WO2014037258A1 - Schnittstelle zwischen einer sensoreinheit und einem explosionsfesten gehäuse - Google Patents
Schnittstelle zwischen einer sensoreinheit und einem explosionsfesten gehäuse Download PDFInfo
- Publication number
- WO2014037258A1 WO2014037258A1 PCT/EP2013/067782 EP2013067782W WO2014037258A1 WO 2014037258 A1 WO2014037258 A1 WO 2014037258A1 EP 2013067782 W EP2013067782 W EP 2013067782W WO 2014037258 A1 WO2014037258 A1 WO 2014037258A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plug
- explosion
- unit
- measuring amplifier
- proof housing
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims description 19
- 238000005538 encapsulation Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 2
- 238000004880 explosion Methods 0.000 abstract description 7
- 238000005259 measurement Methods 0.000 abstract description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004382 potting Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D11/00—Component parts of measuring arrangements not specially adapted for a specific variable
- G01D11/24—Housings ; Casings for instruments
- G01D11/245—Housings for sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/14—Casings, e.g. of special material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/46—Bases; Cases
- H01R13/52—Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
- H01R13/5216—Dustproof, splashproof, drip-proof, waterproof, or flameproof cases characterised by the sealing material, e.g. gels or resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/648—Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding
- H01R13/658—High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
- H01R13/6581—Shield structure
- H01R13/6585—Shielding material individually surrounding or interposed between mutually spaced contacts
- H01R13/6588—Shielding material individually surrounding or interposed between mutually spaced contacts with through openings for individual contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/02—Soldered or welded connections
- H01R4/023—Soldered or welded connections between cables or wires and terminals
Definitions
- the invention relates to an interface between a sensor unit and an explosion-proof housing, wherein in the explosion-proof housing, a measuring amplifier is arranged.
- sensors are arranged in a measurement environment. These sensors measure the
- an explosion-proof housing which contains electrical components, is arranged on a sensor unit comprising the sensor.
- the electrical components also include a measuring amplifier, which has the task of controlling the sensor and to evaluate the signals output from the sensor. This measuring amplifier is connected to the sensor unit via several interfaces.
- the explosion-proof housing has a holder which carries a printed circuit board on which the measuring amplifier is mounted.
- the electrical connection leads from the cable-connected sensor to a passage for the cables, which is introduced into the housing of the sensor unit.
- the cables coming from the sensor are soldered to the bushing on one side, while cables are also soldered on the other side of the bushing leading to the measuring amplifier.
- the cables leading to the amplifier are connected to another
- the invention is therefore based on the object to provide an interface between a sensor unit and an explosion-proof housing, which is a
- the object is achieved in that the measuring amplifier is arranged on a, formed in the sensor unit plug-in unit, preferably in the explosion-proof housing protrudes.
- Measuring amplifier is electrically and mechanically connected by means of a single connection directly to the sensor unit.
- the plug-in unit is an integral part of the sensor unit and at the same time forms the closure of the sensor unit.
- the proposed solution makes the interface between
- the plug-in unit is designed to make an electrical connection plug-like or socket-like, wherein a, the measuring amplifier supporting socket or a, the measuring amplifier carrying plug is placed on the plug-in unit.
- a, the measuring amplifier supporting socket or a, the measuring amplifier carrying plug is placed on the plug-in unit.
- the plug-in unit for the spatial separation of conductors of conductors with different signals at least two chambers. By placing conductors carrying high power signals in a different chamber than conductors conducting weak power signals, electromagnetic decoupling of these conductors from each other is achieved so that the low power signals are unaffected by the signals Remain at high power and therefore can be well evaluated in the amplifier.
- the conductors are arranged for positioning in the at least two chambers or arranged separately. Due to the grouping of the conductors as a function of their signal strength, the electromagnetic compatibility of the signals carried in the plug-in unit is improved.
- the conductors are designed as pin contacts, which are soldered in the region of the sensor unit with signal lines of a sensor and / or the
- This one plug-in unit connects the measuring amplifier with the sensor unit in the smallest space, although the characteristics of the sensor signals and the
- Amplifier signals are different in terms of their performance. So will one Robust small, electromagnetically compatible connection unit for electrical connection between measuring amplifier and sensor realized.
- the conductors are encapsulated in the plug-in unit to meet the requirements for pressure-resistant encapsulation.
- the potting compound is chosen so that it meets the requirements of chemical resistance. This pouring makes the plug-in unit explosion-proof. So become possible
- the conductors are electrically isolated from each other by at least one metallic web connected to ground. This will be the one of the
- a housing part surrounding the plug-in unit carries the
- Sensor unit a thread on which the explosion-proof housing is screwed, wherein the thread is preferably formed explosive.
- This explosion-proof thread closes the explosion-proof housing, with the plug carrying the measuring amplifier or the socket carrying the measuring amplifier inside the explosion-proof housing.
- a locking element is formed on the housing for setting a predetermined rotational position between the sensor unit and explosion-proof housing.
- explosion-proof housing different twists are adjustable. Once the desired position is set to each other, the explosion-proof housing is locked. This locking can preferably be done by a screw through the explosion-proof housing is guided on the part of the sensor unit which carries the plug-in unit. The locking below or above the thread is possible.
- Figure 1 section through a sensor unit, which with an explosion-proof
- Figure 2 exploded view of the plug-in unit.
- FIG. 1 shows a section through a sensor device, which is designed as a flow measuring unit 1 and consists of an explosion-proof housing 2 and a sensor unit 3.
- the flow measuring unit 1 has at least one sensor 5, which is assigned to a pipe 4, wherein the sensor 5 measures the flow of a medium flowing through the pipe 4.
- the plug-in unit 7 is an integral part of the sensor unit 3.
- the plug-in unit 7 has pin contacts 10, which are soldered to the sensor cable 6.
- the measuring amplifier 9 facing side of the plug-in unit 7 is designed as a plug on which a female connector 18 of the measuring amplifier 9 is seated, by means of which the measuring amplifier 9 is mechanically and electrically connected to the plug-in unit 7.
- the pin contacts 10 of the plug unit 7 are potted at a height of at least 1 cm. This potting, which extends transversely to the pin contacts 10, surrounds the pin contacts 10 firmly and ensures that in case of an explosion of an electronic component by sparking in the explosion-proof housing 2 this Explosion on the explosion-proof housing 2 remains limited and not on the
- Sensor unit 3 can overlap.
- the plug unit 7 has at least one metallic web 13 extending between at least two adjacent pin contacts 10, which leads to an electromagnetic shielding of at least one of the two adjacent ones
- Pin contacts 10 of the other of the two adjacent pin contacts 10 thus leading to an electromagnetic decoupling between signals that are passed through n thanke pin contacts 10 and may have different strengths. Due to the grouping or separation of the pin contacts 10 and by the
- the metallic webs 13 may also be connected to protective earth or ground, whereby a signal coupling from outside the plug unit into the pin contacts 10 can be prevented.
- FIG. 2 shows an exploded view of the plug-in unit 7.
- the plug-in unit 7 comprises a four-chamber plug housing 14 made of aluminum.
- Various groupings of pin contacts 10 are inserted into these four chambers of the plug housing 14.
- a first grouping 15 of pin contacts 10 is inserted into the first chamber 14a, through which the measuring amplifier 9 controls the sensor 5.
- a second group 16 of pin contacts 10 is used, which transmit the output from the sensor 5 signals to the measuring amplifier 9.
- a third group 17 of plug contacts 10 is disposed between the first chamber 14a and the second chamber 14b in the third chamber 14c. By means of this group 17 of plug contacts 10 additional signals are transmitted from the measuring amplifier 9 to the sensor 5.
- this group 17 of plug contacts 10 additional signals are transmitted from the measuring amplifier 9 to the sensor 5.
- Measuring amplifier 9 signals are transmitted by means of a high power, this first group 15 of the pin contacts 10 is exactly on the opposite side to the
- Pin contacts 10 are arranged, which are summarized in the second group 16 and deliver the very weak sensor signals to the measuring amplifier 9.
- This spatial separation of these plug groups 15 and 16 ensures that there is no interference between the signals which are conducted through the second plug group 16 and which have only a very low power, due to the high-power signals of the first plug group 15 .
- the Viercrosteckergehause 14 is inherent part of the sensor neck 8 or connected to this, that it meets the requirements of flameproof enclosure.
- an external thread is formed on the sensor unit 3 on the sensor neck 8.
- the explosion-proof housing 2 has a corresponding internal thread, which is screwed onto the external thread of the sensor unit 3. Internal and external threads are screwed together at least seven times, creating an explosion-resistant thread 20 is formed ( Figure 1).
- Such an explosion-proof thread 20 satisfies the pressure-resistant encapsulation, which prevents explosions from being transmitted to the environment.
- the sensor unit 3 closes the explosion-proof housing 2, in which the measuring amplifier 9 is arranged.
- Measuring amplifier 9 is arranged inside the explosion-proof housing 2. Since the measuring amplifier 9 operates according to measuring principles, which are performed with a high energy, it must be arranged in the explosion-proof housing 2.
- the sensor unit 2 can alternatively but also with a non-explosion-proof
- Plug adapter is attached to the non-explosive interface.
- the signals which are guided through the interface must be carried out so that the excitation and the sensor signals are arranged widely separated.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Measuring Fluid Pressure (AREA)
- Casings For Electric Apparatus (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Die Erfindung betrifft eine Schnittstelle zwischen einer Sensoreinheit und einem explosionsfesten Gehäuse, wobei in dem explosionsfesten Gehäuse (2) ein Messverstärker (9) angeordnet ist. Bei einer Schnittstelle, welche einfach herstellbar und trotzdem den Erfordernissen des Explosionsschutzes genügt, ist der Messverstärker (9) auf einer, in der Sensoreinheit (3) ausgebildeten Steckeinheit (7) angeordnet, die vorzugsweise in das explosionsfeste Gehäuse (2) hineinragt.
Description
Schnittstelle zwischen einer Sensoreinheit und einem explosionsfesten Gehäuse
Die Erfindung betrifft eine Schnittstelle zwischen einer Sensoreinheit und einem explosionsfesten Gehäuse, wobei in dem explosionsfesten Gehäuse ein Messverstärker angeordnet ist.
In der Prozessleittechnik, welche vorzugsweise zur Überwachung von Prozessen in der chemischen Industrie oder in fließenden oder stehenden Gewässern eingesetzt wird, sind Sensoren in einer Messumgebung angeordnet. Diese Sensoren messen die
Eigenschaften eines zu untersuchenden Mediums und sind mit einer örtlich entfernt angeordneten Prozessleitzentrale verbunden. Um einen solchen Sensor betreiben zu können, ist an einer, den Sensor umfassenden Sensoreinheit ein explosionsfestes Gehäuse angeordnet, welches elektrische Bauteile enthält. Zu den elektrischen Bauteilen gehört auch ein Messverstärker, welcher die Aufgabe hat, den Sensor anzusteuern und die von dem Sensor ausgegebenen Signale auszuwerten. Dieser Messverstärker ist über mehrere Schnittstellen mit der Sensoreinheit verbunden.
Für die mechanische Verbindung weist das explosionsfeste Gehäuse eine Halterung auf, die eine Leiterplatte trägt, auf welcher der Messverstärker befestigt ist. Die elektrische Verbindung führt von dem, mit Kabeln verbundenen Sensor zu einer Durchführung für die Kabel, welche in das Gehäuse der Sensoreinheit eingebracht ist. Dabei sind die vom Sensor kommenden Kabel auf einer Seite mit der Durchführung verlötet, während auf der anderen Seite der Durchführung ebenfalls Kabel angelötet sind, die zum Messverstärker führen. Die zu dem Messverstärker führenden Kabel sind an einer weiteren
explosionsfesten Durchführung verlötet, welche den Abschluss des explosionsfesten
Gehäuses darstellt. Auf der entgegen gesetzten Seite der explosionsfesten Durchführung werden Kabel direkt an den Messverstärker geführt, die dann mittels eines Steckers mit dem Messverstärker verbunden sind. Eine solche elektrische Verbindung ist nicht nur konstruktiv sehr aufwändig und somit sehr kostenintensiv, sondern erfordert auch einen hohen Herstellungsaufwand.
Der Erfindung liegt somit die Aufgabe zugrunde, eine Schnittstelle zwischen einer Sensoreinheit und einem explosionsfesten Gehäuse anzugeben, welche eine
kostengünstige und trotzdem einfache mechanische und elektrische Verbindung ermöglicht.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass der Messverstärker auf einer, in der Sensoreinheit ausgebildeten Steckeinheit angeordnet ist, die vorzugsweise in das
explosionsfeste Gehäuse hineinragt. Diese Anordnung hat den Vorteil, dass der
Messverstärker mittels einer einzigen Verbindung direkt mit der Sensoreinheit elektrisch und mechanisch verbunden ist. Durch die Einsparung von Material und
Herstellungsaufwand reduzieren sich die Kosten für diese Schnittstelle. Die Steckeinheit ist integraler Bestandteil der Sensoreinheit und bildet auch gleichzeitig den Verschluss der Sensoreinheit. Durch die vorgeschlagene Lösung wird die Schnittstelle zwischen
Sensoreinheit und Messverstärker vereinfacht, wodurch neben einer Kostenreduzierung auch eine Reduktion der Fehleranfälligkeit vorhanden ist. Durch die Verringerung der elektrischen Schnittstellen wird das Signalverhalten verbessert und eine kompakte Ausbildung von Geräten ermöglicht.
Vorteilhafterweise ist die Steckeinheit zur Herstellung einer elektrischen Verbindung stecker- oder buchsenähnlich ausgebildet, wobei eine, den Messverstärker tragende Buchse oder ein, den Messverstärker tragender Stecker auf die Steckeinheit aufgesetzt ist. Dadurch, dass die Schnittstelle aus zwei passgerechten Gegenstücken besteht, ist eine einfache elektrische wie auch mechanische Verbindung zwischen dem
Messverstärker und der Sensoreinheit gegeben.
In einer Ausgestaltung weist die Steckeinheit zur räumlichen Trennung von Leitern von Leitern mit unterschiedlichen Signalen wenigstens zwei Kammern auf. Dadurch, dass Leiter, welche Signale mit einer hohen Leistung leiten, in einer anderen Kammer angeordnet sind, als Leiter, die Signale mit einer schwachen Leistung leiten, wird eine elektromagnetische Entkopplung dieser Leiter voneinander erreicht, so dass die Signale mit schwachen Leistungen unbeeinflusst von den Signalen mit hoher Leistung bleiben und deshalb im Messverstärker gut ausgewertet werden können.
In einer weiteren Ausführungsform sind die Leiter zur Positionierung in den mindestens zwei Kammern gruppiert oder getrennt angeordnet. Auf Grund der Gruppierung der Leiter in Abhängigkeit von ihrer Signalstärke wird die elektromagnetische Verträglichkeit der in der Steckeinheit geführten Signale verbessert.
In einer Variante sind die Leiter als Stiftkontakte ausgebildet, welche im Bereich der Sensoreinheit mit Signalleitungen eines Sensors verlötet sind und/oder die den
Messverstärker tragende Buchse oder den, den Messverstärker tragenden Stecker aufnehmen. Diese eine Steckeinheit verbindet den Messverstärker mit der Sensoreinheit auf kleinstem Raum, obwohl die Eigenschaften der Sensorsignale und der
Messverstärkersignale hinsichtlich ihrer Leistung unterschiedlich sind. So wird eine
robuste kleine, elektromagnetisch verträgliche Verbindungseinheit zur elektrischen Verbindung zwischen Messverstärker und Sensor realisiert.
In einer Weiterbildung sind die Leiter zur Erfüllung der Anforderungen zur druckfesten Kapselung in der Steckeinheit vergossen. Dabei ist die Vergußmasse so gewählt, dass diese den Anforderungen der chemischen Beständigkeit gerecht wird. Durch dieses Vergießen wird die Steckeinheit explosionssicher gestaltet. So werden mögliche
Explosionen, die durch die elektronischen Bauteile, die in dem explosionsfesten Gehäuse angeordnet sind, verursacht werden können, nicht an die Sensoreinheit weitergeleitet, sondern bleiben in dem explosionsfesten Gehäuse örtlich begrenzt. Dadurch wird den Anforderungen des Explosionsschutzes entsprochen.
Alternativ sind die Leiter zur Erreichung einer gasdichten Verbindung durch eine
Metallplatte geführt, wobei die Leiter mittels verschweißten Glases von der Metallplatte isoliert werden. Auch diese Ausprägung der Schnittstelle erfüllt die Anforderungen der druckfesten Kapselung.
Vorteilhafterweise sind die Leiter durch mindestens einen, mit Masse verbundenen, metallischen Steg elektrisch voneinander isoliert. Damit werden die von dem
Messverstärker ausgehenden Erregersignale und die von dem Sensor gelieferten
Sensorsignale elektromagnetisch voneinander entkoppelt. Da die metallischen Stege mit Schutzerde oder mit Ground verbunden sind, unterbinden sie eine gegenseitige
Signaleinkopplung. In einer Ausgestaltung trägt ein, die Steckeinheit umgebendes Gehäuseteil der
Sensoreinheit ein Gewinde, auf welches das explosionsfeste Gehäuse aufgeschraubt ist, wobei das Gewinde vorzugsweise explosionsfest ausgebildet ist. Dieses explosionsfeste Gewinde verschließt das explosionsfeste Gehäuse, wobei sich der, den Messverstärker tragende Stecker bzw. die, den Messverstärker tragende Buchse im Inneren des explosionsfesten Gehäuses befindet.
In einer Variante ist zur Einstellung einer vorgegebenen Verdrehposition zwischen Sensoreinheit und explosionsfestem Gehäuse ein Arretierungselement am Gehäuse ausgebildet. Somit wird ermöglicht, dass zwischen der Sensoreinheit und dem
explosionsfesten Gehäuse unterschiedliche Verdrehungen einstellbar sind. Sobald die gewünschte Position zueinander eingestellt ist, wird das explosionsfeste Gehäuse arretiert. Diese Arretierung kann vorzugsweise durch eine Schraube erfolgen, die durch
das explosionsfeste Gehäuse auf den Teil der Sensoreinheit geführt wird, welcher die Steckeinheit trägt. Dabei ist die Arretierung unter- oder oberhalb des Gewindes möglich.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigt:
Figur 1 : Schnitt durch eine Sensoreinheit, welche mit einem explosionsfesten
Gehäuse verbunden ist.
Figur 2: Explosionsdarstellung der Steckeinheit.
Gleiche Merkmale sind mit gleichen Bezugszeichen gekennzeichnet.
Figur 1 zeigt einen Schnitt durch eine Sensorvorrichtung, die als Durchflussmesseinheit 1 ausgebildet ist und aus einem explosionsfesten Gehäuse 2 und einer Sensoreinheit 3 besteht. Die Durchflussmesseinheit 1 besitzt mindestens einen Sensor 5, der einem Rohr 4 zugeordnet ist, wobei der Sensor 5 den Durchfluss eines durch das Rohr 4 strömenden Mediums misst. Über Sensorkabel 6 ist der Sensor 5 mit einer Steckeinheit 7 verbunden, welche in einem Sensorhals 8 der Sensoreinheit 3 angeordnet ist. Die Steckeinheit 7 ist dabei integraler Bestandteil der Sensoreinheit 3. Die Steckeinheit 7 weist Stiftkontakte 10 auf, die mit dem Sensorkabel 6 verlötet sind. Auf der anderen Seite der Steckeinheit 7, welche dem explosionsfesten Gehäuse 2 zugewandt ist, ist ein Messverstärker 9, welcher innerhalb des explosionsfesten Gehäuses 2 angeordnet ist, auf die Stiftkontakte 10 aufgesetzt. Die dem Messverstärker 9 zugewandte Seite der Steckeinheit 7 ist als Stecker ausgebildet, auf welchem ein Buchsenstecker 18 des Messverstärkers 9 aufsitzt, mittels welchem der Messverstärker 9 mechanisch und elektrisch mit der Steckeinheit 7 verbunden ist.
In dem explosionsfesten Gehäuse 2 sind neben dem Messverstärker 9 noch andere, nicht weiter dargestellte elektronische Bauteile, wie beispielsweise ein Netzteil, ein Feldbus und Ein- und Ausgangselektroniken, angeordnet. Die Stiftkontakte 10 der Steckereinheit 7 sind auf einer Höhe von mindestens 1 cm vergossen. Dieser Verguss, der sich quer zu den Stiftkontakten 10 erstreckt, umschließt die Stiftkontakte 10 fest und stellt sicher, dass bei einer eventuellen Explosion eines elektronischen Bauteiles durch eine Funkenbildung im explosionsfesten Gehäuse 2 diese
Explosion auf das explosionsfeste Gehäuse 2 begrenzt bleibt und nicht auf die
Sensoreinheit 3 übergreifen kann.
Darüber hinaus weist die Steckereinheit 7 mindestens einen zwischen mindestens zwei benachbarten Stiftkontakten 10 verlaufenden metallischen Steg 13 auf, welcher zu einer elektromagnetischen Abschirmung zumindest des einen der zwei benachbarten
Stiftkontakte 10 von dem anderen der zwei benachbarten Stiftkontakten 10, mithin zu einer elektromagnetischen Entkopplung zwischen Signalen führt, die durch nämliche Stiftkontakte 10 geleitet werden und unterschiedlich starke Leistungen aufweisen können. Aufgrund der Gruppierung bzw. Vereinzelung der Stiftkontakte 10 und durch die
Verwendung eines oder mehrerer solcher metallischen Stege 13 innerhalb der
Steckeinheit 7 werden die Erregersignale, welche von dem Messverstärker 9
ausgesendet werden, und Sensorsignale, welche vom Sensor 5 als Messsignale an den Messverstärker 9 weitergegeben werden, voneinander isoliert, so dass diese elektrisch entkoppelt sind. Die metallischen Stege 13 können zudem mit Schutzerde oder Ground verbunden sein, wodurch auch eine Signaleinkopplung von außerhalb der Steckereinheit in die Stiftkontakte 10 unterbunden werden kann.
Figur 2 zeigt eine Explosionsdarstellung der Steckeinheit 7. Die Steckeinheit 7 umfasst ein aus Aluminium bestehendes Vierkammer-Steckergehäuse 14. In diese vier Kammern des Steckergehäuses 14 werden verschiedene Gruppierungen von Stiftkontakten 10 eingesetzt. So wird in die erste Kammer 14a eine erste Gruppierung 15 von Stiftkontakten 10 eingesetzt, durch welche der Messverstärker 9 den Sensor 5 ansteuert. In einer zweiten Kammer 14b, welche auf der, der Kammer 14a entgegen gesetzten Seite des Steckergehäuses 14 ausgebildet ist, wird eine zweite Gruppe 16 von Stiftkontakten 10 eingesetzt, welche die von dem Sensor 5 abgegebenen Signale an den Messverstärker 9 übermitteln. Eine dritte Gruppe 17 von Steckkontakten 10 ist zwischen der ersten Kammer 14a und der zweiten Kammer 14b in der dritten Kammer 14c angeordnet. Mittels dieser Gruppe 17 von Steckkontakte 10 werden Zusatzsignale vom Messverstärker 9 an den Sensor 5 übermittelt. Da bei der Ansteuerung des Sensors 5 durch den
Messverstärker 9 Signale mittels einer hohen Leistung übertragen werden, ist diese erste Gruppe 15 der Stiftkontakte 10 genau auf der entgegengesetzten Seite zu den
Stiftkontakten 10 angeordnet, welche in der zweiten Gruppe 16 zusammengefasst sind und die sehr schwache Sensorsignale an den Messverstärker 9 liefern. Durch diese räumliche Trennung dieser Steckergruppen 15 bzw. 16 wird sichergestellt, dass keine gegenseitige Beeinflussung der Signale, welche durch die zweite Steckergruppe 16 geleitet werden und die nur eine sehr geringe Leistung aufweisen, durch die, eine hohe Leistung aufweisenden Signale der ersten Steckergruppe 15 erfolgt.
Auf die Stiftkontakte 10 der Gruppen 15, 16 und 17 ist ein Buchsenstecker 18 aufgesetzt, der im Endzustand auf dem Messverstärker bestückt wird. Aufgrund der so gestalteten Steckeinheit 7 wird sichergestellt, dass keine elektromagnetische Beeinflussung der Stiftkontakte 10 erfolgt, obwohl diese auf einem relativ geringen Raum nebeneinander angeordnet sind. Das Vierkammersteckergehause 14 ist dabei inhärenter Bestandteil des Sensorhalses 8 oder so mit diesem verbunden, dass es den Anforderungen der druckfesten Kapselung genügt.
Zur mechanischen Verbindung des explosionsfesten Gehäuses 2 mit der Sensoreinheit 3 ist an der Sensoreinheit 3 an dem Sensorhals 8 ein Außengewinde ausgebildet. Das explosionsfeste Gehäuse 2 besitzt ein entsprechendes Innengewinde, welches auf das Außengewinde der Sensoreinheit 3 aufgeschraubt ist. Innen- und Außengewinde sind mindestens sieben Mal gegeneinander verschraubt, wodurch ein explosionsfestes Gewinde 20 entsteht (Figur 1 ). Ein solches explosionsfestes Gewinde 20 genügt der druckfesten Kapselung, die verhindert, dass Explosionen an die Umgebung übertragen werden. Dabei verschließt die Sensoreinheit 3 das explosionsfeste Gehäuse 2, in welchem der Messverstärker 9 angeordnet ist. Der Buchsenstecker 18 des
Messverstärkers 9 ist im Inneren des explosionsfesten Gehäuses 2 angeordnet. Da der Messverstärker 9 nach Messprinzipien arbeitet, welche mit einer hohen Energie ausgeführt werden, muss dieser im explosionsgeschützten Gehäuse 2 angeordnet sein.
Die Sensoreinheit 2 kann alternativ aber auch mit einer nicht explosionsfesten
Schnittstelle versehen werden, wobei eine explosionsfeste Schnittstelle als
Zwischenstecker auf die nicht explosionsfeste Schnittstelle aufgesteckt wird. Dazu müssen die Signale, welche durch die Schnittstelle geführt werden, so ausgeführt werden, dass die Erreger- und die Sensorsignale weit getrennt voneinander angeordnet sind.
Claims
1. Schnittstelle zwischen einer Sensoreinheit und einem explosionsfesten Gehäuse, wobei in dem explosionsfesten Gehäuse (2) ein Messverstärker (9) angeordnet ist, dadurch gekennzeichnet, dass der Messverstärker (9) auf einer, in der
Sensoreinheit (3) ausgebildeten Steckeinheit (7) angeordnet ist, die vorzugsweise in das explosionsfeste Gehäuse (2) hineinragt.
2. Schnittstelle nach Anspruch 1 , dadurch gekennzeichnet, dass die Steckeinheit (7) zur Herstellung einer elektrischen Verbindung Stecker- oder buchsenähnlich ausgebildet ist, wobei eine den Messverstärker (9) tragende Buchse (18) oder ein, den Messverstärker (9) tragender Stecker auf die Steckeinheit (7) aufgesetzt sind.
3. Schnittstelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Steckeinheit (7) zur räumlichen Trennung von Leitern (10) mit unterschiedlichen Signalen wenigstens zwei Kammern (14a, 14b) aufweist.
4. Schnittstelle nach Anspruch 3, dadurch gekennzeichnet, dass Leiter (10) zur Positionierung in den mindestens zwei Kammern (14a, 14b) gruppiert oder getrennt angeordnet sind.
5. Schnittstelle nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Leiter als Stiftkontakte (10) ausgebildet sind, welche im Bereich der Sensoreinheit (3) mit Signalleitungen (6) eines Sensors (5) verlötet sind und/oder die den Messverstärker (9) tragende Buchse (18) oder den, den Messverstärker (9) tragenden Stecker aufnehmen.
6. Schnittstelle nach Anspruch 3, 4 oder 5, dadurch gekennzeichnet, dass die
Leiter (10) zur druckfesten Kapselung in der Steckeinheit (7) vergossen sind. 7. Schnittstelle nach Anspruch 3, 4 oder 5, dadurch gekennzeichnet, dass die
Leiter (10) zur Erreichung einer druckfesten Kapselung und einer gasdichten Verbindung durch eine Metallplatte geführt sind, wobei die Leiter mittels verschweißtem Glas von der Metallplatte isoliert sind 8. Schnittstelle nach mindestens einem der vorhergehenden Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Leiter (10) durch mindestens einen, insb. mit Masse verbundenen, metallischen Steg (13) elektrisch voneinander geschirmt sind.
9. Schnittstelle nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein, die Steckeinheit (7) umgebendes Gehäuseteil (8) der Sensoreinheit (3) ein Gewinde (20) trägt, auf welches das explosionsfeste Gehäuse (3) aufgeschraubt ist, wobei das Gewinde (20) vorzugsweise explosionsfest ausgebildet ist.
10. Schnittstelle nach Anspruch 9, dadurch gekennzeichnet, dass zur Einstellung einer vorgegebenen Verdrehposition zwischen Sensoreinheit (3) und explosionsfestem Gehäuse (2) ein Arretierungselement am Gehäuse ausgebildet ist.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/425,677 US9541428B2 (en) | 2012-09-10 | 2013-08-28 | Interface between a sensor unit and an explosion resistant housing |
CN201380046746.XA CN104620082B (zh) | 2012-09-10 | 2013-08-28 | 在传感器单元与防爆外壳之间的接口 |
EP13753184.4A EP2893299B1 (de) | 2012-09-10 | 2013-08-28 | Schnittstelle zwischen einer sensoreinheit und einem explosionsfesten gehäuse |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012108415.7 | 2012-09-10 | ||
DE102012108415.7A DE102012108415A1 (de) | 2012-09-10 | 2012-09-10 | Schnittstelle zwischen einer Sensoreinheit und einem explosionsfesten Gehäuse |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014037258A1 true WO2014037258A1 (de) | 2014-03-13 |
Family
ID=49035598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/067782 WO2014037258A1 (de) | 2012-09-10 | 2013-08-28 | Schnittstelle zwischen einer sensoreinheit und einem explosionsfesten gehäuse |
Country Status (5)
Country | Link |
---|---|
US (1) | US9541428B2 (de) |
EP (1) | EP2893299B1 (de) |
CN (1) | CN104620082B (de) |
DE (1) | DE102012108415A1 (de) |
WO (1) | WO2014037258A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014119260A1 (de) | 2014-12-19 | 2016-06-23 | Endress + Hauser Flowtec Ag | Anschlußvorrichtung für ein Elektronik-Gehäuse sowie Meßwandler bzw. Feldgerät mit einer solchen Anschlußvorrichtung |
DE102015121462A1 (de) | 2015-12-09 | 2017-06-14 | Endress + Hauser Flowtec Ag | Anschlußvorrichtung zum mechanischen Verbinden eines Elektronik-Gehäuses und eines Meßwandler-Gehäuses, Meßwandler mit einer einer solchen Anschlußvorrichtung bzw. damit gebildetes Feldgerät |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3027387B1 (fr) | 2014-10-16 | 2018-02-16 | Senstronic | Dispositif detecteur a constitution modulaire et equipement industriel le comportant |
DE102015122224A1 (de) * | 2015-12-18 | 2017-06-22 | Endress+Hauser Flowtec Ag | Durchflussmessgerät |
DE102016104739A1 (de) | 2016-03-15 | 2017-09-21 | Endress + Hauser Flowtec Ag | Feldgerät der Mess- und Automatisierungstechnik |
JP6838306B2 (ja) * | 2016-07-08 | 2021-03-03 | 日立金属株式会社 | 車載用検出装置 |
DE102016125350A1 (de) | 2016-12-22 | 2018-06-28 | Endress+Hauser SE+Co. KG | Verbindungselement und Transmittergehäuse mit darin eingesetzten Verbindungselement |
DE102017115259A1 (de) * | 2017-07-07 | 2019-01-10 | Krohne Messtechnik Gmbh | Messgerät und Verfahren zur Herstellung eines Messgeräts |
CN107976386B (zh) * | 2017-11-23 | 2020-05-19 | 中国航空工业集团公司北京长城航空测控技术研究所 | 一种燃料固液两相污染物在线检测装置 |
US11063382B2 (en) * | 2018-05-22 | 2021-07-13 | Flowserve Management Company | Waterproof and explosion-proof circuit board and electronic valve actuator for flow control applications |
DE102019116154A1 (de) * | 2019-06-13 | 2020-12-17 | Endress+Hauser SE+Co. KG | Vorrichtung zum elektrischen Kontaktieren der Steuer-/Auswerteelektronik eines Feldgeräts |
DE102021002338A1 (de) * | 2021-05-04 | 2022-11-10 | Pepperl+Fuchs Se | Sensorgehäuse |
US11549832B2 (en) * | 2021-06-11 | 2023-01-10 | Abb Schweiz Ag | Explosion management and methods thereof |
US20220397433A1 (en) * | 2021-06-11 | 2022-12-15 | Abb Schweiz Ag | Explosion management display and methods thereof |
EP4130685A1 (de) * | 2021-08-04 | 2023-02-08 | ABB Schweiz AG | Trennungsanordnung, einbauverfahren dafür, und trennungsanordnung von sender zwischen verschiedenen ausrüstungsschutzniveaus in einer gefährlichen umgebung |
DE102022114039A1 (de) | 2022-06-02 | 2023-12-07 | Endress+Hauser Flowtec Ag | Verbindungskabel sowie damit gebildetes Meßgerät |
DE102022130669A1 (de) | 2022-11-21 | 2024-05-23 | Endress+Hauser SE+Co. KG | Einschraubbares Verbindungselement zur Ex-i und Ex-d konformen Durchführung von elektrischen Signalen |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19646583A1 (de) * | 1995-11-30 | 1997-06-05 | Hiss Eckart | Strömungsüberwachungsgerät |
EP1628368A1 (de) * | 2004-08-17 | 2006-02-22 | Ksb S.A.S | Explosionsgeschützte Kabeldurchführung |
EP2053346A2 (de) * | 2007-10-25 | 2009-04-29 | Konrad Mess- und Regeltechnik GmbH | Wirbelstromsensoranordnung und Verfahren zur Schwingungs-, Abstands- und Drehzahlmessung an rotierenden Bauelementen |
WO2012107208A2 (de) * | 2011-02-09 | 2012-08-16 | Krohne Messtechnik Gmbh | Explosionsgeschütztes gerät |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1303252B (de) * | 1964-06-16 | Kistler Instrumente Ag | ||
AT341804B (de) * | 1972-06-16 | 1978-02-27 | List Hans | Niederdruckmesswandler |
FR2469763A1 (fr) | 1979-11-09 | 1981-05-22 | Veillard Camille | Boitier detecteur explosimetre antideflagrant avec sorties d'alarme |
DE3337481C2 (de) * | 1983-10-14 | 1987-02-05 | VEGA Grieshaber GmbH & Co, 7620 Wolfach | Explosionsgeschützte Vorrichtung für die kapazitive Füllstandsmessung |
DE3722667A1 (de) * | 1987-07-09 | 1987-10-29 | Gok Gmbh & Co Kg | Gasentnahmeventil fuer fluessiggasbehaelter |
US6612168B2 (en) * | 1995-05-11 | 2003-09-02 | Mts Systems Corporation | Explosion proof magnetostrictive probe |
US5954526A (en) | 1996-10-04 | 1999-09-21 | Rosemount Inc. | Process control transmitter with electrical feedthrough assembly |
DE19719730C1 (de) * | 1997-05-09 | 1998-10-22 | Bartec Mestechnik Und Sensorik | Steckverbindung |
US6109979A (en) | 1997-10-31 | 2000-08-29 | Micro Motion, Inc. | Explosion proof feedthrough connector |
DE10055090A1 (de) | 2000-11-07 | 2002-05-08 | Conducta Endress & Hauser | Steckverbinder zum Anschluss einer Übertragungsleitung an mindestens einen Sensor |
DE20122781U1 (de) * | 2001-09-14 | 2007-09-27 | Sick Engineering Gmbh | Vorrichtung zum Messen der Strömungsgeschwindigkeit und/oder des Durchflusses eines Fluids |
US6715360B1 (en) * | 2003-02-19 | 2004-04-06 | Fisher Controls International, Llc | Gauge pressure sensor for hazardous applications |
CN101373869B (zh) * | 2004-04-06 | 2012-07-18 | 泛达公司 | 改进串扰补偿的电连接器 |
DE102005050914B4 (de) * | 2005-10-21 | 2009-04-16 | Dräger Safety AG & Co. KGaA | Tragbares Gasmessgerät |
DE102006019555B3 (de) * | 2006-04-27 | 2007-11-22 | Abb Patent Gmbh | Messumformer |
DE102006024742A1 (de) * | 2006-05-26 | 2007-12-06 | Siemens Ag | Messumformer |
DE102006056175A1 (de) * | 2006-11-27 | 2008-05-29 | Endress + Hauser Flowtec Ag | Meßanordnung zum Erfassen chemischer und/oder physikalischer Meßgrößen sowie Meßgerät dafür |
DE102007058608A1 (de) * | 2007-12-04 | 2009-06-10 | Endress + Hauser Flowtec Ag | Elektrisches Gerät |
DE102008029956A1 (de) * | 2008-06-26 | 2009-12-31 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Sensormodul und einem Transmittermodul |
DE102008053920A1 (de) * | 2008-10-30 | 2010-05-06 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Verteilermodul bzw. damit gebildetes Messsystem |
DE102008044186A1 (de) * | 2008-11-28 | 2010-06-02 | Endress + Hauser Flowtec Ag | Magneteinrichtung sowie Meßaufnehmer vom Vibrationstyp mit einer solchen Magneteinrichtung |
HUE031159T2 (en) * | 2009-04-09 | 2017-06-28 | Grieshaber Vega Kg | Power controlled data transfer for field device |
DE102009028007A1 (de) * | 2009-07-24 | 2011-01-27 | Endress + Hauser Flowtec Ag | Meßumwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler |
DE102009046839A1 (de) * | 2009-11-18 | 2011-05-19 | Endress + Hauser Flowtec Ag | Meßsystem mit einer zwei parallel durchströmte Meßrohre aufweisenden Rohranordnung sowie Verfahren zu deren Überwachung |
DE102010030924A1 (de) * | 2010-06-21 | 2011-12-22 | Endress + Hauser Flowtec Ag | Elektronik-Gehäuse für ein elektronisches Gerät bzw. damit gebildetes Gerät |
DE102010038104B4 (de) * | 2010-10-11 | 2021-09-09 | Ipetronik Gmbh & Co. Kg | Universal-Thermobuchse |
DE102012005637B4 (de) * | 2012-03-22 | 2019-02-21 | Krohne Messtechnik Gmbh | Messgerät |
-
2012
- 2012-09-10 DE DE102012108415.7A patent/DE102012108415A1/de not_active Withdrawn
-
2013
- 2013-08-28 US US14/425,677 patent/US9541428B2/en active Active
- 2013-08-28 WO PCT/EP2013/067782 patent/WO2014037258A1/de active Application Filing
- 2013-08-28 EP EP13753184.4A patent/EP2893299B1/de active Active
- 2013-08-28 CN CN201380046746.XA patent/CN104620082B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19646583A1 (de) * | 1995-11-30 | 1997-06-05 | Hiss Eckart | Strömungsüberwachungsgerät |
EP1628368A1 (de) * | 2004-08-17 | 2006-02-22 | Ksb S.A.S | Explosionsgeschützte Kabeldurchführung |
EP2053346A2 (de) * | 2007-10-25 | 2009-04-29 | Konrad Mess- und Regeltechnik GmbH | Wirbelstromsensoranordnung und Verfahren zur Schwingungs-, Abstands- und Drehzahlmessung an rotierenden Bauelementen |
WO2012107208A2 (de) * | 2011-02-09 | 2012-08-16 | Krohne Messtechnik Gmbh | Explosionsgeschütztes gerät |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014119260A1 (de) | 2014-12-19 | 2016-06-23 | Endress + Hauser Flowtec Ag | Anschlußvorrichtung für ein Elektronik-Gehäuse sowie Meßwandler bzw. Feldgerät mit einer solchen Anschlußvorrichtung |
DE102015121462A1 (de) | 2015-12-09 | 2017-06-14 | Endress + Hauser Flowtec Ag | Anschlußvorrichtung zum mechanischen Verbinden eines Elektronik-Gehäuses und eines Meßwandler-Gehäuses, Meßwandler mit einer einer solchen Anschlußvorrichtung bzw. damit gebildetes Feldgerät |
Also Published As
Publication number | Publication date |
---|---|
DE102012108415A8 (de) | 2014-08-21 |
DE102012108415A1 (de) | 2014-06-12 |
EP2893299B1 (de) | 2018-11-21 |
EP2893299A1 (de) | 2015-07-15 |
US20150211902A1 (en) | 2015-07-30 |
US9541428B2 (en) | 2017-01-10 |
CN104620082B (zh) | 2017-09-08 |
CN104620082A (zh) | 2015-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2893299B1 (de) | Schnittstelle zwischen einer sensoreinheit und einem explosionsfesten gehäuse | |
DE102006009827B4 (de) | Nichteigensicher gespeistes Meßgerät | |
EP0945714B1 (de) | Elektronisches Gerät für den Einsatz in explosionsgefährdeten Bereichen | |
EP2642255B1 (de) | Messgerät | |
DE10221931B4 (de) | Prozeßgeber mit einem Prozeß-Sensormodul | |
EP0903651B1 (de) | Messgerät-Bussystem-Anordnung und Adapter dafür | |
EP3314701B1 (de) | Adapter für den anschluss einer übertragungsleitung an ein feldgerät | |
DE102011010801B4 (de) | Mikrowellensendeeinrichtung und Füllstandmessgerät | |
DE102013113258A1 (de) | Sensor und Messanordnung | |
WO2012107208A2 (de) | Explosionsgeschütztes gerät | |
EP4000360A1 (de) | Feldgerät der automatisierungstechnik | |
DE69404465T2 (de) | Niedrigprofilgehäuse, verdrahtungs- und schnittstellensystem | |
EP3741011B1 (de) | Schutzvorrichtung für eine steckverbindung | |
DE102012102386B4 (de) | Sensorvorrichtung, die in einem Injektor einer internen Verbrennungsmaschine integriert ist | |
EP2710241B1 (de) | Vorratsbehälter für eine flüssigkeit | |
DE102014117315A1 (de) | Vorrichtung zur Übertragung von Signalen aus einer Gehäuseöffnung eines metallischen Gehäuses | |
DE20314618U1 (de) | Strom- und Signaldurchführung zwischen Kammern des Gehäuses eines Feldgerätes | |
DE102007008072A1 (de) | Modulares Messgerät | |
DE102016110050A1 (de) | Steck-Verbindung zur elektrischen Kontaktierung einer Leiterplatte | |
DE202006003348U1 (de) | Nichteigensicher gespeistes Meßgerät | |
DE10124678A1 (de) | Prozeßanschluß | |
WO2008040579A2 (de) | Druckmessgerät für die prozessmesstechnik | |
EP0923163B1 (de) | Bussystem-Anordnung, insbesondere für Messgeräte | |
WO2016096299A1 (de) | ANSCHLUßVORRICHTUNG FÜR EIN ELEKTRONIK-GEHÄUSE SOWIE MEßWANDLER-GEHÄUSE, MEßWANDLER BZW. FELDGERÄT MIT EINER SOLCHEN ANSCHLUßVORRICHTUNG | |
DE102022104925A1 (de) | Gehäusedeckel mit Anschlusskontakten zur automatischen Kontaktierung, Sensor und Verfahren zur automatischen Kontaktierung einer Sensorelektronik |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13753184 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14425677 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |