JPH0258006A - Multicore type optical coupling component - Google Patents

Multicore type optical coupling component

Info

Publication number
JPH0258006A
JPH0258006A JP20888288A JP20888288A JPH0258006A JP H0258006 A JPH0258006 A JP H0258006A JP 20888288 A JP20888288 A JP 20888288A JP 20888288 A JP20888288 A JP 20888288A JP H0258006 A JPH0258006 A JP H0258006A
Authority
JP
Japan
Prior art keywords
base material
core
optical coupling
diameter side
coupling component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20888288A
Other languages
Japanese (ja)
Inventor
Suehiro Miyamoto
宮本 末広
Taiichiro Tanaka
大一郎 田中
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP20888288A priority Critical patent/JPH0258006A/en
Publication of JPH0258006A publication Critical patent/JPH0258006A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To save the space for the installation of an optical device and to improve incidence efficiency by composing the optical component of plural cores and a clad covering them and decreasing the external diameter gradually from one end to the other while the sectional shape is held similar. CONSTITUTION:A base material F2 which consists of the cores 4 and 3 and clad 4 covering them and has the external diameter nearly as large as that on the large-diameter side 7 of a component F2 is prepared and the center part of the base material F2 is heated by a heating means 10 consisting of a moving burner, etc.; and both ends of the base material F2 are drawn and elongated gradually when the base material F2 is fused properly. The speed of elongation at this time is determined while the external diameter is monitored so that a desired external diameter is obtained at a specific position. The base material F2 which is drawn as mentioned above is cut in the center to obtain the multicore type optical coupling components which facilitate the installation of the optical device on the large-diameter side in terms of space and has good incidence efficiency.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、マルチコア光ファイバ等への光入出力の際、
用いて有用なマルチコア型光結合部品に関するものであ
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a method for inputting and outputting light to a multi-core optical fiber, etc.
The present invention relates to a multi-core optical coupling component useful for use in the present invention.

〈従来の技術〉 マルチコア光ファイバ、例えばツインコア光ファイバの
場合、夫々のコア部分に外部から独立に光を入射しよう
とするとき、各コア間の間隔が数十μmしかなく、非常
に接近しているため、例えば2つの光源から出た光をレ
ンズ系を用いて、対応するコアに入射させることは非常
に困難であった。
<Prior art> In the case of a multi-core optical fiber, for example, a twin-core optical fiber, when trying to input light from the outside into each core portion independently, the distance between the cores is only several tens of μm, and the distance between the cores is only a few tens of μm, and the distance between the cores is very close to each other. Therefore, it is extremely difficult to direct the light emitted from two light sources into the corresponding cores using a lens system, for example.

そこで、従来、例えば第5図に示したように光学系のレ
ンズ1,1とツインコア光ファイバF。
Therefore, conventionally, for example, as shown in FIG. 5, lenses 1 and 1 of an optical system and a twin-core optical fiber F have been used.

の各コア2,2間の間に、コア3を極端に偏心させた偏
心光ファイバF1を作成し、これを2本用いて、上記2
個のレンズ1,1からの独立した光を上記ツインコア光
ファイバF。の各コア2.2に入射させる方法が試みら
れている。
An eccentric optical fiber F1 with the core 3 extremely eccentric is created between each core 2, 2, and two of these are used to perform the above 2.
The independent lights from the lenses 1 and 1 are connected to the twin core optical fiber F. Attempts have been made to make the light incident on each core 2.2.

〈発明が解決しようとする課題〉 しかしながら、上記方法では、(1)3本の光ファイバ
F、、F、、F、の調心および装置が難しく、実際の入
射効率は20%以下であった。(2)さらに偏心光ファ
イバF、の製造にあたっては、クランド部分を切削して
コア3を偏心させる関係上、精密な機械加工が必要とさ
れ、またその際の偏心両の制御が難しいため、製造の歩
留りが悪く、大変なコスト高であった・ 本発明は、このような従来の実情に鑑みてなされたもの
で、その目的とするところは、上記のような結合時に使
用され、入射効率がよく、かつ低コストのマルチコア型
光結合部品を提供せんとすることろにある。
<Problems to be Solved by the Invention> However, in the above method, (1) alignment of the three optical fibers F, , F, , F and the equipment were difficult, and the actual incidence efficiency was less than 20%; . (2) Furthermore, in manufacturing the eccentric optical fiber F, precise machining is required to eccentrically center the core 3 by cutting the crund part, and it is difficult to control the eccentricity at that time. The present invention was made in view of these conventional circumstances, and its purpose is to improve the incidence efficiency by being used in the above-mentioned coupling. It is an object of the present invention to provide a multi-core type optical coupling component that is efficient and low cost.

く課題杏解決するための手段〉 か−る本発明のマルチコア型光結合部品は、マルチコア
とこれらを包むクラッドからなり、断面形状が相似形の
まま、一端から他端にかけて外径が次第に縮小されてな
るものである。
Means for Solving the Problems> The multi-core optical coupling component of the present invention consists of a multi-core and a cladding surrounding the multi-core, and the outer diameter is gradually reduced from one end to the other while the cross-sectional shape remains similar. This is what happens.

〈作用〉 従って、本部品では、例えば大径側に光学系装置を設置
し、小径側では、接続しようとするマルチコア光ファイ
バと同径部分で接続すれば、極めてスムーズな光結合が
行われる。
<Function> Therefore, in this component, for example, if an optical system device is installed on the large diameter side and the small diameter side is connected at the same diameter portion as the multi-core optical fiber to be connected, extremely smooth optical coupling will be performed.

この際、大径側への光学系装置の設置がスペース的に容
易であって、良好な入射が簡単に行なえる。
At this time, it is easy to install the optical system on the large diameter side in terms of space, and good incidence can be easily achieved.

〈実施例〉 第1図は本発明に係るマルチコア型光結合部品の一実施
例を示したものである。
<Example> FIG. 1 shows an example of a multi-core optical coupling component according to the present invention.

図において、F2は本発明のマルチコア型光結合部品で
、マルチコア(ツインコア)4.4とこれらを包むクラ
ッド5からなり、その断面形状は相似形のまま、一端か
ら他端にかけて外径が次第に縮小されてなる。
In the figure, F2 is a multi-core optical coupling component of the present invention, which consists of a multi-core (twin core) 4.4 and a cladding 5 surrounding them.The cross-sectional shape remains similar, but the outer diameter gradually decreases from one end to the other. It will be done.

そして、実際の商品では、本部品F2の縮径側6の外径
を、例えば通常の光ファイバやマルチコア光ファイバ等
の大きさとしであるのに対して、大径側7は縮径側6の
外径の数十倍から数百倍としである。
In the actual product, the outer diameter of the reduced diameter side 6 of this part F2 is the size of, for example, a normal optical fiber or a multi-core optical fiber, whereas the large diameter side 7 is the same as that of the reduced diameter side 6. It is several tens to hundreds of times the outer diameter.

従って、その使用にあたっては、図示の如く縮径側6に
は略同径のマルチコア光ファイバFoを直接接続し、大
径側7には例えば入射のための光学系の装置8を設置す
る。この大径側7ではマノ?チコア4.4間の間隔が十
分あるため、光学系のレンズ1,1の設置も容易であり
、外部からの伝送光は、例えばプリズム9,9、上記レ
ンズ1゜1を介して極めてスムーズに入射される。
Therefore, in its use, as shown in the figure, a multi-core optical fiber Fo having approximately the same diameter is directly connected to the reduced diameter side 6, and an optical system device 8 for inputting light, for example, is installed on the large diameter side 7. Is it mano on this large diameter side 7? Since there is a sufficient distance between the chicores 4 and 4, it is easy to install the lenses 1 and 1 of the optical system, and the transmitted light from the outside is transmitted extremely smoothly through the prisms 9 and 9 and the lens 1. It is incident.

か−る本発明のマルチコア型光結合部品F2は例えば第
2図(A)、(B)の如くして製造される。
The multi-core optical coupling component F2 of the present invention is manufactured, for example, as shown in FIGS. 2(A) and 2(B).

つまり、第2図(^)に示したように、最初、マルチコ
ア4,4とこれらを包むクラッド5からなり、その外径
が上記部品F2の大径側7と略同程度の大きさ、例えば
10mm程度の母材Fz  ′を用意し、この母材Fz
  ’の中央部分を、移動するバーナ等からなる加熱手
段10で加熱し、次に、第2(B)に示したように、適
度に母材F2  ′が溶融してきたら当該母材F2 ′
の両端を引っ張って徐々に伸ばす。このときの引張りの
スピードは外径をモニタしながら、所定の部位が所望の
外径になるようにして行う。例えば、外径12.5mm
、長さ5Qmm程度の母材F2 ′を、中央部の最細部
骨が125μm程度になるように全長を2m程度に延伸
することが考えられる。
In other words, as shown in FIG. 2 (^), it is initially composed of the multi-cores 4, 4 and the clad 5 surrounding them, and the outer diameter of the core is approximately the same as the large-diameter side 7 of the part F2, for example. Prepare a base material Fz ′ of about 10 mm, and use this base material Fz
The central part of the base material F2' is heated by the heating means 10 consisting of a moving burner, etc., and then, as shown in 2nd (B), when the base material F2' is melted to an appropriate degree, the base material F2' is heated.
Gradually stretch it by pulling on both ends. At this time, the tensioning speed is determined while monitoring the outer diameter so that a predetermined portion has a desired outer diameter. For example, outer diameter 12.5mm
It is conceivable to stretch the base material F2', which has a length of about 5 Qmm, to a total length of about 2 m so that the smallest bone in the center part is about 125 μm.

このよにして延伸された母材F2 ′を中央から切断す
れば、2個の目的とする本マルチコア型光結合部品F2
が得られる。
If the base material F2' stretched in this way is cut from the center, two target multi-core optical coupling parts F2 can be obtained.
is obtained.

おな、上記各実施例では、本マルチコア型光結合部品F
2のマルチコア数が2個の場合であったが、これに限定
されるものではない。
In each of the above embodiments, the present multi-core optical coupling component F
Although the number of multi-cores in 2 is 2, it is not limited to this.

また、上記第1図の実施例では、プリズム9゜9、レン
ズ1.1を用いた光学系の装置8により、光の入射を行
ったが、本発明ののマルチコア型光結合部品F2の場合
、勿論これに限定されるものではない。例えば、第3図
に示したように、本部品F2の場合大径側7のマルチコ
ア4.4間の間隔が大きいことから、直接通常この光フ
ァイバF3、F3を接続して入射させてもよ(、または
第4図に示したように、発光素子11.11からの光を
、レンズ1,1、反射ミラ12を介した反射光として、
直接入射させることもできる。
In addition, in the embodiment shown in FIG. 1, the light is incident by an optical system device 8 using a prism 9°9 and a lens 1.1, but in the case of the multi-core optical coupling component F2 of the present invention. , of course, is not limited to this. For example, as shown in Fig. 3, in the case of this component F2, since the distance between the multi-cores 4.4 on the large diameter side 7 is large, it is also possible to connect these optical fibers F3 and F3 directly and input the fibers. (Or, as shown in FIG. 4, the light from the light emitting element 11.11 is reflected light through the lenses 1, 1 and the reflective mirror 12,
Direct injection is also possible.

また、上記各実施例では、本部品F2の小径側6に接続
されるものが、マルチコア光ファイバF。であったが、
その他の光学部品、素子であってもよい。
In each of the above embodiments, the multi-core optical fiber F is connected to the small diameter side 6 of the component F2. However,
Other optical components and elements may also be used.

さらにまた、上記各実施例の場合、大径側7から光を入
射する場合であったが、これとは逆に、小径側6からマ
ルチコア光ファイバF0等を用いて入射させ、大径側7
に設置された光学系の装置8に出力させることも可能で
ある。
Furthermore, in each of the above embodiments, the light was incident from the large diameter side 7, but conversely, the light was made incident from the small diameter side 6 using a multi-core optical fiber F0, etc.
It is also possible to output it to an optical system device 8 installed in the.

因みに、上記第1図に示した実験装置系を用いて、本発
明者等が、入射試験を行ったところ、次の如くであった
Incidentally, when the present inventors conducted an incident test using the experimental apparatus shown in FIG. 1, the results were as follows.

外径12.5mm、長さ50mmの母材F2の中心をH
,O□炎で加熱し、中央の外径が125μm、全長を2
mに延伸した。この母材F2を中央で切断して、各々1
mのテーパー形からなる本発明のマルチコア型光結合部
品F、、F、を得た。この大径側7の外径は12.5m
m、小径側6の外径は125μmである。
The center of the base material F2 with an outer diameter of 12.5 mm and a length of 50 mm is
, O
It was stretched to m. This base material F2 is cut at the center, and each
Multi-core optical coupling components F, , F of the present invention having a tapered shape of m were obtained. The outer diameter of this large diameter side 7 is 12.5m
m, and the outer diameter of the small diameter side 6 is 125 μm.

この光結合部品F2の大径側7にレンズ1,1からの光
を入射させた。このとき、大径側7のコア4の径は1m
m、コア4,4間の間隔は3mmであった。
Light from the lenses 1, 1 was made incident on the large diameter side 7 of this optical coupling component F2. At this time, the diameter of the core 4 on the large diameter side 7 is 1 m.
m, and the spacing between the cores 4, 4 was 3 mm.

そして、このときの入射効率は理論的限界値に近い55
%であった。
The incidence efficiency at this time is close to the theoretical limit value of 55
%Met.

〈発明の効果〉 以上の説明から明らかなように、本発明にれば、大径側
への光学系装置の設置がスペース的に楽で、入射効率が
よく、かつ製造方法が簡単で低コストの優れたマルチコ
ア型光結合部品が得られる。
<Effects of the Invention> As is clear from the above description, according to the present invention, it is easy to install the optical system on the large diameter side in terms of space, the incidence efficiency is good, and the manufacturing method is simple and low cost. An excellent multi-core optical coupling component can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るマルチコア型光結合部品を用いた
光入射系の一例を示した概略説明図、第2図(A)、(
B)は本発明のマルチコア型光結合部品の製造工程を示
した各説明図、第3図〜第4図は本発明に係るマルチコ
ア型光結合部品を用いた光入射系の他の例を示した各概
略説明図、第5図は従来の光入射系の一例を示した概略
説明図である。 図中、 F2 ・・・ F2  ・・ 4・・・・ 5・・・・ 6・・・・ 7・・・・ ・マルチコア型光結合部品、 ・母材、 ・マルチコア、 ・クランド、 ・小径側、 ・大径側、
FIG. 1 is a schematic explanatory diagram showing an example of a light incidence system using a multi-core optical coupling component according to the present invention, and FIG.
B) is an explanatory diagram showing the manufacturing process of the multi-core optical coupling component according to the present invention, and FIGS. 3 to 4 show other examples of light incidence systems using the multi-core optical coupling component according to the present invention. FIG. 5 is a schematic explanatory diagram showing an example of a conventional light incidence system. In the figure, F2... F2... 4... 5... 6... 7... ・Multi-core type optical coupling component, ・Base metal, ・Multi-core, ・Cland, ・Small diameter side , ・Large diameter side,

Claims (1)

【特許請求の範囲】[Claims] マルチコアとこれらを包むクラッドからなり、断面形状
が相似形のまま、一端から他端にかけて外径が次第に縮
小されてなるマルチコア型光結合部品。
A multi-core optical coupling component consisting of a multi-core and a cladding that surrounds the multi-core, with a similar cross-sectional shape and an outer diameter that gradually decreases from one end to the other.
JP20888288A 1988-08-23 1988-08-23 Multicore type optical coupling component Pending JPH0258006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20888288A JPH0258006A (en) 1988-08-23 1988-08-23 Multicore type optical coupling component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20888288A JPH0258006A (en) 1988-08-23 1988-08-23 Multicore type optical coupling component

Publications (1)

Publication Number Publication Date
JPH0258006A true JPH0258006A (en) 1990-02-27

Family

ID=16563678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20888288A Pending JPH0258006A (en) 1988-08-23 1988-08-23 Multicore type optical coupling component

Country Status (1)

Country Link
JP (1) JPH0258006A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193459A (en) * 2010-03-10 2011-09-29 Ofs Fitel Llc Multicore fiber transmission system and method
JP2011237782A (en) * 2010-04-13 2011-11-24 Sumitomo Electric Ind Ltd Optical branch element and optical communication system including the same
WO2013031563A1 (en) * 2011-09-01 2013-03-07 コニカミノルタアドバンストレイヤー株式会社 Coupling structure for multicore fiber
JP2013174809A (en) * 2012-02-27 2013-09-05 Sumitomo Electric Ind Ltd Conversion element
JP2014503081A (en) * 2010-12-21 2014-02-06 オーエフエス ファイテル,エルエルシー Multi-core collimator
WO2014132989A1 (en) * 2013-02-26 2014-09-04 古河電気工業株式会社 Connection structure for multi-core fiber and optical-fiber-bundle structure, connection structure for multi-core fibers, method for exciting rare-earth-doped multi-core fibers, and multi-core-optical-fiber amplifier
JP2014167605A (en) * 2013-01-30 2014-09-11 Mitsubishi Cable Ind Ltd Optical sensor device and optical fiber cable used for the same
JP2015099215A (en) * 2013-11-18 2015-05-28 湖北工業株式会社 Fiber preform unit for optical connection component, optical connection component and method for manufacturing optical connection component
US9348090B2 (en) 2012-02-27 2016-05-24 Sumitomo Electric Industries, Ltd. Optical coupling element and manufacturing method
JP2017021360A (en) * 2016-09-07 2017-01-26 住友電気工業株式会社 Conversion element
JP2017219626A (en) * 2016-06-06 2017-12-14 株式会社フジクラ Optical device, laser system, and manufacturing method for optical device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8725001B2 (en) 2010-03-10 2014-05-13 Ofs Fitel, Llc Multicore fiber transmission systems and methods
JP2011193459A (en) * 2010-03-10 2011-09-29 Ofs Fitel Llc Multicore fiber transmission system and method
JP2011237782A (en) * 2010-04-13 2011-11-24 Sumitomo Electric Ind Ltd Optical branch element and optical communication system including the same
JP2015232717A (en) * 2010-12-21 2015-12-24 オーエフエス ファイテル,エルエルシー Multiple core collimator
JP2014503081A (en) * 2010-12-21 2014-02-06 オーエフエス ファイテル,エルエルシー Multi-core collimator
WO2013031563A1 (en) * 2011-09-01 2013-03-07 コニカミノルタアドバンストレイヤー株式会社 Coupling structure for multicore fiber
JP2013174809A (en) * 2012-02-27 2013-09-05 Sumitomo Electric Ind Ltd Conversion element
WO2013129007A1 (en) * 2012-02-27 2013-09-06 住友電気工業株式会社 Optical coupling element and method for manufacturing same
US9348090B2 (en) 2012-02-27 2016-05-24 Sumitomo Electric Industries, Ltd. Optical coupling element and manufacturing method
JP2014167605A (en) * 2013-01-30 2014-09-11 Mitsubishi Cable Ind Ltd Optical sensor device and optical fiber cable used for the same
WO2014132989A1 (en) * 2013-02-26 2014-09-04 古河電気工業株式会社 Connection structure for multi-core fiber and optical-fiber-bundle structure, connection structure for multi-core fibers, method for exciting rare-earth-doped multi-core fibers, and multi-core-optical-fiber amplifier
JP2015099215A (en) * 2013-11-18 2015-05-28 湖北工業株式会社 Fiber preform unit for optical connection component, optical connection component and method for manufacturing optical connection component
JP2017219626A (en) * 2016-06-06 2017-12-14 株式会社フジクラ Optical device, laser system, and manufacturing method for optical device
US10627573B2 (en) 2016-06-06 2020-04-21 Fujikura Ltd. Optical device, laser system, and method for manufacturing optical device
US10942311B2 (en) 2016-06-06 2021-03-09 Fujikura Ltd. Optical device
JP2017021360A (en) * 2016-09-07 2017-01-26 住友電気工業株式会社 Conversion element

Similar Documents

Publication Publication Date Title
US5647040A (en) Tunable optical coupler using photosensitive glass
US4456330A (en) Optical coupling system and method for manufacturing same
JPH0258006A (en) Multicore type optical coupling component
US5351323A (en) Optical fiber for coupling to elliptically-shaped source
AU2003252876A1 (en) Fiber optic fabry-perot interferometer and associated methods
US4830453A (en) Device for optically coupling a radiation source to an optical transmission fiber
US20030026539A1 (en) Optical fiber having a light converging function and method of manufacturing the same
JPH055815A (en) Production of optical fiber coupler
JP3224106B2 (en) Optical fiber for laser input
JP2003215389A (en) Optical fiber collimator and manufacturing method therefor
KR910008442A (en) Fiber Optic Connection System and Method
JPH0363609A (en) Wide-band optical fiber coupler and its manufacture
WO1992001641A1 (en) Optical fibre coupler
JPS6070407A (en) Method and mechanism for observing optical fiber core
JPS61295512A (en) Exciter for dual core fiber
JPS61270706A (en) Local incidence method to optical fiber
JP2004279759A (en) Optical fiber coupler, its manufacturing method and apparatus
JPH0498203A (en) Method for controlling expansion of mode filed diameter of optical fiber
JPH06148461A (en) Manufacture of optical fiber coupler
JP3066444B2 (en) Manufacturing method of broadband optical fiber coupler
JPH02212803A (en) Optical fiber wavelength filter
Filipenko et al. ChalaThe Autoconvolution Method Use for Positioning Photonic Crystal Fibers
JPH0498202A (en) Method for controlling expansion of mode field diameter of optical fiber
JPS63195604A (en) Converting element for optical fiber direction
JPH0532726B2 (en)