WO2017090333A1 - Optical waveguide element and light source module - Google Patents

Optical waveguide element and light source module Download PDF

Info

Publication number
WO2017090333A1
WO2017090333A1 PCT/JP2016/080404 JP2016080404W WO2017090333A1 WO 2017090333 A1 WO2017090333 A1 WO 2017090333A1 JP 2016080404 W JP2016080404 W JP 2016080404W WO 2017090333 A1 WO2017090333 A1 WO 2017090333A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
cores
optical waveguide
core
face
Prior art date
Application number
PCT/JP2016/080404
Other languages
French (fr)
Japanese (ja)
Inventor
正尊 安藤
香川 利雄
晃広 松本
ヴァレリー ベリーマン‐ブスケ
ピーター ジョン ロバーツ
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017090333A1 publication Critical patent/WO2017090333A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an optical waveguide device and a light source module, and more particularly to an optical waveguide device that guides light of a plurality of wavelengths and a light source module using the same.
  • a light source module for an image display device such as a projector or a head mounted display
  • a light source module that includes a light source that emits blue, green, and red wavelengths and that combines and emits light of a plurality of wavelengths
  • a technique for multiplexing a plurality of lights one using a planar waveguide (Patent Documents 1 and 2), one using a directional coupler (Patent Document 3), or a multi-wavelength fiber is used.
  • Various types have been proposed, such as those using a dichroic mirror (Patent Document 4).
  • a light source module used for an image display device since light of a plurality of wavelengths is combined to display one image, it is required that the optical axes in the light emission directions of the respective wavelengths are substantially coincident.
  • the light source module is also required to be downsized when used in a head-mounted display or a small projector.
  • the light source module described in Patent Document 1 light is combined by combining a core corresponding to each wavelength using a branched optical waveguide inside the optical waveguide element, so that one output end is provided.
  • the optical axes of the respective wavelengths are matched.
  • the optical loss of each wavelength is calculated, and the structure of the optical waveguide portion is set in consideration of the loss of each wavelength. According to this configuration, even if there is a large difference in the light amount of the light source of each wavelength, the light amount at the time of light output corresponding to each wavelength is obtained by intentionally losing the light of the desired wavelength in the optical waveguide element. It is possible to determine in
  • Patent Document 1 has a problem that the processing difficulty of the portion where the cores are matched becomes very high.
  • the higher order mode appears because the core diameter is wide at the joint part where the cores are matched, and even if the core size is reduced after the joint part, It is conceivable that a predetermined amount of light loss occurs in light of a wavelength.
  • the higher-order mode is output as it is, and in the usage method as a light source module for a projector or the like, there is a possibility that a spot of light occurs on the light irradiation surface and the image is deteriorated.
  • Patent Document 2 a laser beam printer using an optical waveguide in which the interval between a plurality of cores is narrowed from the light incident end to the light exit end is shown.
  • the optical waveguide of Patent Document 2 is used for a laser beam printer, and the interval between the cores at the emission end of the optical waveguide is about 100 ⁇ m, and the plurality of lights have substantially the same wavelength. Even if the interval between the plurality of lights is about this level, it can be said that the distance between the plurality of lights is close enough for the application of the laser beam printer in consideration of the image formation state on the surface of the photoreceptor.
  • Patent Document 3 In the prior art of Patent Document 3, a very high processing accuracy is required for the combined portion itself. In addition, considering the loss due to light absorption, there is a problem that further miniaturization is difficult.
  • Patent Document 4 in order to make the optical axes of the respective wavelengths as close as possible, it is necessary to make the cladding layer of the optical fiber thin. However, the durability of the optical fiber is lowered and it is difficult to handle it as a light source module. There is a problem of becoming.
  • the present invention has been made in view of the above problems, and can maintain a single mode and can emit light in a plurality of wavelengths sufficiently close to each other in substantially the same optical axis direction, and can be downsized.
  • An object of the present invention is to provide a possible optical waveguide device and a light source module.
  • an optical waveguide device of the present invention is an optical waveguide device that guides a plurality of lights having at least three different wavelengths, and a plurality of waveguides that respectively guide the plurality of lights. And a clad surrounding the periphery of the core, and having an incident end face on which the plurality of lights are incident and an exit end face on which the plurality of lights are emitted, and the plurality of cores are formed apart from each other
  • the center-to-center distance between the plurality of cores at the exit end face is smaller than the center-to-center distance between the plurality of cores at the entrance end face.
  • the plurality of cores may be arranged in a line on the incident end face side, and the central core may guide light having the longest wavelength among the plurality of lights.
  • At least two of the plurality of cores may have different widths.
  • the plurality of cores may be configured to have a large width for guiding the light having the longest wavelength.
  • a light source module of the present invention includes the above-described optical waveguide element, and a plurality of laser diodes that respectively emit the plurality of lights, and between the plurality of laser diodes and the incident end surface.
  • a plurality of first lenses are provided, and a second lens is provided on the emission end face side of the optical waveguide element.
  • Such a light source module it is possible to emit a plurality of lights in substantially the same optical axis direction while maintaining a single mode, and even if a lens is provided close to the optical waveguide element, the influence of the optical axis deviation due to aberration can be reduced. Miniaturization can be achieved.
  • optical waveguide element and a light source module that can emit light of a plurality of wavelengths sufficiently close to each other while maintaining a single mode and emit in substantially the same optical axis direction and can be miniaturized.
  • FIG. 4A is a plan view
  • FIG. 4B is an end view on the light incident side
  • FIG. 4C is an end surface on the light emitting side.
  • FIG. 4A is a plan view
  • FIG. 4B is an end view on the light incident side
  • FIG. 4C is an end surface on the light emitting side.
  • FIG. It is a graph which shows the relationship between the bending radius of the core and the light transmittance in red light, green light, and blue light of 1st embodiment.
  • It is a schematic diagram which shows the relationship of an optical axis when a lens is installed in the vicinity of the output end surface of 1st embodiment.
  • FIG. 1 is a schematic diagram showing a projector which is an image display device using the light source module of the present embodiment.
  • a projector 100 shown in FIG. 1 includes a light source module 1, a drive unit 2, and a MEMS (Micro Electro Mechanical Systems) mirror 3.
  • the light L1 emitted from the light source module 1 is reflected by the MEMS mirror 3, projected as light L2, and scanned on a screen (not shown) as the MEMS mirror 3 operates. To produce.
  • the red light, green light, and blue light sources in the light source module 1 are driven in synchronization with the drive unit 2 driving the MEMS mirror 3, and each color at each pixel position on the screen is driven.
  • the color of each pixel is determined by appropriately setting the light intensity ratio of the light beam.
  • a distance measuring device using infrared light may be provided in order to measure the distance from the projector 100 to the screen on which the image is projected.
  • FIG. 2 is a schematic diagram showing the internal structure of the light source module 1.
  • the light source module 1 includes a light source 11B that emits blue light, a light source 11R that emits red light, and a light source 11G that emits green light, and includes lenses 12B, 12R, and 12G, and an optical waveguide element. 13 and a lens 14 are provided.
  • Light emitted from the light sources 11B, 11R, and 11G passes through lenses 12B, 12R, and 12G, which are optical systems, and is incident on the incident end face 13a of the optical waveguide element 13.
  • blue light red light, and green light
  • wavelengths of about 450 nm, 638 nm, and 520 nm can be used, respectively, but other wavelengths may be used.
  • the light of each color is emitted from the emission end face 13b with the optical axis substantially matched by the optical waveguide element 13, and the emitted light is emitted from the light source module 1 as light L1 collected by the lens 14.
  • each of the light sources 11B, 11R, and 11G is adjusted by the drive unit 2.
  • a photodiode may be provided inside or outside the light source module 1, and a Peltier element or the like may be provided for temperature adjustment.
  • Each of the light sources 11B, 11R, and 11G is not particularly limited, but it is desirable to use a laser diode because light needs to be incident on the optical waveguide element.
  • a plurality of laser diodes having the same emission wavelength may be used as the light source.
  • the lenses 12B, 12R, and 12G only need to efficiently make the light emitted from the light sources 11B, 11R, and 11G incident on the incident end surface 13a, may be a collimator lens, or may be an aspheric lens that reduces aberration. .
  • the lens 14 only needs to be collimated with the light L1 and irradiate the MEMS mirror 3 with a spot as small as possible, and a collimating lens is more preferable. Further, when each light emitted from the adjacent cores of the emission end face 13b has a constant radiation angle, when the light L1 is collimated, the optical axis that has passed through the lens 14 has an angle ⁇ formed as described later. It has a spot center.
  • FIG. 3 is a perspective view schematically showing the structure of the optical waveguide device 13 of the present embodiment.
  • 4A and 4B are diagrams illustrating the core of the optical waveguide device 13 according to this embodiment.
  • FIG. 4A is a plan view
  • FIG. 4B is an end view on the light incident side
  • FIG. It is an end elevation of the side.
  • the optical waveguide device 13 includes a substrate 15, cores 16 ⁇ / b> B, 16 ⁇ / b> R, 16 ⁇ / b> G, and a clad 17.
  • the substrate 15 is a substantially flat member formed of a material such as quartz glass or silicon.
  • the material of the substrate 15 is not particularly limited, but when the same material as that used for the clad 17 is used for the substrate 15, the clad 17 formed below the cores 16B, 16R, and 16G may not be formed. . Further, when a material having light absorption with respect to the wavelength used, such as Si, is selected as the material of the substrate 15, it is preferable to increase the thickness of the lower clad 17 as appropriate in order to avoid light absorption.
  • the cores 16B, 16R and 16G are made of a material having a higher refractive index than that of the clad 17, and the clad 17 is made of a material having a lower refractive index than the cores 16B, 16R and 16G.
  • the cores 16B, 16R, and 16G are formed to extend between the incident end face 13a and the outgoing end face 13b, and have a width Cw or the like so as to guide light in a single mode according to the wavelength of the guided light.
  • the radius of curvature is designed.
  • the cores 16B, 16R, and 16G have a core 16R that guides red light having the longest wavelength disposed at the center, and the cores 16B, 16R, and 16G are formed so as not to contact each other and spaced apart from each other by a predetermined distance.
  • Each center distance Db at the exit end face 13b is made smaller than the center distance Da at the entrance end face 13a.
  • the optical waveguide element 13 may polish the incident end face 13a or may form an antireflection film in order to increase the coupling efficiency of light incident on the optical waveguide element 13 from the outside. Further, in order to increase the extraction efficiency of light emitted to the outside from the optical waveguide element 13, the emission end face 13b may be polished or an antireflection film may be formed. Further, in a predetermined range in the vicinity of the incident end face 13a of the optical waveguide element 13, the cross-sectional sizes of the cores 16B, 16R, and 16G may be increased in a tapered shape toward the end face. Thereby, the optical coupling efficiency of the light sources 11B, 11R, 11G and the cores 16B, 16R, 16G can be increased.
  • the optical waveguide element 13 is usually made of an inorganic glass material mainly composed of SiO 2 , B 2 O 3 , P 2 O 5 or the like, or an organic material such as a polymer. May be used.
  • the optical waveguide element 13 uses the above materials for the cores 16B, 16R, 16G and the cladding 17, and in order to make the refractive index of the cores 16B, 16R, 16G higher than that of the cladding 17, the composition and / or the composition ratio of each material.
  • the material is selected by changing, adding a dopant, or the like.
  • a film forming method for example, it can be formed by a chemical vapor deposition method, a sputtering method, a flame deposition method, or the like.
  • a conventionally known method for manufacturing a glass waveguide will be described below.
  • quartz glass, silicon, or the like is used as the substrate 15, and a glass film to be the lower clad 17 is formed on the substrate 15 so as to have a layer thickness of about 10 ⁇ m.
  • a core glass film to be the cores 16B, 16R, and 16G is formed to have a layer thickness of about 2 ⁇ m. Thereafter, unnecessary portions of the core glass film are removed by photolithography and dry etching, and a plurality of optical waveguides are formed in the same plane perpendicular to the stacking direction.
  • a glass film to be the upper clad 17 is formed to a thickness of about 10 ⁇ m, and heat treatment is performed to make the clad 17 layer and the cores 16B, 16R, and 16G transparent. Thereafter, the substrate 15 and the cores 16B, 16R, 16G, and the clad 17 formed thereon are diced into predetermined dimensions to obtain the optical waveguide device 13.
  • the width of each of the cores 16B, 16R, and 16G is 2 ⁇ m, and in the vicinity of the emission end face 13b, the cores 16B, 16R, and 16G are linear regions having a length of about 0.1 mm perpendicular to the emission end face 13b. Is formed. Further, in the linear region in the vicinity of the emission end face 13b, the width of the clad 17 formed between adjacent cores was set to 2 ⁇ m.
  • the intervals between the cores 16B, 16R, and 16G on the incident end face 13a need to be provided with a predetermined interval Da according to the light sources 11B, 11R, and 11G to be used.
  • the optical axis of each light emitted from the emission end face 13b is brought close to each other by gradually reducing the interval between the cores 16B, 16R, and 16G from the incidence end face 13a to the emission end face 13b. Therefore, the cores 16B, 16R, and 16G are bent between the incident end face 13a and the exit end face 13b as necessary.
  • the minimum bending which becomes a bending limit depending on the refractive index difference of the materials used for the cores 16B, 16R, and 16G and the wavelength of light to be used. There is a radius. If the cores 16B, 16R, and 16G are bent beyond the minimum bending radius, light leaks to the outer cladding 17, and light cannot be efficiently extracted from the emission end face 13b.
  • FIG. 5 shows the relationship between the core bend radius and the light transmittance for red light, green light and blue light when the difference in refractive index between the cores 16B, 16R and 16G and the clad 17 is about 0.5%.
  • the minimum bending radius of blue light is about 2.0 mm
  • the minimum bending radius of green light is about 2.5 mm
  • the minimum bending radius of red light is about 5.0 mm.
  • the single-mode optical waveguide is generally affected by the refractive index and refractive index difference between the core layer and the cladding layer and the size of the core layer.
  • the core width Cw is widened at that portion, and a higher-order mode is generated at the intersecting portion. Even if the core width Cw is reduced after the region where the cores 16B, 16R, and 16G intersect to make a single mode optical waveguide, the generated higher-order modes cannot exist and light is lost.
  • the cores 16B, 16R, and 16G extending from the incident end face 13a to the exit end face 13b do not intersect with each other, and are formed apart by a predetermined distance, so that light loss is maintained while maintaining a single mode with light of each color. Can be suppressed.
  • FIG. 6 is a schematic diagram showing the relationship of the optical axes when the lens 14 is installed in the vicinity of the emission end face 13b.
  • x Db
  • u the installation distance between the emission end face 13b and the lens
  • the angle formed by the optical axis serving as the center of the spot of light emitted from the adjacent core
  • the lens 14 When the lens 14 is incorporated in the light source module 1, it is necessary to bring the lens 14 close to the emission end face 13b in order to reduce the size of the apparatus. However, an attempt is made to reduce the angle formed by the optical axis of each light emitted from each core. Then, as is clear from the above formula, it is necessary to reduce the interval x between adjacent cores.
  • the MEMS mirror 3 In the projector 100, the MEMS mirror 3 is installed at a position about 20 to 30 mm away from the light source module 1, and the emitted light L1 from the light source module 1 enters the MEMS mirror 3. Therefore, the lens 14 needs to be installed at a position closer to the emission end face 13 b of the optical waveguide element 13 than the MEMS mirror 3.
  • the optical axis that becomes the center of the spot of light emitted from the adjacent cores is set by setting the distance between the centers of the adjacent cores to about 5 ⁇ m or less. Can be suppressed to about 0.03 °. Therefore, by making the interval Db between the cores 16B, 16R, and 16G as close as possible on the emission end face 13b, the spot centers of the emitted light of each color can be brought close to each other so as to have substantially the same optical axis. By irradiating the light of each color as single-mode light L1 with the center of the spot close, deterioration of the projected image can be suppressed.
  • the core interval of the optical waveguide when the core interval of the optical waveguide is reduced, optical coupling occurs between the cores, and light guided through a certain core moves to the adjacent core.
  • the light in order to reduce the distance Db between the cores 16B, 16R, and 16G on the emission end face 13b, if the distance in the linear region in the vicinity of the emission end face 13b is too small, the light is applied to the adjacent core. The part moves, and light of the same wavelength is emitted from a plurality of places to form a plurality of spots.
  • the light source module 1 is used in the projector 100, it is difficult to form one pixel when a plurality of spots are irradiated, and the image deteriorates.
  • the optical waveguide device 13 of the present embodiment it is necessary to provide a predetermined distance for reducing optical coupling between adjacent cores while making the distance Db between the cores 16B, 16R, and 16G as close as possible at the emission end face 13b.
  • FIG. 7 is a graph showing the relationship between the width of the clad existing between the cores and the optical coupling distance.
  • the width Cw of each core 16B, 16R, 16G is 2.0 ⁇ m.
  • the optical coupling distance is a length until light completely returns to the original core again after the light completely moves to the adjacent core. As shown in FIG. 7, by increasing the width of the clad 17 existing between the cores, the optical coupling distance is increased, and the movement of light between the cores can be made difficult to occur.
  • FIG. 8 is a graph showing the relationship between the coupling distance, which is the length of the linear region of the core, and the optical coupling rate.
  • the horizontal axis of the graph represents the coupling distance
  • the vertical axis represents the optical coupling rate as a relative value of light intensity.
  • the width Cw of each core is 2.0 ⁇ m
  • the width of the clad 17 existing between them is 2.0 ⁇ m.
  • the coupling distance between adjacent cores may be set to 0.2 mm or less, and in order to reduce the movement of light, a linear region where each core is as close as possible. It is better to shorten
  • the straight line area in the vicinity of the emission end face 13b is short.
  • a bent portion exists in front of the linear region in the vicinity of the emission end face 13b, but light movement between the cores also occurs in the bent portion.
  • FIG. 9 is a graph showing the relationship between the width of the clad existing between the cores at the bent portion of the core and the optical coupling rate.
  • the radius of curvature of the cores 16B and 16G is about 5 mm, and the width of the cladding at the end position of the bent portion where no linear region is provided in the vicinity of the emission end face 13b is shown.
  • the light coupling ratio decreases as the width of the clad existing between the cores is increased.
  • the clad width at the bent portion may be set to 2 ⁇ m or more.
  • a plurality of bent portions may be provided by changing the radius of curvature by shortening the linear region of each core.
  • An air trench may be formed in the clad 17 between the cores.
  • the widths of the cores may be set so as not to match.
  • a material having a refractive index different from that of the light reflector, the light absorber, the core, and the clad may be provided between the cores.
  • optical elements such as a diffractive optical element (DOE) and a microlens array are used to emit the light from each core of the optical waveguide element. The optical axes of light may be closer.
  • DOE diffractive optical element
  • the cores that guide the light of each color are not crossed and are separated by a predetermined distance that suppresses light movement between the cores.
  • the single mode is maintained to reduce optical loss, and light of a plurality of wavelengths can be made sufficiently close to each other and emitted in substantially the same optical axis direction, so that deterioration of image display can be suppressed.
  • the optical waveguide element can be made smaller while suppressing the movement of light between adjacent cores.
  • FIG. 10 is a schematic diagram showing the configuration of the optical waveguide device 13 and the light source of the present embodiment. As shown in FIG. 10, in this embodiment, two light sources 11G that emit green light are provided, the corresponding cores 16G are also two, and the optical waveguide element 13 has four cores in total.
  • the total output of green light can be improved by providing a plurality of green light sources 11G.
  • the light sources 11B, 11R, and 11G of the respective wavelengths are arranged, if the core 16R that guides the red light having the largest wavelength is arranged at the center, the minimum bending radius of the cores 16B and 16G is larger than that of the core 16R. Therefore, the optical waveguide element 13 can be downsized.
  • the number of cores of the optical waveguide element 13 is not particularly limited, and may be four or more, and the cores 16B and 16G may be arranged in any manner as long as the core 16R is located in the center.
  • the cores that guide light of each color are not crossed and are separated by a predetermined distance that suppresses light movement between the cores.
  • the single mode is maintained to reduce optical loss, and light of a plurality of wavelengths can be made sufficiently close to each other and emitted in substantially the same optical axis direction, so that deterioration of image display can be suppressed.
  • the optical waveguide element can be made smaller while suppressing the movement of light between adjacent cores.
  • FIG. 11 is a schematic plan view of the optical waveguide element 13 of the third embodiment.
  • the width of the core that guides light having a long wavelength is increased.
  • the mode of light to be guided is related to the core width Cw, and the smaller the core width Cw, the easier it becomes a single mode.
  • the core width of the core 16B is 1.8 ⁇ m
  • the core width of the core 16R is 2.0 ⁇ m
  • the core width of the core 16G is 1.9 ⁇ m.
  • FIG. 12 is a graph showing the relationship between the width of the clad existing between the cores on the emission end face 13b of the present embodiment and the optical coupling rate. As shown in FIG. 12, it can be seen that the light coupling rate decreases as the cladding width between the cores is increased. However, compared with the conditions of the first embodiment, the optical coupling rate is smaller than the cladding width. It is falling. For example, in order to suppress the optical coupling rate to about 5% in red light, the clad width should be about 1.5 ⁇ m or more.
  • each core 16B, 16R, and 16G As the wavelength of the guided light increases, light movement due to optical coupling between adjacent cores is suppressed, and only a single wavelength from each core is suppressed. It is possible to take out the image and suppress the deterioration of the image.
  • the cores that guide light of each color are not crossed and are separated by a predetermined distance that suppresses light movement between the cores.
  • the single mode is maintained to reduce optical loss, and light of a plurality of wavelengths can be made sufficiently close to each other and emitted in substantially the same optical axis direction, so that deterioration of image display can be suppressed.
  • the optical waveguide element can be made smaller while suppressing the movement of light between adjacent cores.
  • FIG. 13 is a schematic plan view of the optical waveguide device 13 of the fourth embodiment.
  • the cores 16B and 16G corresponding to blue light and green light are each bent twice, but in this embodiment, the cores 16B and 16G are bent once on the side close to the emission end face 13b.
  • the cores 16B and 16G are provided to be inclined rather than perpendicular to the incident end face 13a. Thereby, the bending part of the cores 16B and 16G can be reduced, and the optical waveguide element 13 can be further downsized.
  • the cores that guide light of each color are not crossed and are separated by a predetermined distance that suppresses light movement between the cores.
  • the single mode is maintained to reduce optical loss, and light of a plurality of wavelengths can be made sufficiently close to each other and emitted in substantially the same optical axis direction, so that deterioration of image display can be suppressed.
  • the optical waveguide element can be made smaller while suppressing the movement of light between adjacent cores.
  • FIG. 14 is an end view of the light emitting side of the optical waveguide device 13 of the fifth embodiment.
  • the cores 16B, 16R, and 16G are arranged in a line on the same plane, but in the present embodiment, the cores 16B, 16R, and 16G are provided with a height difference.
  • the interval between the cores on the emission end face 13b can be reduced, and the center of the spots of the emitted light can be made closer to have substantially the same optical axis. It becomes possible.
  • the cores that guide light of each color are not crossed and are separated by a predetermined distance that suppresses light movement between the cores.
  • the single mode is maintained to reduce optical loss, and light of a plurality of wavelengths can be made sufficiently close to each other and emitted in substantially the same optical axis direction, so that deterioration of image display can be suppressed.
  • the optical waveguide element can be made smaller while suppressing the movement of light between adjacent cores.
  • the light of a plurality of wavelengths is made sufficiently close to each other while maintaining a single mode.
  • the light can be emitted in the direction of the optical axis, and downsizing can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Projection Apparatus (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

An optical waveguide element (13) that guides at least three light beams having different wavelengths is provided with: a substrate (15); a plurality of cores (11B, 11R, 11G) that guide the light beams, respectively; and a cladding (17) surrounding around the cores (11B, 11R, 11G). The optical waveguide element has an input end surface (13a) to which the light beams are inputted, and an output end surface (13b) from which the light beams are outputted, and the cores (11B, 11R, 11G) are formed by being separated from each other. Each of the center-to-center distances of the cores (11B, 11R, 11G) on the output end surface (13b) is smaller than each of the center-to-center distances of the cores (11B, 11R, 11G) on the input end surface (13a).

Description

光導波路素子及び光源モジュールOptical waveguide device and light source module
 本発明は、光導波路素子及び光源モジュールに関し、特に複数波長の光を導波させる光導波路素子とそれを用いた光源モジュールに関する。 The present invention relates to an optical waveguide device and a light source module, and more particularly to an optical waveguide device that guides light of a plurality of wavelengths and a light source module using the same.
 従来から、プロジェクタやヘッドマウントディスプレイなどの画像表示装置の光源モジュールとして、青色、緑色、赤色の波長を発光する光源を備え、複数波長の光を合波して照射する光源モジュールが提案されている。また、複数の光を合波するための技術としては、平面導波路を用いたもの(特許文献1,2)や、方向性結合器を用いたもの(特許文献3)、マルチ波長ファイバを用いたもの(特許文献4)、ダイクロイックミラーを用いたもの(特許文献5)など各種のものが提案されている。 2. Description of the Related Art Conventionally, as a light source module for an image display device such as a projector or a head mounted display, a light source module that includes a light source that emits blue, green, and red wavelengths and that combines and emits light of a plurality of wavelengths has been proposed. . In addition, as a technique for multiplexing a plurality of lights, one using a planar waveguide (Patent Documents 1 and 2), one using a directional coupler (Patent Document 3), or a multi-wavelength fiber is used. Various types have been proposed, such as those using a dichroic mirror (Patent Document 4).
 画像表示装置に用いられる光源モジュールでは、複数の波長の光を合波させて一つの画像を表示するため、各波長の光出射方向での光軸が略一致していることが要求される。また、特にヘッドマウントディスプレイや小型プロジェクタなどに用いられる場合は光源モジュールの小型化も要求される。 In a light source module used for an image display device, since light of a plurality of wavelengths is combined to display one image, it is required that the optical axes in the light emission directions of the respective wavelengths are substantially coincident. In particular, the light source module is also required to be downsized when used in a head-mounted display or a small projector.
特開2005-189385号公報JP 2005-189385 A 特開2000-329956号公報JP 2000-329956 A 特開2013-195603号公報JP 2013-195603 A 特開2013-228651号公報JP 2013-228651 A 特開2015-73139号公報JP2015-73139A
 例えば、特許文献1に記載の光源モジュールでは、分岐型光導波路を用いて各波長に対応したコアが光導波路素子の内部で結合することで光が合波され、出力端を1つにすることで各波長の光軸を一致させる方法が取られている。また、各波長の光損失を計算し、光導波部の形状を、各波長の損失を考慮して構造が設定されている。この構成によれば、各波長の光源の光量に大きな差異があったとしても、光導波路素子内で所望の波長の光を意図的に損失させることで、各波長に対応した光出力時の光量に定める事が可能となる。 For example, in the light source module described in Patent Document 1, light is combined by combining a core corresponding to each wavelength using a branched optical waveguide inside the optical waveguide element, so that one output end is provided. In this method, the optical axes of the respective wavelengths are matched. Further, the optical loss of each wavelength is calculated, and the structure of the optical waveguide portion is set in consideration of the loss of each wavelength. According to this configuration, even if there is a large difference in the light amount of the light source of each wavelength, the light amount at the time of light output corresponding to each wavelength is obtained by intentionally losing the light of the desired wavelength in the optical waveguide element. It is possible to determine in
 しかしながら特許文献1の従来技術では、コアを一致させる部分の加工難易度が非常に高くなるという問題があった。また、シングルモードでの利用を考えた場合、コアを一致させた結合部分でコア径が広くなるため高次モードが発現することが考えられ、結合部分以後にコアサイズを小さくしたとしても、各波長の光に所定量の光損失が発生する事が考えられる。また、高次モードがそのまま出力されてしまう可能性があり、プロジェクタ用の光源モジュールとしての利用方法などでは、光の照射面に光の斑が発生して画像が劣化する可能性がある。 However, the prior art of Patent Document 1 has a problem that the processing difficulty of the portion where the cores are matched becomes very high. In addition, when considering the use in single mode, it is considered that the higher order mode appears because the core diameter is wide at the joint part where the cores are matched, and even if the core size is reduced after the joint part, It is conceivable that a predetermined amount of light loss occurs in light of a wavelength. Further, there is a possibility that the higher-order mode is output as it is, and in the usage method as a light source module for a projector or the like, there is a possibility that a spot of light occurs on the light irradiation surface and the image is deteriorated.
 特許文献2の従来技術では、複数本のコアの間隔が光の入射端より出射端で狭小化されている光導波路を用いたレーザービームプリンタが示されている。しかし特許文献2の光導波路は、レーザービームプリンタに用いるものであり、光導波路の出射端における各コアの間隔は100μm程度であり、複数の光も略同程度の波長とされている。この複数の光の間隔がこの程度であっても、感光体面上での結像状態を考えるとレーザービームプリンタの用途では充分な近接といえる。しかしながら、例えば小型プロジェクタ用などの画像表示装置に用いるRGB各色を合波する光源モジュールに用いると、光学系であるレンズの収差等により出射光が一致せず、画質が劣化するという問題がある。 In the prior art of Patent Document 2, a laser beam printer using an optical waveguide in which the interval between a plurality of cores is narrowed from the light incident end to the light exit end is shown. However, the optical waveguide of Patent Document 2 is used for a laser beam printer, and the interval between the cores at the emission end of the optical waveguide is about 100 μm, and the plurality of lights have substantially the same wavelength. Even if the interval between the plurality of lights is about this level, it can be said that the distance between the plurality of lights is close enough for the application of the laser beam printer in consideration of the image formation state on the surface of the photoreceptor. However, when used in a light source module that combines RGB colors used in an image display device such as for a small projector, there is a problem that the emitted light does not match due to the aberration of the lens that is the optical system, and the image quality deteriorates.
 特許文献3の従来技術では、合波部自体に非常に高い加工精度が必要となる。また、光の吸収による損失等を考慮すると、さらなる小型化が難しいという問題がある。 In the prior art of Patent Document 3, a very high processing accuracy is required for the combined portion itself. In addition, considering the loss due to light absorption, there is a problem that further miniaturization is difficult.
 特許文献4の従来技術では、各波長の光軸をできる限り近づけるためには、光ファイバのクラッド層を薄くする必要があるが、光ファイバの耐久度が下がり光源モジュールとして組み込む際の取扱いが困難になるという問題がある。 In the prior art of Patent Document 4, in order to make the optical axes of the respective wavelengths as close as possible, it is necessary to make the cladding layer of the optical fiber thin. However, the durability of the optical fiber is lowered and it is difficult to handle it as a light source module. There is a problem of becoming.
 特許文献5の従来技術では、ダイクロイックミラーで各波長の光を合波させる点に各波長の光軸を一致させなければならないが、光軸調整の難易度が高いうえにダイクロイックミラーのサイズに制限が有り小型化が難しいという問題がある。 In the prior art of Patent Document 5, the optical axis of each wavelength must match the point where the light of each wavelength is combined by the dichroic mirror, but the degree of difficulty in adjusting the optical axis is high and the size of the dichroic mirror is limited. There is a problem that downsizing is difficult.
 そこで本発明は、以上の問題に鑑みてなされたものであり、シングルモードを維持したまま複数波長の光を十分に近接させて略同一の光軸方向に出射でき、かつ小型化を図ることが可能な光導波路素子及び光源モジュールを提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and can maintain a single mode and can emit light in a plurality of wavelengths sufficiently close to each other in substantially the same optical axis direction, and can be downsized. An object of the present invention is to provide a possible optical waveguide device and a light source module.
 上記の課題を解決するために、本発明の光導波路素子は、少なくとも3つの波長が異なる複数の光を導波する光導波路素子であって、基板と、前記複数の光をそれぞれ導波する複数のコアと、前記コアの周囲を囲むクラッドを備え、前記複数の光が入射される入射端面と、前記複数の光が出射される出射端面を有し、前記複数のコアは互いに離間して形成されており、前記入射端面での前記複数のコア同士の中心間距離よりも、前記出射端面での前記複数のコア同士の中心間距離の方が小さいことを特徴とする。 In order to solve the above problems, an optical waveguide device of the present invention is an optical waveguide device that guides a plurality of lights having at least three different wavelengths, and a plurality of waveguides that respectively guide the plurality of lights. And a clad surrounding the periphery of the core, and having an incident end face on which the plurality of lights are incident and an exit end face on which the plurality of lights are emitted, and the plurality of cores are formed apart from each other The center-to-center distance between the plurality of cores at the exit end face is smaller than the center-to-center distance between the plurality of cores at the entrance end face.
 このような光導波路素子では、複数のコアが離間して形成されているためシングルモードが維持され、かつ出射端面でのコア同士の中心間距離を小さくすることで複数の光を略同一の光軸方向に出射することができ、小型化を図ることができる。 In such an optical waveguide device, since a plurality of cores are formed apart from each other, a single mode is maintained, and a plurality of lights are made substantially the same light by reducing the center-to-center distance between the cores at the emission end face. Since it can radiate | emit to an axial direction, size reduction can be achieved.
 また、本発明の一実施態様では、前記複数のコアは前記入射端面側に一列に配置され、中央の前記コアは前記複数の光のうち最も波長の長い光を導波する構成としてもよい。 In one embodiment of the present invention, the plurality of cores may be arranged in a line on the incident end face side, and the central core may guide light having the longest wavelength among the plurality of lights.
 また、本発明の一実施態様では、前記複数のコアのうち、少なくとも2つで幅が異なる構成としてもよい。 In one embodiment of the present invention, at least two of the plurality of cores may have different widths.
 また、本発明の一実施態様では、前記複数のコアは、波長が最も長い前記光を導波するものの幅が大きい構成としてもよい。 Also, in one embodiment of the present invention, the plurality of cores may be configured to have a large width for guiding the light having the longest wavelength.
 また上記の課題を解決するために、本発明の光源モジュールは上述した光導波路素子を備え、前記複数の光をそれぞれ出射する複数のレーザダイオードと、前記複数のレーザダイオードと前記入射端面の間に備わる複数の第1のレンズと、前記光導波路素子の前記出射端面側に第2のレンズを備えることを特徴とする。 In order to solve the above-described problems, a light source module of the present invention includes the above-described optical waveguide element, and a plurality of laser diodes that respectively emit the plurality of lights, and between the plurality of laser diodes and the incident end surface. A plurality of first lenses are provided, and a second lens is provided on the emission end face side of the optical waveguide element.
 このような光源モジュールでは、シングルモードを維持しながら複数の光を略同一の光軸方向に出射でき、レンズを光導波路素子に近接して設けても収差による光軸ずれの影響を低減できるため小型化を図ることができる。 In such a light source module, it is possible to emit a plurality of lights in substantially the same optical axis direction while maintaining a single mode, and even if a lens is provided close to the optical waveguide element, the influence of the optical axis deviation due to aberration can be reduced. Miniaturization can be achieved.
 シングルモードを維持したまま複数波長の光を十分に近接させて略同一の光軸方向に出射でき、かつ小型化を図ることが可能な光導波路素子及び光源モジュールを提供できる。 It is possible to provide an optical waveguide element and a light source module that can emit light of a plurality of wavelengths sufficiently close to each other while maintaining a single mode and emit in substantially the same optical axis direction and can be miniaturized.
第一実施形態の光源モジュールを用いたプロジェクタを示す模式図である。It is a schematic diagram which shows the projector using the light source module of 1st embodiment. 光源モジュールの内部構造を示す模式図である。It is a schematic diagram which shows the internal structure of a light source module. 第一実施形態の光導波路素子の構造を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the optical waveguide element of 1st embodiment. 第一実施形態の光導波路素子のコアを説明する図であり、図4(a)は平面図、図4(b)は光入射側の端面図、図4(c)は光出射側の端面図である。FIG. 4A is a plan view, FIG. 4B is an end view on the light incident side, and FIG. 4C is an end surface on the light emitting side. FIG. 第一実施形態の赤色光、緑色光及び青色光でのコアの曲げ半径と光透過率の関係を示すグラフである。It is a graph which shows the relationship between the bending radius of the core and the light transmittance in red light, green light, and blue light of 1st embodiment. 第一実施形態の出射端面の近傍にレンズを設置したときの光軸の関係を示す模式図である。It is a schematic diagram which shows the relationship of an optical axis when a lens is installed in the vicinity of the output end surface of 1st embodiment. 第一実施形態の各コア間に存在するクラッドの幅と、光結合距離との関係を示すグラフである。It is a graph which shows the relationship between the width | variety of the clad which exists between each core of 1st embodiment, and an optical coupling distance. 第一実施形態のコアの直線領域の長さである結合距離と光結合率の関係を示すグラフである。It is a graph which shows the relationship between the coupling distance which is the length of the linear area | region of the core of 1st embodiment, and an optical coupling factor. 第一実施形態のコアの曲げ部分での各コア間に存在するクラッドの幅と、光結合率との関係を示すグラフである。It is a graph which shows the relationship between the width | variety of the clad which exists between each core in the bending part of the core of 1st embodiment, and an optical coupling factor. 第二実施形態の光導波路素子と光源の構成を示す模式図である。It is a schematic diagram which shows the structure of the optical waveguide element and light source of 2nd embodiment. 第三実施形態の光導波路素子の模式平面図である。It is a schematic plan view of the optical waveguide device of the third embodiment. 第三実施形態の出射端面での各コア間に存在するクラッドの幅と、光結合率との関係を示すグラフである。It is a graph which shows the relationship between the width | variety of the clad which exists between each core in the output end surface of 3rd embodiment, and an optical coupling factor. 第四実施形態の光導波路素子の模式平面図である。It is a schematic top view of the optical waveguide element of 4th embodiment. 第五実施形態の光導波路素子の光出射側の端面図である。It is an end elevation of the light output side of the optical waveguide device of the fifth embodiment.
 (第一実施形態)
 本発明に係る光導波路素子および光源モジュールの第一実施形態について、図面を用いて詳細に説明する。図1は、本実施形態の光源モジュールを用いた画像表示装置であるプロジェクタを示す模式図である。図1に示すプロジェクタ100は、光源モジュール1、駆動部2、MEMS(Micro Electro Mechanical Systems)ミラー3を備えている。図1に示すように、光源モジュール1から出射された光L1は、MEMSミラー3により反射されて光L2として投影され、MEMSミラー3の動作に伴って図示しないスクリーン上に走査されることで映像を作り出す。この走査に際しては、駆動部2がMEMSミラー3を駆動するのと同期して光源モジュール1内の赤色光、緑色光、青色光の各光源を駆動し、スクリーン上の各画素位置での各色の光ビームの光強度比を適切に設定することで各画素の色が決定される。プロジェクタ100から画像を投影するスクリーンまでの距離を測定するために赤外光を用いた測距装置を設けてもよい。
(First embodiment)
A first embodiment of an optical waveguide device and a light source module according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing a projector which is an image display device using the light source module of the present embodiment. A projector 100 shown in FIG. 1 includes a light source module 1, a drive unit 2, and a MEMS (Micro Electro Mechanical Systems) mirror 3. As shown in FIG. 1, the light L1 emitted from the light source module 1 is reflected by the MEMS mirror 3, projected as light L2, and scanned on a screen (not shown) as the MEMS mirror 3 operates. To produce. During this scanning, the red light, green light, and blue light sources in the light source module 1 are driven in synchronization with the drive unit 2 driving the MEMS mirror 3, and each color at each pixel position on the screen is driven. The color of each pixel is determined by appropriately setting the light intensity ratio of the light beam. A distance measuring device using infrared light may be provided in order to measure the distance from the projector 100 to the screen on which the image is projected.
 図2は、光源モジュール1の内部構造を示す模式図である。図2に示すように、光源モジュール1は、青色光を発光する光源11Bと、赤色光を発光する光源11Rと、緑色光を発光する光源11Gを備え、レンズ12B,12R,12G、光導波路素子13、レンズ14を備えている。光源11B,11R,11Gから出射された光は、それぞれ光学系であるレンズ12B,12R,12Gを通過して光導波路素子13の入射端面13aに入射される。ここで青色光、赤色光、緑色光としては、例えばそれぞれ450nm、638nm、520nm程度の波長を用いることができるが、他の波長であってもよい。 FIG. 2 is a schematic diagram showing the internal structure of the light source module 1. As shown in FIG. 2, the light source module 1 includes a light source 11B that emits blue light, a light source 11R that emits red light, and a light source 11G that emits green light, and includes lenses 12B, 12R, and 12G, and an optical waveguide element. 13 and a lens 14 are provided. Light emitted from the light sources 11B, 11R, and 11G passes through lenses 12B, 12R, and 12G, which are optical systems, and is incident on the incident end face 13a of the optical waveguide element 13. Here, as blue light, red light, and green light, for example, wavelengths of about 450 nm, 638 nm, and 520 nm can be used, respectively, but other wavelengths may be used.
 後述するように各色の光は光導波路素子13により光軸が略一致されて出射端面13bから出射され、出射された光はレンズ14により集光された光L1として光源モジュール1から出射される。 As will be described later, the light of each color is emitted from the emission end face 13b with the optical axis substantially matched by the optical waveguide element 13, and the emitted light is emitted from the light source module 1 as light L1 collected by the lens 14.
 各光源11B,11R,11Gは、駆動部2により出力が調整される。また、光の出力を調整するために、光源モジュール1の内部または外部にフォトダイオードを設けてもよく、温度調節のためにペルチェ素子などを設けてもよい。各光源11B,11R,11Gは、特に限定されるものではないが、光を光導波路素子へ入射させる必要があることからレーザダイオードを用いることが望ましい。また、光源11B,11R,11Gの間で出力差が大きい場合は、同一の発光波長を有する複数個のレーザダイオードを光源として用いてもよい。レンズ12B,12R,12Gは光源11B、11R、11Gから出射された光を効率よく入射端面13aに入射させればよく、コリメートレンズでもよく、収差が小さくなるような非球面レンズであってもよい。レンズ14は光L1がコリメートされてできるだけ小さなスポットでMEMSミラー3に照射されればよく、コリメートレンズがより好ましい。また出射端面13bの隣り合うコアから出射される各光が一定の放射角を有する場合において、光L1がコリメートされる場合、後述するように、レンズ14を通過した光軸は、なす角θのスポット中心を有する。 The output of each of the light sources 11B, 11R, and 11G is adjusted by the drive unit 2. In order to adjust the output of light, a photodiode may be provided inside or outside the light source module 1, and a Peltier element or the like may be provided for temperature adjustment. Each of the light sources 11B, 11R, and 11G is not particularly limited, but it is desirable to use a laser diode because light needs to be incident on the optical waveguide element. When the output difference among the light sources 11B, 11R, and 11G is large, a plurality of laser diodes having the same emission wavelength may be used as the light source. The lenses 12B, 12R, and 12G only need to efficiently make the light emitted from the light sources 11B, 11R, and 11G incident on the incident end surface 13a, may be a collimator lens, or may be an aspheric lens that reduces aberration. . The lens 14 only needs to be collimated with the light L1 and irradiate the MEMS mirror 3 with a spot as small as possible, and a collimating lens is more preferable. Further, when each light emitted from the adjacent cores of the emission end face 13b has a constant radiation angle, when the light L1 is collimated, the optical axis that has passed through the lens 14 has an angle θ formed as described later. It has a spot center.
 図3は、本実施形態の光導波路素子13の構造を模式的に示す斜視図である。図4は本実施形態の光導波路素子13のコアを説明する図であり、図4(a)は平面図、図4(b)は光入射側の端面図、図4(c)は光出射側の端面図である。図3および図4に示すように、光導波路素子13は、基板15と、コア16B,16R,16Gと、クラッド17とを備えている。 FIG. 3 is a perspective view schematically showing the structure of the optical waveguide device 13 of the present embodiment. 4A and 4B are diagrams illustrating the core of the optical waveguide device 13 according to this embodiment. FIG. 4A is a plan view, FIG. 4B is an end view on the light incident side, and FIG. It is an end elevation of the side. As shown in FIGS. 3 and 4, the optical waveguide device 13 includes a substrate 15, cores 16 </ b> B, 16 </ b> R, 16 </ b> G, and a clad 17.
 基板15は、石英ガラスやシリコンなどの材料で形成された略平板状の部材である。基板15の材料は特に限定されないが、クラッド17に用いる材料と同一の材料を基板15に用いる場合には、コア16B,16R,16Gの下部に形成されるクラッド17は製膜しなくてもよい。また、基板15の材料としてSiなどの使用する波長に対して光吸収を持つような材料を選択する場合、光吸収を避けるために下部のクラッド17の厚みを適宜厚くした方が良い。 The substrate 15 is a substantially flat member formed of a material such as quartz glass or silicon. The material of the substrate 15 is not particularly limited, but when the same material as that used for the clad 17 is used for the substrate 15, the clad 17 formed below the cores 16B, 16R, and 16G may not be formed. . Further, when a material having light absorption with respect to the wavelength used, such as Si, is selected as the material of the substrate 15, it is preferable to increase the thickness of the lower clad 17 as appropriate in order to avoid light absorption.
 コア16B,16R,16Gはクラッド17よりも屈折率が高い材質で形成され、クラッド17はコア16B,16R,16Gよりも屈折率が低い材質で形成されている。コア16B,16R,16Gは、入射端面13aと出射端面13bとの間に延在して形成されており、導波する光の波長に応じてシングルモードで光を導波するように幅Cwや曲率半径が設計されている。また、コア16B,16R,16Gは、最も波長の長い赤色光を導波するコア16Rが中央に配置され、各コア16B,16R,16Gは互いに接触せず所定の距離をおいて離間して形成され、出射端面13bでのそれぞれの中心間距離Dbは入射端面13aでの中心間距離Daよりも小さくされている。 The cores 16B, 16R and 16G are made of a material having a higher refractive index than that of the clad 17, and the clad 17 is made of a material having a lower refractive index than the cores 16B, 16R and 16G. The cores 16B, 16R, and 16G are formed to extend between the incident end face 13a and the outgoing end face 13b, and have a width Cw or the like so as to guide light in a single mode according to the wavelength of the guided light. The radius of curvature is designed. In addition, the cores 16B, 16R, and 16G have a core 16R that guides red light having the longest wavelength disposed at the center, and the cores 16B, 16R, and 16G are formed so as not to contact each other and spaced apart from each other by a predetermined distance. Each center distance Db at the exit end face 13b is made smaller than the center distance Da at the entrance end face 13a.
 光導波路素子13は、外部から光導波路素子13に入射する光の結合効率を上げるために、入射端面13aを研磨してもよく、反射防止膜を製膜してもよい。また、光導波路素子13から外部に出射する光の取り出し効率を上げるために、出射端面13bを研磨してもよく、反射防止膜を製膜してもよい。また、光導波路素子13の入射端面13a近傍の所定範囲において、コア16B,16R,16Gの断面サイズが端面に向かってテーパ状に拡大されていても良い。これにより光源11B,11R,11Gとコア16B,16R,16Gの光結合効率を高めることが可能となる。 The optical waveguide element 13 may polish the incident end face 13a or may form an antireflection film in order to increase the coupling efficiency of light incident on the optical waveguide element 13 from the outside. Further, in order to increase the extraction efficiency of light emitted to the outside from the optical waveguide element 13, the emission end face 13b may be polished or an antireflection film may be formed. Further, in a predetermined range in the vicinity of the incident end face 13a of the optical waveguide element 13, the cross-sectional sizes of the cores 16B, 16R, and 16G may be increased in a tapered shape toward the end face. Thereby, the optical coupling efficiency of the light sources 11B, 11R, 11G and the cores 16B, 16R, 16G can be increased.
 次に光導波路素子13の作製方法について説明する。光導波路素子13の材料には通常SiO2やB23、P25等を主成分とした無機系のガラス材料や、ポリマーなどの有機系材料が用いられ、通信帯域においてはSi等が使用される場合がある。光導波路素子13は、上記材料をコア16B,16R,16G及びクラッド17に使用し、コア16B,16R,16Gの屈折率をクラッド17より高くするために、各材料の組成及び/または組成比の変更、ドーパントの添加等で材料を選択して形成される。 Next, a method for producing the optical waveguide element 13 will be described. The optical waveguide element 13 is usually made of an inorganic glass material mainly composed of SiO 2 , B 2 O 3 , P 2 O 5 or the like, or an organic material such as a polymer. May be used. The optical waveguide element 13 uses the above materials for the cores 16B, 16R, 16G and the cladding 17, and in order to make the refractive index of the cores 16B, 16R, 16G higher than that of the cladding 17, the composition and / or the composition ratio of each material. The material is selected by changing, adding a dopant, or the like.
 成膜方法としては、例えば、化学気相成長法やスパッタリング法、火炎堆積法などで形成することができる。以下に従来から知られているガラス導波路の作製方法を説明する。まず、石英ガラスやシリコンなどを基板15として使用し、基板15上に下部のクラッド17となるガラス膜を層厚10μm程度になるように製膜する。次に、コア16B,16R,16Gとなるコアガラス膜を層厚2μm程度になるように製膜する。その後、コアガラス膜の不要な部分をフォトリソグラフィ及びドライエッチングにより除去し、複数の光導波路を積層方向に対し垂直な同一平面内に形成する。 As a film forming method, for example, it can be formed by a chemical vapor deposition method, a sputtering method, a flame deposition method, or the like. A conventionally known method for manufacturing a glass waveguide will be described below. First, quartz glass, silicon, or the like is used as the substrate 15, and a glass film to be the lower clad 17 is formed on the substrate 15 so as to have a layer thickness of about 10 μm. Next, a core glass film to be the cores 16B, 16R, and 16G is formed to have a layer thickness of about 2 μm. Thereafter, unnecessary portions of the core glass film are removed by photolithography and dry etching, and a plurality of optical waveguides are formed in the same plane perpendicular to the stacking direction.
 次に、上部のクラッド17となるガラス膜を10μm程度の厚さ形成し、熱処理を施してクラッド17層及びコア16B,16R,16Gのガラス透明化を行う。その後、基板15とその上に形成されたコア16B,16R,16G、クラッド17を所定の寸法にダイシングし、光導波路素子13を得る。 Next, a glass film to be the upper clad 17 is formed to a thickness of about 10 μm, and heat treatment is performed to make the clad 17 layer and the cores 16B, 16R, and 16G transparent. Thereafter, the substrate 15 and the cores 16B, 16R, 16G, and the clad 17 formed thereon are diced into predetermined dimensions to obtain the optical waveguide device 13.
 本実施形態においては、各コア16B,16R,16Gの幅は2μmとし、出射端面13bの近傍ではコア16B,16R,16Gは出射端面13bに対して垂直に0.1mm程度の長さの直線領域が形成されている。また、出射端面13b近傍での直線領域では、隣り合うコア同士の間に形成されているクラッド17の幅を2μmとした。 In the present embodiment, the width of each of the cores 16B, 16R, and 16G is 2 μm, and in the vicinity of the emission end face 13b, the cores 16B, 16R, and 16G are linear regions having a length of about 0.1 mm perpendicular to the emission end face 13b. Is formed. Further, in the linear region in the vicinity of the emission end face 13b, the width of the clad 17 formed between adjacent cores was set to 2 μm.
 入射端面13aでの各コア16B,16R,16Gの間隔は、利用する光源11B,11R,11Gに合わせて所定の間隔Daを設ける必要がある。光導波路素子13では、入射端面13aから出射端面13bに至るまでに各コア16B,16R,16Gの間隔を徐々に小さくすることで、出射端面13bから出射される各光の光軸を近接させる。そのため、必要に応じてコア16B,16R,16Gは入射端面13aから出射端面13bまでの間に曲げられる。 The intervals between the cores 16B, 16R, and 16G on the incident end face 13a need to be provided with a predetermined interval Da according to the light sources 11B, 11R, and 11G to be used. In the optical waveguide device 13, the optical axis of each light emitted from the emission end face 13b is brought close to each other by gradually reducing the interval between the cores 16B, 16R, and 16G from the incidence end face 13a to the emission end face 13b. Therefore, the cores 16B, 16R, and 16G are bent between the incident end face 13a and the exit end face 13b as necessary.
 光導波路素子13で光を効率よく導波させるためには、コア16B,16R,16G及びクラッド17に使用した材料の屈折率差や利用する光の波長に応じて、曲げられる限界となる最小曲げ半径が存在する。最小曲げ半径を超えてコア16B,16R,16Gを曲げると、外側のクラッド17に光が漏れだしてしまい、出射端面13bから効率よく光を取り出すことができない。 In order to guide light efficiently with the optical waveguide element 13, the minimum bending which becomes a bending limit depending on the refractive index difference of the materials used for the cores 16B, 16R, and 16G and the wavelength of light to be used. There is a radius. If the cores 16B, 16R, and 16G are bent beyond the minimum bending radius, light leaks to the outer cladding 17, and light cannot be efficiently extracted from the emission end face 13b.
 図5に、コア16B,16R,16Gとクラッド17の屈折率差が0.5%程度の時の赤色光、緑色光及び青色光でのコアの曲げ半径と光透過率の関係を示す。図5に示す通り、青色光の最小曲げ半径は2.0mm程度、緑色光の最小曲げ半径は2.5mm程度、赤色光の最小曲げ半径は5.0mm程度となる。このため、光導波路素子13をより小さくしようとすると、図3に示した本実施形態のように、最も波長の長い赤色光を中央に配置したコア16Rで導波し、両隣のコア16B,16Gに青色光及び緑色光を入射することでコア16B,16Gの曲げ半径を小さくでき、結果として光導波路素子13をより小さくすることが可能となる。 FIG. 5 shows the relationship between the core bend radius and the light transmittance for red light, green light and blue light when the difference in refractive index between the cores 16B, 16R and 16G and the clad 17 is about 0.5%. As shown in FIG. 5, the minimum bending radius of blue light is about 2.0 mm, the minimum bending radius of green light is about 2.5 mm, and the minimum bending radius of red light is about 5.0 mm. For this reason, when trying to make the optical waveguide element 13 smaller, as in the present embodiment shown in FIG. 3, the longest wavelength red light is guided by the core 16R arranged at the center, and the adjacent cores 16B and 16G are guided. By making blue light and green light incident on the cores 16B and 16G, the bending radii of the cores 16B and 16G can be reduced, and as a result, the optical waveguide element 13 can be made smaller.
 光導波路素子13をシングルモードで利用することを考えた場合、一般的にシングルモード光導波路はコア層とクラッド層の各屈折率及び屈折率差と、コア層のサイズが影響する。各コア16B,16R,16Gが交差している場合、その部分でコア幅Cwが広がることになり、この交差部分で高次モードが発生することとなる。コア16B,16R,16Gが交差した領域の後にコア幅Cwを小さくしてシングルモード光導波路にしても、発生した高次モードは存在できずに光の損失となる。したがって、入射端面13aから出射端面13bまで延在されるコア16B,16R,16Gが交差せず、所定の距離だけ離間して形成することで、各色の光でシングルモードを維持しながら光の損失を抑制できる。 When considering using the optical waveguide element 13 in a single mode, the single-mode optical waveguide is generally affected by the refractive index and refractive index difference between the core layer and the cladding layer and the size of the core layer. When each of the cores 16B, 16R, and 16G intersects, the core width Cw is widened at that portion, and a higher-order mode is generated at the intersecting portion. Even if the core width Cw is reduced after the region where the cores 16B, 16R, and 16G intersect to make a single mode optical waveguide, the generated higher-order modes cannot exist and light is lost. Accordingly, the cores 16B, 16R, and 16G extending from the incident end face 13a to the exit end face 13b do not intersect with each other, and are formed apart by a predetermined distance, so that light loss is maintained while maintaining a single mode with light of each color. Can be suppressed.
 図6は、出射端面13bの近傍にレンズ14を設置したときの光軸の関係を示す模式図である。コアの中心間距離をx(=Db)とし、出射端面13bとレンズとの設置距離をuとし、隣り合うコアから出射される光のスポット中心となる光軸のなす角度をθと定義すると、x=u×tanθを満たす。 FIG. 6 is a schematic diagram showing the relationship of the optical axes when the lens 14 is installed in the vicinity of the emission end face 13b. When the distance between the centers of the cores is defined as x (= Db), the installation distance between the emission end face 13b and the lens is defined as u, and the angle formed by the optical axis serving as the center of the spot of light emitted from the adjacent core is defined as θ. x = u × tan θ is satisfied.
 レンズ14を光源モジュール1に組み込む場合、装置を小型化するためにはレンズ14を出射端面13bに近接させる必要があるが、各コアから出射される各光の光軸のなす角度を小さくしようとすると、前述の式から明らかなように、隣り合うコアの間隔xを小さくする必要がある。プロジェクタ100では、光源モジュール1から20~30mm程度離れた位置にMEMSミラー3が設置され、光源モジュール1からの出射光L1はMEMSミラー3に入射される。そのためレンズ14は、MEMSミラー3よりも光導波路素子13の出射端面13bに近い位置に設置する必要がある。 When the lens 14 is incorporated in the light source module 1, it is necessary to bring the lens 14 close to the emission end face 13b in order to reduce the size of the apparatus. However, an attempt is made to reduce the angle formed by the optical axis of each light emitted from each core. Then, as is clear from the above formula, it is necessary to reduce the interval x between adjacent cores. In the projector 100, the MEMS mirror 3 is installed at a position about 20 to 30 mm away from the light source module 1, and the emitted light L1 from the light source module 1 enters the MEMS mirror 3. Therefore, the lens 14 needs to be installed at a position closer to the emission end face 13 b of the optical waveguide element 13 than the MEMS mirror 3.
 例えば、レンズ14を光源モジュール1から10mm程度離れた位置に設置した場合、隣り合うコアの中心間距離を5μm程度以下にすることで、隣り合うコアから出射される光のスポット中心となる光軸のなす角度θを0.03°程度に抑えることができる。したがって、出射端面13bで各コア16B,16R,16Gの間隔Dbをできる限り近づけることで、出射される各色の光のスポット中心を近づけて略同一の光軸とすることができる。各色の光がスポット中心を近づけたシングルモードの光L1として照射されることで、投影される画像の劣化を抑制することができる。 For example, when the lens 14 is installed at a position about 10 mm away from the light source module 1, the optical axis that becomes the center of the spot of light emitted from the adjacent cores is set by setting the distance between the centers of the adjacent cores to about 5 μm or less. Can be suppressed to about 0.03 °. Therefore, by making the interval Db between the cores 16B, 16R, and 16G as close as possible on the emission end face 13b, the spot centers of the emitted light of each color can be brought close to each other so as to have substantially the same optical axis. By irradiating the light of each color as single-mode light L1 with the center of the spot close, deterioration of the projected image can be suppressed.
 また一般的に、光導波路のコア間隔を小さくするとコア間で光結合してしまい、あるコアを導波する光が隣り合うコアに移動してしまう。本実施形態でも、出射端面13bでの各コア16B,16R,16Gの間隔Dbを小さくするために、出射端面13b近傍での直線領域での間隔を小さくしすぎると、隣り合うコアに光の一部が移動してしまい、同一波長の光が複数カ所から出射して複数のスポットを形成してしまう。光源モジュール1をプロジェクタ100に用いる場合には、複数のスポットが照射されると1画素を形成することが困難になり画像が劣化してしまう。したがって本実施形態の光導波路素子13では、出射端面13bで各コア16B,16R,16Gの間隔Dbをできる限り近づけながらも、隣り合うコア間の光結合を低減する所定距離を隔てる必要がある。 In general, when the core interval of the optical waveguide is reduced, optical coupling occurs between the cores, and light guided through a certain core moves to the adjacent core. Also in this embodiment, in order to reduce the distance Db between the cores 16B, 16R, and 16G on the emission end face 13b, if the distance in the linear region in the vicinity of the emission end face 13b is too small, the light is applied to the adjacent core. The part moves, and light of the same wavelength is emitted from a plurality of places to form a plurality of spots. When the light source module 1 is used in the projector 100, it is difficult to form one pixel when a plurality of spots are irradiated, and the image deteriorates. Therefore, in the optical waveguide device 13 of the present embodiment, it is necessary to provide a predetermined distance for reducing optical coupling between adjacent cores while making the distance Db between the cores 16B, 16R, and 16G as close as possible at the emission end face 13b.
 図7は、各コア間に存在するクラッドの幅と、光結合距離との関係を示すグラフである。各コア16B,16R,16Gの幅Cwを2.0μmとしている。光結合距離とは、隣り合うコアへ完全に光が移動した後に再び元のコアに光が完全に戻るまでの長さである。図7に示されたように、各コア間に存在するクラッド17の幅を広くとることで光結合距離が長くなり、各コア間での光の移動を起こりにくくすることができる。 FIG. 7 is a graph showing the relationship between the width of the clad existing between the cores and the optical coupling distance. The width Cw of each core 16B, 16R, 16G is 2.0 μm. The optical coupling distance is a length until light completely returns to the original core again after the light completely moves to the adjacent core. As shown in FIG. 7, by increasing the width of the clad 17 existing between the cores, the optical coupling distance is increased, and the movement of light between the cores can be made difficult to occur.
 図8は、コアの直線領域の長さである結合距離と光結合率の関係を示すグラフである。グラフの横軸は結合距離を表し、縦軸は光結合率を光強度の相対値として表している。各コアの幅Cwを2.0μmとし、その間に存在するクラッド17の幅を2.0μmとしている。図8に示されたように、あるコアを導波している光が一定距離を移動すると光が隣り合うコアへ光が完全に移行するが、その距離を短くすることで光の移動量を減らすことが可能である。例えば、赤色光を導波させた場合、光は約0.7mmで完全に隣のコアへ移動する。例えば光の移動を20%程度に収めることを考えると、隣り合うコアの結合距離を0.2mm以下に設定すれば良く、光の移動を減らすためには可能な限り各コアが近接する直線領域を短くした方が良い。 FIG. 8 is a graph showing the relationship between the coupling distance, which is the length of the linear region of the core, and the optical coupling rate. The horizontal axis of the graph represents the coupling distance, and the vertical axis represents the optical coupling rate as a relative value of light intensity. The width Cw of each core is 2.0 μm, and the width of the clad 17 existing between them is 2.0 μm. As shown in FIG. 8, when the light guided through a certain core moves a certain distance, the light completely moves to the adjacent core, but by reducing the distance, the amount of movement of the light can be reduced. It is possible to reduce. For example, when red light is guided, the light moves completely to the next core at about 0.7 mm. For example, considering that the movement of light is limited to about 20%, the coupling distance between adjacent cores may be set to 0.2 mm or less, and in order to reduce the movement of light, a linear region where each core is as close as possible. It is better to shorten
 前述の通り、出射端面13b近傍の直線領域は短い方が好ましいが、光導波路素子13からの出射光を出射端面13bに対して垂直に出射させるためには、ある程度の直線領域を設ける必要がある。また、出射端面13b近傍の直線領域の前に曲げ部分が存在するが、曲げ部分においてもコア間での光移動は発生する。 As described above, it is preferable that the straight line area in the vicinity of the emission end face 13b is short. However, in order to emit light emitted from the optical waveguide element 13 perpendicularly to the emission end face 13b, it is necessary to provide a certain degree of straight line area. . In addition, a bent portion exists in front of the linear region in the vicinity of the emission end face 13b, but light movement between the cores also occurs in the bent portion.
 図9は、コアの曲げ部分での各コア間に存在するクラッドの幅と、光結合率との関係を示すグラフである。コア16B,16Gの曲率半径を5mm程度とし、出射端面13b近傍に直線領域を設けない曲げ部分の終端位置でのクラッドの幅を示している。図9に示されたように、コア間に存在するクラッド幅を広くするほど光の結合率が低下することが分かる。例えば、赤色光において結合率を5%程度に抑えるためには、曲げ部分でのクラッド幅を2μm以上設ければ良い。 FIG. 9 is a graph showing the relationship between the width of the clad existing between the cores at the bent portion of the core and the optical coupling rate. The radius of curvature of the cores 16B and 16G is about 5 mm, and the width of the cladding at the end position of the bent portion where no linear region is provided in the vicinity of the emission end face 13b is shown. As shown in FIG. 9, it can be seen that the light coupling ratio decreases as the width of the clad existing between the cores is increased. For example, in order to suppress the coupling rate to about 5% in red light, the clad width at the bent portion may be set to 2 μm or more.
 コア間での光移動を低減するために、各コアの直線領域を短くして曲率半径を変えた曲げ部分を複数設けてもよい。また、各コア間のクラッド17にエアトレンチを形成してもよい。また、各コアの幅を一致しないように設定してもよい。また、各コアの間に光反射体や光吸収体、コア及びクラッドとは異なる屈折率の材料を別に設けてもよい。また、各コアから出射される光の光軸を揃える方法として、回折光学素子(DOE:Diffractive optical element)やマイクロレンズアレイなどの光学素子を使用して、光導波路素子の各コアから出射される光の光軸をより近接させてもよい。 In order to reduce the light movement between the cores, a plurality of bent portions may be provided by changing the radius of curvature by shortening the linear region of each core. An air trench may be formed in the clad 17 between the cores. Also, the widths of the cores may be set so as not to match. Further, a material having a refractive index different from that of the light reflector, the light absorber, the core, and the clad may be provided between the cores. In addition, as a method of aligning the optical axes of light emitted from each core, optical elements such as a diffractive optical element (DOE) and a microlens array are used to emit the light from each core of the optical waveguide element. The optical axes of light may be closer.
 本実施形態の光導波路素子13およびそれを用いた光源モジュール1では、各色の光を導波するコアを交差させず、コア間での光移動が抑制される所定距離だけ離間しているため、シングルモードを維持して光損失を低減し、複数波長の光を十分に近接させて略同一の光軸方向に出射できるため、画像表示の劣化を抑制できる。また、各波長の光源に対応した適切な配置を取ることで、隣り合うコア間での光の移動を抑制しながらも光導波路素子をより小さくすることが可能となる。 In the optical waveguide element 13 of the present embodiment and the light source module 1 using the optical waveguide element 13, the cores that guide the light of each color are not crossed and are separated by a predetermined distance that suppresses light movement between the cores. The single mode is maintained to reduce optical loss, and light of a plurality of wavelengths can be made sufficiently close to each other and emitted in substantially the same optical axis direction, so that deterioration of image display can be suppressed. Further, by taking an appropriate arrangement corresponding to the light source of each wavelength, the optical waveguide element can be made smaller while suppressing the movement of light between adjacent cores.
 (第二実施形態)
 次に本発明の第二実施形態について図面を用いて説明する。図10は、本実施形態の光導波路素子13と光源の構成を示す模式図である。図10に示すように、本実施形態では緑色光を発光する光源11Gを二つ備え、対応するコア16Gも2本であり、合計でコアが4本の光導波路素子13を示している。
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 10 is a schematic diagram showing the configuration of the optical waveguide device 13 and the light source of the present embodiment. As shown in FIG. 10, in this embodiment, two light sources 11G that emit green light are provided, the corresponding cores 16G are also two, and the optical waveguide element 13 has four cores in total.
 光源11Gとしてレーザダイオードを用いる場合には、一つのレーザダイオードでは光源11B,11Gほどの出力を得ることが困難である。したがって、緑色光の光源11Gを複数設けることで緑色光の合計出力を向上させることができる。各波長の光源11B,11R,11Gを配列した時に、最も波長の大きい赤色光を導波するコア16Rが中央にくるように配列されていれば、コア16B,16Gの最小曲げ半径はコア16Rよりも小さいので光導波路素子13の小型化を図ることができる。光導波路素子13のコアの本数は特に限定されるものではなく、4本以上であってもよく、コア16Rが中央に位置していればコア16B,16Gの配列はどのようなものでもよい。 In the case where a laser diode is used as the light source 11G, it is difficult to obtain the output of the light sources 11B and 11G with a single laser diode. Therefore, the total output of green light can be improved by providing a plurality of green light sources 11G. When the light sources 11B, 11R, and 11G of the respective wavelengths are arranged, if the core 16R that guides the red light having the largest wavelength is arranged at the center, the minimum bending radius of the cores 16B and 16G is larger than that of the core 16R. Therefore, the optical waveguide element 13 can be downsized. The number of cores of the optical waveguide element 13 is not particularly limited, and may be four or more, and the cores 16B and 16G may be arranged in any manner as long as the core 16R is located in the center.
 本実施形態の光導波路素子13およびそれを用いた光源モジュール1でも、各色の光を導波するコアを交差させず、コア間での光移動が抑制される所定距離だけ離間しているため、シングルモードを維持して光損失を低減し、複数波長の光を十分に近接させて略同一の光軸方向に出射できるため、画像表示の劣化を抑制できる。また、各波長の光源に対応した適切な配置を取ることで、隣り合うコア間での光の移動を抑制しながらも光導波路素子をより小さくすることが可能となる。 Even in the optical waveguide element 13 of the present embodiment and the light source module 1 using the optical waveguide element 13, the cores that guide light of each color are not crossed and are separated by a predetermined distance that suppresses light movement between the cores. The single mode is maintained to reduce optical loss, and light of a plurality of wavelengths can be made sufficiently close to each other and emitted in substantially the same optical axis direction, so that deterioration of image display can be suppressed. Further, by taking an appropriate arrangement corresponding to the light source of each wavelength, the optical waveguide element can be made smaller while suppressing the movement of light between adjacent cores.
 (第三実施形態)
 次に本発明の第三実施形態について図面を用いて説明する。図11は、第三実施形態の光導波路素子13の模式平面図である。本実施形態では、波長の長い光を導波するコアの幅を大きくしている。導波する光のモードはコア幅Cwに関係が有り、コア幅Cwは小さい方がシングルモードになりやすいが、導波する光の波長が長いほどコアサイズが大きくてもシングルモードになりやすい。そこで本実施形態では、コア16Bのコア幅を1.8μm、コア16Rのコア幅を2.0μm、コア16Gのコア幅を1.9μmとした。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 11 is a schematic plan view of the optical waveguide element 13 of the third embodiment. In the present embodiment, the width of the core that guides light having a long wavelength is increased. The mode of light to be guided is related to the core width Cw, and the smaller the core width Cw, the easier it becomes a single mode. However, the longer the wavelength of the guided light, the easier it becomes a single mode even if the core size is large. Therefore, in the present embodiment, the core width of the core 16B is 1.8 μm, the core width of the core 16R is 2.0 μm, and the core width of the core 16G is 1.9 μm.
 図12は、本実施形態の出射端面13bでの各コア間に存在するクラッドの幅と、光結合率との関係を示すグラフである。図12に示されたように、コア間のクラッド幅を広くするほど光の結合率が低下することが分かるが、第一実施形態の条件と比較して、クラッド幅に対して光結合率が低下している。例えば、赤色光において光結合率を5%程度に抑えるためにはクラッド幅を1.5μm程度以上設ければよい。このように、導波する光の波長が長いほど各コア16B,16R,16Gの幅を大きくすることで、隣り合うコアでの光結合による光移動を抑制し、各コアから単一の波長のみを取り出して画像の劣化を抑制することが可能となる。 FIG. 12 is a graph showing the relationship between the width of the clad existing between the cores on the emission end face 13b of the present embodiment and the optical coupling rate. As shown in FIG. 12, it can be seen that the light coupling rate decreases as the cladding width between the cores is increased. However, compared with the conditions of the first embodiment, the optical coupling rate is smaller than the cladding width. It is falling. For example, in order to suppress the optical coupling rate to about 5% in red light, the clad width should be about 1.5 μm or more. Thus, by increasing the width of each core 16B, 16R, and 16G as the wavelength of the guided light increases, light movement due to optical coupling between adjacent cores is suppressed, and only a single wavelength from each core is suppressed. It is possible to take out the image and suppress the deterioration of the image.
 本実施形態の光導波路素子13およびそれを用いた光源モジュール1でも、各色の光を導波するコアを交差させず、コア間での光移動が抑制される所定距離だけ離間しているため、シングルモードを維持して光損失を低減し、複数波長の光を十分に近接させて略同一の光軸方向に出射できるため、画像表示の劣化を抑制できる。また、各波長の光源に対応した適切な配置を取ることで、隣り合うコア間での光の移動を抑制しながらも光導波路素子をより小さくすることが可能となる。 Even in the optical waveguide element 13 of the present embodiment and the light source module 1 using the optical waveguide element 13, the cores that guide light of each color are not crossed and are separated by a predetermined distance that suppresses light movement between the cores. The single mode is maintained to reduce optical loss, and light of a plurality of wavelengths can be made sufficiently close to each other and emitted in substantially the same optical axis direction, so that deterioration of image display can be suppressed. Further, by taking an appropriate arrangement corresponding to the light source of each wavelength, the optical waveguide element can be made smaller while suppressing the movement of light between adjacent cores.
 (第四実施形態)
 次に本発明の第四実施形態について図面を用いて説明する。図13は、第四実施形態の光導波路素子13の模式平面図である。第一実施形態の光導波路素子13では、青色光及び緑色光に対応したコア16B,16Gはそれぞれ2回曲げられているが、本実施形態では出射端面13bに近い側で1回曲げられている。また、コア16B,16Gは入射端面13aに対して垂直ではなく傾斜して設けられている。これにより、コア16B,16Gの曲げ部分を減らすことができ、光導波路素子13をより小型化することが可能となる。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 13 is a schematic plan view of the optical waveguide device 13 of the fourth embodiment. In the optical waveguide device 13 of the first embodiment, the cores 16B and 16G corresponding to blue light and green light are each bent twice, but in this embodiment, the cores 16B and 16G are bent once on the side close to the emission end face 13b. . Further, the cores 16B and 16G are provided to be inclined rather than perpendicular to the incident end face 13a. Thereby, the bending part of the cores 16B and 16G can be reduced, and the optical waveguide element 13 can be further downsized.
 本実施形態の光導波路素子13およびそれを用いた光源モジュール1でも、各色の光を導波するコアを交差させず、コア間での光移動が抑制される所定距離だけ離間しているため、シングルモードを維持して光損失を低減し、複数波長の光を十分に近接させて略同一の光軸方向に出射できるため、画像表示の劣化を抑制できる。また、各波長の光源に対応した適切な配置を取ることで、隣り合うコア間での光の移動を抑制しながらも光導波路素子をより小さくすることが可能となる。 Even in the optical waveguide element 13 of the present embodiment and the light source module 1 using the optical waveguide element 13, the cores that guide light of each color are not crossed and are separated by a predetermined distance that suppresses light movement between the cores. The single mode is maintained to reduce optical loss, and light of a plurality of wavelengths can be made sufficiently close to each other and emitted in substantially the same optical axis direction, so that deterioration of image display can be suppressed. Further, by taking an appropriate arrangement corresponding to the light source of each wavelength, the optical waveguide element can be made smaller while suppressing the movement of light between adjacent cores.
 (第五実施形態)
 次に本発明の第五実施形態について図面を用いて説明する。図14は、第五実施形態の光導波路素子13の光出射側の端面図である。第一実施形態では、各コア16B,16R,16Gは同一の平面上に一列に配置されているが、本実施形態では各コア16B,16R,16Gに高低差を設けている。このようなコア層の配置を取ることで、出射端面13bでの各コアの間隔を小さくすることができ、各出射される光のスポット中心をより近接させて略同一の光軸とすることが可能となる。
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described with reference to the drawings. FIG. 14 is an end view of the light emitting side of the optical waveguide device 13 of the fifth embodiment. In the first embodiment, the cores 16B, 16R, and 16G are arranged in a line on the same plane, but in the present embodiment, the cores 16B, 16R, and 16G are provided with a height difference. By adopting such a core layer arrangement, the interval between the cores on the emission end face 13b can be reduced, and the center of the spots of the emitted light can be made closer to have substantially the same optical axis. It becomes possible.
 本実施形態の光導波路素子13およびそれを用いた光源モジュール1でも、各色の光を導波するコアを交差させず、コア間での光移動が抑制される所定距離だけ離間しているため、シングルモードを維持して光損失を低減し、複数波長の光を十分に近接させて略同一の光軸方向に出射できるため、画像表示の劣化を抑制できる。また、各波長の光源に対応した適切な配置を取ることで、隣り合うコア間での光の移動を抑制しながらも光導波路素子をより小さくすることが可能となる。 Even in the optical waveguide element 13 of the present embodiment and the light source module 1 using the optical waveguide element 13, the cores that guide light of each color are not crossed and are separated by a predetermined distance that suppresses light movement between the cores. The single mode is maintained to reduce optical loss, and light of a plurality of wavelengths can be made sufficiently close to each other and emitted in substantially the same optical axis direction, so that deterioration of image display can be suppressed. Further, by taking an appropriate arrangement corresponding to the light source of each wavelength, the optical waveguide element can be made smaller while suppressing the movement of light between adjacent cores.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 なお、この出願は、2015年11月27日に日本で出願された特願2015-231439に基づく優先権を請求する。これに言及することにより、その全ての内容は本願出願に組み込まれるものである。 This application claims priority based on Japanese Patent Application No. 2015-231439 filed in Japan on November 27, 2015. By referring to this, the entire contents thereof are incorporated into the present application.
 本発明によれば、特に、複数波長の光を導波させる光導波路素子とそれを用いた光源モジュールの技術分野において、シングルモードを維持したまま複数波長の光を十分に近接させて略同一の光軸方向に出射でき、かつ小型化を実現することができる。 According to the present invention, in particular, in the technical field of an optical waveguide element that guides light of a plurality of wavelengths and a light source module using the same, the light of a plurality of wavelengths is made sufficiently close to each other while maintaining a single mode. The light can be emitted in the direction of the optical axis, and downsizing can be realized.
1…光源モジュール
100…プロジェクタ
11B,11R,11G…光源
12B,12R,12G…レンズ
13…光導波路素子
13a…入射端面
13b…出射端面
14…レンズ
15…基板
16B、16R,16G…コア
17…クラッド
2…駆動部
3…MEMSミラー
DESCRIPTION OF SYMBOLS 1 ... Light source module 100 ... Projector 11B, 11R, 11G ... Light source 12B, 12R, 12G ... Lens 13 ... Optical waveguide element 13a ... Incident end surface 13b ... Outlet end surface 14 ... Lens 15 ... Substrate 16B, 16R, 16G ... Core 17 ... Cladding 2 ... Drive unit 3 ... MEMS mirror

Claims (5)

  1.  少なくとも3つの波長が異なる複数の光を導波する光導波路素子であって、
     基板と、前記複数の光をそれぞれ導波する複数のコアと、前記コアの周囲を囲むクラッドを備え、
     前記複数の光が入射される入射端面と、前記複数の光が出射される出射端面を有し、前記複数のコアは互いに離間して形成されており、
     前記入射端面での前記複数のコア同士の中心間距離よりも、前記出射端面での前記複数のコア同士の中心間距離の方が小さいことを特徴とする光導波路素子。
    An optical waveguide device for guiding a plurality of light beams having different wavelengths,
    A substrate, a plurality of cores respectively guiding the plurality of lights, and a clad surrounding the core;
    The plurality of lights are incident end faces and the plurality of lights are emitted end faces, the plurality of cores are formed apart from each other;
    An optical waveguide device characterized in that a center-to-center distance between the plurality of cores at the exit end face is smaller than a center-to-center distance between the plurality of cores at the entrance end face.
  2.  請求項1に記載の光導波路素子であって、
     前記複数のコアは前記入射端面側に一列に配置され、中央の前記コアは前記複数の光のうち最も波長の長い光を導波することを特徴とする光導波路素子。
    The optical waveguide device according to claim 1,
    The plurality of cores are arranged in a line on the incident end face side, and the core in the center guides light having the longest wavelength among the plurality of lights.
  3.  請求項1または2に記載の光導波路素子であって、
     前記複数のコアのうち、少なくとも2つで幅が異なることを特徴とする光導波路素子。
    The optical waveguide device according to claim 1 or 2,
    An optical waveguide device characterized in that at least two of the plurality of cores have different widths.
  4.  請求項1乃至3のいずれか一つに記載の光導波路素子であって、
     前記複数のコアは、波長が最も長い前記光を導波するものの幅が大きいことを特徴とする光導波路素子。
    An optical waveguide device according to any one of claims 1 to 3,
    The optical waveguide device, wherein the plurality of cores have a large width for guiding the light having the longest wavelength.
  5.  請求項1乃至4のいずれか一つに記載の光導波路素子を備え、
     前記複数の光をそれぞれ出射する複数のレーザダイオードと、
     前記複数のレーザダイオードと前記入射端面の前記複数のコアの間に備わる複数の第1のレンズと、
     前記光導波路素子の前記出射端面側に第2のレンズを備えることを特徴とする光源モジュール。
    An optical waveguide device according to any one of claims 1 to 4, comprising:
    A plurality of laser diodes each emitting the plurality of lights;
    A plurality of first lenses provided between the plurality of laser diodes and the plurality of cores of the incident end face;
    A light source module comprising a second lens on the light emitting end face side of the optical waveguide element.
PCT/JP2016/080404 2015-11-27 2016-10-13 Optical waveguide element and light source module WO2017090333A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-231439 2015-11-27
JP2015231439 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017090333A1 true WO2017090333A1 (en) 2017-06-01

Family

ID=58764015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080404 WO2017090333A1 (en) 2015-11-27 2016-10-13 Optical waveguide element and light source module

Country Status (2)

Country Link
TW (1) TW201734525A (en)
WO (1) WO2017090333A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020618A (en) * 2017-07-19 2019-02-07 株式会社ネクスティエレクトロニクス Optical combiner and method of manufacturing optical combiner
JP2019035876A (en) * 2017-08-17 2019-03-07 日本電信電話株式会社 Optical integrated circuit
JP2019035877A (en) * 2017-08-17 2019-03-07 日本電信電話株式会社 Optical integrated circuit
WO2020079862A1 (en) * 2018-10-18 2020-04-23 国立大学法人福井大学 Optical multiplexer, light source module, two-dimensional optical scanning device, and image projection device
WO2021177166A1 (en) * 2020-03-04 2021-09-10 セーレンKst株式会社 Optical multiplexing device
JPWO2022044714A1 (en) * 2020-08-26 2022-03-03
WO2023037702A1 (en) * 2021-09-07 2023-03-16 セーレンKst株式会社 Optical waveguide element and light source module
WO2023153419A1 (en) * 2022-02-10 2023-08-17 京セラ株式会社 Optical waveguide substrate, optical waveguide package, and light source module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112119335B (en) * 2018-05-18 2023-05-02 Agc株式会社 Polymer optical waveguide and composite optical waveguide
US11493760B2 (en) * 2019-03-27 2022-11-08 Meta Platforms Technologies LLC Waveguide concentrator for light source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116692A (en) * 1995-10-16 1997-05-02 Sharp Corp Waveguide type image reader
JP2000329951A (en) * 1999-05-18 2000-11-30 Minolta Co Ltd Waveguide type multi-light source unit
JP2000329956A (en) * 1999-05-24 2000-11-30 Minolta Co Ltd Optical waveguide
JP2005189385A (en) * 2003-12-25 2005-07-14 Sony Corp Branch type optical waveguide, light source module, and optical information processing unit
JP2008004644A (en) * 2006-06-20 2008-01-10 Harison Toshiba Lighting Corp High luminance light emitting device
JP2014110257A (en) * 2012-11-30 2014-06-12 Japan Oclaro Inc Optical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116692A (en) * 1995-10-16 1997-05-02 Sharp Corp Waveguide type image reader
JP2000329951A (en) * 1999-05-18 2000-11-30 Minolta Co Ltd Waveguide type multi-light source unit
JP2000329956A (en) * 1999-05-24 2000-11-30 Minolta Co Ltd Optical waveguide
JP2005189385A (en) * 2003-12-25 2005-07-14 Sony Corp Branch type optical waveguide, light source module, and optical information processing unit
JP2008004644A (en) * 2006-06-20 2008-01-10 Harison Toshiba Lighting Corp High luminance light emitting device
JP2014110257A (en) * 2012-11-30 2014-06-12 Japan Oclaro Inc Optical device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020618A (en) * 2017-07-19 2019-02-07 株式会社ネクスティエレクトロニクス Optical combiner and method of manufacturing optical combiner
JP2019035876A (en) * 2017-08-17 2019-03-07 日本電信電話株式会社 Optical integrated circuit
JP2019035877A (en) * 2017-08-17 2019-03-07 日本電信電話株式会社 Optical integrated circuit
WO2020079862A1 (en) * 2018-10-18 2020-04-23 国立大学法人福井大学 Optical multiplexer, light source module, two-dimensional optical scanning device, and image projection device
JP2020064218A (en) * 2018-10-18 2020-04-23 国立大学法人福井大学 Optical multiplexer, light source module, two-dimensional optical scanning device and image projection device
WO2021177166A1 (en) * 2020-03-04 2021-09-10 セーレンKst株式会社 Optical multiplexing device
JPWO2022044714A1 (en) * 2020-08-26 2022-03-03
WO2022044714A1 (en) * 2020-08-26 2022-03-03 京セラ株式会社 Optical waveguide package, light-emitting device, and projection system
WO2023037702A1 (en) * 2021-09-07 2023-03-16 セーレンKst株式会社 Optical waveguide element and light source module
WO2023153419A1 (en) * 2022-02-10 2023-08-17 京セラ株式会社 Optical waveguide substrate, optical waveguide package, and light source module

Also Published As

Publication number Publication date
TW201734525A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
WO2017090333A1 (en) Optical waveguide element and light source module
US10185091B2 (en) Multiplexer, image projection apparatus using the multiplexer and image projection system
US8096668B2 (en) Illumination systems utilizing wavelength conversion materials
US20100202129A1 (en) Illumination system utilizing wavelength conversion materials and light recycling
KR20180105151A (en) Non-telecentric radial micropixel array optical modulator and method of manufacturing the same
US8157388B2 (en) System and method for a projection display system using an optical lightguide
US20210152794A1 (en) Optical multiplexer, light source module, two-dimensional optical scanning device, and image projection device
US20210149110A1 (en) Optical waveguide-type optical multiplexer, optical waveguide-type multiplexing light source optical device and image projecting device
KR20200016210A (en) Scanning Display Device and Scanning Display System
JP6964093B2 (en) Projection optics, image projection equipment, and image projection system
US20220382137A1 (en) Light-source optical system, light-source device, and image display apparatus
US9690106B2 (en) Light homogenization device
WO2006064500A2 (en) Device and method for optical resizing
US7439998B2 (en) Optical recording apparatus
EP4194746A1 (en) Optical system
CN114280729A (en) Optical waveguide type light combiner and projector using the same
WO2020079862A1 (en) Optical multiplexer, light source module, two-dimensional optical scanning device, and image projection device
JP7105498B2 (en) Optical waveguide multiplexer, light source module, two-dimensional light beam scanner, and light beam scanning image projector
JP6963234B2 (en) Manufacturing method of photosynthetic device and photosynthetic wave device
WO2023037702A1 (en) Optical waveguide element and light source module
US20230092838A1 (en) Optoelectronic semiconductor device and glasses
JP6303323B2 (en) Optical device
JP7340230B2 (en) optical combiner
JP2017187719A (en) Light source module
JP2016110028A (en) Virtual image display device and image projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP