
  • the coupling optical system 10 is disposed between the optical element and the multicore fiber 1, and optically couples the optical element and the multicore fiber 1.
  • the coupling optical system 10 includes a reflective element 12 and an imaging optical system 14.
  • the reflection element 12 has a reflection surface 12 a that reflects light emitted from the emission-side element that is one of the optical element and the multi-core fiber 1.
  • the imaging optical system 14 causes the light reflected by the reflecting element 12 to enter the other incident side element.
  • the light emitted from the emission side element (for example, the plurality of light sources D k ) can be guided to the corresponding incident side element (for example, the core C k of the multicore fiber 1) via the reflection element 12. Therefore, it is possible to widely than the interval P between the plurality of cores C k intervals (e.g. spacing p between a plurality of light sources D k) of the multi-core fiber 1 between the optical elements.
  • the optical element according to the size of the optical element e.g. a light source D k
  • it is not causing a decrease in coupling efficiency due to the influence of heat and electric noise which the optical element (e.g. a light source D k) emitted. That is, when the multi-core fiber 1 and another optical element are coupled, a decrease in coupling efficiency can be suppressed.
  • the outgoing side elements or entrance side element comprises a plurality of light sources D k or the plurality of light receiving elements, at least two of the plurality of light sources D k or the plurality of light receiving elements, on the same plane Has been placed.
  • the configuration can be simplified. Further, the position adjustment of the light source D k , the relay lens system 11 and the reflection element 12 can be performed before the multi-core fiber 1 and the optical element are coupled. Therefore, assembly of the coupling optical system 10 is facilitated.
  • the coupling optical system 10 has a relay lens optical system (relay lens system 11).
  • the relay lens optical system guides the light emitted from the emission side element to the imaging optical system 14. Then, by moving any of the exit side element, the entrance side element, the relay lens optical system, and the reflection element, it is possible to adjust the position of the exit side element and the entrance side element.
  • the coupling efficiency can be improved.
  • FIG. 4 is a sectional view in the axial direction of the coupling optical system 10, the light source Dk, and the multi-core fiber 1. As shown in FIG. FIG. 4 shows only three light sources (D 1 , D 2 , D 5 ) corresponding to the three cores (C 1 , C 2 , C 5 ) of the multi-core fiber 1.
  • Microlens M k is provided by the number equal to the cores C k of the multi-core fiber 1.
  • microlenses M 1 to M 7 corresponding to the cores C 1 to C 7 are provided (in FIG. 4, the micro lenses M 1 and M 2 corresponding to the cores C 1 , C 2 , and C 5 are provided. , it shows only the M 5).
  • the plurality of microlenses Mk are arranged in an array. Each microlens Mk is installed such that its center is located on the optical axis of the corresponding core Ck .
  • the microlens M k as the imaging optical system 14, the light from the light source D k or the like can be reliably guided to the core C k (or the light from the core C k can be reliably transmitted). Can be guided to a light receiving element). Therefore, the coupling efficiency can be improved when the multi-core fiber 1 and another optical element are coupled.
  • FIG. 5 is a perspective view of the reflecting member 15.
  • the configuration in which the six reflecting elements 12 corresponding to the light sources D 2 to D 7 are individually provided has been described.
  • a reflecting member 15 in which a plurality of reflecting elements 12 are integrated is an example of a “reflection element”.
  • the reflecting member 15 has a plurality of reflecting surfaces 15a corresponding to the arrangement of the optical elements (for example, the light source D k ).
  • the reflecting surface 15 a reflects light from the optical element (for example, the light source D k ) and guides it to the imaging optical system 14.
  • six reflecting surfaces 15a corresponding to the light sources D 2 to D 7 are provided.
  • the reflecting member 15 is provided with a flat surface 15b. Plane 15b is configured to transmit light from the light source D 1.
  • the reflective member 15 which integrated the six reflective elements 12 was demonstrated here, the structure which provides the two reflective members 15 which integrated the three reflective elements 12 may be sufficient, for example. That is, a plurality of reflecting members having two or more reflecting surfaces can be provided.
  • the plane 15b portion may be provided with a hole for passing light from the light source D 1. In that case, light from the light source D 1 is not affected by the refractive index of the reflecting member 15 has. Therefore, it is possible to improve the coupling efficiency at the time of entering the corresponding core C 1.
  • the reflecting element 12 is formed of one member, the light emitted from the emitting side element (for example, the plurality of light sources D k ) is converted into the corresponding incident side element (for example, the core C of the multicore fiber 1). k ). Therefore, it is possible to widely than the interval P between the plurality of cores C k intervals (e.g. spacing p between a plurality of light sources D k) of the multi-core fiber 1 between the optical elements. In this case, and the physical interference between the optical element according to the size of the optical element (e.g. a light source D k), it is not causing a decrease in coupling efficiency due to the influence of heat and electric noise which the optical element (e.g.
  • a light source D k a light source emitted. That is, when the multi-core fiber 1 and another optical element are coupled, a decrease in coupling efficiency can be suppressed. Furthermore, it is not necessary to individually adjust a plurality of reflective elements by forming the reflective elements from a single member. Therefore, it is easy to adjust the position of the reflective element. In addition, since the reflective element is formed of a single member, the coupling optical system can be reduced in size.
  • FIG. 6 is a cross-sectional view in the axial direction of the coupling optical system 20, the light source D k and the multi-core fiber 1.
  • Coupling optics 20 is disposed between the light source D k and a multi-core fiber 1, coupling the light source D k and multi-core fiber 1 optically.
  • the coupling optical system 20 includes a relay lens system 21, a reflecting member 22, and an imaging optical system 24.
  • the relay lens system 21 has a function of guiding the light emitted from the light source Dk to the imaging optical system 24 (via the reflection member 22). As many relay lens systems 21 as the number of the light sources Dk are provided.
  • the relay lens system 21 includes one collimating lens. By the collimating lens, the light from the light source Dk is guided to the imaging optical system 24 in a collimated state (via the reflecting element 12).
  • the relay lens system 21 is an example of a “relay lens optical system”. Incidentally, the relay lens system 21 corresponding to the light source D 1 is configured to direct directly to the imaging optical system 24 in a state where the light was collimated from the light source D 1.
  • the relay lens system 21 is not limited to a collimating optical system using a collimating lens.
  • a condensing optical system using a plurality of convex lenses may be used.
  • the reflecting member 22 is one member that reflects the light guided from the light source Dk via the relay lens system 21 toward the imaging optical system 24.
  • the reflecting member 22 is formed with a plurality of reflecting surfaces 22 a that reflect the light guided by the relay lens system 21.
  • the reflection member 22 in the present embodiment is an example of a “reflection element”.
  • Each reflection surface 22a, of the light emitted from the light source D k, so as to reflect at least two light is obliquely set with respect to the traveling direction of the plurality of the light emitted from the light source D k.
  • the reflection surface 22 a located on the lower side in FIG. 6 reflects light from the light sources D 3 and D 5 toward the imaging optical system 24.
  • the reflecting surface 22a, the structure of the core C k e.g., rotationally symmetric structure or conformation around the optical axis of the core C 1 is installed so as to correspond to.
  • the positioning of the light source D k is made.
  • the number of reflection surfaces 22a of the reflection member 22 is different depending on the arrangement of the plurality of light sources Dk and the number of lights reflected by one reflection surface 22a. For example, when two light beams are reflected by one reflecting surface 22a, the reflecting surface 22a only needs to be provided by half the number of light sources Dk .
  • the light source D 1 is arranged on the optical axis of the core C 1 as in the present embodiment, the light from the light source D 1 passes through the reflecting member 22 and is guided to the imaging optical system 24. Accordingly, the reflecting surface 22a is may be provided by half of the number of other light sources D k except light source D 1.
  • the reflecting surface 22a has a predetermined angle with respect to the optical axis of the corresponding core C k. This angle is determined by the arrangement of the light source D k , the core C k (multi-core fiber 1), and the imaging optical system 24. That is, the angle of each reflecting surface 22a may be equal or different.
  • the central portion of the reflecting member 22 may be provided with a hole for passing light from the light source D 1.
  • the light from the light source D 1 is not affected by the refractive index of the base material of the reflecting member 22. Therefore, it is possible to improve the coupling efficiency at the time of entering the corresponding core C 1.
  • the multi-core fiber 1, the light source D k , the relay lens system 21, and the reflecting member 22 perpendicular to the optical axis direction of the light source D k (or the optical axis direction of the multi-core fiber 1). is there.
  • the position of the light from the light source D k can be individually adjusted with respect to the core C k of the multi-core fiber 1. Thereby, the coupling efficiency can be improved.
  • the imaging optical system 24 has a function of condensing the light reflected by the reflecting member 22 and making it incident on the corresponding core Ck .
  • the number of micro lenses M k equals the number of cores C k are arranged in an array.
  • the microlens M 1 also has a function of condensing light directly guided from the light source D 1 and causing the light to enter the core C 1 of the multicore fiber 1.
  • the plurality of light sources Dk in the present embodiment is an example of “emission-side element”.
  • the multi-core fiber 1 in the present embodiment is an example of an “incident side element”.
  • light is emitted from each of the plurality of light sources D 1 to D 5 .
  • the emitted light is incident on the corresponding relay lens system 21 while being diffused.
  • the incident light is collimated by the relay lens system 21 and emitted to the reflecting member 22.
  • the light from the light source D 1 is directly by the relay lens system 21 is guided to the imaging optical system 24.
  • Each light emitted from the relay lens system 21 corresponding to the plurality of light sources D 2 to D 5 is reflected by the reflecting surface 22 a of the reflecting member 22 and guided to the imaging optical system 24.
  • the light emitted from the light sources D 3 and D 5 is reflected by one reflecting surface 22a and guided to the corresponding microlenses M 3 and M 5 .
  • Each light reflected by the reflection surface 22a is condensed by the imaging optical system 24, incident on the corresponding core C k.
  • the light condensed by the microlens M 3, M 5 is incident on the core C 3, C 5 corresponding.
  • a fiber bundle (not shown) made up of a plurality of single core fibers is arranged between the plurality of light sources Dk and the relay lens system 21, and the light from the plurality of light sources Dk is indirectly guided to the multicore fiber 1. It is also possible. In this case, the interval between the plurality of single core fibers is arranged to be wider than the interval P between the plurality of cores C k of the multicore fiber 1.
  • a fiber bundle (a plurality of single core fibers) is an example of an “outgoing element”.
  • the multi-core fiber 1 is an example of an “emission side element”.
  • the light receiving element or the fiber bundle is an example of the “incident side element”.
  • the imaging optical system 24 has a function of guiding each light from the core C k of the multi-core fiber 1 to the reflecting member 22 (reflecting surface 22a). That is, here, the imaging optical system 24 corresponds to a “relay lens optical system”.
  • the relay lens system 21 has a function of condensing the light reflected by the reflecting member 22 (reflecting surface 22a) onto a light receiving element or a single core fiber forming a fiber bundle. That is, here, the relay lens system 21 corresponds to the “imaging optical system”.
  • the reflecting surface 22a of the reflecting element (reflecting member 22) is arranged so as to reflect at least two lights out of the light emitted from the emitting side element (for example, the plurality of light sources D k ) from the emitting side element. It is inclined with respect to the traveling direction of the emitted light.
  • the reflection element is formed of one member and at least two lights are reflected by one reflection surface 22a, the light emitted from the emission side element (for example, a plurality of light sources D k ) it can be guided to the corresponding incident side element (e.g. core C k of the multicore fiber 1). Therefore, it is possible to widely than the interval P between the plurality of cores C k intervals (e.g. spacing p between a plurality of light sources D k) of the multi-core fiber 1 between the optical elements. In this case, and the physical interference between the optical element according to the size of the optical element (e.g.
  • the configuration can be simplified and the position of the reflective element can be easily adjusted.
  • the light source in the optical axis and symmetrical position of the core C 1 e.g., D2 and D3, D4 and D5
  • FIG. 7 is a cross-sectional view in the axial direction of the coupling optical system 20 ′, the light source D k, and the multi-core fiber 1.
  • FIG. 7 is a cross-sectional view in the axial direction of the coupling optical system 20 ′, the light source D k, and the multi-core fiber 1.
  • Coupling optics 20 ' is positioned between the light source D k and a multi-core fiber 1, coupling the light source D k and multi-core fiber 1 optically.
  • the coupling optical system 20 ′ includes a relay lens system 21, a reflecting member 25, and an imaging optical system 24. Since the relay lens system 21 and the imaging optical system 24 have the same configuration as in the second embodiment, detailed description thereof is omitted.
  • the reflecting member 25 is one member that reflects the light guided from the light source Dk via the relay lens system 21 toward the imaging optical system 24.
  • the reflecting member 25 is formed with a plurality of reflecting surfaces 25 a that reflect the light guided by the relay lens system 21.
  • the reflecting member 25 in the present embodiment is an example of a “reflecting element”.
  • Each reflecting surface 25a is formed in a step shape. In the present embodiment, three steps are formed on one reflecting surface 25a. That is, four reflecting regions 251a to 254a are formed on one reflecting surface 25a.
  • the reflection regions 251a to 254a reflect the light emitted from the light source Dk toward the imaging optical system 24.
  • each of the reflection regions 251a to 254a located on the lower side in FIG. 7 receives light from the light sources D 3 , D 5 , D 7 , and D 9 and corresponding microlenses M 3 , M 5 , M 7 , and M 9. Reflect towards.
  • the reflecting surface 25a the structure of the core C k (e.g., rotationally symmetric structure or conformation around the optical axis of the core C 1) is installed so as to correspond to.
  • the number of reflection surfaces 25a of the reflection member 25 varies depending on the arrangement of the plurality of light sources Dk and the number of steps provided on one reflection surface 25a.
  • the light source D 1 is arranged on the optical axis of the core C 1 as in the present embodiment, the light from the light source D 1 passes through the reflecting member 25 and is guided to the imaging optical system 24.
  • the reflecting surface 25a is may be provided by a quarter of the number of other light sources D k except light source D 1.
  • the reflection surface 25a (each reflection region) has a predetermined angle with respect to the optical axis of the corresponding core Ck . This angle is determined by the arrangement of the light source D k , the core C k (multi-core fiber 1), and the imaging optical system 24. That is, the angle of each reflecting surface 25a may be equal or different.
  • the reflecting member 25 may be provided with a hole for passing light from the light source D 1.
  • light from the light source D 1 is not affected by the base material the refractive index of the reflecting member 25. Therefore, it is possible to improve the coupling efficiency at the time of entering the corresponding core C 1.
  • the multi-core fiber 1, the light source D k , the relay lens system 21, and the reflection member 25 perpendicularly to the optical axis direction of the light source D k (or the optical axis direction of the multi-core fiber 1). is there.
  • the position of the light from the light source D k can be individually adjusted with respect to the core C k of the multi-core fiber 1. Thereby, the coupling efficiency can be improved.
  • the plurality of light sources Dk in the present embodiment is an example of “emission-side element”.
  • the multi-core fiber 1 in the present embodiment is an example of an “incident side element”.
  • light is emitted from each of the plurality of light sources D 1 to D 9 .
  • the emitted light is incident on the corresponding relay lens system 21 while being diffused.
  • the incident light is collimated by the relay lens system 21 and emitted to the reflecting member 25.
  • the light from the light source D 1 is directly by the relay lens system 21 is guided to the imaging optical system 24.
  • Each light emitted from the relay lens system 21 corresponding to the plurality of light sources D 2 to D 9 is reflected by the reflection regions 251 a to 254 a formed on the reflection surface 25 a of the reflection member 25 and guided to the imaging optical system 24. It is burned.
  • light emitted from the light sources D 3 , D 5 , D 7 , and D 9 is reflected by the reflection regions 251a to 254a and guided to the corresponding microlenses M 3 , M 5 , M 7 , and M 9 .
  • Each light reflected by the reflecting region 251a ⁇ 254a is condensed by the imaging optical system 24, incident on the corresponding core C k.
  • the light condensed by the microlens M 3, M 5, M 7 , M 9 is incident on the corresponding core C 3, C 5, C 7 , C 9.
  • a fiber bundle (not shown) made up of a plurality of single core fibers is arranged between the plurality of light sources Dk and the relay lens system 21, and the light from the plurality of light sources Dk is indirectly guided to the multicore fiber 1. It is also possible. In this case, the interval between the plurality of single core fibers is arranged to be wider than the interval P between the plurality of cores C k of the multicore fiber 1.
  • a fiber bundle (a plurality of single core fibers) is an example of an “outgoing element”.
  • the multi-core fiber 1 is an example of an “emission side element”.
  • the light receiving element or the fiber bundle is an example of the “incident side element”.
  • the imaging optical system 24 has a function of guiding each light from the core C k of the multi-core fiber 1 to the reflecting member 25 (reflecting surface 25a). That is, here, the imaging optical system 24 corresponds to a “relay lens optical system”.
  • the relay lens system 21 has a function of condensing the light reflected by the reflecting member 25 (reflecting surface 25a) onto a light receiving element or a single core fiber forming a fiber bundle. That is, here, the relay lens system 21 corresponds to the “imaging optical system”.
  • the reflection surface 25a of the reflection element (reflection member 25) according to the present embodiment is formed in a step shape (reflection regions 251a to 254a).
  • the reflection element is formed of one member and the light is reflected by the step-like reflection surface 25a, the light emitted from the emission side element (for example, the plurality of light sources D k ) is handled.
  • the incident side element for example, the core C k of the multi-core fiber 1
  • the interval P between the plurality of cores C k intervals e.g. spacing p between a plurality of light sources D k
  • the physical interference between the optical element according to the size of the optical element e.g.
  • the interval ⁇ between the optical axes of the light emitted from the emission side elements (for example, the plurality of light sources D k ) is set between the optical axes of the light reflected by the reflection surface 25a. It can be made wider than the interval ⁇ ′. That is, since the interval between the optical elements (for example, the interval p between the plurality of light sources Dk ) can be widened, the optical element corresponding to one reflection surface 25a can be formed on the same surface. Therefore, the configuration can be simplified and the position of the optical element can be easily adjusted.
  • the configuration can be simplified and the position of the optical element can be easily adjusted.
  • the distance p between the light sources Dk is described as being equal between the light sources, but the distance p between the light sources Dk is different depending on the arrangement of the cores Ck of the multi-core fiber 1 or the like. May be.
  • the first embodiment may be the distance the light source D 3 between the light source D 2 and the light source D 3 and the spacing between the light source D 4 are different.
  • the interval p between the light sources Dk only needs to be at least wider than the interval between the corresponding cores Ck .
  • the optical axis distance ⁇ of the light from the light source D k may be equal to or greater than the optical axis distance ⁇ ′ of the reflected light.
  • the light from the light source D 1 is reflected may be provided with a reflecting surface to be incident on the core C 1 of the multi-core fiber 1.
  • This reflective surface may be formed integrally with the reflective element.

Abstract

The purpose of the present invention is to provide a coupling structure capable of minimizing the decrease in coupling efficiency when a multicore fiber is connected to other optical elements. The coupling structure for a multicore fiber has an optical element, a multicore fiber and an optical coupling system. The optical element is either one of a plurality of light sources, a plurality of light-receiving elements, or a bundle of a plurality of single core fibers. The optical coupling system optically couples the optical element to the multicore fiber. The distances among a plurality of light sources (distances among a plurality of light-receiving elements, the distances among a plurality of single core fibers) are larger than the distances among a plurality of cores in a multicore fiber. The optical coupling system has a reflector element and an optical imaging system. The reflector element has a reflection surface for reflecting light emitted from an emission side element. The optical imaging system guides the light reflected by the reflection element to enter an incidence side element.

Description

マルチコアファイバの結合構造Multi-core fiber coupling structure
 本発明の実施形態は、光通信等に用いられる光学素子とマルチコアファイバとを結合させる結合構造に関する。 Embodiments of the present invention relate to a coupling structure for coupling an optical element used for optical communication or the like and a multi-core fiber.
 スマートフォンやタブレット端末等の普及により、莫大な情報量を有するデータの通信が要求されている。それに伴い、光通信の更なる大容量化が望まれている。 With the spread of smartphones and tablet terminals, data communication with a huge amount of information is required. Accordingly, further increase in capacity of optical communication is desired.
 従来の光通信は、クラッド内に一つのコアが設けられたシングルコアファイバを用いて行われている。しかし、一つのシングルコアファイバで通信を行う場合には容量の限界があるため、それを超える容量のデータ通信を行うための手段が要求されている。 Conventional optical communication is performed using a single core fiber in which one core is provided in a clad. However, since there is a capacity limit when communication is performed using one single core fiber, means for performing data communication with a capacity exceeding that is required.
 これに関し、たとえば、一つのクラッド内に複数のコアが設けられた光ファイバであるマルチコアファイバを用いることができる(特許文献1、2参照)。マルチコアファイバは複数のコアを有するため、シングルコアファイバに比べ、大容量のデータ通信を行うことが可能となる。 In this regard, for example, a multi-core fiber that is an optical fiber in which a plurality of cores are provided in one clad can be used (see Patent Documents 1 and 2). Since the multi-core fiber has a plurality of cores, it is possible to perform large-capacity data communication compared to the single-core fiber.
 光通信においては、このようなマルチコアファイバを、たとえば、シングルコアファイバを複数本束ねたファイバ束や、レーザーダイオード等の発光素子、フォトダイオード等の受光素子と光学的に結合させて使用する場合がある。以下、マルチコアファイバ、ファイバ束、発光素子及び受光素子の全て或いは一部を「光学素子」という場合がある。 In optical communication, such a multi-core fiber may be used by being optically coupled with, for example, a fiber bundle in which a plurality of single-core fibers are bundled, a light emitting element such as a laser diode, or a light receiving element such as a photodiode. is there. Hereinafter, all or part of the multi-core fiber, the fiber bundle, the light emitting element, and the light receiving element may be referred to as “optical element”.
特開平10-104443号公報JP-A-10-104443 特開平8-119656号公報JP-A-8-119656
 ここで、マルチコアファイバと他の光学素子とを光学的に結合する際には、結合効率の確保が問題となる。 Here, when optically coupling the multi-core fiber and other optical elements, securing the coupling efficiency becomes a problem.
 同じコア数のマルチコアファイバ同士を結合する場合、マルチコアファイバ同士の位置合わせを行うことで、コア同士を確実に結合することができる。従って、結合損失を生じ難く、高い結合効率を達成することができる。 When connecting multi-core fibers having the same number of cores, the cores can be reliably connected by aligning the multi-core fibers. Therefore, it is difficult to cause coupling loss, and high coupling efficiency can be achieved.
 一方、マルチコアファイバと他の光学素子とを結合する場合には、結合効率が低下するという問題がある。たとえば、マルチコアファイバの各コアに対応する数の発光素子や受光素子を設ける場合、各コアの間隔は非常に狭いため、対応する発光素子や受光素子を近接して配置する必要がある(特許文献1参照)。 On the other hand, when the multi-core fiber and another optical element are coupled, there is a problem that coupling efficiency is lowered. For example, when the number of light emitting elements and light receiving elements corresponding to each core of a multi-core fiber is provided, the intervals between the cores are very narrow, and thus the corresponding light emitting elements and light receiving elements must be arranged close to each other (Patent Document 1).
 しかし、その場合には、光学素子のサイズによる光学素子同士の物理的干渉や、光学素子が発する熱や電気ノイズの影響により結合効率の低下を招くという問題がある。 However, in this case, there is a problem in that the coupling efficiency is reduced due to physical interference between the optical elements due to the size of the optical elements and the influence of heat and electrical noise generated by the optical elements.
 この発明は上記の問題点を解決するものであり、マルチコアファイバと他の光学素子とを結合する際に、結合効率の低下を抑制可能な結合構造を提供することを目的とする。 The present invention solves the above-described problems, and an object of the present invention is to provide a coupling structure that can suppress a decrease in coupling efficiency when a multi-core fiber and another optical element are coupled.
 上記課題を解決するために、請求項1記載のマルチコアファイバの結合構造は、光学素子と、マルチコアファイバと、結合光学系とを有する。光学素子は、複数の光源、複数の受光素子、及び複数のシングルコアファイバを束ねたファイバ束のうちのいずれかである。マルチコアファイバは、複数のコアがクラッドで覆われている。結合光学系は、光学素子及びマルチコアファイバの間に配置され、光学素子とマルチコアファイバとを光学的に結合する。複数の光源間の間隔、複数の受光素子間の間隔及び複数のシングルコアファイバ間の間隔のうちいずれかが、マルチコアファイバの複数のコア間の間隔より広くなるよう配置されている。結合光学系は、反射素子と、結像光学系とを有する。反射素子は、光学素子及びマルチコアファイバの一方からなる出射側素子から出射した光を反射させる反射面を有する。結像光学系は、反射素子で反射された光を他方からなる入射側素子に入射させる。
 また、上記課題を解決するために、請求項2記載のマルチコアファイバの結合構造は、請求項1記載のマルチコアファイバの結合構造であって、出射側素子又は入射側素子が、複数の光源又は複数の受光素子からなる場合、複数の光源又は複数の受光素子のうち少なくとも2つは、同一平面上に配置されている。
 また、上記課題を解決するために、請求項3記載のマルチコアファイバの結合構造は、請求項1又は2記載のマルチコアファイバの結合構造であって、反射素子は、2つ以上の反射面を有する少なくとも一の部材により形成されている。
 また、上記課題を解決するために、請求項4記載のマルチコアファイバの結合構造は、請求項3記載のマルチコアファイバの結合構造であって、反射面は、出射側素子から出射した光のうち、少なくとも2つの光を反射させるよう、出射側素子から出射した複数の光の進行方向に対して斜設されている。
 また、上記課題を解決するために、請求項5記載のマルチコアファイバの結合構造は、請求項3記載のマルチコアファイバの結合構造であって、反射面は、段差状に形成されている。
 また、上記課題を解決するために、請求項6記載のマルチコアファイバの結合構造は、請求項1から5のいずれかに記載のマルチコアファイバの結合構造であって、結像光学系は、複数のマイクロレンズがアレイ状に配置された構成である。
 また、上記課題を解決するために、請求項7記載のマルチコアファイバの結合構造は、請求項1から6のいずれかに記載のマルチコアファイバの結合構造であって、結合光学系は、リレーレンズ光学系を有する。リレーレンズ光学系は、出射側素子から出射した光を結像光学系に導く。出射側素子、入射側素子、リレーレンズ光学系及び反射素子のいずれかを移動させることにより出射側素子と入射側素子との位置調整が可能となる。
In order to solve the above problems, a multi-core fiber coupling structure according to claim 1 includes an optical element, a multi-core fiber, and a coupling optical system. The optical element is any one of a plurality of light sources, a plurality of light receiving elements, and a fiber bundle obtained by bundling a plurality of single core fibers. In a multi-core fiber, a plurality of cores are covered with a clad. The coupling optical system is disposed between the optical element and the multicore fiber, and optically couples the optical element and the multicore fiber. Any one of the interval between the plurality of light sources, the interval between the plurality of light receiving elements, and the interval between the plurality of single core fibers is arranged to be wider than the interval between the plurality of cores of the multicore fiber. The coupling optical system includes a reflecting element and an imaging optical system. The reflection element has a reflection surface that reflects light emitted from an emission-side element that is one of an optical element and a multi-core fiber. The imaging optical system causes the light reflected by the reflecting element to enter the other incident side element.
In order to solve the above problem, the multi-core fiber coupling structure according to claim 2 is the multi-core fiber coupling structure according to claim 1, wherein the output side element or the incident side element includes a plurality of light sources or a plurality of light sources. In the case of the light receiving elements, at least two of the plurality of light sources or the plurality of light receiving elements are arranged on the same plane.
In order to solve the above problem, the multi-core fiber coupling structure according to claim 3 is the multi-core fiber coupling structure according to claim 1 or 2, wherein the reflecting element has two or more reflecting surfaces. It is formed of at least one member.
Moreover, in order to solve the said subject, the coupling structure of the multi-core fiber of Claim 4 is a coupling structure of the multi-core fiber of Claim 3, Comprising: A reflective surface is the light radiate | emitted from the output side element. It is inclined with respect to the traveling direction of the plurality of lights emitted from the emission side element so as to reflect at least two lights.
In order to solve the above-mentioned problem, the multi-core fiber coupling structure according to claim 5 is the multi-core fiber coupling structure according to claim 3, wherein the reflecting surface is formed in a stepped shape.
In order to solve the above problem, the multi-core fiber coupling structure according to claim 6 is the multi-core fiber coupling structure according to any one of claims 1 to 5, wherein the imaging optical system includes a plurality of imaging optical systems. The microlenses are arranged in an array.
In order to solve the above problem, the multi-core fiber coupling structure according to claim 7 is the multi-core fiber coupling structure according to any one of claims 1 to 6, wherein the coupling optical system is a relay lens optical system. Has a system. The relay lens optical system guides the light emitted from the emission side element to the imaging optical system. By moving any of the exit side element, the entrance side element, the relay lens optical system, and the reflection element, the position of the exit side element and the entrance side element can be adjusted.
 このように、反射素子を介して、出射側素子から出射した複数の光それぞれを、対応する入射側素子に導くことができる。よって、光学素子間の間隔をマルチコアファイバの複数のコア間の間隔より広くでき、且つ配置を簡素化することができる。これにより、光学素子のサイズによる光学素子同士の物理的干渉や、光学素子が発する熱や電気ノイズの影響を受けにくくなる。すなわち、マルチコアファイバ1と他の光学素子とを結合する際に、結合効率の低下を抑制することができる。 Thus, each of the plurality of lights emitted from the emission side element can be guided to the corresponding incident side element via the reflection element. Therefore, the interval between the optical elements can be made wider than the interval between the plurality of cores of the multi-core fiber, and the arrangement can be simplified. This makes it less susceptible to physical interference between optical elements due to the size of the optical elements, and heat and electrical noise generated by the optical elements. That is, when the multi-core fiber 1 and another optical element are coupled, a decrease in coupling efficiency can be suppressed.
実施形態に共通のマルチコアファイバを示す図である。It is a figure which shows the multi-core fiber common to embodiment. 第1実施形態に係る結合構造を示す図である。It is a figure which shows the coupling structure which concerns on 1st Embodiment. 第1実施形態に係る結合光学系を示す図である。It is a figure which shows the coupling optical system which concerns on 1st Embodiment. 第1実施形態の変形例に係る結合構造を示す図である。It is a figure which shows the coupling structure which concerns on the modification of 1st Embodiment. 第1実施形態の変形例に係る結合光学系を示す図である。It is a figure which shows the coupling optical system which concerns on the modification of 1st Embodiment. 第2実施形態に係る結合構造を示す図である。It is a figure which shows the coupling structure which concerns on 2nd Embodiment. 第3実施形態に係る結合構造を示す図である。It is a figure which shows the coupling structure which concerns on 3rd Embodiment.
[マルチコアファイバの構成]
 図1を参照して、実施形態に共通のマルチコアファイバ1の構成について説明する。マルチコアファイバ1は、一般に可撓性を有する長尺の円柱部材である。図1は、マルチコアファイバ1の斜視図である。図1では、マルチコアファイバ1の先端部分のみを示している。
[Configuration of multi-core fiber]
With reference to FIG. 1, the structure of the multi-core fiber 1 common to embodiment is demonstrated. The multi-core fiber 1 is generally a long cylindrical member having flexibility. FIG. 1 is a perspective view of the multi-core fiber 1. In FIG. 1, only the tip portion of the multi-core fiber 1 is shown.
 マルチコアファイバ1は、たとえば石英ガラスやプラスチック等、光の透過性が高い素材により形成されている。マルチコアファイバ1は、複数のコアC(k=1~n)と、クラッド2を含んで構成されている。 The multi-core fiber 1 is made of a material having a high light transmittance such as quartz glass or plastic. The multicore fiber 1 includes a plurality of cores C k (k = 1 to n) and a clad 2.
 コアCは、光源D(後述)からの光を伝送する伝送路である。コアCはそれぞれ端面E(k=1~n)を有する。端面Eからは、光源D(後述)で発せられた光が出射される。クラッド2よりも屈折率を高めるために、コアCは、たとえば石英ガラスに酸化ゲルマニウム(GeO)が添加された素材により形成されている。なお、図1では7つのコアC~Cを有する構成を示したが、コアCの数は少なくとも2つ以上であればよい。また、図1ではコアCを中心とする同心円上にコアC~Cが配置されている構成を示したが、少なくとも2つ以上のコアCを有していれば、これに限らず任意の配置が可能である。 The core C k is a transmission path for transmitting light from the light source D k (described later). Each of the cores C k has an end face E k (k = 1 to n). Light emitted from a light source D k (described later) is emitted from the end surface E k . In order to increase the refractive index as compared with the clad 2, the core C k is made of a material in which germanium oxide (GeO 2 ) is added to, for example, quartz glass. Although FIG. 1 shows a configuration having seven cores C 1 to C 7 , the number of cores C k may be at least two. FIG. 1 shows a configuration in which the cores C 2 to C 7 are arranged on a concentric circle with the core C 1 as the center. However, the configuration is not limited to this as long as the core has at least two cores C k. Any arrangement is possible.
 クラッド2は、複数のコアCを覆う部材である。クラッド2は、光源D(後述)からの光をコアC内に閉じ込める役割を有する。クラッド2は端面2aを有する。コアCの端面E及びクラッド2の端面2aは同一面(マルチコアファイバ1の端面1b)を形成している。クラッド2の素材としては、コアCの素材よりも屈折率が低い素材が用いられる。たとえば、コアCの素材が石英ガラスと酸化ゲルマニウムからなる場合には、クラッド2の素材としては石英ガラスを用いる。このように、コアCの屈折率をクラッド2の屈折率よりも高くすることで、光源D(後述)からの光をコアCとクラッド2の境界面で全反射させる。よって、コアC内に光を伝送させることができる。 The clad 2 is a member that covers the plurality of cores Ck . The clad 2 has a role of confining light from the light source D k (described later) in the core C k . The clad 2 has an end face 2a. The end surface Ek of the core Ck and the end surface 2a of the clad 2 form the same surface (the end surface 1b of the multicore fiber 1). The cladding 2 material, a low refractive index material is used than the core C k material. For example, when the material of the core C k is made of quartz glass and germanium oxide, quartz glass is used as the material of the clad 2. Thus, by making the refractive index of the core C k higher than the refractive index of the cladding 2, the light from the light source D k (described later) is totally reflected at the boundary surface between the core C k and the cladding 2. Therefore, light can be transmitted in the core Ck .
<第1実施形態>
 次に、図2及び図3を参照して、第1実施形態に係るマルチコアファイバ1の結合構造について説明する。本実施形態では、複数の光源D(k=1~n)とマルチコアファイバ1とを、結合光学系10により結合する構造について述べる。光源Dは、結合するマルチコアファイバ1のコア数(本実施形態では7つ)と等しい数(本実施形態では7個)設けられている。複数の光源Dと複数のコアCとは一対一に対応付けられている。すなわち、ある光源D(たとえば、D)からの光は対応するコアC(たとえば、C)に導かれるようになっている。図2は、結合光学系10、光源D及びマルチコアファイバ1の軸方向の断面図である。図2では、マルチコアファイバ1の3つのコア(C、C、C)、及び対応する3個の光源(D、D、D)のみを示している。図3は、図2の矢印A方向から結合光学系10を見た図である。
<First Embodiment>
Next, with reference to FIG.2 and FIG.3, the coupling structure of the multi-core fiber 1 which concerns on 1st Embodiment is demonstrated. In the present embodiment, a structure in which a plurality of light sources D k (k = 1 to n) and a multi-core fiber 1 are coupled by a coupling optical system 10 will be described. The number of the light sources D k (seven in the present embodiment) equal to the number of cores of the multi-core fibers 1 to be coupled (seven in the present embodiment) is provided. The plurality of light sources D k and the plurality of cores C k are associated one-to-one. That is, there is a light source D k (e.g., D 1) Light from is adapted to be guided to the corresponding core C k (e.g., C 1). FIG. 2 is a sectional view in the axial direction of the coupling optical system 10, the light source Dk, and the multi-core fiber 1. FIG. In FIG. 2, only the three cores (C 1 , C 2 , C 5 ) of the multi-core fiber 1 and the corresponding three light sources (D 1 , D 2 , D 5 ) are shown. FIG. 3 is a diagram of the coupling optical system 10 viewed from the direction of arrow A in FIG.
[結合光学系の構成]
 結合光学系10は、光源D及びマルチコアファイバ1の間に配置され、光源Dとマルチコアファイバ1とを光学的に結合する。結合光学系10は、リレーレンズ系11と、反射素子12と、支持部材13と、結像光学系14とを含んで構成されている。
[Configuration of coupling optical system]
Coupling optics 10 is arranged between the light source D k and a multi-core fiber 1, coupling the light source D k and multi-core fiber 1 optically. The coupling optical system 10 includes a relay lens system 11, a reflection element 12, a support member 13, and an imaging optical system 14.
 リレーレンズ系11は、光源Dから出射された光を(反射素子12を介して)結像光学系14に導く機能を有している。リレーレンズ系11は、光源Dと等しい数だけ設けられている(本実施形態では7つ)。リレーレンズ系11は、2枚の凸レンズ11a、11bを含んで構成されている。凸レンズ11a、11bにより、光源Dからの光は集光された状態で(反射素子12を介して)結像光学系14に導かれる。リレーレンズ系11は、「リレーレンズ光学系」の一例である。なお、光源Dに対応するリレーレンズ系11は、光源Dからの光を集光させた状態で結像光学系14に直接導くよう構成されている。 The relay lens system 11 has a function of guiding the light emitted from the light source Dk to the imaging optical system 14 (via the reflection element 12). The number of relay lens systems 11 is equal to the number of the light sources Dk (seven in this embodiment). The relay lens system 11 includes two convex lenses 11a and 11b. By the convex lenses 11a and 11b, the light from the light source Dk is guided to the imaging optical system 14 in a condensed state (via the reflection element 12). The relay lens system 11 is an example of a “relay lens optical system”. Incidentally, the relay lens system 11 corresponding to the light source D 1 is configured to direct directly to the imaging optical system 14 in a state of being focused light from the light source D 1.
 リレーレンズ系11は、凸レンズ11a、11bを用いた集光光学系に限られない。たとえば、光源Dから出射された光をコリメートさせるコリメート光学系であってもよい。 The relay lens system 11 is not limited to a condensing optical system using the convex lenses 11a and 11b. For example, a collimating optical system that collimates light emitted from the light source Dk may be used.
 反射素子12は、リレーレンズ系11を介して光源Dから導かれた光を結像光学系14に向けて反射させる素子である。反射素子12は、たとえばミラーやプリズムにより構成されている。反射素子12は、リレーレンズ系11により導かれた光を反射させる反射面12aを有している。 The reflection element 12 is an element that reflects the light guided from the light source Dk via the relay lens system 11 toward the imaging optical system 14. The reflection element 12 is configured by, for example, a mirror or a prism. The reflection element 12 has a reflection surface 12 a that reflects the light guided by the relay lens system 11.
 反射素子12は、複数の光源Dの配置により設けられる個数が異なる。たとえば、本実施形態のようにコアCの光軸上に光源Dを配置する場合、反射素子12は、他の光源D~Dのそれぞれに対応するように6個設けられる。 The number of reflection elements 12 provided varies depending on the arrangement of the plurality of light sources Dk . For example, when the light source D 1 is arranged on the optical axis of the core C 1 as in the present embodiment, six reflecting elements 12 are provided so as to correspond to the other light sources D 2 to D 7 .
 反射面12aは、対応するコアCの光軸に対して所定の角度を有している。この角度は、光源D、コアC(マルチコアファイバ1)及び結像光学系14の配置により決定される。本実施形態において、コアC~Cは、Cを中心とする同心円上に配置されているため、各反射面12aの角度は等しくなっている。一方、コアCが同心円状にない場合や、コアCが径の異なる複数の同心円上に配置されている場合、反射面12aは対応するコアCの配置により、異なる角度で形成される。 The reflecting surface 12a has a predetermined angle with respect to the optical axis of the corresponding core Ck . This angle is determined by the arrangement of the light source D k , the core C k (multi-core fiber 1), and the imaging optical system 14. In the present embodiment, since the cores C 2 to C 7 are arranged on concentric circles centered on C 1 , the angles of the reflecting surfaces 12a are equal. On the other hand, when the core C k is not concentric, or when the core C k is arranged on a plurality of concentric circles having different diameters, the reflecting surface 12a is formed at different angles depending on the arrangement of the corresponding core C k. .
 支持部材13は、複数の光源D(対応するリレーレンズ系11及び反射素子12)のうち少なくとも2つを支持する板状部材である。本実施形態では、図3に示すように、光源D~D、対応するリレーレンズ系11及び反射素子12が支持部材13により支持されている。複数の光源D(D~D)は、その間隔p(隣り合う光源Dにおける光の出射端間の距離(図3参照)、本実施形態では、光源D~Dそれぞれの間隔は等しいものとする)がマルチコアファイバ1の複数のコアC間の間隔P(隣り合うコアCの光軸間距離(図2参照))、よりも広くなるよう配置されている。また、支持部材13の中央には、光源Dからの光を通過させる孔部13aが設けられている。なお、光源Dは、支持部材13とは異なる部材により所定の位置(コアCの光軸上)に支持されている。 The support member 13 is a plate-like member that supports at least two of the plurality of light sources D k (corresponding relay lens system 11 and reflection element 12). In this embodiment, as shown in FIG. 3, the light sources D 2 to D 7 , the corresponding relay lens system 11 and the reflecting element 12 are supported by the support member 13. The plurality of light sources D k (D 2 to D 7 ) have an interval p (a distance between light emitting ends of adjacent light sources D k (see FIG. 3)), and in this embodiment, each of the light sources D 2 to D 7 . The intervals are assumed to be equal) so as to be wider than the interval P between the plurality of cores C k of the multi-core fiber 1 (the distance between the optical axes of adjacent cores C k (see FIG. 2)). At the center of the support member 13, the hole 13a for passing the light from the light source D 1 is provided. The light source D 1 is supported at a predetermined position (on the optical axis of the core C 1 ) by a member different from the support member 13.
 支持部材13に支持された光源Dは同一平面上に配置されることとなる。同一平面上に複数の光源D(対応するリレーレンズ系11及び反射素子12)を配置することにより、構成が簡素化できるだけでなく、予め光源D、リレーレンズ系11及び反射素子12の位置調整を行うことができる。よって、結合光学系10の組み立てが容易となる(すなわち、マルチコアファイバ1と光源Dとの結合も容易となる)。なお、各光源D間の間隔pをより広くとるためには、各光源Dを異なる支持部材により支持させることも可能である。 The light source Dk supported by the support member 13 is arranged on the same plane. By arranging a plurality of light sources D k (corresponding relay lens system 11 and reflecting element 12) on the same plane, not only the configuration can be simplified, but also the positions of the light source D k , relay lens system 11 and reflecting element 12 in advance. Adjustments can be made. Therefore, the assembly of the coupling optical system 10 is facilitated (that is, the coupling between the multicore fiber 1 and the light source Dk is facilitated). In addition, in order to make the space | interval p between each light source Dk wider, it is also possible to support each light source Dk with a different support member.
 マルチコアファイバ1、光源D、リレーレンズ系11及び反射素子12の少なくとも1つを、光源Dの光軸方向(又はマルチコアファイバ1の光軸方向)に対して垂直に移動させることも可能である。この場合、光源Dからの光をマルチコアファイバ1のコアCに入射させる際の位置調整を行うことができる。また、光源Dからの光をマルチコアファイバ1のコアCに対して個別に位置調整することができる。これにより、結合効率の向上を図ることができる。 It is also possible to move at least one of the multi-core fiber 1, the light source D k , the relay lens system 11, and the reflection element 12 perpendicular to the optical axis direction of the light source D k (or the optical axis direction of the multi-core fiber 1). is there. In this case, it is possible to adjust the position when the light from the light source D k is incident on the core C k of the multi-core fiber 1. Further, the position of the light from the light source D k can be individually adjusted with respect to the core C k of the multi-core fiber 1. Thereby, the coupling efficiency can be improved.
 結像光学系14は、反射素子12で反射された光を集光させ、対応するコアCに入射させる機能を有している。本実施形態では、結像光学系14として1枚の凸レンズが配置されている。なお、結像光学系14は、光源Dから直接導かれた光を集光させ、マルチコアファイバ1のコアCに入射させる機能も有している。 The imaging optical system 14 has a function of condensing the light reflected by the reflecting element 12 and making it incident on the corresponding core C k . In the present embodiment, a single convex lens is disposed as the imaging optical system 14. Note that the imaging optical system 14 also has a function of condensing light directly guided from the light source D 1 and causing the light to enter the core C 1 of the multicore fiber 1.
[光の進み方について]
 次に、図2を参照して、本実施形態に係る光の進み方について説明する。本実施形態では、複数の光源Dから光を出射させ、マルチコアファイバ1に導く構成について説明する。すなわち、本実施形態における複数の光源Dは、「出射側素子」の一例である。一方、本実施形態におけるマルチコアファイバ1は、「入射側素子」の一例である。
[How light travels]
Next, how light travels according to the present embodiment will be described with reference to FIG. In the present embodiment, a configuration in which light is emitted from a plurality of light sources Dk and guided to the multicore fiber 1 will be described. That is, the plurality of light sources Dk in the present embodiment is an example of “emission-side element”. On the other hand, the multi-core fiber 1 in the present embodiment is an example of an “incident side element”.
 まず、複数の光源D~Dそれぞれから光が出射される。出射された光は、それぞれ拡散しながら、対応するリレーレンズ系11に入射する。入射した光は、リレーレンズ系11により集光され、反射素子12に対して出射する。なお、光源Dからの光は、リレーレンズ系11により直接、結像光学系14に導かれる。 First, light is emitted from each of the plurality of light sources D 1 to D 7 . The emitted light is incident on the corresponding relay lens system 11 while being diffused. The incident light is collected by the relay lens system 11 and emitted to the reflecting element 12. The light from the light source D 1 is directly by the relay lens system 11, is guided to the imaging optical system 14.
 複数の光源D~Dに対応するリレーレンズ系11から出射された光それぞれは、対応する反射素子12の反射面12aで反射され、結像光学系14に導かれる。 Each light emitted from the relay lens system 11 corresponding to the plurality of light sources D 2 to D 7 is reflected by the reflecting surface 12 a of the corresponding reflecting element 12 and guided to the imaging optical system 14.
 反射面12aで反射した光それぞれは、結像光学系14により集光され、対応するコアC~Cに入射する。なお、光源Dからの光は、反射素子12を介することを除き、同様にしてコアCに入射する。 Each of the light reflected by the reflecting surface 12a is collected by the imaging optical system 14 and enters the corresponding cores C 2 to C 7 . The light from the light source D 1, except that through the reflective element 12, similarly entering the core C 1.
 ここで、本実施形態では、複数の光源Dから出射された複数の光を、結合光学系10を介してマルチコアファイバ1に導く例について説明したが、光を出射する対象はこれに限られない。たとえば、複数の光源Dとリレーレンズ系11との間に複数のシングルコアファイバからなるファイバ束(図示なし)を配し、複数の光源Dからの光を間接的にマルチコアファイバ1に導くことも可能である。この場合、複数のシングルコアファイバ間の間隔(隣り合うシングルコアファイバの光軸間距離)が、マルチコアファイバ1の複数のコアC間の間隔Pより広くなるよう配置される。ここでは、ファイバ束(複数のシングルコアファイバ)が「出射側素子」の一例である。 Here, in the present embodiment, an example in which a plurality of lights emitted from a plurality of light sources Dk are guided to the multi-core fiber 1 via the coupling optical system 10 has been described, but the target for emitting the light is limited to this. Absent. For example, a fiber bundle (not shown) composed of a plurality of single core fibers is disposed between the plurality of light sources D k and the relay lens system 11, and the light from the plurality of light sources D k is indirectly guided to the multi-core fiber 1. It is also possible. In this case, the interval between the plurality of single core fibers (the distance between the optical axes of adjacent single core fibers) is arranged to be wider than the interval P between the plurality of cores C k of the multicore fiber 1. Here, a fiber bundle (a plurality of single core fibers) is an example of an “outgoing element”.
 或いは、上述の結合光学系10を用い、マルチコアファイバ1(複数のコアC)から出射される複数の光それぞれを、受光素子又はファイバ束(いずれも図示なし)に導くことも可能である。この場合、複数の受光素子間の間隔(隣り合う受光素子の受光面の中心間距離)又は複数のシングルコアファイバ間の間隔のうちいずれかが、マルチコアファイバ1の複数のコアC間の間隔Pより広くなるよう配置される。ここでは、マルチコアファイバ1が、「出射側素子」の一例である。また、受光素子又はファイバ束が「入射側素子」の一例である。 Alternatively, it is also possible to guide each of a plurality of lights emitted from the multi-core fiber 1 (a plurality of cores C k ) to a light receiving element or a fiber bundle (all not shown) using the above-described coupling optical system 10. In this case, either the interval between the plurality of light receiving elements (the distance between the centers of the light receiving surfaces of adjacent light receiving elements) or the interval between the plurality of single core fibers is the interval between the plurality of cores C k of the multicore fiber 1. Arranged to be wider than P. Here, the multi-core fiber 1 is an example of an “emission side element”. The light receiving element or the fiber bundle is an example of the “incident side element”.
 また、この場合、結像光学系14は、マルチコアファイバ1のコアCからの光それぞれを、対応する反射素子12に導くための機能を奏する。すなわち、ここでは結像光学系14が、「リレーレンズ光学系」に該当する。 In this case, the imaging optical system 14 has a function of guiding each light from the core C k of the multi-core fiber 1 to the corresponding reflecting element 12. That is, here, the imaging optical system 14 corresponds to a “relay lens optical system”.
 更に、この場合、リレーレンズ系11は、反射素子12で反射された光を受光素子又はファイバ束を形成するシングルコアファイバに集光させる機能を奏する。すなわち、ここではリレーレンズ系11が、「結像光学系」に該当する。 Furthermore, in this case, the relay lens system 11 has a function of condensing the light reflected by the reflecting element 12 onto a light receiving element or a single core fiber forming a fiber bundle. That is, here, the relay lens system 11 corresponds to the “imaging optical system”.
[作用・効果]
 本実施形態の作用及び効果について説明する。
[Action / Effect]
The operation and effect of this embodiment will be described.
 本実施形態に係るマルチコアファイバ1の結合構造は、光学素子と、マルチコアファイバ1と、結合光学系10とを有する。光学素子は、複数の光源D、複数の受光素子、及び複数のシングルコアファイバを束ねたファイバ束のうちのいずれかからなる。マルチコアファイバ1は、複数のコアCがクラッド2で覆われている。結合光学系10は、光学素子及びマルチコアファイバ1の間に配置され、光学素子とマルチコアファイバ1とを光学的に結合する。また、複数の光源D間の間隔p、複数の受光素子間の間隔及び複数のシングルコアファイバ間の間隔のうちいずれかが、マルチコアファイバ1の複数のコアC間の間隔Pより広くなるよう配置されている。結合光学系10は、反射素子12と、結像光学系14とを有する。反射素子12は、光学素子及びマルチコアファイバ1の一方からなる出射側素子から出射した光を反射させる反射面12aを有する。結像光学系14は、反射素子12で反射された光を他方からなる入射側素子に入射させる。 The coupling structure of the multicore fiber 1 according to the present embodiment includes an optical element, the multicore fiber 1, and a coupling optical system 10. The optical element includes any one of a plurality of light sources D k , a plurality of light receiving elements, and a fiber bundle obtained by bundling a plurality of single core fibers. In the multi-core fiber 1, a plurality of cores C k are covered with a clad 2. The coupling optical system 10 is disposed between the optical element and the multicore fiber 1, and optically couples the optical element and the multicore fiber 1. The interval p between a plurality of light sources D k, one of the intervals between intervals and a plurality of single-core fiber among the plurality of light receiving elements, wider than the interval P between the plurality of cores C k of the multicore fiber 1 It is arranged as follows. The coupling optical system 10 includes a reflective element 12 and an imaging optical system 14. The reflection element 12 has a reflection surface 12 a that reflects light emitted from the emission-side element that is one of the optical element and the multi-core fiber 1. The imaging optical system 14 causes the light reflected by the reflecting element 12 to enter the other incident side element.
 このように、反射素子12を介して、出射側素子(たとえば複数の光源D)から出射した光を、対応する入射側素子(たとえばマルチコアファイバ1のコアC)に導くことができる。よって、光学素子間の間隔(たとえば複数の光源D間の間隔p)をマルチコアファイバ1の複数のコアC間の間隔Pより広くすることができる。この場合、光学素子(たとえば光源D)のサイズによる光学素子同士の物理的干渉や、光学素子(たとえば光源D)が発する熱や電気ノイズの影響により結合効率の低下を招くことが無い。すなわち、マルチコアファイバ1と他の光学素子とを結合する際に、結合効率の低下を抑制することができる。 As described above, the light emitted from the emission side element (for example, the plurality of light sources D k ) can be guided to the corresponding incident side element (for example, the core C k of the multicore fiber 1) via the reflection element 12. Therefore, it is possible to widely than the interval P between the plurality of cores C k intervals (e.g. spacing p between a plurality of light sources D k) of the multi-core fiber 1 between the optical elements. In this case, and the physical interference between the optical element according to the size of the optical element (e.g. a light source D k), it is not causing a decrease in coupling efficiency due to the influence of heat and electric noise which the optical element (e.g. a light source D k) emitted. That is, when the multi-core fiber 1 and another optical element are coupled, a decrease in coupling efficiency can be suppressed.
 また、本実施形態に係る出射側素子又は入射側素子が複数の光源D又は複数の受光素子からなる場合、複数の光源D又は複数の受光素子のうち少なくとも2つは、同一平面上に配置されている。 Also, if the outgoing side elements or entrance side element according to the present embodiment comprises a plurality of light sources D k or the plurality of light receiving elements, at least two of the plurality of light sources D k or the plurality of light receiving elements, on the same plane Has been placed.
 このように複数の光源D(又は複数の受光素子)を配置することにより、構成が簡素化できる。また、マルチコアファイバ1と光学素子を結合させる前に、光源D、リレーレンズ系11及び反射素子12の位置調整を行うことができる。よって、結合光学系10の組み立てが容易となる。 Thus, by arranging a plurality of light sources D k (or a plurality of light receiving elements), the configuration can be simplified. Further, the position adjustment of the light source D k , the relay lens system 11 and the reflection element 12 can be performed before the multi-core fiber 1 and the optical element are coupled. Therefore, assembly of the coupling optical system 10 is facilitated.
 また、本実施形態に係る結合光学系10は、リレーレンズ光学系(リレーレンズ系11)を有する。リレーレンズ光学系は、出射側素子から出射した光を結像光学系14に導く。そして、出射側素子、入射側素子、リレーレンズ光学系及び反射素子のいずれかを移動させることにより出射側素子と入射側素子との位置調整が可能となる。 Further, the coupling optical system 10 according to the present embodiment has a relay lens optical system (relay lens system 11). The relay lens optical system guides the light emitted from the emission side element to the imaging optical system 14. Then, by moving any of the exit side element, the entrance side element, the relay lens optical system, and the reflection element, it is possible to adjust the position of the exit side element and the entrance side element.
 この場合、出射側素子(たとえば光源D)からの光を入射側素子(たとえばマルチコアファイバ1)に入射させる際の位置調整を行うことが可能となる。従って、結合効率の向上を図ることができる。 In this case, it is possible to perform position adjustment when light from the emission side element (for example, the light source D k ) is incident on the incident side element (for example, the multi-core fiber 1). Therefore, the coupling efficiency can be improved.
<第1実施形態の変形例1>
 次に、図4を参照して、第1実施形態の変形例に係るマルチコアファイバ1の結合構造について説明する。図4は、結合光学系10、光源D及びマルチコアファイバ1の軸方向の断面図である。図4ではマルチコアファイバ1の3つのコア(C、C、C)に対応する3個の光源(D、D、D)のみを示している。
<Variation 1 of the first embodiment>
Next, with reference to FIG. 4, the coupling structure of the multi-core fiber 1 according to a modification of the first embodiment will be described. FIG. 4 is a sectional view in the axial direction of the coupling optical system 10, the light source Dk, and the multi-core fiber 1. As shown in FIG. FIG. 4 shows only three light sources (D 1 , D 2 , D 5 ) corresponding to the three cores (C 1 , C 2 , C 5 ) of the multi-core fiber 1.
 第1実施形態では、結像光学系14として1枚の凸レンズを有する構成について述べたが、結像光学系14はこの構成に限られない。結像光学系14として、複数のマイクロレンズM(k=1~n)を有する構成も可能である。 In the first embodiment, the configuration having one convex lens as the imaging optical system 14 has been described, but the imaging optical system 14 is not limited to this configuration. The imaging optical system 14 may have a configuration having a plurality of microlenses M k (k = 1 to n).
 マイクロレンズMは、マルチコアファイバ1のコアCと等しい数だけ設けられる。本変形例では、コアC~Cに対応するマイクロレンズM~Mが設けられている(図4では、コアC、C、Cに対応するマイクロレンズM、M、Mのみを示している)。複数のマイクロレンズMは、アレイ状に配置されている。また、各マイクロレンズMは、その中心が、対応するコアCの光軸上に位置するように設置されている。 Microlens M k is provided by the number equal to the cores C k of the multi-core fiber 1. In this modification, microlenses M 1 to M 7 corresponding to the cores C 1 to C 7 are provided (in FIG. 4, the micro lenses M 1 and M 2 corresponding to the cores C 1 , C 2 , and C 5 are provided. , it shows only the M 5). The plurality of microlenses Mk are arranged in an array. Each microlens Mk is installed such that its center is located on the optical axis of the corresponding core Ck .
 このように、結像光学系14として、マイクロレンズMを用いることにより、光源D等からの光を確実にコアCに導くことができる(または、コアCからの光を確実に受光素子等に導くことができる)。よって、マルチコアファイバ1と他の光学素子とを結合する際に、結合効率を向上させることが可能となる。 Thus, by using the microlens M k as the imaging optical system 14, the light from the light source D k or the like can be reliably guided to the core C k (or the light from the core C k can be reliably transmitted). Can be guided to a light receiving element). Therefore, the coupling efficiency can be improved when the multi-core fiber 1 and another optical element are coupled.
<第1実施形態の変形例2>
 次に、図5を参照して、第1実施形態の反射素子12の変形例について説明する。図5は、反射部材15の斜視図である。
<Modification 2 of the first embodiment>
Next, with reference to FIG. 5, the modification of the reflective element 12 of 1st Embodiment is demonstrated. FIG. 5 is a perspective view of the reflecting member 15.
 第1実施形態では、光源D~Dに対応する6つの反射素子12を個別に設ける構成について述べた。一方、複数の反射素子12を一体化した反射部材15を用いることも可能である。本変形例における反射部材15は、「反射素子」の一例である。 In the first embodiment, the configuration in which the six reflecting elements 12 corresponding to the light sources D 2 to D 7 are individually provided has been described. On the other hand, it is also possible to use a reflecting member 15 in which a plurality of reflecting elements 12 are integrated. The reflection member 15 in this modification is an example of a “reflection element”.
 反射部材15は、光学素子(たとえば光源D)の配置に応じた複数の反射面15aを有する。反射面15aは、光学素子(たとえば光源D)からの光を反射させ、結像光学系14に導く。本変形例では、光源D~Dに対応する6つの反射面15aが設けられている。また、本変形例では、反射部材15に平面15bが設けられている。平面15bは、光源Dからの光を透過させるよう構成されている。 The reflecting member 15 has a plurality of reflecting surfaces 15a corresponding to the arrangement of the optical elements (for example, the light source D k ). The reflecting surface 15 a reflects light from the optical element (for example, the light source D k ) and guides it to the imaging optical system 14. In this modification, six reflecting surfaces 15a corresponding to the light sources D 2 to D 7 are provided. In the present modification, the reflecting member 15 is provided with a flat surface 15b. Plane 15b is configured to transmit light from the light source D 1.
 なお、ここでは6つの反射素子12を一体化した反射部材15について説明したが、たとえば、3つの反射素子12を一体化した反射部材15を2つ設ける構成であってもよい。すなわち、2つ以上の反射面を有する反射部材を複数設けることも可能である。 In addition, although the reflective member 15 which integrated the six reflective elements 12 was demonstrated here, the structure which provides the two reflective members 15 which integrated the three reflective elements 12 may be sufficient, for example. That is, a plurality of reflecting members having two or more reflecting surfaces can be provided.
 また、平面15b部分に、光源Dからの光を通過させる孔部を設けてもよい。その場合、光源Dからの光は、反射部材15が有する屈折率の影響を受けることがない。よって、対応するコアCに入射する際の結合効率を向上することができる。 Moreover, the plane 15b portion, may be provided with a hole for passing light from the light source D 1. In that case, light from the light source D 1 is not affected by the refractive index of the reflecting member 15 has. Therefore, it is possible to improve the coupling efficiency at the time of entering the corresponding core C 1.
 このように、反射素子12を一の部材により形成した場合であっても、出射側素子(たとえば複数の光源D)から出射した光を、対応する入射側素子(たとえばマルチコアファイバ1のコアC)に導くことができる。よって、光学素子間の間隔(たとえば複数の光源D間の間隔p)をマルチコアファイバ1の複数のコアC間の間隔Pより広くすることができる。この場合、光学素子(たとえば光源D)のサイズによる光学素子同士の物理的干渉や、光学素子(たとえば光源D)が発する熱や電気ノイズの影響により結合効率の低下を招くことが無い。すなわち、マルチコアファイバ1と他の光学素子とを結合する際に、結合効率の低下を抑制することができる。更に、反射素子を一の部材により形成することで、複数の反射素子を個別に調整する必要がない。よって、反射素子の位置調整が容易となる。また、反射素子が一の部材で形成されているため、結合光学系の小型化を図ることができる。 As described above, even when the reflecting element 12 is formed of one member, the light emitted from the emitting side element (for example, the plurality of light sources D k ) is converted into the corresponding incident side element (for example, the core C of the multicore fiber 1). k ). Therefore, it is possible to widely than the interval P between the plurality of cores C k intervals (e.g. spacing p between a plurality of light sources D k) of the multi-core fiber 1 between the optical elements. In this case, and the physical interference between the optical element according to the size of the optical element (e.g. a light source D k), it is not causing a decrease in coupling efficiency due to the influence of heat and electric noise which the optical element (e.g. a light source D k) emitted. That is, when the multi-core fiber 1 and another optical element are coupled, a decrease in coupling efficiency can be suppressed. Furthermore, it is not necessary to individually adjust a plurality of reflective elements by forming the reflective elements from a single member. Therefore, it is easy to adjust the position of the reflective element. In addition, since the reflective element is formed of a single member, the coupling optical system can be reduced in size.
<第2実施形態>
 次に、図6を参照して、第2実施形態に係るマルチコアファイバ1の結合構造について説明する。本実施形態では、複数の光源D(k=1~n)とマルチコアファイバ1とを、結合光学系20により結合する構造について述べる。光源Dは、結合するマルチコアファイバ1のコア数と等しい数だけ設けられている。図6は、結合光学系20、光源D及びマルチコアファイバ1の軸方向の断面図である。図6では、コアCの光軸を中心とした回転対称構造若しくは立体構造となっているコアCのうち、5つのコア(C~C)、及び対応する5つの光源(D~D)、5つのマイクロレンズ(M~M)のみを示している。第1実施形態と同様の構成については、詳細な説明を省略する場合がある。
<Second Embodiment>
Next, the coupling structure of the multi-core fiber 1 according to the second embodiment will be described with reference to FIG. In the present embodiment, a structure in which a plurality of light sources D k (k = 1 to n) and a multi-core fiber 1 are coupled by a coupling optical system 20 will be described. The number of light sources Dk is the same as the number of cores of the multi-core fiber 1 to be coupled. FIG. 6 is a cross-sectional view in the axial direction of the coupling optical system 20, the light source D k and the multi-core fiber 1. In FIG. 6, among the cores C k having a rotationally symmetric structure or a three-dimensional structure around the optical axis of the core C 1 , five cores (C 1 to C 5 ) and corresponding five light sources (D 1 To D 5 ), only five microlenses (M 1 to M 5 ) are shown. Detailed description of the same configuration as the first embodiment may be omitted.
[結合光学系の構成]
 結合光学系20は、光源D及びマルチコアファイバ1の間に配置され、光源Dとマルチコアファイバ1とを光学的に結合する。結合光学系20は、リレーレンズ系21と、反射部材22と、結像光学系24とを含んで構成されている。
[Configuration of coupling optical system]
Coupling optics 20 is disposed between the light source D k and a multi-core fiber 1, coupling the light source D k and multi-core fiber 1 optically. The coupling optical system 20 includes a relay lens system 21, a reflecting member 22, and an imaging optical system 24.
 リレーレンズ系21は、光源Dから出射された光を(反射部材22を介して)結像光学系24に導く機能を有している。リレーレンズ系21は、光源Dと等しい数だけ設けられている。リレーレンズ系21は、1枚のコリメートレンズを含んで構成されている。コリメートレンズにより、光源Dからの光はコリメートされた状態で(反射素子12を介して)結像光学系24に導かれる。リレーレンズ系21は、「リレーレンズ光学系」の一例である。なお、光源Dに対応するリレーレンズ系21は、光源Dからの光をコリメートさせた状態で結像光学系24に直接導くよう構成されている。 The relay lens system 21 has a function of guiding the light emitted from the light source Dk to the imaging optical system 24 (via the reflection member 22). As many relay lens systems 21 as the number of the light sources Dk are provided. The relay lens system 21 includes one collimating lens. By the collimating lens, the light from the light source Dk is guided to the imaging optical system 24 in a collimated state (via the reflecting element 12). The relay lens system 21 is an example of a “relay lens optical system”. Incidentally, the relay lens system 21 corresponding to the light source D 1 is configured to direct directly to the imaging optical system 24 in a state where the light was collimated from the light source D 1.
 リレーレンズ系21は、コリメートレンズを用いたコリメート光学系に限られない。たとえば、複数の凸レンズを用いた集光光学系であってもよい。 The relay lens system 21 is not limited to a collimating optical system using a collimating lens. For example, a condensing optical system using a plurality of convex lenses may be used.
 反射部材22は、リレーレンズ系21を介して光源Dから導かれた光を、結像光学系24に向けて反射させる一つの部材である。反射部材22には、リレーレンズ系21により導かれた光を反射させる反射面22aが複数形成されている。本実施形態における反射部材22は、「反射素子」の一例である。 The reflecting member 22 is one member that reflects the light guided from the light source Dk via the relay lens system 21 toward the imaging optical system 24. The reflecting member 22 is formed with a plurality of reflecting surfaces 22 a that reflect the light guided by the relay lens system 21. The reflection member 22 in the present embodiment is an example of a “reflection element”.
 反射面22aそれぞれは、光源Dから出射した光のうち、少なくとも2つの光を反射させるよう、光源Dから出射した複数の光の進行方向に対して斜設されている。たとえば、図6で下側に位置する反射面22aは、光源D及びDからの光を結像光学系24に向けて反射させる。反射面22aは、コアCの構造(たとえば、コアCの光軸を中心とした回転対称構造若しくは立体構造)に対応するよう設置されている。 Each reflection surface 22a, of the light emitted from the light source D k, so as to reflect at least two light is obliquely set with respect to the traveling direction of the plurality of the light emitted from the light source D k. For example, the reflection surface 22 a located on the lower side in FIG. 6 reflects light from the light sources D 3 and D 5 toward the imaging optical system 24. The reflecting surface 22a, the structure of the core C k (e.g., rotationally symmetric structure or conformation around the optical axis of the core C 1) is installed so as to correspond to.
 本実施形態では、一の反射面22aに入射する2つの光の光軸間距離αと、その反射面22aで反射された2つの光の光軸間距離α´(コアC間の間隔Pに等しい)は等しくなっている。この場合、複数の光源Dの間隔pがマルチコアファイバ1の複数のコアC間の間隔Pよりも広くなるよう、光源Dの位置決めがなされる。 In the present embodiment, a distance between the optical axes α of the two light incident on one of the reflecting surfaces 22a, spacing P between the distance between the optical axes of the two light reflected by the reflecting surface 22a [alpha] '(core C k Is equal). In this case, as the interval p of the plurality of light sources D k is wider than the interval P between the plurality of cores C k of the multi-core fiber 1, the positioning of the light source D k is made.
 反射部材22の反射面22aは、複数の光源Dの配置や一の反射面22aで反射させる光の数により設けられる個数が異なる。たとえば、一つの反射面22aで2つの光を反射させる場合、反射面22aは光源Dの数の半分だけ設けられていればよい。また、本実施形態のようにコアCの光軸上に光源Dを配置する場合、光源Dからの光は、反射部材22を透過し、結像光学系24に導かれる。よって、反射面22aは、光源Dを除く他の光源Dの数の半分だけ設けられていればよい。 The number of reflection surfaces 22a of the reflection member 22 is different depending on the arrangement of the plurality of light sources Dk and the number of lights reflected by one reflection surface 22a. For example, when two light beams are reflected by one reflecting surface 22a, the reflecting surface 22a only needs to be provided by half the number of light sources Dk . When the light source D 1 is arranged on the optical axis of the core C 1 as in the present embodiment, the light from the light source D 1 passes through the reflecting member 22 and is guided to the imaging optical system 24. Accordingly, the reflecting surface 22a is may be provided by half of the number of other light sources D k except light source D 1.
 反射面22aは、対応するコアCの光軸に対して所定の角度を有している。この角度は、光源D、コアC(マルチコアファイバ1)及び結像光学系24の配置により決定される。すなわち、各反射面22aの角度は、等しくなる場合や異なる場合がある。 The reflecting surface 22a has a predetermined angle with respect to the optical axis of the corresponding core C k. This angle is determined by the arrangement of the light source D k , the core C k (multi-core fiber 1), and the imaging optical system 24. That is, the angle of each reflecting surface 22a may be equal or different.
 なお、反射部材22の中央部に、光源Dからの光を通過させる孔部を設けてもよい。その場合、光源Dからの光は、反射部材22の母材屈折率の影響を受けることがない。よって、対応するコアCに入射する際の結合効率を向上することができる。 Incidentally, in the central portion of the reflecting member 22 may be provided with a hole for passing light from the light source D 1. In that case, the light from the light source D 1 is not affected by the refractive index of the base material of the reflecting member 22. Therefore, it is possible to improve the coupling efficiency at the time of entering the corresponding core C 1.
 マルチコアファイバ1、光源D、リレーレンズ系21及び反射部材22の少なくとも1つを、光源Dの光軸方向(又はマルチコアファイバ1の光軸方向)に対して垂直に移動させることも可能である。この場合、光源Dからの光をマルチコアファイバ1のコアCに入射させる際の位置調整を行うことができる。また、光源Dからの光をマルチコアファイバ1のコアCに対して個別に位置調整することができる。これにより、結合効率の向上を図ることができる。 It is also possible to move at least one of the multi-core fiber 1, the light source D k , the relay lens system 21, and the reflecting member 22 perpendicular to the optical axis direction of the light source D k (or the optical axis direction of the multi-core fiber 1). is there. In this case, it is possible to adjust the position when the light from the light source D k is incident on the core C k of the multi-core fiber 1. Further, the position of the light from the light source D k can be individually adjusted with respect to the core C k of the multi-core fiber 1. Thereby, the coupling efficiency can be improved.
 結像光学系24は、反射部材22で反射された光を集光させ、対応するコアCに入射させる機能を有している。本実施形態では、結像光学系24として、コアCの数と等しい数のマイクロレンズMがアレイ状に配置されている。なお、マイクロレンズMは、光源Dから直接導かれた光を集光させ、マルチコアファイバ1のコアCに入射させる機能も有している。 The imaging optical system 24 has a function of condensing the light reflected by the reflecting member 22 and making it incident on the corresponding core Ck . In the present embodiment, as an imaging optical system 24, the number of micro lenses M k equals the number of cores C k are arranged in an array. The microlens M 1 also has a function of condensing light directly guided from the light source D 1 and causing the light to enter the core C 1 of the multicore fiber 1.
[光の進み方について]
 次に、図6を参照して、本実施形態に係る光の進み方について説明する。本実施形態では、複数の光源Dから光を出射させ、マルチコアファイバ1に導く構成について説明する。すなわち、本実施形態における複数の光源Dは、「出射側素子」の一例である。一方、本実施形態におけるマルチコアファイバ1は、「入射側素子」の一例である。
[How light travels]
Next, with reference to FIG. 6, how the light travels according to the present embodiment will be described. In the present embodiment, a configuration in which light is emitted from a plurality of light sources Dk and guided to the multicore fiber 1 will be described. That is, the plurality of light sources Dk in the present embodiment is an example of “emission-side element”. On the other hand, the multi-core fiber 1 in the present embodiment is an example of an “incident side element”.
 まず、複数の光源D~Dそれぞれから光が出射される。出射された光は、それぞれ拡散しながら、対応するリレーレンズ系21に入射する。入射した光は、リレーレンズ系21によりコリメートされ、反射部材22に対して出射する。なお、光源Dからの光は、リレーレンズ系21により直接、結像光学系24に導かれる。 First, light is emitted from each of the plurality of light sources D 1 to D 5 . The emitted light is incident on the corresponding relay lens system 21 while being diffused. The incident light is collimated by the relay lens system 21 and emitted to the reflecting member 22. The light from the light source D 1 is directly by the relay lens system 21 is guided to the imaging optical system 24.
 複数の光源D~Dに対応するリレーレンズ系21から出射された光それぞれは、反射部材22の反射面22aで反射され、結像光学系24に導かれる。たとえば、光源D、Dから出射された光は、一の反射面22aにより反射され、対応するマイクロレンズM、Mに導かれる。 Each light emitted from the relay lens system 21 corresponding to the plurality of light sources D 2 to D 5 is reflected by the reflecting surface 22 a of the reflecting member 22 and guided to the imaging optical system 24. For example, the light emitted from the light sources D 3 and D 5 is reflected by one reflecting surface 22a and guided to the corresponding microlenses M 3 and M 5 .
 反射面22aで反射した光それぞれは、結像光学系24により集光され、対応するコアCに入射する。たとえば、マイクロレンズM、Mで集光された光は、対応するコアC、Cに入射する。なお、光源Dからの光は、反射部材22を介することを除き、同様にしてコアCに入射する。 Each light reflected by the reflection surface 22a is condensed by the imaging optical system 24, incident on the corresponding core C k. For example, the light condensed by the microlens M 3, M 5 is incident on the core C 3, C 5 corresponding. The light from the light source D 1, except that through the reflecting member 22, similarly entering the core C 1.
 ここで、本実施形態では、複数の光源Dから出射された複数の光を、結合光学系20を介してマルチコアファイバ1に導く例について説明したが、光を出射する対象はこれに限られない。たとえば、複数の光源Dとリレーレンズ系21との間に複数のシングルコアファイバからなるファイバ束(図示なし)を配し、複数の光源Dからの光を間接的にマルチコアファイバ1に導くことも可能である。この場合、複数のシングルコアファイバ間の間隔が、マルチコアファイバ1の複数のコアC間の間隔Pより広くなるよう配置される。ここでは、ファイバ束(複数のシングルコアファイバ)が「出射側素子」の一例である。 Here, in the present embodiment, an example in which a plurality of lights emitted from a plurality of light sources Dk are guided to the multicore fiber 1 via the coupling optical system 20 has been described, but the target for emitting the light is limited to this. Absent. For example, a fiber bundle (not shown) made up of a plurality of single core fibers is arranged between the plurality of light sources Dk and the relay lens system 21, and the light from the plurality of light sources Dk is indirectly guided to the multicore fiber 1. It is also possible. In this case, the interval between the plurality of single core fibers is arranged to be wider than the interval P between the plurality of cores C k of the multicore fiber 1. Here, a fiber bundle (a plurality of single core fibers) is an example of an “outgoing element”.
 或いは、上述の結合光学系20を用い、マルチコアファイバ1(複数のコアC)から出射される複数の光それぞれを、受光素子又はファイバ束(いずれも図示なし)に導くことも可能である。この場合、複数の受光素子間の間隔又は複数のシングルコアファイバ間の間隔のうちいずれかが、マルチコアファイバ1の複数のコアC間の間隔Pより広くなるよう配置される。ここでは、マルチコアファイバ1が、「出射側素子」の一例である。また、受光素子又はファイバ束が「入射側素子」の一例である。 Alternatively, it is possible to guide each of a plurality of lights emitted from the multi-core fiber 1 (a plurality of cores C k ) to a light receiving element or a fiber bundle (all not shown) using the above-described coupling optical system 20. In this case, either the interval between the plurality of light receiving elements or the interval between the plurality of single core fibers is arranged to be wider than the interval P between the plurality of cores C k of the multicore fiber 1. Here, the multi-core fiber 1 is an example of an “emission side element”. The light receiving element or the fiber bundle is an example of the “incident side element”.
 また、この場合、結像光学系24は、マルチコアファイバ1のコアCからの光それぞれを、反射部材22(反射面22a)に導くための機能を奏する。すなわち、ここでは結像光学系24が、「リレーレンズ光学系」に該当する。 In this case, the imaging optical system 24 has a function of guiding each light from the core C k of the multi-core fiber 1 to the reflecting member 22 (reflecting surface 22a). That is, here, the imaging optical system 24 corresponds to a “relay lens optical system”.
 更に、この場合、リレーレンズ系21は、反射部材22(反射面22a)で反射された光を受光素子又はファイバ束を形成するシングルコアファイバに集光させる機能を奏する。すなわち、ここではリレーレンズ系21が、「結像光学系」に該当する。 Furthermore, in this case, the relay lens system 21 has a function of condensing the light reflected by the reflecting member 22 (reflecting surface 22a) onto a light receiving element or a single core fiber forming a fiber bundle. That is, here, the relay lens system 21 corresponds to the “imaging optical system”.
[作用・効果]
 本実施形態の作用及び効果について説明する。
[Action / Effect]
The operation and effect of this embodiment will be described.
 本実施形態に係る反射素子(反射部材22)の反射面22aは、出射側素子(たとえば、複数の光源D)から出射した光のうち、少なくとも2つの光を反射させるよう、出射側素子から出射した複数の光の進行方向に対して斜設されている。 The reflecting surface 22a of the reflecting element (reflecting member 22) according to the present embodiment is arranged so as to reflect at least two lights out of the light emitted from the emitting side element (for example, the plurality of light sources D k ) from the emitting side element. It is inclined with respect to the traveling direction of the emitted light.
 このように、反射素子を一の部材により形成し、一の反射面22aで少なくとも2つの光を反射させる構成であっても、出射側素子(たとえば複数の光源D)から出射した光を、対応する入射側素子(たとえばマルチコアファイバ1のコアC)に導くことができる。よって、光学素子間の間隔(たとえば複数の光源D間の間隔p)をマルチコアファイバ1の複数のコアC間の間隔Pより広くすることができる。この場合、光学素子(たとえば光源D)のサイズによる光学素子同士の物理的干渉や、光学素子(たとえば光源D)が発する熱や電気ノイズの影響により結合効率の低下を招くことが無い。マルチコアファイバ1と他の光学素子とを結合する際に、結合効率の低下を抑制することができる。 In this way, even if the reflection element is formed of one member and at least two lights are reflected by one reflection surface 22a, the light emitted from the emission side element (for example, a plurality of light sources D k ) it can be guided to the corresponding incident side element (e.g. core C k of the multicore fiber 1). Therefore, it is possible to widely than the interval P between the plurality of cores C k intervals (e.g. spacing p between a plurality of light sources D k) of the multi-core fiber 1 between the optical elements. In this case, and the physical interference between the optical element according to the size of the optical element (e.g. a light source D k), it is not causing a decrease in coupling efficiency due to the influence of heat and electric noise which the optical element (e.g. a light source D k) emitted. When coupling the multi-core fiber 1 and another optical element, it is possible to suppress a decrease in coupling efficiency.
 更に、反射素子を一の部材により形成することで、複数の反射素子を個別に調整する必要がない。よって、構成を簡素化することができ、且つ反射素子の位置調整が容易となる。また、コアCの光軸と対称位置にある光源(たとえば、D2とD3、D4とD5)を同一平面上に配置することも可能である。よって、構成を簡素化することができ、且つ光学素子の位置調整が容易となる。 Furthermore, it is not necessary to individually adjust a plurality of reflective elements by forming the reflective elements from a single member. Therefore, the configuration can be simplified and the position of the reflective element can be easily adjusted. The light source in the optical axis and symmetrical position of the core C 1 (e.g., D2 and D3, D4 and D5) it is also possible to arrange on the same plane. Therefore, the configuration can be simplified and the position of the optical element can be easily adjusted.
<第3実施形態>
 次に、図7を参照して、第3実施形態に係るマルチコアファイバ1の結合構造について説明する。本実施形態では、複数の光源D(k=1~n)とマルチコアファイバ1とを、結合光学系20´により結合する構造について述べる。光源Dは、結合するマルチコアファイバ1のコア数と等しい数だけ設けられている。図7は、結合光学系20´、光源D及びマルチコアファイバ1の軸方向の断面図である。図7では、コアCの光軸を中心とした回転対称構造若しくは立体構造となっているコアCのうち、9つのコア(C~C)、及び対応する9つの光源(光源D~D)、9つのマイクロレンズ(M~M)のみを示している。第2実施形態と同様の構成については、詳細な説明を省略する場合がある。
<Third Embodiment>
Next, with reference to FIG. 7, the coupling structure of the multi-core fiber 1 according to the third embodiment will be described. In the present embodiment, a structure in which a plurality of light sources D k (k = 1 to n) and the multi-core fiber 1 are coupled by a coupling optical system 20 ′ will be described. The number of light sources Dk is the same as the number of cores of the multi-core fiber 1 to be coupled. FIG. 7 is a cross-sectional view in the axial direction of the coupling optical system 20 ′, the light source D k, and the multi-core fiber 1. In FIG. 7, among the cores C k having a rotationally symmetric structure or a three-dimensional structure around the optical axis of the core C 1 , nine cores (C 1 to C 9 ) and corresponding nine light sources (light sources D). 1 to D 9 ), only nine microlenses (M 1 to M 9 ) are shown. Detailed description of the same configuration as that of the second embodiment may be omitted.
[結合光学系の構成]
 結合光学系20´は、光源D及びマルチコアファイバ1の間に配置され、光源Dとマルチコアファイバ1とを光学的に結合する。結合光学系20´は、リレーレンズ系21と、反射部材25と、結像光学系24とを含んで構成されている。リレーレンズ系21及び結像光学系24は、第2実施形態と同様の構成であるため、詳細な説明を省略する。
[Configuration of coupling optical system]
Coupling optics 20 'is positioned between the light source D k and a multi-core fiber 1, coupling the light source D k and multi-core fiber 1 optically. The coupling optical system 20 ′ includes a relay lens system 21, a reflecting member 25, and an imaging optical system 24. Since the relay lens system 21 and the imaging optical system 24 have the same configuration as in the second embodiment, detailed description thereof is omitted.
 反射部材25は、リレーレンズ系21を介して光源Dから導かれた光を結像光学系24に向けて反射させる一つの部材である。反射部材25には、リレーレンズ系21により導かれた光を反射させる反射面25aが複数形成されている。本実施形態における反射部材25は、「反射素子」の一例である。 The reflecting member 25 is one member that reflects the light guided from the light source Dk via the relay lens system 21 toward the imaging optical system 24. The reflecting member 25 is formed with a plurality of reflecting surfaces 25 a that reflect the light guided by the relay lens system 21. The reflecting member 25 in the present embodiment is an example of a “reflecting element”.
 各反射面25aは、段差状に形成されている。本実施形態では、一つの反射面25aに3つの段差が形成されている。すなわち、一つの反射面25aには、4つの反射領域251a~254aが形成されている。反射領域251a~254aは、光源Dから出射した光を結像光学系24に向けて反射させる。たとえば、図7で下側に位置する反射領域251a~254aそれぞれは、光源D、D、D、Dからの光を、対応するマイクロレンズM、M、M、Mに向けて反射させる。反射面25aは、コアCの構造(たとえば、コアCの光軸を中心とした回転対称構造若しくは立体構造)に対応するよう設置されている。 Each reflecting surface 25a is formed in a step shape. In the present embodiment, three steps are formed on one reflecting surface 25a. That is, four reflecting regions 251a to 254a are formed on one reflecting surface 25a. The reflection regions 251a to 254a reflect the light emitted from the light source Dk toward the imaging optical system 24. For example, each of the reflection regions 251a to 254a located on the lower side in FIG. 7 receives light from the light sources D 3 , D 5 , D 7 , and D 9 and corresponding microlenses M 3 , M 5 , M 7 , and M 9. Reflect towards. The reflecting surface 25a, the structure of the core C k (e.g., rotationally symmetric structure or conformation around the optical axis of the core C 1) is installed so as to correspond to.
 本実施形態において、反射領域251a~254aに入射する光の光軸間距離αは、反射領域251a~254aで反射された光の光軸間距離α´(コアC間の間隔Pに等しい)よりも大きくなっている。従って、コアC間の間隔Pに比べ光源Dの間隔pを広くすることができる。つまり、図7に示すように、一の反射面25aに対応する光源D(たとえば、光源D、D、D、D)を同一面上に配置することができる。 In the present embodiment, the distance α between the optical axis of the incident light to the reflective region 251a ~ 254a, (equal to the spacing P between the core C k) reflective regions 251a ~ 254a distance between the optical axes of the light reflected by the α' Is bigger than. Therefore, the distance p between the light sources Dk can be made wider than the distance P between the cores Ck . That is, as shown in FIG. 7, the light sources D k (for example, the light sources D 3 , D 5 , D 7 , and D 9 ) corresponding to the one reflecting surface 25a can be arranged on the same plane.
 反射部材25の反射面25aは、複数の光源Dの配置や一つの反射面25aにいくつの段差を設けるかにより設けられる個数が異なる。たとえば、本実施形態のようにコアCの光軸上に光源Dを配置する場合、光源Dからの光は、反射部材25を透過し、結像光学系24に導かれる。また、一つの反射面25aに3つの段差を形成する場合、一つの反射面25aには、4つの反射領域が形成されることとなる。従って、反射面25aは、光源Dを除く他の光源Dの数の1/4だけ設けられていればよい。 The number of reflection surfaces 25a of the reflection member 25 varies depending on the arrangement of the plurality of light sources Dk and the number of steps provided on one reflection surface 25a. For example, when the light source D 1 is arranged on the optical axis of the core C 1 as in the present embodiment, the light from the light source D 1 passes through the reflecting member 25 and is guided to the imaging optical system 24. Further, when three steps are formed on one reflecting surface 25a, four reflecting regions are formed on one reflecting surface 25a. Accordingly, the reflecting surface 25a is may be provided by a quarter of the number of other light sources D k except light source D 1.
 反射面25a(各反射領域)は、対応するコアCの光軸に対して所定の角度を有している。この角度は、光源D、コアC(マルチコアファイバ1)及び結像光学系24の配置により決定される。すなわち、各反射面25aの角度は、等しくなる場合や異なる場合がある。 The reflection surface 25a (each reflection region) has a predetermined angle with respect to the optical axis of the corresponding core Ck . This angle is determined by the arrangement of the light source D k , the core C k (multi-core fiber 1), and the imaging optical system 24. That is, the angle of each reflecting surface 25a may be equal or different.
 なお、反射部材25の中央部に、光源Dからの光を通過させる孔部を設けてもよい。その場合、光源Dからの光は、反射部材25の母材屈折率の影響を受けることがない。よって、対応するコアCに入射する際の結合効率を向上することができる。 Incidentally, in the central portion of the reflecting member 25 may be provided with a hole for passing light from the light source D 1. In that case, light from the light source D 1 is not affected by the base material the refractive index of the reflecting member 25. Therefore, it is possible to improve the coupling efficiency at the time of entering the corresponding core C 1.
 マルチコアファイバ1、光源D、リレーレンズ系21及び反射部材25の少なくとも1つを、光源Dの光軸方向(又はマルチコアファイバ1の光軸方向)に対して垂直に移動させることも可能である。この場合、光源Dからの光をマルチコアファイバ1のコアCに入射させる際の位置調整を行うことができる。また、光源Dからの光をマルチコアファイバ1のコアCに対して個別に位置調整することができる。これにより、結合効率の向上を図ることができる。 It is also possible to move at least one of the multi-core fiber 1, the light source D k , the relay lens system 21, and the reflection member 25 perpendicularly to the optical axis direction of the light source D k (or the optical axis direction of the multi-core fiber 1). is there. In this case, it is possible to adjust the position when the light from the light source D k is incident on the core C k of the multi-core fiber 1. Further, the position of the light from the light source D k can be individually adjusted with respect to the core C k of the multi-core fiber 1. Thereby, the coupling efficiency can be improved.
[光の進み方について]
 次に、図7を参照して、本実施形態に係る光の進み方について説明する。本実施形態では、複数の光源Dから光を出射させ、マルチコアファイバ1に導く構成について説明する。すなわち、本実施形態における複数の光源Dは、「出射側素子」の一例である。一方、本実施形態におけるマルチコアファイバ1は、「入射側素子」の一例である。
[How light travels]
Next, how the light travels according to the present embodiment will be described with reference to FIG. In the present embodiment, a configuration in which light is emitted from a plurality of light sources Dk and guided to the multicore fiber 1 will be described. That is, the plurality of light sources Dk in the present embodiment is an example of “emission-side element”. On the other hand, the multi-core fiber 1 in the present embodiment is an example of an “incident side element”.
 まず、複数の光源D~Dそれぞれから光が出射される。出射された光は、それぞれ拡散しながら、対応するリレーレンズ系21に入射する。入射した光は、リレーレンズ系21によりコリメートされ、反射部材25に対して出射する。なお、光源Dからの光は、リレーレンズ系21により直接、結像光学系24に導かれる。 First, light is emitted from each of the plurality of light sources D 1 to D 9 . The emitted light is incident on the corresponding relay lens system 21 while being diffused. The incident light is collimated by the relay lens system 21 and emitted to the reflecting member 25. The light from the light source D 1 is directly by the relay lens system 21 is guided to the imaging optical system 24.
 複数の光源D~Dに対応するリレーレンズ系21から出射された光それぞれは、反射部材25の反射面25aに形成された反射領域251a~254aで反射され、結像光学系24に導かれる。たとえば、光源D、D、D、Dから出射された光は、反射領域251a~254aにより反射され、対応するマイクロレンズM、M、M、Mに導かれる。 Each light emitted from the relay lens system 21 corresponding to the plurality of light sources D 2 to D 9 is reflected by the reflection regions 251 a to 254 a formed on the reflection surface 25 a of the reflection member 25 and guided to the imaging optical system 24. It is burned. For example, light emitted from the light sources D 3 , D 5 , D 7 , and D 9 is reflected by the reflection regions 251a to 254a and guided to the corresponding microlenses M 3 , M 5 , M 7 , and M 9 .
 反射領域251a~254aで反射した光それぞれは、結像光学系24により集光され、対応するコアCに入射する。たとえば、マイクロレンズM、M、M、Mで集光された光は、対応するコアC、C、C、Cに入射する。なお、光源Dからの光は、反射部材25を介することを除き、同様にしてコアCに入射する。 Each light reflected by the reflecting region 251a ~ 254a is condensed by the imaging optical system 24, incident on the corresponding core C k. For example, the light condensed by the microlens M 3, M 5, M 7 , M 9 is incident on the corresponding core C 3, C 5, C 7 , C 9. The light from the light source D 1, except that through the reflecting member 25, similarly entering the core C 1.
 ここで、本実施形態では、複数の光源Dから出射された複数の光を、結合光学系20´を介してマルチコアファイバ1に導く例について説明したが、光を出射する対象はこれに限られない。たとえば、複数の光源Dとリレーレンズ系21との間に複数のシングルコアファイバからなるファイバ束(図示なし)を配し、複数の光源Dからの光を間接的にマルチコアファイバ1に導くことも可能である。この場合、複数のシングルコアファイバ間の間隔が、マルチコアファイバ1の複数のコアC間の間隔Pより広くなるよう配置される。ここでは、ファイバ束(複数のシングルコアファイバ)が「出射側素子」の一例である。 Here, in this embodiment, an example has been described in which a plurality of lights emitted from a plurality of light sources Dk are guided to the multicore fiber 1 via the coupling optical system 20 ′. However, the object to emit light is limited to this. I can't. For example, a fiber bundle (not shown) made up of a plurality of single core fibers is arranged between the plurality of light sources Dk and the relay lens system 21, and the light from the plurality of light sources Dk is indirectly guided to the multicore fiber 1. It is also possible. In this case, the interval between the plurality of single core fibers is arranged to be wider than the interval P between the plurality of cores C k of the multicore fiber 1. Here, a fiber bundle (a plurality of single core fibers) is an example of an “outgoing element”.
 或いは、上述の結合光学系20´を用い、マルチコアファイバ1(複数のコアC)から出射される複数の光それぞれを、受光素子又はファイバ束(いずれも図示なし)に導くことも可能である。この場合、複数の受光素子間の間隔又は複数のシングルコアファイバ間の間隔のうちいずれかが、マルチコアファイバ1の複数のコアC間の間隔Pより広くなるよう配置される。ここでは、マルチコアファイバ1が、「出射側素子」の一例である。また、受光素子又はファイバ束が「入射側素子」の一例である。 Alternatively, it is possible to guide each of a plurality of lights emitted from the multi-core fiber 1 (a plurality of cores C k ) to a light receiving element or a fiber bundle (all not shown) by using the above-described coupling optical system 20 ′. . In this case, either the interval between the plurality of light receiving elements or the interval between the plurality of single core fibers is arranged to be wider than the interval P between the plurality of cores C k of the multicore fiber 1. Here, the multi-core fiber 1 is an example of an “emission side element”. The light receiving element or the fiber bundle is an example of the “incident side element”.
 また、この場合、結像光学系24は、マルチコアファイバ1のコアCからの光それぞれを、反射部材25(反射面25a)に導くための機能を奏する。すなわち、ここでは結像光学系24が、「リレーレンズ光学系」に該当する。 In this case, the imaging optical system 24 has a function of guiding each light from the core C k of the multi-core fiber 1 to the reflecting member 25 (reflecting surface 25a). That is, here, the imaging optical system 24 corresponds to a “relay lens optical system”.
 更に、この場合、リレーレンズ系21は、反射部材25(反射面25a)で反射された光を受光素子又はファイバ束を形成するシングルコアファイバに集光させる機能を奏する。すなわち、ここではリレーレンズ系21が、「結像光学系」に該当する。 Furthermore, in this case, the relay lens system 21 has a function of condensing the light reflected by the reflecting member 25 (reflecting surface 25a) onto a light receiving element or a single core fiber forming a fiber bundle. That is, here, the relay lens system 21 corresponds to the “imaging optical system”.
[作用・効果]
 本実施形態の作用及び効果について説明する。
[Action / Effect]
The operation and effect of this embodiment will be described.
 本実施形態に係る反射素子(反射部材25)の反射面25aは、段差状(反射領域251a~254a)に形成されている。 The reflection surface 25a of the reflection element (reflection member 25) according to the present embodiment is formed in a step shape (reflection regions 251a to 254a).
 このように、反射素子を一の部材により形成し、段差状の反射面25aで光を反射させる構成であっても、出射側素子(たとえば複数の光源D)から出射した光を、対応する入射側素子(たとえばマルチコアファイバ1のコアC)に導くことができる。よって、光学素子間の間隔(たとえば複数の光源D間の間隔p)をマルチコアファイバ1の複数のコアC間の間隔Pより広くすることができる。この場合、光学素子(たとえば光源D)のサイズによる光学素子同士の物理的干渉や、光学素子(たとえば光源D)が発する熱や電気ノイズの影響により結合効率の低下を招くことが無い。マルチコアファイバ1と他の光学素子とを結合する際に、結合効率の低下を抑制することができる。 As described above, even when the reflection element is formed of one member and the light is reflected by the step-like reflection surface 25a, the light emitted from the emission side element (for example, the plurality of light sources D k ) is handled. The incident side element (for example, the core C k of the multi-core fiber 1) can be guided. Therefore, it is possible to widely than the interval P between the plurality of cores C k intervals (e.g. spacing p between a plurality of light sources D k) of the multi-core fiber 1 between the optical elements. In this case, and the physical interference between the optical element according to the size of the optical element (e.g. a light source D k), it is not causing a decrease in coupling efficiency due to the influence of heat and electric noise which the optical element (e.g. a light source D k) emitted. When coupling the multi-core fiber 1 and another optical element, it is possible to suppress a decrease in coupling efficiency.
 更に、反射面25aを段差状にすることで、出射側素子(たとえば複数の光源D)から出射した光の光軸間の間隔αを、反射面25aで反射された光の光軸間の間隔α´よりも広くすることができる。すなわち、光学素子間の間隔(たとえば複数の光源D間の間隔p)を広くとることができるため、一の反射面25aに対応する光学素子を同一面上に形成することができる。よって、構成を簡素化することができ、且つ光学素子の位置調整が容易となる。また、コアCの光軸と対称位置にある光源(たとえば、D2とD3、D4とD5等)を同一平面上に配置することも可能である。よって、構成を簡素化することができ、且つ光学素子の位置調整が容易となる。 Further, by making the reflection surface 25a stepped, the interval α between the optical axes of the light emitted from the emission side elements (for example, the plurality of light sources D k ) is set between the optical axes of the light reflected by the reflection surface 25a. It can be made wider than the interval α ′. That is, since the interval between the optical elements (for example, the interval p between the plurality of light sources Dk ) can be widened, the optical element corresponding to one reflection surface 25a can be formed on the same surface. Therefore, the configuration can be simplified and the position of the optical element can be easily adjusted. It is also possible to arrange the light sources in the optical axis and symmetrical position of the core C 1 (e.g., D2 and D3, D4 and D5, etc.) on the same plane. Therefore, the configuration can be simplified and the position of the optical element can be easily adjusted.
<第1実施形態から第3実施形態の変形例>
 上記本実施形態では、光源D間の間隔pは、各光源間で等しいものとして説明しているが、マルチコアファイバ1のコアCの配置等により、光源D間の間隔pは異なっていてもよい。たとえば、第1実施形態において、光源Dと光源D間の間隔と光源Dと光源D間の間隔とが異なっていてもよい。
<Modification of the first embodiment to the third embodiment>
In the present embodiment, the distance p between the light sources Dk is described as being equal between the light sources, but the distance p between the light sources Dk is different depending on the arrangement of the cores Ck of the multi-core fiber 1 or the like. May be. For example, in the first embodiment, may be the distance the light source D 3 between the light source D 2 and the light source D 3 and the spacing between the light source D 4 are different.
 光源D間の間隔pは、少なくとも、対応するコアC間の間隔よりも広くなっていればよい。また、第2実施形態及び第3実施形態においては、光源Dからの光の光軸間距離αは、反射された光の光軸間距離α´以上であればよい。 The interval p between the light sources Dk only needs to be at least wider than the interval between the corresponding cores Ck . In the second embodiment and the third embodiment, the optical axis distance α of the light from the light source D k may be equal to or greater than the optical axis distance α ′ of the reflected light.
 また、光源Dからの光を反射させ、マルチコアファイバ1のコアCに入射させる反射面を設けてもよい。この反射面は、反射素子と一体で形成されていてもよい。 Further, the light from the light source D 1 is reflected, may be provided with a reflecting surface to be incident on the core C 1 of the multi-core fiber 1. This reflective surface may be formed integrally with the reflective element.
 1 マルチコアファイバ
 1b 端面
 2 クラッド
 2a 端面
 10 結合光学系
 11 リレーレンズ系
 11a、11b 凸レンズ
 12 反射素子
 12a 反射面
 13 支持部材
 13a 孔部
 14 結像光学系
 C コア
 D 光源
 E 端面
DESCRIPTION OF SYMBOLS 1 Multi-core fiber 1b End surface 2 Clad 2a End surface 10 Coupling optical system 11 Relay lens system 11a, 11b Convex lens 12 Reflective element 12a Reflective surface 13 Support member 13a Hole 14 Imaging optical system C k core D k light source E k end surface

Claims (7)

  1.  複数の光源、複数の受光素子、及び複数のシングルコアファイバを束ねたファイバ束のうちのいずれかの光学素子と、
     複数のコアがクラッドで覆われたマルチコアファイバと、
     前記光学素子及び前記マルチコアファイバの間に配置され、前記光学素子と前記マルチコアファイバとを光学的に結合する結合光学系と、
     を有するマルチコアファイバの結合構造であって、
     前記複数の光源間の間隔、前記複数の受光素子間の間隔及び前記複数のシングルコアファイバ間の間隔のうちいずれかが、前記マルチコアファイバの複数のコア間の間隔より広くなるよう配置され、
     前記結合光学系は、
     前記光学素子及び前記マルチコアファイバの一方からなる出射側素子から出射した光を反射させる反射面を有する反射素子と、
     前記反射素子で反射された光を他方からなる入射側素子に入射させる結像光学系と、
     を有することを特徴とするマルチコアファイバの結合構造。
    Any one of a plurality of light sources, a plurality of light receiving elements, and a fiber bundle obtained by bundling a plurality of single core fibers;
    A multi-core fiber having a plurality of cores covered with a cladding;
    A coupling optical system disposed between the optical element and the multi-core fiber to optically couple the optical element and the multi-core fiber;
    A multi-core fiber coupling structure comprising:
    Any one of the spacing between the plurality of light sources, the spacing between the plurality of light receiving elements, and the spacing between the plurality of single core fibers is arranged to be wider than the spacing between the plurality of cores of the multicore fiber,
    The coupling optical system includes:
    A reflective element having a reflective surface for reflecting light emitted from an output side element composed of one of the optical element and the multi-core fiber;
    An imaging optical system for causing the light reflected by the reflecting element to enter an incident side element composed of the other; and
    A multi-core fiber coupling structure characterized by comprising:
  2.  前記出射側素子又は前記入射側素子が、前記複数の光源又は複数の受光素子からなる場合、前記複数の光源又は前記複数の受光素子のうち少なくとも2つは、同一平面上に配置されていることを特徴とする請求項1記載のマルチコアファイバの結合構造。 When the output side element or the incident side element is composed of the plurality of light sources or the plurality of light receiving elements, at least two of the plurality of light sources or the plurality of light receiving elements are arranged on the same plane. The multi-core fiber coupling structure according to claim 1.
  3.  前記反射素子は、2つ以上の前記反射面を有する少なくとも一の部材により形成されていることを特徴とする請求項1又は2記載のマルチコアファイバの結合構造。 The multi-core fiber coupling structure according to claim 1 or 2, wherein the reflective element is formed of at least one member having two or more reflective surfaces.
  4.  前記反射面は、前記出射側素子から出射した光のうち、少なくとも2つの光を反射させるよう、前記出射側素子から出射した複数の光の進行方向に対して斜設されていることを特徴とする請求項3記載のマルチコアファイバの結合構造。 The reflection surface is provided obliquely with respect to the traveling direction of a plurality of lights emitted from the emission side element so as to reflect at least two lights out of the light emitted from the emission side element. The multi-core fiber coupling structure according to claim 3.
  5.  前記反射面は、段差状に形成されていることを特徴とする請求項3記載のマルチコアファイバの結合構造。 The multi-core fiber coupling structure according to claim 3, wherein the reflecting surface is formed in a stepped shape.
  6.  前記結像光学系は、複数のマイクロレンズがアレイ状に配置された構成であることを特徴とする請求項1から5のいずれかに記載のマルチコアファイバの結合構造。 The multi-core fiber coupling structure according to any one of claims 1 to 5, wherein the imaging optical system has a configuration in which a plurality of microlenses are arranged in an array.
  7.  前記結合光学系は、
     前記出射側素子から出射した光を前記結像光学系に導くリレーレンズ光学系を有し、
     前記出射側素子、前記入射側素子、前記リレーレンズ光学系及び前記反射素子のいずれかを移動させることにより前記出射側素子と前記入射側素子との位置調整が可能となることを特徴とする請求項1から6のいずれかに記載のマルチコアファイバの結合構造。
    The coupling optical system includes:
    A relay lens optical system for guiding the light emitted from the emission side element to the imaging optical system;
    The position adjustment of the said output side element and the said incident side element is attained by moving any of the said output side element, the said incident side element, the said relay lens optical system, and the said reflection element. Item 7. A multi-core fiber coupling structure according to any one of Items 1 to 6.
PCT/JP2012/070957 2011-09-01 2012-08-20 Coupling structure for multicore fiber WO2013031563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011190798A JP2014219428A (en) 2011-09-01 2011-09-01 Multicore fiber coupling structure
JP2011-190798 2011-09-01

Publications (1)

Publication Number Publication Date
WO2013031563A1 true WO2013031563A1 (en) 2013-03-07

Family

ID=47756057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070957 WO2013031563A1 (en) 2011-09-01 2012-08-20 Coupling structure for multicore fiber

Country Status (2)

Country Link
JP (1) JP2014219428A (en)
WO (1) WO2013031563A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201329A (en) * 2019-06-07 2020-12-17 京セラ株式会社 Optical element and optical transmission system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192936A (en) * 1987-10-05 1989-04-12 Hitachi Cable Ltd Optical pickup
JPH0194540A (en) * 1987-10-05 1989-04-13 Hitachi Cable Ltd Optical pickup
JPH0258006A (en) * 1988-08-23 1990-02-27 Fujikura Ltd Multicore type optical coupling component
JP2001154066A (en) * 1999-12-01 2001-06-08 Nec Corp Optical system unit for optical transceiver
JP2003294964A (en) * 2002-04-03 2003-10-15 Sumitomo Electric Ind Ltd Optical communication module
JP2004317912A (en) * 2003-04-18 2004-11-11 Internatl Business Mach Corp <Ibm> Optical link module, optical coupling method, information processing device including the same module, signal transferring method, prism, and its manufacturing method
JP2004333470A (en) * 2003-05-07 2004-11-25 Mitsutoyo Corp Two-dimensional measuring device using optical fiber signal receiver channel
WO2004104666A1 (en) * 2003-05-23 2004-12-02 Fujitsu Limited Optical element, optical transmission unit and optical transmission system
JP2008046288A (en) * 2006-08-14 2008-02-28 Furukawa Electric Co Ltd:The Optical element array, and optical module and its manufacturing method
JP2010250086A (en) * 2009-04-16 2010-11-04 Alps Electric Co Ltd Optical communication module
JP2010286697A (en) * 2009-06-12 2010-12-24 Sumitomo Electric Ind Ltd Optical array conversion device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192936A (en) * 1987-10-05 1989-04-12 Hitachi Cable Ltd Optical pickup
JPH0194540A (en) * 1987-10-05 1989-04-13 Hitachi Cable Ltd Optical pickup
JPH0258006A (en) * 1988-08-23 1990-02-27 Fujikura Ltd Multicore type optical coupling component
JP2001154066A (en) * 1999-12-01 2001-06-08 Nec Corp Optical system unit for optical transceiver
JP2003294964A (en) * 2002-04-03 2003-10-15 Sumitomo Electric Ind Ltd Optical communication module
JP2004317912A (en) * 2003-04-18 2004-11-11 Internatl Business Mach Corp <Ibm> Optical link module, optical coupling method, information processing device including the same module, signal transferring method, prism, and its manufacturing method
JP2004333470A (en) * 2003-05-07 2004-11-25 Mitsutoyo Corp Two-dimensional measuring device using optical fiber signal receiver channel
WO2004104666A1 (en) * 2003-05-23 2004-12-02 Fujitsu Limited Optical element, optical transmission unit and optical transmission system
JP2008046288A (en) * 2006-08-14 2008-02-28 Furukawa Electric Co Ltd:The Optical element array, and optical module and its manufacturing method
JP2010250086A (en) * 2009-04-16 2010-11-04 Alps Electric Co Ltd Optical communication module
JP2010286697A (en) * 2009-06-12 2010-12-24 Sumitomo Electric Ind Ltd Optical array conversion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201329A (en) * 2019-06-07 2020-12-17 京セラ株式会社 Optical element and optical transmission system
JP7333206B2 (en) 2019-06-07 2023-08-24 京セラ株式会社 Optical element and optical transmission system
US11934013B2 (en) 2019-06-07 2024-03-19 Kyocera Corporation Optical element and optical transmission system

Also Published As

Publication number Publication date
JP2014219428A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
CN102598545B (en) For through improveing the optical fiber end structure of multimode bandwidth and related system and method
JP6956211B2 (en) Optical connectors and optical connector systems and active optical cables with them
JP5025695B2 (en) Optical module
TWI511477B (en) Optical transceiver apparatus
JP6366602B2 (en) Multichannel optical connector with coupling lens
JP5831403B2 (en) Coupling optical system and coupling method
US10641966B2 (en) Free space grating coupler
KR102103867B1 (en) High power spatial filter
WO2016021384A1 (en) Optical receptacle and optical module
JP5790428B2 (en) Coupling optics, fiber optics
US6411755B1 (en) Cladding-assisted single-mode fiber coupler
WO2013031563A1 (en) Coupling structure for multicore fiber
JP5158039B2 (en) Optical transceiver and optical active cable using optical path changing optical block with lens
JPH1114869A (en) Optical transmission module
CN103308994B (en) Optical coupling device
WO2019087872A1 (en) Optical receptacle, optical module, and optical transmitter
US20040136650A1 (en) Optical sub-assembly module for suppressing optical back-reflection and effectively guiding light from light source to optical waveguide
JP5900043B2 (en) Optical coupling structure and array optical amplification module
JP6411899B2 (en) Multi-core fiber connection device and system
CN109669249B (en) Dual-wavelength bidirectional transmission optical assembly and method
KR101853090B1 (en) Led light source device for concentrating light guide
JP2023084982A (en) Optical receptacle and optical module
JP2022128391A (en) Optical connection component and optical component
JP2023066024A (en) laser device
JP5787256B2 (en) Optical path switching device and optical signal optical path switching method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP