WO2021166413A1 - Optical waveguide multiplexer, light source module, two-dimensional light beam scanning device, and light beam scanning video projection device - Google Patents

Optical waveguide multiplexer, light source module, two-dimensional light beam scanning device, and light beam scanning video projection device Download PDF

Info

Publication number
WO2021166413A1
WO2021166413A1 PCT/JP2020/047632 JP2020047632W WO2021166413A1 WO 2021166413 A1 WO2021166413 A1 WO 2021166413A1 JP 2020047632 W JP2020047632 W JP 2020047632W WO 2021166413 A1 WO2021166413 A1 WO 2021166413A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical waveguide
optical
waveguide type
optical waveguides
Prior art date
Application number
PCT/JP2020/047632
Other languages
French (fr)
Japanese (ja)
Inventor
勝山俊夫
山田祥治
中尾慧
Original Assignee
国立大学法人福井大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人福井大学 filed Critical 国立大学法人福井大学
Publication of WO2021166413A1 publication Critical patent/WO2021166413A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an optical waveguide type combiner, a light source module, a two-dimensional light beam scanning device, and an optical beam scanning type image projection device.
  • an optical waveguide type combiner and an optical beam scanning type image projection device which can be miniaturized with less loss and have a simple structure.
  • various types of light beam combiners are known as devices that combine light beams such as a plurality of laser beams and radiate them as one beam.
  • those using an optical fiber or an optical waveguide can be miniaturized (see, for example, Patent Documents 1 to 3), and as shown in Cited Documents 1 to 3, three of them are used.
  • a method of combining the optical beams of the above there is known a method of bringing each optical fiber or optical waveguide close to each other in the vicinity of the light emitting end.
  • FIG. 11 is a schematic perspective view of an example of a two-dimensional optical beam scanning device proposed by the present inventor.
  • An optical waveguide type optical wave guide 50 is provided on a substrate 60 on which a movable mirror portion 61 is formed, and the optical waveguide type optical wave guide is provided.
  • the blue semiconductor laser chip 51, the green semiconductor laser chip 52, and the red semiconductor laser chip 53 may be coupled to the waveguide 50. Since the movable mirror portion 61 is miniaturized, the overall size after integration can be reduced even when it is integrated with a light source that generates a light beam.
  • the semiconductor laser chip or the optical waveguide type optical combiner may be formed on a Si substrate or a metal plate substrate.
  • This two-dimensional light beam scanning device and a two-dimensional scanning control unit that applies a two-dimensional optical scanning signal to the electromagnetic coil 70 to scan the emitted light emitted from the light source in two dimensions are provided, and the scanned emitted light is collected.
  • a spectacle-type retinal scanning display can be obtained.
  • Patent Document 3 provides a configuration in which the blurring of the image is reduced as much as possible by making the distance between the emission ends close to 15 ⁇ m or less, but there is a drawback that it cannot be applied to high-definition image generation.
  • an optical waveguide type combiner for example, a method of merging two optical waveguides into one instead of simply adjoining them to form one optical waveguide and combining them (Y-type combiner).
  • Y-type combiner a method of merging two optical waveguides into one instead of simply adjoining them to form one optical waveguide and combining them.
  • This method is simple, but when using an optical waveguide that can propagate only in the basic mode, in principle, when one light beam is used, light leaks at the confluence part, and the combined light beam It is known that the power is reduced by 3 dB (1/2) (see, for example, Non-Patent Document 1).
  • the present invention solves the problems of the above-mentioned Patent Documents 1 to 3 and the problems of the Y-type combiner, can be miniaturized, and has a simple structure, and is a high-efficiency optical waveguide type combiner. Provide a vessel.
  • the optical waveguide type combiner has a plurality of optical waveguides and a region in which light beams propagating through the plurality of optical waveguides are combined to form one optical waveguide on the emission end face side.
  • the light beam whose exit end surface of the region propagates through the optical waveguide exists within a longitudinal range of 10% to 90% of the total leakage light leaking to the outside from the optical waveguide.
  • the light source module has the above-mentioned optical waveguide type combiner and a plurality of light sources that incident the light beam into the optical waveguide type combiner.
  • the two-dimensional light beam scanning device includes the above-mentioned light source module and a two-dimensional light scanning mirror device that scans the combined light from the light source module in two dimensions.
  • the light beam scanning image projection device includes the above-mentioned two-dimensional light beam scanning device and an image forming unit that projects the combined wave light scanned by the two-dimensional light scanning mirror device onto the projected surface.
  • an optical waveguide type combiner that is easy to configure and manufacture can be obtained in an optical waveguide type combiner, a light source module, a two-dimensional optical beam scanning device, and an optical beam scanning type image projection device.
  • the optical waveguide type combiner and the optical beam which can be miniaturized by reducing the loss of the optical beam intensity in the branch type optical waveguide that constitutes the combiner of the optical waveguide type combiner, and have a simple configuration.
  • a scanning image projection apparatus is provided.
  • FIG. 1 is an explanatory view of an optical waveguide type combiner according to an embodiment of the present invention
  • FIG. 1 (a) is a plan view
  • FIG. 1 (b) is a cross-sectional view on the incident end face side.
  • the light sources 21 to 23 are added to describe the light source module.
  • the optical waveguide type combiner according to the embodiment of the present invention has a plurality of optical waveguides 13 to 15 and an optical waveguide region 17 in which light beams propagating through the plurality of optical waveguides 13 to 15 are combined on the emission end face side. Have.
  • the light beams propagating in the plurality of optical waveguides 13 to 15 have the light beams confined in the optical waveguides 13 to 15 due to the gradual narrowing of the distance between the optical waveguides 13 to 15. , Gradually leaks from the optical waveguide to the outside, and finally, the three optical waveguides are completely integrated into one, and in a state of being confined in the optical waveguide, the optical waveguide is stably provided without leaking to the outside. It will propagate.
  • the light beam propagating through the three optical waveguides is within the range of 10% to 90% of the total leaked light leaking to the outside from the optical waveguides 13 to 15 before stably propagating through one optical waveguide. Is provided with an emission end surface, and the range between the position in the longitudinal direction where leakage has begun and the emission end is defined as the optical waveguide region 17.
  • each optical waveguide 13 to 15 is composed of a core (13 to 15), a lower clad row 12 surrounding the core (13 to 15), and an upper clad layer 16. Due to the total reflection caused by the refractive index of the core being higher than the refractive index of the cladding, the light is confined in the cores of the optical waveguides 13 to 15 and the light propagates.
  • the cross section of the cores of the optical waveguides 13 to 15 is preferably square or circular, but of course, the cross section may be rectangular or elliptical. In these cases, the height of the core is different from the width of the core.
  • the incident light is guided by the optical waveguides 2 and 3, respectively, and reaches the optical wave wave region 6, where the light is combined, and if there is a light emission end 7, the light emission end 7 is directed toward the external space. Be radiated.
  • the propagating light is the basic mode light
  • leakage light to other than the optical waveguide peculiar to the Y-type optical waveguide occurs in the photosynthetic wave region 6, and the power of the light propagating in the optical waveguide is significantly reduced.
  • the light beams propagating in the optical waveguides 2 and 3 gradually narrow the distance between the optical waveguides 2 and 3, so that the light beams confined in the optical waveguides 2 and 3 gradually move from the optical waveguides 2 and 3. It leaks to the outside, and finally, the two optical waveguides 2 and 3 are completely integrated into one, and in a state of being confined in the optical waveguides 2 and 3, the optical waveguide is stably provided without leaking to the outside. It will propagate. However, the light beam propagating through the two optical waveguides 2 and 3 leaks to the outside from the optical waveguides 2 and 3 before it stably propagates through one optical waveguide as the light beam 9 that propagates stably.
  • Reference numeral 10 in the figure is the entire leaked light. In FIG. 2, the region surrounded by the alternate long and short dash line is the region of 0% to 100% of the leaked light, and the region surrounded by the dotted line is the region of 10% to 90%.
  • both the leaked light and the light propagating in the waveguide are equally directed toward the outside as synchrotron radiation 8. Be radiated. Therefore, since the synchrotron radiation 8 is radiated from a narrow region to the outside, the light loss peculiar to the Y-type optical combiner is substantially eliminated.
  • the emission end face 7 is provided within a range of 10% to 90% of the total leakage light, and the range between the longitudinal position where the leakage starts and the emission end surface 7 is defined as the photosynthetic wave region 6. Twice
  • the phase of the leaked light and the phase of the light originally propagating in the optical waveguides 2 and 3 are almost the same, so that unnecessary interference and specifications between the leaked light and the light propagating in the optical waveguides 2 and 3 are required. No interference is generated, and light emission with excellent light quality can be obtained.
  • the propagating light is the basic mode light
  • the leakage light and the inside of the optical waveguide 2 and 3 are similarly described. No unnecessary interference or speckle noise with the propagated light occurs. Therefore, if the propagation of the basic mode is the maximum component, the same configuration can be applied to modes higher than the basic mode and when light with a smaller mode number propagates.
  • the length h of the optical wave region 6 is the position in the longitudinal direction of the combiner where radiation starts as leaked light outside the core of the optical waveguide and the leaked light becomes 10% of the total leaked light. It is defined by the distance from the light emitting end. The smaller h is, the better, but it is sufficient as long as the phase difference between the leaked light and the light that should originally propagate does not become large. Specifically, it has been confirmed that when h is 300 ⁇ m or less, more preferably 200 ⁇ m or less, the influence of the phase difference is small.
  • the spread d of the synchrotron radiation emitted from the photosynthetic region 6 at the light emitting end can be regarded as a point light source, and it is better that it is small, but the desirable value is 15 ⁇ m or less.
  • the spread d at the light emission end of the synchrotron radiation is defined by the full width at half maximum of the light power distribution.
  • the core diameters of the optical waveguides 13 to 15 may be the same, but as shown in FIG. 1, when light having different wavelengths is incident on the three optical waveguides 13 to 15, each optical waveguide 13 to 15 depends on the wavelength. It is advisable to make the diameters different from each other so as to propagate the basic mode. However, even if the diameter is such that the next higher-order mode after the basic mode can propagate, the higher-order mode attenuates in a short distance, so unless a large number of modes are propagated, the basic mode is practically the same. It can be a propagating optical waveguide. In this case, the light that leaks to the outside at the earliest spreads the most at the exit end face, so the length of the optical wave region 17 is defined by the optical waveguide that leaks the light to the outside at the earliest.
  • the core diameter of the optical waveguides 13 to 15 may be gradually reduced from the incident side, and the diameter of the light emitting end may be smaller than the light incident end. In this case, a homogeneous emitted light beam can be obtained as compared with the case where the core diameters of the optical waveguides 13 to 15 do not change over the entire length of the optical waveguide.
  • the number of optical waveguides may be four or more, and in that case, for example, in addition to the three primary colors of light, red, green, and blue, infrared light, ultraviolet light, or yellow is propagated.
  • An optical waveguide may be added, and the optical waveguide may be aligned near the light emitting end.
  • the light incident ends do not have to be all formed on the same end face, and the optical waveguide may be provided with a bent waveguide that bends the light at a right angle. In this case, bending loss occurs and the combined wave efficiency is slightly deteriorated, but the influence of stray light due to incident light can be reduced.
  • the optical combiner in the two-dimensional optical scanning apparatus shown in FIG. 11 may be combined with the above-mentioned optical waveguide type combiner.
  • the control unit and the image forming unit that projects the scanned emitted light onto the projected surface may be combined.
  • a spectacle-type retinal scanning display is typical.
  • the optical waveguide type combiner according to the first embodiment of the present invention will be described with reference to FIG. 5A and 5B are explanatory views of the optical waveguide type combiner according to the first embodiment of the present invention, FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view on the incident end face side.
  • the light sources 41 to 43 will be added to describe the light source module.
  • the optical waveguide type optical waveguide of the first embodiment of the present invention is an optical waveguide 33 having a plurality of core widths of 2 ⁇ m that injects light from a plurality of light sources 41 to 43 having different wavelengths.
  • the light combined by the optical combiner unit 37, which has to 35 and combines the light propagating through the optical waveguides 33 to 35, is emitted from the exit end face.
  • each optical waveguide has a SiO 2 layer 32 having a thickness of 1 mm and a thickness of 20 ⁇ m provided on the (100) plane Si substrate 31 as a lower clad layer, and the SiO 2 layer.
  • a core layer having a width ⁇ height of 2 ⁇ m ⁇ 2 ⁇ m is formed by etching the Ge-doped SiO 2 glass provided on the 32, and an upper clad layer composed of a SiO 2 layer having a thickness of 9 ⁇ m on the core layer is formed on the core layer.
  • 36 thickness on the SiO 2 layer 22 is 11 ⁇ m) is provided. In this case, the difference in refractive index between the core layer and the clad layer is 0.5%.
  • the total length of the optical combiner is 2000 ⁇ m, and the width is 300 ⁇ m. Further, the distance between the incident ends of the optical waveguides 33 to 35 is 100 ⁇ m.
  • the atmosphere outside the optical waveguide type combiner is air, and the length of the optical waveguide region 37 is 140 ⁇ m.
  • the wavelength of the light incident on the optical waveguide 33 is 638 nm (red)
  • the wavelength of the light incident on the optical waveguide 34 is 520 nm (green)
  • the wavelength of the light incident on the optical waveguide 35 is 450 nm (blue).
  • a light incident method light is incident through light sources 41 to 43 arranged at intervals of 10 ⁇ m.
  • the synchrotron radiation from the emission end of the combined light and the horizontal radiation full angle are 8 deg (three color average)
  • the vertical radiation full angle is 5 deg (three color average)
  • the combined wave efficiency is 90% (three colors). Average).
  • red light was incident on the optical waveguide 33
  • green light was incident on the optical waveguide 34
  • blue light was incident on the optical waveguide 35.
  • the core width of the optical waveguide 33 that guides 638 nm (red) light is 2.2 ⁇ m
  • the core width of the optical waveguide 34 that guides 520 nm (green) light is 1.9 ⁇ m, guiding 450 nm (blue) light.
  • the core width of the wave-guided optical waveguide 35 is 1.7 ⁇ m.
  • the height of the cores of all the optical waveguides 33 to 35 is 2 ⁇ m and does not change in the longitudinal direction, and the width and height of the cores at the emission ends of the combined light are 2 ⁇ m ⁇ 2 ⁇ m.
  • the length of the entire optical waveguide type combiner is 2000 ⁇ m, the width is 300 ⁇ m, the distance between the incident ends of the optical waveguides 33 to 35 is 100 ⁇ m, and the length of the optical waveguide region 37 is 120 ⁇ m.
  • Synchrotron radiation from the emission end of the combined light and full-width lateral radiation are 8 deg (average of 3 colors), respectively.
  • the vertical radiation full-width is 5 deg (three-color average), and the combined wave efficiency is 90% (three-color average).
  • the widths of the cores of the three optical waveguides 33 to 35 are optimized so that the light propagating in each of them propagates as the basic mode, and the structure is such that the higher-order mode is less likely to be excited. There is. Therefore, unnecessary inter-mode interference does not occur in the emitted light.
  • FIG. 7 is a plan view of the optical waveguide type combiner according to the third embodiment of the present invention
  • FIG. 7B is a cross-sectional view of the incident end face side.
  • the light sources 41 to 43 will be added to describe the light source module.
  • the optical waveguide is changed to a tapered shape with a width of 33 to 35.
  • the core width and height at the light incident ends of the three optical waveguides 33 to 35 were all the same 2 ⁇ m ⁇ 2 ⁇ m, and the core width and height at the emitted end of the combined light were set to 0.3 ⁇ m ⁇ 2 ⁇ m. It is a thing.
  • the length of the optical combiner portion 37 is 180 ⁇ m, and other configurations are the same as those in the first embodiment.
  • the wavelength of the light incident on the optical waveguide 23 is 638 nm (red)
  • the wavelength of the light incident on the optical waveguide 24 is 520 nm (green)
  • the wavelength of the light incident on the optical waveguide 25 is 450 nm (blue).
  • a light incident method light is incident through light sources 31 to 33 arranged at intervals of 100 ⁇ m.
  • the synchrotron radiation from the emission end of the combined light and the horizontal radiation full angle are 7 deg (three color average)
  • the vertical radiation full angle is 4 deg (three color average)
  • the combined wave efficiency is 90% (three colors). Average).
  • FIG. 8 is a plan view of the optical waveguide type combiner according to the fourth embodiment of the present invention
  • FIG. 8B is a cross-sectional view of the incident end face side.
  • the leading ball fibers 44 to 47 serving as a light source are added and described as a light source module.
  • the optical waveguide 38 for infrared waveguide is added to the plurality of optical waveguides 33 to 35 in the optical waveguide type optical waveguide of the first embodiment of the present invention. Yes, other configurations are the same as in Example 1 above.
  • the optical waveguide type optical waveguide of the fourth embodiment of the present invention is an optical waveguide 33 having a core width of 2 ⁇ m that injects light from a plurality of front bulb fibers 44 to 47 having different wavelengths.
  • An optical waveguide 38 having an acore width of 4 ⁇ m is provided, and the light combined by the optical waveguide unit 37 that combines the light propagating through the optical waveguides 33 to 35, 38 is emitted from the exit end face.
  • a light beam having a wavelength of 638 nm from the tip ball fiber 44 is input to the optical waveguide 33, and a light beam having a wavelength of 520 nm from the tip ball fiber 45 is input to the optical waveguide 34.
  • a light beam having a wavelength of 450 nm from the fiber 46 is input to the optical waveguide 35, and a light beam having a wavelength of 1550 nm from the tip ball fiber 47 is input to the optical waveguide 38.
  • the total length of the optical combiner is 5000 ⁇ m, and the width is 700 ⁇ m.
  • the distance between the incident ends of the optical waveguides 33 to 35, 38 is 130 ⁇ m.
  • the atmosphere outside the optical waveguide type combiner is air, the length of the optical wave-guide region 37 is 300 ⁇ , and the light incident method is as follows. Light is incident through.
  • the total horizontal radiation angle of the synchrotron radiation from the emitted end of the combined light is 9 deg (4 color average), the vertical radiation full angle is 6 deg. (4 color average), and the combined wave efficiency is 80% (4). Color average).
  • FIG. 9 is an explanatory diagram of the optical waveguide type combiner according to the fifth embodiment of the present invention, and here, light sources 41 to 43 are added to describe the light source module.
  • the light source 41 is arranged on one long side of the 21 substrate, and the light source 43 is arranged on the other long side of the substrate 21. Therefore, the structure is such that the optical wave guides 33 and 35 are bent at a right angle in the middle.
  • a deep trench with a depth of 30 ⁇ m is formed by etching using a focused ion beam method using Ga at the bent portion, so that the waveguide light is totally reflected by the trench side wall.
  • a curved waveguide having a small radius of curvature may be used.
  • Synchrotron radiation from the emission end of the combined light in Example 5 The horizontal radiation full angle is 8 deg. (3 color average), the vertical radiation full angle is 5 deg. (3 color average), and the combined wave efficiency is 70%. ((3 color average), and the combined wave efficiency is a little worse. This is because bending loss occurs, but the influence of stray light due to incident light can be reduced. Thus, according to the present invention.
  • the light sources 41 and 43 are arranged on the long side of the substrate 21, the length of the light source module can be shortened when the light source module is configured.
  • Synchrotron radiation from the emission end of the combined light in the examples The horizontal radiation full angle is 8 deg. (3 color average), the vertical radiation full angle is 5 deg. (3 color average), and the combined wave efficiency is 70% (3 color average). (3 color average), and the combined wave efficiency is a little worse. This is because bending loss occurs, but the influence of stray light due to incident light can be reduced. Thus, the implementation of the present invention.
  • Example 6 since the light sources 41 to 43 are arranged on one long side of the substrate 31, the width of the light source module can be shortened when the light source module is configured.
  • the two-dimensional optical beam scanning apparatus according to the eighth embodiment of the present invention will be described.
  • the basic configuration is the conventional two-dimensional optical beam scanning shown in FIG. 11, only the configuration of the optical waveguide type combiner is different. Since it is the same as the device, FIG. 11 will be borrowed and described.
  • the two-dimensional optical beam scanning apparatus of Example 7 of the present invention replaces the optical waveguide type combiner 50 in the two-dimensional optical beam optical scanning apparatus of FIG. 11 with the optical waveguide type combiner shown in Example 1 above. It is a thing.
  • the optical waveguide type combiner may be replaced with the optical waveguide type combiner shown in Examples 2 to 6.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

The present invention pertains to an optical waveguide multiplexer, a light source module, a two-dimensional light beam scanning device, and a light beam scanning video projection device, and provides an optical waveguide multiplexer that has a simple structure and is easily fabricated. The present invention has a plurality of optical waveguides (2)-(3), and a region (6) that forms a single optical waveguide while light beams propagated through the plurality of optical waveguides (2)-(3) are multiplexed on an emission-end-surface (7) side, the emission end surface (7) of the region (6) being configured so as to be in a longitudinal direction range of 10-90% of the overall light leakage, in which light beams propagating through the optical waveguides (2)-(3) leak to the outside from the optical waveguides.

Description

光導波路型合波器、光源モジュール、二次元光ビーム走査装置及び光ビーム走査型映像投影装置Optical waveguide type combiner, light source module, two-dimensional light beam scanning device and light beam scanning type image projection device
 本発明は、光導波路型合波器、光源モジュール、二次元光ビーム走査装置及び光ビーム走査型映像投影装置に関するものであり、例えば、合波器を構成する分岐型光導波路における光ビーム強度の損失を少なくして小型化が可能で、かつ構成が単純な、光導波路型合波器及び光ビーム走査型映像投影装置を提供する。 The present invention relates to an optical waveguide type combiner, a light source module, a two-dimensional light beam scanning device, and an optical beam scanning type image projection device. Provided are an optical waveguide type combiner and an optical beam scanning type image projection device, which can be miniaturized with less loss and have a simple structure.
 従来、複数のレーザビーム等の光ビームを合波し、一つのビームとして放射する装置として、様々な形の光ビーム合波装置が知られている。その中で、光ファイバや光導波路を用いるものは、小型化が可能である(例えば、特許文献1乃至特許文献3参照)、引用文献1乃至引用文献3に示されているように、3本の光ビームを合波する方法として、光出射端近傍で、それぞれの光ファイバや光導波路をまとめて近接させる方法が知られている。 Conventionally, various types of light beam combiners are known as devices that combine light beams such as a plurality of laser beams and radiate them as one beam. Among them, those using an optical fiber or an optical waveguide can be miniaturized (see, for example, Patent Documents 1 to 3), and as shown in Cited Documents 1 to 3, three of them are used. As a method of combining the optical beams of the above, there is known a method of bringing each optical fiber or optical waveguide close to each other in the vicinity of the light emitting end.
 図11は、本発明者が提案した2次元光ビーム走査装置の一例の概略斜視図であり、可動ミラー部61を形成した基板60に光導波路型光合波器50を設け、この光導波路型光合波器50に青色半導体レーザチップ51、緑色半導体レーザチップ52及び赤色半導体レーザチップ53を結合させれば良い。可動ミラー部61が小型化されているので、光ビームを発生する光源と一体化した場合にも、一体化後の全体のサイズも小さくできる。特に、光ビームが半導体レーザチップや光導波路型光合波器から出射する光源の場合、それらの半導体レーザチップや光導波路型光合波器は、Si基板や金属プレート基板の上に形成すれば良いので、これら基板上に光源と2次元光走査ミラー装置を形成することによって、一体化後の全体のサイズも小さくできる効果がある。 FIG. 11 is a schematic perspective view of an example of a two-dimensional optical beam scanning device proposed by the present inventor. An optical waveguide type optical wave guide 50 is provided on a substrate 60 on which a movable mirror portion 61 is formed, and the optical waveguide type optical wave guide is provided. The blue semiconductor laser chip 51, the green semiconductor laser chip 52, and the red semiconductor laser chip 53 may be coupled to the waveguide 50. Since the movable mirror portion 61 is miniaturized, the overall size after integration can be reduced even when it is integrated with a light source that generates a light beam. In particular, in the case of a light source in which an optical beam is emitted from a semiconductor laser chip or an optical waveguide type optical combiner, the semiconductor laser chip or the optical waveguide type optical combiner may be formed on a Si substrate or a metal plate substrate. By forming the light source and the two-dimensional optical scanning mirror device on these substrates, there is an effect that the overall size after integration can be reduced.
 この2次元光ビーム走査装置と、電磁コイル70に2次元光走査信号を印加して光源から出射された出射光を2次元的に走査する2次元走査制御部を設け、走査された出射光を被投影面に投影する画像形成部とを組み合わせることによって、例えば、眼鏡型網膜走査ディスプレイが得られる。 This two-dimensional light beam scanning device and a two-dimensional scanning control unit that applies a two-dimensional optical scanning signal to the electromagnetic coil 70 to scan the emitted light emitted from the light source in two dimensions are provided, and the scanned emitted light is collected. By combining with an image forming unit that projects onto a surface to be projected, for example, a spectacle-type retinal scanning display can be obtained.
特開2016-118750号公報Japanese Unexamined Patent Publication No. 2016-118750 特開2019-20618号公報Japanese Unexamined Patent Publication No. 2019-20618 特開2019-35876号公報Japanese Unexamined Patent Publication No. 2019-35876
 しかし、特許文献1乃至特許文献3に記載された発明では、光ファイバや光導波路を出射端で束ねているため、合波された出射ビームは、1点から出るのではなく、光ファイバや光導波路それぞれの出射端から別々に出射することになる。このことは、例えば、出射ビームを2次元的に走査して、映像をスクリーン等に投影するとき、投影された映像のボケを生じさせる欠点がある。 However, in the inventions described in Patent Documents 1 to 3, since the optical fiber and the optical waveguide are bundled at the exit end, the combined emission beam does not come out from one point, but the optical fiber and the optical wave guide. It will be emitted separately from each emission end of the waveguide. This has a drawback that, for example, when the emitted beam is two-dimensionally scanned and the image is projected on a screen or the like, the projected image is blurred.
 そのため、特許文献3では、出射端間の間隔を15μm以下に近接させることによって、極力映像のボケを少なくする構成を提供しているが、高精細の映像生成には適用できない欠点がある。 Therefore, Patent Document 3 provides a configuration in which the blurring of the image is reduced as much as possible by making the distance between the emission ends close to 15 μm or less, but there is a drawback that it cannot be applied to high-definition image generation.
 一方、光導波路型合波器の場合、例えば2本の光導波路を、単に隣接するのではなく、1本に合流させて光導波路を1本にし、合波させる方法(Y型合波器)が広く知られている(例えば、非特許文献1参照)。この方法は単純であるが、基本モードのみ伝搬できる光導波路を用いた場合、光ビームを1本にするとき、原理的に、合波部分で光の漏れが生じ、合波された光ビームのパワーは、3dBダウン(1/2になる)することが知られている(例えば、非特許文献1参照)。 On the other hand, in the case of an optical waveguide type combiner, for example, a method of merging two optical waveguides into one instead of simply adjoining them to form one optical waveguide and combining them (Y-type combiner). Is widely known (see, for example, Non-Patent Document 1). This method is simple, but when using an optical waveguide that can propagate only in the basic mode, in principle, when one light beam is used, light leaks at the confluence part, and the combined light beam It is known that the power is reduced by 3 dB (1/2) (see, for example, Non-Patent Document 1).
 この合波光を用いた映像生成の場合、不要な光干渉やスペックルノイズを生じさせないようにするため、光導波路は、基本モードを伝搬するものが使われるのが通常であり、3dBダウンする合波器は、光効率の点で致命的な欠点になる。本発明は、上述の特許文献1乃至特許文献3での問題点と、Y型合波器の問題点を解消し、小型化が可能で、かつ構成が単純な、高効率光導波路型合波器を提供する。 In the case of image generation using this combined wave light, in order to prevent unnecessary optical interference and speckle noise, an optical waveguide that propagates in the basic mode is usually used, and the optical wave guide is reduced by 3 dB. Waveguides are a fatal drawback in terms of light efficiency. The present invention solves the problems of the above-mentioned Patent Documents 1 to 3 and the problems of the Y-type combiner, can be miniaturized, and has a simple structure, and is a high-efficiency optical waveguide type combiner. Provide a vessel.
 一つの態様では、光導波路型合波器は、複数の光導波路と、出射端面側で前記複数の光導波路を伝搬した光ビームが合波されながら1本の光導波路となる領域とを有し、前記領域の前記出射端面が前記光導波路を伝搬する光ビームが、前記光導波路から外部に漏れ出す全体の漏れ光の10%~90%の長手方向の範囲内に存在する。 In one embodiment, the optical waveguide type combiner has a plurality of optical waveguides and a region in which light beams propagating through the plurality of optical waveguides are combined to form one optical waveguide on the emission end face side. The light beam whose exit end surface of the region propagates through the optical waveguide exists within a longitudinal range of 10% to 90% of the total leakage light leaking to the outside from the optical waveguide.
 他の態様では、光源モジュールは、上述の光導波路型合波器と、前記光導波路型合波器に前記光ビームを入射する複数の光源とを有する。 In another aspect, the light source module has the above-mentioned optical waveguide type combiner and a plurality of light sources that incident the light beam into the optical waveguide type combiner.
 さらに、他の態様では、二次元光ビーム走査装置は、上述の光源モジュールと、前記光源モジュールからの合波光を2次元走査する2次元光走査ミラー装置とを有する。 Further, in another aspect, the two-dimensional light beam scanning device includes the above-mentioned light source module and a two-dimensional light scanning mirror device that scans the combined light from the light source module in two dimensions.
 さらに、他の態様では、光ビーム走査型映像投影装置は、上述の二次元光ビーム走査装置と、前記2次元光走査ミラー装置により走査された合波光を被投影面に投影する画像形成部とを有する。 Further, in another aspect, the light beam scanning image projection device includes the above-mentioned two-dimensional light beam scanning device and an image forming unit that projects the combined wave light scanned by the two-dimensional light scanning mirror device onto the projected surface. Has.
 一つの側面として、光導波路型合波器、光源モジュール、二次元光ビーム走査装置及び光ビーム走査型映像投影装置において、構成が簡単で作製が容易な光導波路型合波器が得られる。また、光導波路型合波器の合波器を構成する分岐型光導波路における光ビーム強度の損失を少なくして小型化が可能で、かつ構成が単純な、光導波路型合波器及び光ビーム走査型映像投影装置を提供する。 As one aspect, an optical waveguide type combiner that is easy to configure and manufacture can be obtained in an optical waveguide type combiner, a light source module, a two-dimensional optical beam scanning device, and an optical beam scanning type image projection device. In addition, the optical waveguide type combiner and the optical beam, which can be miniaturized by reducing the loss of the optical beam intensity in the branch type optical waveguide that constitutes the combiner of the optical waveguide type combiner, and have a simple configuration. A scanning image projection apparatus is provided.
本発明の実施の形態の光導波路型合波器の説明図である。It is explanatory drawing of the optical waveguide type combiner of embodiment of this invention. Y型光合波器における漏れ光の説明図である。It is explanatory drawing of the leakage light in a Y type optical combiner. 本発明の実施の形態における合波原理の説明図である。It is explanatory drawing of the wave combination principle in embodiment of this invention. 本発明の実施の形態におけるビーム拡がりの範囲の説明図である。It is explanatory drawing of the range of the beam spread in embodiment of this invention. 本発明の実施例1の光導波路型合波器の説明図である。It is explanatory drawing of the optical waveguide type combiner of Example 1 of this invention. 本発明の実施例2の光導波路型合波器の説明図である。It is explanatory drawing of the optical waveguide type combiner of Example 2 of this invention. 本発明の実施例3の光導波路型合波器の説明図である。It is explanatory drawing of the optical waveguide type combiner of Example 3 of this invention. 本発明の実施例4の光導波路型合波器の説明図である。It is explanatory drawing of the optical waveguide type combiner of Example 4 of this invention. 本発明の実施例5の光導波路型合波器の説明図である。It is explanatory drawing of the optical waveguide type combiner of Example 5 of this invention. 本発明の実施例6の光導波路型合波器の説明図である。It is explanatory drawing of the optical waveguide type combiner of Example 6 of this invention. 従来の2次元光ビーム走査装置の一例の概略的斜視図である。It is a schematic perspective view of an example of a conventional two-dimensional light beam scanning apparatus.
 ここで、図1乃至図4を参照して、本発明の実施の形態の光導波路型合波器を説明する。図1は本発明の実施の形態の光導波路型合波器の説明図であり、図1(a)は平面図であり、図1(b)は入射端面側の断面図である。なお、ここでは、光源21~23を加えて光源モジュールとして説明する。本発明の実施の形態の光導波路型合波器は複数の光導波路13~15と、出射端面側で複数の光導波路13~15を伝搬した光ビームが合波される光合波領域17とを有する。ここで、出射端面が無い場合、複数の光導波路13~15を伝搬する光ビームは、互いの光導波路間隔が徐々に狭くなることによって、光導波路13~15内に閉じ込められていた光ビームが、徐々に光導波路から外側に漏れ出し、最終的には、3本の光導波路が完全に1本になって、光導波路に閉じ込められた状態で、外へ漏れずに、安定に光導波路を伝搬するようになる。しかし、3本の光導波路を伝搬する光ビームが、安定に1本の光導波路を伝搬する前に、光導波路13~15から外部に漏れ出す全体の漏れ光の10%~90%の範囲内に出射端面を設け、漏れ出し始めた長手方向位置と出射端との範囲を光合波領域17とする。 Here, the optical waveguide type combiner according to the embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 is an explanatory view of an optical waveguide type combiner according to an embodiment of the present invention, FIG. 1 (a) is a plan view, and FIG. 1 (b) is a cross-sectional view on the incident end face side. Here, the light sources 21 to 23 are added to describe the light source module. The optical waveguide type combiner according to the embodiment of the present invention has a plurality of optical waveguides 13 to 15 and an optical waveguide region 17 in which light beams propagating through the plurality of optical waveguides 13 to 15 are combined on the emission end face side. Have. Here, when there is no emission end face, the light beams propagating in the plurality of optical waveguides 13 to 15 have the light beams confined in the optical waveguides 13 to 15 due to the gradual narrowing of the distance between the optical waveguides 13 to 15. , Gradually leaks from the optical waveguide to the outside, and finally, the three optical waveguides are completely integrated into one, and in a state of being confined in the optical waveguide, the optical waveguide is stably provided without leaking to the outside. It will propagate. However, the light beam propagating through the three optical waveguides is within the range of 10% to 90% of the total leaked light leaking to the outside from the optical waveguides 13 to 15 before stably propagating through one optical waveguide. Is provided with an emission end surface, and the range between the position in the longitudinal direction where leakage has begun and the emission end is defined as the optical waveguide region 17.
 図1(b)に示すように、各光導波路13~15は、コア(13~15)とそれを取り巻く下部クラッド郎12及び上部クラッド層16からなる。コアの屈折率が、クラッドの屈折率より高いことによる全反射によって、光導波路13~15のコアに閉じ込められて、光が伝搬する。なお、光導波路13~15のコアの断面は、正方形や円形であることが望ましいが、もちろん、断面が長方形や楕円等でも良い。これらの場合、コアの高さは、コアの幅と異なる。 As shown in FIG. 1 (b), each optical waveguide 13 to 15 is composed of a core (13 to 15), a lower clad row 12 surrounding the core (13 to 15), and an upper clad layer 16. Due to the total reflection caused by the refractive index of the core being higher than the refractive index of the cladding, the light is confined in the cores of the optical waveguides 13 to 15 and the light propagates. The cross section of the cores of the optical waveguides 13 to 15 is preferably square or circular, but of course, the cross section may be rectangular or elliptical. In these cases, the height of the core is different from the width of the core.
 図2はY型光合波器における漏れ光の説明図である。基板1上に設けた光導波路2,3に光入射端4,5から、合波する光を入射する。光入射は、光入射端4,5に、直接半導体レーザやLED等の光源を対向させて配置して光を入射させても良く、或いは、レンズを介しても良く、先球光ファイバ等から入射しても良い。 FIG. 2 is an explanatory diagram of leaked light in the Y-type optical combiner. Light that combines waves is incident on the optical waveguides 2 and 3 provided on the substrate 1 from the light incident ends 4 and 5. Light may be incident by arranging light sources such as semiconductor lasers and LEDs directly facing each other at the light incident ends 4 and 5, and light may be incident through a lens, or from a front-sphere optical fiber or the like. It may be incident.
 入射した光は、光導波路2,3でそれぞれ導波され、光合波領域6に達し、ここで合波されて、光出射端7がある場合は、この光出射端7から外部空間に向かって放射される。伝搬する光が基本モード光の場合、光合波領域6で、Y型光合波器特有の光導波路以外への漏れ光が生じ、光導波路内を伝搬する光のパワーが大幅に減少する。 The incident light is guided by the optical waveguides 2 and 3, respectively, and reaches the optical wave wave region 6, where the light is combined, and if there is a light emission end 7, the light emission end 7 is directed toward the external space. Be radiated. When the propagating light is the basic mode light, leakage light to other than the optical waveguide peculiar to the Y-type optical waveguide occurs in the photosynthetic wave region 6, and the power of the light propagating in the optical waveguide is significantly reduced.
 即ち、光導波路2,3を伝搬する光ビームは、互いの光導波路間隔が徐々に狭くなることによって、光導波路2,3内に閉じ込められていた光ビームが、徐々に光導波路2,3から外側に漏れ出し、最終的には、2本の光導波路2,3が完全に1本になって、光導波路2,3に閉じ込められた状態で、外へ漏れずに、安定に光導波路を伝搬するようになる。しかし、2本の光導波路2,3を伝搬する光ビームが、安定に伝搬する光ビーム9として安定に1本の光導波路を伝搬する前に、光導波路2,3から外部に漏れ出す。図における符号10は全体の漏れ光である。図2で、漏れ光のうち、一点鎖線で囲まれた領域が、漏れ光が0%から100%の領域であり、点線で囲まれた領域が、10%から90%の領域である。 That is, the light beams propagating in the optical waveguides 2 and 3 gradually narrow the distance between the optical waveguides 2 and 3, so that the light beams confined in the optical waveguides 2 and 3 gradually move from the optical waveguides 2 and 3. It leaks to the outside, and finally, the two optical waveguides 2 and 3 are completely integrated into one, and in a state of being confined in the optical waveguides 2 and 3, the optical waveguide is stably provided without leaking to the outside. It will propagate. However, the light beam propagating through the two optical waveguides 2 and 3 leaks to the outside from the optical waveguides 2 and 3 before it stably propagates through one optical waveguide as the light beam 9 that propagates stably. Reference numeral 10 in the figure is the entire leaked light. In FIG. 2, the region surrounded by the alternate long and short dash line is the region of 0% to 100% of the leaked light, and the region surrounded by the dotted line is the region of 10% to 90%.
 ただ、図3に示すように、光出射端7を光導波路2,3が交わる領域に近づけることによって、漏れ光も、導波路内を伝搬する光も、同等に放射光8として外部に向かって放射される。このため、放射される放射光8は、狭い領域から、外部に向かって放射されるため、Y型光合波器特有の光損失は、実質的にないことになる。具体的には、全体の漏れ光の10%~90%の範囲内に出射端面7を設け、漏れ出し始めた長手方向位置と出射端面7との範囲を光合波領域6とする。  However, as shown in FIG. 3, by bringing the light emitting end 7 closer to the region where the optical waveguides 2 and 3 intersect, both the leaked light and the light propagating in the waveguide are equally directed toward the outside as synchrotron radiation 8. Be radiated. Therefore, since the synchrotron radiation 8 is radiated from a narrow region to the outside, the light loss peculiar to the Y-type optical combiner is substantially eliminated. Specifically, the emission end face 7 is provided within a range of 10% to 90% of the total leakage light, and the range between the longitudinal position where the leakage starts and the emission end surface 7 is defined as the photosynthetic wave region 6. Twice
 ここで重要なことは、漏れ光の位相と本来光導波路2,3を伝搬する光の位相は、ほぼ同じため、漏れ光と光導波路2,3内を伝搬した光との不要な干渉やスペックルノイズは生じず、光品質の優れた光放射が得られる。なお、ここでは、伝搬する光が基本モード光の場合について記述したが、基本モードより高次のモードについても、モード番号が小さい場合は、同じように、漏れ光と光導波路2,3内を伝搬した光との不要な干渉やスペックルノイズは生じない。したがって、基本モードの伝搬が最大成分となれば、基本モードより高次のモードについても、モード番号が小さい光が伝搬する場合も同じ構成が適用できる。 What is important here is that the phase of the leaked light and the phase of the light originally propagating in the optical waveguides 2 and 3 are almost the same, so that unnecessary interference and specifications between the leaked light and the light propagating in the optical waveguides 2 and 3 are required. No interference is generated, and light emission with excellent light quality can be obtained. In addition, although the case where the propagating light is the basic mode light is described here, even in the mode higher than the basic mode, when the mode number is small, the leakage light and the inside of the optical waveguide 2 and 3 are similarly described. No unnecessary interference or speckle noise with the propagated light occurs. Therefore, if the propagation of the basic mode is the maximum component, the same configuration can be applied to modes higher than the basic mode and when light with a smaller mode number propagates.
 光合波領域6は、光導波路2,3がまとめられる領域であり、光入射端4,5から入射した光が、隣の光導波路2,3に徐々に乗り移り始めると、同時に、光導波のコアの外に漏れ光として放射が始まり、その漏れ光が全漏れ光の10%になる合波器の長手方向の位置と光出射端8の間の領域である。なお、光出射端8は、漏れ光が全漏れ光の90%になる前の長手方向位置に形成する。具体的には、光合波領域6の長さhは、光導波のコアの外に漏れ光として放射が始まり、その漏れ光が全漏れ光の10%になる合波器の長手方向の位置と光出射端との距離で定義される。hは小さい方が良いが、漏れ光と本来伝搬するべき光との位相差が大きくならない範囲であれば良い。具体的には、hは300μm以下、より好適には200μm以下であれば、位相差の影響が少ないことが確認されている。 The optical wave-guided region 6 is a region in which the optical waveguides 2 and 3 are combined, and when the light incident from the light incident ends 4 and 5 gradually begins to transfer to the adjacent optical waveguides 2 and 3, at the same time, the core of the optical waveguide It is a region between the position in the longitudinal direction of the waveguide and the light emitting end 8 where radiation starts as leaked light to the outside and the leaked light becomes 10% of the total leaked light. The light emitting end 8 is formed at a position in the longitudinal direction before the leaked light becomes 90% of the total leaked light. Specifically, the length h of the optical wave region 6 is the position in the longitudinal direction of the combiner where radiation starts as leaked light outside the core of the optical waveguide and the leaked light becomes 10% of the total leaked light. It is defined by the distance from the light emitting end. The smaller h is, the better, but it is sufficient as long as the phase difference between the leaked light and the light that should originally propagate does not become large. Specifically, it has been confirmed that when h is 300 μm or less, more preferably 200 μm or less, the influence of the phase difference is small.
 また、光合波領域6から出射される放射光の光出射端での拡がりdは、点光源とみなせるのが最も望ましく、小さい方が良いが、望ましい値は、15 μm以下である。なお、放射光の光出射端での拡がりdは、図4に示すように、光パワー分布の半値全幅で定義する。 Further, it is most desirable that the spread d of the synchrotron radiation emitted from the photosynthetic region 6 at the light emitting end can be regarded as a point light source, and it is better that it is small, but the desirable value is 15 μm or less. As shown in FIG. 4, the spread d at the light emission end of the synchrotron radiation is defined by the full width at half maximum of the light power distribution.
 光導波路13~15のコア径は同じでも良いが、図1に示すように、波長の異なる光を3本の光導波路13~15に入射する場合は、各光導波路13~15で波長に応じた基本モードを伝搬するように、その径を互いに異なるようにすると良い。但し、基本モードの次の高次モード程度が伝搬できる径であっても、高次モードは、短距離で減衰するため、多数のモードを伝搬させることが無ければ、実質的に、基本モードが伝搬する光導波路にすることができる。この場合、最も早く外部に漏れた光は、出射端面において、最も大きく拡がるため、光合波領域17の長さは、この最も早く、光が外部に漏れ出す光導波路で定義される。 The core diameters of the optical waveguides 13 to 15 may be the same, but as shown in FIG. 1, when light having different wavelengths is incident on the three optical waveguides 13 to 15, each optical waveguide 13 to 15 depends on the wavelength. It is advisable to make the diameters different from each other so as to propagate the basic mode. However, even if the diameter is such that the next higher-order mode after the basic mode can propagate, the higher-order mode attenuates in a short distance, so unless a large number of modes are propagated, the basic mode is practically the same. It can be a propagating optical waveguide. In this case, the light that leaks to the outside at the earliest spreads the most at the exit end face, so the length of the optical wave region 17 is defined by the optical waveguide that leaks the light to the outside at the earliest.
 或いは、光導波路13~15のコア径を徐々に入射側から細くなるようにしても良く、光出射端の径は、光入射端よりも小さくなっても良い。この場合、光導波路13~15のコア径が導波路全長にわたって変わらない場合に比べて、均質な出射光ビームが得られる。 Alternatively, the core diameter of the optical waveguides 13 to 15 may be gradually reduced from the incident side, and the diameter of the light emitting end may be smaller than the light incident end. In this case, a homogeneous emitted light beam can be obtained as compared with the case where the core diameters of the optical waveguides 13 to 15 do not change over the entire length of the optical waveguide.
 光導波路13~15の数は任意であるが、3本の光導波路13~15とした場合、3本の光導波路13~15のそれぞれに赤色、緑色、青色の光ビームを入射することによって、光の3原色の光導波路型合波器が得られる。 The number of optical waveguides 13 to 15 is arbitrary, but when three optical waveguides 13 to 15 are used, red, green, and blue light beams are incident on each of the three optical waveguides 13 to 15, respectively. An optical waveguide type combiner of the three primary colors of light can be obtained.
 また、光導波路の数は4本以上であっても良く、その場合には、例えば、光の3原色の赤色、緑色、青色以外に、赤外光、紫外光或いは黄色が伝搬するもう一つの光導波路を加えて、光出射端の付近で、光導波路を合わせれば良い。 Further, the number of optical waveguides may be four or more, and in that case, for example, in addition to the three primary colors of light, red, green, and blue, infrared light, ultraviolet light, or yellow is propagated. An optical waveguide may be added, and the optical waveguide may be aligned near the light emitting end.
 なお、光入射端は全て同じ端面に形成されていなくても良く、光導波路は、光を直角に曲げる曲げ導波路を設ければ良い。この場合、曲げ損失が生じ、合波効率は少し悪くなるが、入射光による迷光の影響は低減することができる。 Note that the light incident ends do not have to be all formed on the same end face, and the optical waveguide may be provided with a bent waveguide that bends the light at a right angle. In this case, bending loss occurs and the combined wave efficiency is slightly deteriorated, but the influence of stray light due to incident light can be reduced.
 光源モジュールを形成するためには、図1(a)に示すように、光導波路型合波器に光ビームを入射する複数の光源21~23を組み合わせれば良い。この場合の光源21~23としては半導体レーザが典型的なものであるが、発光ダイオード(LED)でも良い。また、複数の光源21~23と光合波器の複数の光導波路13~15の入射端との間にレンズを設けても良い。また、光源21~23の代わりに、光ファイバ出射端を光源の位置に設置して、光ファイバからの出射光を光導波路13~15に導く光源装置としても良い。 In order to form the light source module, as shown in FIG. 1A, a plurality of light sources 21 to 23 that inject a light beam into the optical waveguide type combiner may be combined. A semiconductor laser is typical as the light sources 21 to 23 in this case, but a light emitting diode (LED) may also be used. Further, a lens may be provided between the plurality of light sources 21 to 23 and the incident ends of the plurality of optical waveguides 13 to 15 of the optical combiner. Further, instead of the light sources 21 to 23, the optical fiber emission end may be installed at the position of the light source to guide the light emitted from the optical fiber to the optical waveguides 13 to 15.
 二次元光ビーム走査装置を形成するためには、図11に示した2次元光走査装置における光合波器を上述の光導波路型合波器と組み合わせれば良い。さらに、映像投影装置を形成するためには、上述の2次元走査装置と、電磁コイル70に2次元光走査信号を印加して光源から出射された出射光を2次元的に走査する2次元走査制御部と、走査された出射光を被投影面に投影する画像形成部とを組み合わせれば良い。なお、映像投影装置としては、眼鏡型網膜走査ディスプレイが典型的なものである。 In order to form the two-dimensional optical beam scanning apparatus, the optical combiner in the two-dimensional optical scanning apparatus shown in FIG. 11 may be combined with the above-mentioned optical waveguide type combiner. Further, in order to form the image projection device, the above-mentioned two-dimensional scanning device and the two-dimensional scanning in which a two-dimensional optical scanning signal is applied to the electromagnetic coil 70 to scan the emitted light emitted from the light source in two dimensions. The control unit and the image forming unit that projects the scanned emitted light onto the projected surface may be combined. As the image projection device, a spectacle-type retinal scanning display is typical.
 次に、図5を参照して、本発明の実施例1の光導波路型合波器を説明する。図5は本発明の実施例1の光導波路型合波器の説明図であり、図5(a)は平面図であり、図5(b)は入射端面側の断面図である。なお、ここでは、光源41~43を加えて光源モジュールとして説明する。図5(a)に示すように、本発明の実施例1の光導波路型光合波器は、波長の異なる複数の光源41~43からの光を入射する複数のコア幅が2μmの光導波路33~35を有し、光導波路33~35を伝搬した光を合波する光合波器部37で合波された光を出射端面から出射する。 Next, the optical waveguide type combiner according to the first embodiment of the present invention will be described with reference to FIG. 5A and 5B are explanatory views of the optical waveguide type combiner according to the first embodiment of the present invention, FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view on the incident end face side. Here, the light sources 41 to 43 will be added to describe the light source module. As shown in FIG. 5A, the optical waveguide type optical waveguide of the first embodiment of the present invention is an optical waveguide 33 having a plurality of core widths of 2 μm that injects light from a plurality of light sources 41 to 43 having different wavelengths. The light combined by the optical combiner unit 37, which has to 35 and combines the light propagating through the optical waveguides 33 to 35, is emitted from the exit end face.
 図5(a)に示すように、赤色半導体レーザチップ(41)からの光ビームを光導波路33に入力し、緑色半導体レーザチップ(42)からの光ビームを光導波路34に入力し、青色半導体レーザチップ(43)からの光ビームを光導波路35に入力する。 As shown in FIG. 5A, the light beam from the red semiconductor laser chip (41) is input to the optical waveguide 33, the light beam from the green semiconductor laser chip (42) is input to the optical waveguide 34, and the blue semiconductor The light beam from the laser chip (43) is input to the optical waveguide 35.
 図4(b)に示すように、各光導波路は、厚さが1mmで(100)面のSi基板31上に設けた厚さが20μmのSiO層32を下部クラッド層とし、SiO層32上に設けたGeドープSiOガラスをエッチングして幅×高さが2μm×2μmのコア層を形成し、コア層上にコア層上における厚さが9μmのSiO層からなる上部クラッド層36(SiO層22上での厚さは11μmとなる)を設ける。この場合のコア層とクラッド層との屈折率差は0.5%になる。 As shown in FIG. 4B, each optical waveguide has a SiO 2 layer 32 having a thickness of 1 mm and a thickness of 20 μm provided on the (100) plane Si substrate 31 as a lower clad layer, and the SiO 2 layer. A core layer having a width × height of 2 μm × 2 μm is formed by etching the Ge-doped SiO 2 glass provided on the 32, and an upper clad layer composed of a SiO 2 layer having a thickness of 9 μm on the core layer is formed on the core layer. 36 ( thickness on the SiO 2 layer 22 is 11 μm) is provided. In this case, the difference in refractive index between the core layer and the clad layer is 0.5%.
 光合波器全体の長さは2000μmであり、幅は300μmとする。また、光導波路33~35の入射端の間隔は100μmである。光導波路型合波器の外の雰囲気は空気であり、光合波領域37の長さは140μmである。 The total length of the optical combiner is 2000 μm, and the width is 300 μm. Further, the distance between the incident ends of the optical waveguides 33 to 35 is 100 μm. The atmosphere outside the optical waveguide type combiner is air, and the length of the optical waveguide region 37 is 140 μm.
 ここで、光導波路33に入射する光の波長は638nm(赤)、光導波路34に入射する光の波長は波長520nm(緑)とし、光導波路35に入射する光の波長は450nm(青)とする。なお、光入射方法としては、間隔10μmに配置した光源41~43を介して光入射する。この時、合波した光の出射端からの放射光及び横方向放射全角は夫々、8deg (3色平均)、縦方向放射全角は5deg(3色平均)、合波効率は90%(3色平均)である。なお、実施例1では、光導波路33に赤色光、光導波路34に緑色光、光導波路35に青色光を入射したが、当然、光導波路33に青色光、光導波路34に赤色光、光導波路35に緑色光を入射しても良く、その他の組み合わせでも同じ効果が得られるのはもちろんである。この様な他の組み合わせは、以下に述べる実施例でも同様である。 Here, the wavelength of the light incident on the optical waveguide 33 is 638 nm (red), the wavelength of the light incident on the optical waveguide 34 is 520 nm (green), and the wavelength of the light incident on the optical waveguide 35 is 450 nm (blue). do. As a light incident method, light is incident through light sources 41 to 43 arranged at intervals of 10 μm. At this time, the synchrotron radiation from the emission end of the combined light and the horizontal radiation full angle are 8 deg (three color average), the vertical radiation full angle is 5 deg (three color average), and the combined wave efficiency is 90% (three colors). Average). In Example 1, red light was incident on the optical waveguide 33, green light was incident on the optical waveguide 34, and blue light was incident on the optical waveguide 35. Naturally, blue light was incident on the optical waveguide 33, red light on the optical waveguide 34, and optical waveguide 34. Green light may be incident on the 35, and it goes without saying that the same effect can be obtained with other combinations. Such other combinations are the same in the examples described below.
 次に、図6を参照して、本発明の実施例2の光導波路型合波器を説明する。図6は本発明の実施例2の光導波路型合波器の平面図であり、図6(b)は入射端面側の断面図である。なお、ここでも、光源41~43を加えて光源モジュールとして説明する。図6(a)及び図6(b)に示すように、本発明の実施例2の光導波路型光合波器は、上記の実施例1における複数の光導波路33~35の幅を変えたものであり、その他の構成は上記の実施例1と同様である。 Next, the optical waveguide type combiner according to the second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a plan view of the optical waveguide type combiner according to the second embodiment of the present invention, and FIG. 6B is a cross-sectional view of the incident end face side. Here, too, the light sources 41 to 43 will be added to describe the light source module. As shown in FIGS. 6 (a) and 6 (b), the optical waveguide type optical waveguide of the second embodiment of the present invention has a plurality of optical waveguides 33 to 35 having different widths in the first embodiment. The other configurations are the same as those in the first embodiment.
 638nm(赤)の光を導波する光導波路33のコア幅は2.2μm、520nm(緑)の光を導波する光導波路34のコア幅は1.9μm、450nm(青)の光を導波する光導波路35のコア幅は1.7μmである。全ての光導波路33~35のコアの高さは2μmで長手方向で変化せず、合波した光の出射端のコアの幅と高さは2μm×2μmである。また、光導波路型合波器全体の長さは2000μm、幅は300μmであり、光導波路33~35の入射端の間隔は100μmで、光合波領域37の長さは120μmである。合波した光の出射端からの放射光及び横方向放射全角は夫々、8deg (3色平均)、
縦方向放射全角は5deg(3色平均)、合波効率は90%(3色平均)である。
The core width of the optical waveguide 33 that guides 638 nm (red) light is 2.2 μm, and the core width of the optical waveguide 34 that guides 520 nm (green) light is 1.9 μm, guiding 450 nm (blue) light. The core width of the wave-guided optical waveguide 35 is 1.7 μm. The height of the cores of all the optical waveguides 33 to 35 is 2 μm and does not change in the longitudinal direction, and the width and height of the cores at the emission ends of the combined light are 2 μm × 2 μm. The length of the entire optical waveguide type combiner is 2000 μm, the width is 300 μm, the distance between the incident ends of the optical waveguides 33 to 35 is 100 μm, and the length of the optical waveguide region 37 is 120 μm. Synchrotron radiation from the emission end of the combined light and full-width lateral radiation are 8 deg (average of 3 colors), respectively.
The vertical radiation full-width is 5 deg (three-color average), and the combined wave efficiency is 90% (three-color average).
 この実施例2においては、3本の光導波路33~35のコアの幅は、それぞれを伝搬する光が基本モードとして伝搬するように最適化しており、高次モードが励起されにくい構造になっている。このため、出射光において不要なモード間干渉が生じない。 In the second embodiment, the widths of the cores of the three optical waveguides 33 to 35 are optimized so that the light propagating in each of them propagates as the basic mode, and the structure is such that the higher-order mode is less likely to be excited. There is. Therefore, unnecessary inter-mode interference does not occur in the emitted light.
 次に、図7を参照して、本発明の実施例3の光導波路型合波器を説明する。図7は本発明の実施例3の光導波路型合波器の平面図であり、図7(b)は入射端面側の断面図である。なお、ここでも、光源41~43を加えて光源モジュールとして説明する。図7(a)に示すように、光導波路33~35の幅のテーパ状に変更したものである。3本の光導波路33~35の光入射端でのコア幅及び高さは全て同じ2μm×2μmであり、合波した光の出射端のコアの幅及び高さを0.3μm×2μmにしたものである。なお、光合波器部分37の長さは180μmであり、その他の構成は上記の実施例1と同じである。 Next, the optical waveguide type combiner according to the third embodiment of the present invention will be described with reference to FIG. 7. FIG. 7 is a plan view of the optical waveguide type combiner according to the third embodiment of the present invention, and FIG. 7B is a cross-sectional view of the incident end face side. Here, too, the light sources 41 to 43 will be added to describe the light source module. As shown in FIG. 7A, the optical waveguide is changed to a tapered shape with a width of 33 to 35. The core width and height at the light incident ends of the three optical waveguides 33 to 35 were all the same 2 μm × 2 μm, and the core width and height at the emitted end of the combined light were set to 0.3 μm × 2 μm. It is a thing. The length of the optical combiner portion 37 is 180 μm, and other configurations are the same as those in the first embodiment.
 ここで、光導波路23に入射する光の波長は638nm(赤)、光導波路24に入射する光の波長は波長520nm(緑)とし、光導波路25に入射する光の波長は450nm(青)とする。なお、光入射方法としては、間隔100μmに配置した光源31~33を介して光入射する。この時、合波した光の出射端からの放射光及び横方向放射全角は夫々、7deg (3色平均)、縦方向放射全角は4deg(3色平均)、合波効率は90%(3色平均)である。 Here, the wavelength of the light incident on the optical waveguide 23 is 638 nm (red), the wavelength of the light incident on the optical waveguide 24 is 520 nm (green), and the wavelength of the light incident on the optical waveguide 25 is 450 nm (blue). do. As a light incident method, light is incident through light sources 31 to 33 arranged at intervals of 100 μm. At this time, the synchrotron radiation from the emission end of the combined light and the horizontal radiation full angle are 7 deg (three color average), the vertical radiation full angle is 4 deg (three color average), and the combined wave efficiency is 90% (three colors). Average).
 次に、図8を参照して、本発明の実施例4の光導波路型合波器を説明する。図8は本発明の実施例4の光導波路型合波器の平面図であり、図8(b)は入射端面側の断面図である。なお、ここでは光源となる先球ファイバ44~47を加えて光源モジュールとして説明する。図8(a)及び図8(b)に示すように、本発明の実施例1の光導波路型光合波における複数の光導波路33~35に赤外線導波用の光導波路38を加えたものであり、その他の構成は上記の実施例1と同様である。 Next, the optical waveguide type combiner according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a plan view of the optical waveguide type combiner according to the fourth embodiment of the present invention, and FIG. 8B is a cross-sectional view of the incident end face side. In addition, here, the leading ball fibers 44 to 47 serving as a light source are added and described as a light source module. As shown in FIGS. 8A and 8B, the optical waveguide 38 for infrared waveguide is added to the plurality of optical waveguides 33 to 35 in the optical waveguide type optical waveguide of the first embodiment of the present invention. Yes, other configurations are the same as in Example 1 above.
 図8(a)に示すように、本発明の実施例4の光導波路型光合波器は、波長の異なる複数の先球ファイバ44~47からの光を入射するコア幅が2μmの光導波路33~35とアコア幅が4μmの光導波路38を設けたもので、光導波路33~35,38を伝搬した光を合波する光合波器部37で合波された光を出射端面から出射する。 As shown in FIG. 8A, the optical waveguide type optical waveguide of the fourth embodiment of the present invention is an optical waveguide 33 having a core width of 2 μm that injects light from a plurality of front bulb fibers 44 to 47 having different wavelengths. An optical waveguide 38 having an acore width of 4 μm is provided, and the light combined by the optical waveguide unit 37 that combines the light propagating through the optical waveguides 33 to 35, 38 is emitted from the exit end face.
 図8(a)に示すように、先球ファイバ44からの波長638nmの光ビームを光導波路33に入力し、先球ファイバ45からの波長520nmの光ビームを光導波路34に入力し、先球ファイバ46からの波長450nmの光ビームを光導波路35に入力し、先球ファイバ47からの波長1550nmの光ビームを光導波路38に入力する。 As shown in FIG. 8A, a light beam having a wavelength of 638 nm from the tip ball fiber 44 is input to the optical waveguide 33, and a light beam having a wavelength of 520 nm from the tip ball fiber 45 is input to the optical waveguide 34. A light beam having a wavelength of 450 nm from the fiber 46 is input to the optical waveguide 35, and a light beam having a wavelength of 1550 nm from the tip ball fiber 47 is input to the optical waveguide 38.
 光合波器全体の長さは5000μmであり、幅は700μmとする。また、光導波路33~35,38の入射端の間隔は130μmである。光導波路型合波器の外の雰囲気は空気であり、光合波領域37の長さは300μであり、光入射方法としては、間隔130μmの光入射端に4本の先球光ファイバ44~47を介して光入射する。合波した光の出射端からの放射光における横方向放射全角は9 deg(4色平均)であり、 縦方向放射全角は6deg.(4色平均)であり、合波効率は80%(4色平均)である。 The total length of the optical combiner is 5000 μm, and the width is 700 μm. The distance between the incident ends of the optical waveguides 33 to 35, 38 is 130 μm. The atmosphere outside the optical waveguide type combiner is air, the length of the optical wave-guide region 37 is 300 μ, and the light incident method is as follows. Light is incident through. The total horizontal radiation angle of the synchrotron radiation from the emitted end of the combined light is 9 deg (4 color average), the vertical radiation full angle is 6 deg. (4 color average), and the combined wave efficiency is 80% (4). Color average).
 次に、図9を参照して、本発明の実施例5の光導波路型合波器を説明するが、実施例1における光源の配置を変更したものである。図9は本発明の実施例5の光導波路型合波器の説明図であり、ここでは光源41~43を加えて光源モジュールとして説明する。図9に示すように、光源41を21基板の一方の長辺に配置し、光源43を基板21の他方の長辺に配置している。そのため、光導波路33,35の途中で直角に曲げる構造になっている。曲げる部分にGaを用いた収束イオンビーム法を用いたエッチングにより、深さ30μmの深掘りトレンチを形成し、導波した光が、トレンチ側壁で全反射するようにする。この様に、導波路型反射鏡を用いているが、曲率半径の小さい曲がり導波路を用いても良い。 Next, the optical waveguide type combiner of the fifth embodiment of the present invention will be described with reference to FIG. 9, but the arrangement of the light source in the first embodiment is changed. FIG. 9 is an explanatory diagram of the optical waveguide type combiner according to the fifth embodiment of the present invention, and here, light sources 41 to 43 are added to describe the light source module. As shown in FIG. 9, the light source 41 is arranged on one long side of the 21 substrate, and the light source 43 is arranged on the other long side of the substrate 21. Therefore, the structure is such that the optical wave guides 33 and 35 are bent at a right angle in the middle. A deep trench with a depth of 30 μm is formed by etching using a focused ion beam method using Ga at the bent portion, so that the waveguide light is totally reflected by the trench side wall. As described above, although the waveguide type reflector is used, a curved waveguide having a small radius of curvature may be used.
 実施例5における合波した光の出射端からの放射光:横方向放射全角は8deg. (3色平均) 、縦方向放射全角は5deg. (3色平均)であり、合波効率は70%((3色平均)となり、合波効率は少し悪くなっている。これは、曲げ損失が生るためであるが入射光による迷光の影響は低減することができる。このように、本発明の実施例5においては、光源41,43を基板21の長辺に配置しているので、光源モジュールを構成した場合に、光源モジュールの長さを短くすることができる。 Synchrotron radiation from the emission end of the combined light in Example 5: The horizontal radiation full angle is 8 deg. (3 color average), the vertical radiation full angle is 5 deg. (3 color average), and the combined wave efficiency is 70%. ((3 color average), and the combined wave efficiency is a little worse. This is because bending loss occurs, but the influence of stray light due to incident light can be reduced. Thus, according to the present invention. In the fifth embodiment, since the light sources 41 and 43 are arranged on the long side of the substrate 21, the length of the light source module can be shortened when the light source module is configured.
 次に、図10を参照して、本発明の実施例6の光導波路型光結合器を説明する。図10は本発明の実施例6の光導波路型光合波器の説明図であり、ここでも、発明を理解しやすいように光源を加えて光源モジュールとして図示している。図10に示すように、全ての光源41~43を基板31の一方の長辺に配置している。ここでも光導波路33~35の途中で直角に曲げるために、導波路型反射鏡を用いているが、曲率半径の小さい曲がり導波路を用いても良い。 Next, the optical waveguide type optical coupler according to the sixth embodiment of the present invention will be described with reference to FIG. FIG. 10 is an explanatory diagram of the optical waveguide type optical waveguide of the sixth embodiment of the present invention, and again, a light source is added and shown as a light source module so that the invention can be easily understood. As shown in FIG. 10, all the light sources 41 to 43 are arranged on one long side of the substrate 31. Here, too, a waveguide type reflector is used in order to bend at a right angle in the middle of the optical waveguides 33 to 35, but a curved waveguide having a small radius of curvature may be used.
 実施例における合波した光の出射端からの放射光:横方向放射全角は8deg. (3色平均) 、縦方向放射全角は5deg. (3色平均)であり、合波効率は70%((3色平均)となり、合波効率は少し悪くなっている。これは、曲げ損失が生るためであるが入射光による迷光の影響は低減することができる。このように、本発明の実施例6においては、光源41~43を基板31の一方の長辺に配置しているので、光源モジュールを構成した場合に、光源モジュールの幅を短くすることができる。 Synchrotron radiation from the emission end of the combined light in the examples: The horizontal radiation full angle is 8 deg. (3 color average), the vertical radiation full angle is 5 deg. (3 color average), and the combined wave efficiency is 70% (3 color average). (3 color average), and the combined wave efficiency is a little worse. This is because bending loss occurs, but the influence of stray light due to incident light can be reduced. Thus, the implementation of the present invention. In Example 6, since the light sources 41 to 43 are arranged on one long side of the substrate 31, the width of the light source module can be shortened when the light source module is configured.
 次に、本発明の実施例8の2次元光ビーム走査装置を説明するが、光導波路型合波器の構成が異なるだけで、基本的構成は図11に示した従来の2次元光ビーム走査装置と同じであるので、図11を借用して説明する。本発明の実施例7の2次元光ビーム走査装置は、図11の2次元光ビーム光走査装置における光導波路型合波器50を上述の実施例1に示した光導波路型合波器に置き換えたものである。なお、この光導波路型合波器は、実施例2乃至実施例6に示した光導波路型合波器に置き換えても良い。 Next, the two-dimensional optical beam scanning apparatus according to the eighth embodiment of the present invention will be described. However, the basic configuration is the conventional two-dimensional optical beam scanning shown in FIG. 11, only the configuration of the optical waveguide type combiner is different. Since it is the same as the device, FIG. 11 will be borrowed and described. The two-dimensional optical beam scanning apparatus of Example 7 of the present invention replaces the optical waveguide type combiner 50 in the two-dimensional optical beam optical scanning apparatus of FIG. 11 with the optical waveguide type combiner shown in Example 1 above. It is a thing. The optical waveguide type combiner may be replaced with the optical waveguide type combiner shown in Examples 2 to 6.
1 基板
2,3 光導波路
4,5 光入射端面
6 光合波領域
7 光出射端面
8 放射光
9 安定に伝搬する光ビーム
10 全体の漏れ光
11,31 基板
12,32 下部クラッド層
13~15,33~35,38 光導波路
16,36 上部クラッド層
17,37 光合波領域
21~23,41~43 光源
44~47 先球ファイバ
50 光導波路型合波器
51 青色半導体レーザチップ
52 緑色半導体レーザチップ
53 赤色半導体レーザチップ
60 基板
61 可動ミラー部
70 電磁コイル
1 Substrates 2, 3 Optical waveguides 4, 5 Light incident end faces 6 Light confluence region 7 Light emission end faces 8 Emitted light 9 Stable propagating light beam 10 Overall leaked light 11, 31 Substrate 12, 32 Lower clad layers 13 to 15, 33-35,38 Optical waveguide 16,36 Upper clad layer 17,37 Optical wave region 21-23, 41-43 Light source 44-47 Tip bulb fiber 50 Optical waveguide type combiner 51 Blue semiconductor laser chip 52 Green semiconductor laser chip 53 Red semiconductor laser chip 60 Substrate 61 Movable mirror part 70 Electromagnetic coil

Claims (14)

  1.  複数の光導波路と、
     出射端面側で前記複数の光導波路を伝搬した光ビームが合波されながら1本の光導波路となる領域とを有し、
     前記領域の前記出射端面が、前記光導波路を伝搬する光ビームが、前記光導波路から外部に漏れ出す全体の漏れ光の10%~90%の長手方向の範囲内に存在する光導波路型合波器。
    With multiple optical waveguides
    On the exit end face side, the light beams propagating through the plurality of optical waveguides have a region that becomes one optical waveguide while being combined.
    An optical waveguide type combined wave in which the emission end surface of the region is such that the light beam propagating through the optical waveguide exists in the longitudinal range of 10% to 90% of the total leaked light leaking from the optical waveguide to the outside. vessel.
  2.  前記複数の光導波路は、基本モードの伝搬が最大成分となる光導波路である請求項1に記載の光導波路型合波器。 The optical waveguide type combiner according to claim 1, wherein the plurality of optical waveguides are optical waveguides in which propagation in the basic mode is the maximum component.
  3.  前記複数の光導波路のコアの幅及び高さの少なくとも一方が前記複数の光導波路の光入射端面側から前記出射端面に向かって徐々に減少する請求項1または請求項2に記載の光導波路型合波器。 The optical waveguide type according to claim 1 or 2, wherein at least one of the widths and heights of the cores of the plurality of optical waveguides gradually decreases from the light incident end face side of the plurality of optical waveguides toward the exit end face. Waveguide.
  4.  前記複数の光導波路のコア幅及び高さの少なくとも一方が、互いに異なる請求項1乃至請求項3のいずれか1項に記載の光導波路型合波器。 The optical waveguide type combiner according to any one of claims 1 to 3, wherein at least one of the core widths and heights of the plurality of optical waveguides is different from each other.
  5.  前記複数の光導波路の数が3本である請求項1乃至請求項4のいずれか1項に記載の光導波路型合波器。 The optical waveguide type combiner according to any one of claims 1 to 4, wherein the number of the plurality of optical waveguides is three.
  6.  前記3本の光導波路は、赤色光を導波する光導波路、緑色光を導波する光導波路及び青色光を導波する光導波路である請求項5に記載の光導波路型合波器。 The optical waveguide type combiner according to claim 5, wherein the three optical waveguides are an optical waveguide that guides red light, an optical waveguide that guides green light, and an optical waveguide that guides blue light.
  7.  前記複数の光導波路の数が4本以上である請求項1乃至請求項4のいずれか1項に記載の光導波路型合波器。 The optical waveguide type combiner according to any one of claims 1 to 4, wherein the number of the plurality of optical waveguides is 4 or more.
  8.  前記領域の長さが、200μm以下であること請求項1乃至請求項7のいずれか1項に記載の光導波路型合波器。 The optical waveguide type combiner according to any one of claims 1 to 7, wherein the length of the region is 200 μm or less.
  9.  前記光合波領域から出射される合波光の前記出射端面での光パワー分布の半値全幅が15μm以下である請求項1乃至請求項8のいずれか1項に記載の光導波路型合波器。 The optical waveguide type combiner according to any one of claims 1 to 8, wherein the full width at half maximum of the optical power distribution at the emission end surface of the combined wave light emitted from the optical combined wave region is 15 μm or less.
  10.  請求項1乃至請求項9のいずれか1項に記載の光導波路型合波器と、
     前記光導波路型合波器に前記光ビームを入射する複数の光源と
    を有する光源モジュール。
    The optical waveguide type combiner according to any one of claims 1 to 9.
    A light source module having a plurality of light sources that incident the light beam on the optical waveguide type combiner.
  11.  前記複数の光源と前記光導波路型合波器の複数の入力光導波路との間にレンズを設けた請求項10に記載の光源モジュール。 The light source module according to claim 10, wherein a lens is provided between the plurality of light sources and a plurality of input optical waveguides of the optical waveguide type combiner.
  12.  前記複数の光源が、複数の光ファイバから出射される光源である請求項10または請求項11に記載の光源モジュール。 The light source module according to claim 10 or 11, wherein the plurality of light sources are light sources emitted from a plurality of optical fibers.
  13.  請求項10乃至請求項12のいずれか1項に記載の光源モジュールと、
     前記光源モジュールからの合波光を2次元走査する2次元光走査ミラー装置とを有する二次元光ビーム走査装置。
    The light source module according to any one of claims 10 to 12.
    A two-dimensional light beam scanning device including a two-dimensional light scanning mirror device that two-dimensionally scans combined light from the light source module.
  14.  請求項13に記載の2次元光走査装置と、
     前記2次元光走査ミラー装置により走査された前記合波光を被投影面に投影する画像形成部とを有する光ビーム走査型映像投影装置。
    The two-dimensional optical scanning apparatus according to claim 13,
    An optical beam scanning type image projection device including an image forming unit that projects the combined wave light scanned by the two-dimensional optical scanning mirror device onto a projected surface.
PCT/JP2020/047632 2020-02-20 2020-12-21 Optical waveguide multiplexer, light source module, two-dimensional light beam scanning device, and light beam scanning video projection device WO2021166413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020027608A JP7105498B2 (en) 2020-02-20 2020-02-20 Optical waveguide multiplexer, light source module, two-dimensional light beam scanner, and light beam scanning image projector
JP2020-027608 2020-02-20

Publications (1)

Publication Number Publication Date
WO2021166413A1 true WO2021166413A1 (en) 2021-08-26

Family

ID=77391537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047632 WO2021166413A1 (en) 2020-02-20 2020-12-21 Optical waveguide multiplexer, light source module, two-dimensional light beam scanning device, and light beam scanning video projection device

Country Status (2)

Country Link
JP (1) JP7105498B2 (en)
WO (1) WO2021166413A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189385A (en) * 2003-12-25 2005-07-14 Sony Corp Branch type optical waveguide, light source module, and optical information processing unit
JP2015109377A (en) * 2013-12-05 2015-06-11 三菱電機株式会社 Wavelength variable laser diode array
JP2016118750A (en) * 2014-12-18 2016-06-30 潤 成沢 Chip type handle fiber multiplexer and chip type multi-wavelength light source
US20180128979A1 (en) * 2015-05-12 2018-05-10 Kaiam Corp. Rgb combiner using mems alignment and plc
JP2018180513A (en) * 2017-04-17 2018-11-15 日本電信電話株式会社 Light source having monitoring function
JP2019105774A (en) * 2017-12-13 2019-06-27 日東電工株式会社 Optical waveguide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189385A (en) * 2003-12-25 2005-07-14 Sony Corp Branch type optical waveguide, light source module, and optical information processing unit
JP2015109377A (en) * 2013-12-05 2015-06-11 三菱電機株式会社 Wavelength variable laser diode array
JP2016118750A (en) * 2014-12-18 2016-06-30 潤 成沢 Chip type handle fiber multiplexer and chip type multi-wavelength light source
US20180128979A1 (en) * 2015-05-12 2018-05-10 Kaiam Corp. Rgb combiner using mems alignment and plc
JP2018180513A (en) * 2017-04-17 2018-11-15 日本電信電話株式会社 Light source having monitoring function
JP2019105774A (en) * 2017-12-13 2019-06-27 日東電工株式会社 Optical waveguide

Also Published As

Publication number Publication date
JP7105498B2 (en) 2022-07-25
JP2021131498A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US10185091B2 (en) Multiplexer, image projection apparatus using the multiplexer and image projection system
US11287571B2 (en) Multiplexer
US20210152794A1 (en) Optical multiplexer, light source module, two-dimensional optical scanning device, and image projection device
WO2017090333A1 (en) Optical waveguide element and light source module
WO2010052886A1 (en) Liquid crystal display device
US20210149110A1 (en) Optical waveguide-type optical multiplexer, optical waveguide-type multiplexing light source optical device and image projecting device
US9971099B2 (en) Grating coupler with high optical coupling efficiency for SMF
JPWO2019082347A1 (en) Light guide device, optical waveguide device, and multi-wavelength light source module
WO2021166413A1 (en) Optical waveguide multiplexer, light source module, two-dimensional light beam scanning device, and light beam scanning video projection device
JP7099995B2 (en) Light source module
CN114280729B (en) Optical waveguide type light combiner and projection device using same
US20210149111A1 (en) Optical multiplexer, light source module, two-dimensional optical scanning device, and image projection device
WO2019217466A1 (en) Negative angle grating coupler
JP5640445B2 (en) Optical waveguide, wavelength multiplexing optical multiplexer, and medical endoscope using the same
JP6478907B2 (en) Edge-Coupled Silicon Optical Integrated Circuit
JP7340661B2 (en) light source module
EP4400882A1 (en) Optical waveguide element and light source module
JP2021131498A5 (en)
KR20230141749A (en) Optics for light control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920358

Country of ref document: EP

Kind code of ref document: A1