WO2016031603A1 - Optical receptacle and light module - Google Patents

Optical receptacle and light module Download PDF

Info

Publication number
WO2016031603A1
WO2016031603A1 PCT/JP2015/073012 JP2015073012W WO2016031603A1 WO 2016031603 A1 WO2016031603 A1 WO 2016031603A1 JP 2015073012 W JP2015073012 W JP 2015073012W WO 2016031603 A1 WO2016031603 A1 WO 2016031603A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
receptacle
optical receptacle
photoelectric conversion
light
Prior art date
Application number
PCT/JP2015/073012
Other languages
French (fr)
Japanese (ja)
Inventor
亜耶乃 今
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Publication of WO2016031603A1 publication Critical patent/WO2016031603A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device

Definitions

  • the present invention relates to an optical receptacle and an optical module having the same.
  • optical communications using optical transmission bodies such as optical fibers and optical waveguides have been provided with light emitting elements such as surface emitting lasers (for example, vertical cavity surface emitting lasers (VCSELs)).
  • An optical module is used.
  • the optical module includes one or two or more photoelectric conversion elements (light-emitting elements or light-receiving elements) and transmission or reception optical coupling elements (hereinafter also referred to as “optical receptacles”) (for example, see Patent Document 1). ).
  • FIG. 1 is a diagram showing a configuration of an optical coupling element 10 described in Patent Document 1.
  • 1A is a plan view of the optical coupling element 10
  • FIG. 1B is a bottom view
  • FIG. 1C is a front view
  • FIG. 1D is a right side view.
  • the optical coupling element 10 includes a first lens surface 11 (incident surface) on which light from a VCSEL (light emitting element) (not shown) is incident, a total reflection surface 12 that reflects light incident on the first lens surface 11, and a total reflection surface 12.
  • VCSEL light emitting element
  • a second lens surface 13 (outgoing surface) that emits the light reflected by the reflecting surface 12 toward an end face of the optical fiber (not shown), and a positioning convex portion for positioning the optical fiber with respect to the optical coupling element 10 14 and a positioning recess 15 for positioning the VCSEL with respect to the optical coupling element 10.
  • the optical coupling element 10 is disposed on a substrate on which a VCSEL is disposed and is used in a state where an optical fiber is connected. As described above, the optical coupling element 10 can appropriately perform optical coupling between the VCSEL and the end face of the optical fiber while easily positioning the VCSEL and the optical fiber.
  • the optical coupling element 10 described in Patent Document 1 can be integrally formed by injection molding using a thermoplastic transparent resin. Specifically, the optical coupling element 10 is manufactured by pouring a thermoplastic transparent resin into a mold cavity, cooling and solidifying, and then releasing the optical coupling element 10.
  • the optical coupling element 10 optical receptacle
  • the total reflection surface 12 is slightly deformed by molding shrinkage.
  • the optical coupling element 10 uses a light emitting element (photoelectric conversion element) and an optical fiber (optical transmission body) as an optical device.
  • the optical coupling element 10 uses a light emitting element (photoelectric conversion element) and an optical fiber (optical transmission body) as an optical device.
  • a first object of the present invention is to provide an optical receptacle that hardly causes deformation of a reflecting surface due to molding shrinkage even when manufactured by injection molding.
  • the second object of the present invention is to provide an optical module having this optical receptacle.
  • An optical receptacle according to the present invention is disposed between one or two or more photoelectric conversion elements and one or two or more optical transmission bodies, and the one or two or more photoelectric conversion elements and the one or two or more photoelectric conversion elements
  • One or more first optical surfaces to be emitted toward the photoelectric conversion element, and light incident on the first optical surface and passing through the inside are emitted toward the end surface of the optical transmission body, or the optical transmission body
  • One or two or more second optical surfaces for entering the light emitted from the end face of the light and the light incident on the first optical surface are reflected toward the second optical surface or incident on the second optical surface Reflecting the reflected light toward the first optical surface If, anda located wall portion so as to face each other across the groove to the reflecting surface, the groove, both ends in communication with the outside in the longitudinal direction, a configuration.
  • An optical module according to the present invention is disposed on a substrate, one or more photoelectric conversion elements disposed on the substrate, and the first optical surface is opposed to the photoelectric conversion element.
  • the optical receptacle according to the present invention is employed.
  • the present invention it is possible to provide an optical receptacle in which even if manufactured by injection molding, the reflective surface is hardly deformed by molding shrinkage. Since the optical receptacle according to the present invention has high accuracy of the reflecting surface, the photoelectric conversion element and the optical transmission body can be optically and appropriately coupled even at a high transmission speed.
  • FIG. 1A to 1D are diagrams showing a configuration of an optical receptacle according to Patent Document 1.
  • FIG. FIG. 2 is a cross-sectional view of the optical module according to the embodiment.
  • 3A and 3B are perspective views of the optical receptacle according to the embodiment.
  • 4A to 4E are diagrams showing the configuration of the optical receptacle according to the embodiment.
  • 5A and 5B are perspective views of an optical receptacle according to Comparative Example 1.
  • FIG. 6A to 6E are diagrams showing a configuration of an optical receptacle according to Comparative Example 1.
  • FIG. 7A and 7B are perspective views of an optical receptacle according to Comparative Example 2.
  • FIG. 8A to 8E are diagrams showing the configuration of the optical receptacle according to the comparative example 2.
  • FIG. 9A and 9B are graphs showing the amount of displacement of the reflecting surface due to molding contraction of the optical receptacle according to the embodiment and Comparative Examples 1 and 2.
  • FIG. 10A to 10C are diagrams for explaining distortion due to molding shrinkage of the optical receptacle according to the embodiment and Comparative Examples 1 and 2.
  • FIG. 2 is a cross-sectional view of the optical module 100 according to the embodiment of the present invention.
  • the cross section of the optical receptacle 130 is not hatched in order to show the optical path in the optical receptacle 130.
  • the optical module 100 includes a substrate 110, one or more photoelectric conversion elements 120, and an optical receptacle 130.
  • the optical module 100 is used with the optical transmission body 140 connected to the optical receptacle 130.
  • the substrate 110 1 or two or more photoelectric conversion elements 120 and an optical receptacle 130 are disposed on the substrate 110.
  • convex portions corresponding to positioning concave portions 136 of an optical receptacle 130 described later are formed on the substrate 110.
  • the optical receptacle 130 can be fixed at a predetermined position with respect to the photoelectric conversion element 120 disposed on the substrate 110.
  • the material of the substrate 110 is not particularly limited.
  • the substrate 110 is, for example, a glass composite substrate or a glass epoxy substrate.
  • the photoelectric conversion element 120 is a light emitting element or a light receiving element, and is disposed on the substrate 110.
  • a plurality (12) of photoelectric conversion elements 120 are arranged on the substrate 110.
  • a light emitting element is used as the photoelectric conversion element 120.
  • a light receiving element is used as the photoelectric conversion element 120.
  • the light emitting element is, for example, a vertical cavity surface emitting laser (VCSEL).
  • the light receiving element is, for example, a photo detector.
  • the optical receptacle 130 is disposed on the substrate 110 such that a first optical surface 131 described later faces the photoelectric conversion element 120.
  • the optical receptacle 130 optically couples the photoelectric conversion element 120 and the end face of the optical transmission body 140 while being disposed between the photoelectric conversion element 120 and the optical transmission body 140.
  • the optical receptacle 130 emits light emitted from the photoelectric conversion element 120 (light emitting element) toward the end face of the optical transmission body 140.
  • the optical receptacle 130 In the optical module 100 for reception, the optical receptacle 130 emits light emitted from the end face of the optical transmission body 140 toward the photoelectric conversion element 120 (light receiving element).
  • optical module 100 having both the light-emitting element and the light-receiving element as the photoelectric conversion element 120 functions as both a transmission optical module and a reception optical module.
  • the configuration of the optical receptacle 130 will be described in detail separately.
  • the type of the optical transmission body 140 is not particularly limited. Examples of the type of the optical transmission body 140 include an optical fiber and an optical waveguide. Although not particularly illustrated, the optical transmission body 140 is connected to the optical receptacle 130 via a ferrule. The ferrule has a concave portion corresponding to a positioning convex portion 135 of an optical receptacle 130 described later. By fitting the positioning convex portion 135 into the concave portion, the end face of the optical transmission body 140 can be fixed at a predetermined position with respect to the optical receptacle 130. In the present embodiment, the optical transmission body 140 is an optical fiber. The optical fiber may be a single mode method or a multimode method.
  • FIG. 3A is a perspective view seen from the upper side (top surface side) of the optical receptacle 130 according to the present embodiment
  • FIG. 3B is a perspective view seen from the lower side (bottom surface side).
  • 4A is a plan view of the optical receptacle 130
  • FIG. 4B is a bottom view
  • FIG. 4C is a front view
  • FIG. 4D is a rear view
  • FIG. 4E is a right side view.
  • the optical receptacle 130 is a substantially rectangular parallelepiped member.
  • the optical receptacle 130 includes one or more first optical surfaces 131, a reflecting surface 132, one or more second optical surfaces 133, a wall portion 134, a positioning convex portion 135, and a positioning concave portion 136.
  • the optical receptacle 130 is formed using a material that transmits light with a wavelength used for optical communication. Examples of the material of the optical receptacle 130 include transparent resins such as polyetherimide (PEI) and cyclic olefin resin.
  • PEI polyetherimide
  • the optical receptacle 130 can be manufactured by injection molding, for example.
  • the first optical surface 131 allows light emitted from the photoelectric conversion element 120 (light emitting element) to enter the inside of the optical receptacle 130 or is incident on the second optical surface 133 (described later), and is reflected on the reflecting surface 132 (described later). It is an optical surface that emits the reflected light toward the photoelectric conversion element 120 (light receiving element).
  • the first optical surface 131 is disposed on the back surface of the optical receptacle 130 so as to face the photoelectric conversion element 120.
  • twelve first optical surfaces 131 are arranged in a row along the long side direction on the bottom surface of the recess provided on the back side of the optical receptacle 130.
  • the shape of the first optical surface 131 is not particularly limited.
  • the first optical surface 131 is a convex lens surface that is convex toward the photoelectric conversion element 120. Further, the planar view shape of the first optical surface 131 is a circle.
  • the central axis of the first optical surface 131 is preferably perpendicular to the light emitting surface or the light receiving surface of the photoelectric conversion element 120 (and the surface of the substrate 110).
  • the central axis of the first optical surface 131 preferably coincides with the optical axis of light emitted from the photoelectric conversion element 120 (light emitting element) or light incident on the photoelectric conversion element 120 (light receiving element). Note that the number of the first optical surfaces 131 may be one.
  • the reflection surface 132 reflects light incident on the first optical surface 131 toward the second optical surface 133 or reflects light incident on the second optical surface 133 (described later) toward the first optical surface 131. It is an optical surface.
  • the reflective surface 132 is inclined so as to approach the optical transmission body 140 (front side) from the bottom surface of the optical receptacle 130 toward the top surface.
  • the inclination angle of the reflecting surface 132 is not particularly limited. In the present embodiment, the inclination angle of the reflection surface 132 is 45 ° with respect to the optical axis of the light incident on the reflection surface 132.
  • the shape of the reflective surface 132 is not particularly limited. In the present embodiment, the shape of the reflecting surface 132 is a plane. The light incident on the first optical surface 131 or the second optical surface 133 is incident on the reflecting surface 132 at an incident angle larger than the critical angle.
  • the second optical surface 133 causes the light incident on the first optical surface 131 and reflected by the reflecting surface 132 to be emitted toward the end surface of the light transmission body 140, or the light emitted from the end surface of the light transmission body 140.
  • This is an optical surface that enters the inside of the optical receptacle 130.
  • the second optical surface 133 is disposed on the front-side surface of the optical receptacle 130 so as to face the end surface of the optical transmission body 140.
  • twelve second optical surfaces 133 are arranged in a line along the long side direction on the bottom surface of the recess provided on the front side of the optical receptacle 130.
  • the shape of the second optical surface 133 is not particularly limited.
  • the second optical surface 133 is a convex lens surface that is convex toward the end surface of the optical transmission body 140.
  • the central axis of the second optical surface 133 is preferably coincident with the central axis of the end surface of the optical transmission body 140.
  • the number of the second optical surfaces 133 may be one.
  • the wall portion 134 suppresses deformation of the reflecting surface 132 due to molding shrinkage when the optical receptacle 130 is manufactured by injection molding.
  • the wall portion 134 is disposed on the back side of the optical receptacle 130 so as to face the reflecting surface 132 with the groove 137 interposed therebetween.
  • the wall 134 is formed integrally with the optical receptacle 130.
  • the shape and size of the wall portion 134 are not particularly limited as long as the deformation of the reflecting surface 132 due to molding shrinkage can be prevented. Further, from the viewpoint of effectively suppressing the deformation of the reflecting surface 132 during injection molding, for example, as shown in FIG. 2, the first optical surface 131 and the tip of the wall portion 134 in the depth direction of the groove 137.
  • the distance (d1) between the first optical surface 131 and the point at which the light incident on the first optical surface 131 reaches the reflecting surface 132 (d2) is longer than the distance (d1) between the first optical surface 131 and the first optical surface 131.
  • the reference position of the first optical surface 131 is not particularly limited, but is, for example, the center of the first optical surface 131.
  • the distance from the bottom surface of the optical receptacle 130 to the tip of the wall 134 is the same as the distance from the bottom surface of the optical receptacle 130 to the top surface.
  • the groove 137 is formed on the top surface side of the optical receptacle 130 so as to be positioned between the reflection surface 132 and the wall portion 134, and includes the reflection surface 132 and the front surface of the wall portion 134.
  • the groove 137 has both ends (the left side end and the right side end) communicating with the outside in the length direction.
  • the reflecting surface 132 is inclined to the front side from the bottom surface of the optical receptacle 130 toward the top surface. Therefore, in the present embodiment, the shape of the groove 137 is a substantially triangular prism shape.
  • the positioning convex portion 135 is fitted into a concave portion formed in the ferrule that holds the optical transmission body 140, thereby positioning the end surface of the optical transmission body 140 at an appropriate position with respect to the second optical surface 133.
  • the shape and size of the positioning convex portion 135 are not particularly limited, and are appropriately set according to the shape of the ferrule.
  • the positioning convex portion 135 is a substantially cylindrical convex portion.
  • the positioning concave portion 136 positions the first optical surface 131 of the optical receptacle 130 at an appropriate position with respect to the photoelectric conversion element 120 by fitting a convex portion formed on the substrate 110.
  • the shape and size of the positioning recess 136 are not particularly limited, and are appropriately set according to the shape of the substrate 110 and the like.
  • the positioning recess 136 is a substantially cylindrical recess.
  • optical receptacle 130 The configuration of the optical receptacle 130 has been described above. Here, the optical path in the optical module 100 according to the present embodiment will be described.
  • the light emitted from the photoelectric conversion element 120 is incident on the inside of the optical receptacle 130 at the first optical surface 131.
  • incident light is converted into collimated light by the first optical surface 131 and travels toward the reflecting surface 132.
  • the incident light is reflected by the reflecting surface 132 and travels toward the second optical surface 133.
  • the light reflected by the reflecting surface 132 is emitted to the outside of the optical receptacle 130 by the second optical surface 133 and reaches the end surface of the optical transmission body 140.
  • the emitted light is collected at the center of the end face of the optical transmission body 140 by the second optical surface 133.
  • the light emitted from the end face of the optical transmission body 140 is incident on the inside of the optical receptacle 130 at the second optical surface 133.
  • the light incident on the optical receptacle 130 is converted into collimated light by the second optical surface 133 and travels toward the reflecting surface 132.
  • the incident light is reflected by the reflecting surface 132 and travels toward the first optical surface 131.
  • the light reflected by the reflecting surface 132 is emitted to the outside of the optical receptacle 130 by the first optical surface 131 and reaches the photoelectric conversion element 120 (light receiving element).
  • the emitted light is collected by the first optical surface 131 at the center of the light receiving surface of the photoelectric conversion element 120 (light receiving element).
  • the optical receptacle 130 can optically appropriately couple the photoelectric conversion element 120 and the end face of the optical transmission body 140.
  • the optical receptacle 130 can be manufactured by injection molding, for example.
  • the reflecting surface 132 is likely to be deformed due to molding shrinkage.
  • the reflecting surface 132 is an optical surface that reflects light incident on the inside of the optical receptacle 130, and the distortion (deformation) of the reflecting surface 132 may affect the traveling direction of the light in the optical receptacle 130. is there.
  • the plurality (12) of the first optical surfaces 131 and the plurality (12) of the second optical surfaces 133 are arranged in a line at regular intervals. ing. Therefore, when the distortion of the reflecting surface 132 is large to some extent, there is a possibility that a part of the first optical surface 131 and the second optical surface 133 cannot be appropriately optically coupled. The influence of the distortion of the reflecting surface 132 becomes more prominent when the optical module 100 is used at a higher transmission speed. For this reason, it is extremely important to suppress the deformation of the reflecting surface 132 due to molding shrinkage and increase the accuracy of the reflecting surface 132.
  • the length (x) in the depth direction of the optical receptacle 130 according to the present embodiment is 2.5 mm
  • the length (y) in the long side direction is 6.5 mm
  • the height is high.
  • the length (z) in the vertical direction was set to 2.0 mm.
  • the length of each direction of the optical receptacle 130 ′ according to the comparative example 1 and the length of the optical receptacle 130 ′′ according to the comparative example 2 is also the same as the length of each direction of the optical receptacle 130.
  • FIGS. 5 and 6 are diagrams showing the configuration of the optical receptacle 130 'according to the first comparative example.
  • 5A is a perspective view of the optical receptacle 130 ′ according to Comparative Example 1 as viewed from the upper side (top surface side)
  • FIG. 5B is a perspective view of the optical receptacle 130 ′ as viewed from the lower side (bottom surface side).
  • 6A is a plan view of an optical receptacle 130 ′ according to Comparative Example 1
  • FIG. 6B is a bottom view
  • FIG. 6C is a front view
  • FIG. 6D is a rear view
  • FIG. It is a right view.
  • both ends of the groove 137 ′ do not communicate with the outside in the length direction (long side direction of the optical receptacle 130 ′).
  • FIG. 7 and 8 are diagrams showing a configuration of an optical receptacle 130 ′′ according to Comparative Example 2.
  • FIG. 7A is a perspective view of the optical receptacle 130 ′′ according to Comparative Example 2 as viewed from the upper side (top surface side).
  • FIG. 7B is a perspective view seen from the lower side (bottom side).
  • 8A is a plan view of an optical receptacle 130 ′′ according to Comparative Example 2
  • FIG. 8B is a bottom view
  • FIG. 8C is a front view
  • FIG. 8D is a rear view
  • FIG. 7 and 8 the optical receptacle 130 ′′ according to the comparative example 2 does not have the wall part 134.
  • FIG. 9 and 10 are diagrams for explaining distortion of the reflecting surface 132 due to molding shrinkage of the three types of optical receptacles 130, 130 ′, and 130 ′′.
  • the depth direction of the optical receptacles 130, 130 ′, and 130 ′′ is also referred to as an x-axis direction
  • the long side direction is also referred to as a y-axis direction
  • the height direction is also referred to as a z-axis direction.
  • 9 is a graph (simulation result) showing the amount of displacement of the reflecting surface 132 of the optical receptacles 130, 130 ′, 130 ′′.
  • the position number of the first optical surface 131 and the first optical surface 131 are shown.
  • 9A shows the relationship between the optical axis of light passing through and the amount of displacement of the reflecting surface 132 at the intersection of the reflecting surface 132.
  • Fig. 9A shows the amount of displacement hz of the reflecting surface 132 in the z-axis direction.
  • FIGS.9A and 9B show the displacement amount hx of the reflecting surface 132 in the x-axis direction
  • the horizontal axis is a number assigned from the left when viewed from the front in the arrangement direction of the first optical surfaces 131.
  • the position number of the first optical surface 131 is shown.
  • the vertical axis represents the position of the reflecting surface 132 at the point corresponding to the first optical surface 131 of No. 1 as a reference.
  • Reflection surface of corresponding point 9A and 9B the results for the optical receptacle 130 'according to the comparative example 1 are indicated by black circles ( ⁇ ), and the optical receptacle 130 "according to the comparative example 2 is shown.
  • the results for the optical receptacle 130 are indicated by black triangles ( ⁇ ), and the results for the optical receptacle 130 according to the present embodiment are indicated by black squares ( ⁇ ).
  • FIG. 10A is a cross-sectional view taken along the line AA in FIG. 6A and shows the stress applied to the optical receptacle 130 ′ according to Comparative Example 1 during molding shrinkage.
  • 10B is a cross-sectional view taken along the line BB in FIG. 8A, and shows the stress applied to the optical receptacle 130 ′′ according to Comparative Example 2 during molding shrinkage.
  • FIG. 10C is a cross-sectional view taken along the line CC in FIG.
  • FIG. 10 is a cross-sectional view showing the stress applied to the optical receptacle 130 according to the present embodiment at the time of molding shrinkage.
  • the optical receptacle is shown to show the stress applied to the optical receptacles 130, 130 ′, 130 ′′.
  • the cross sections 130, 130 ′, and 130 ′′ are not hatched.
  • the optical receptacle 130 ′ according to Comparative Example 1 will be described. As shown by the black circles in FIG. 9, it was found that the reflecting surface 132 is distorted outward in the z-axis direction and the x-axis direction. As shown in FIG. 10A, a stress that is pulled outward by molding shrinkage acts on the outer portion of the groove 137 'of the optical receptacle 130' (see the thin solid arrow in FIG. 10A). In addition, a greater stress acts inward on the bottom side of the reflecting surface 132 of the optical receptacle 130 '(see the thick solid arrow in FIG. 10A).
  • the stress toward the inside is smaller than the stress in the optical receptacle 130 ′ according to the comparative example 1.
  • a small stress that pulls outward acts on the bottom side and the front side of the reflecting surface 132 (see the thin broken arrow in FIG. 10B), while the optical receptacle 130 ′′ according to the comparative example 2 is compared.
  • the stress corresponding to the stress acting on the outer portion of the groove 137 ′ in the optical receptacle 130 ′ according to Example 1 does not work.
  • the above-described two types of stress are simultaneously applied to the optical receptacle 130 ′′ at the time of molding shrinkage.
  • the reflective surface 132 is stressed so as to be distorted inward as a whole and is greatly distorted. .
  • both ends of the groove 137 communicate with the outside in the long side direction, and have a wall portion 134. Since both ends of the groove 137 communicate with the outside in the length direction, in the optical receptacle 130 according to the present embodiment, the optical receptacle 130 ′ according to the comparative example 1 works on a portion outside the groove 137 ′. Stress corresponding to stress does not work.
  • the optical receptacle 130 according to the present embodiment a small stress that pulls outward also acts on the bottom side and the front side of the reflecting surface 132 (see the thin broken arrow in FIG. 10C).
  • the optical receptacle 130 according to the present embodiment is thicker than the optical receptacle 130 ′′ according to the comparative example 2 by having the wall portion 134. Therefore, the bottom surface of the optical receptacle 130 is lower than the reflecting surface 132.
  • a larger inward stress is applied to the side portion than the inward stress in the optical receptacle 130 ′′ according to Comparative Example 2 (see the thick solid arrow in FIG. 10C). Further, this stress works slightly in the direction in which the wall portion 134 exists (x direction).
  • the maximum displacement amount hz of the reflecting surface 132 in the z-axis direction is reduced by 50% compared to the optical receptacle 130 ′ according to Comparative Example 1. . Further, the maximum displacement amount hx of the reflecting surface 132 in the x-axis direction was reduced by 35%. As a result, the maximum displacement amount of the reflecting surface 132 in the normal direction of the reflecting surface 132 is reduced by 40%. From this, it has been found that the fact that both ends of the groove 137 communicate with the outside in the length direction contributes to suppressing the outward deformation of the reflecting surface 132.
  • the portion corresponding to the groove 137 of the optical receptacle 130 ′′ according to the present embodiment also communicates with the outside in the y-axis direction.
  • the comparative example 2 The reflecting surface 132 of the optical receptacle 130 ′′ according to the above was greatly deformed inward due to stress due to molding shrinkage. From the comparison between the optical receptacle 130 according to the present embodiment and the optical receptacle 130 ′′ according to the comparative example 2, it is found that the wall portion 134 contributes to suppressing the inward deformation of the reflecting surface 132. It was.
  • the optical receptacle 130 according to the present embodiment has a wall portion 134 disposed so as to face the reflecting surface 132 with the groove 137 interposed therebetween.
  • both ends of the groove 137 communicate with the outside in the length direction. For this reason, even when the optical receptacle 130 is manufactured by injection molding, deformation (distortion) of the reflecting surface 132 due to molding shrinkage can be suppressed. Therefore, the optical module 100 according to the present embodiment is less likely to cause deformation of the reflecting surface 132 due to molding shrinkage even when manufactured by injection molding, and the photoelectric conversion element 120 and the optical transmission body 140 are used even at a high transmission speed. Can be optically coupled appropriately.
  • the first optical surface 131 and the second optical surface 133 are convex lens surfaces.
  • the first optical surface 131 and the second optical surface 133 are flat surfaces. May be.
  • only the first optical surface 131 may be a flat surface, or only the second optical surface 133 may be a flat surface.
  • the first optical surface 131 is formed as a flat surface, for example, the reflecting surface 132 is formed so as to function as a concave mirror.
  • the second optical surface 133 may be formed in a flat surface.
  • the reference position of the first optical surface 131 is not particularly limited.
  • the optical module according to the present invention can also be used in an optical module for transmission and reception.
  • the optical module includes a light emitting element and a light receiving element as a plurality of photoelectric conversion elements.
  • optical receptacle and the optical module according to the present invention are useful for optical communication using an optical transmission body.
  • optical coupling element 11 first lens surface (incident surface) 12 Total reflection surface 13 Second lens surface (outgoing surface) DESCRIPTION OF SYMBOLS 14 Positioning convex part 15 Positioning concave part 100 Optical module 110 Board

