WO2014016939A1 - Module in which light emitting element and optical fiber are coupled, and component therefor - Google Patents

Module in which light emitting element and optical fiber are coupled, and component therefor Download PDF

Info

Publication number
WO2014016939A1
WO2014016939A1 PCT/JP2012/069008 JP2012069008W WO2014016939A1 WO 2014016939 A1 WO2014016939 A1 WO 2014016939A1 JP 2012069008 W JP2012069008 W JP 2012069008W WO 2014016939 A1 WO2014016939 A1 WO 2014016939A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting element
light emitting
optical fiber
grin lens
component
Prior art date
Application number
PCT/JP2012/069008
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 太郎
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to PCT/JP2012/069008 priority Critical patent/WO2014016939A1/en
Priority to JP2012543390A priority patent/JP5387930B1/en
Publication of WO2014016939A1 publication Critical patent/WO2014016939A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms

Definitions

  • the present invention relates to a light emitting element / optical fiber coupling module in which a light emitting element such as a laser diode used in optical communication and an optical fiber are coupled with high efficiency, and a light emitting element for manufacturing the light emitting element / optical fiber coupling module.
  • a light emitting element such as a laser diode used in optical communication and an optical fiber are coupled with high efficiency
  • a light emitting element for manufacturing the light emitting element / optical fiber coupling module -It relates to components for optical fiber coupling modules.
  • Patent Document 1 listed below discloses a light emitting element / optical fiber coupling module that couples a light emitting element such as a laser diode and an optical fiber with high efficiency. This is because a through-hole is formed in the end surface of a cylindrical casing having a light-emitting element attached therein, and a second GRIN lens is fused to the tip of the optical fiber from the through-hole into the casing. The tip of the optical fiber component fused with the first GRIN lens having a larger numerical aperture than the second GRIN lens is inserted so as to face the light emitting element in the casing, and the optical fiber component is fixed by a fixing means. It is fixed to the through hole and the through hole is sealed.
  • a GRIN lens is an optical fiber that acts as a lens by having a refractive index distribution from the center to the radial direction, and the refractive index distribution is preferably a square distribution or a distribution close to a square distribution.
  • the numerical aperture of an optical fiber or GRIN lens is a critical angle (when light is incident on an optical fiber or GRIN lens with an inclination with respect to its axis, the maximum angle with respect to the axis that allows light to enter the optical fiber or GRIN lens) The sine value of
  • the light emitted from the light emitting element sequentially enters the optical fiber through the first GRIN lens and the second GRIN lens.
  • the numerical aperture NA1 of the first GRIN lens is the numerical aperture NA2 of the second GRIN lens. Therefore, the first GRIN lens having a large numerical aperture (preferably larger than the numerical aperture NAs of the light emitting element) is adopted, and the light emitted from the light emitting element is efficiently contained in the first GRIN lens. Can enter. Further, since the numerical aperture NA2 of the second GRIN lens is smaller than NA1, a sufficiently small numerical aperture can be selected, thereby reducing the critical angle of light from the second GRIN lens to the optical fiber (numerical aperture).
  • the meandering period of the light meandering through the GRIN lens becomes long and the angle with respect to the axis of the light exiting from the second GRIN lens is also small), so that light is transmitted from the second GRIN lens to the optical fiber. Enter efficiently.
  • the light emitting element / optical fiber coupling module includes an optical fiber numerical aperture (NAf), a first GRIN lens numerical aperture (NA1), a second GRIN lens numerical aperture (NA2), and a light emitting element numerical aperture (NAs).
  • NAf optical fiber numerical aperture
  • NA1 first GRIN lens numerical aperture
  • NA2 second GRIN lens numerical aperture
  • NAs light emitting element numerical aperture
  • FIG. 18 is an explanatory diagram showing how the beam b is emitted from the active layer 70 sandwiched between the cladding layers of the laser diode 7.
  • the shape of the outgoing beam b is elliptical, and the outgoing point p of the short axis Dp and the outgoing point q of the long axis Dq are shifted by ⁇ As.
  • the deviation ⁇ As of the emission point is, for example, several tens of microns.
  • the numerical aperture NAs of the output beam long axis of a laser diode having a large output is 0.43 or more.
  • a conventional cylindrical (cylindrical) An optical element such as a lens needs to be interposed between the light emitter and the fiber, and the structure is complicated and there is a limit to downsizing.
  • the present invention provides a light-emitting element / optical fiber having a high coupling efficiency by making the numerical aperture of the GRIN lens used for light-emitting element / optical fiber coupling larger than the original numerical aperture of the GRIN lens.
  • An object of the present invention is to make the structure of the coupling module simple and small.
  • Another object of the present invention is to widen the range of light-emitting elements that can be used as a light-emitting element / optical fiber coupling module that can handle light-emitting elements having a large aspect ratio.
  • the GRIN lens has a ridge line in the diametrical direction on one end face thereof, and both sides thereof are inclined surfaces that protrude to protrude the ridge line, and a portion including the ridge line is a curved surface.
  • This is a component for a light emitting element / optical fiber coupling module.
  • the GRIN lens has a ridge line 10 in the diameter direction on one end face, and both sides thereof are inclined so as to project the ridge line.
  • An inclined surface 11 is formed.
  • the ridge line 10 is not sharp, and the surrounding portion including the ridge line 10 is a curved surface. For this reason, the light incident on the ridge line portion efficiently enters the GRIN lens without being diffused.
  • the periphery of the ridge line can be curved by electric discharge machining after polishing with the ridge line sharpened.
  • the ridge line portion can be curved.
  • the optical path of the laser light incident from the laser diode 7 into the component 1 is the same as that of the flat end surface.
  • the laser light emitted from the laser diode 7 is largely refracted by the inclined surface 11, so that the critical angle ⁇ 1 is larger than ⁇ 2.
  • FIG. 3 shows the relationship between the inclination angle ⁇ and the critical angles ⁇ 1 and ⁇ 2 when the refractive index of the outer peripheral portion of the light emitting element / optical fiber coupling module component 1 is 1.5.
  • ⁇ 1 increases as ⁇ increases.
  • the high-power beam of the laser diode 7 can be incident on the component 1 with high efficiency.
  • this invention is a component for light emitting element and optical fiber coupling modules which fused the optical fiber to the end surface on the opposite side to the end surface with the said ridgeline of the component of Claim 1.
  • a second GRIN lens having a smaller numerical aperture than that of the first GRIN lens is fused to the end surface of the first GRIN lens which is the component of claim 1 on the side opposite to the end surface where the ridgeline is located.
  • This is a component for a light emitting element / optical fiber coupling module that is attached and fused with an optical fiber to the opposite end face of the second GRIN lens.
  • the laser light incident from the laser diode into the component can be incident on the core of the optical fiber and transmitted. it can.
  • a second GRIN lens having a larger numerical aperture than that of the first GRIN lens is fused to the end surface of the first GRIN lens which is the component of claim 1 on the side opposite to the end surface where the ridgeline is located.
  • This is a component for a light emitting element / optical fiber coupling module that is attached and fused with an optical fiber to the opposite end face of the second GRIN lens.
  • NA1 the numerical aperture of the first GRIN lens
  • NA2 the numerical aperture of the second GRIN lens
  • NAf the numerical aperture of the optical fiber
  • the light diffraction can be achieved by slightly changing the length of the first GRIN lens.
  • the numerical aperture of the first GRIN lens is made smaller than the numerical aperture of the second GRIN lens, the length of the first GRIN lens is changed. Since the change in the distance to the beam waist is relatively small, the distance to the beam waist can be easily controlled to a desired distance. Further, since the numerical aperture of the first GRIN lens is reduced, the diameter of the beam waist can be increased.
  • a through hole is formed in an end surface of a cylindrical casing to which a light emitting element can be attached, and the first GRIN lens of the component according to claim 3 or 4 is inserted into the casing from the through hole.
  • a light-emitting element is mounted inside the casing so as to face the front surface of the first GRIN lens, and a lid is applied to the back of the casing to fill the inside with a vacuum, an inert gas atmosphere, or a resin.
  • An optical fiber coupling module can be easily manufactured.
  • the light emitting element is mounted so as to face the front surface of each first GRIN lens, and the inside of the casing is covered with a vacuum, inert gas atmosphere or By filling the resin, an arrayed high-efficiency light-emitting element / optical fiber coupling module can be easily manufactured.
  • a light emitting element / optical fiber coupling module wherein the light emitting element is disposed opposite to an end surface of the first GRIN lens having a ridgeline, wherein the ridgeline is the light emitting element.
  • a light emitting element / optical fiber coupling module characterized by being parallel to the minor axis of an elliptical beam emitted from the element.
  • the critical angle becomes a large critical angle ⁇ 1
  • the high output beam of the laser diode 7 can be incident on the first GRIN lens with high efficiency.
  • the components of Claims 3 and 4 and the light-emitting element may be arranged opposite to each other and fixed, and any means may be used so long as the parts of Claims 3 and 4 and the light-emitting element are fixed in a predetermined positional relationship.
  • the beam of the light emitting element can be incident on the core of the optical fiber with high efficiency.
  • the present invention is a light emitting element / optical fiber coupling module in which the light emitting element is fixed in the casing so as to face the end face of the component of claim 5 facing the ridge line of the first GRIN lens, Is a light emitting element / optical fiber coupling module characterized by being parallel to the minor axis of the elliptical beam emitted from the light emitting element.
  • This light emitting element / optical fiber coupling module is highly efficient like the light emitting element / optical fiber coupling module of claim 7, and can be easily manufactured using the light emitting element / optical fiber coupling module parts of claim 5.
  • the present invention is a light emitting element / optical fiber coupling module in which the light emitting element is fixed in the casing so as to face the end face with the ridgeline of each of the first GRIN lenses.
  • the light emitting element / optical fiber coupling module is characterized in that the first GRIN lens ridge line is parallel to the minor axis of the elliptical beam emitted from each light emitting element.
  • the light emitting element / optical fiber coupling module is highly efficient like the light emitting element / optical fiber coupling module according to claim 8, and the light emitting element / optical fiber coupling module according to claim 6 is used to form an array of light emitting elements. -An optical fiber coupling module can be easily manufactured.
  • the critical angle of the major axis of the elliptical output beam of the light emitting element of the GRIN lens used for the light emitting element / optical fiber coupling can be made larger than the critical angle of the flat end surface of the GRIN lens.
  • the optical fiber coupling efficiency can be increased.
  • a light-emitting element having a large aspect ratio can be handled, the range of usable light-emitting elements becomes extremely wide.
  • FIG. 6 is an explanatory diagram of a critical angle of a part 1. It is explanatory drawing of the relationship between inclination
  • the 1 includes a ridge line 10 and an inclined surface 11 at one end of a cylindrical GRIN lens, and a flat end surface perpendicular to the axis at the other end.
  • the ridge line 10 is in the diameter direction of the GRIN lens, that is, passes through the axis and is perpendicular to the axis.
  • the inclined surface 11 is formed on both sides of the ridge line 10 so as to be inclined so as to project the ridge line. Therefore, when this end is viewed from the side parallel to the ridgeline, it has a mountain shape as shown in FIG.
  • the inclination angle ⁇ of the inclined surface 11 can be set to 5 ° to 30 °, for example.
  • the component 1 can be manufactured, for example, by inserting and temporarily fixing a GRIN lens into a ferrule and polishing the tip to form a ridge line and an inclined surface.
  • the axial length Z1 of the first GRIN lens is such that the refractive index of the glass at the center is n 0 , the radius of the GRIN lens is d1, and the distance from the light emitting element is L.
  • Z1 (n 0 * d1 / NA1) arctan (d1 / (NA1 * L)) It is desirable that As a result, the light that has entered the first GRIN lens becomes a parallel light beam at the end thereof, and efficiently enters the second GRIN lens. In this case, as shown in FIG.
  • the major axis and the minor axis L are different, but the actual NA 1 of the major axis is that of the minor axis. ( ⁇ 1> ⁇ 2), the difference between Z1 obtained for the major axis and Z1 obtained for the minor axis is smaller than in the conventional case where the tip surface is flat.
  • the element / optical fiber coupling module has improved coupling efficiency.
  • the length of the second GRIN lens 5 is suitably about 1/4 of the meandering period of the propagating light beam or an odd multiple thereof. Since the condensing property of the second GRIN lens is smaller than that of the first GRIN lens (the numerical aperture is small), the light is condensed at a gentle angle, and the light efficiently enters the optical fiber.
  • the numerical aperture of the first GRIN lens is NA1
  • the numerical aperture of the second GRIN lens is NA2
  • the numerical aperture of the optical fiber is NAf, NAf ⁇ NA2 ⁇ NA1.
  • the light emitted from the laser diode 7 efficiently enters the first GRIN lens 1, becomes a parallel light beam at its end, efficiently enters the second GRIN lens 5, and enters the light at the end.
  • the light is condensed on the axis of the fiber 6 and efficiently enters the core.
  • the laser diode 7 is arranged facing the tip surface of the component 2 so that the ridge line 10 is parallel to the short axis of the elliptical beam emitted from the light emitting element, and the light emitting element / optical fiber coupling module 2A is formed. ing.
  • FIG. 4A is a side view as viewed from a direction parallel to the ridge line 10
  • FIG. 4B is a side view as viewed from a direction perpendicular to the ridge line 10.
  • the major axis of the outgoing beam can enter the first GRIN lens having a larger critical angle than the critical angle inherent to the first GRIN lens (the critical angle at the flat end surface). Even when the numerical aperture of is larger than the numerical aperture of the first GRIN lens, the laser light efficiently enters the GRIN lens.
  • the short diameter of the outgoing beam enters the first GRIN lens, which is the original critical angle of the first GRIN lens, but the numerical aperture of the laser diode is small because of the short diameter.
  • FIG. 5 is a cross-sectional view of the light emitting element / optical fiber coupling module component 3 according to the embodiment of the present invention.
  • the cylindrical casing 30 is made of a metal such as stainless steel, and the front end is closed by an end face, and a laser diode can be accommodated therein.
  • a through hole 31 is formed in the end surface, and the tip of the component 2 in FIG. 4 is inserted into the casing 30 toward the inside.
  • the portion of the optical fiber 6 other than the tip is covered and protected by an optical fiber coating 60.
  • a metal coating 32 is formed on the outer periphery of the tip of the component 2.
  • the metal coating can be formed by evaporating a metal such as copper or stainless steel on the outer periphery of the tip of the component 2.
  • the tip of the component 3 can be inserted into these metal pipes.
  • the component 2 is inserted from the through hole 31 toward the inside of the casing 30 and is fixed to the through hole portion by solder 33 (fixing means).
  • solder 33 fixing means
  • the melted solder is filled in the gap between the through hole and the tip of the component 2 by capillary action, the metal coating 32 is adhered to the through hole portion, and the through hole is completely sealed.
  • a portion of the tip portion of the component 2 outside the casing 30 is covered with a protective seal 34 for reinforcement and protection.
  • the protective seal is, for example, a resin coating.
  • FIG. 6 is a cross-sectional view of a light emitting element / optical fiber coupling module component 3A according to an embodiment of the present invention. This is different from the light emitting element / optical fiber coupling module component 3 of FIG. 5 in that a plurality of through holes are formed in the end face of the casing 30 '. As in the case of FIG. 5, the component 2 is fixed by solder 33 in each through hole, and the through hole is sealed.
  • FIG. 7 is a sectional view of the light emitting element / optical fiber coupling module 4 according to the embodiment of the present invention.
  • the laser diode 7 is attached to the inside of the casing 30 of the light emitting element / optical fiber coupling module component 3 described above, the back surface is closed with a lid 40, and the inside of the casing is evacuated.
  • the adjustment mechanism the same mechanism as that used in the conventional light emitting element / optical fiber coupling module can be used.
  • FIG. 8 is a cross-sectional view of an array-like light emitting element / optical fiber coupling module 4A according to an embodiment of the present invention. This is because a plurality of laser diodes 7 are mounted in the casing 30 ′ of the light emitting element / optical fiber coupling module component 3A in FIG. 6 so as to face each component 2, and the back surface is closed with a lid 40 ′. The inside of the casing is evacuated.
  • FIG. 9 and 10 relate to an array-like light emitting element / optical fiber coupling module 4B according to an embodiment of the present invention
  • FIG. 9 is a transverse sectional view
  • FIG. 10 is a longitudinal sectional view.
  • the direction of the ridge line 10 of the light emitting element / optical fiber coupling module component 2 is perpendicular to the case of the module 4A in FIG.
  • the laser diode 7 has three light emitting points, and each light emitting point faces the light emitting element / optical fiber coupling module component 2.
  • the active layer 70 of the laser diode is parallel to the ridgeline 10, and therefore the ridgeline 10 is parallel to the minor axis of the elliptical beam emitted from the laser diode (light emitting element).
  • the light emitting element / optical fiber coupling module component 8 in FIG. 11 has a second GRIN lens 5 fused to the flat end surface of the component 1 (first GRIN lens) in FIG. 1, and a single mode optical fiber 6 at the other end. Are fused.
  • the axial length Z1 of the first GRIN lens is such that the refractive index of the glass at the center is n 0 , the radius of the GRIN lens is d1, and the distance from the light emitting element is L.
  • the light that has entered the first GRIN lens becomes a parallel light beam at the end thereof, and efficiently enters the second GRIN lens.
  • the major axis and the minor axis L are different, but the actual NA 1 of the major axis is that of the minor axis. ( ⁇ 1> ⁇ 2), the difference between Z1 obtained for the major axis and Z1 obtained for the minor axis is smaller than in the conventional case where the tip surface is flat.
  • the element / optical fiber coupling module has improved coupling efficiency.
  • the length of the second GRIN lens 5 is suitably about 1/4 of the meandering period of the propagating light beam or an odd multiple thereof.
  • the light condensing property of the second GRIN lens is larger (having a larger numerical aperture) than the first GRIN lens, and the light emitting element / optical fiber coupling module component 2 and the light emitting element / optical fiber coupling module 2A of FIG. Is different.
  • the numerical aperture of the first GRIN lens 1 is NA1
  • the numerical aperture of the second GRIN lens 5 is NA2
  • the numerical aperture of the optical fiber is NAf, NAf ⁇ NA2> NA1.
  • the numerical aperture NA1 of the first GRIN lens 1 is smaller than the numerical aperture NA2 of the second GRIN lens 5
  • the distance between the first GRIN lens 1 and the laser diode 7 can be easily controlled to a desired distance.
  • a light-emitting element having a large aspect ratio can be handled, the range of usable light-emitting elements becomes extremely wide.
  • the laser diode 7 is arranged facing the tip surface of the component 8 so that the ridge line 10 is parallel to the minor axis of the elliptical beam emitted from the light emitting element, and the light emitting element / optical fiber coupling module 8A is formed. ing.
  • FIG. 12 is a cross-sectional view of the light emitting element / optical fiber coupling module component 3 according to the embodiment of the present invention. This is obtained by replacing the component 2 in the component 3 for a light emitting element / optical fiber coupling module in FIG.
  • FIG. 13 is a cross-sectional view of a light emitting element / optical fiber coupling module component 3C according to an embodiment of the present invention. This is obtained by replacing the component 2 in the component 3A for the light emitting element / optical fiber coupling module in FIG.
  • FIG. 14 is a cross-sectional view of the light emitting element / optical fiber coupling module 4 according to the embodiment of the present invention. This is obtained by changing the component 2 to the component 8 in the light emitting element / optical fiber coupling module 4 of FIG.
  • FIG. 15 is a cross-sectional view of an array-shaped light emitting element / optical fiber coupling module 4D according to an embodiment of the present invention. This is obtained by replacing the component 2 in the array-like light emitting element / optical fiber coupling module 4A of FIG.
  • FIG. 16 and 17 relate to an array-shaped light emitting element / optical fiber coupling module 4E according to an embodiment of the present invention
  • FIG. 16 is a transverse sectional view
  • FIG. 17 is a longitudinal sectional view. This is obtained by replacing the component 2 with the component 8 in the arrayed light emitting element / optical fiber coupling module 4B of FIGS.
  • the light emitting element / optical fiber coupling module of the present invention can be used as a versatile module in optical communication, and can be used as a versatile module for optical communication, especially for high-power semiconductor lasers, especially to single mode fibers and polarization maintaining fibers. Can be widely used in medical, measurement, and other fields.
  • the component for a light emitting element / optical fiber coupling module of the present invention can be used in a wide range of fields such as optical communication, laser processing, medical care, and measurement by attaching an arbitrary light emitting element.

Abstract

The present invention achieves the simplification of the structure of a module in which a light emitting element and an optical fiber are coupled and which has high coupling efficiency, and downsizing of the module. A component has a ridge line in a diametrical direction at one end surface of a GRIN lens, both sides of the ridge line form inclined surfaces inclined such that the ridge line projects, and a portion including the ridge line is a curved surface. A second GRIN lens with a numerical aperture smaller than that of the abovementioned GRIN lens is fusion-bonded to an end surface on the reverse side to the end surface having the ridge line of the component, an optical fiber is fusion-bonded to an end surface on the reverse side of the second GRIN lens, and a light emitting element is disposed to face the end surface having the ridge line of the component. If the ridge line is located parallel to the minor axis of an elliptical beam emitted from the light emitting element, the critical angle becomes larger when the long side of the beam emitted from the light emitting element is incident on the interior of the component, thereby making it possible for a high-output beam from the light emitting element to be incident on the interior of the component with high efficiency.

Description

発光素子・光ファイバ結合モジュール及びその部品Light emitting element / optical fiber coupling module and its components
 本発明は、光通信において使用されるレーザダイオード等の発光素子と光ファイバとを高効率で結合した発光素子・光ファイバ結合モジュール、及びこの発光素子・光ファイバ結合モジュールを製造するための発光素子・光ファイバ結合モジュール用部品に関する。 The present invention relates to a light emitting element / optical fiber coupling module in which a light emitting element such as a laser diode used in optical communication and an optical fiber are coupled with high efficiency, and a light emitting element for manufacturing the light emitting element / optical fiber coupling module. -It relates to components for optical fiber coupling modules.
 下記特許文献1には、レーザダイオード等の発光素子と光ファイバとを高効率で結合する発光素子・光ファイバ結合モジュールが開示されている。これは、内部に発光素子を取り付けた筒状のケーシングの端面に貫通孔を形成し、該貫通孔から前記ケーシング内に、光ファイバの先端に第二のGRINレンズを融着し更にその先端に前記第二のGRINレンズよりも開口数の大きな第一のGRINレンズを融着した光ファイバ部品の先端がケーシング内の発光素子に対向するように差し込まれており、固定手段により前記光ファイバ部品が前記貫通孔に固定されると共に前記貫通孔が密封されているものである。 Patent Document 1 listed below discloses a light emitting element / optical fiber coupling module that couples a light emitting element such as a laser diode and an optical fiber with high efficiency. This is because a through-hole is formed in the end surface of a cylindrical casing having a light-emitting element attached therein, and a second GRIN lens is fused to the tip of the optical fiber from the through-hole into the casing. The tip of the optical fiber component fused with the first GRIN lens having a larger numerical aperture than the second GRIN lens is inserted so as to face the light emitting element in the casing, and the optical fiber component is fixed by a fixing means. It is fixed to the through hole and the through hole is sealed.
 GRINレンズ(Graded Indexレンズ)とは、中心から半径方向にかけて屈折率分布を有することでレンズとして作用する光ファイバであり、屈折率分布は二乗分布又は二乗分布に近い分布が望ましい。光ファイバ又はGRINレンズの開口数とは、臨界角(光が光ファイバやGRINレンズにその軸線に対して傾いて入射する場合、光が光ファイバやGRINレンズ内に進入可能な軸線に対する最大角度)の正弦値である。 A GRIN lens (Graded Index lens) is an optical fiber that acts as a lens by having a refractive index distribution from the center to the radial direction, and the refractive index distribution is preferably a square distribution or a distribution close to a square distribution. The numerical aperture of an optical fiber or GRIN lens is a critical angle (when light is incident on an optical fiber or GRIN lens with an inclination with respect to its axis, the maximum angle with respect to the axis that allows light to enter the optical fiber or GRIN lens) The sine value of
 発光素子から放射された光は順次第一のGRINレンズ、第二のGRINレンズを経て光ファイバに進入していくが、第一のGRINレンズの開口数NA1は第二のGRINレンズの開口数NA2よりも大きいので、第一のGRINレンズとして開口数の大きな(望ましくは、発光素子の開口数NAsよりも大きな)ものを採用し、発光素子から放射された光を効率よく第一のGRINレンズ内に進入させることができる。また、第二のGRINレンズの開口数NA2がNA1よりも小さいので、開口数の十分小さなものを選択でき、これにより第二のGRINレンズから光ファイバに至る光の臨界角を小さくできる(開口数が小さいとGRINレンズ内を蛇行して進む光の蛇行周期が長くなり、第二のGRINレンズから出ていく光の軸線に対する角度も小さくなる)ので、第二のGRINレンズから光ファイバへ光が効率よく進入する。 The light emitted from the light emitting element sequentially enters the optical fiber through the first GRIN lens and the second GRIN lens. The numerical aperture NA1 of the first GRIN lens is the numerical aperture NA2 of the second GRIN lens. Therefore, the first GRIN lens having a large numerical aperture (preferably larger than the numerical aperture NAs of the light emitting element) is adopted, and the light emitted from the light emitting element is efficiently contained in the first GRIN lens. Can enter. Further, since the numerical aperture NA2 of the second GRIN lens is smaller than NA1, a sufficiently small numerical aperture can be selected, thereby reducing the critical angle of light from the second GRIN lens to the optical fiber (numerical aperture). Is small, the meandering period of the light meandering through the GRIN lens becomes long and the angle with respect to the axis of the light exiting from the second GRIN lens is also small), so that light is transmitted from the second GRIN lens to the optical fiber. Enter efficiently.
 この発光素子・光ファイバ結合モジュールは、光ファイバの開口数(NAf)、第一のGRINレンズの開口数(NA1)、第二のGRINレンズの開口数(NA2)及び発光素子の開口数(NAs)が、
NAf ≦ NA2 < NAs ≦ NA1
を満足するように構成されていることが望ましい。発光素子の開口数とは、放射半値全角θの正弦関数である。NAs≦NA1であるので、発光素子から放射された光が全て第一のGRINレンズ内に進入し、光の損失がなくなる。また、NAf≦NA2<NAsであるので、第二のGRINレンズから光ファイバに至る光の臨界角が小さくなり、第二のGRINレンズから光ファイバへ光が効率よく進入する。したがって、全体として発光素子から出射された光が効率よく光ファイバへ進入する。なお、通常はNAf=0.15、NAs=0.43である。
The light emitting element / optical fiber coupling module includes an optical fiber numerical aperture (NAf), a first GRIN lens numerical aperture (NA1), a second GRIN lens numerical aperture (NA2), and a light emitting element numerical aperture (NAs). )But,
NAf ≤ NA2 <NAs ≤ NA1
It is desirable to be configured to satisfy The numerical aperture of the light emitting element is a sine function of the radiation half-value full angle θ. Since NAs ≦ NA1, all the light emitted from the light emitting element enters the first GRIN lens, and the loss of light is eliminated. Further, since NAf ≦ NA2 <NAs, the critical angle of light from the second GRIN lens to the optical fiber becomes small, and light efficiently enters the optical fiber from the second GRIN lens. Therefore, the light emitted from the light emitting element as a whole efficiently enters the optical fiber. Normally, NAf = 0.15 and NAs = 0.43.
WO2007/057974号公報WO2007 / 057974
 レーザダイオードは、出力を高くするほど出射ビームが扁平な楕円になり、アスペクト比が大きくなる。なおかつ楕円の短軸と長軸とで出射ポイントがずれる。図18は、レーザダイオード7のクラッド層に挟まれた活性層70からビームbが出射する様子の説明図である。出射ビームbの形状は楕円形で、短軸Dpの出射ポイントpと長軸Dqの出射ポイントqはΔAsだけずれている。出射ポイントのずれΔAsは、例えば数十ミクロンである。 In laser diodes, the higher the output, the more the outgoing beam becomes a flat ellipse and the aspect ratio becomes larger. In addition, the emission point is shifted between the short axis and the long axis of the ellipse. FIG. 18 is an explanatory diagram showing how the beam b is emitted from the active layer 70 sandwiched between the cladding layers of the laser diode 7. The shape of the outgoing beam b is elliptical, and the outgoing point p of the short axis Dp and the outgoing point q of the long axis Dq are shifted by ΔAs. The deviation ΔAs of the emission point is, for example, several tens of microns.
 出力の大きなレーザダイオードの出射ビーム長軸の開口数NAsは0.43以上になるが、このような高開口数のGRINレンズをゾルゲル法で歩留まりよく製造するのは非常に困難である。これらの事情により、高アスペクト比のレーザダイオードを高効率で光ファイバ(特にシングルモードファイバや偏波保持ファイバなどのコア径の非常に小さなファイバ)に結合するためには、従来はシリンドリカル(円筒)レンズ等の光学素子を発光体とファイバとの間に介する必要があり、構造が複雑でかつ小型化するには限界があった。本発明は、発光素子・光ファイバ結合に用いるGRINレンズの、発光素子の出射ビームの長軸における開口数をGRINレンズの本来の開口数よりも大きくして、結合効率の高い発光素子・光ファイバ結合モジュールの構造を簡単かつ小型化することを課題とするものである。
 また、アスペクト比の大きな発光素子に対応できる発光素子・光ファイバ結合モジュールとして、使用可能な発光素子の範囲を広くすることも課題とする。
The numerical aperture NAs of the output beam long axis of a laser diode having a large output is 0.43 or more. However, it is very difficult to manufacture such a high numerical aperture GRIN lens by the sol-gel method with a high yield. Because of these circumstances, in order to couple a high-aspect-ratio laser diode to an optical fiber (especially a fiber with a very small core diameter such as a single mode fiber or a polarization maintaining fiber) with high efficiency, a conventional cylindrical (cylindrical) An optical element such as a lens needs to be interposed between the light emitter and the fiber, and the structure is complicated and there is a limit to downsizing. The present invention provides a light-emitting element / optical fiber having a high coupling efficiency by making the numerical aperture of the GRIN lens used for light-emitting element / optical fiber coupling larger than the original numerical aperture of the GRIN lens. An object of the present invention is to make the structure of the coupling module simple and small.
Another object of the present invention is to widen the range of light-emitting elements that can be used as a light-emitting element / optical fiber coupling module that can handle light-emitting elements having a large aspect ratio.
〔請求項1〕
 本発明は、GRINレンズの一端面に直径方向の稜線を有し、その両側が前記稜線を突出させるように傾斜した傾斜面となっており、前記稜線を含む部分が曲面となっていることを特徴とする発光素子・光ファイバ結合モジュール用部品である。
[Claim 1]
According to the present invention, the GRIN lens has a ridge line in the diametrical direction on one end face thereof, and both sides thereof are inclined surfaces that protrude to protrude the ridge line, and a portion including the ridge line is a curved surface. This is a component for a light emitting element / optical fiber coupling module.
 図1に示されるように、本発明の発光素子・光ファイバ結合モジュール用部品において、GRINレンズは、一端面に直径方向の稜線10を有し、その両側が前記稜線を突出させるように傾斜した傾斜面11となっている。図2の上段に示されるように、稜線10は尖っていないで、稜線10を含む周囲部分は曲面となっている。このため、稜線部分に入射した光は拡散することなく効率よくGRINレンズ内に進入する。
 稜線10を含む周囲部分は曲面にするには、稜線が尖った状態で研磨した後に、放電加工により稜線の周囲を曲面にすることができる。また、GRINレンズをフェルールやアレイに装着して研磨する場合は、稜線部分を曲面研磨することが可能である。
As shown in FIG. 1, in the light emitting element / optical fiber coupling module component of the present invention, the GRIN lens has a ridge line 10 in the diameter direction on one end face, and both sides thereof are inclined so as to project the ridge line. An inclined surface 11 is formed. As shown in the upper part of FIG. 2, the ridge line 10 is not sharp, and the surrounding portion including the ridge line 10 is a curved surface. For this reason, the light incident on the ridge line portion efficiently enters the GRIN lens without being diffused.
In order to make the peripheral portion including the ridge line 10 into a curved surface, the periphery of the ridge line can be curved by electric discharge machining after polishing with the ridge line sharpened. In addition, when the GRIN lens is mounted on a ferrule or an array and polished, the ridge line portion can be curved.
 図2の上段は、稜線10と平行な方向から見たときの臨界角θ1、下段は稜線10と直角の方向から見たときの臨界角θ2を示している。図2下段の場合、レーザダイオード7から部品1内に入射するレーザ光の光路は、平端面と同じであるから、臨界角θ2は部品1のGRINレンズ本来の臨界角になる。図2上段の場合、レーザダイオード7から出射したレーザ光は傾斜面11で大きく屈折するため、臨界角θ1はθ2よりも大きくなる。 2 shows the critical angle θ1 when viewed from the direction parallel to the ridgeline 10, and the lower stage shows the critical angle θ2 when viewed from the direction perpendicular to the ridgeline 10. In the case of the lower part of FIG. 2, the optical path of the laser light incident from the laser diode 7 into the component 1 is the same as that of the flat end surface. In the case of the upper part of FIG. 2, the laser light emitted from the laser diode 7 is largely refracted by the inclined surface 11, so that the critical angle θ1 is larger than θ2.
 図3は、発光素子・光ファイバ結合モジュール用部品1の外周部の屈折率を1.5としたときの傾斜角αと臨界角θ1,θ2の関係を表している。このように、αが大きくなるにつれてθ1が大きくなる。 FIG. 3 shows the relationship between the inclination angle α and the critical angles θ1 and θ2 when the refractive index of the outer peripheral portion of the light emitting element / optical fiber coupling module component 1 is 1.5. Thus, θ1 increases as α increases.
 θ1がレーザダイオード7の出射ビームの長辺に対応するように、部品1とレーザダイオード7を配置することで、レーザダイオード7の高出力ビームを高効率で部品1内に入射させることができる。 By arranging the component 1 and the laser diode 7 so that θ1 corresponds to the long side of the outgoing beam of the laser diode 7, the high-power beam of the laser diode 7 can be incident on the component 1 with high efficiency.
〔請求項2〕
 また本発明は、請求項1の部品の、前記稜線がある端面と反対側の端面に光ファイバを融着した発光素子・光ファイバ結合モジュール用部品である。
[Claim 2]
Moreover, this invention is a component for light emitting element and optical fiber coupling modules which fused the optical fiber to the end surface on the opposite side to the end surface with the said ridgeline of the component of Claim 1.
〔請求項3〕
 また本発明は、請求項1の部品である第一のGRINレンズの、前記稜線がある端面と反対側の端面に、該第一のGRINレンズよりも開口数の小さな第二のGRINレンズを融着し、該第二のGRINレンズの反対側の端面に光ファイバを融着した発光素子・光ファイバ結合モジュール用部品である。
[Claim 3]
Further, according to the present invention, a second GRIN lens having a smaller numerical aperture than that of the first GRIN lens is fused to the end surface of the first GRIN lens which is the component of claim 1 on the side opposite to the end surface where the ridgeline is located. This is a component for a light emitting element / optical fiber coupling module that is attached and fused with an optical fiber to the opposite end face of the second GRIN lens.
 請求項1の部品の稜線がある端面と反対側の平端面に光ファイバを融着することで、レーザダイオードから部品内に入射したレーザ光を、光ファイバのコアに入射させ、伝送することができる。 By fusing the optical fiber to the flat end surface opposite to the end surface where the ridge line of the component of claim 1 is located, the laser light incident from the laser diode into the component can be incident on the core of the optical fiber and transmitted. it can.
 請求項1の部品である第一のGRINレンズと光ファイバの間に、第一のGRINレンズよりも開口数の小さな第二のGRINレンズを融着して挿入すると、第二のGRINレンズから光ファイバへレーザ光が効率よく進入する。
 第一のGRINレンズの開口数をNA1、第二のGRINレンズの開口数をNA2、光ファイバの開口数をNAfとすると、NAf<NA2<NA1となる。
When a second GRIN lens having a smaller numerical aperture than that of the first GRIN lens is fused and inserted between the first GRIN lens which is the component of claim 1 and the optical fiber, light is emitted from the second GRIN lens. Laser light enters the fiber efficiently.
When the numerical aperture of the first GRIN lens is NA1, the numerical aperture of the second GRIN lens is NA2, and the numerical aperture of the optical fiber is NAf, NAf <NA2 <NA1.
〔請求項4〕
 また本発明は、請求項1の部品である第一のGRINレンズの、前記稜線がある端面と反対側の端面に、該第一のGRINレンズよりも開口数の大きな第二のGRINレンズを融着し、該第二のGRINレンズの反対側の端面に光ファイバを融着した発光素子・光ファイバ結合モジュール用部品である。
[Claim 4]
Further, according to the present invention, a second GRIN lens having a larger numerical aperture than that of the first GRIN lens is fused to the end surface of the first GRIN lens which is the component of claim 1 on the side opposite to the end surface where the ridgeline is located. This is a component for a light emitting element / optical fiber coupling module that is attached and fused with an optical fiber to the opposite end face of the second GRIN lens.
 第一のGRINレンズの開口数をNA1、第二のGRINレンズの開口数をNA2、光ファイバの開口数をNAfとすると、NAf<NA2>NA1となる。 Suppose that the numerical aperture of the first GRIN lens is NA1, the numerical aperture of the second GRIN lens is NA2, and the numerical aperture of the optical fiber is NAf, NAf <NA2> NA1.
 GRINレンズが一つの場合、及び第一のGRINレンズの開口数が第二のGRINレンズの開口数よりも大きい場合は、第一のGRINレンズの長さを僅かに変えただけで、光の回折の効果により、ビームウェストまでの距離が大きく変化するが、第一のGRINレンズの開口数を第二のGRINレンズの開口数よりも小さくすると、第一のGRINレンズの長さを変えたときのビームウェストまでの距離の変化が比較的小さくなるので、ビームウェストまでの距離を所望の距離にコントロールしやすくなる。また、第一のGRINレンズの開口数が小さくなるので、ビームウェストの径を大きくできる。 When there is one GRIN lens, and when the numerical aperture of the first GRIN lens is larger than the numerical aperture of the second GRIN lens, the light diffraction can be achieved by slightly changing the length of the first GRIN lens. However, if the numerical aperture of the first GRIN lens is made smaller than the numerical aperture of the second GRIN lens, the length of the first GRIN lens is changed. Since the change in the distance to the beam waist is relatively small, the distance to the beam waist can be easily controlled to a desired distance. Further, since the numerical aperture of the first GRIN lens is reduced, the diameter of the beam waist can be increased.
〔請求項5〕
 また本発明は、内部に発光素子を取り付け可能な筒状のケーシングの端面に貫通孔を形成し、該貫通孔から前記ケーシング内に、請求項3又は4の部品の前記第一のGRINレンズの先端が差し込まれており、固定手段により前記部品が前記貫通孔に固定されると共に前記貫通孔が密封されていることを特徴とする発光素子・光ファイバ結合モジュール用部品である。
[Claim 5]
According to the present invention, a through hole is formed in an end surface of a cylindrical casing to which a light emitting element can be attached, and the first GRIN lens of the component according to claim 3 or 4 is inserted into the casing from the through hole. A component for a light emitting element / optical fiber coupling module, wherein a tip is inserted, the component is fixed to the through hole by a fixing means, and the through hole is sealed.
 ケーシング内部に、第一のGRINレンズ先端面に対向させて発光素子を装着し、ケーシング背面に蓋をして内部を真空、不活性ガス雰囲気又は樹脂を充填することで、高効率の発光素子・光ファイバ結合モジュールを容易に製作できる。 A light-emitting element is mounted inside the casing so as to face the front surface of the first GRIN lens, and a lid is applied to the back of the casing to fill the inside with a vacuum, an inert gas atmosphere, or a resin. An optical fiber coupling module can be easily manufactured.
〔請求項6〕
 また本発明は、請求項5の発光素子・光ファイバ結合モジュール用部品において、前記貫通孔が前記端面に複数形成され、それぞれの貫通孔に請求項3又は4の部品が固定されていることを特徴とする光ファイバ発光素子・光ファイバ結合モジュール用部品である。
[Claim 6]
According to the present invention, in the component for a light emitting element / optical fiber coupling module according to claim 5, a plurality of the through holes are formed in the end face, and the component according to claim 3 or 4 is fixed to each through hole. This is a component for an optical fiber light emitting element / optical fiber coupling module.
 この発光素子・光ファイバ結合モジュール用部品のケーシング内部に、それぞれの第一のGRINレンズ先端面に対向させて発光素子を装着し、ケーシング背面に蓋をして内部を真空、不活性ガス雰囲気又は樹脂を充填することで、アレイ状の高効率発光素子・光ファイバ結合モジュールを容易に製造することができる。 Inside the casing of this light emitting element / optical fiber coupling module component, the light emitting element is mounted so as to face the front surface of each first GRIN lens, and the inside of the casing is covered with a vacuum, inert gas atmosphere or By filling the resin, an arrayed high-efficiency light-emitting element / optical fiber coupling module can be easily manufactured.
〔請求項7〕
 また本発明は、請求項3又は4の部品の、前記第一のGRINレンズの稜線がある端面に対向して発光素子を配置した発光素子・光ファイバ結合モジュールであって、前記稜線が該発光素子から出射される楕円形ビームの短径に平行であることを特徴とする発光素子・光ファイバ結合モジュールである。
[Claim 7]
According to another aspect of the present invention, there is provided a light emitting element / optical fiber coupling module, wherein the light emitting element is disposed opposite to an end surface of the first GRIN lens having a ridgeline, wherein the ridgeline is the light emitting element. A light emitting element / optical fiber coupling module characterized by being parallel to the minor axis of an elliptical beam emitted from the element.
 稜線が発光素子から出射される楕円形ビームの短径に平行になるように、第一のGRINレンズと発光素子を配置すれば、図2上段に示すように、レーザダイオード7の出射ビームの長辺が第一のGRINレンズ内に入射するとき臨界角が、大きな臨界角θ1となり、レーザダイオード7の高出力ビームを高効率で第一のGRINレンズ内に入射させることができる。 If the first GRIN lens and the light emitting element are arranged so that the ridge line is parallel to the minor axis of the elliptical beam emitted from the light emitting element, as shown in the upper part of FIG. When the side is incident on the first GRIN lens, the critical angle becomes a large critical angle θ1, and the high output beam of the laser diode 7 can be incident on the first GRIN lens with high efficiency.
 請求項3,4の部品と発光素子を対向して配置し、固定する手段は、どのようなものでもよく、請求項3,4の部品と発光素子が所定の位置関係で固定されてさえいれば、発光素子のビームを高効率で光ファイバのコアに入射させることができる。 The components of Claims 3 and 4 and the light-emitting element may be arranged opposite to each other and fixed, and any means may be used so long as the parts of Claims 3 and 4 and the light-emitting element are fixed in a predetermined positional relationship. For example, the beam of the light emitting element can be incident on the core of the optical fiber with high efficiency.
〔請求項8〕
 また本発明は、請求項5の部品の、前記第一のGRINレンズの稜線がある端面に対向して、発光素子を前記ケーシング内に固定した発光素子・光ファイバ結合モジュールであって、前記稜線が該発光素子から出射される楕円形ビームの短径に平行であることを特徴とする発光素子・光ファイバ結合モジュールである。
[Claim 8]
Further, the present invention is a light emitting element / optical fiber coupling module in which the light emitting element is fixed in the casing so as to face the end face of the component of claim 5 facing the ridge line of the first GRIN lens, Is a light emitting element / optical fiber coupling module characterized by being parallel to the minor axis of the elliptical beam emitted from the light emitting element.
 この発光素子・光ファイバ結合モジュールは、請求項7の発光素子・光ファイバ結合モジュールと同様に高効率であり、請求項5の発光素子・光ファイバ結合モジュール用部品を用いて容易に製作できる。 This light emitting element / optical fiber coupling module is highly efficient like the light emitting element / optical fiber coupling module of claim 7, and can be easily manufactured using the light emitting element / optical fiber coupling module parts of claim 5.
〔請求項9〕
 また本発明は、請求項6の部品の、前記各第一のGRINレンズの稜線がある端面に対向して、発光素子を前記ケーシング内に固定した発光素子・光ファイバ結合モジュールであって、各第一のGRINレンズ稜線が、各発光素子から出射される楕円形ビームの短径に平行であることを特徴とする発光素子・光ファイバ結合モジュールである。
[Claim 9]
Further, the present invention is a light emitting element / optical fiber coupling module in which the light emitting element is fixed in the casing so as to face the end face with the ridgeline of each of the first GRIN lenses. The light emitting element / optical fiber coupling module is characterized in that the first GRIN lens ridge line is parallel to the minor axis of the elliptical beam emitted from each light emitting element.
 この発光素子・光ファイバ結合モジュールは、請求項8の発光素子・光ファイバ結合モジュールと同様に高効率であり、請求項6の発光素子・光ファイバ結合モジュール用部品を用いてアレイ状の発光素子・光ファイバ結合モジュールを容易に製作できる。 The light emitting element / optical fiber coupling module is highly efficient like the light emitting element / optical fiber coupling module according to claim 8, and the light emitting element / optical fiber coupling module according to claim 6 is used to form an array of light emitting elements. -An optical fiber coupling module can be easily manufactured.
 本発明は、発光素子・光ファイバ結合に用いるGRINレンズの、発光素子の楕円形状出射ビームの長軸における臨界角を、GRINレンズの平端面の臨界角よりも大きくすることができ、発光素子と光ファイバ結合効率を高めることができる。
 また、アスペクト比の大きな発光素子に対応できるので、使用可能な発光素子の範囲がきわめて広くなる。
According to the present invention, the critical angle of the major axis of the elliptical output beam of the light emitting element of the GRIN lens used for the light emitting element / optical fiber coupling can be made larger than the critical angle of the flat end surface of the GRIN lens. The optical fiber coupling efficiency can be increased.
In addition, since a light-emitting element having a large aspect ratio can be handled, the range of usable light-emitting elements becomes extremely wide.
発光素子・光ファイバ結合モジュール用部品1の斜視図である。It is a perspective view of the component 1 for light emitting element and optical fiber coupling modules. 部品1の臨界角の説明図である。FIG. 6 is an explanatory diagram of a critical angle of a part 1. 傾斜角αと臨界角θ1,θ2の関係の説明図である。It is explanatory drawing of the relationship between inclination | tilt angle (alpha) and critical angle (theta) 1, (theta) 2. 発光素子・光ファイバ結合モジュール用部品2、発光素子・光ファイバ結合モジュール2Aの説明図である。It is explanatory drawing of the components 2 for light emitting element and optical fiber coupling modules, and the light emitting element and optical fiber coupling module 2A. 発光素子・光ファイバ結合モジュール用部品3の断面図である。It is sectional drawing of the components 3 for light emitting element and optical fiber coupling modules. 発光素子・光ファイバ結合モジュール用部品3Aの断面図である。It is sectional drawing of 3 A of components for light emitting element and optical fiber coupling modules. 発光素子・光ファイバ結合モジュール4の断面図である。3 is a cross-sectional view of a light emitting element / optical fiber coupling module 4. FIG. 発光素子・光ファイバ結合モジュール4Aの断面図である。It is sectional drawing of the light emitting element and optical fiber coupling module 4A. 発光素子・光ファイバ結合モジュール4Bの横断面図である。It is a cross-sectional view of the light emitting element / optical fiber coupling module 4B. 発光素子・光ファイバ結合モジュール4Bの縦断面図である。It is a longitudinal cross-sectional view of the light emitting element / optical fiber coupling module 4B. 発光素子・光ファイバ結合モジュール用部品8、発光素子・光ファイバ結合モジュール8Aの説明図である。It is explanatory drawing of the component 8 for light emitting element and optical fiber coupling modules, and the light emitting element and optical fiber coupling module 8A. 発光素子・光ファイバ結合モジュール用部品3Bの断面図である。It is sectional drawing of the components 3B for light emitting element and optical fiber coupling modules. 発光素子・光ファイバ結合モジュール用部品3Cの断面図である。It is sectional drawing of the components 3C for light emitting element and optical fiber coupling modules. 発光素子・光ファイバ結合モジュール4Cの断面図である。It is sectional drawing of the light emitting element and optical fiber coupling module 4C. 発光素子・光ファイバ結合モジュール4Dの断面図である。It is sectional drawing of light emitting element and optical fiber coupling module 4D. 発光素子・光ファイバ結合モジュール4Eの横断面図である。It is a cross-sectional view of the light emitting element / optical fiber coupling module 4E. 発光素子・光ファイバ結合モジュール4Eの縦断面図である。It is a longitudinal cross-sectional view of the light emitting element / optical fiber coupling module 4E. レーザダイオードの出射ビームの説明図である。It is explanatory drawing of the emitted beam of a laser diode.
 図1の発光素子・光ファイバ結合モジュール用部品1は、円柱状のGRINレンズの一端に稜線10と傾斜面11を形成し、他端を軸線に直角な平端面としたものである。稜線10はGRINレンズの直径方向、すなわち、軸線を通り軸線と直角をなしている。傾斜面11は、稜線10の両側に、稜線を突出させるように傾斜して形成されている。したがって、この端部を稜線と平行な側方から見ると、図4(a)に示すように山形になっている。傾斜面11の傾斜角αは、例えば5°~30°にすることができる。この部品1は、例えば、GRINレンズをフェルールに挿入・仮固定し、先端を研磨して稜線と傾斜面を形成することで製作できる。 1 includes a ridge line 10 and an inclined surface 11 at one end of a cylindrical GRIN lens, and a flat end surface perpendicular to the axis at the other end. The ridge line 10 is in the diameter direction of the GRIN lens, that is, passes through the axis and is perpendicular to the axis. The inclined surface 11 is formed on both sides of the ridge line 10 so as to be inclined so as to project the ridge line. Therefore, when this end is viewed from the side parallel to the ridgeline, it has a mountain shape as shown in FIG. The inclination angle α of the inclined surface 11 can be set to 5 ° to 30 °, for example. The component 1 can be manufactured, for example, by inserting and temporarily fixing a GRIN lens into a ferrule and polishing the tip to form a ridge line and an inclined surface.
 図4の発光素子・光ファイバ結合モジュール用部品2は、図1の部品1(第一のGRINレンズ)の平端面に第二のGRINレンズ5を融着し、その他端にシングルモード光ファイバ6を融着したものである。
 第一のGRINレンズの軸長さZ1は、中心部のガラスの屈折率をn、GRINレンズの半径をd1、発光素子との距離をLとしたときに、
Z1=(n*d1/NA1)arctan(d1/(NA1*L))
であることが望ましい。これにより、第一のGRINレンズに進入した光が、その終端において平行光線となり、効率よく第二のGRINレンズに入射する。
 この場合、図18に示すように、出射ビームの出射ポイントが長軸と短軸ではΔAsずれているので、長軸と短軸のLが異なるが、長軸の実際のNA1は短軸のそれよりも大きい(θ1>θ2)ために、長軸について求めたZ1と短軸について求めたZ1の差が、先端面が平坦な従来の場合に比べて小さくなり、この点からも本発明の発光素子・光ファイバ結合モジュールは結合効率が向上している。
4 has a second GRIN lens 5 fused to the flat end surface of the component 1 (first GRIN lens) of FIG. 1, and a single mode optical fiber 6 at the other end. Are fused.
The axial length Z1 of the first GRIN lens is such that the refractive index of the glass at the center is n 0 , the radius of the GRIN lens is d1, and the distance from the light emitting element is L.
Z1 = (n 0 * d1 / NA1) arctan (d1 / (NA1 * L))
It is desirable that As a result, the light that has entered the first GRIN lens becomes a parallel light beam at the end thereof, and efficiently enters the second GRIN lens.
In this case, as shown in FIG. 18, since the exit point of the exit beam is shifted by ΔAs between the major axis and the minor axis, the major axis and the minor axis L are different, but the actual NA 1 of the major axis is that of the minor axis. (Θ1> θ2), the difference between Z1 obtained for the major axis and Z1 obtained for the minor axis is smaller than in the conventional case where the tip surface is flat. The element / optical fiber coupling module has improved coupling efficiency.
 第二のGRINレンズ5の長さは、伝播する光線の蛇行周期の略1/4の長さあるいはその奇数倍の長さが適当である。第二のGRINレンズの集光性は第一のGRINレンズに比べ小さい(開口数が小さい)ので、緩やかな角度で集光することとなり、光が効率よく光ファイバに進入する。
 第一のGRINレンズの開口数をNA1、第二のGRINレンズの開口数をNA2、光ファイバの開口数をNAfとすると、NAf<NA2<NA1となっている。
The length of the second GRIN lens 5 is suitably about 1/4 of the meandering period of the propagating light beam or an odd multiple thereof. Since the condensing property of the second GRIN lens is smaller than that of the first GRIN lens (the numerical aperture is small), the light is condensed at a gentle angle, and the light efficiently enters the optical fiber.
When the numerical aperture of the first GRIN lens is NA1, the numerical aperture of the second GRIN lens is NA2, and the numerical aperture of the optical fiber is NAf, NAf <NA2 <NA1.
 図4に示すように、レーザダイオード7から出た光は効率よく第一のGRINレンズ1に進入し、その終端において平行光線となり、効率よく第二のGRINレンズ5に進入し、その終端において光ファイバ6の軸に集光し、効率よくコアに進入する。 As shown in FIG. 4, the light emitted from the laser diode 7 efficiently enters the first GRIN lens 1, becomes a parallel light beam at its end, efficiently enters the second GRIN lens 5, and enters the light at the end. The light is condensed on the axis of the fiber 6 and efficiently enters the core.
 部品2の先端面に対向して、稜線10が発光素子から出射される楕円形ビームの短径に平行になるように、レーザダイオード7を配置し、発光素子・光ファイバ結合モジュール2Aを形成している。 The laser diode 7 is arranged facing the tip surface of the component 2 so that the ridge line 10 is parallel to the short axis of the elliptical beam emitted from the light emitting element, and the light emitting element / optical fiber coupling module 2A is formed. ing.
 図4において、上段の(a)は稜線10と平行な方向から見た側面図、下段の(b)は稜線10と直角の方向から見た側面図である。(a)において、出射ビームの長径は、第一のGRINレンズ本来の臨界角(平端面における臨界角)よりも大きな臨界角となっている第一のGRINレンズ内に進入できるので、レーザダイオード長径の開口数が第一のGRINレンズの開口数よりも大きい場合であっても、効率よくレーザ光がGRINレンズ内に進入する。(b)において、出射ビームの短径は第一のGRINレンズ本来の臨界角となっている第一のGRINレンズ内に進入するが、短径であるためにレーザダイオードの開口数は小さい。 4A is a side view as viewed from a direction parallel to the ridge line 10, and FIG. 4B is a side view as viewed from a direction perpendicular to the ridge line 10. In (a), the major axis of the outgoing beam can enter the first GRIN lens having a larger critical angle than the critical angle inherent to the first GRIN lens (the critical angle at the flat end surface). Even when the numerical aperture of is larger than the numerical aperture of the first GRIN lens, the laser light efficiently enters the GRIN lens. In (b), the short diameter of the outgoing beam enters the first GRIN lens, which is the original critical angle of the first GRIN lens, but the numerical aperture of the laser diode is small because of the short diameter.
 図5は、本発明の実施形態である発光素子・光ファイバ結合モジュール用部品3の断面図である。筒状のケーシング30はステンレスなどの金属製で、前端が端面で閉塞され、内部にレーザダイオードを収納できるものである。端面には貫通孔31が形成され、これに図4の部品2の先端がケーシング30の内部に向かって差し込まれている。光ファイバ6の先端部を除く部分は光ファイバ被覆60で覆われ、保護されている。部品2の先端部外周には金属被覆32が形成されている。金属被覆は銅、ステンレスなどの金属を部品2の先端部外周に蒸着して形成することができる。また、これらの金属のパイプに部品3の先端部を挿入して形成することもできる。貫通孔31からケーシング30の内部に向かって部品2が差し込まれ、ハンダ33(固定手段)で貫通孔部分に固定されている。溶けたハンダは毛細管現象で貫通孔と部品2先端の間の隙間に充填され、金属被覆32は貫通孔部分に接着されると共に、貫通孔は完全に密封される。部品2の先端部でケーシング30の外側にある部分は、補強及び保護のため、保護シール34で被覆されている。保護シールは、例えば樹脂コーティングなどである。 FIG. 5 is a cross-sectional view of the light emitting element / optical fiber coupling module component 3 according to the embodiment of the present invention. The cylindrical casing 30 is made of a metal such as stainless steel, and the front end is closed by an end face, and a laser diode can be accommodated therein. A through hole 31 is formed in the end surface, and the tip of the component 2 in FIG. 4 is inserted into the casing 30 toward the inside. The portion of the optical fiber 6 other than the tip is covered and protected by an optical fiber coating 60. A metal coating 32 is formed on the outer periphery of the tip of the component 2. The metal coating can be formed by evaporating a metal such as copper or stainless steel on the outer periphery of the tip of the component 2. Alternatively, the tip of the component 3 can be inserted into these metal pipes. The component 2 is inserted from the through hole 31 toward the inside of the casing 30 and is fixed to the through hole portion by solder 33 (fixing means). The melted solder is filled in the gap between the through hole and the tip of the component 2 by capillary action, the metal coating 32 is adhered to the through hole portion, and the through hole is completely sealed. A portion of the tip portion of the component 2 outside the casing 30 is covered with a protective seal 34 for reinforcement and protection. The protective seal is, for example, a resin coating.
 図6は本発明の実施形態である発光素子・光ファイバ結合モジュール用部品3Aの断面図である。これが前記図5の発光素子・光ファイバ結合モジュール用部品3と異なるのは、ケーシング30’の端面に貫通孔が複数個形成されている点である。各貫通孔には、図5の場合と同様に、部品2がハンダ33で固定され、貫通孔が密封されている。 FIG. 6 is a cross-sectional view of a light emitting element / optical fiber coupling module component 3A according to an embodiment of the present invention. This is different from the light emitting element / optical fiber coupling module component 3 of FIG. 5 in that a plurality of through holes are formed in the end face of the casing 30 '. As in the case of FIG. 5, the component 2 is fixed by solder 33 in each through hole, and the through hole is sealed.
 図7は本発明の実施形態である発光素子・光ファイバ結合モジュール4の断面図である。これは、前記の発光素子・光ファイバ結合モジュール用部品3のケーシング30の内部にレーザダイオード7を取り付け、背面を蓋40で閉塞すると共に、ケーシング内部を真空にしたものである。レーザダイオード7は、調整機構41によって、部品2の軸と同軸になるように、また、レーザダイオード7と第一のGRINレンズとの距離Lが次の関係式に近くなるように調整され、固定される。
Z1=(n*d1/NA1)arctan(d1/(NA1*L))
 調整機構は、従来の発光素子・光ファイバ結合モジュールに用いられているものと同じ機構を用いることができる。
FIG. 7 is a sectional view of the light emitting element / optical fiber coupling module 4 according to the embodiment of the present invention. The laser diode 7 is attached to the inside of the casing 30 of the light emitting element / optical fiber coupling module component 3 described above, the back surface is closed with a lid 40, and the inside of the casing is evacuated. The laser diode 7 is adjusted and fixed by the adjusting mechanism 41 so that it is coaxial with the axis of the component 2 and the distance L between the laser diode 7 and the first GRIN lens is close to the following relational expression. Is done.
Z1 = (n 0 * d1 / NA1) arctan (d1 / (NA1 * L))
As the adjustment mechanism, the same mechanism as that used in the conventional light emitting element / optical fiber coupling module can be used.
 図8は本発明の実施形態であるアレイ状の発光素子・光ファイバ結合モジュール4Aの断面図である。これは、図6の発光素子・光ファイバ結合モジュール用部品3Aのケーシング30’の内部に、複数個のレーザダイオード7を、各部品2に対向して取り付け、背面を蓋40’で閉塞すると共に、ケーシング内部を真空にしたものである。 FIG. 8 is a cross-sectional view of an array-like light emitting element / optical fiber coupling module 4A according to an embodiment of the present invention. This is because a plurality of laser diodes 7 are mounted in the casing 30 ′ of the light emitting element / optical fiber coupling module component 3A in FIG. 6 so as to face each component 2, and the back surface is closed with a lid 40 ′. The inside of the casing is evacuated.
 図9,10は本発明の実施形態であるアレイ状の発光素子・光ファイバ結合モジュール4Bに関し、図9は横断面図、図10は縦断面図である。モジュール4Bにおいて、発光素子・光ファイバ結合モジュール用部品2の稜線10の方向が、前記図8のモジュール4Aの場合に対し直角になっている。レーザダイオード7は、3個の発光点を有し、各発光点が発光素子・光ファイバ結合モジュール用部品2に対向している。レーザダイオードの活性層70は稜線10に平行であり、したがって、稜線10がレーザダイオード(発光素子)から出射される楕円形ビームの短径に平行になっている。 9 and 10 relate to an array-like light emitting element / optical fiber coupling module 4B according to an embodiment of the present invention, FIG. 9 is a transverse sectional view, and FIG. 10 is a longitudinal sectional view. In the module 4B, the direction of the ridge line 10 of the light emitting element / optical fiber coupling module component 2 is perpendicular to the case of the module 4A in FIG. The laser diode 7 has three light emitting points, and each light emitting point faces the light emitting element / optical fiber coupling module component 2. The active layer 70 of the laser diode is parallel to the ridgeline 10, and therefore the ridgeline 10 is parallel to the minor axis of the elliptical beam emitted from the laser diode (light emitting element).
 図11の発光素子・光ファイバ結合モジュール用部品8は、図1の部品1(第一のGRINレンズ)の平端面に第二のGRINレンズ5を融着し、その他端にシングルモード光ファイバ6を融着したものである。
 第一のGRINレンズの軸長さZ1は、中心部のガラスの屈折率をn、GRINレンズの半径をd1、発光素子との距離をLとしたときに、
Z1=(n*d1/NA1)arctan(d1/(NA1*L))
であることが望ましい。これにより、第一のGRINレンズに進入した光が、その終端において平行光線となり、効率よく第二のGRINレンズに入射する。
 この場合、図18に示すように、出射ビームの出射ポイントが長軸と短軸ではΔAsずれているので、長軸と短軸のLが異なるが、長軸の実際のNA1は短軸のそれよりも大きい(θ1>θ2)ために、長軸について求めたZ1と短軸について求めたZ1の差が、先端面が平坦な従来の場合に比べて小さくなり、この点からも本発明の発光素子・光ファイバ結合モジュールは結合効率が向上している。
The light emitting element / optical fiber coupling module component 8 in FIG. 11 has a second GRIN lens 5 fused to the flat end surface of the component 1 (first GRIN lens) in FIG. 1, and a single mode optical fiber 6 at the other end. Are fused.
The axial length Z1 of the first GRIN lens is such that the refractive index of the glass at the center is n 0 , the radius of the GRIN lens is d1, and the distance from the light emitting element is L.
Z1 = (n 0 * d1 / NA1) arctan (d1 / (NA1 * L))
It is desirable that As a result, the light that has entered the first GRIN lens becomes a parallel light beam at the end thereof, and efficiently enters the second GRIN lens.
In this case, as shown in FIG. 18, since the exit point of the exit beam is shifted by ΔAs between the major axis and the minor axis, the major axis and the minor axis L are different, but the actual NA 1 of the major axis is that of the minor axis. (Θ1> θ2), the difference between Z1 obtained for the major axis and Z1 obtained for the minor axis is smaller than in the conventional case where the tip surface is flat. The element / optical fiber coupling module has improved coupling efficiency.
 第二のGRINレンズ5の長さは、伝播する光線の蛇行周期の略1/4の長さあるいはその奇数倍の長さが適当である。第二のGRINレンズの集光性は第一のGRINレンズに比べ大きい(開口数が大きい)点で、図4の発光素子・光ファイバ結合モジュール用部品2、及び発光素子・光ファイバ結合モジュール2Aとは異なっている。第一のGRINレンズ1の開口数をNA1、第二のGRINレンズ5の開口数をNA2、光ファイバの開口数をNAfとすると、NAf<NA2>NA1となっている。第一のGRINレンズ1の開口数NA1が第二のGRINレンズ5の開口数NA2よりも小さいので、第一のGRINレンズ1とレーザダイオード7の距離を所望の距離にコントロールしやすくなる。
 また、アスペクト比の大きな発光素子に対応できるので、使用可能な発光素子の範囲がきわめて広くなる。
The length of the second GRIN lens 5 is suitably about 1/4 of the meandering period of the propagating light beam or an odd multiple thereof. The light condensing property of the second GRIN lens is larger (having a larger numerical aperture) than the first GRIN lens, and the light emitting element / optical fiber coupling module component 2 and the light emitting element / optical fiber coupling module 2A of FIG. Is different. When the numerical aperture of the first GRIN lens 1 is NA1, the numerical aperture of the second GRIN lens 5 is NA2, and the numerical aperture of the optical fiber is NAf, NAf <NA2> NA1. Since the numerical aperture NA1 of the first GRIN lens 1 is smaller than the numerical aperture NA2 of the second GRIN lens 5, the distance between the first GRIN lens 1 and the laser diode 7 can be easily controlled to a desired distance.
In addition, since a light-emitting element having a large aspect ratio can be handled, the range of usable light-emitting elements becomes extremely wide.
 部品8の先端面に対向して、稜線10が発光素子から出射される楕円形ビームの短径に平行になるように、レーザダイオード7を配置し、発光素子・光ファイバ結合モジュール8Aを形成している。 The laser diode 7 is arranged facing the tip surface of the component 8 so that the ridge line 10 is parallel to the minor axis of the elliptical beam emitted from the light emitting element, and the light emitting element / optical fiber coupling module 8A is formed. ing.
 図12は本発明の実施形態である発光素子・光ファイバ結合モジュール用部品3の断面図である。これは、図5の発光素子・光ファイバ結合モジュール用部品3における部品2を部品8に変えたものである。 FIG. 12 is a cross-sectional view of the light emitting element / optical fiber coupling module component 3 according to the embodiment of the present invention. This is obtained by replacing the component 2 in the component 3 for a light emitting element / optical fiber coupling module in FIG.
 図13は本発明の実施形態である発光素子・光ファイバ結合モジュール用部品3Cの断面図である。これは、図6の発光素子・光ファイバ結合モジュール用部品3Aにおける部品2を部品8に変えたものである。 FIG. 13 is a cross-sectional view of a light emitting element / optical fiber coupling module component 3C according to an embodiment of the present invention. This is obtained by replacing the component 2 in the component 3A for the light emitting element / optical fiber coupling module in FIG.
 図14は本発明の実施形態である発光素子・光ファイバ結合モジュール4の断面図である。これは、図7の発光素子・光ファイバ結合モジュール4において、部品2を部品8に変えたものである。 FIG. 14 is a cross-sectional view of the light emitting element / optical fiber coupling module 4 according to the embodiment of the present invention. This is obtained by changing the component 2 to the component 8 in the light emitting element / optical fiber coupling module 4 of FIG.
 図15は本発明の実施形態であるアレイ状の発光素子・光ファイバ結合モジュール4Dの断面図である。これは、図8のアレイ状の発光素子・光ファイバ結合モジュール4Aにおける部品2を部品8に変えたものである。 FIG. 15 is a cross-sectional view of an array-shaped light emitting element / optical fiber coupling module 4D according to an embodiment of the present invention. This is obtained by replacing the component 2 in the array-like light emitting element / optical fiber coupling module 4A of FIG.
 図16,17は本発明の実施形態であるアレイ状の発光素子・光ファイバ結合モジュール4Eに関し、図16は横断面図、図17は縦断面図である。これは、図9,10のアレイ状の発光素子・光ファイバ結合モジュール4Bにおいて、部品2を部品8に変えたものである。 16 and 17 relate to an array-shaped light emitting element / optical fiber coupling module 4E according to an embodiment of the present invention, FIG. 16 is a transverse sectional view, and FIG. 17 is a longitudinal sectional view. This is obtained by replacing the component 2 with the component 8 in the arrayed light emitting element / optical fiber coupling module 4B of FIGS.
 本発明の発光素子・光ファイバ結合モジュールは、ハイパワーの半導体レーザを、特にシングルモードファイバや偏波保持ファイバに高効率に結合でき、光通信における汎用性のあるモジュールとして使用できるほか、レーザ加工、医療、測定などの分野で幅広く使用できる。本発明の発光素子・光ファイバ結合モジュール用部品は、任意の発光素子を取り付け、光通信、レーザ加工、医療、測定などの幅広い分野に使用できる。 The light emitting element / optical fiber coupling module of the present invention can be used as a versatile module in optical communication, and can be used as a versatile module for optical communication, especially for high-power semiconductor lasers, especially to single mode fibers and polarization maintaining fibers. Can be widely used in medical, measurement, and other fields. The component for a light emitting element / optical fiber coupling module of the present invention can be used in a wide range of fields such as optical communication, laser processing, medical care, and measurement by attaching an arbitrary light emitting element.
 1 発光素子・光ファイバ結合モジュール用部品
 10 稜線
 11 傾斜面
 2 発光素子・光ファイバ結合モジュール用部品
 2A 発光素子・光ファイバ結合モジュール
 3 発光素子・光ファイバ結合モジュール用部品
 30 ケーシング
 31 貫通孔
 32 金属被覆
 33 ハンダ
 34 保護シール
 3A 発光素子・光ファイバ結合モジュール用部品
 3B 発光素子・光ファイバ結合モジュール用部品
 3C 発光素子・光ファイバ結合モジュール用部品
 4 発光素子・光ファイバ結合モジュール
 4A 発光素子・光ファイバ結合モジュール
 4B 発光素子・光ファイバ結合モジュール
 4C 発光素子・光ファイバ結合モジュール
 4D 発光素子・光ファイバ結合モジュール
 4E 発光素子・光ファイバ結合モジュール
 40 蓋
 41 調整機構
 4A 発光素子・光ファイバ結合モジュール
 4B 発光素子・光ファイバ結合モジュール
 5 第二のGRINレンズ
 6 光ファイバ
 60 光ファイバ被覆
 7 レーザダイオード
 70 活性層
 8 発光素子・光ファイバ結合モジュール用部品
 8A 発光素子・光ファイバ結合モジュール
 
DESCRIPTION OF SYMBOLS 1 Component for light emitting element and optical fiber coupling module 10 Edge line 11 Inclined surface 2 Component for light emitting element and optical fiber coupling module 2A Light emitting element and optical fiber coupling module 3 Component for light emitting element and optical fiber coupling module 30 Casing 31 Through hole 32 Metal Cover 33 Solder 34 Protective seal 3A Light emitting element / optical fiber coupling module part 3B Light emitting element / optical fiber coupling module part 3C Light emitting element / optical fiber coupling module part 4 Light emitting element / optical fiber coupling module 4A Light emitting element / optical fiber Coupling module 4B Light emitting element / optical fiber coupling module 4C Light emitting element / optical fiber coupling module 4D Light emitting element / optical fiber coupling module 4E Light emitting element / optical fiber coupling module 40 Lid 41 Adjustment mechanism 4A Light emitting element / optical fiber coupling module Driver coupling module 4B emitting element-optical fiber coupling module 5 second GRIN lens 6 parts 8A emitting element-optical fiber coupling module optical fiber 60 optical fiber coating 7 laser diode 70 active layer 8 for the light-emitting element-optical fiber coupling module

Claims (9)

  1. GRINレンズの一端面に直径方向の稜線を有し、その両側が前記稜線を突出させるように傾斜した傾斜面となっており、前記稜線を含む部分が曲面となっていることを特徴とする発光素子・光ファイバ結合モジュール用部品。 The GRIN lens has a ridge line in a diametrical direction at one end face thereof, and both sides thereof are inclined faces that project the ridge line, and a portion including the ridge line is a curved surface. Components for optical element / optical fiber coupling modules.
  2. 請求項1の部品の、前記稜線がある端面と反対側の端面に光ファイバを融着した発光素子・光ファイバ結合モジュール用部品。 A component for a light emitting element / optical fiber coupling module, wherein an optical fiber is fused to an end surface of the component of claim 1 opposite to the end surface having the ridgeline.
  3. 請求項1の部品である第一のGRINレンズの、前記稜線がある端面と反対側の端面に、該第一のGRINレンズよりも開口数の小さな第二のGRINレンズを融着し、該第二のGRINレンズの反対側の端面に光ファイバを融着した発光素子・光ファイバ結合モジュール用部品。 A second GRIN lens having a smaller numerical aperture than that of the first GRIN lens is fused to the end surface of the first GRIN lens which is the component of claim 1 on the side opposite to the end surface where the ridgeline is located. A component for a light emitting element / optical fiber coupling module in which an optical fiber is fused to the opposite end face of the second GRIN lens.
  4. 請求項1の部品である第一のGRINレンズの、前記稜線がある端面と反対側の端面に、該第一のGRINレンズよりも開口数の大きな第二のGRINレンズを融着し、該第二のGRINレンズの反対側の端面に光ファイバを融着した発光素子・光ファイバ結合モジュール用部品。 A second GRIN lens having a larger numerical aperture than the first GRIN lens is fused to the end surface of the first GRIN lens that is the component of claim 1 opposite to the end surface where the ridgeline is located, A component for a light emitting element / optical fiber coupling module in which an optical fiber is fused to the opposite end face of the second GRIN lens.
  5. 内部に発光素子を取り付け可能な筒状のケーシングの端面に貫通孔を形成し、該貫通孔から前記ケーシング内に、請求項3又は4の部品の前記第一のGRINレンズの先端が差し込まれており、固定手段により前記部品が前記貫通孔に固定されると共に前記貫通孔が密封されていることを特徴とする発光素子・光ファイバ結合モジュール用部品。 A through hole is formed in an end surface of a cylindrical casing to which a light emitting element can be attached, and the tip of the first GRIN lens of the component of claim 3 or 4 is inserted into the casing from the through hole. A component for a light emitting element / optical fiber coupling module, wherein the component is fixed to the through hole by a fixing means and the through hole is sealed.
  6. 請求項5の発光素子・光ファイバ結合モジュール用部品において、前記貫通孔が前記端面に複数形成され、それぞれの貫通孔に請求項3又は4の部品が固定されていることを特徴とする光ファイバ発光素子・光ファイバ結合モジュール用部品。 6. The optical fiber coupling module component according to claim 5, wherein a plurality of the through holes are formed in the end face, and the component according to claim 3 or 4 is fixed to each through hole. Components for light-emitting elements and optical fiber coupling modules.
  7. 請求項3又は4の部品の、前記第一のGRINレンズの稜線がある端面に対向して発光素子を配置した発光素子・光ファイバ結合モジュールであって、前記稜線が該発光素子から出射される楕円形ビームの短径に平行であることを特徴とする発光素子・光ファイバ結合モジュール。 5. A light emitting element / optical fiber coupling module in which a light emitting element is arranged opposite to an end face of the first GRIN lens of the component according to claim 3, wherein the edge line is emitted from the light emitting element. A light emitting element / optical fiber coupling module characterized by being parallel to the minor axis of an elliptical beam.
  8. 請求項5の部品の、前記第一のGRINレンズの稜線がある端面に対向して、発光素子を前記ケーシング内に固定した発光素子・光ファイバ結合モジュールであって、前記稜線が該発光素子から出射される楕円形ビームの短径に平行であることを特徴とする発光素子・光ファイバ結合モジュール。 The light emitting element / optical fiber coupling module of the component of claim 5, wherein the light emitting element is fixed in the casing so as to face an end face where the ridge line of the first GRIN lens is located, and the ridge line extends from the light emitting element. A light emitting element / optical fiber coupling module characterized by being parallel to the minor axis of the emitted elliptical beam.
  9. 請求項6の部品の、前記各第一のGRINレンズの稜線がある端面に対向して、発光素子を前記ケーシング内に固定した発光素子・光ファイバ結合モジュールであって、各第一のGRINレンズ稜線が、各発光素子から出射される楕円形ビームの短径に平行であることを特徴とする発光素子・光ファイバ結合モジュール。 A light emitting element / optical fiber coupling module in which the light emitting element is fixed in the casing so as to face an end face of each of the first GRIN lenses of the component according to claim 6, wherein each first GRIN lens A light emitting element / optical fiber coupling module, wherein a ridge line is parallel to a minor axis of an elliptical beam emitted from each light emitting element.
PCT/JP2012/069008 2012-07-26 2012-07-26 Module in which light emitting element and optical fiber are coupled, and component therefor WO2014016939A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/069008 WO2014016939A1 (en) 2012-07-26 2012-07-26 Module in which light emitting element and optical fiber are coupled, and component therefor
JP2012543390A JP5387930B1 (en) 2012-07-26 2012-07-26 Light emitting element / optical fiber coupling module and its components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/069008 WO2014016939A1 (en) 2012-07-26 2012-07-26 Module in which light emitting element and optical fiber are coupled, and component therefor

Publications (1)

Publication Number Publication Date
WO2014016939A1 true WO2014016939A1 (en) 2014-01-30

Family

ID=49996773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069008 WO2014016939A1 (en) 2012-07-26 2012-07-26 Module in which light emitting element and optical fiber are coupled, and component therefor

Country Status (2)

Country Link
JP (1) JP5387930B1 (en)
WO (1) WO2014016939A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150369A (en) * 2020-03-17 2021-09-27 豊田合成株式会社 Laser light source module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507007A (en) * 2003-09-25 2007-03-22 コーニング インコーポレイテッド Fiber lens with multimode pigtail
WO2007057974A1 (en) * 2005-11-21 2007-05-24 Toyo Glass Co., Ltd. Module having light-emitting element and optical fiber coupled therein, and component for module having light-emitting element and optical fiber coupled therein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507007A (en) * 2003-09-25 2007-03-22 コーニング インコーポレイテッド Fiber lens with multimode pigtail
WO2007057974A1 (en) * 2005-11-21 2007-05-24 Toyo Glass Co., Ltd. Module having light-emitting element and optical fiber coupled therein, and component for module having light-emitting element and optical fiber coupled therein

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDEHIKO YODA ET AL.: "A Lensed fiber for high-efficiency coupling with 980 nm-LDs having ultra-high aspect ratios", IEICE TECHNICAL REPORT OFT2001-1 TO 13 [OPTICAL FIBER TECHNOLOGIES], vol. 101, no. 63, 11 May 2001 (2001-05-11), pages 25 - 30 *
KOTA MATSUURA ET AL.: "A new scheme of lensed fiber employing a wedge-shaped GI fiber tip for the coupling between single-mode fibers and laser diodes operating at a wavelength of 980 nm", IEICE TECHNICAL REPORT OFT99-42 TO 50 [OPTICAL FIBER TECHNOLOGIES], vol. 99, no. 538, 14 January 2000 (2000-01-14), pages 13 - 18 *

Also Published As

Publication number Publication date
JP5387930B1 (en) 2014-01-15
JPWO2014016939A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
US6094515A (en) Optical module
JP5831403B2 (en) Coupling optical system and coupling method
US8588267B1 (en) Rectangular core optical fiber and rectangular core optical fiber arrays
KR100448968B1 (en) Method for fabricating optical coupling device, optical coupling device, optical coupling device assembly, and a lensed fiber using said optical coupling device
JP2007127797A (en) Optical module
US20190094475A1 (en) Optical receptacle, optical module, and method for manufacturing optical module
US9971106B2 (en) Optical receptacle and optical module
US6031953A (en) Diode-laser to optical fiber coupling system with biaxial optical power
WO2013140922A1 (en) Optical receptacle and optical module provided with same
US6668112B1 (en) Multimode laser diode and side-coupled fiber package
WO2016039481A1 (en) Ld module
JP2004213003A (en) Optical fiber coupler and its manufacturing method
US20210135423A1 (en) Methods and systems for spectral beam-combining
US6603791B2 (en) High power fiber amplifiers with passive pump module alignment
JPWO2007057974A1 (en) Light emitting element / optical fiber coupling module and parts for light emitting element / optical fiber coupling module
JP5387930B1 (en) Light emitting element / optical fiber coupling module and its components
JP6681751B2 (en) Optical receptacle and optical module
WO2017154541A1 (en) Optical receptacle and optical module
JP2008197459A (en) Optical transmission/reception module
JP2017161579A (en) Optical receptacle and optical module
TWI608263B (en) Optical socket and light module with it
WO2016031603A1 (en) Optical receptacle and light module
WO2020027253A1 (en) Optical coupler
JPS6338909A (en) Optical fiber with lens
JP3821576B2 (en) Optical module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012543390

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881738

Country of ref document: EP

Kind code of ref document: A1