WO2014077069A1 - Optical multiplexer device - Google Patents

Optical multiplexer device Download PDF

Info

Publication number
WO2014077069A1
WO2014077069A1 PCT/JP2013/077821 JP2013077821W WO2014077069A1 WO 2014077069 A1 WO2014077069 A1 WO 2014077069A1 JP 2013077821 W JP2013077821 W JP 2013077821W WO 2014077069 A1 WO2014077069 A1 WO 2014077069A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
lens member
fiber
light
Prior art date
Application number
PCT/JP2013/077821
Other languages
French (fr)
Japanese (ja)
Inventor
大登 正敬
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2014077069A1 publication Critical patent/WO2014077069A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2848Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers having refractive means, e.g. imaging elements between light guides as splitting, branching and/or combining devices, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends

Definitions

  • the present invention relates to an optical multiplexing device that combines a plurality of lights.
  • Patent Documents 1 and 2 disclose techniques for multiplexing light.
  • the technique described in Patent Document 1 combines light by coupling one end of a plurality of waveguides.
  • the technique described in Patent Document 2 combines light by welding a plurality of optical fibers on the input side to one optical fiber on the output side.
  • Patent Document 3 describes the following optical switch device. First, the light incident surfaces of a plurality of optical fibers on which output light is incident are aligned with each other. Then, by sliding the parabolic mirror parallel to these incident surfaces, the optical fiber on which light is incident is switched.
  • Patent Document 4 describes that light emitted from a light source is collimated using a reflecting surface having a curved surface.
  • an object of the present invention is to provide a compact optical multiplexer.
  • the optical multiplexer includes a plurality of first optical fibers, second optical fibers, lens members, and third optical fibers.
  • the second optical fiber has a plurality of cores.
  • the plurality of first optical fibers are optically connected to different cores of the second optical fiber at one end of the second optical fiber.
  • the lens member is opposed to the other end of the second fiber.
  • One end of the third optical fiber is opposed to the other end of the second fiber via the lens member.
  • the optical multiplexing device can be miniaturized.
  • FIG. 1 is a cross-sectional view illustrating a configuration of an optical multiplexing device 10 according to the first embodiment.
  • the optical multiplexing device 10 according to the present embodiment includes a plurality of first optical fibers 110, a second optical fiber 120, a lens member 130, and a third optical fiber 140.
  • the second optical fiber 120 has a plurality of cores 122. At one end 124 of the second optical fiber 120, the plurality of first optical fibers 110 are optically connected to different cores 122.
  • the lens member 130 faces the other end 126 of the second optical fiber 120.
  • the third optical fiber 140 has one end 144 opposed to the other end 126 of the second optical fiber 120 via the lens member 130. Details will be described below.
  • the first optical fiber 110 is a single mode fiber, for example, and has one core 112. However, the first optical fiber 110 may be a multimode fiber. In the present embodiment, one end 114 of the first optical fiber 110 is joined to one end 124 of the second optical fiber 120. However, the one end 114 of the first optical fiber 110 and the one end 124 of the second optical fiber 120 may be optically connected via a connector.
  • the one end 114 of the first optical fiber 110 is thinner than the other part of the first optical fiber 110 because it is melted and stretched when it is joined to the one end 124 of the second optical fiber 120. Further, the core 112 of the first optical fiber 110 is joined to the core 122 of the second optical fiber 120.
  • the number of first optical fibers 110 is the same as the number of cores 122 of the second optical fiber 120, but may be smaller than the number of cores 122.
  • the second optical fiber 120 is a multi-core fiber having a plurality of cores 122.
  • a multi-core fiber used for communication can be used.
  • the plurality of cores 122 are parallel to each other.
  • the lens member 130 condenses the light emitted from the plurality of cores 122 on one end 144 of the third optical fiber 140.
  • the lens member 130 is made of a translucent material, one end 132 is joined to the other end 126 of the second optical fiber 120, and the other end 134 is a curved surface. In this way, the coupling loss of light can be reduced.
  • the curved surface of the other end 134 is a paraboloid, for example.
  • the lens member 130 is formed using, for example, a graded index fiber. In this case, one end 132 of the lens member 130 and the other end 126 of the second optical fiber 120 are welded.
  • the other end 134 of the lens member 130 is formed into a curved surface by polishing, for example. However, the other end 134 may be processed into a curved surface by, for example, arc discharge.
  • the lens member 130 is formed using a graded index fiber, the one end 132 of the lens member 130 can be easily joined to the other end 126 of the second optical fiber 120.
  • the third optical fiber 140 is, for example, a single mode fiber and has one core 142. However, the third optical fiber 140 may be a multimode fiber. The third optical fiber 140 is preferably arranged so that a portion of the core 142 positioned at the one end 144 overlaps the focal point of the lens member 130.
  • the optical multiplexing device 10 includes a holding member 150.
  • the holding member 150 holds the other end 126 of the second optical fiber 120, the third optical fiber 140, and one end 144 of the third optical fiber 140.
  • the second optical fiber 120, the lens member 130, and the third optical fiber 140 are fixed so that the central axes overlap each other.
  • the holding member 150 is, for example, a cylindrical member, and the inner wall holds the other end 126 of the second optical fiber 120, the third optical fiber 140, and one end 144 of the third optical fiber 140.
  • the holding member 150 is cylindrical and the inner diameter thereof is equal to the diameter of the second optical fiber 120. Or slightly smaller.
  • FIG. 2 is a cross-sectional view of the second optical fiber 120.
  • the second optical fiber 120 has a plurality of cores 122.
  • one core 122 is disposed on the central axis of the second optical fiber 120, and the remaining cores 122 are disposed on a circumference centered on the central axis of the second optical fiber 120. ing.
  • the same number of first optical fibers 110 as the number of cores 122 is provided. However, the number of first optical fibers 110 may be smaller than the number of cores 122.
  • the first optical fiber 110 is connected to the core 122 positioned on the central axis of the second optical fiber 120, and the first optical fiber 110 is connected to any one of 122 positioned other than the central axis of the second optical fiber 120.
  • the plurality of cores 122 are disposed in the clad 127.
  • the clad 127 is covered with a protective film 128.
  • a method for joining the plurality of first optical fibers 110 and the second optical fibers 120 will be described.
  • a plurality of first optical fibers 110 are bundled.
  • the bundle of the plurality of first optical fibers 110 is partially heated and stretched. Thereby, the bundle
  • the bundle of the plurality of first optical fibers 110 is cut at the thinned portion. This cut surface becomes one end 114 of the first optical fiber 110.
  • one end 114 of the first optical fiber 110 and one end 124 of the second optical fiber 120 are melt-bonded.
  • the diameter of the mode field of the core 112 is increased by heating the core 112 positioned at the one end 114 of the first optical fiber 110. For this reason, the coupling loss between the first optical fiber 110 and the second optical fiber 120 is low.
  • FIG. 3 is a diagram for explaining an example of use of the optical multiplexing device 10.
  • Light enters the plurality of first optical fibers 110 from the light source 200.
  • the light source 200 has a laser light source, for example.
  • At least one light source 200 may further include a wavelength conversion element. That is, the plurality of light sources 200 may emit light having the same wavelength, or at least one light source 200 may emit light having a wavelength different from that of the other light sources 200.
  • the light incident on the first optical fiber 110 from the light source 200 enters the core 122 of the second optical fiber 120 from one end 114 of the first optical fiber 110.
  • the light incident on the core 122 enters the lens member 130 from the other end 126 of the second optical fiber 120.
  • the light incident on the lens member 130 enters the core 142 located at one end 144 of the third optical fiber 140 via the lens member 130.
  • the core 142 located at the one end 144 of the third optical fiber 140 coincides with the focal point of the lens member 130, the light emitted from the other end 126 of the second optical fiber 120 is highly efficient and the third light.
  • the light enters the core 142 of the fiber 140.
  • the lens member 130 is formed using a graded index fiber, the light propagating through the center of the lens member 130 spreads in the mode field but converges near the exit end face due to the influence of the refractive index distribution. To come. For this reason, the light emitted from the core 122 located on the central axis of the second optical fiber 120 is collected without being deviated from the central axis of the third optical fiber 140.
  • the light emitted from the core 122 located in the peripheral portion of the second optical fiber 120 propagates in the peripheral portion of the lens member 130. Since the graded index fiber has a high refractive index at the central portion and a low refractive index at the peripheral portion, the light propagating through the peripheral portion of the lens member 130 is gradually bent toward the central portion. Further, the light is refracted in the direction of entering the core 142 of the third optical fiber 140 when emitted from the other end 134 of the lens member 130.
  • the coupling efficiency in the optical multiplexing device 10 is about 60%, for example.
  • the apparatus including the light source 200 and the optical multiplexing device 10 includes, for example, an optical signal transmission device, a light source for a spectroscopic measurement device and a spectroscopic analysis device, a light source for a laser processing device, a light source for a laser microscope, a light source for a DNA analysis device, and an endoscope It is used as a light source for an eye fundus or a fundus examination apparatus.
  • the optical multiplexer 10 can be made small.
  • the light incident surface of the first optical fiber 110 and the light output surface of the third optical fiber 140 can be positioned to face each other, the light incident direction with respect to the optical multiplexing device 10 and the optical multiplexing The emission direction of light from the device 10 can be matched.
  • FIG. 4 is a cross-sectional view illustrating a configuration of the optical multiplexing device 10 according to the second embodiment.
  • the optical multiplexing device 10 according to the present embodiment has the same configuration as that of the optical multiplexing device 10 according to the first embodiment, except that the other end 134 of the lens member 130 has a shape along a spherical surface. is there. Also according to this embodiment, the same effect as that of the first embodiment can be obtained.
  • FIG. 5 is a cross-sectional view illustrating the configuration of the optical multiplexing device 10 according to the third embodiment.
  • the optical multiplexing apparatus 10 according to the present embodiment has the same configuration as that of the optical multiplexing apparatus 10 according to the first or second embodiment, except that an antireflection film 136 is provided.
  • the antireflection film 136 is provided on the other end 134 of the lens member 130.
  • the antireflection film 136 is a dielectric film, for example, and is formed using a vapor deposition method or the like.
  • the same effect as that of the first embodiment can be obtained. Further, since the antireflection film 136 is formed on the other end 134 of the lens member 130, it is possible to multiplex light with higher efficiency.

Abstract

In the present invention, a second optical fiber (120) has a plurality of cores (122). At one end of the second optical fiber (120), a plurality of first optical fibers (110) are each optically connected to differing cores (122). A lens member (130) faces the other end (126) of the second optical fiber (120). One end (144) of a third optical fiber (140) faces the other end (126) of the second optical fiber (120) with the lens member (130) therebetween. The one end (144) of the third optical fiber (140) preferably is positioned at the focal point of the lens member (130).

Description

光合波装置Optical multiplexer
 本発明は、複数の光を合波する光合波装置に関する。 The present invention relates to an optical multiplexing device that combines a plurality of lights.
 複数のレーザ光源から出射された複数の光を一つの光ファイバに入射するためには、これら複数の光を合波する必要がある。光を合波するための技術としては、例えば特許文献1,2に記載のものがある。特許文献1に記載の技術は、複数の導波路の一端を結合させることにより光を合波するものである。また特許文献2に記載の技術は、入力側の複数の光ファイバを、出力側の一つの光ファイバに溶着させることにより、光を合波するものである。 In order to allow a plurality of lights emitted from a plurality of laser light sources to enter one optical fiber, it is necessary to combine the plurality of lights. For example, Patent Documents 1 and 2 disclose techniques for multiplexing light. The technique described in Patent Document 1 combines light by coupling one end of a plurality of waveguides. The technique described in Patent Document 2 combines light by welding a plurality of optical fibers on the input side to one optical fiber on the output side.
 一方、特許文献3には、以下の光スイッチ装置が記載されている。まず、出力光が入射される複数の光ファイバの光入射面を互いにそろえておく。そして、これらの入射面に対して平行に放物面鏡をスライドさせることにより、光が入射する光ファイバを切り替える。 On the other hand, Patent Document 3 describes the following optical switch device. First, the light incident surfaces of a plurality of optical fibers on which output light is incident are aligned with each other. Then, by sliding the parabolic mirror parallel to these incident surfaces, the optical fiber on which light is incident is switched.
 また特許文献4には、光源から出射した光を、表面が湾曲した反射面を用いてコリメートすることが記載されている。 Patent Document 4 describes that light emitted from a light source is collimated using a reflecting surface having a curved surface.
特開2006-330436号公報JP 2006-330436 A 特表2007-163650号公報Special table 2007-163650 gazette 特開2008-145459号公報JP 2008-145459 A 特表2006-517675号公報Special table 2006-517675
 本発明者は、光合波装置を小型化することを検討した。すなわち本発明が目的とするところは、小型の光合波装置を提供することにある。 The present inventor studied to downsize the optical multiplexing device. That is, an object of the present invention is to provide a compact optical multiplexer.
 本発明によれば、光合波装置は、複数の第1光ファイバ、第2光ファイバ、レンズ部材、及び第3光ファイバを備えている。第2光ファイバは複数のコアを有している。複数の第1光ファイバは、第2光ファイバの一端において、第2光ファイバの互いに異なるコアに光学的に接続されている。レンズ部材は、第2ファイバの他端に対向している。第3光ファイバの一端は、レンズ部材を介して第2ファイバの他端に対向している。 According to the present invention, the optical multiplexer includes a plurality of first optical fibers, second optical fibers, lens members, and third optical fibers. The second optical fiber has a plurality of cores. The plurality of first optical fibers are optically connected to different cores of the second optical fiber at one end of the second optical fiber. The lens member is opposed to the other end of the second fiber. One end of the third optical fiber is opposed to the other end of the second fiber via the lens member.
 本発明によれば、光合波装置を小型化することができる。 According to the present invention, the optical multiplexing device can be miniaturized.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施形態に係る光合波装置の構成を示す断面図である。It is sectional drawing which shows the structure of the optical multiplexing apparatus which concerns on 1st Embodiment. 第2光ファイバの断面図である。It is sectional drawing of a 2nd optical fiber. 光合波装置の使用例を説明するための図である。It is a figure for demonstrating the usage example of an optical multiplexer. 第2の実施形態に係る光合波装置の構成を示す断面図である。It is sectional drawing which shows the structure of the optical multiplexing apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る光合波装置の構成を示す断面図である。It is sectional drawing which shows the structure of the optical multiplexing apparatus which concerns on 3rd Embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施形態)
 図1は、第1の実施形態に係る光合波装置10の構成を示す断面図である。本実施形態に係る光合波装置10は、複数の第1光ファイバ110、第2光ファイバ120、レンズ部材130、及び第3光ファイバ140を備えている。第2光ファイバ120は複数のコア122を有している。第2光ファイバ120の一端124において、複数の第1光ファイバ110は、互いに異なるコア122に光学的に接続されている。レンズ部材130は、第2光ファイバ120の他端126に対向している。第3光ファイバ140は、一端144がレンズ部材130を介して第2光ファイバ120の他端126に対向している。以下、詳細に説明する。
(First embodiment)
FIG. 1 is a cross-sectional view illustrating a configuration of an optical multiplexing device 10 according to the first embodiment. The optical multiplexing device 10 according to the present embodiment includes a plurality of first optical fibers 110, a second optical fiber 120, a lens member 130, and a third optical fiber 140. The second optical fiber 120 has a plurality of cores 122. At one end 124 of the second optical fiber 120, the plurality of first optical fibers 110 are optically connected to different cores 122. The lens member 130 faces the other end 126 of the second optical fiber 120. The third optical fiber 140 has one end 144 opposed to the other end 126 of the second optical fiber 120 via the lens member 130. Details will be described below.
 第1光ファイバ110は、例えばシングルモードファイバであり、一つのコア112を有している。ただし第1光ファイバ110は、マルチモードファイバであってもよい。本実施形態において、第1光ファイバ110の一端114は、第2光ファイバ120の一端124に接合されている。ただし、第1光ファイバ110の一端114と第2光ファイバ120の一端124は、コネクタを介して光学的に接続していても良い。 The first optical fiber 110 is a single mode fiber, for example, and has one core 112. However, the first optical fiber 110 may be a multimode fiber. In the present embodiment, one end 114 of the first optical fiber 110 is joined to one end 124 of the second optical fiber 120. However, the one end 114 of the first optical fiber 110 and the one end 124 of the second optical fiber 120 may be optically connected via a connector.
 第1光ファイバ110の一端114は、第2光ファイバ120の一端124に接合される際に溶融延伸されているため、第1光ファイバ110の他の部分より細くなっている。また、第1光ファイバ110のコア112は、第2光ファイバ120のコア122に接合されている。第1光ファイバ110の数は、例えば第2光ファイバ120のコア122の数と同数であるが、コア122の数よりも少なくても良い。 The one end 114 of the first optical fiber 110 is thinner than the other part of the first optical fiber 110 because it is melted and stretched when it is joined to the one end 124 of the second optical fiber 120. Further, the core 112 of the first optical fiber 110 is joined to the core 122 of the second optical fiber 120. For example, the number of first optical fibers 110 is the same as the number of cores 122 of the second optical fiber 120, but may be smaller than the number of cores 122.
 第2光ファイバ120は、複数のコア122を有するマルチコアファイバである。第2光ファイバ120としては、例えば通信用に用いられるマルチコアファイバを用いることができる。複数のコア122は互いに平行である。 The second optical fiber 120 is a multi-core fiber having a plurality of cores 122. As the second optical fiber 120, for example, a multi-core fiber used for communication can be used. The plurality of cores 122 are parallel to each other.
 レンズ部材130は、複数のコア122から出射した光を第3光ファイバ140の一端144に集光する。本実施形態において、レンズ部材130は、透光性の材料から形成されており、一端132が第2光ファイバ120の他端126に接合しており、他端134が曲面になっている。このようにすると、光の結合損失を低くすることができる。なお、他端134の曲面は、例えば放物面である。 The lens member 130 condenses the light emitted from the plurality of cores 122 on one end 144 of the third optical fiber 140. In the present embodiment, the lens member 130 is made of a translucent material, one end 132 is joined to the other end 126 of the second optical fiber 120, and the other end 134 is a curved surface. In this way, the coupling loss of light can be reduced. The curved surface of the other end 134 is a paraboloid, for example.
 レンズ部材130は、例えばグレーテッドインデックスファイバを用いて形成されている。この場合、レンズ部材130の一端132と第2光ファイバ120の他端126は、溶着されている。また、レンズ部材130の他端134は、例えば研磨によって曲面に形成されている。ただし他端134は、例えばアーク放電によって曲面に加工されていても良い。レンズ部材130をグレーテッドインデックスファイバを用いて形成すると、レンズ部材130の一端132を容易に第2光ファイバ120の他端126に接合することができる。 The lens member 130 is formed using, for example, a graded index fiber. In this case, one end 132 of the lens member 130 and the other end 126 of the second optical fiber 120 are welded. The other end 134 of the lens member 130 is formed into a curved surface by polishing, for example. However, the other end 134 may be processed into a curved surface by, for example, arc discharge. When the lens member 130 is formed using a graded index fiber, the one end 132 of the lens member 130 can be easily joined to the other end 126 of the second optical fiber 120.
 第3光ファイバ140は、例えばシングルモードファイバであり、一つのコア142を有している。ただし第3光ファイバ140はマルチモードファイバであってもよい。第3光ファイバ140は、好ましくは、コア142のうち一端144に位置する部分がレンズ部材130の焦点と重なるように配置されている。 The third optical fiber 140 is, for example, a single mode fiber and has one core 142. However, the third optical fiber 140 may be a multimode fiber. The third optical fiber 140 is preferably arranged so that a portion of the core 142 positioned at the one end 144 overlaps the focal point of the lens member 130.
 また光合波装置10は、保持部材150を備えている。保持部材150は、第2光ファイバ120の他端126、第3光ファイバ140、及び第3光ファイバ140の一端144を保持している。第2光ファイバ120、レンズ部材130、及び第3光ファイバ140は、中心軸が互いに重なるように固定されている。保持部材150は例えば筒状の部材であり、内壁が第2光ファイバ120の他端126、第3光ファイバ140、及び第3光ファイバ140の一端144を保持している。なお、第2光ファイバ120の直径、レンズ部材130の直径、及び第3光ファイバ140の直径が互いに等しい場合、保持部材150は円筒状であり、その内径が第2光ファイバ120の直径に等しいか、わずかに小さい。 The optical multiplexing device 10 includes a holding member 150. The holding member 150 holds the other end 126 of the second optical fiber 120, the third optical fiber 140, and one end 144 of the third optical fiber 140. The second optical fiber 120, the lens member 130, and the third optical fiber 140 are fixed so that the central axes overlap each other. The holding member 150 is, for example, a cylindrical member, and the inner wall holds the other end 126 of the second optical fiber 120, the third optical fiber 140, and one end 144 of the third optical fiber 140. When the diameter of the second optical fiber 120, the diameter of the lens member 130, and the diameter of the third optical fiber 140 are equal to each other, the holding member 150 is cylindrical and the inner diameter thereof is equal to the diameter of the second optical fiber 120. Or slightly smaller.
 図2は、第2光ファイバ120の断面図である。上記したように、第2光ファイバ120は複数のコア122を有している。本図に示す例において、一つのコア122は第2光ファイバ120の中心軸に配置されており、残りのコア122は、第2光ファイバ120の中心軸を中心とした円周上に配置されている。第1光ファイバ110は、コア122の数と同数設けられているのが好ましい。ただし、第1光ファイバ110の数がコア122の数より少なくても良い。この場合、第2光ファイバ120の中心軸に位置するコア122には第1光ファイバ110が接続され、第2光ファイバ120の中心軸以外に位置する122のいずれかに、第1光ファイバ110が接続されないようにするのが好ましい。なお、複数のコア122はクラッド127内に配置されている。そしてクラッド127は、保護膜128で被覆されている。 FIG. 2 is a cross-sectional view of the second optical fiber 120. As described above, the second optical fiber 120 has a plurality of cores 122. In the example shown in the figure, one core 122 is disposed on the central axis of the second optical fiber 120, and the remaining cores 122 are disposed on a circumference centered on the central axis of the second optical fiber 120. ing. It is preferable that the same number of first optical fibers 110 as the number of cores 122 is provided. However, the number of first optical fibers 110 may be smaller than the number of cores 122. In this case, the first optical fiber 110 is connected to the core 122 positioned on the central axis of the second optical fiber 120, and the first optical fiber 110 is connected to any one of 122 positioned other than the central axis of the second optical fiber 120. Are preferably not connected. The plurality of cores 122 are disposed in the clad 127. The clad 127 is covered with a protective film 128.
 次に、複数の第1光ファイバ110と第2光ファイバ120との接合方法を説明する。まず、複数の第1光ファイバ110を束ねる。そして複数の第1光ファイバ110の束を部分的に加熱し、引き伸ばす。これにより、複数の第1光ファイバ110の束は、部分的に細くなる。そしてこの細くなった部分で複数の第1光ファイバ110の束を切断する。この切断面は、第1光ファイバ110の一端114となる。その後、第1光ファイバ110の一端114と第2光ファイバ120の一端124とを溶融接合する。なお、これらの工程において、第1光ファイバ110の一端114に位置するコア112を加熱することにより、コア112のモードフィールドの径は広がる。このため、第1光ファイバ110と第2光ファイバ120の結合損失は低くなる。 Next, a method for joining the plurality of first optical fibers 110 and the second optical fibers 120 will be described. First, a plurality of first optical fibers 110 are bundled. Then, the bundle of the plurality of first optical fibers 110 is partially heated and stretched. Thereby, the bundle | flux of the some 1st optical fiber 110 becomes thin partially. Then, the bundle of the plurality of first optical fibers 110 is cut at the thinned portion. This cut surface becomes one end 114 of the first optical fiber 110. Thereafter, one end 114 of the first optical fiber 110 and one end 124 of the second optical fiber 120 are melt-bonded. In these steps, the diameter of the mode field of the core 112 is increased by heating the core 112 positioned at the one end 114 of the first optical fiber 110. For this reason, the coupling loss between the first optical fiber 110 and the second optical fiber 120 is low.
 図3は、光合波装置10の使用例を説明するための図である。複数の第1光ファイバ110には、それぞれ光源200から光が入射される。光源200は、例えばレーザ光源を有している。少なくとも一つの光源200は、さらに波長変換素子を有していてもよい。すなわち複数の光源200は、互いに同一の波長の光を出射しても良いし、少なくとも一つの光源200が、他の光源200とは異なる波長の光を出射しても良い。 FIG. 3 is a diagram for explaining an example of use of the optical multiplexing device 10. Light enters the plurality of first optical fibers 110 from the light source 200. The light source 200 has a laser light source, for example. At least one light source 200 may further include a wavelength conversion element. That is, the plurality of light sources 200 may emit light having the same wavelength, or at least one light source 200 may emit light having a wavelength different from that of the other light sources 200.
 光源200から第1光ファイバ110に入射された光は、第1光ファイバ110の一端114から第2光ファイバ120のコア122に入射する。そしてコア122に入射された光は、第2光ファイバ120の他端126から、レンズ部材130に入射される。レンズ部材130に入射された光は、レンズ部材130を介して、第3光ファイバ140の一端144に位置するコア142に入射する。このようにして、複数の光源200から出射した光は、いずれも第3光ファイバ140に集光されるため、合波された状態で外部に出射する。 The light incident on the first optical fiber 110 from the light source 200 enters the core 122 of the second optical fiber 120 from one end 114 of the first optical fiber 110. The light incident on the core 122 enters the lens member 130 from the other end 126 of the second optical fiber 120. The light incident on the lens member 130 enters the core 142 located at one end 144 of the third optical fiber 140 via the lens member 130. Thus, since all the light emitted from the plurality of light sources 200 is condensed on the third optical fiber 140, it is emitted to the outside in a combined state.
 ここで、第3光ファイバ140の一端144に位置するコア142がレンズ部材130の焦点に一致していた場合、第2光ファイバ120の他端126から出射した光は、高効率で第3光ファイバ140のコア142に入射する。 Here, when the core 142 located at the one end 144 of the third optical fiber 140 coincides with the focal point of the lens member 130, the light emitted from the other end 126 of the second optical fiber 120 is highly efficient and the third light. The light enters the core 142 of the fiber 140.
 なお、レンズ部材130がグレーテッドインデックスファイバを用いて形成されていた場合、レンズ部材130の中央部を伝搬する光は、モードフィールドは広がるが、屈折率の分布の影響により、出射端面付近では収束するようになる。このため、第2光ファイバ120の中心軸に位置するコア122から出射される光は、第3光ファイバ140の中心軸よりずれることなく集光される。 Note that when the lens member 130 is formed using a graded index fiber, the light propagating through the center of the lens member 130 spreads in the mode field but converges near the exit end face due to the influence of the refractive index distribution. To come. For this reason, the light emitted from the core 122 located on the central axis of the second optical fiber 120 is collected without being deviated from the central axis of the third optical fiber 140.
 一方、第2光ファイバ120の周辺部に位置するコア122から出射される光は、レンズ部材130の周辺部を伝搬する。グレーテッドインデックスファイバは中央部の屈折率が高く、周辺部の屈折率は低いため、レンズ部材130の周辺部を伝搬する光は中央部へ向かうように徐々に曲がっていく。さらにその光は、レンズ部材130の他端134から出射される際に、第3光ファイバ140のコア142に入射する方向に屈折する。 On the other hand, the light emitted from the core 122 located in the peripheral portion of the second optical fiber 120 propagates in the peripheral portion of the lens member 130. Since the graded index fiber has a high refractive index at the central portion and a low refractive index at the peripheral portion, the light propagating through the peripheral portion of the lens member 130 is gradually bent toward the central portion. Further, the light is refracted in the direction of entering the core 142 of the third optical fiber 140 when emitted from the other end 134 of the lens member 130.
 なお、光源200が発光する光の波長が500nm以上600nm以下の範囲である場合、光合波装置10における結合効率は、例えば60%程度になる。 In addition, when the wavelength of the light emitted from the light source 200 is in the range of 500 nm to 600 nm, the coupling efficiency in the optical multiplexing device 10 is about 60%, for example.
 光源200及び光合波装置10を有する装置は、例えば光信号の送信装置、分光計測装置や分光分析装置の光源、レーザ加工装置の光源、レーザ顕微鏡用の光源、DNA分析装置用光源、内視鏡用の光源、又は眼底検査装置用の光源として使用される。 The apparatus including the light source 200 and the optical multiplexing device 10 includes, for example, an optical signal transmission device, a light source for a spectroscopic measurement device and a spectroscopic analysis device, a light source for a laser processing device, a light source for a laser microscope, a light source for a DNA analysis device, and an endoscope It is used as a light source for an eye fundus or a fundus examination apparatus.
 以上、本実施形態によれば、第2光ファイバ120を用いているため、複数の光源200から出射される光の進行方向を容易に平行にすることができる。このため、第2光ファイバ120と第3光ファイバ140の間にレンズ部材130を配置することにより、容易に複数の光源200から出射される光を第3光ファイバ140で合波することができる。このため、光合波装置10を小さくすることができる。 As mentioned above, according to this embodiment, since the 2nd optical fiber 120 is used, the advancing direction of the light radiate | emitted from the several light source 200 can be made parallel easily. Therefore, by arranging the lens member 130 between the second optical fiber 120 and the third optical fiber 140, the light emitted from the plurality of light sources 200 can be easily multiplexed by the third optical fiber 140. . For this reason, the optical multiplexer 10 can be made small.
 また、第1光ファイバ110における光の入射面と、第3光ファイバ140における光の出射面を互いに対向する方向に位置させることができるため、光合波装置10に対する光の入射方向と、光合波装置10からの光の出射方向とを一致させることができる。 In addition, since the light incident surface of the first optical fiber 110 and the light output surface of the third optical fiber 140 can be positioned to face each other, the light incident direction with respect to the optical multiplexing device 10 and the optical multiplexing The emission direction of light from the device 10 can be matched.
(第2の実施形態)
 図4は、第2の実施形態に係る光合波装置10の構成を示す断面図である。本実施形態に係る光合波装置10は、レンズ部材130の他端134が球面に沿った形状を有している点を除いて、第1の実施形態に係る光合波装置10と同様の構成である。
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。
(Second Embodiment)
FIG. 4 is a cross-sectional view illustrating a configuration of the optical multiplexing device 10 according to the second embodiment. The optical multiplexing device 10 according to the present embodiment has the same configuration as that of the optical multiplexing device 10 according to the first embodiment, except that the other end 134 of the lens member 130 has a shape along a spherical surface. is there.
Also according to this embodiment, the same effect as that of the first embodiment can be obtained.
(第3の実施形態)
 図5は、第3の実施形態に係る光合波装置10の構成を示す断面図である。本実施形態に係る光合波装置10は、反射防止膜136を有している点を除いて、第1又は第2の実施形態に係る光合波装置10と同様の構成である。
(Third embodiment)
FIG. 5 is a cross-sectional view illustrating the configuration of the optical multiplexing device 10 according to the third embodiment. The optical multiplexing apparatus 10 according to the present embodiment has the same configuration as that of the optical multiplexing apparatus 10 according to the first or second embodiment, except that an antireflection film 136 is provided.
 反射防止膜136は、レンズ部材130の他端134に設けられている。反射防止膜136は、例えば誘電体膜であり、蒸着法などを用いて形成されている。 The antireflection film 136 is provided on the other end 134 of the lens member 130. The antireflection film 136 is a dielectric film, for example, and is formed using a vapor deposition method or the like.
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、レンズ部材130の他端134に反射防止膜136が形成されているため、さらに高い効率で光を合波することができる。 Also in this embodiment, the same effect as that of the first embodiment can be obtained. Further, since the antireflection film 136 is formed on the other end 134 of the lens member 130, it is possible to multiplex light with higher efficiency.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
 この出願は、2012年11月19日に出願された日本出願特願2012-252934を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-252934 filed on November 19, 2012, the entire disclosure of which is incorporated herein.

Claims (5)

  1.  複数の第1光ファイバと、
     複数のコアを有している第2ファイバと、
     前記第2ファイバの他端に対向しているレンズ部材と、
     一端が前記レンズ部材を介して前記第2光ファイバの前記他端に対向している第3光ファイバと、
    を備え、
     前記第2ファイバの一端において、前記複数の第1光ファイバは、互いに異なる前記コアに光学的に接続されている光合波装置。
    A plurality of first optical fibers;
    A second fiber having a plurality of cores;
    A lens member facing the other end of the second fiber;
    A third optical fiber having one end facing the other end of the second optical fiber through the lens member;
    With
    At one end of the second fiber, the plurality of first optical fibers are optically connected to different cores from each other.
  2.  請求項1に記載の光合波装置において、
     前記第3光ファイバの前記一端は、前記レンズ部材の焦点に位置している光合波装置。
    The optical multiplexing device according to claim 1,
    The optical multiplexing device in which the one end of the third optical fiber is located at a focal point of the lens member.
  3.  請求項1又は2に記載の光合波装置において、
     前記レンズ部材は、一端が前記第2ファイバの前記他端に接合しており、他端が曲面になっている光合波装置。
    The optical multiplexing device according to claim 1 or 2,
    One end of the lens member is bonded to the other end of the second fiber, and the other end is a curved surface.
  4.  請求項3に記載の光合波装置において、
     前記レンズ部材は、グレーテッドインデックスファイバの端面を曲面に加工したものである光合波装置。
    In the optical multiplexing device according to claim 3,
    The said lens member is an optical multiplexing apparatus which processed the end surface of the graded index fiber into the curved surface.
  5.  請求項4に記載の光合波装置において、
     前記レンズ部材の前記曲面に設けられた反射防止膜を備える光合波装置。
    The optical multiplexing device according to claim 4, wherein
    An optical multiplexing device comprising an antireflection film provided on the curved surface of the lens member.
PCT/JP2013/077821 2012-11-19 2013-10-11 Optical multiplexer device WO2014077069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012252934A JP2014102305A (en) 2012-11-19 2012-11-19 Optical multiplexing device
JP2012-252934 2012-11-19

Publications (1)

Publication Number Publication Date
WO2014077069A1 true WO2014077069A1 (en) 2014-05-22

Family

ID=50730990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077821 WO2014077069A1 (en) 2012-11-19 2013-10-11 Optical multiplexer device

Country Status (3)

Country Link
JP (1) JP2014102305A (en)
TW (1) TW201421091A (en)
WO (1) WO2014077069A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199339A1 (en) * 2017-04-28 2018-11-01 株式会社フジクラ Combiner and laser device
JP2019061277A (en) * 2018-12-18 2019-04-18 株式会社フジクラ Combiner and laser device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6348861B2 (en) * 2015-03-17 2018-06-27 日本電信電話株式会社 Optical transmission apparatus and optical transmission method
CN112533726B (en) * 2018-09-04 2022-11-18 古河电气工业株式会社 Welding method and welding device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247604A (en) * 1985-08-27 1987-03-02 Furukawa Electric Co Ltd:The Terminal part for multicore fiber
JPH02216111A (en) * 1989-02-17 1990-08-29 Nec Corp Semiconductor laser module
JPH0727950A (en) * 1993-05-10 1995-01-31 Sumitomo Electric Ind Ltd Irradiation device for laser beam
JP2001068766A (en) * 1999-08-25 2001-03-16 Nec Corp Optical fiber amplifying device
JP2003255552A (en) * 2002-03-06 2003-09-10 Nec Corp Laser irradiation device, exposure method using scanning laser beam, and manufacturing method for color filter using scanning laser beam
JP2006195097A (en) * 2005-01-12 2006-07-27 Moritex Corp Fiber with lens and method for forming aspheric lens therein
JP2008216506A (en) * 2007-03-01 2008-09-18 National Institute Of Advanced Industrial & Technology Light source unit
JP2010286661A (en) * 2009-06-11 2010-12-24 Sumitomo Electric Ind Ltd Fiber array and optical connector including the same
WO2012121320A1 (en) * 2011-03-09 2012-09-13 古河電気工業株式会社 Method for producing bundle structure, method for connecting fibers, bundle terminal structure, and fiber connection structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247604A (en) * 1985-08-27 1987-03-02 Furukawa Electric Co Ltd:The Terminal part for multicore fiber
JPH02216111A (en) * 1989-02-17 1990-08-29 Nec Corp Semiconductor laser module
JPH0727950A (en) * 1993-05-10 1995-01-31 Sumitomo Electric Ind Ltd Irradiation device for laser beam
JP2001068766A (en) * 1999-08-25 2001-03-16 Nec Corp Optical fiber amplifying device
JP2003255552A (en) * 2002-03-06 2003-09-10 Nec Corp Laser irradiation device, exposure method using scanning laser beam, and manufacturing method for color filter using scanning laser beam
JP2006195097A (en) * 2005-01-12 2006-07-27 Moritex Corp Fiber with lens and method for forming aspheric lens therein
JP2008216506A (en) * 2007-03-01 2008-09-18 National Institute Of Advanced Industrial & Technology Light source unit
JP2010286661A (en) * 2009-06-11 2010-12-24 Sumitomo Electric Ind Ltd Fiber array and optical connector including the same
WO2012121320A1 (en) * 2011-03-09 2012-09-13 古河電気工業株式会社 Method for producing bundle structure, method for connecting fibers, bundle terminal structure, and fiber connection structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199339A1 (en) * 2017-04-28 2018-11-01 株式会社フジクラ Combiner and laser device
JP2018189696A (en) * 2017-04-28 2018-11-29 株式会社フジクラ Combiner and laser equipment
JP2019061277A (en) * 2018-12-18 2019-04-18 株式会社フジクラ Combiner and laser device

Also Published As

Publication number Publication date
TW201421091A (en) 2014-06-01
JP2014102305A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JPH10311905A (en) Refractive index distribution type lens optical device
WO2012172968A1 (en) Optical device
US11553964B2 (en) Optical probe, medical laser probe, and cauterization device
JP5369046B2 (en) Optical fiber array, optical switch, optical fiber, and end face processing method
US10180523B2 (en) Grating and lens system for coupling light
WO2014077069A1 (en) Optical multiplexer device
JP6219288B2 (en) Multi-core fiber and single-mode fiber optical connector
JP6535848B2 (en) Chip-type bundle fiber multiplexer and chip-type multi-wavelength light source
JP2008170471A (en) Fibre lens, fibre lens array, fibre collimator, and optical module
JP2013541043A (en) Optical fiber assembly and manufacturing method thereof
JP2011164182A (en) Optical connector connection body
JP2010005330A (en) Light guide for endoscope
JP2014013311A (en) Optical fiber and optical communication system
WO2014077068A1 (en) Optical multiplexing device
JP5921327B2 (en) Multi-wavelength fiber multiplexer
JP2004271743A (en) Optical device
JPH1138262A (en) Optical multiplexing/demultiplexing device
JP2007133239A (en) Collimator and optical filter device using the same
WO2017060992A1 (en) Endoscope-use illumination device
JP5154047B2 (en) Optical fiber coupling structure and coupling method
JP2009098604A (en) Optical device, and light receptacle and light-receiving module using the same
JP5250318B2 (en) Endoscope light guide
WO2012046656A1 (en) Light source module
US20040033012A1 (en) Wavelength division multiplexer
JP5083618B2 (en) Confocal scanner microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854818

Country of ref document: EP

Kind code of ref document: A1