WO2014038263A1 - アルミニウムめっき装置及びこれを用いたアルミニウム膜の製造方法 - Google Patents

アルミニウムめっき装置及びこれを用いたアルミニウム膜の製造方法 Download PDF

Info

Publication number
WO2014038263A1
WO2014038263A1 PCT/JP2013/066294 JP2013066294W WO2014038263A1 WO 2014038263 A1 WO2014038263 A1 WO 2014038263A1 JP 2013066294 W JP2013066294 W JP 2013066294W WO 2014038263 A1 WO2014038263 A1 WO 2014038263A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
substrate
plating apparatus
electrolysis chamber
aluminum plating
Prior art date
Application number
PCT/JP2013/066294
Other languages
English (en)
French (fr)
Inventor
西村 淳一
細江 晃久
奥野 一樹
弘太郎 木村
健吾 後藤
英彰 境田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/425,457 priority Critical patent/US20150211143A1/en
Priority to DE112013004355.6T priority patent/DE112013004355T5/de
Priority to KR20157002639A priority patent/KR20150046013A/ko
Priority to CN201380046112.4A priority patent/CN104603332A/zh
Publication of WO2014038263A1 publication Critical patent/WO2014038263A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • C25D3/665Electroplating: Baths therefor from melts from ionic liquids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/003Electroplating using gases, e.g. pressure influence
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0621In horizontal cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0642Anodes

Definitions

  • the present invention relates to an aluminum plating apparatus for electroplating aluminum on the surface of a substrate and an aluminum film manufacturing method using the same.
  • Aluminum is passivated by forming a dense oxide film on its surface and exhibits excellent corrosion resistance. For this reason, the surface of a steel strip or the like is subjected to aluminum plating to improve the corrosion resistance.
  • the steel strip is continuously fed into the plating tank through the conductor roll, and travels in the anode immersed in the plating solution in the plating tank. At this time, since the steel strip itself is electrically connected so as to act as a cathode, electrolysis occurs between the anode and the steel strip that is the cathode, and aluminum is electrodeposited on the surface of the steel strip. A plating is formed.
  • Patent Document 1 Japanese Patent Laid-Open No. 05-222599 (Patent Document 1)).
  • a porous body made of aluminum as a metal porous body having a three-dimensional network structure is promising as improving the capacity of the positive electrode of a lithium ion battery.
  • a material obtained by applying an active material such as lithium cobaltate to the surface of an aluminum foil by taking advantage of the excellent characteristics of aluminum such as conductivity, corrosion resistance and light weight is used as a positive electrode of a lithium ion battery.
  • Patent Document 2 Japanese Patent Laid-Open No. 2012-007233 (Patent Document 2). ) Since the conventional aluminum molten salt bath needs to have a high temperature, there has been a problem that when the aluminum is electroplated on the surface of the resin molded body, the resin cannot withstand the high temperature and dissolves. However, according to the method described in Patent Document 2, organic chloride salts such as 1-ethyl-3-methylimidazolium chloride (EMIC) and 1-butylpyridinium chloride (BPC) and aluminum chloride (AlCl 3 ) are used. By mixing, a liquid aluminum bath is formed at room temperature, and electroplating of aluminum onto the resin molded body becomes possible. In particular, the EMIC-AlCl 3 system has good liquid properties and is useful as an aluminum plating solution.
  • EMIC 1-ethyl-3-methylimidazolium chloride
  • BPC 1-butylpyridinium chloride
  • AlCl 3 aluminum chloride
  • the present invention provides an aluminum plating apparatus that can satisfactorily form aluminum plating on the surface of a substrate on which a metal oxide film or the like having low insulation or conductivity is formed. Is an issue.
  • the present inventors have found that it is effective to plate aluminum after electrolytically removing the metal surface on which the oxide film is formed in the plating tank, The present invention has been completed. That is, the present invention has the following configuration.
  • An aluminum plating apparatus for transporting a substrate into a plating tank and electrodepositing aluminum on the substrate,
  • the plating tank is divided into a first electrolysis chamber and a second electrolysis chamber by a partition plate in order from the upstream side where the substrate is conveyed,
  • the cathode and the substrate provided in the first electrolysis chamber are electrically connected so that the substrate acts as an anode
  • an aluminum plating apparatus in which an anode provided in the second electrolysis chamber and the base are electrically connected so that the base acts as a cathode.
  • the aluminum plating apparatus described in (1) performs reverse electrolysis in the first electrolysis chamber, even if a metal oxide film or the like having a low insulating property or low conductivity is formed on the surface of the substrate, this is electrolytically removed.
  • aluminum can be electrodeposited satisfactorily.
  • the aluminum plating apparatus according to (1) further including a first power supply roller that conveys the substrate simultaneously with applying a potential to the substrate on the upstream side of the inlet of the first electrolysis chamber. According to the invention described in (2) above, it is possible to apply a potential to the substrate in the vicinity of the first electrolysis chamber while transporting the substrate.
  • the aluminum plating apparatus according to (1) or (2) further including a second power supply roller that conveys the substrate simultaneously with applying a potential to the substrate on the downstream side of the outlet of the second electrolysis chamber.
  • a potential can be applied to the substrate in the vicinity of the second electrolysis chamber while the substrate is being transported.
  • the plating tank contains a molten salt bath mainly composed of aluminum chloride.
  • a conventional molten salt bath mainly composed of aluminum chloride can be used, and a high-quality aluminum film can be obtained.
  • the resin structure which has an aluminum film on the surface of the resin molding which has a three-dimensional network structure can be manufactured continuously.
  • An aluminum plating apparatus for transporting the substrate into a plating tank and electrodepositing aluminum on the substrate, wherein the substrate is provided in the plating tank so that the substrate acts as a cathode in the plating tank.
  • An aluminum plating apparatus provided with an aluminum plating apparatus in which an anode and the base are electrically connected. According to the invention described in the above (7), when a substrate on which a metal oxide film or the like having low insulating or low conductivity is used is used, a conventional aluminum plating apparatus is installed at the uppermost stream in the substrate transport direction. Can be used.
  • the method for producing an aluminum film described in (8) above can form a high-quality aluminum film on the surface of a substrate on which a metal oxide film or the like having low insulation or conductivity is formed. it can.
  • an aluminum plating apparatus that can satisfactorily form aluminum plating on the surface of a substrate on which a metal oxide film or the like having low insulation or conductivity is formed.
  • An aluminum plating apparatus is an aluminum plating apparatus for transporting a substrate into a plating tank and electrodepositing aluminum on the substrate, wherein the plating tank is sequentially from the upstream side where the substrate is transported.
  • the first electrolysis chamber and the second electrolysis chamber are separated by a partition plate, and the first electrolysis chamber is provided in the first electrolysis chamber so that the base body acts as an anode.
  • the anode and the substrate are electrically connected to each other, and in the second electrolysis chamber, the anode and the substrate provided in the second electrolysis chamber so that the substrate acts as a cathode. Is an aluminum plating apparatus electrically connected.
  • substrate is not specifically limited, A base
  • a substrate include a steel strip (steel plate), a porous aluminum body having a three-dimensional network structure, a SUS plate, a Cu or Cu alloy plate, a Zn or Zn alloy plate, and the like.
  • the plating bath contains a plating solution, but the plating solution is not particularly limited as long as it is a composition capable of electroplating aluminum. Since aluminum has a large affinity for oxygen and a potential lower than that of hydrogen, it is difficult to perform electroplating with an aqueous plating bath. Therefore, a molten salt bath is used. As the molten salt bath, a bath mainly composed of aluminum chloride can be preferably used.
  • an organic molten salt that is a eutectic salt of an organic halide and an aluminum halide, or an inorganic molten salt that is a eutectic salt of an alkali metal halide and an aluminum halide can be used.
  • Use of an organic molten salt bath that melts at a relatively low temperature is preferable because plating can be performed without decomposing the resin molded body as a base material.
  • the organic halide imidazolium salt, pyridinium salt and the like can be used. Specifically, 1-ethyl-3-methylimidazolium chloride (EMIC) and butylpyridinium chloride (BPC) are preferable. Since the molten salt deteriorates when moisture or oxygen is mixed in the molten salt, the plating is preferably performed in an atmosphere of an inert gas such as nitrogen or argon and in a sealed environment.
  • an inert gas such as nitrogen or argon
  • a molten salt bath containing nitrogen is preferable.
  • a salt that melts at a high temperature is used as the molten salt, it is faster that the resin dissolves or decomposes in the molten salt than the growth of the plating layer. Therefore, the plating layer cannot be formed on the surface of the resin molded body.
  • an imidazolium salt bath can be preferably used. The imidazolium salt bath can be used without affecting the resin even at a relatively low temperature.
  • the imidazolium salt a salt containing an imidazolium cation having an alkyl group at the 1,3-position is preferably used.
  • an aluminum chloride-1-ethyl-3-methylimidazolium chloride (AlCl 3 -EMIC) -based molten salt is used. It is most preferably used because it is highly stable and hardly decomposes. Plating onto foamed urethane resin or foamed melamine resin is possible, and the temperature of the molten salt bath is 10 ° C to 100 ° C, preferably 25 ° C to 45 ° C.
  • an inorganic salt bath can be used as the molten salt.
  • the inorganic salt bath is typically a two-component or multi-component salt of AlCl 3 -XCl (X: alkali metal).
  • X alkali metal
  • Such an inorganic salt bath generally has a higher melting temperature than an organic salt bath such as an imidazolium salt bath, but is less restricted by environmental conditions such as moisture and oxygen, and can be put into practical use at a low cost overall. .
  • Additives such as xylene, benzene, toluene, 1,10-phenanthroline may be added for the purpose of improving the smoothness and gloss of the aluminum plating film formed on the substrate surface.
  • 1,10-phenanthroline can be preferably used.
  • the addition amount of such an additive is preferably 0.25 to 7 g / L. By setting it to 0.25 g / L or more, a sufficiently smooth aluminum plating film can be obtained, and by setting it to 7 g / L or less, a decrease in plating efficiency can be suppressed.
  • FIG. 1 is a diagram showing an example of the configuration of the aluminum plating apparatus of the present invention.
  • a plating tank (102) in which a plating solution is accommodated is divided into a first electrolytic chamber (104) and a second electrolytic chamber (105) by a partition plate (103). It is divided into.
  • the substrate (101) is continuously conveyed from the first electrolysis chamber (104) to the second electrolysis chamber (105).
  • the partition plate (103) is provided for the purpose of electrically separating the first electrolysis chamber (104) and the second electrolysis chamber (105), and an insulating material can be preferably used.
  • an insulating material can be preferably used.
  • Teflon (registered trademark) Ceramics, glass, super engineering plastic such as PEEK (polyetheretherketone), heat-resistant vinyl chloride resin, or the like can be used.
  • the partition plate (103) is provided with a passage through the base, but the passage is preferably the minimum through which the base can pass.
  • the passage of the substrate has a slit shape.
  • a cathode (107) is provided in the first electrolysis chamber (104) in which the substrate (101) is first transported, and the substrate (101) acts as an anode in the first electrolysis chamber (104). So that it is electrically connected. As a result, electrolysis occurs between the cathode (107) and the substrate (101), and the metal oxide film formed on the surface of the substrate (101) is removed by electrolysis, so that the metal surface constituting the substrate (101) is removed. Exposed.
  • the cathode (107) is not particularly limited, and for example, aluminum, titanium, copper or the like can be preferably used.
  • FIG. 1 illustrates the case where two cathodes (107) are provided in the vertical direction of the base body (101), but the number of cathodes (107) is not particularly limited, and one or three or more are provided. It doesn't matter. Further, the position where the cathode (107) is provided is not particularly limited, but it is preferable that the cathode (107) is provided as close as possible to the base (101) because electrolysis occurs efficiently.
  • the anode terminal of the power source connected to the cathode (107) and the substrate (101) are connected. That's fine.
  • the substrate (101) is connected to the anode on the upstream side in the vicinity of the inlet of the first electrolysis chamber (104) because electrolysis occurs efficiently.
  • FIG. 1 shows a case where a first power supply roller (106) is provided upstream of the inlet of the first electrolysis chamber (104) and the first power supply roller (106) is connected to the anode of the power source. ing.
  • the substrate (101) is applied with a potential from the first power supply roller (106) while being continuously transported by the first power supply roller (106) and the first transport roller (110). It will act as an anode in the electrolysis chamber (104).
  • FIG. 1 shows the case where the first conveying roller (110) is provided on the opposite side of the first power supply roller (106), it is connected to the anode instead of the first conveying roller (110).
  • a power feeding roller may be provided.
  • the precipitation amount or dissolution amount of aluminum can be adjusted based on the following equation.
  • Aluminum precipitation amount / dissolution amount [g] 0.3352 ⁇ I [A] ⁇ t [Hr] (formula)
  • I represents a current value
  • t represents time
  • a constant 0.3352 is a constant peculiar to aluminum
  • the substrate is another metal, it is calculated by changing to a constant peculiar to that metal. Good.
  • the substrate (101) from which the metal oxide film has been removed as described above is subsequently conveyed to the second electrolysis chamber (105) through a slit provided in the partition plate (103).
  • An anode (109) is provided in the second electrolysis chamber (105), and the base (101) is electrically connected so as to act as a cathode in the second electrolysis chamber (105).
  • electrolysis occurs between the anode (109) and the substrate (101), and aluminum is electrodeposited on the surface of the substrate (101).
  • the anode (109) is not particularly limited, and for example, aluminum, titanium, copper or the like can be preferably used.
  • FIG. 1 illustrates the case where two anodes (109) are provided in the vertical direction of the base (101), but the number of anodes (109) is not particularly limited. One or three or more may be used. Further, the position where the anode (109) is provided is not particularly limited, but it is preferable to provide the anode (109) as close to the substrate (101) as possible because electrolysis occurs efficiently.
  • the cathode terminal of the power source connected to the anode (109) and the substrate (101) are connected. That's fine.
  • the substrate (101) is connected to the cathode on the downstream side in the vicinity of the outlet of the second electrolysis chamber (105) because electrolysis occurs efficiently.
  • FIG. 1 shows a case where a second power supply roller (108) is provided on the downstream side of the outlet of the second electrolysis chamber (105), and the second power supply roller (108) is connected to the cathode of the power source. ing.
  • the substrate (101) is applied with a potential from the second power supply roller (108) while being continuously transported by the second power supply roller (108) and the second transport roller (111). It comes to act as a cathode in the electrolysis chamber (105).
  • FIG. 1 shows the case where the second transport roller (111) is provided on the opposite side of the second power supply roller (108), it is connected to the cathode instead of the second transport roller (111).
  • a power feeding roller may be provided.
  • the amount of aluminum deposited in the second electrolysis chamber (105) can be calculated by the above formula. Therefore, the current value and time may be adjusted so that desired aluminum is electrodeposited on the surface of the substrate (101). The time can be adjusted by changing the conveyance speed of the substrate (101).
  • the aluminum plating apparatus of the present invention it is possible to satisfactorily form aluminum plating on the surface of a substrate on which a metal oxide film or the like having low insulation or conductivity is formed.
  • the linear velocity can be increased by using the aluminum plating apparatus of the present invention. Products can be manufactured efficiently.
  • the conventional plating tank deepens the plating tank when plating in the gravity direction, and plating when plating in the horizontal direction. It is conceivable to lengthen the anode by elongating the tank. However, in practice, the length of the anode effective for plating is limited. In other words, it is plated at a high current density at a location close to the conductor roll, but is not plated at a location far from the conductor roll. Can not.
  • the aluminum plating apparatus of the present invention can remove the oxide film formed on the aluminum surface in the first electrolysis chamber. By providing two or more on the surface, smooth and good-quality aluminum plating can be formed even after the second tank. With such an aluminum plating apparatus in which two or more aluminum plating apparatuses are provided in series in the conveyance direction of the base, it is possible to increase the linear velocity of the base, thereby improving the production efficiency of the product. Furthermore, since the aluminum plating apparatus performs continuous aluminum plating using a plurality of aluminum plating apparatuses, only one additional facility such as a base supply or winding is required, and the amount of capital investment is extremely low. can do.
  • the number of aluminum devices provided in series is not particularly limited, and may be appropriately selected according to the purpose, such as the thickness of the aluminum plating film to be formed.
  • an aluminum porous body can be efficiently produced by disposing about 2 to 20 pieces.
  • a conventional aluminum plating apparatus is installed at the uppermost stream in the substrate transport direction of the aluminum plating apparatus of the present invention. It may be provided.
  • a conventional aluminum plating apparatus as shown in FIG. 2, an aluminum plating apparatus for electrodepositing aluminum on a base by passing the base (101) through a plating tank (202), 202) an aluminum plating apparatus in which the anode (209) provided in the plating tank (202) and the substrate (101) are electrically connected so that the substrate (101) acts as a cathode. Can be preferably used.
  • the aluminum plating apparatus is an aluminum plating apparatus in which the base is transported in a plating tank to the uppermost stream in the transport direction of the base of the aluminum plating apparatus and aluminum is electrodeposited on the base.
  • An aluminum plating apparatus provided with an aluminum plating apparatus in which an anode provided in the plating tank and the base are electrically connected so that the base acts as a cathode in the plating tank It is.
  • Example 1 Ten aluminum devices of the present invention shown in FIG. 1 were arranged in series to form an aluminum plating film on the substrate.
  • -Substrate- A resin molded body having a three-dimensional network structure in which an aluminum film was formed on the surface by a sputtering method was used as a substrate.
  • the resin molding having a three-dimensional network structure a foamed urethane resin molding having a porosity of 95%, the number of pores per one inch (number of cells), a pore diameter of about 550 ⁇ m, a width of 500 mm, and a thickness of 1 mm was used. .
  • An aluminum film having a basis weight of 10 g / m 2 was formed on the foamed urethane resin molded body by a sputtering method, and subjected to a conductive treatment. It was confirmed that a 30 nm aluminum oxide film was formed on the aluminum film on the surface of the resin molded body.
  • each aluminum device shown in FIG. 1 was prepared and arranged in series. Nitrogen was filled so that the atmosphere between the aluminum plating apparatuses became an inert atmosphere. The rotational speed of the roller was adjusted so that the linear velocity of the substrate to be conveyed was 0.1 to 1.0 m / min.
  • the configuration of each aluminum device was as follows.
  • molten salt bath In a nitrogen atmosphere, a molten salt bath was prepared by mixing to 33 mol% EMIC-67 mol% AlCl 3 . Further, 1,10-phenanthroline was added so as to be 0.5 g / L. Further, nitrogen was introduced into the plating solution so that an oxide film was not formed while aluminum was electrodeposited.
  • Partition plate A partition plate made of Teflon (registered trademark) was disposed in the plating tank, and the plating tank was partitioned into a first electrolysis chamber and a second electrolysis chamber. The partition plate was formed with a slit having a width of 560 mm and a height of 5 mm to serve as a passage for the substrate.
  • (First feeding roller) A first feeding roller made of aluminum having the center of the roller connected to the anode terminal of the power source was used.
  • (cathode) An aluminum cathode was provided in the first electrolysis chamber. As shown in FIG. 1, the cathodes were arranged at two locations on the upper surface side and the lower surface side of the substrate.
  • (First electrolysis chamber) In the first electrolysis chamber, electrolysis occurred between the substrate and the cathode so that the current density was 10 A / dm 2 .
  • (Second feeding roller) A second feeding roller made of aluminum having the center of the roller connected to the cathode terminal of the power source was used.
  • (anode) An aluminum anode was provided in the second electrolysis chamber. As shown in FIG. 1, the anode was disposed at two locations on the upper surface side and the lower surface side of the substrate.
  • (Second electrolysis chamber) In the second electrolysis chamber, electrolysis occurred between the substrate and the anode so that the current density was 5 A / dm 2 .
  • the above-mentioned electrified substrate was continuously conveyed to 10 aluminum apparatuses having the above-described configuration, and an aluminum plating film was formed on the substrate surface. As a result, a 10 ⁇ m aluminum film was formed on the substrate surface. Further, the formed plating film was homogeneous and good quality.
  • Example 2 As shown in FIG. 2, a conventional aluminum plating apparatus is disposed on the most upstream side with respect to the substrate transport direction.
  • Nine aluminum devices of the present invention used in Example 1 were arranged in series on the downstream side to form an aluminum plating film on the substrate.
  • -Substrate- A resin molded body having the same three-dimensional network structure as in Example 1 was used.
  • the conductive treatment of the resin molding was performed by applying a carbon paint as a conductive paint to the porous resin other surface.
  • the component of the carbon paint includes 25% of carbon particles, and includes a resin binder, a penetrating agent, and an antifoaming agent.
  • the particle size of carbon black was 0.5 ⁇ m.
  • the conventional aluminum plating apparatus disposed on the most upstream side with respect to the substrate transport direction has the same configuration as the second electrolysis chamber in the aluminum plating apparatus used in Example 1. That is, the plating solution, the power supply roller, and the anode were respectively configured in the same manner as the plating solution, the second power supply roller, and the anode of Example 1.
  • the second and subsequent aluminum plating apparatuses have the same configuration as the aluminum plating apparatus used in Example 1, and nine such apparatuses are arranged in series.
  • Example 1 An aluminum plating film was formed on the substrate surface in the same manner as in Example 1 except that ten conventional aluminum plating apparatuses were arranged in series as the aluminum plating apparatus. As a conventional aluminum plating apparatus, the aluminum plating apparatus arranged on the most upstream side in Example 2 was used. In addition, it was set as the conditions similar to Example 1 also to fill between nitrogen plating apparatuses with nitrogen, and to make it inert atmosphere. When the aluminum plating film formed on the substrate surface was observed, it was deposited in an island shape and was inferior in quality to the film formed using the apparatus of Example 1.
  • Example 2 An aluminum plating film was formed on the substrate surface in the same manner as in Example 2 except that ten conventional aluminum plating apparatuses were arranged in series as the aluminum plating apparatus. As a conventional aluminum plating apparatus, the aluminum plating apparatus arranged on the most upstream side in Example 2 was used. In addition, it was set as the conditions similar to Example 2 also to fill between nitrogen plating apparatuses with nitrogen, and to make it inert atmosphere. When the aluminum plating film formed on the substrate surface was observed, it was deposited in an island shape and was inferior in quality to the film formed using the apparatus of Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

表面に絶縁性あるいは導電性が低い金属酸化膜等が形成されている基体の表面にも良好にアルミニウムめっきを形成することができるアルミニウムめっき装置を提供する。 めっき槽中に基体を搬送させて、該基体上にアルミニウムを電着させるアルミニウムめっき装置であって、前記めっき槽は、前記基体が搬送される上流側から順に、第一の電解室と第二の電解室とに仕切り板により分けられており、前記第一の電解室中では、前記基体が陽極として作用するように、第一の電解室中に設けられた負極と前記基体とが電気的に接続されており、前記第二の電解室中では、前記基体が陰極として作用するように、前記第二の電解室中に設けられた陽極と前記基体とが電気的に接続されているアルミニウムめっき装置。

Description

アルミニウムめっき装置及びこれを用いたアルミニウム膜の製造方法
 本発明は基体表面にアルミニウムを電気めっきするアルミニウムめっき装置及びこれを用いたアルミニウム膜の製造方法に関する。
 アルミニウムは表面に緻密な酸化膜を形成することにより不動態化し優れた耐食性を発揮する。このため鋼帯などの表面にアルミニウムめっきを施して耐食性を高めることが行われている。
 鋼帯表面にアルミニウムめっきをするには、まず、コンダクタロールを通じて鋼帯をめっき槽内に連続的に送給し、めっき槽内のめっき液に浸漬された陽極内を走行させる。この時、鋼帯自体は陰極として作用するように電気的に接続されていることから、陽極と陰極である鋼帯との間で電解が起こり、鋼帯の表面にアルミニウムが電着し、アルミニウムめっきが形成される。めっき液内を走行する鋼帯はターンロールによって方向変更され、今度は上向きに走行するが、この場合にも陽極との間でめっきが行われる。アルミニウムめっきが形成された鋼帯はめっき槽を出てからコンダクタロールを経て系外に取り出される(特開平05-222599号公報(特許文献1))。
 また、三次元網目構造を有する金属多孔体としてアルミニウムからなる多孔体は、リチウムイオン電池の正極の容量を向上させるものとして有望である。現在では、アルミニウムの導電性、耐腐食性、軽量などの優れた特徴を生かして、アルミニウム箔の表面にコバルト酸リチウム等の活物質を塗布したものがリチウムイオン電池の正極として使用されている。この正極をアルミニウムからなる多孔体により形成することで、表面積を大きくし、アルミニウムの内部にも活物質を充填することが可能となる。これにより、電極を厚くしても活物質の利用率が減少することがなくなり、単位面積当たりの活物質の利用率が向上し、正極の容量を向上させることが可能となる。
 本出願人は、上記のようなアルミニウム多孔体の製造方法として、三次元網目構造を有する樹脂成形体にアルミニウムを電気めっきする方法を提案している(特開2012-007233号公報(特許文献2))。従来のアルミニウム溶融塩浴は高温にする必要があるため、樹脂成形体表面にアルミニウムを電気めっきしようとすると、樹脂が高温に耐えられず溶解してしまうなどの問題があった。しかしながら特許文献2に記載の方法によれば、1-エチル-3-メチルイミダゾリウムクロリド(EMIC)や、1-ブチルピリジニウムクロリド(BPC)などの有機塩化物塩と塩化アルミニウム(AlCl3)とを混合することで、室温で液体のアルミニウム浴が形成され、樹脂成形体へのアルミニウムの電気めっきが可能となる。特に、EMIC-AlCl3系では液の特性が良好であり、アルミめっき液として有用である。
 上記のような、アルミニウムめっきが形成された鋼帯や三次元網目構造を有するアルミニウム多孔体において、より光沢性に優れた表面にしたり、アルミニウムのめっき層の厚さをより厚くしたりするには、表面がアルミニウムの基体に更にアルミニウムをめっきする必要がある。
 しかしながら、上記のようにアルミニウムの表面には酸化膜が形成されているため、アルミニウムを電着させようとしても表面に均質に通電させることができず、島状にめっきが形成されてしまうという問題がある。
特開平05-222599号公報 特開2012-007233号公報
 本発明は前記問題点に鑑みて、表面に絶縁性あるいは導電性が低い金属酸化膜等が形成されている基体の表面にも良好にアルミニウムめっきを形成することができるアルミニウムめっき装置を提供することを課題とする。
 本発明者等は上記課題を解決すべく鋭意探求を重ねた結果、めっき槽内において、酸化膜が形成された金属表面を電解除去してからアルミニウムをめっきすることが有効であることを見出し、本発明を完成させた。すなわち、本発明は以下の構成を有する。
(1)めっき槽中に基体を搬送させて、該基体上にアルミニウムを電着させるアルミニウムめっき装置であって、
前記めっき槽は、前記基体が搬送される上流側から順に、第一の電解室と第二の電解室とに仕切り板により分けられており、
前記第一の電解室中では、前記基体が陽極として作用するように、前記第一の電解室中に設けられた陰極と前記基体とが電気的に接続されており、
前記第二の電解室中では、前記基体が陰極として作用するように、前記第二の電解室中に設けられた陽極と前記基体とが電気的に接続されている
アルミニウムめっき装置。
 上記(1)に記載のアルミニウムめっき装置は、第一の電解室において逆電解を行うため、基体表面に絶縁性あるいは導電性が低い金属酸化膜等が形成されていてもこれを電解除去することができ、続く第二の電解室において良好にアルミニウムを電着させることができる。
(2)前記第一の電解室の入口の上流側に、前記基体に電位を付与すると同時に基体を搬送する第一の給電ローラを有する上記(1)に記載のアルミニウムめっき装置。
 上記(2)に記載の発明によれば、基体を搬送しつつ、第一の電解室近傍で基体に電位を付与することができる。
(3)前記第二の電解室の出口の下流側に、前記基体に電位を付与すると同時に基体を搬送する第二の給電ローラを有する上記(1)又は(2)に記載のアルミニウムめっき装置。
 上記(3)に記載の発明によれば、基体を搬送しつつ、第二の電解室近傍で基体に電位を付与することができる。
(4)前記めっき槽に、塩化アルミニウムを主成分とする溶融塩浴が収容されている上記(1)~(3)のいずれか一項に記載のアルミニウムめっき装置。
 上記(4)に記載の発明によれば、従来の塩化アルミニウムを主成分とする溶融塩浴を用いることができ、良質なアルミニウム膜を得ることができる。
(5)前記基体が、導電化処理された三次元網目構造を有する樹脂成形体からなるシートである上記(1)~(4)のいずれか一項に記載のアルミニウムめっき装置。
 上記(5)に記載の発明によれば、三次元網目構造を有する樹脂成形体の表面にアルミニウム膜を有する樹脂構造体を連続的に製造することができる。
(6)上記(1)~(5)のいずれか一項に記載のアルミニウムめっき装置が、前記基体の搬送方向に直列に2以上設けられているアルミニウムめっき装置。
 上記(6)に記載の発明によれば、基体のサプライや巻き取り等の付帯設備が1台分で済み、設備投資額を非常に安価にすることができる。
(7)上記(1)~(6)のいずれか一項に記載のアルミニウムめっき装置の前記基体の搬送方向の最上流に、
めっき槽中に前記基体を搬送させて、前記基体上にアルミニウムを電着させるアルミニウムめっき装置であって、該めっき槽中では前記基体が陰極として作用するように、該めっき槽中に設けられた陽極と前記基体とが電気的に接続されているアルミニウムめっき装置が設けられているアルミニウムめっき装置。
 上記(7)に記載の発明によれば、表面に絶縁性あるいは導電性が低い金属酸化膜等が形成されていない基体を用いる場合に、基体の搬送方向の最上流に従来のアルミニウムめっき装置を用いることができる。また、基体のサプライや巻き取り等の付帯設備が1台分で済み、設備投資額を非常に安価にすることができる。
(8)上記(1)~(7)のいずれか一項に記載のアルミニウムめっき装置を用いて基体上にアルミニウムを電着させるアルミニウム膜の製造方法。
 上記(8)に記載のアルミニウム膜の製造方法は、表面に絶縁性あるいは導電性が低い金属酸化膜等が形成されている基体であっても、その表面に良質なアルミニウム膜を形成することができる。
 本発明により、表面に絶縁性あるいは導電性が低い金属酸化膜等が形成されている基体の表面にも良好にアルミニウムめっきを形成することができるアルミニウムめっき装置を提供することができる。
本発明のアルミニウムめっき装置の一例を示す図である。 本発明のアルミニウムめっき装置の別の一例を示す図である。
 本発明に係るアルミニウムめっき装置は、めっき槽中に基体を搬送させて、該基体上にアルミニウムを電着させるアルミニウムめっき装置であって、前記めっき槽は、前記基体が搬送される上流側から順に、第一の電解室と第二の電解室とに仕切り板により分けられており、前記第一の電解室中では、前記基体が陽極として作用するように、第一の電解室中に設けられた陰極と前記基体とが電気的に接続されており、前記第二の電解室中では、前記基体が陰極として作用するように、前記第二の電解室中に設けられた陽極と前記基体とが電気的に接続されているアルミニウムめっき装置である。
 前記基体は特に限定されるものではないが、表面に金属酸化膜(不働態膜)が形成されている金属のように、従来のアルミニウムめっき装置では上手くアルミニウムを電着させることができないような基体の場合に、顕著な効果が発揮される。このような基体としては、例えば、鋼帯(鋼板)、三次元網目構造を有するアルミニウム多孔体、SUS板、CuあるいはCu合金板、ZnあるいはZn合金板などが挙げられる。
 前記めっき槽にはめっき液が収容されるが、当該めっき液はアルミニウムを電気めっきすることが可能な組成であれば特に限定されるものではない。アルミニウムは酸素に対する親和力が大きく、電位が水素より低いため、水溶液系のめっき浴では電気めっきを行うことが困難であるため、溶融塩浴を用いる。溶融塩浴としては塩化アルミニウムを主成分とするものを好適に用いることができる。
 溶融塩としては、有機系ハロゲン化物とアルミニウムハロゲン化物の共晶塩である有機溶融塩、アルカリ金属のハロゲン化物とアルミニウムハロゲン化物の共晶塩である無機溶融塩を使用することができる。比較的低温で溶融する有機溶融塩浴を使用すると、基材である樹脂成形体を分解することなくめっきができ好ましい。有機系ハロゲン化物としてはイミダゾリウム塩、ピリジニウム塩等が使用でき、具体的には1-エチル-3-メチルイミダゾリウムクロリド(EMIC)、ブチルピリジニウムクロリド(BPC)が好ましい。
 溶融塩中に水分や酸素が混入すると溶融塩が劣化するため、めっきは窒素、アルゴン等の不活性ガス雰囲気下で、かつ密閉した環境下で行うことが好ましい。
 溶融塩浴としては窒素を含有した溶融塩浴が好ましい。前記基体として三次元網目構造を有する樹脂成形体を用いる際に、溶融塩として高温で溶融する塩を使用した場合は、めっき層の成長よりも樹脂が溶融塩中に溶解や分解する方が早くなり、樹脂成形体表面にめっき層を形成することができない。この場合にはイミダゾリウム塩浴を好ましく用いることができる。イミダゾリウム塩浴は比較的低温であっても樹脂に影響を与えず使用可能である。
 イミダゾリウム塩として、1,3位にアルキル基を持つイミダゾリウムカチオンを含む塩が好ましく用いられ、特に塩化アルミニウム-1-エチル-3-メチルイミダゾリウムクロリド(AlCl3-EMIC)系溶融塩が、安定性が高く分解し難いことから最も好ましく用いられる。発泡ウレタン樹脂や発泡メラミン樹脂などへのめっきが可能であり、溶融塩浴の温度は10℃~100℃、好ましくは25℃~45℃である。低温になる程めっき可能な電流密度範囲が狭くなり、樹脂成形体表面全体へのめっきが難しくなる。100℃を超える高温では基体樹脂の形状が損なわれる不具合が生じやすい。
 また、基体として鋼帯のように融点の高いものを用いる場合には、溶融塩として無機塩浴を用いることもできる。無機塩浴とは、代表的にはAlCl3-XCl(X:アルカリ金属)の2成分系あるいは多成分系の塩である。このような無機塩浴はイミダゾリウム塩浴のような有機塩浴に比べて一般に溶融温度は高いが、水分や酸素など環境条件の制約が少なく、全体に低コストでの実用化が可能である。
 基体表面に形成されるアルミニウムめっき膜の平滑性、光沢性の向上を目的として、キシレン、ベンゼン、トルエン、1,10-フェナントロリン等の添加剤を加えてもよい。
特に1,10-フェナントロリンを好ましく用いることができる。このような添加剤の添加量は、0.25~7g/Lが好ましい。0.25g/L以上とすることで充分に平滑なアルミニウムめっき膜が得られ、また7g/L以下とすることでめっき効率の低下を抑制することができる。
 以下、適宜図面を参照しながら本件発明をより詳細に説明する。
 図1は本発明のアルミニウムめっき装置の構成の一例を表す図である。図1に示すように本発明のアルミニウムめっき装置は、めっき液が収容されるめっき槽(102)が仕切り板(103)によって第一の電解室(104)と第二の電解室(105)とに分けられている。そして、基体(101)は第一の電解室(104)から第二の電解室(105)へと連続的に搬送される。
 仕切り板(103)は第一の電解室(104)と第二の電解室(105)とを電気的に隔てる目的で設けるものであり、絶縁性のものを好ましく用いることができる。例えば、テフロン(登録商標)、セラミックス、ガラス、PEEK(ポリエーテルエーテルケトン)などのスーパーエンジニアリングプラスチック、耐熱塩化ビニル樹脂等を用いることができる。
 また、仕切り板(103)には基体の通り口が設けられているが、当該通り口は基体が通ることのできる最小限のものであることが好ましい。例えば、基体の通り口をスリット状にすることが好ましい。
 基体(101)が最初に搬送される第一の電解室(104)には陰極(107)が設けられており、第一の電解室(104)の中で基体(101)が陽極として作用するように電気的に接続されている。これにより陰極(107)と基体(101)との間で電解が生じ、基体(101)の表面に形成されていた金属酸化膜が電解除去され、基体(101)を構成している金属表面が露出する。
 陰極(107)は特に限定される物ではなく、例えば、アルミニウム、チタン、銅等を好ましく用いることができる。
 図1では陰極(107)は基体(101)の上下方向に2つ設けた場合が例示されているが、陰極(107)の数は特に限定されるものではなく、1つでも、3つ以上でも構わない。また、陰極(107)を設ける位置も特に限定される物ではないが、なるべく基体(101)の近傍に位置するように設けた方が効率よく電解が起こるため好ましい。
 第一の電解室(104)の中で基体(101)が陽極として作用するようにするためには、陰極(107)と接続されている電源の陽極端子と、基体(101)とを接続すればよい。このとき、基体(101)は第一の電解室(104)の入口近傍の上流側で陽極と接続されていると、効率よく電解が起こるため好ましい。
 図1は第一の電解室(104)の入口の上流側に第一の給電ローラ(106)を設け、当該第一の給電ローラ(106)と電源の陽極とを接続している場合を示している。これにより、基体(101)は、第一の給電ローラ(106)と第一の搬送ローラ(110)によって連続的に搬送されつつ第一の給電ローラ(106)から電位が付与され、第一の電解室(104)の中で陽極として作用するようになる。なお、図1では第一の給電ローラ(106)の向かい側に第一の搬送ローラ(110)を設けた場合を示しているが、第一の搬送ローラ(110)の代わりに、陽極と接続された給電ローラを設けてもよい。
 第一の電解室(104)において電解除去する金属酸化膜の量は、基体(101)上に形成されている酸化膜の量に応じて適宜調整すればよい。例えば、基体がアルミニウムである場合には、アルミニウムの析出量又は溶解量は次式に基づいて調整することができる。
  アルミニウム析出量/溶解量[g]
       =0.3352×I[A]×t[Hr]       (式)
 上記式においてIは電流値、tは時間を表し、定数0.3352はアルミニウムに特有の定数であり、基体が他の金属の場合には、その金属に特有の定数に変更して計算すればよい。
 上記のようにして金属酸化膜が除去された基体(101)は、続いて仕切り板(103)に設けられたスリットを通じて第二の電解室(105)へと搬送される。第二の電解室(105)には陽極(109)が設けられており、第二の電解室(105)の中で基体(101)が陰極として作用するように電気的に接続されている。これにより、陽極(109)と基体(101)との間で電解が生じ、基体(101)の表面にアルミニウムが電着する。
 前記のように基体(101)の表面に形成されていた金属酸化膜は第一の電解室(104)において除去されているため、第二の電解室(105)では基体(101)の表面に均一なアルミニウムめっきを形成することが可能である。
 陽極(109)は特に限定されるものではなく、例えば、アルミニウム、チタン、銅等を好ましく用いることができる。
 陰極(107)と同様に図1では陽極(109)を基体(101)の上下方向に2つ設けた場合を例示しているが、陽極(109)の数は特に限定されるものではなく、1つでも、3つ以上でも構わない。また、陽極(109)を設ける位置も特に限定される物ではないが、なるべく基体(101)の近傍に位置するように設けた方が効率よく電解が起こるため好ましい。
 第二の電解室(105)の中で基体(101)が陰極として作用するようにするためには、陽極(109)と接続されている電源の陰極端子と、基体(101)とを接続すればよい。このとき、基体(101)は第二の電解室(105)の出口近傍の下流側で陰極と接続されていると、効率よく電解が起こるため好ましい。
 図1は第二の電解室(105)の出口の下流側に第二の給電ローラ(108)を設け、当該第二の給電ローラ(108)と電源の陰極とを接続している場合を示している。これにより、基体(101)は、第二の給電ローラ(108)と第二の搬送ローラ(111)によって連続的に搬送されつつ第二の給電ローラ(108)から電位が付与され、第二の電解室(105)の中で陰極として作用するようになる。なお、図1では第二の給電ローラ(108)の向かい側に第二の搬送ローラ(111)を設けた場合を示しているが、第二の搬送ローラ(111)の代わりに、陰極と接続された給電ローラを設けてもよい。
 第二の電解室(105)において析出させるアルミニウムの量は、上記式によって計算することができる。従って、所望のアルミニウムが基体(101)表面に電着するように、電流値、及び時間を調整すればよい。時間は基体(101)の搬送速度を変更することで調整することができる。
 以上のように、本発明のアルミニウムめっき装置を用いることにより、表面に絶縁性あるいは導電性が低い金属酸化膜等が形成されている基体の表面にも良好にアルミニウムめっきを形成することができる。
 また、鋼帯や三次元網目構造を有する樹脂成形体からなるシートのように、長尺の基体にアルミニウムめっきをする場合には、本発明のアルミニウムめっき装置を用いることにより、線速を上げて効率よく製品を製造することができる。
 従来のめっき槽が一槽のアルミニウムめっき装置で線速を上げて生産能力を高めようとするには、例えば、重力方向にめっきする場合はめっき槽を深くする、水平方向にめっきする場合はめっき槽を長くする等により、陽極を長くすることが考えられる。しかしながら、実際には、めっきに有効な陽極の長さには限界がある。つまり、コンダクタロールに近い箇所では高電流密度でめっきされるが、コンダクタロールから遠い所ではめっきされないことから、めっき槽が一槽の装置では線速向上に限界があり、生産能力を高めることはできない。
 このため、めっき槽を2槽以上で構成して線速を上げることが考えられるが、従来のめっき装置を2槽以上タンデムに配置して連続処理を行ったとしても、アルミニウムのように表面に酸化膜を形成しやすい金属の場合には、前のめっき槽で形成した皮膜上にアルミニウムを上手くめっき出来ないという問題がある。すなわち、めっき槽間でアルミニウムの表面に酸化膜が形成されてしまい、酸化膜があると、アルミニウムが島状に析出してしまい、うまくめっきをすることができない。なお、めっき槽の間をN2等の不活性雰囲気にしたとしても、完全に酸素を除去することはできず酸素がppmオーダーで存在し、この程度の微量の酸素に曝された場合であってもアルミニウムの表面には酸化膜(不働態膜)が形成されてしまう。
 上記のような問題に対して、本発明のアルミニウムめっき装置はアルミニウム表面に形成されている酸化膜を第一の電解室の中で除去することができるものであるから、基体の搬送方向に直列に2つ以上設けることにより、2槽目以降も平滑で良質なアルミニウムめっきを形成することができる。このような、前記アルミニウムめっき装置が前記基体の搬送方向に直列に2以上設けられているアルミニウムめっき装置により基体の線速を上げることが可能となり、製品の生産効率を高めることができる。更に、当該アルミニウムめっき装置は、複数のアルミニウムめっき装置を用いて連続的にアルミニウムめっきを行うため、基体のサプライや巻き取り等の付帯設備が1台分で済み、設備投資額を非常に安価にすることができる。
 直列に設けるアルミニウム装置の数は特に限定されず、形成するアルミニウムめっき膜の厚さ等、目的に応じて適宜選択すればよい。例えば、基体として三次元網目構造を有する樹脂成形体を用いる場合には、2~20程度配置することにより効率よくアルミニウム多孔体を作製することができる。
 また、基体としてカーボン塗布等により導電化処理をした三次元網目構造を有する樹脂成形体を用いる場合には、前記本発明のアルミニウムめっき装置の基体の搬送方向の最上流に従来のアルミニウムめっき装置を設けてもよい。従来のアルミニウムめっき装置としては、図2に示すような、めっき槽(202)中に基体(101)を通過させて該基体上にアルミニウムを電着させるアルミニウムめっき装置であって、該めっき槽(202)中では前記基体(101)が陰極として作用するように、該めっき槽(202)中に設けられた陽極(209)と前記基体(101)とが電気的に接続されているアルミニウムめっき装置を好ましく用いることができる。
 すなわち、本発明に係るアルミニウムめっき装置は、前記アルミニウムめっき装置の前記基体の搬送方向の最上流に、めっき槽中に前記基体を搬送させて、前記基体上にアルミニウムを電着させるアルミニウムめっき装置であって、該めっき槽中では前記基体が陰極として作用するように、該めっき槽中に設けられた陽極と前記基体とが電気的に接続されているアルミニウムめっき装置が設けられているアルミニウムめっき装置である。このような、直列に設けられた2番目以降のアルミニウムめっき装置に、逆電解を行う第一の電解室を備える前記本発明のアルミニウムめっき装置を直列的に配置してアルミニウムめっきを行うことにより、基体上に均質で良質なアルミニウムめっきを効率よく形成することが可能となる。また、前記のように、本発明のアルミニウムめっき装置は、基体のサプライや巻き取り等の付帯設備が1台分で済むため、設備投資額を非常に安価にすることができる。
 以下、実施例に基づいて本発明をより詳細に説明するが、これらの実施例は例示であって、本発明のアルミニウムめっき装置等はこれらに限定されるものではない。本発明の範囲は特許請求の範囲の範囲によって示され、特許請求の範囲の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
[実施例1]
 図1に示す本発明のアルミニウム装置を10個直列に配置して基体にアルミニウムめっき膜を形成した。
-基体-
 基体としてスパッタリング法により表面にアルミニウム膜を形成した三次元網目構造を有する樹脂成形体を用いた。
 三次元網目構造を有する樹脂成形体として、気孔率95%、1インチ当たりの気孔数(セル数)約50個、気孔径約550μm、幅500mm、厚さ1mmの発泡ウレタン樹脂成形体を用いた。当該発泡ウレタン樹脂成形体に、スパッタリング法により目付量10g/m2のアルミニウム膜を形成して導電化処理した。
 樹脂成形体表面のアルミニウム膜には30nmの酸化アルミニウム膜が形成されていることが確認された。
-アルミニウムめっき装置-
 図1に示すアルミニウム装置を10個用意して直列に配置した。各アルミニウムめっき装置同士の間が不活性雰囲気になるように窒素を充填した。搬送される基体の線速が0.1~1.0m/minとなるようにローラの回転速度を調整した。各アルミニウム装置の構成は次の通りとした。
(溶融塩浴)
 窒素雰囲気で、33mol%EMIC-67mol%AlCl3となるように混合して溶融塩浴を作製した。更に1,10-フェナントロリンを0.5g/Lとなるように添加した。
 また、めっき液中には窒素を導入して、アルミニウムが電着している最中に酸化膜が形成されないようにした。
(仕切り板)
 めっき槽内にテフロン(登録商標)製の仕切り板を配置して、めっき槽を第一の電解室と第二の電解室とに区画した。仕切り板には基体の通り口となる560mm幅×5mm高さのスリットを形成した。
(第一の給電ローラ)
 ローラの中心が電源の陽極端子と接続されたアルミニウム製の第一の給電ローラを用いた。
(陰極)
 第一の電解室の中にアルミニウム製の陰極を設けた。陰極は図1に示すように基体の上面側と下面側の2箇所に配置した。
(第一の電解室)
 第一の電解室において、基体と陰極との間で電解が生じて電流密度が10A/dm2となるようにした。
(第二の給電ローラ)
 ローラの中心が電源の陰極端子と接続されたアルミニウム製の第二の給電ローラを用いた。
(陽極)
 第二の電解室の中にアルミニウム製の陽極を設けた。陽極は図1に示すように基体の上面側と下面側の2箇所に配置した。
(第二の電解室)
 第二の電解室において、基体と陽極との間で電解が生じて電流密度が5A/dm2となるようにした。
 上記の電電化処理した基体を上記の構成の10個のアルミニウム装置に連続的に搬送し、基体表面にアルミニウムめっき膜を形成した。これにより基体表面には10μmのアルミニウム膜が形成された。また、形成されためっき膜は均質であり良質な膜であった。
 以上により、本発明のアルミニウムめっき装置を用いることで、表面に酸化アルミニウム膜が形成されている基体であっても、良質なアルミニウムめっき膜を更に形成することができることが確認された。
[実施例2]
 図2に示すように、基体の搬送方向に対して最上流側に従来のアルミニウムめっき装置を配置した。そしてその下流側に実施例1で用いた本発明のアルミニウム装置を9個直列に配置して基体にアルミニウムめっき膜を形成した。
-基体-
 実施例1と同様の三次元網目構造を有する樹脂成形体を用いた。
 樹脂成形体の導電化処理は、導電性塗料としてのカーボン塗料を樹脂多孔他表面に塗布することにより行った。カーボン塗料の成分は、カーボン粒子25%を含み、樹脂バインダー、浸透剤、消泡剤を含む。カーボンブラックの粒径は0.5μmとした。
-アルミニウムめっき装置-
 基体の搬送方向に対して最上流側に配置した従来のアルミニウムめっき装置は、実施例1で用いたアルミニウムめっき装置における第二の電解室と同様の構成とした。即ち、めっき液、給電ローラ、陽極をそれぞれ、実施例1のめっき液、第二の給電ローラ、陽極と同一の構成にした。
 2番目以降のアルミニウムめっき装置は、実施例1で用いたアルミニウムめっき装置と同一の構成とし、当該装置を9個直列に配置した。
 表面にアルミニウムめっき膜が形成された基体を観察したところ、基体表面には10μmのアルミニウム膜が形成さており、形成されためっき膜は均質で良質な膜であった。
[比較例1]
 アルミニウムめっき装置として従来のアルミニウムめっき装置を10個直列に配置して用いた以外は実施例1と全く同様にして基体表面にアルミニウムめっき膜を形成した。従来のアルミニウムめっき装置としては、実施例2で最上流側に配置したアルミニウムめっき装置を用いた。なお、アルミニウムめっき装置同士の間を窒素で満たして不活性雰囲気にすることも実施例1と同様の条件とした。
 基体表面に形成されたアルミニウムめっき膜を観察したところ、島状に析出しており、実施例1の装置を用いて形成した膜よりも品質的に劣るものであった。
[比較例2]
 アルミニウムめっき装置として従来のアルミニウムめっき装置を10個直列に配置して用いた以外は実施例2と全く同様にして基体表面にアルミニウムめっき膜を形成した。従来のアルミニウムめっき装置としては、実施例2で最上流側に配置したアルミニウムめっき装置を用いた。なお、アルミニウムめっき装置同士の間を窒素で満たして不活性雰囲気にすることも実施例2と同様の条件とした。
 基体表面に形成されたアルミニウムめっき膜を観察したところ、島状に析出しており、実施例2の装置を用いて形成した膜よりも品質的に劣るものであった。
 101 基体
 102 めっき槽
 103 仕切り板
 104 第一の電解室
 105 第二の電解室
 106 第一の給電ローラ
 107 陰極
 108 第二の給電ローラ
 109 陽極
 110 第二の搬送ローラ
 111 第二の搬送ローラ
 202 めっき槽
 208 給電ローラ
 209 陽極

Claims (8)

  1.  めっき槽中に基体を搬送させて、該基体上にアルミニウムを電着させるアルミニウムめっき装置であって、
    前記めっき槽は、前記基体が搬送される上流側から順に、第一の電解室と第二の電解室とに仕切り板により分けられており、
    前記第一の電解室中では、前記基体が陽極として作用するように、前記第一の電解室中に設けられた陰極と前記基体とが電気的に接続されており、
    前記第二の電解室中では、前記基体が陰極として作用するように、前記第二の電解室中に設けられた陽極と前記基体とが電気的に接続されている
    アルミニウムめっき装置。
  2.  前記第一の電解室の入口の上流側に、前記基体に電位を付与すると同時に基体を搬送する第一の給電ローラを有する請求項1に記載のアルミニウムめっき装置。
  3.  前記第二の電解室の出口の下流側に、前記基体に電位を付与すると同時に基体を搬送する第二の給電ローラを有する請求項1又は2に記載のアルミニウムめっき装置。
  4.  前記めっき槽に、塩化アルミニウムを主成分とする溶融塩浴が収容されている請求項1~3のいずれか一項に記載のアルミニウムめっき装置。
  5.  前記基体が、導電化処理された三次元網目構造を有する樹脂成形体からなるシートである請求項1~4のいずれか一項に記載のアルミニウムめっき装置。
  6.  請求項1~5のいずれか一項に記載のアルミニウムめっき装置が、前記基体の搬送方向に直列に2以上設けられているアルミニウムめっき装置。
  7.  請求項1~6のいずれか一項に記載のアルミニウムめっき装置の前記基体の搬送方向の最上流に、
    めっき槽中に前記基体を搬送させて、前記基体上にアルミニウムを電着させるアルミニウムめっき装置であって、該めっき槽中では前記基体が陰極として作用するように、該めっき槽中に設けられた陽極と前記基体とが電気的に接続されているアルミニウムめっき装置が設けられているアルミニウムめっき装置。
  8.  請求項1~7のいずれか一項に記載のアルミニウムめっき装置を用いて基体上にアルミニウムを電着させるアルミニウム膜の製造方法。
PCT/JP2013/066294 2012-09-05 2013-06-13 アルミニウムめっき装置及びこれを用いたアルミニウム膜の製造方法 WO2014038263A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/425,457 US20150211143A1 (en) 2012-09-05 2013-06-13 Aluminum plating apparatus and method for producing aluminum film using same
DE112013004355.6T DE112013004355T5 (de) 2012-09-05 2013-06-13 Aluminium-Plattieranlage und Verfahren zur Erzeugung eines Aluminiumfilmes unter deren Verwendung
KR20157002639A KR20150046013A (ko) 2012-09-05 2013-06-13 알루미늄 도금 장치 및 이것을 이용한 알루미늄막의 제조 방법
CN201380046112.4A CN104603332A (zh) 2012-09-05 2013-06-13 镀铝装置以及使用该装置制造铝膜的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-194779 2012-09-05
JP2012194779A JP5880364B2 (ja) 2012-09-05 2012-09-05 アルミニウムめっき装置及びこれを用いたアルミニウム膜の製造方法

Publications (1)

Publication Number Publication Date
WO2014038263A1 true WO2014038263A1 (ja) 2014-03-13

Family

ID=50236886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066294 WO2014038263A1 (ja) 2012-09-05 2013-06-13 アルミニウムめっき装置及びこれを用いたアルミニウム膜の製造方法

Country Status (6)

Country Link
US (1) US20150211143A1 (ja)
JP (1) JP5880364B2 (ja)
KR (1) KR20150046013A (ja)
CN (1) CN104603332A (ja)
DE (1) DE112013004355T5 (ja)
WO (1) WO2014038263A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210959A (ja) * 2013-04-19 2014-11-13 日東電工株式会社 めっき装置、めっき方法、配線回路基板の製造方法および配線回路基板
DE102015121349A1 (de) * 2015-12-08 2017-06-08 Staku Anlagenbau Gmbh Vorrichtung zur Oberflächenbehandlung eines Endlosmaterials sowie deren Verwendung
DE112018002512T5 (de) * 2017-05-16 2020-01-30 Sumitomo Electric Industries, Ltd. Aluminium-Plattierfilm und Verfahren zur Herstellung eines Aluminium-Plattierfilms
CN107644973B (zh) * 2017-09-21 2023-12-15 中创新航技术研究院(江苏)有限公司 一种复合锂带生产装置及生产方法
WO2021164474A1 (zh) 2020-02-20 2021-08-26 深圳市海瀚新能源技术有限公司 镀膜导电装置、镀膜系统及导电膜的镀膜方法
CN113630963A (zh) * 2021-07-08 2021-11-09 广州美维电子有限公司 改善超薄板板变形的方法
TWI806455B (zh) * 2022-03-01 2023-06-21 日商荏原製作所股份有限公司 鍍覆裝置及鍍覆方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107776A (ja) * 2002-09-20 2004-04-08 Kansai Engineering:Kk 線材の電気めっき方法、電気めっき装置、及び電気めっき線材
JP2008218777A (ja) * 2007-03-06 2008-09-18 Bridgestone Corp 光透過性電磁波シールド材の製造方法
JP2012144763A (ja) * 2011-01-11 2012-08-02 Sumitomo Electric Ind Ltd アルミニウム構造体の製造方法およびアルミニウム構造体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347336A (en) * 1976-10-12 1978-04-27 Kogyo Gijutsuin Method descaling band steel by electrolysis
JPS57126999A (en) * 1980-10-06 1982-08-06 Fuji Photo Film Co Ltd Electrolytic treatment of strip like metal plate
JPS60100697A (ja) * 1983-11-02 1985-06-04 Fuji Photo Film Co Ltd 電解処理方法
AT399167B (de) * 1991-06-10 1995-03-27 Andritz Patentverwaltung Verfahren und vorrichtung zum elektrolytischen beizen von kontinuierlich durchlaufendem elektrisch leitendem gut
TW200741037A (en) * 2006-01-30 2007-11-01 Ibiden Co Ltd Plating apparatus and plating method
JP5598027B2 (ja) * 2009-03-05 2014-10-01 日立金属株式会社 アルミニウム多孔質材およびその製造方法、アルミニウム多孔質材を電極集電体として用いた蓄電デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107776A (ja) * 2002-09-20 2004-04-08 Kansai Engineering:Kk 線材の電気めっき方法、電気めっき装置、及び電気めっき線材
JP2008218777A (ja) * 2007-03-06 2008-09-18 Bridgestone Corp 光透過性電磁波シールド材の製造方法
JP2012144763A (ja) * 2011-01-11 2012-08-02 Sumitomo Electric Ind Ltd アルミニウム構造体の製造方法およびアルミニウム構造体

Also Published As

Publication number Publication date
CN104603332A (zh) 2015-05-06
JP2014051687A (ja) 2014-03-20
DE112013004355T5 (de) 2015-05-28
US20150211143A1 (en) 2015-07-30
JP5880364B2 (ja) 2016-03-09
KR20150046013A (ko) 2015-04-29

Similar Documents

Publication Publication Date Title
JP5880364B2 (ja) アルミニウムめっき装置及びこれを用いたアルミニウム膜の製造方法
TWI651421B (zh) 電解銅箔、包含該電解銅箔之電極、包含該電解銅箔之二次電池以及該電解銅箔之製造方法
CA2648020A1 (en) Apparatus and foam electroplating process
JPWO2014045986A1 (ja) アルミニウム膜の製造方法及びアルミニウム箔の製造方法
JP2012007233A (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP5950162B2 (ja) アルミニウム膜の製造方法
JP2012144763A (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
WO2014057747A1 (ja) アルミニウム箔の製造方法及びアルミニウム箔の製造装置
JP5648588B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
EP3103895B1 (en) Aluminum film manufacturing method
JP2016000838A (ja) アルミニウム膜、アルミニウム膜形成体、及びアルミニウム膜の製造方法
TW201510285A (zh) 電解金屬箔的連續製造方法及電解金屬箔連續製造裝置
JP2014086139A (ja) タブリード及びタブリードの製造方法並びに電気化学デバイス
JP5704026B2 (ja) アルミニウム構造体の製造方法
CN113529140B (zh) 一种新型电解铜箔生产方法
KR20020082860A (ko) 배터리 전극용 스트립 연속 전기주형 방법과전기주형공정에 사용될 맨드릴
WO2018211740A1 (ja) アルミニウムめっき膜及びアルミニウムめっき膜の製造方法
JP2012255187A (ja) アルミニウム多孔体の製造方法及び製造装置
JP6146581B2 (ja) アルミニウム膜の製造方法及び製造装置
CN106917134A (zh) Fe‑Ni系合金金属箔的电镀装置及方法
JP2017014540A (ja) 不溶性陽極、めっき装置および電気めっき方法ならびに銅張積層板の製造方法
JP2015083716A (ja) アルミニウム構造体を含む電極材料、それを用いた電池および電気二重層コンデンサ、ならびにアルミニウム構造体を用いた濾過フィルタおよび触媒担体
JP2015137378A (ja) アルミニウム膜の製造方法及び製造装置
JP2017137517A (ja) アルミニウムめっき液、アルミニウムめっき膜の製造方法、及びアルミニウム多孔体
WO2015129108A1 (ja) アルミニウム多孔体及びアルミニウム多孔体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157002639

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14425457

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013004355

Country of ref document: DE

Ref document number: 1120130043556

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835225

Country of ref document: EP

Kind code of ref document: A1