Abstract

This optical receptacle (130) has: one or more first optical surfaces (131) which allows light output by a photoelectric conversion element to enter or from which light output by an end surface of a light transmitting body (140) and passing through the inside is output toward the photoelectric conversion element; one or more second optical surfaces (133) from which light that is incident to the first optical surface (131) and passes through the inside is output toward the end surface of the light transmitting body (140) or which allows light output by the end surface of the light transmitting body (140) to enter; a reflective surface (132) wherein light incident at the first optical surface (131) is reflected toward the second optical surface (133) or light incident at the second optical surface (133) is reflected toward the first optical surface (131); and a wall part (134) disposed so as to face the reflective surface (132) with a channel (137) therebetween. The channel (137) is linked to the outside on both ends in the direction of the length thereof.

Description

光レセプタクルおよび光モジュールOptical receptacle and optical module
 本発明は、光レセプタクルおよびこれを有する光モジュールに関する。 The present invention relates to an optical receptacle and an optical module having the same.
 以前から、光ファイバや光導波路などの光伝送体を用いた光通信には、面発光レーザ(例えば、垂直共振器面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser))などの発光素子を備えた光モジュールが使用されている。光モジュールは、1または2以上の光電変換素子(発光素子または受光素子)と、送信用または受信用の光結合素子(以下、「光レセプタクル」ともいう)とを有する(例えば、特許文献1参照)。 For some time, optical communications using optical transmission bodies such as optical fibers and optical waveguides have been provided with light emitting elements such as surface emitting lasers (for example, vertical cavity surface emitting lasers (VCSELs)). An optical module is used. The optical module includes one or two or more photoelectric conversion elements (light-emitting elements or light-receiving elements) and transmission or reception optical coupling elements (hereinafter also referred to as “optical receptacles”) (for example, see Patent Document 1). ).
 図1は、特許文献1に記載の光結合素子10の構成を示す図である。図1Aは、光結合素子10の平面図であり、図1Bは、底面図であり、図1Cは、正面図であり、図1Dは、右側面図である。光結合素子10は、不図示のVCSEL(発光素子)からの光を入射させる第1レンズ面11(入射面)と、第1レンズ面11で入射した光を反射する全反射面12と、全反射面12で反射された光を不図示の光ファイバの端面に向けて出射する第2レンズ面13(出射面)と、光ファイバを光結合素子10に対して位置決めするための位置決め用凸部14と、VCSELを光結合素子10に対して位置決めするための位置決め用凹部15とを有する。光結合素子10は、VCSELが配置された基板上に配置されるとともに、光ファイバが接続された状態で使用される。このように、光結合素子10は、VCSELおよび光ファイバの位置決めを簡単に行いつつ、VCSELと光ファイバの端面との光学的な結合を適切に行うことができる。 FIG. 1 is a diagram showing a configuration of an optical coupling element 10 described in Patent Document 1. 1A is a plan view of the optical coupling element 10, FIG. 1B is a bottom view, FIG. 1C is a front view, and FIG. 1D is a right side view. The optical coupling element 10 includes a first lens surface 11 (incident surface) on which light from a VCSEL (light emitting element) (not shown) is incident, a total reflection surface 12 that reflects light incident on the first lens surface 11, and a total reflection surface 12. A second lens surface 13 (outgoing surface) that emits the light reflected by the reflecting surface 12 toward an end face of the optical fiber (not shown), and a positioning convex portion for positioning the optical fiber with respect to the optical coupling element 10 14 and a positioning recess 15 for positioning the VCSEL with respect to the optical coupling element 10. The optical coupling element 10 is disposed on a substrate on which a VCSEL is disposed and is used in a state where an optical fiber is connected. As described above, the optical coupling element 10 can appropriately perform optical coupling between the VCSEL and the end face of the optical fiber while easily positioning the VCSEL and the optical fiber.
 また、特許文献1に記載の光結合素子10は、熱可塑性の透明樹脂を用いた射出成形により一体成形されうる。具体的には、光結合素子10は、金型のキャビティーに熱可塑性の透明樹脂を流し込んで、冷却させて固化させた後、光結合素子10を離型することで製造される。 Further, the optical coupling element 10 described in Patent Document 1 can be integrally formed by injection molding using a thermoplastic transparent resin. Specifically, the optical coupling element 10 is manufactured by pouring a thermoplastic transparent resin into a mold cavity, cooling and solidifying, and then releasing the optical coupling element 10.
特開2009-163212号公報JP 2009-163212 A
 しかしながら、特許文献1に記載の光結合素子10(光レセプタクル)を射出成形により製造する場合、全反射面12が成形収縮によりわずかに変形してしまう。10Gbps程度までの伝送速度で使用する場合は、全反射面12の精度が大きな問題とはならないため、光結合素子10は、発光素子(光電変換素子)および光ファイバ(光伝送体)を光学的に適切に結合させることができる。しかし、近年、より速い伝送速度での使用が求められており、全反射面12のわずかな変形であっても、発光素子(または受光素子)と光伝送体とを光学的に適切に結合させることができないおそれがある。 However, when the optical coupling element 10 (optical receptacle) described in Patent Document 1 is manufactured by injection molding, the total reflection surface 12 is slightly deformed by molding shrinkage. When used at a transmission speed of up to about 10 Gbps, the accuracy of the total reflection surface 12 does not become a big problem, so the optical coupling element 10 uses a light emitting element (photoelectric conversion element) and an optical fiber (optical transmission body) as an optical device. Can be combined appropriately. However, in recent years, use at a higher transmission speed has been demanded, and even if the total reflection surface 12 is slightly deformed, the light emitting element (or the light receiving element) and the optical transmission body are optically coupled appropriately. There is a risk that it will not be possible.
 本発明の第1の目的は、射出成形により製造したとしても成形収縮による反射面の変形が生じにくい光レセプタクルを提供することである。また、本発明の第2の目的は、この光レセプタクルを有する光モジュールを提供することである。 A first object of the present invention is to provide an optical receptacle that hardly causes deformation of a reflecting surface due to molding shrinkage even when manufactured by injection molding. The second object of the present invention is to provide an optical module having this optical receptacle.
 本発明に係る光レセプタクルは、1または2以上の光電変換素子と、1または2以上の光伝送体との間に配置され、前記1または2以上の光電変換素子と、前記1または2以上の光伝送体の端面とを光学的に結合するための光レセプタクルであって、前記光電変換素子から出射された光を入射させるか、前記光伝送体の端面から出射され、内部を通る光を前記光電変換素子に向けて出射させる1または2以上の第1光学面と、前記第1光学面で入射し、内部を通る光を前記光伝送体の端面に向けて出射させるか、前記光伝送体の端面から出射された光を入射させる1または2以上の第2光学面と、前記第1光学面で入射した光を前記第2光学面に向けて反射させるか、前記第2光学面で入射した光を前記第1光学面に向けて反射させる反射面と、前記反射面に対して溝を挟んで対向するように配置された壁部と、を有し、前記溝は、その長さ方向において両端が外部に連通している、構成を採る。 An optical receptacle according to the present invention is disposed between one or two or more photoelectric conversion elements and one or two or more optical transmission bodies, and the one or two or more photoelectric conversion elements and the one or two or more photoelectric conversion elements An optical receptacle for optically coupling with an end face of an optical transmission body, wherein light emitted from the photoelectric conversion element is incident or emitted from an end face of the optical transmission body and passing through the inside. One or more first optical surfaces to be emitted toward the photoelectric conversion element, and light incident on the first optical surface and passing through the inside are emitted toward the end surface of the optical transmission body, or the optical transmission body One or two or more second optical surfaces for entering the light emitted from the end face of the light and the light incident on the first optical surface are reflected toward the second optical surface or incident on the second optical surface Reflecting the reflected light toward the first optical surface If, anda located wall portion so as to face each other across the groove to the reflecting surface, the groove, both ends in communication with the outside in the longitudinal direction, a configuration.
 本発明に係る光モジュールは、基板と、前記基板上に配置された1または2以上の光電変換素子と、前記第1光学面が前記光電変換素子と対向するように前記基板上に配置された本発明に係る光レセプタクルと、を有する、構成を採る。 An optical module according to the present invention is disposed on a substrate, one or more photoelectric conversion elements disposed on the substrate, and the first optical surface is opposed to the photoelectric conversion element. The optical receptacle according to the present invention is employed.
 本発明によれば、射出成形により製造しても成形収縮による反射面の変形が生じにくい光レセプタクルを提供することができる。本発明に係る光レセプタクルは、反射面の精度が高いため、速い伝送速度でも光電変換素子と光伝送体とを光学的に適切に結合させることができる。 According to the present invention, it is possible to provide an optical receptacle in which even if manufactured by injection molding, the reflective surface is hardly deformed by molding shrinkage. Since the optical receptacle according to the present invention has high accuracy of the reflecting surface, the photoelectric conversion element and the optical transmission body can be optically and appropriately coupled even at a high transmission speed.
図1A~Dは、特許文献1に係る光レセプタクルの構成を示す図である。1A to 1D are diagrams showing a configuration of an optical receptacle according to Patent Document 1. FIG. 図2は、実施の形態に係る光モジュールの断面図である。FIG. 2 is a cross-sectional view of the optical module according to the embodiment. 図3A、Bは、実施の形態に係る光レセプタクルの斜視図である。3A and 3B are perspective views of the optical receptacle according to the embodiment. 図4A~Eは、実施の形態に係る光レセプタクルの構成を示す図である。4A to 4E are diagrams showing the configuration of the optical receptacle according to the embodiment. 図5A、Bは、比較例1に係る光レセプタクルの斜視図である。5A and 5B are perspective views of an optical receptacle according to Comparative Example 1. FIG. 図6A~Eは、比較例1に係る光レセプタクルの構成を示す図である。6A to 6E are diagrams showing a configuration of an optical receptacle according to Comparative Example 1. FIG. 図7A、Bは、比較例2に係る光レセプタクルの斜視図である。7A and 7B are perspective views of an optical receptacle according to Comparative Example 2. FIG. 図8A~Eは、比較例2に係る光レセプタクルの構成を示す図である。8A to 8E are diagrams showing the configuration of the optical receptacle according to the comparative example 2. FIG. 図9A、Bは、実施の形態および比較例1、2に係る光レセプタクルの成形収縮による反射面の変位量を示すグラフである。9A and 9B are graphs showing the amount of displacement of the reflecting surface due to molding contraction of the optical receptacle according to the embodiment and Comparative Examples 1 and 2. FIG. 図10A~Cは、実施の形態および比較例1、2に係る光レセプタクルの成形収縮による歪みを説明するための図である。10A to 10C are diagrams for explaining distortion due to molding shrinkage of the optical receptacle according to the embodiment and Comparative Examples 1 and 2. FIG.
 以下、本発明に係る一実施の形態について、図面を参照して詳細に説明する。 Hereinafter, an embodiment according to the present invention will be described in detail with reference to the drawings.
 (光モジュールの構成)
 図2は、本発明の実施の形態に係る光モジュール100の断面図である。図2では、光レセプタクル130内の光路を示すために光レセプタクル130の断面へのハッチングを省略している。
(Configuration of optical module)
FIG. 2 is a cross-sectional view of the optical module 100 according to the embodiment of the present invention. In FIG. 2, the cross section of the optical receptacle 130 is not hatched in order to show the optical path in the optical receptacle 130.
 図2に示されるように、光モジュール100は、基板110と、1または2以上の光電変換素子120と、光レセプタクル130とを有する。光モジュール100は、光レセプタクル130に光伝送体140が接続されて使用される。 As shown in FIG. 2, the optical module 100 includes a substrate 110, one or more photoelectric conversion elements 120, and an optical receptacle 130. The optical module 100 is used with the optical transmission body 140 connected to the optical receptacle 130.
 基板110には、1または2以上の光電変換素子120、および光レセプタクル130が配置される。基板110には、後述する光レセプタクル130の位置決め用凹部136に対応した凸部が形成されている。この凸部を位置決め用凹部136に嵌め込むことにより、光レセプタクル130を、基板110上に配置された光電変換素子120に対して所定の位置に固定することができる。基板110の材料は、特に限定されない。基板110は、例えばガラスコンポジット基板やガラスエポキシ基板などである。 1 or two or more photoelectric conversion elements 120 and an optical receptacle 130 are disposed on the substrate 110. On the substrate 110, convex portions corresponding to positioning concave portions 136 of an optical receptacle 130 described later are formed. By fitting this convex portion into the positioning concave portion 136, the optical receptacle 130 can be fixed at a predetermined position with respect to the photoelectric conversion element 120 disposed on the substrate 110. The material of the substrate 110 is not particularly limited. The substrate 110 is, for example, a glass composite substrate or a glass epoxy substrate.
 光電変換素子120は、発光素子または受光素子であり、基板110上に配置されている。本実施の形態では、複数(12個)の光電変換素子120(発光素子および/または受光素子)が、基板110上に配置されている。送信用の光モジュール100では、光電変換素子120として発光素子が使用される。受信用の光モジュール100では、光電変換素子120として受光素子が使用される。発光素子は、例えば垂直共振器面発光レーザ(VCSEL)である。受光素子は、例えばフォトディテクタである。 The photoelectric conversion element 120 is a light emitting element or a light receiving element, and is disposed on the substrate 110. In the present embodiment, a plurality (12) of photoelectric conversion elements 120 (light emitting elements and / or light receiving elements) are arranged on the substrate 110. In the transmission optical module 100, a light emitting element is used as the photoelectric conversion element 120. In the optical module 100 for reception, a light receiving element is used as the photoelectric conversion element 120. The light emitting element is, for example, a vertical cavity surface emitting laser (VCSEL). The light receiving element is, for example, a photo detector.
 光レセプタクル130は、後述する第1光学面131が光電変換素子120と対向するように基板110上に配置されている。光レセプタクル130は、光電変換素子120と光伝送体140との間に配置された状態で、光電変換素子120と光伝送体140の端面とを光学的に結合させる。送信用の光モジュール100では、光レセプタクル130は、光電変換素子120(発光素子)から出射された光を光伝送体140の端面に向けて出射する。受信用の光モジュール100では、光レセプタクル130は、光伝送体140の端面から出射された光を光電変換素子120(受光素子)に向けて出射する。なお、光電変換素子120として発光素子および受光素子の両方を有する光モジュール100は、送信用の光モジュールおよび受信用の光モジュールの両方として機能する。光レセプタクル130の構成については、別途詳細に説明する。 The optical receptacle 130 is disposed on the substrate 110 such that a first optical surface 131 described later faces the photoelectric conversion element 120. The optical receptacle 130 optically couples the photoelectric conversion element 120 and the end face of the optical transmission body 140 while being disposed between the photoelectric conversion element 120 and the optical transmission body 140. In the optical module 100 for transmission, the optical receptacle 130 emits light emitted from the photoelectric conversion element 120 (light emitting element) toward the end face of the optical transmission body 140. In the optical module 100 for reception, the optical receptacle 130 emits light emitted from the end face of the optical transmission body 140 toward the photoelectric conversion element 120 (light receiving element). Note that the optical module 100 having both the light-emitting element and the light-receiving element as the photoelectric conversion element 120 functions as both a transmission optical module and a reception optical module. The configuration of the optical receptacle 130 will be described in detail separately.
 光伝送体140の種類は、特に限定されない。光伝送体140の種類の例には、光ファイバや光導波路などが含まれる。特に図示しないが、光伝送体140は、フェルールを介して光レセプタクル130に接続される。フェルールには、後述する光レセプタクル130の位置決め用凸部135に対応した凹部が形成されている。この凹部に位置決め用凸部135を嵌め込むことにより、光伝送体140の端面を光レセプタクル130に対して所定の位置に固定することができる。本実施の形態では、光伝送体140は、光ファイバである。また、光ファイバは、シングルモード方式であってもよいし、マルチモード方式であってもよい。 The type of the optical transmission body 140 is not particularly limited. Examples of the type of the optical transmission body 140 include an optical fiber and an optical waveguide. Although not particularly illustrated, the optical transmission body 140 is connected to the optical receptacle 130 via a ferrule. The ferrule has a concave portion corresponding to a positioning convex portion 135 of an optical receptacle 130 described later. By fitting the positioning convex portion 135 into the concave portion, the end face of the optical transmission body 140 can be fixed at a predetermined position with respect to the optical receptacle 130. In the present embodiment, the optical transmission body 140 is an optical fiber. The optical fiber may be a single mode method or a multimode method.
 (光レセプタクルの構成)
 図3および図4は、実施の形態に係る光レセプタクル130の構成を示す図である。図3Aは、本実施の形態に係る光レセプタクル130の上側(天面側)からみた斜視図であり、図3Bは、下側(底面側)からみた斜視図である。図4Aは、光レセプタクル130の平面図であり、図4Bは、底面図であり、図4Cは、正面図であり、図4Dは、背面図であり、図4Eは、右側面図である。
(Configuration of optical receptacle)
3 and 4 are diagrams showing the configuration of the optical receptacle 130 according to the embodiment. FIG. 3A is a perspective view seen from the upper side (top surface side) of the optical receptacle 130 according to the present embodiment, and FIG. 3B is a perspective view seen from the lower side (bottom surface side). 4A is a plan view of the optical receptacle 130, FIG. 4B is a bottom view, FIG. 4C is a front view, FIG. 4D is a rear view, and FIG. 4E is a right side view.
 図3および図4に示されるように、光レセプタクル130は、略直方体形状の部材である。光レセプタクル130は、1または2以上の第1光学面131、反射面132、1または2以上の第2光学面133、壁部134、位置決め用凸部135および位置決め用凹部136を有する。光レセプタクル130は、光通信に用いられる波長の光に対して透光性を有する材料を用いて形成される。光レセプタクル130の材料の例には、ポリエーテルイミド(PEI)や環状オレフィン樹脂などの透明な樹脂が含まれる。また、光レセプタクル130は、例えば射出成形により製造されうる。 3 and 4, the optical receptacle 130 is a substantially rectangular parallelepiped member. The optical receptacle 130 includes one or more first optical surfaces 131, a reflecting surface 132, one or more second optical surfaces 133, a wall portion 134, a positioning convex portion 135, and a positioning concave portion 136. The optical receptacle 130 is formed using a material that transmits light with a wavelength used for optical communication. Examples of the material of the optical receptacle 130 include transparent resins such as polyetherimide (PEI) and cyclic olefin resin. The optical receptacle 130 can be manufactured by injection molding, for example.
 第1光学面131は、光電変換素子120(発光素子)から出射された光を光レセプタクル130の内部に入射させるか、第2光学面133(後述)で入射し、反射面132(後述)で反射された光を光電変換素子120(受光素子)に向けて出射させる光学面である。第1光学面131は、光レセプタクル130の裏側の面に、光電変換素子120と対向するように配置されている。本実施の形態では、光レセプタクル130の裏側に設けられた凹部の底面に、12個の第1光学面131が長辺方向に沿って一列に配置されている。第1光学面131の形状は、特に限定されない。本実施の形態では、第1光学面131は、光電変換素子120に向かって凸状の凸レンズ面である。また、第1光学面131の平面視形状は、円形である。第1光学面131の中心軸は、光電変換素子120の発光面または受光面(および基板110の表面)に対して垂直であることが好ましい。また、第1光学面131の中心軸は、光電変換素子120(発光素子)から出射された光、または光電変換素子120(受光素子)に入射する光の光軸と一致することが好ましい。なお、第1光学面131の数は、1つであってもよい。 The first optical surface 131 allows light emitted from the photoelectric conversion element 120 (light emitting element) to enter the inside of the optical receptacle 130 or is incident on the second optical surface 133 (described later), and is reflected on the reflecting surface 132 (described later). It is an optical surface that emits the reflected light toward the photoelectric conversion element 120 (light receiving element). The first optical surface 131 is disposed on the back surface of the optical receptacle 130 so as to face the photoelectric conversion element 120. In the present embodiment, twelve first optical surfaces 131 are arranged in a row along the long side direction on the bottom surface of the recess provided on the back side of the optical receptacle 130. The shape of the first optical surface 131 is not particularly limited. In the present embodiment, the first optical surface 131 is a convex lens surface that is convex toward the photoelectric conversion element 120. Further, the planar view shape of the first optical surface 131 is a circle. The central axis of the first optical surface 131 is preferably perpendicular to the light emitting surface or the light receiving surface of the photoelectric conversion element 120 (and the surface of the substrate 110). The central axis of the first optical surface 131 preferably coincides with the optical axis of light emitted from the photoelectric conversion element 120 (light emitting element) or light incident on the photoelectric conversion element 120 (light receiving element). Note that the number of the first optical surfaces 131 may be one.
 反射面132は、第1光学面131で入射した光を第2光学面133に向けて反射させるか、第2光学面133(後述)で入射した光を第1光学面131に向けて反射させる光学面である。反射面132は、光レセプタクル130の底面から天面に向かうにつれて、光伝送体140(正面側)に近づくように傾斜している。反射面132の傾斜角度は、特に限定されない。本実施の形態では、反射面132の傾斜角度は、反射面132に入射する光の光軸に対して45°である。反射面132の形状は、特に限定されない。本実施の形態では、反射面132の形状は、平面である。反射面132には、第1光学面131または第2光学面133で入射した光が、臨界角より大きな入射角で入射する。 The reflection surface 132 reflects light incident on the first optical surface 131 toward the second optical surface 133 or reflects light incident on the second optical surface 133 (described later) toward the first optical surface 131. It is an optical surface. The reflective surface 132 is inclined so as to approach the optical transmission body 140 (front side) from the bottom surface of the optical receptacle 130 toward the top surface. The inclination angle of the reflecting surface 132 is not particularly limited. In the present embodiment, the inclination angle of the reflection surface 132 is 45 ° with respect to the optical axis of the light incident on the reflection surface 132. The shape of the reflective surface 132 is not particularly limited. In the present embodiment, the shape of the reflecting surface 132 is a plane. The light incident on the first optical surface 131 or the second optical surface 133 is incident on the reflecting surface 132 at an incident angle larger than the critical angle.
 第2光学面133は、第1光学面131で入射し、反射面132で反射された光を光伝送体140の端面に向けて出射させるか、光伝送体140の端面から出射された光を光レセプタクル130の内部に入射させる光学面である。第2光学面133は、光レセプタクル130の正面側の面に、光伝送体140の端面と対向するように配置されている。本実施の形態では、光レセプタクル130の正面側に設けられた凹部の底面に、12個の第2光学面133が長辺方向に沿って一列に配置されている。第2光学面133の形状は、特に限定されない。本実施の形態では、第2光学面133は、光伝送体140の端面に向かって凸状の凸レンズ面である。第2光学面133の中心軸は、光伝送体140の端面の中心軸と一致していることが好ましい。なお、第2光学面133の数は、1つであってもよい。 The second optical surface 133 causes the light incident on the first optical surface 131 and reflected by the reflecting surface 132 to be emitted toward the end surface of the light transmission body 140, or the light emitted from the end surface of the light transmission body 140. This is an optical surface that enters the inside of the optical receptacle 130. The second optical surface 133 is disposed on the front-side surface of the optical receptacle 130 so as to face the end surface of the optical transmission body 140. In the present embodiment, twelve second optical surfaces 133 are arranged in a line along the long side direction on the bottom surface of the recess provided on the front side of the optical receptacle 130. The shape of the second optical surface 133 is not particularly limited. In the present embodiment, the second optical surface 133 is a convex lens surface that is convex toward the end surface of the optical transmission body 140. The central axis of the second optical surface 133 is preferably coincident with the central axis of the end surface of the optical transmission body 140. The number of the second optical surfaces 133 may be one.
 壁部134は、光レセプタクル130を射出成形で製造する場合に、成形収縮による反射面132の変形を抑制する。壁部134は、反射面132に対して溝137を挟んで対向するように光レセプタクル130の背面側に配置されている。壁部134は、光レセプタクル130と一体として形成される。壁部134の形状および大きさは、成形収縮に起因する反射面132の変形を防ぐことができれば特に限定されない。また、射出成形時における反射面132の変形を効果的に抑制する観点から、例えば、図2に示されるように、溝137の深さ方向において、第1光学面131と、壁部134の先端部(天面側端部)との距離(d1)は、第1光学面131と、第1光学面131で入射した光が反射面132に到達する点との距離(d2)よりも長いことが好ましい。ここで、第1光学面131の基準位置は、特に限定されないが、例えば第1光学面131の中心である。なお、本実施の形態では、光レセプタクル130の底面から壁部134の先端部までの距離は、光レセプタクル130の底面から天面までの距離と同じである。 The wall portion 134 suppresses deformation of the reflecting surface 132 due to molding shrinkage when the optical receptacle 130 is manufactured by injection molding. The wall portion 134 is disposed on the back side of the optical receptacle 130 so as to face the reflecting surface 132 with the groove 137 interposed therebetween. The wall 134 is formed integrally with the optical receptacle 130. The shape and size of the wall portion 134 are not particularly limited as long as the deformation of the reflecting surface 132 due to molding shrinkage can be prevented. Further, from the viewpoint of effectively suppressing the deformation of the reflecting surface 132 during injection molding, for example, as shown in FIG. 2, the first optical surface 131 and the tip of the wall portion 134 in the depth direction of the groove 137. The distance (d1) between the first optical surface 131 and the point at which the light incident on the first optical surface 131 reaches the reflecting surface 132 (d2) is longer than the distance (d1) between the first optical surface 131 and the first optical surface 131. Is preferred. Here, the reference position of the first optical surface 131 is not particularly limited, but is, for example, the center of the first optical surface 131. In the present embodiment, the distance from the bottom surface of the optical receptacle 130 to the tip of the wall 134 is the same as the distance from the bottom surface of the optical receptacle 130 to the top surface.
 溝137は、反射面132と壁部134との間に位置するように光レセプタクル130の天面側に形成されており、反射面132と、壁部134の正面側の面とを含む。溝137は、その長さ方向において、両端(左側面側端部および右側面側端部)が外部に連通している。前述のとおり、反射面132は、光レセプタクル130の底面から天面に向かうにつれて、正面側に傾斜している。したがって、本実施の形態では、溝137の形状は、略三角柱形状である。 The groove 137 is formed on the top surface side of the optical receptacle 130 so as to be positioned between the reflection surface 132 and the wall portion 134, and includes the reflection surface 132 and the front surface of the wall portion 134. The groove 137 has both ends (the left side end and the right side end) communicating with the outside in the length direction. As described above, the reflecting surface 132 is inclined to the front side from the bottom surface of the optical receptacle 130 toward the top surface. Therefore, in the present embodiment, the shape of the groove 137 is a substantially triangular prism shape.
 位置決め用凸部135は、光伝送体140を保持するフェルールに形成された凹部に嵌め込まれることで、光伝送体140の端面を第2光学面133に対して適切な位置に位置決めする。位置決め用凸部135の形状および大きさは、特に限定されず、フェルールの形状などに応じて適宜設定される。本実施の形態では、位置決め用凸部135は、略円柱形状の凸部である。 The positioning convex portion 135 is fitted into a concave portion formed in the ferrule that holds the optical transmission body 140, thereby positioning the end surface of the optical transmission body 140 at an appropriate position with respect to the second optical surface 133. The shape and size of the positioning convex portion 135 are not particularly limited, and are appropriately set according to the shape of the ferrule. In the present embodiment, the positioning convex portion 135 is a substantially cylindrical convex portion.
 位置決め用凹部136は、基板110に形成された凸部が嵌め込まれることで、光レセプタクル130の第1光学面131を光電変換素子120に対して適切な位置に位置決めする。位置決め用凹部136の形状および大きさは、特に限定されず、基板110の形状などに応じて適宜設定される。本実施の形態では、位置決め用凹部136は、略円柱形状の凹部である。 The positioning concave portion 136 positions the first optical surface 131 of the optical receptacle 130 at an appropriate position with respect to the photoelectric conversion element 120 by fitting a convex portion formed on the substrate 110. The shape and size of the positioning recess 136 are not particularly limited, and are appropriately set according to the shape of the substrate 110 and the like. In the present embodiment, the positioning recess 136 is a substantially cylindrical recess.
 以上、光レセプタクル130の構成について説明した。ここで、本実施の形態に係る光モジュール100における光路について説明する。 The configuration of the optical receptacle 130 has been described above. Here, the optical path in the optical module 100 according to the present embodiment will be described.
 送信用の光モジュール100では、光電変換素子120(発光素子)から出射された光は、第1光学面131で光レセプタクル130の内部に入射する。このとき、入射光は、第1光学面131によってコリメート光に変換され、反射面132に向かって進行する。次いで、入射光は、反射面132で反射され、第2光学面133に向かって進行する。反射面132で反射された光は、第2光学面133で光レセプタクル130の外部に出射され、光伝送体140の端面に到達する。このとき、出射光は、第2光学面133によって光伝送体140の端面の中心に集光される。 In the transmission optical module 100, the light emitted from the photoelectric conversion element 120 (light emitting element) is incident on the inside of the optical receptacle 130 at the first optical surface 131. At this time, incident light is converted into collimated light by the first optical surface 131 and travels toward the reflecting surface 132. Next, the incident light is reflected by the reflecting surface 132 and travels toward the second optical surface 133. The light reflected by the reflecting surface 132 is emitted to the outside of the optical receptacle 130 by the second optical surface 133 and reaches the end surface of the optical transmission body 140. At this time, the emitted light is collected at the center of the end face of the optical transmission body 140 by the second optical surface 133.
 一方、受信用の光モジュール100では、光伝送体140の端面から出射された光は、第2光学面133で光レセプタクル130の内部に入射する。このとき、光レセプタクル130に入射した光は、第2光学面133によってコリメート光に変換され、反射面132に向かって進行する。次いで、入射光は、反射面132で反射され、第1光学面131に向かって進行する。反射面132で反射された光は、第1光学面131で光レセプタクル130の外部に出射され、光電変換素子120(受光素子)に到達する。このとき、出射光は、第1光学面131によって光電変換素子120(受光素子)の受光面の中心に集光される。 On the other hand, in the receiving optical module 100, the light emitted from the end face of the optical transmission body 140 is incident on the inside of the optical receptacle 130 at the second optical surface 133. At this time, the light incident on the optical receptacle 130 is converted into collimated light by the second optical surface 133 and travels toward the reflecting surface 132. Next, the incident light is reflected by the reflecting surface 132 and travels toward the first optical surface 131. The light reflected by the reflecting surface 132 is emitted to the outside of the optical receptacle 130 by the first optical surface 131 and reaches the photoelectric conversion element 120 (light receiving element). At this time, the emitted light is collected by the first optical surface 131 at the center of the light receiving surface of the photoelectric conversion element 120 (light receiving element).
 このように、本実施の形態に係る光レセプタクル130は、光電変換素子120と光伝送体140の端面とを光学的に適切に結合させることができる。前述のとおり、光レセプタクル130は、例えば射出成形により製造されうる。光レセプタクル130が射出成形により製造された場合、成形収縮による反射面132の変形が生じやすい。前述のとおり、反射面132は、光レセプタクル130の内部に入射した光を反射する光学面であり、反射面132の歪み(変形)は、光レセプタクル130における光の進行方向に影響を及ぼすおそれがある。また、前述のとおり、本実施の形態に係る光レセプタクル130では、複数(12個)の第1光学面131および複数(12個)の第2光学面133は、それぞれ一定間隔で一列に配置されている。したがって、反射面132の歪みがある程度大きい場合、一部の第1光学面131と第2光学面133との間を適切に光学的に結合することができなくなるおそれがある。反射面132の歪みによる影響は、光モジュール100をより高速な伝送速度で使用する場合により顕著になる。このため、成形収縮による反射面132の変形を抑制し、反射面132の精度を上げることは、極めて重要である。 Thus, the optical receptacle 130 according to the present embodiment can optically appropriately couple the photoelectric conversion element 120 and the end face of the optical transmission body 140. As described above, the optical receptacle 130 can be manufactured by injection molding, for example. When the optical receptacle 130 is manufactured by injection molding, the reflecting surface 132 is likely to be deformed due to molding shrinkage. As described above, the reflecting surface 132 is an optical surface that reflects light incident on the inside of the optical receptacle 130, and the distortion (deformation) of the reflecting surface 132 may affect the traveling direction of the light in the optical receptacle 130. is there. Further, as described above, in the optical receptacle 130 according to the present embodiment, the plurality (12) of the first optical surfaces 131 and the plurality (12) of the second optical surfaces 133 are arranged in a line at regular intervals. ing. Therefore, when the distortion of the reflecting surface 132 is large to some extent, there is a possibility that a part of the first optical surface 131 and the second optical surface 133 cannot be appropriately optically coupled. The influence of the distortion of the reflecting surface 132 becomes more prominent when the optical module 100 is used at a higher transmission speed. For this reason, it is extremely important to suppress the deformation of the reflecting surface 132 due to molding shrinkage and increase the accuracy of the reflecting surface 132.
 (反射面の歪みのシミュレーション)
 本実施の形態に係る光レセプタクル130の成形収縮による反射面132の歪みについてシミュレーションを行った。また、比較のため、溝137の両端がその長さ方向において外部に連通していない光レセプタクル130’(以下、「比較例1に係る光レセプタクル」ともいう)、および壁部134を有しない光レセプタクル130”(以下、「比較例2に係る光レセプタクル」ともいう)についても、シミュレーションを行った。なお、本シミュレーションでは、各光レセプタクルの材料は、ポリエーテルイミド(PEI)としてパラメータを設定した。また、図3Aに示されるように、本実施の形態に係る光レセプタクル130の奥行き方向の長さ(x)は、2.5mm、長辺方向の長さ(y)は、6.5mm、高さ方向の長さ(z)は、2.0mmと設定した。特に図示しないが、比較例1に係る光レセプタクル130’および比較例2に係る光レセプタクル130”の各方向の長さも、光レセプタクル130の各方向の長さとそれぞれ同じである。
(Simulation of reflection surface distortion)
A simulation was performed on the distortion of the reflecting surface 132 due to molding contraction of the optical receptacle 130 according to the present embodiment. For comparison, an optical receptacle 130 ′ in which both ends of the groove 137 are not in communication with the outside in the length direction (hereinafter also referred to as “optical receptacle according to comparative example 1”) and light that does not have the wall 134. A simulation was also performed on the receptacle 130 ″ (hereinafter also referred to as “optical receptacle according to comparative example 2”). In this simulation, the parameter was set as the material of each optical receptacle as polyetherimide (PEI). Also, as shown in FIG. 3A, the length (x) in the depth direction of the optical receptacle 130 according to the present embodiment is 2.5 mm, the length (y) in the long side direction is 6.5 mm, and the height is high. The length (z) in the vertical direction was set to 2.0 mm. Although not particularly illustrated, the length of each direction of the optical receptacle 130 ′ according to the comparative example 1 and the length of the optical receptacle 130 ″ according to the comparative example 2 is also the same as the length of each direction of the optical receptacle 130.
 図5および図6は、比較例1に係る光レセプタクル130’の構成を示す図である。図5Aは、比較例1に係る光レセプタクル130’の上側(天面側)からみた斜視図であり、図5Bは、下側(底面側)からみた斜視図である。図6Aは、比較例1に係る光レセプタクル130’の平面図であり、図6Bは、底面図であり、図6Cは、正面図であり、図6Dは、背面図であり、図6Eは、右側面図である。図5および図6に示されるように、比較例1に係る光レセプタクル130’では、溝137’の両端がその長さ方向(光レセプタクル130’の長辺方向)において外部に連通していない。 5 and 6 are diagrams showing the configuration of the optical receptacle 130 'according to the first comparative example. 5A is a perspective view of the optical receptacle 130 ′ according to Comparative Example 1 as viewed from the upper side (top surface side), and FIG. 5B is a perspective view of the optical receptacle 130 ′ as viewed from the lower side (bottom surface side). 6A is a plan view of an optical receptacle 130 ′ according to Comparative Example 1, FIG. 6B is a bottom view, FIG. 6C is a front view, FIG. 6D is a rear view, and FIG. It is a right view. As shown in FIGS. 5 and 6, in the optical receptacle 130 ′ according to the comparative example 1, both ends of the groove 137 ′ do not communicate with the outside in the length direction (long side direction of the optical receptacle 130 ′).
 図7および図8は、比較例2に係る光レセプタクル130”の構成を示す図である。図7Aは、比較例2に係る光レセプタクル130”の上側(天面側)からみた斜視図であり、図7Bは、下側(底面側)からみた斜視図である。図8Aは、比較例2に係る光レセプタクル130”の平面図であり、図8Bは、底面図であり、図8Cは、正面図であり、図8Dは、背面図であり、図8Eは、右側面図である。図7および図8に示されるように、比較例2に係る光レセプタクル130”は、壁部134を有していない。 7 and 8 are diagrams showing a configuration of an optical receptacle 130 ″ according to Comparative Example 2. FIG. 7A is a perspective view of the optical receptacle 130 ″ according to Comparative Example 2 as viewed from the upper side (top surface side). FIG. 7B is a perspective view seen from the lower side (bottom side). 8A is a plan view of an optical receptacle 130 ″ according to Comparative Example 2, FIG. 8B is a bottom view, FIG. 8C is a front view, FIG. 8D is a rear view, and FIG. 7 and 8, the optical receptacle 130 ″ according to the comparative example 2 does not have the wall part 134.
 図9および図10は、3種類の光レセプタクル130、130’、130”の成形収縮による反射面132の歪みを説明するための図である。以下の説明では、図10Aに示されるように、光レセプタクル130、130’、130”の奥行き方向をx軸方向、長辺方向をy軸方向、高さ方向をz軸方向ともいう。 9 and 10 are diagrams for explaining distortion of the reflecting surface 132 due to molding shrinkage of the three types of optical receptacles 130, 130 ′, and 130 ″. In the following description, as shown in FIG. 10A, The depth direction of the optical receptacles 130, 130 ′, and 130 ″ is also referred to as an x-axis direction, the long side direction is also referred to as a y-axis direction, and the height direction is also referred to as a z-axis direction.
 図9は、光レセプタクル130、130’、130”の反射面132の変位量を示すグラフ(シミュレーション結果)である。図9では、第1光学面131の位置番号と、当該第1光学面131を通過する光の光軸および反射面132の交点における反射面132の変位量との関係を示している。図9Aは、z軸方向における反射面132の変位量hzを示しており、図9Bは、x軸方向における反射面132の変位量hxを示している。図9A、Bにおいて、横軸は、第1光学面131の並び方向において正面からみた場合に左側から番号を付けたときの第1光学面131の位置番号を示している。縦軸は、No.1の第1光学面131に対応する点の反射面132の位置を基準としたときの、各第1光学面131に対応する点の反射面132の位置の変位量hz、hxを示している。図9A、Bにおいて、比較例1に係る光レセプタクル130’についての結果は、黒丸(●)で示し、比較例2に係る光レセプタクル130”についての結果は、黒三角(▲)で示し、本実施の形態に係る光レセプタクル130についての結果は、黒四角(■)で示している。 9 is a graph (simulation result) showing the amount of displacement of the reflecting surface 132 of the optical receptacles 130, 130 ′, 130 ″. In FIG. 9, the position number of the first optical surface 131 and the first optical surface 131 are shown. 9A shows the relationship between the optical axis of light passing through and the amount of displacement of the reflecting surface 132 at the intersection of the reflecting surface 132. Fig. 9A shows the amount of displacement hz of the reflecting surface 132 in the z-axis direction. 9 shows the displacement amount hx of the reflecting surface 132 in the x-axis direction, in FIGS.9A and 9B, the horizontal axis is a number assigned from the left when viewed from the front in the arrangement direction of the first optical surfaces 131. The position number of the first optical surface 131 is shown.The vertical axis represents the position of the reflecting surface 132 at the point corresponding to the first optical surface 131 of No. 1 as a reference. Reflection surface of corresponding point 9A and 9B, the results for the optical receptacle 130 'according to the comparative example 1 are indicated by black circles (●), and the optical receptacle 130 "according to the comparative example 2 is shown. The results for the optical receptacle 130 are indicated by black triangles (結果), and the results for the optical receptacle 130 according to the present embodiment are indicated by black squares (■).
 また、図10Aは、図6AにおけるA-A線の断面図であり、成形収縮時において比較例1に係る光レセプタクル130’にかかる応力を示している。図10Bは、図8AにおけるB-B線の断面図であり、成形収縮時において比較例2に係る光レセプタクル130”にかかる応力を示している。図10Cは、図4AにおけるC-C線の断面図であり、成形収縮時において本実施の形態に係る光レセプタクル130にかかる応力を示している。なお、図10では、光レセプタクル130、130’、130”にかかる応力を示すために光レセプタクル130、130’、130”の断面へのハッチングを省略している。 FIG. 10A is a cross-sectional view taken along the line AA in FIG. 6A and shows the stress applied to the optical receptacle 130 ′ according to Comparative Example 1 during molding shrinkage. 10B is a cross-sectional view taken along the line BB in FIG. 8A, and shows the stress applied to the optical receptacle 130 ″ according to Comparative Example 2 during molding shrinkage. FIG. 10C is a cross-sectional view taken along the line CC in FIG. FIG. 10 is a cross-sectional view showing the stress applied to the optical receptacle 130 according to the present embodiment at the time of molding shrinkage. In FIG. 10, the optical receptacle is shown to show the stress applied to the optical receptacles 130, 130 ′, 130 ″. The cross sections 130, 130 ′, and 130 ″ are not hatched.
 まず、比較例1に係る光レセプタクル130’について説明する。図9の黒丸に示されるように、反射面132は、z軸方向およびx軸方向において、外側に歪曲していることがわかった。図10Aに示されるように、光レセプタクル130’の溝137’の外側の部分には、成形収縮によって外側に引っ張る応力が働く(図10Aの細い実線矢印参照)。また、光レセプタクル130’の反射面132より底面側の部分には、内側に向かってより大きな応力が働く(図10Aの太い実線矢印参照)。さらに、反射面132のより底部側かつ正面側の部分には、外側に引っ張る小さな応力が働く(図10Aの細い破線矢印参照)。溝137’の外側の部分に働く外側に向かう応力は、反射面132のより底部側かつ正面側の部分に働く外側に向かう応力よりも大きい。これらの3種類の応力が、成形収縮時に光レセプタクル130’に同時にかかる。結果として、反射面132には、全体として外側に歪曲するような応力がかかり、大きく歪んでしまったと考えられる。 First, the optical receptacle 130 ′ according to Comparative Example 1 will be described. As shown by the black circles in FIG. 9, it was found that the reflecting surface 132 is distorted outward in the z-axis direction and the x-axis direction. As shown in FIG. 10A, a stress that is pulled outward by molding shrinkage acts on the outer portion of the groove 137 'of the optical receptacle 130' (see the thin solid arrow in FIG. 10A). In addition, a greater stress acts inward on the bottom side of the reflecting surface 132 of the optical receptacle 130 '(see the thick solid arrow in FIG. 10A). Further, a small stress that pulls outward acts on the bottom side and front side of the reflecting surface 132 (see the thin broken arrow in FIG. 10A). The outward stress acting on the outer portion of the groove 137 ′ is larger than the outward stress acting on the bottom side and front portion of the reflecting surface 132. These three types of stress are simultaneously applied to the optical receptacle 130 'during molding shrinkage. As a result, it is considered that the reflective surface 132 is subjected to stress that distorts outward as a whole, and is largely distorted.
 次に、比較例2に係る光レセプタクル130”について説明する。図9の黒三角に示されるように、反射面132は、z軸方向およびx軸方向において、内側に歪曲していることがわかった。図10Bに示されるように、光レセプタクル130”の反射面132より底面側の部分には、成形収縮によって内側に向かって応力が働く(図10Bの実線矢印参照)。成形収縮による応力は、樹脂が肉厚な程大きくなる。このとき、比較例2に係る光レセプタクル130”は、比較例1に係る光レセプタクル130’よりも肉薄であるため、内側に向かう応力は、比較例1に係る光レセプタクル130’における応力よりも小さい。また、反射面132のより底部側かつ正面側の部分には、外側に引っ張る小さな応力が働く(図10Bの細い破線矢印参照)。一方で、比較例2に係る光レセプタクル130”では、比較例1に係る光レセプタクル130’における溝137’の外側の部分に働く応力に相当する応力は、働かない。したがって、前述した2種類の応力が、成形収縮時に光レセプタクル130”に同時にかかる。この結果として、反射面132には、全体として内側に歪曲するように応力がかかり、大きく歪んでしまったと考えられる。 Next, an optical receptacle 130 ″ according to Comparative Example 2 will be described. As shown by the black triangle in FIG. 9, it is found that the reflecting surface 132 is distorted inward in the z-axis direction and the x-axis direction. As shown in Fig. 10B, stress is exerted inward on the bottom side of the reflecting surface 132 of the optical receptacle 130 "by molding shrinkage (see solid arrow in Fig. 10B). The stress due to molding shrinkage increases as the resin becomes thicker. At this time, since the optical receptacle 130 ″ according to the comparative example 2 is thinner than the optical receptacle 130 ′ according to the comparative example 1, the stress toward the inside is smaller than the stress in the optical receptacle 130 ′ according to the comparative example 1. In addition, a small stress that pulls outward acts on the bottom side and the front side of the reflecting surface 132 (see the thin broken arrow in FIG. 10B), while the optical receptacle 130 ″ according to the comparative example 2 is compared. The stress corresponding to the stress acting on the outer portion of the groove 137 ′ in the optical receptacle 130 ′ according to Example 1 does not work. Therefore, the above-described two types of stress are simultaneously applied to the optical receptacle 130 ″ at the time of molding shrinkage. As a result, it is considered that the reflective surface 132 is stressed so as to be distorted inward as a whole and is greatly distorted. .
 次に、本実施の形態に係る光レセプタクル130について説明する。図9の黒四角に示されるように、反射面132の変形は、z軸方向およびx軸方向の両方において、顕著に抑制されていた。本実施の形態に係る光レセプタクル130は、溝137の両端が、その長辺方向において外部に連通しているとともに、壁部134を有する。溝137の両端が、その長さ方向において外部に連通していることによって、本実施の形態に係る光レセプタクル130では、比較例1に係る光レセプタクル130’における溝137’の外側の部分に働く応力に相当する応力は、働かない。一方、本実施の形態に係る光レセプタクル130では、反射面132の底部側かつ正面側の部分にも、外側に引っ張る小さな応力が働く(図10Cの細い破線矢印参照)。しかし、本実施の形態に係る光レセプタクル130は、壁部134を有することによって、比較例2に係る光レセプタクル130”に比べて肉厚となる。このため、光レセプタクル130の反射面132より底面側の部分には、比較例2に係る光レセプタクル130”における内側に向かって働く応力より、より大きな内側に向かう応力が働く(図10Cの太い実線矢印参照)。また、この応力は、わずかに壁部134が存在する方向(x方向)に向いて働く。これらの2種類の応力が、成形収縮時に光レセプタクル130に同時にかかる。結果として、反射面132には、全体として、外側に歪曲するような応力が少ししか働かず、反射面132の変形が抑制されたと考えられる。 Next, the optical receptacle 130 according to the present embodiment will be described. As shown by the black squares in FIG. 9, the deformation of the reflecting surface 132 was significantly suppressed in both the z-axis direction and the x-axis direction. In the optical receptacle 130 according to the present embodiment, both ends of the groove 137 communicate with the outside in the long side direction, and have a wall portion 134. Since both ends of the groove 137 communicate with the outside in the length direction, in the optical receptacle 130 according to the present embodiment, the optical receptacle 130 ′ according to the comparative example 1 works on a portion outside the groove 137 ′. Stress corresponding to stress does not work. On the other hand, in the optical receptacle 130 according to the present embodiment, a small stress that pulls outward also acts on the bottom side and the front side of the reflecting surface 132 (see the thin broken arrow in FIG. 10C). However, the optical receptacle 130 according to the present embodiment is thicker than the optical receptacle 130 ″ according to the comparative example 2 by having the wall portion 134. Therefore, the bottom surface of the optical receptacle 130 is lower than the reflecting surface 132. A larger inward stress is applied to the side portion than the inward stress in the optical receptacle 130 ″ according to Comparative Example 2 (see the thick solid arrow in FIG. 10C). Further, this stress works slightly in the direction in which the wall portion 134 exists (x direction). These two types of stress are simultaneously applied to the optical receptacle 130 during molding shrinkage. As a result, it is considered that only a small amount of stress that distorts outward acts on the reflecting surface 132 as a whole, and deformation of the reflecting surface 132 is suppressed.
 より具体的には、本実施の形態の光レセプタクル130では、比較例1に係る光レセプタクル130’と比較して、z軸方向における反射面132の最大変位量hzは、50%低減していた。また、x軸方向における反射面132の最大変位量hxは、35%低減していた。この結果として、反射面132の法線方向における反射面132の最大変位量は、40%低減していた。このことから、溝137の両端がその長さ方向において外部に連通することは、反射面132の外側への変形を抑制することに寄与していることがわかった。 More specifically, in the optical receptacle 130 of the present embodiment, the maximum displacement amount hz of the reflecting surface 132 in the z-axis direction is reduced by 50% compared to the optical receptacle 130 ′ according to Comparative Example 1. . Further, the maximum displacement amount hx of the reflecting surface 132 in the x-axis direction was reduced by 35%. As a result, the maximum displacement amount of the reflecting surface 132 in the normal direction of the reflecting surface 132 is reduced by 40%. From this, it has been found that the fact that both ends of the groove 137 communicate with the outside in the length direction contributes to suppressing the outward deformation of the reflecting surface 132.
 一方、比較例2に係る光レセプタクル130”も本実施の形態に係る光レセプタクル130の溝137に相当する部分は、y軸方向において外部に連通している。しかし、前述のとおり、比較例2に係る光レセプタクル130”の反射面132は、成形収縮による応力で内側に大きく変形していた。本実施の形態に係る光レセプタクル130と、比較例2に係る光レセプタクル130”との比較から、壁部134は、反射面132の内側への変形を抑制することに寄与していることがわかった。 On the other hand, the portion corresponding to the groove 137 of the optical receptacle 130 ″ according to the present embodiment also communicates with the outside in the y-axis direction. However, as described above, the comparative example 2 The reflecting surface 132 of the optical receptacle 130 ″ according to the above was greatly deformed inward due to stress due to molding shrinkage. From the comparison between the optical receptacle 130 according to the present embodiment and the optical receptacle 130 ″ according to the comparative example 2, it is found that the wall portion 134 contributes to suppressing the inward deformation of the reflecting surface 132. It was.
 (効果)
 本実施の形態に係る光レセプタクル130は、反射面132に対して溝137を挟んで対向するように配置された壁部134を有する。また、本実施の形態に係る光レセプタクル130は、溝137の両端がその長さ方向において外部に連通している。このため、射出成形により光レセプタクル130を製造する場合にも、成形収縮による反射面132の変形(歪み)を抑制することができる。したがって、本実施の形態に係る光モジュール100は、射出成形により製造しても成形収縮による反射面132の変形が生じにくく、かつ速い伝送速度での使用でも光電変換素子120と光伝送体140とを光学的に適切に結合させることができる。
(effect)
The optical receptacle 130 according to the present embodiment has a wall portion 134 disposed so as to face the reflecting surface 132 with the groove 137 interposed therebetween. In the optical receptacle 130 according to the present embodiment, both ends of the groove 137 communicate with the outside in the length direction. For this reason, even when the optical receptacle 130 is manufactured by injection molding, deformation (distortion) of the reflecting surface 132 due to molding shrinkage can be suppressed. Therefore, the optical module 100 according to the present embodiment is less likely to cause deformation of the reflecting surface 132 due to molding shrinkage even when manufactured by injection molding, and the photoelectric conversion element 120 and the optical transmission body 140 are used even at a high transmission speed. Can be optically coupled appropriately.
 なお、上記実施の形態に係る光レセプタクル130では、第1光学面131および第2光学面133が凸レンズ面である場合を示したが、第1光学面131および第2光学面133は平面であってもよい。具体的には、第1光学面131のみが平面であってもよいし、第2光学面133のみが平面であってもよい。第1光学面131が平面に形成されている場合、例えば、反射面132は、凹面鏡として機能できるように形成される。また、第1光学面131や反射面132などにより、第2光学面133に到達する直前の光が効果的に収束されている場合は、第2光学面133が平面に形成されていてもよい。なお、この場合、第1光学面131の基準位置は、特に限定されない。 In the optical receptacle 130 according to the above embodiment, the first optical surface 131 and the second optical surface 133 are convex lens surfaces. However, the first optical surface 131 and the second optical surface 133 are flat surfaces. May be. Specifically, only the first optical surface 131 may be a flat surface, or only the second optical surface 133 may be a flat surface. When the first optical surface 131 is formed as a flat surface, for example, the reflecting surface 132 is formed so as to function as a concave mirror. In addition, when the light just before reaching the second optical surface 133 is effectively converged by the first optical surface 131, the reflecting surface 132, or the like, the second optical surface 133 may be formed in a flat surface. . In this case, the reference position of the first optical surface 131 is not particularly limited.
 また、上記の実施の形態では、光レセプタクル130を送信用または受信用の光モジュール100で使用する場合について説明したが、本発明に係る光モジュールは、送受信用の光モジュールでも使用されうる。この場合、光モジュールは、複数の光電変換素子として発光素子および受光素子を含む。 In the above embodiment, the case where the optical receptacle 130 is used in the optical module 100 for transmission or reception has been described. However, the optical module according to the present invention can also be used in an optical module for transmission and reception. In this case, the optical module includes a light emitting element and a light receiving element as a plurality of photoelectric conversion elements.
 本出願は、2014年8月27日出願の特願2014-172549に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2014-172549 filed on August 27, 2014. The contents described in the application specification and the drawings are all incorporated herein.
 本発明に係る光レセプタクルおよび光モジュールは、光伝送体を用いた光通信に有用である。 The optical receptacle and the optical module according to the present invention are useful for optical communication using an optical transmission body.
 10 光結合素子
 11 第1レンズ面(入射面)
 12 全反射面
 13 第2レンズ面(出射面)
 14 位置決め用凸部
 15 位置決め用凹部
 100 光モジュール
 110 基板
 120 光電変換素子
 130、130’、130” 光レセプタクル
 131 第1光学面
 132 反射面
 133 第2光学面
 134 壁部
 135 位置決め用凸部
 136 位置決め用凹部
 137、137’ 溝
 140 光伝送体
10 optical coupling element 11 first lens surface (incident surface)
12 Total reflection surface 13 Second lens surface (outgoing surface)
DESCRIPTION OF SYMBOLS 14 Positioning convex part 15 Positioning concave part 100 Optical module 110 Board | substrate 120 Photoelectric conversion element 130, 130 ', 130 "Optical receptacle 131 1st optical surface 132 Reflecting surface 133 2nd optical surface 134 Wall part 135 Positioning convex part 136 Positioning Recess 137, 137 'groove 140 optical transmission body

Claims (3)

  1.  1または2以上の光電変換素子と、1または2以上の光伝送体との間に配置され、前記1または2以上の光電変換素子と、前記1または2以上の光伝送体の端面とを光学的に結合するための光レセプタクルであって、
     前記光電変換素子から出射された光を入射させるか、前記光伝送体の端面から出射され、内部を通る光を前記光電変換素子に向けて出射させる1または2以上の第1光学面と、
     前記第1光学面で入射し、内部を通る光を前記光伝送体の端面に向けて出射させるか、前記光伝送体の端面から出射された光を入射させる1または2以上の第2光学面と、
     前記第1光学面で入射した光を前記第2光学面に向けて反射させるか、前記第2光学面で入射した光を前記第1光学面に向けて反射させる反射面と、
     前記反射面に対して溝を挟んで対向するように配置された壁部と、
     を有し、
     前記溝は、その長さ方向において両端が外部に連通している、
     光レセプタクル。
    One or two or more photoelectric conversion elements and one or two or more optical transmission bodies are arranged between the one or more photoelectric conversion elements and the end face of the one or two or more optical transmission bodies. Optical receptacle for coupling,
    One or two or more first optical surfaces that allow light emitted from the photoelectric conversion element to enter or are emitted from an end face of the optical transmission body and emit light passing through the photoelectric conversion element toward the photoelectric conversion element;
    One or two or more second optical surfaces that are incident on the first optical surface and emit light passing through the inside toward the end surface of the optical transmission body or incident light emitted from the end surface of the optical transmission body When,
    A reflecting surface that reflects light incident on the first optical surface toward the second optical surface or reflects light incident on the second optical surface toward the first optical surface;
    A wall portion disposed so as to face the reflective surface with a groove interposed therebetween;
    Have
    Both ends of the groove communicate with the outside in the length direction thereof.
    Optical receptacle.
  2.  前記溝の深さ方向において、前記第1光学面と、前記壁部の先端部との距離は、前記第1光学面と、前記第1光学面で入射した光が前記反射面に到達する点との距離よりも長い、請求項1に記載の光レセプタクル。 In the depth direction of the groove, the distance between the first optical surface and the tip of the wall is that the light incident on the first optical surface and the first optical surface reaches the reflecting surface. The optical receptacle according to claim 1, wherein the optical receptacle is longer than a distance from the optical receptacle.
  3.  基板と、
     前記基板上に配置された1または2以上の光電変換素子と、
     前記第1光学面が前記光電変換素子と対向するように前記基板上に配置された請求項1または請求項2に記載の光レセプタクルと、
     を有する、光モジュール。
    A substrate,
    One or more photoelectric conversion elements disposed on the substrate;
    The optical receptacle according to claim 1 or 2, wherein the first optical surface is disposed on the substrate so as to face the photoelectric conversion element.
    Having an optical module.
PCT/JP2015/073012 2014-08-27 2015-08-17 Optical receptacle and light module WO2016031603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014172549A JP6494216B2 (en) 2014-08-27 2014-08-27 Optical receptacle and optical module
JP2014-172549 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031603A1 true WO2016031603A1 (en) 2016-03-03

Family

ID=55399500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073012 WO2016031603A1 (en) 2014-08-27 2015-08-17 Optical receptacle and light module

Country Status (2)

Country Link
JP (1) JP6494216B2 (en)
WO (1) WO2016031603A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154540A1 (en) * 2016-03-07 2017-09-14 株式会社エンプラス Optical receptacle and optical module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6821402B2 (en) 2016-11-15 2021-01-27 株式会社エンプラス Optical parts, injection molding dies for optical parts, and injection molding methods for optical parts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243994A (en) * 2001-02-21 2002-08-28 Minolta Co Ltd Light source device
JP2006506657A (en) * 2002-03-14 2006-02-23 エスエーイー・マグネティクス(エイチ・ケイ)リミテッド Integrated platform for active optical alignment of semiconductor devices with optical fibers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556440B2 (en) * 2006-12-22 2009-07-07 Lightwire Inc. Dual-lensed unitary optical receiver assembly
US9052478B2 (en) * 2012-03-30 2015-06-09 Corning Cable Systems Llc Total-internal-reflection fiber optic interface modules with different optical paths and assemblies using same
CN103901560B (en) * 2012-12-28 2016-12-28 鸿富锦精密工业(深圳)有限公司 Photoelectric conversion device and optical-fiber coupling connector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243994A (en) * 2001-02-21 2002-08-28 Minolta Co Ltd Light source device
JP2006506657A (en) * 2002-03-14 2006-02-23 エスエーイー・マグネティクス(エイチ・ケイ)リミテッド Integrated platform for active optical alignment of semiconductor devices with optical fibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154540A1 (en) * 2016-03-07 2017-09-14 株式会社エンプラス Optical receptacle and optical module
JP2017161577A (en) * 2016-03-07 2017-09-14 株式会社エンプラス Optical receptacle and optical module
CN108885318A (en) * 2016-03-07 2018-11-23 恩普乐股份有限公司 Optical receptacle and optical module
US10591686B2 (en) 2016-03-07 2020-03-17 Enplas Corporation Optical receptacle and optical module

Also Published As

Publication number Publication date
JP6494216B2 (en) 2019-04-03
JP2016048284A (en) 2016-04-07

Similar Documents

Publication Publication Date Title
US9244234B2 (en) Optical receptacle and optical module
US10261272B2 (en) Optical receptacle and optical module
JP6461509B2 (en) Optical receptacle and optical module
JP2015014748A (en) Optical receptacle and optical module
JP2013024918A (en) Optical receptacle and optical module including the same
WO2013140922A1 (en) Optical receptacle and optical module provided with same
WO2015098805A1 (en) Optical receptacle and optical module
US10365444B2 (en) Optical receptacle and optical module
WO2015141426A1 (en) Optical receptacle and optical module
WO2016031603A1 (en) Optical receptacle and light module
WO2017154542A1 (en) Optical receptacle and optical module
US20220187551A1 (en) Optical receptacle, optical module, and method for manufacturing optical module
JP6011908B2 (en) Optical receptacle and optical module having the same
US11921332B2 (en) Optical receptacle and optical module
WO2017119258A1 (en) Optical receptacle, and optical module
US11480748B2 (en) Optical receptacle and optical module
WO2022144999A1 (en) Optical receptacle and optical module
JP6494711B2 (en) Optical module
JP2022178119A (en) Optical receptacle and optical module
JP2019060979A (en) Optical receptacle and optical module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835128

Country of ref document: EP

Kind code of ref document: A1