JP2016118750A - Chip type handle fiber multiplexer and chip type multi-wavelength light source - Google Patents

Chip type handle fiber multiplexer and chip type multi-wavelength light source Download PDF

Info

Publication number
JP2016118750A
JP2016118750A JP2014267190A JP2014267190A JP2016118750A JP 2016118750 A JP2016118750 A JP 2016118750A JP 2014267190 A JP2014267190 A JP 2014267190A JP 2014267190 A JP2014267190 A JP 2014267190A JP 2016118750 A JP2016118750 A JP 2016118750A
Authority
JP
Japan
Prior art keywords
output
fiber
multiplexer
light source
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014267190A
Other languages
Japanese (ja)
Other versions
JP2016118750A5 (en
JP6535848B2 (en
Inventor
潤 成沢
Jun Narusawa
潤 成沢
湘 成沢
Sho Narusawa
湘 成沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014267190A priority Critical patent/JP6535848B2/en
Priority to CN201580006643.XA priority patent/CN106062600B/en
Priority to PCT/JP2015/075277 priority patent/WO2016076000A1/en
Publication of JP2016118750A publication Critical patent/JP2016118750A/en
Publication of JP2016118750A5 publication Critical patent/JP2016118750A5/ja
Application granted granted Critical
Publication of JP6535848B2 publication Critical patent/JP6535848B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a compact and thin chip type RGB or RGB+NIR multi-wavelength laser light source mounted in a portable mobile phone enabling mass production at low cost and with high reliability and spectacle type laser projector, and a multiplexer of a plurality of laser light sources used in the above laser source.SOLUTION: With N pieces of fiber elements 31i having extremely thin cladding, emission ends 314 thereof are bundled in closely contact manner, and fixed to a chip type plate 305, thereby constituting a bundle fiber multiplexer. Thus, formed is a spatial chip type multiplexer of light beam having a ratio of input to output of N:1. By mounting N pieces of surface-mount type LD light sources 301, 302, 303, a compact chip type multi-wavelength laser light source is formed.SELECTED DRAWING: Figure 3

Description

本発明は画像処理装置、内視鏡と眼科装置等光による医療診断と治療、光通信及び、MEMSによるスキャン型或いはLCOSによる投影型プロジェクタ三原色RGB(R=Red、G=Green、B=Blue波長)光源など応用装置における多波長レーザーでの合波、又は、同一波長のLD多数で空間的な合波による点光源での高出力化の技術に関する。The present invention is an image processing apparatus, an endoscope and an ophthalmic apparatus, etc., medical diagnosis and treatment using light, optical communication, and a scanning projector using MEMS or a projection projector using LCOS RGB (R = Red, G = Green, B = Blue wavelength) The present invention relates to a technique for increasing the output of a point light source by combining with a multi-wavelength laser in an application device such as a light source or by spatially combining multiple LDs of the same wavelength.

従来光通信にファイバ波長多重での合波器及び分波器は、高密度波長分割多重方式(DWDM=Dense Wavelength Division Multiplex)の場合にアレイ導波路グレーティング(AWG=Array Wave−Guide Grating)を多く使っている(1例として特許文献1)。最近、プロジェクタ方式小型レーザーディスプレイは、携帯電話と車載に実用化される為、小型化された導波路方式のRGB三波長合波器もある(例えば特許文献2参照)。尚車載ヘッドアップ型及びメガネ型レーザープロジェクタ用途で低コスト且つ高結合効率のファイバ出力、フィルタ方式のRGB合波器もある(例えば特許文献3参照)。Conventional optical fiber communication multiplexers and demultiplexers using fiber wavelength multiplexing often use array waveguide gratings (AWG = Array Wave-Guide Grating) in the case of Dense Wavelength Division Multiplexing (DWDM). (Patent Document 1 as an example). Recently, since a projector-type small laser display is put into practical use in a mobile phone and a vehicle, there is a miniaturized waveguide-type RGB three-wavelength multiplexer (see, for example, Patent Document 2). There are also low-cost and high-coupling-efficiency fiber outputs and filter-type RGB multiplexers for in-vehicle head-up and glasses-type laser projectors (see, for example, Patent Document 3).

特開2005−234245号公報  JP 2005-234245 A 特開2013−195603号公報  JP 2013-195603 A 特開2013−228651  JP2013-228651A

上述の様な従来の技術で様々なマルチ波長の合波器と分波器を作れるが、レーザーを用いる医療機、画像処理と表示装置、及び投射型テレビ等デバイスと装置に、これら従来の合波器は適用される条件と制限が以下の様に幾つかある。Various conventional multi-wavelength multiplexers and demultiplexers can be made by the conventional technology as described above. However, these conventional optical multiplexers and devices such as medical devices using lasers, image processing and display devices, and projection televisions can be used. There are several conditions and restrictions that apply to wavers as follows.

先ず、従来の技術での合波器は製造コストが高く、特に携帯電話等マスプロダクト向けに要求される極めて低いコストに対して製造段階でのコストダウンは難しい。又、波長による合波の技術は従来いくつかあるが、合波される波長の本数を増やすほど、コストが高くなる一方、合波される光のロスも急激に増えるので、これも解決すべき課題になる。First, the multiplexer according to the conventional technology has a high manufacturing cost, and it is difficult to reduce the cost at the manufacturing stage, especially for the extremely low cost required for mass products such as mobile phones. In addition, there are several conventional techniques for combining wavelengths. However, as the number of combined wavelengths increases, the cost increases while the loss of combined light increases rapidly. It becomes a challenge.

従来の技術では、合波器の波長依存性により、各ビーム波長のバンド幅に対する制限があり、極端の二つ特例として、バンドル幅を持てない波長が極めて接近或いは同一波長の複数の光源の場合、又波長と波長間にバンドル幅が数百nm以上広すぎる場合の複数光源の場合に、この様な制限を掛けられてしまう問題があり、解決すべき課題である。更に、合波される光源からの光ビームを容易且つ効率高く合波器に入力出来る事も本発明に解決しようとする課題である。In the conventional technology, there is a limit on the bandwidth of each beam wavelength due to the wavelength dependence of the multiplexer, and as two extreme special cases, the wavelength that cannot have the bundle width is very close or multiple light sources of the same wavelength In addition, in the case of a plurality of light sources in the case where the bundle width is too wide by several hundreds of nanometers or more between wavelengths, there is a problem that such a limitation is imposed, which is a problem to be solved. Furthermore, another object of the present invention is to be able to easily and efficiently input a light beam from a light source to be combined into a multiplexer.

本発明請求項1のN対1バンドルファイバを用いる合波器について、入力側に横並びになるN本ファイバ中に特定な1本に入れられたN本の光ビーム中に特定な1本の光は、出力側に束ねたN本ファイバ中に該当ファイバの端面からそのまま出射されるので、合波器内部に各々のファイバ中に各々の波長の光ビームのロスは殆どなく、つまり、合波器本体に光学的な効率はほぼ100%に達している。In the multiplexer using the N-to-1 bundle fiber according to the first aspect of the present invention, one specific light in N light beams placed in a specific one in the N fibers side by side on the input side. Is output from the end face of the corresponding fiber as it is in the N fibers bundled on the output side, so that there is almost no loss of the light beam of each wavelength in each fiber inside the multiplexer. The optical efficiency of the main body has reached almost 100%.

尚、合波器に使われるファイバ素線について、一般光通信に使われるガラスファイバの様なものだと、シングル横モードファイバの場合コア径は数μm(=micrometer)程度だが、ハンドリングし易い為クラッド径は125μmになり、束ねられたファイバのコアとコア間に125μm以上の距離を離れてしまう。In addition, the fiber diameter used for the multiplexer is a glass fiber used for general optical communication. In the case of a single transverse mode fiber, the core diameter is about several μm (= micrometer), but it is easy to handle. The clad diameter becomes 125 μm, and a distance of 125 μm or more is left between the cores of the bundled fibers.

それの代わりに、請求項1の合波器に述べたN本のコアとクラッドで構成されるファイバ素線について、シングル或いは低次横モードの場合にコア径数μm程度、それに対して極端に薄めにするクラッドの肉厚は、1μm程度か或いは1μm以下、従って素線の外径は10μm以下の様なものになり、合波器の出力側に前記N本ファイバの出射端面はお互い密接的に束ねてあるので、各ファイバの各コアとコア間の距離は10μm程度で非常に接近されている。Instead, the fiber strand composed of the N cores and the clad described in the multiplexer of claim 1 has a core diameter of about several μm in the case of a single or low-order transverse mode. The thickness of the clad to be thinned is about 1 μm or less than 1 μm, so the outer diameter of the strands is 10 μm or less, and the output end faces of the N fibers are in close contact with the output side of the multiplexer. Therefore, the distance between each core of each fiber is very close to about 10 μm.

この様なファイバ素線で上述の様な手段でバンドルされる合波器の出力側に前記のN本ファイバの出射端から出射されるN本のビームを、実用レベルで一つの点光源に収束して一つのビームに合波されて出力する様になっている。The N beams emitted from the emission ends of the N fibers are converged to one point light source at a practical level on the output side of the multiplexer bundled by the above-described means with such fiber strands. Then, it is combined into one beam and output.

この論点を検証の為、合波器出力側に焦点距離=Fのレンズを用いてN本のファイバの出射端からのN本の出射ビームを平行光にコリメートして考査してみよう。例えば赤緑青のRGB三色合波の為N=3、尚、ファイバ素線は、NA=0.12、コア径=5μmのシングルモードにし、クラッドの肉厚を1.5μmに薄くする事により素線の外径Φ=8μmとすると、前記方法で出射端にバンドルされたファイバ3本中に任意2本の間にコア対コアの間隔は、D(=素線外径Φ)=8μmになり、前記レンズをF=10mmにして、コリメートされて出射する3本平行光ビーム中任意2本間のなす角、
θ=2×tan−1(D÷2÷F)=0.0458°≦0.8mrad
式中に角度の単位は、ミクロン弧度=mard(=milli−radian)になる。ここに、θ≦0.8mradの角度としては、コリメートされた3本のRGBレーザービームの拡がり角と同等レベルの小さなものである。
In order to verify this issue, let us examine by collimating the N outgoing beams from the outgoing ends of the N fibers into parallel light using a lens with a focal length = F on the output side of the multiplexer. For example, N = 3 for RGB three-color combination of red, green and blue, and the fiber strand is made into a single mode with NA = 0.12 and core diameter = 5 μm, and the cladding thickness is reduced to 1.5 μm. Assuming that the outer diameter of the wire is Φ = 8 μm, the core-to-core spacing between any two of the three fibers bundled at the output end in the above method is D (= elementary wire outer diameter Φ) = 8 μm. The angle between any two of the three parallel light beams that are collimated and emitted, with the lens set to F = 10 mm,
θ = 2 × tan −1 (D ÷ 2 ÷ F) = 0.0458 ° ≦ 0.8 mrad
The unit of the angle in the equation is micron arc degree = mard (= milli-radian). Here, the angle of θ ≦ 0.8 mrad is as small as the divergence angle of the three collimated RGB laser beams.

つまり、複数N=3際にRGB三波長の場合に請求項1に述べたファイバ素線の諸仕様及びバンドルされる際の諸条件さえ合えば、前記合波器出力端に3本ファイバの3個出射端面から3個点光源で出力されるRGBの3本のビームを、実用レベルで、一つの点光源から出射される一つのビームと見做される。That is, in the case of RGB three wavelengths when a plurality of N = 3, as long as the specifications of the fiber strand described in claim 1 and the conditions for bundling are met, 3 of the three fibers are connected to the output end of the multiplexer. The three RGB beams outputted from the three point light sources from the single emission end face are regarded as one beam emitted from one point light source at a practical level.

以上N=3際にバンドルファイバ出射端面から出る3本ビームの同光軸性に関する検証は、複数N≧3の場合にも請求項1に述べたファイバ素線の諸仕様とバンドル際の諸条件付で実用レベルに適用出来る。The verification regarding the same optical axis property of the three beams coming out from the bundle fiber exit end face when N = 3 is as follows. Applicable to practical level.

複数N本波長が異なるN個のシングル横モードLDを光源とする場合に請求項1の合波器に使われるファイバ素線の選定について、波長が異なると、ファイバ素線ガラスの分散、尚コア径と開口数NAによってファイバ中に伝搬される光のモードフィールド径MFD(=Mode Field Diameter)も異なる。それにより合波される複数N本波長の全帯域幅に対して、一種のファイバ素線で全ての波長にシングル横モードに合わせられない場合は多い。The selection of fiber strands used in the multiplexer of claim 1 when N single transverse mode LDs with different N wavelengths are used as the light source. The mode field diameter MFD (= Mode Field Diameter) of the light propagating in the fiber is different depending on the diameter and the numerical aperture NA. In many cases, a single transverse mode cannot be set to all wavelengths with a kind of fiber strands with respect to the total bandwidth of a plurality of N wavelengths combined.

請求項1の場合にN本のファイバは独立に使われて、出射端にバンドルされるだけなので、各波長に合わせて各種ファイバで、コア径とNAは独自に選ばれ、N本波長が異なる光ビームの全てに対してシングル横モードファイバの条件を満たす事は可能である。In the case of claim 1, N fibers are used independently and only bundled at the output end. Therefore, the core diameter and NA are independently selected for each fiber according to each wavelength, and the N wavelengths are different. It is possible to satisfy the conditions of a single transverse mode fiber for all of the light beams.

更に、一般導波路型とフィルタ型の様な合波と違って、請求項1に、空間的な合波に基づいているので、合波器の波長依存性は殆ど無く、ある意味で非常に汎用的なものになる。つまり、空間的に独立な光源であれば、同じ波長のみの複数の光源又は、違う波長と同じ波長を交えて複数の光源に問題なく適用出来る。例えば、RGB三波長の3個LDの場合にも、RGGB、つまり赤と青波長各1個と緑波長2個、総じて4個LDの場合にも、請求項1の合波器は適用出来る。In addition, unlike the general waveguide type and filter type multiplexing, the wavelength dependency of the multiplexer is almost independent in claim 1 since it is based on spatial multiplexing. It will be general purpose. In other words, a spatially independent light source can be applied to a plurality of light sources having only the same wavelength or a plurality of light sources having different wavelengths and the same wavelength. For example, in the case of three LDs with three RGB wavelengths, the multiplexer of claim 1 can also be applied to RGGB, that is, one each of red and blue wavelengths and two green wavelengths, for a total of four LDs.

本発明請求項1により、バンドルされるファイバで合波するため、合波器本体の光学効率は、ほぼ100%に得られる。尚、光効率と合波される光ビームの本数は無関係で、本数を増やすほど光効率の効果は高くなる。According to the first aspect of the present invention, since the optical fibers are multiplexed by the bundled fibers, the optical efficiency of the multiplexer main body is almost 100%. Note that the number of light beams combined with light efficiency is irrelevant, and the effect of light efficiency increases as the number increases.

又、複数波長シングル横モード光源からのビーム合波の場合、請求項1バンドルファイバ方式で合波される各光源の波長尚ビームの横モードに合せて各々のファイバを個別的に選ばれるので、各光源からの出力ビームの空間コヒーレンスを最大限に保てる。In addition, in the case of beam multiplexing from a multiple wavelength single transverse mode light source, each fiber is individually selected according to the transverse mode of the wavelength beam of each light source to be multiplexed in the bundle fiber system. Maximum spatial coherence of the output beam from each light source can be maintained.

又、請求項1バンドルファイバを用いる合波器は、チップ型なので、請求項2に述べた複数波長の複数表面実装レーザーダイオード(LD)光源から作り上げるコンパクトで薄いチップ型のマルチ波長光源の欠かせないキー部品になる。In addition, since the multiplexer using the bundle fiber is a chip type, it is indispensable for the compact and thin chip type multi-wavelength light source made from the multiple surface mount laser diode (LD) light source of the multiple wavelength described in claim 2. There will be no key parts.

この様なバンドルファイバを用いるチップ型合波器は、従来導波路型か、或いは、ロングパスかショートパスの様な二波長性を有するフィルタ型合波器と比べ、コストを劇的に低減出来、尚シングル横モードのLDからシングル横モードのファイバの間に光の結合効率も容易に上げられ、二者間の実装もし易いため、請求項2の様なコンパクトで薄いチップ型のRGBレーザー光源を高度な信頼性に低コストで量産出来る。Chip-type multiplexers using such bundle fibers can dramatically reduce costs compared to conventional waveguide-type or filter-type multiplexers having a dual wavelength such as long path or short path, In addition, the light coupling efficiency between the single transverse mode LD and the single transverse mode fiber is easily increased, and it is easy to mount between the two. Therefore, the compact and thin chip type RGB laser light source as in claim 2 is used. High reliability and mass production are possible at low cost.

本発明請求項1に述べたバンドルファイバを用いるチップ型合波器で、複数N=3に、RGB三波長シングル横モードLDの合波に使われるものを実施例1として図1のCAD図面に基本構造を示している。The chip type multiplexer using the bundle fiber described in claim 1 of the present invention, which is used for multiplexing N = 3 and RGB three-wavelength single transverse mode LD, is shown in the CAD drawing of FIG. The basic structure is shown.

光源はシングル横モードLDなので、使われる素線ファイバもシングル横モード、つまりNA=0.12〜0.13、コア径Φ=3.5〜4.0μmのものであれば、元LDのビームの空間的な干渉性は崩されない。Since the light source is a single transverse mode LD, if the strand used is a single transverse mode, that is, NA = 0.12 to 0.13 and the core diameter Φ = 3.5 to 4.0 μm, the beam of the original LD The spatial coherence of is not destroyed.

但し、市販品のシングル横モードファイバのクラッド径は、Φ125μmなので、本実施例1に理想的なファイバ素線は、コア径Φ4μmにクラッド径Φ8〜10μm程度のものだが、本発明出願の時点では、実用レベルで、NA=0.2、コア径Φ7μm、クラッド径Φ10μmのファイバ素線の既存品はバンドルされて合波器に使われてある。この様な請求項1にN=3のRGB合波器は、幅と長さ共に6mm、厚み2mm程度のチップ型になっている。However, since the clad diameter of the commercially available single transverse mode fiber is Φ125 μm, the ideal fiber strand for the first embodiment has a core diameter of Φ4 μm and a clad diameter of Φ8 to 10 μm. On the practical level, existing fiber strands with NA = 0.2, core diameter Φ7 μm, and cladding diameter Φ10 μm are bundled and used in a multiplexer. In such a first claim, the RGB multiplexer of N = 3 is a chip type having a width and a length of about 6 mm and a thickness of about 2 mm.

図1で構成される実施例1のRGB三波長シングル横モード合波器出力側にバンドルされたファイバの出射端面の顕微鏡写真を図2に示している。写真に示す通りに、密接的にバンドルされたファイバ3本の相隣コア間の距離は大よそ10μm程度になっている。FIG. 2 shows a photomicrograph of the output end face of the fiber bundled on the output side of the RGB three-wavelength single transverse mode multiplexer of Example 1 configured in FIG. As shown in the photograph, the distance between adjacent cores of three closely bundled fibers is about 10 μm.

作り方として、バンドルされる3本ファイバ端面を研磨で仕上げる為、中心にΦ25μm程度の穴があるΦ1mm外径のガラスチューブ型フェルール中に素線を入れて接着剤で固定してある。As a manufacturing method, in order to finish the end faces of the three bundled fibers by polishing, a strand is put in a glass tube ferrule having a diameter of about 1 mm and having an outer diameter of about 25 mm, and fixed with an adhesive.

前述の通り、実施例1の合波器本体の光学伝搬ロスは殆ど無いが、合波器入力側にLDからファイバへ光の結合効率を調べたところ、シングル横モード638nm波長LDからのレーザービームを合わせ込みアクティブ調芯、つまり光源とするLDからのビームを出力しながら結合レンズを光軸調整してファイバ入射端面に光を入力すると、バンドルされたファイバ出射端に、約85%のスループットで出力を得られている。光学的な効率を更に向上する為、ファイバの入射と出射両端面に反射防止誘電体薄膜を付けることも出来る。As described above, there is almost no optical propagation loss in the main body of the first embodiment, but when the coupling efficiency of light from the LD to the fiber is examined on the input side of the multiplexer, a laser beam from a single transverse mode 638 nm wavelength LD is obtained. Active alignment, that is, the beam from the LD as the light source is output while adjusting the optical axis of the coupling lens, and the light is input to the fiber entrance end face, with a throughput of about 85% at the bundled fiber exit end. Output has been obtained. In order to further improve the optical efficiency, an antireflection dielectric thin film can be attached to both the incident and exit end faces of the fiber.

尚合波器の出力側にファイバから出射される638nm光ビームの横モード特性も調べたが、ビーム横モードの品質の指数エムスクエアM^2=2以下になっている。つまり本実施例1合波器実際に出力されるビームの横モードは、ファイバ素線本体のコア径7μm、NA0.2から試算されるM^2=3.4より、かなり良くなっている。The transverse mode characteristics of the 638-nm light beam emitted from the fiber on the output side of the multiplexer were also examined, but the quality of the beam transverse mode M square M ^ = 2 or less. In other words, the transverse mode of the beam actually output in the first embodiment is considerably better than M ^ 2 = 3.4 calculated from the core diameter of the fiber strand main body of 7 μm and NA of 0.2.

こうなった理由だが、本実施例1合波器のファイバ素線の長さは約6mm程度で、ビームの伝搬距離は極めて短く、ビームのファイバ中に高次モードへの混ぜる効果は未だ顕在してなく、入力されたビームは横モードが崩れてないままに出力端に到ってしまう事である。The reason for this is that the length of the fiber strand of the first embodiment multiplexer is about 6 mm, the propagation distance of the beam is extremely short, and the effect of mixing the beam into the higher mode is still apparent. In other words, the input beam reaches the output end without breaking the transverse mode.

更に、実施例1合波器の出力側に638nm、520nmと450nmのRGB三波長のバンドルファイバからの出射光ビームを焦点距離20mmのアクロマティックレンズを用いてコリメートし、1メートル先前方にビーム径を最小になる様に調整し合わせた際に、測れた3個RGB三色レーザービームスポット径は、大よそΦ1mm以下(M^2≦2)になって、尚三波長ビームのお互いに離れた距離は、≦0.5mm程度になって、一つΦ1.5mmの同心円中に入っているので、実用レベルで三波長の一つビームとして使える。Further, the light beam emitted from the bundle fiber of RGB of three wavelengths of 638 nm, 520 nm and 450 nm is collimated on the output side of the first embodiment using an achromatic lens having a focal length of 20 mm, and the beam diameter is advanced one meter ahead. The three RGB three-color laser beam spot diameters measured when adjusted to be minimized are approximately Φ1 mm or less (M ^ 2 ≦ 2), and the three wavelength beams are still separated from each other. Since the distance is about ≦ 0.5 mm and is in one concentric circle of Φ1.5 mm, it can be used as one beam of three wavelengths at a practical level.

本発明請求項による実施例1の合波器を用いて請求項2に述べたチップ型RGBの3波長同光軸出力光源を実施例2として、図3にCAD図面でその基本構成を示している。FIG. 3 shows a basic configuration of a chip-type RGB three-wavelength same-axis output light source described in claim 2 as a second embodiment using the multiplexer according to the first embodiment of the present invention. Yes.

光源であるシングル横モードLDは表面実装チップ型のタイプで、外形は、幅0.8mm、長さ2.0mm、厚み0.3mmのものになる。実装の便利さから、実施例1合波器入力側に、RGB三波長で3個のLDを等間隔2mmに横一列に、銅板のヒートシンク上に固定している。本実施例2の場合、LDからファイバへレーザービームをレンズ無しで直接結合して大よそ50%程度出力はバンドルされたファイバ出射端に出力されている。The single transverse mode LD, which is a light source, is a surface-mounted chip type, and its outer shape is 0.8 mm wide, 2.0 mm long, and 0.3 mm thick. For convenience of mounting, three LDs with three wavelengths of RGB are fixed on a heat sink of a copper plate in a horizontal row at equal intervals of 2 mm on the input side of the first embodiment. In the case of the second embodiment, the laser beam is directly coupled from the LD to the fiber without a lens, and an output of about 50% is output to the bundled fiber exit end.

図3の様な構成図に示した配置関係で、一つLD発光点と相手の一つファイバの入射端面の間に光を1対1の直接結合なので、結合効率を向上する為ファイバへ光ビームの合わせ込み調芯精度は、±0.5μm以内に必須。尚本実施例2の場合に、光源側に一列に横並びの3個RGBのLDと相手合波器入力側に一列に横並びRGB入射ファイバ端面のお互い配置の位置も実装される際に、全て揃って同じ±0.5μm以内の精度で必要なので、非常に難しい。In the arrangement shown in the configuration diagram of FIG. 3, since light is directly coupled one-to-one between one LD emission point and the incident end face of the other fiber, the light is transmitted to the fiber to improve the coupling efficiency. Beam alignment alignment accuracy is essential within ± 0.5μm. In the case of the second embodiment, all three RGB LDs arranged side by side on the light source side and one side of the RGB incident fiber end face arranged side by side on the partner multiplexer input side are also arranged. This is very difficult because it requires the same accuracy within ± 0.5μm.

それの代わりに、LD発光点と相手ファイバ受光端面の間に結合レンズを用いて光を結合する事により、LDの実装及び相手側の合波器入力側のファイバ受光端面の位置合わせ実装精度を緩和できる。尚合波器ファイバをV溝で位置を合わせたり、LDをアクティブ調芯したり組立して精度を上げたりする事により、光のファイバへの結合効率を向上出来る。Instead, by using a coupling lens to couple the light between the LD emission point and the mating fiber receiving end face, the mounting accuracy of the LD and the fiber receiving end face of the mating coupler input side can be adjusted. Can be relaxed. The coupling efficiency of the light to the fiber can be improved by aligning the position of the multiplexer fiber with the V-groove, or by actively aligning and assembling the LD to increase the accuracy.

実施例2のRGB三波長チップ型光源は、LDとファイバの間にレンズ無しで光を直接結合する場合、図3に示す通り、幅6mm、長さ8.5mm、厚み1.8mmの外形で、LDと合波器ファイバ間の光結合効率は大よそ50%しか出来ない。光源LDと合波器ファイバ受光端面間に結合レンズを用いる場合、光の結合効率は、75%以上に上がれるが、外形について長さ方向に11mmに長くなってしまう。この様に作り上げている光のスループットが高い本実施例2のチップ型RGB光源は、現状最大に、赤638nmで80mW、緑520nmで55mW、青450nmで波長50mWのパワーで、ファイバから三波長共にほぼシングル横モードのビームで出力され、車載と携帯電話用の投射型プロジェクタに要求される高輝度高出力に達している。The RGB three-wavelength chip type light source of Example 2 has an outer shape of 6 mm in width, 8.5 mm in length, and 1.8 mm in thickness as shown in FIG. 3 when light is directly coupled between the LD and the fiber without a lens. The optical coupling efficiency between the LD and the multiplexer fiber can only be about 50%. When a coupling lens is used between the light source LD and the light receiving end face of the multiplexer fiber, the light coupling efficiency can be increased to 75% or more, but the outer shape becomes 11 mm in the length direction. The chip-type RGB light source of Example 2 having a high light throughput thus created is currently at a maximum power of 80 mW for red 638 nm, 55 mW for green 520 nm, and 50 mW for wavelength 450 m blue, both from the fiber to the three wavelengths. It is output with a beam of almost single transverse mode, and has reached the high brightness and high output required for projection projectors for in-vehicle and mobile phones.

請求項1に述べたバンドルファイバを用いるチップ型の合波器は、複数N個空間的に独立な光源からN個独立な光ビームを空間的に合波して光軸が揃って一つ点光源になって出力出来るので、複数N=3の場合、RGB三原色、又N=4の時にセンシング用近赤外波長を加え、四波長の独立な光源LDからの光を低コスト且つ高度な実用レベルにRGB三波長或いは近赤外NIR(=Near Infrared)も加えて四波長で合波される一つの点光源として、MEMSスキャンを用いるレーザープロジェクタ等の応用に期待出来る。The chip-type multiplexer using the bundle fiber according to claim 1 is a single point in which the optical axes are aligned by spatially multiplexing N independent light beams from a plurality of N spatially independent light sources. Since it can be output as a light source, when multiple N = 3, RGB three primary colors, or when N = 4, sensing infrared wavelengths are added, and light from four independent light sources LD is low-cost and highly practical. In addition to RGB three-wavelength or near-infrared NIR (= Near Infrared) in the level, it can be expected to be applied to a laser projector using a MEMS scan as one point light source combined at four wavelengths.

尚、請求項2の様な小型化されるチップ型RGB或いはRGB+NIRの様なマルチ波長光源は、極めてコンパクトで薄さを要求されるメガネ方式と携帯電話に内蔵される投射型ディスプレイに初めて小型化に適用出来て、尚車載と携帯電話用プロジェクタに必要以上の高輝度高出力にも実現されているので、これらの応用に欠かせないものである。Note that the multi-wavelength light source such as the chip type RGB or RGB + NIR to be miniaturized as in claim 2 is the first to be miniaturized in the glasses type which is extremely compact and requires thinness and the projection type display incorporated in the mobile phone. In addition, it is also indispensable for these applications because it is realized with high brightness and high output more than necessary for in-vehicle and mobile phone projectors.

実施例1として、請求項1に述べた複数N=3のバンドルファイバを用いる3ビーム入力、1ビーム出力の3対1光ビームの空間的な合波器  As a first embodiment, a three-beam input and one-beam output three-to-one optical beam spatial multiplexer using a plurality of N = 3 bundle fibers described in claim 1 実施例1の合波器出力端にフェルールの径Φ25μm穴中にバンドルされてある3本ファイバの出射端面の顕微鏡写真  Photomicrograph of the output end face of the three fibers bundled in the ferrule diameter Φ25 μm hole at the output end of the multiplexer of Example 1 実施例2として、実施例1複数N=3場合の合波器の入力側に実装されてある638nm、520nm及び450nmのRGB三波長シングル横モード表面実装型LDの3本空間的に独立な光ビームから合波器出力側に一つ点光源として出力されるコンパクトで薄いチップ型RGBレーザー光源  As Example 2, three spatially independent lights of 638 nm, 520 nm and 450 nm RGB three-wavelength single transverse mode surface-mounted LDs mounted on the input side of the multiplexer when N = 3 in Example 1 Compact and thin chip type RGB laser light source that is output as one point light source from the beam to the output side of the multiplexer

図1に関する符号:
100 請求項1に述べた合波器のファイバを固定されてあるチップ型板
101 合波器の入力側
102 合波器の出力側
103 以上100のチップ型板上にファイバの固定位置を決める溝
110 合波器出力側にバンドルされてある複数N=3本ファイバの出射端
111 合波器入力側に1本目ファイバの入射端面
112 合波器入力側に2本目ファイバの入射端面
113 合波器入力側に3本目ファイバの入射端面
図2の顕微鏡写真に関する符号:
200 研磨されてあるフェルール端面
211 フェルール端面にバンドルされたクラッド径10μmのファイバ素線その一
212 フェルール端面にバンドルされたクラッド径10μmのファイバ素線その二
213 フェルール端面にバンドルされたクラッド径10μmのファイバ素線その三、以上3本ファイバ素線を正三角形に密接的にバンドルされてある様子を写真中に良く映されてある
221 ファイバ素線のコア
222 ファイバ素線のクラッド
230 顕微鏡写真に示すスケール、単位長さ=10μm
図3に関する符号:
301 青(Blue)波長450nm表面実装シングル横モードLD
302 赤(Red)波長638nm表面実装シングル横モードLD
303 緑(Green)波長520nm表面実装シングル横モードLD
304 RGB三波長LDのヒートシンク銅板
305 請求項1に述べた合波器のファイバを固定されてあるチップ型板
31i i=1,2,3,合波器入力端にRGBのLD光源と1対1直接光結合方式で実装されてある複数N=3本のファイバ、本実施例1の場合に3本ファイバ素線のコアは、径Φ7μmにNA0.2、尚クラッド径はΦ10μmのものである
314 合波器出力側に請求項1に述べた条件を満たしてバンドルされてある複数N=3本ファイバの出射端面
References relating to FIG.
100 Chip plate 101 to which the fiber of the multiplexer described in claim 1 is fixed. Input side 102 of the multiplexer. Output side 103 of the multiplexer. Groove for determining the fixing position of the fiber on the 100 or more chip template plates. 110 Multiplex N = Three Fiber Outlet Ends 111 Bundled on the Multiplexer Output Side, First End of Fiber Input 112 on the Input Side of the Multiplexer 112 Incoming End Face of the Second Fiber on the Input Side of the Multiplexer 113 Multiplexer The incident end face of the third fiber on the input side.
200 Polished ferrule end face 211 A fiber strand with a cladding diameter of 10 μm bundled with the ferrule end face No. 212 A fiber strand with a cladding diameter of 10 μm bundled with the ferrule end face No. 213 A clad diameter bundled with the ferrule end face of 10 μm Three or more fiber strands Three or more fiber strands are closely bundled into equilateral triangles. 221 Fiber core 222 that is well reflected in the photograph. Scale, unit length = 10μm
References relating to FIG.
301 Blue Wavelength 450nm Surface Mount Single Transverse Mode LD
302 Red (Red) wavelength 638nm surface mount single transverse mode LD
303 Green Wavelength 520nm Surface Mount Single Transverse Mode LD
304 Heat sink copper plate for RGB three-wavelength LD 305 Chip template 31i i = 1, 2, 3, to which the fiber of the multiplexer described in claim 1 is fixed. (1) A plurality of N = 3 fibers mounted in the direct optical coupling method, and in the case of the first embodiment, the core of the three fiber strands has a diameter of Φ7 μm, NA of 0.2, and a cladding diameter of Φ10 μm. 314 Output end face of plural N = 3 fibers bundled on the output side of the multiplexer satisfying the condition described in claim 1

Claims (2)

複数N個の点光源、或いは複数N本の平行光出力レーザーからの空間的に独立されているN本の光ビームの光軸を揃えて一つの点光源になる様に空間的に合波して出力する目的であって、予め、材質がガラスか金属のチップ型板1枚と、入射端面と出射端面に導光の為研磨されてあるコア及びクラッドで構成される光ファイバ素線N本を用意し、前記チップ型板の両脇に光の入力側と出力側を設けて前記チップ型板の入力側の縁に、前記N本ファイバ素線の入射端を前記合波しようとする空間的に独立されているN個光源からのN本光ビームの入射位置に合わせて一定的な間隔に置いて一列横並びにして接着剤で固定し、又、前記チップ型板の出力側の縁に前記N本ファイバ素線の出射端をお互いに密接的に束ねて接着剤で固定し、更に、前記コア及びクラッドと構成されるN本ファイバ素線を用意される際に予めクラッド径を極端に細くして、つまり、前記N本ファイバ素線のコアに包まれるクラッドを一層限界までに薄くする様に予め用意される事により、通常、N個の点光源と見られる前記N本ファイバ出射端面から出力されるN本光ビームを、前記N本ファイバの出射端に密接的にバンドルされて、尚且つコアとコアの間に極めて接近されている為、収束して一つの点光源と見做して出力されており、つまり、前記空間的に独立されたN個光源からのN本光ビームを、出力端に、実用レベルで一つの点光源として空間的に一つの光ビームに合波されて出力される事を特徴とするバンドルファイバを用いるチップ型N対1のビームの空間的な合波器Spatial multiplexing of N point light sources or N light beams spatially independent from N parallel light output lasers so that the optical axes are aligned to form a single point light source. N optical fiber strands composed of one chip template made of glass or metal, and a core and a clad polished for light guide at the entrance end face and the exit end face in advance. A space in which light input and output sides are provided on both sides of the chip template, and the input ends of the N fiber strands are to be combined at the input side edge of the chip template. Are fixed with an adhesive in a row at regular intervals according to the incident positions of N light beams from N light sources that are independent from each other, and also on the output side edge of the chip template. The exit ends of the N fiber strands are tightly bundled with each other and fixed with an adhesive. When preparing N fiber strands composed of a core and a clad, the clad diameter is made extremely thin in advance, that is, the cladding encased in the core of the N fiber strands is made thinner to the limit. The N light beams output from the N fiber exit end faces, which are usually regarded as N point light sources, are closely bundled with the exit ends of the N fibers. Since the two cores are very close to each other, they are converged and output as one point light source. That is, N light beams from the N light sources spatially independent are output. Spatial multiplexing of a chip-type N-to-1 beam using a bundle fiber characterized in that it is combined and output as a single point light source at a practical level at the output end. vessel コンパクトで薄いチップ型のマルチ波長の光源を作る目的であって、表面実装薄いチップ型の複数N本波長が異なるN個のLD(=Laser Diode)光源と請求項1に述べた条件を満たすバンドルファイバを用いるチップ型N対1空間的な合波器を予め用意し、前記N個光源からのN本空間的に独立な光ビームを前記合波器入力側のN本ファイバへ直接接合、或いは、レンズを用いて結合し、前記合波器出力側にN本のバンドルファイバから出射するN本の光ビームを請求項1に述べた空間的に合波の原理により、収束されて一つ点光源になって出力する事を特徴とするバンドルファイバ合波器を用いる点光源出力コンパクトなチップ型マルチ波長レーザー光源A bundle for satisfying the condition described in claim 1 for the purpose of making a compact and thin chip type multi-wavelength light source, and a plurality of N LD (= Laser Diode) light sources having different N wavelengths in a surface mount thin chip type A chip-type N-to-1 spatial multiplexer using fiber is prepared in advance, and N spatially independent light beams from the N light sources are directly joined to the N fibers on the multiplexer input side, or The N light beams that are coupled using a lens and are emitted from the N bundle fibers to the output side of the multiplexer are converged according to the spatial multiplexing principle described in claim 1 and A compact chip-type multi-wavelength laser light source with a point light source output using a bundle fiber multiplexer characterized by being output as a light source
JP2014267190A 2014-11-11 2014-12-18 Chip-type bundle fiber multiplexer and chip-type multi-wavelength light source Expired - Fee Related JP6535848B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014267190A JP6535848B2 (en) 2014-12-18 2014-12-18 Chip-type bundle fiber multiplexer and chip-type multi-wavelength light source
CN201580006643.XA CN106062600B (en) 2014-11-11 2015-08-31 Light beam combiner and chip type multi-wavelength laser light source
PCT/JP2015/075277 WO2016076000A1 (en) 2014-11-11 2015-08-31 Various novel multi-wavelength multiplexers, and novel multi-wavelength light sources using multiplexers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014267190A JP6535848B2 (en) 2014-12-18 2014-12-18 Chip-type bundle fiber multiplexer and chip-type multi-wavelength light source

Publications (3)

Publication Number Publication Date
JP2016118750A true JP2016118750A (en) 2016-06-30
JP2016118750A5 JP2016118750A5 (en) 2018-02-15
JP6535848B2 JP6535848B2 (en) 2019-07-03

Family

ID=56244175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014267190A Expired - Fee Related JP6535848B2 (en) 2014-11-11 2014-12-18 Chip-type bundle fiber multiplexer and chip-type multi-wavelength light source

Country Status (1)

Country Link
JP (1) JP6535848B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020618A (en) * 2017-07-19 2019-02-07 株式会社ネクスティエレクトロニクス Optical combiner and method of manufacturing optical combiner
JP2019035876A (en) * 2017-08-17 2019-03-07 日本電信電話株式会社 Optical integrated circuit
WO2019082347A1 (en) * 2017-10-26 2019-05-02 フォトンリサーチ株式会社 Light guide device, optical waveguide device, multi-wavelength light source module, and method for manufacturing optical waveguide device
WO2021166413A1 (en) * 2020-02-20 2021-08-26 国立大学法人福井大学 Optical waveguide multiplexer, light source module, two-dimensional light beam scanning device, and light beam scanning video projection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055568A1 (en) * 2002-12-12 2004-07-01 Corning Incorporated Devices for holding optical fiber array and for connecting optical devices with different fibre array pitch
JP2006126373A (en) * 2004-10-27 2006-05-18 Univ Of Tokyo Guide substrate for optical fiber of lightwave circuit module
JP2013228651A (en) * 2012-04-24 2013-11-07 Jun Narusawa Multi-wavelength fiber multiplexer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055568A1 (en) * 2002-12-12 2004-07-01 Corning Incorporated Devices for holding optical fiber array and for connecting optical devices with different fibre array pitch
JP2006126373A (en) * 2004-10-27 2006-05-18 Univ Of Tokyo Guide substrate for optical fiber of lightwave circuit module
JP2013228651A (en) * 2012-04-24 2013-11-07 Jun Narusawa Multi-wavelength fiber multiplexer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020618A (en) * 2017-07-19 2019-02-07 株式会社ネクスティエレクトロニクス Optical combiner and method of manufacturing optical combiner
JP2019035876A (en) * 2017-08-17 2019-03-07 日本電信電話株式会社 Optical integrated circuit
WO2019082347A1 (en) * 2017-10-26 2019-05-02 フォトンリサーチ株式会社 Light guide device, optical waveguide device, multi-wavelength light source module, and method for manufacturing optical waveguide device
JPWO2019082347A1 (en) * 2017-10-26 2020-05-28 フォトンリサーチ株式会社 Light guide device, optical waveguide device, and multi-wavelength light source module
CN111465879A (en) * 2017-10-26 2020-07-28 光研公司 Light guide device, optical waveguide device, multi-wavelength light source module, and method for manufacturing optical waveguide device
WO2021166413A1 (en) * 2020-02-20 2021-08-26 国立大学法人福井大学 Optical waveguide multiplexer, light source module, two-dimensional light beam scanning device, and light beam scanning video projection device
JP2021131498A (en) * 2020-02-20 2021-09-09 国立大学法人福井大学 Optical waveguide type multiplexer, light source module, two-dimensional optical beam scanner, and optical beam scan type picture projector
JP7105498B2 (en) 2020-02-20 2022-07-25 国立大学法人福井大学 Optical waveguide multiplexer, light source module, two-dimensional light beam scanner, and light beam scanning image projector

Also Published As

Publication number Publication date
JP6535848B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
US9519151B2 (en) Optical multiplexer and transmitter optical subassembly
JP5876612B2 (en) Fiber optic coupler for combining a signal beam with a non-circular light beam
JP4394713B2 (en) Wavelength selective switch
WO2012172968A1 (en) Optical device
JP7167776B2 (en) optical connection structure
JP6535848B2 (en) Chip-type bundle fiber multiplexer and chip-type multi-wavelength light source
JP2015114548A (en) Optical multiplexer/demultiplexer and optical communication system
JPS61113009A (en) Optical multiplexer/demultiplexer
JP6219288B2 (en) Multi-core fiber and single-mode fiber optical connector
WO2016076000A1 (en) Various novel multi-wavelength multiplexers, and novel multi-wavelength light sources using multiplexers
KR20130093538A (en) Optical free beam fibre-to-fibre coupling device
JP4942775B2 (en) Optical device with compact dispersion system
JP7201945B2 (en) Optical multiplexing circuit and light source
WO2014077069A1 (en) Optical multiplexer device
KR100966421B1 (en) Optical multiplexer and demultiplexer for optical fibers with a large numerical aperture
JP5921327B2 (en) Multi-wavelength fiber multiplexer
JP2004271743A (en) Optical device
US20080088928A1 (en) Optical configurations for achieving uniform channel spacing in wdm telecommunications applications
Patel et al. Multi-mode fiber coarse WDM grating router using broadband add/drop filters for wavelength re-use
JP7340230B2 (en) optical combiner
JP7340661B2 (en) light source module
JP2019169780A (en) Optical communication system
JP2019139147A (en) Optical module
JP5900043B2 (en) Optical coupling structure and array optical amplification module
JP5922026B2 (en) Light source module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171211

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

R150 Certificate of patent or registration of utility model

Ref document number: 6535848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees