WO2014034737A1 - 継目無鋼管及びその製造方法 - Google Patents
継目無鋼管及びその製造方法 Download PDFInfo
- Publication number
- WO2014034737A1 WO2014034737A1 PCT/JP2013/073048 JP2013073048W WO2014034737A1 WO 2014034737 A1 WO2014034737 A1 WO 2014034737A1 JP 2013073048 W JP2013073048 W JP 2013073048W WO 2014034737 A1 WO2014034737 A1 WO 2014034737A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel pipe
- seamless steel
- less
- content
- quenching
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/02—Rigid pipes of metal
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Definitions
- the present invention relates to a seamless steel pipe and a method for manufacturing the same, and more particularly to a seamless steel pipe suitable for a line pipe and a method for manufacturing the same.
- ⁇ Seamless steel pipes are more suitable than submarine pipelines that require such characteristics. This is because the welded steel pipe has a welded portion (seam portion) along the longitudinal direction. The welded portion has lower toughness than the base material. Therefore, seamless steel pipes are suitable for submarine pipelines.
- High pressure resistance can be obtained by increasing the thickness of the seamless steel pipe.
- the wall thickness increases, brittle fracture tends to occur and toughness decreases.
- the content of alloy elements such as carbon may be increased to enhance the hardenability.
- the seamless steel pipes with improved hardenability are circumferentially welded, the weld heat affected zone is easily hardened, and the toughness and HIC resistance of the circumferential welded portion are lowered.
- Patent Documents 1 to 3 disclose a seamless steel pipe for line pipes with improved strength and toughness and a method for manufacturing the same.
- the product of the Mn content and the Mo content is 0.8 to 2.6, which describes that the strength and toughness are increased. Furthermore, it is described that the seamless steel pipe for line pipe disclosed in Patent Document 1 contains one or more of Ca and rare earth metal (REM), thereby improving SSC resistance.
- REM rare earth metal
- the seamless steel pipe for line pipe disclosed in Patent Document 2 has a metal structure mainly composed of bainite and having a cementite length of 20 ⁇ m or less.
- Patent Document 2 it is described that high toughness and good toughness and corrosion resistance can be obtained even with a thick wall.
- the number of oxide inclusions present in steel and having a diameter larger than 300 ⁇ m is 1 or less per 1 cm 2 , and an oxide having a diameter of 5 to 300 ⁇ m. It is described that the number of system inclusions is 200 or less per 1 cm 2 .
- Patent Document 3 describes that by limiting the number of oxide inclusions as described above, embrittlement of grain boundaries can be suppressed and the toughness of the seamless steel pipe can be increased.
- the seamless steel pipes disclosed in Patent Documents 1 to 3 may have low HIC resistance when they have a yield strength of X80 or more based on the API standard, that is, 550 MPa or more.
- the weld heat affected zone (HAZ) of the circumferential welded portion in particular, the melt boundary line portion (bond Part) may increase in hardness and HIC resistance may decrease.
- An object of the present invention is to provide a seamless steel pipe suitable for line pipes, which has high strength and excellent HIC resistance and is excellent in HAZ HIC resistance even when circumferentially welded. It is.
- the seamless steel pipe according to one aspect of the present invention has a chemical composition of mass%, C: 0.02 to 0.10%, Si: 0.05 to 0.5%, Mn: 1.0 ⁇ 2.0%, Mo: 0.5 ⁇ 1.0%, Cr: 0.1 ⁇ 1.0%, Al: 0.01 ⁇ 0.10%, P: 0.03% or less, S: 0 0.005% or less, Ca: 0.0005 to 0.005%, V: 0.010 to 0.040%, and N: 0.002 to 0.007%, and Ti: 0.008 % Or less and Nb: 1 or 2 selected from the group consisting of 0.02 to 0.05%, the balance being Fe and impurities; carbon equivalent defined by the following formula (a) Ceq is 0.50 to 0.58%; Mo is contained in a proportion of 50% by mass or more, V is contained, and one selected from the group consisting of Ti and Nb Contains two, sized to be defined by the major axis of the average value contains a certain carbides is 20nm or more.
- Ceq C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (a)
- the element symbol in the formula (a) is substituted with the content of the corresponding element in unit mass%, and when the element corresponding to each element symbol is not contained, the element symbol is “0”. Is substituted.
- the seamless steel pipe according to the above (1) is one type selected from the group consisting of Cu: 1.0% or less and Ni: 1.0% or less, instead of a part of the Fe. Or you may contain 2 types.
- the yield strength may be 550 MPa or more, and the Vickers hardness at a position 1 mm inside from the inner surface may be 248 HV10 or less.
- the seamless steel pipe according to any one of (1) to (3) may be manufactured by a process including quenching and tempering at 660 to 700 ° C.
- the chemical component is mass%, C: 0.02 to 0.10%, Si: 0.05 to 0.5%, Mn : 1.0-2.0%, Mo: 0.5-1.0%, Cr: 0.1-1.0%, Al: 0.01-0.10%, P: 0.03% or less , S: 0.005% or less, Ca: 0.0005 to 0.005%, V: 0.010 to 0.040%, and N: 0.002 to 0.007%, and Ti : One or two selected from the group consisting of 0.008% or less and Nb: 0.02 to 0.05%, the balance being Fe and impurities, defined by the following formula (b)
- a heating step of heating a steel material having a carbon equivalent Ceq of 0.50 to 0.58%; piercing for rolling the steel material after the heating step to produce a blank A quenching step of quenching at the seamless steel pipe or A c3 point quenching temperature; rolling step and, rolling step and to produce a rolled
- Ceq C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (b)
- the content (mass%) of the corresponding element is substituted for the element symbol in the formula (b), and when the element corresponding to each element symbol is not contained, the element symbol is “0”. Assigned.
- the temperature of the seamless steel pipe is not more than Ar1 point between the rolling process and the quenching process.
- the seamless steel pipe after the accelerated cooling process may be quenched by accelerating cooling at a cooling rate of 100 ° C./min or more.
- the chemical component is replaced with a part of the Fe, Cu: 1.0% or less, and Ni: 1.
- the above-mentioned seamless steel pipe has high strength and excellent HIC resistance, and is excellent in HAZ HIC resistance even when circumferentially welded.
- the present inventors investigated and examined the strength and HIC resistance of seamless steel pipes. As a result, the present inventors obtained the following knowledge.
- the C content When increasing the strength of the steel, the C content may be increased. However, if the C content is too high, the hardness of the steel is too high and the HIC resistance is reduced. In particular, when circumferential welding is performed on a seamless steel pipe, the hardness of the HAZ including the fusion boundary line portion increases, and the HIC resistance of the HAZ decreases. Therefore, the C content is preferably limited to 0.02 to 0.10%.
- the carbon equivalent Ceq shown in the following formula (1) is set to 0.50 to 0.58%.
- Ceq C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (1)
- the content (mass%) of the corresponding element is substituted for the element symbol in the formula (1).
- “0” is assigned to the element symbol.
- the “specific carbide” means a carbide mainly containing Mo, containing V, and containing one or two of Ti and Nb.
- the size of the specific carbide is preferably 20 nm or more. If the size of the specific carbide is too small, the hardness of the steel becomes too high and the HIC resistance decreases. Setting the size of the specific carbide to 20 nm or more is important for controlling the hardness of the steel within an appropriate range and improving the HIC resistance. Furthermore, when the size of the specific carbide is 20 nm or more, the hardness of the HAZ of the seamless steel pipe after circumferential welding is unlikely to increase excessively, and the HIC resistance of the HAZ can be maintained.
- the tempering temperature is preferably set to 660 to 700 ° C. Thereby, the size of the specific carbide becomes 20 nm or more.
- the seamless steel pipe of this embodiment has the following chemical composition.
- C 0.02 to 0.10% Carbon (C) increases the strength of the steel. If the C content is less than 0.02%, the above effect cannot be obtained sufficiently. On the other hand, when the C content exceeds 0.10%, the toughness of the circumferential welded portion of the seamless steel pipe decreases. Therefore, the C content is 0.02 to 0.10%.
- the minimum with preferable C content is more than 0.02%, More preferably, it is 0.04%.
- the upper limit with preferable C content is 0.08%.
- Si 0.05 to 0.5% Silicon (Si) deoxidizes steel. If the Si content is 0.05% or more, the above-described effect is remarkably obtained. However, if the Si content exceeds 0.5%, the toughness of the steel decreases. Therefore, the upper limit of Si content is 0.5%.
- the minimum with preferable Si content is more than 0.05%, More preferably, it is 0.08%, More preferably, it is 0.10%.
- the upper limit with preferable Si content is less than 0.5%, More preferably, it is 0.25%, More preferably, it is 0.20%.
- Mn 1.0 to 2.0%
- Mn Manganese
- HAZ weld heat affected zone
- the upper limit with preferable Mn content is less than 2.0%, More preferably, it is 1.8%, More preferably, it is 1.6%.
- Mo 0.5 to 1.0% Molybdenum (Mo) increases the hardenability of the steel and increases the strength of the steel. Mo further combines with C and V in the steel to form fine specific carbides containing at least one of Ti and Nb, which will be described later. If the size of the specific carbide is 20 nm or more, high strength can be stably obtained. Even if heat treatment is performed after circumferential welding, the specific carbide is difficult to be coarsened. Therefore, if the size of the specific carbide is 20 nm or more, the strength of the steel can be maintained. The specific carbide will be described later. If the Mo content is less than 0.5%, it is difficult to obtain the above effect.
- the Mo content is 0.5 to 1.0%.
- the minimum with preferable Mo content is more than 0.5%, More preferably, it is 0.6%, More preferably, it is 0.7%.
- the upper limit with preferable Mo content is less than 1.0%, More preferably, it is 0.9%, More preferably, it is 0.8%.
- Chromium (Cr) increases the hardenability of the steel and increases the strength of the steel. Cr further increases the temper softening resistance of the steel. However, if the Cr content is less than 0.1%, the above effect cannot be obtained effectively. On the other hand, if the Cr content exceeds 1.0%, the weldability and HAZ toughness of the steel are reduced. Therefore, the Cr content is 0.1 to 1.0%.
- the minimum with preferable Cr content is more than 0.1%, More preferably, it is 0.2%.
- the upper limit with preferable Cr content is less than 1.0%, More preferably, it is 0.8%.
- Al 0.01 to 0.10%
- Aluminum (Al) combines with N to form fine Al nitride and enhances the toughness of the steel. However, if the Al content is less than 0.01%, the above effect cannot be obtained effectively. On the other hand, if the Al content exceeds 0.10%, the Al nitride becomes coarse and the toughness of the steel decreases. Therefore, the Al content is 0.01 to 0.10%.
- the minimum with preferable Al content is more than 0.01%, More preferably, it is 0.02%.
- the upper limit with preferable Al content is less than 0.1%, More preferably, it is 0.08%, More preferably, it is 0.06%.
- the Al content in the present specification means the content of acid-soluble Al (so-called Sol. Al).
- P 0.03% or less Phosphorus (P) is an impurity. P decreases the toughness of the steel. Therefore, the P content is preferably as low as possible. Therefore, the P content is limited to 0.03% or less.
- the upper limit of the preferable P content is less than 0.03%, the more preferable upper limit is 0.015%, and the further preferable upper limit is 0.012%.
- S 0.005% or less Sulfur (S) is an impurity. S combines with Mn to form coarse MnS and lowers the toughness and HIC resistance of the steel. Accordingly, the S content is preferably as low as possible. Therefore, the S content is limited to 0.005% or less.
- the upper limit of the preferable S content is less than 0.005%, the more preferable upper limit is 0.003%, and the more preferable upper limit is 0.002%.
- Ca 0.0005 to 0.005%
- Ca combines with S in steel to form CaS.
- the formation of MnS is suppressed by the formation of CaS. Therefore, Ca improves the toughness and HIC resistance of steel.
- the Ca content is less than 0.0005%, the above effect cannot be obtained effectively.
- the Ca content exceeds 0.005%, the cleanliness of the steel decreases, and the toughness and HIC resistance of the steel decrease. Therefore, the Ca content is 0.0005 to 0.005%.
- the minimum with preferable Ca content is more than 0.0005%, More preferably, it is 0.0008%, More preferably, it is 0.001%.
- the upper limit with preferable Ca content is less than 0.005%, More preferably, it is 0.003%, More preferably, it is 0.002%.
- V 0.010 to 0.040% Vanadium (V) combines with C in the steel to form a V carbide and increases the strength of the steel. V further forms a specific carbide by dissolving in Mo carbide. By including V, the specific carbide is less likely to be coarsened. If the V content is less than 0.010%, the above effect cannot be obtained effectively. On the other hand, if the V content exceeds 0.040%, V carbides become coarse. Therefore, the V content is 0.010 to 0.040%. The minimum with preferable V content is more than 0.010%, More preferably, it is 0.02%. The upper limit with preferable V content is less than 0.040%.
- N 0.002 to 0.007%
- Nitrogen (N) combines with Al to form fine Al nitride and enhances the toughness of the steel. In order to acquire the said effect, it is preferable that the minimum of N content is 0.002%. However, if the N content is too high, N dissolved in the steel reduces the toughness of the steel. Furthermore, when N content is too high, carbonitride will coarsen and the toughness of steel will fall. Therefore, the N content is 0.007% or less.
- the upper limit with preferable N content is less than 0.007%, More preferably, it is 0.006%, More preferably, it is 0.005%.
- the chemical composition of the seamless steel pipe according to this embodiment further includes one or two selected from the group consisting of Ti and Nb. All of these elements increase the toughness of the steel and form a specific carbide by dissolving in Mo carbide.
- Titanium (Ti) combines with N in the steel to form TiN, and suppresses a decrease in the toughness of the steel due to the N dissolved in the steel. Furthermore, finely dispersed TiN increases the toughness of the steel. Ti further dissolves in Mo carbides to form specific carbides, and suppresses coarsening of the specific carbides. If Ti is contained even a little, the above effect can be obtained. In addition, if Ti content is 0.001% or more, the said effect will be acquired notably. On the other hand, if the Ti content exceeds 0.008%, TiN becomes coarse or coarse TiC is produced, and the toughness of the steel is lowered.
- the upper limit of the Ti content is 0.008% or less.
- the preferable upper limit of Ti content is less than 0.008%, the more preferable upper limit is 0.005%, the further preferable upper limit is 0.003%, and the still more preferable upper limit is 0.002%. .
- Niobium combines with C and / or N in the steel to form fine Nb carbide, Nb nitride or Nb carbonitride, and increases the toughness of the steel. Nb further dissolves in Mo carbide to form a specific carbide, and suppresses the coarsening of the specific carbide. If the Nb content is less than 0.02%, the above effect cannot be obtained effectively. Therefore, the lower limit of the Nb content when contained is 0.02%. On the other hand, when the Nb content exceeds 0.05%, the specific carbide is coarsened. Therefore, the Nb content is preferably 0.02 to 0.05%. A preferable lower limit of the Nb content is more than 0.02%, and a more preferable upper limit is 0.03%. The upper limit with preferable Nb content is less than 0.05%, and a more preferable upper limit is 0.04%.
- the balance of the seamless steel pipe according to this embodiment is Fe and impurities.
- the impurities here refer to ores and scraps used as raw materials for steel, or elements mixed in from the environment of the manufacturing process.
- the chemical composition of the seamless steel pipe according to the present embodiment may further include one or two selected from the group consisting of Cu and Ni instead of a part of Fe. All of these elements increase the hardenability of the steel and increase the strength of the steel.
- Cu 1.0% or less Copper (Cu) is a selective element. Cu increases the hardenability of the steel and increases the strength of the steel. If Cu is contained even a little, the above effect can be obtained. If the Cu content is 0.05% or more, the above-described effect is remarkably obtained. On the other hand, if the Cu content exceeds 1.0%, the weldability of the steel decreases. When the Cu content is too high, the grain boundary strength of the steel at a high temperature is further lowered, and the hot workability of the steel is lowered. Therefore, the upper limit of the Cu content is 1.0%. A preferable lower limit of the Cu content is more than 0.05%, a more preferable lower limit is 0.1%, and a further preferable lower limit is 0.2%.
- Nickel (Ni) is a selective element. Ni increases the hardenability of the steel and increases the strength of the steel. If Ni is contained even a little, the above effect can be obtained. If the Ni content is 0.05% or more, the above-described effect is remarkably obtained. On the other hand, if the Ni content exceeds 1.0%, the SSC resistance decreases. Therefore, the upper limit of the Ni content is 1.0%. A preferable lower limit of the Ni content is more than 0.05%, a more preferable lower limit is 0.1%, and a further preferable lower limit is 0.2%. A preferable upper limit of the Ni content is less than 1.0%, a more preferable upper limit is 0.7%, and a further preferable upper limit is 0.5%.
- the seamless steel pipe according to this embodiment has a carbon equivalent Ceq defined by the following formula (1) of 0.50 to 0.58%.
- Ceq C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (1)
- the content (mass%) of the corresponding element is substituted for each element symbol in the formula (1).
- “0” is substituted for the corresponding element symbol in the formula (1).
- “when no element is contained” means that the content of the element is not more than the impurity level.
- the C content is limited. This is because C significantly reduces the toughness of a weld formed by circumferential welding.
- the lower limit of the carbon equivalent Ceq defined by the formula (1) is set to 0.50%. In this case, high strength can be obtained even if the C content is small.
- the strength grade of the seamless steel pipe can be set to X80 or more based on the API standard, that is, the yield strength of the seamless steel pipe can be set to 550 MPa or more.
- the carbon equivalent Ceq is set to 0.58%.
- the seamless steel pipe according to this embodiment contains a plurality of specific carbides having a size of 20 nm or more.
- the specific carbide means a carbide mainly containing Mo, containing V, and containing one or two of Ti and Nb.
- “Mainly Mo” means that the Mo content in the carbide is 50% by mass or more based on the mass of the entire carbide. Further, it is desirable that V is 1 to 50% by mass and Ti and Nb are 1 to 30% by mass with respect to the total mass of the carbide.
- the size of the specific carbide is measured by the following method.
- An extraction replica film is collected from the thick portion of the seamless steel pipe by the extraction replica method. Specifically, an extraction replica film (diameter 3 mm) including an area in the thickness direction of an arbitrary thickness portion of the seamless steel pipe and an extraction replica including an area 1 mm inward in the thickness direction from the inner surface Take a membrane (3 mm diameter). In each extraction replica film, arbitrary 10 ⁇ m 2 regions are observed at four locations (four visual fields). That is, eight regions are observed in one seamless steel pipe. A transmission electron microscope (TEM) is used for observation, and the observation magnification is 3000 times.
- TEM transmission electron microscope
- Carbides and carbonitrides are identified by analyzing the electron diffraction pattern from a plurality of precipitates observed in each region. Furthermore, the chemical composition of each identified carbide
- Specified carbides increase the strength of steel. However, if the specific carbide is too small, the hardness of the steel becomes too high and the HIC resistance decreases. If the size of the specific carbide is 20 nm or more, the hardness of the steel is within an appropriate range while increasing the strength of the steel. Therefore, the HIC resistance is also improved.
- the yield strength of the seamless steel pipe is 550 MPa or more (X80 grade or more).
- the Vickers hardness (hereinafter referred to as inner surface hardness) at a position 1 mm inside from the inner surface of the seamless steel pipe is 195 to 248HV10. Furthermore, it becomes difficult for the toughness of the seamless steel pipe after circumferential welding to decrease excessively or to increase the hardness excessively.
- the upper limit of the size of the specific carbide is not particularly limited.
- the upper limit of the size of the specific carbide is, for example, 200 nm. Preferably, it is 100 nm, more preferably 70 nm.
- FIG. 1 is a block diagram showing an example of a seamless steel pipe production line according to the present embodiment.
- the production line includes a heating furnace 1, a piercing machine 2, a drawing mill 3, a constant diameter rolling mill 4, a reheating furnace 5, a water cooling device 6, a quenching device 7, A tempering device 8 is provided.
- a plurality of transport rollers 10 are arranged between the devices.
- a quenching device 7 and a tempering device 8 are also included in the production line. However, the quenching device 7 and the tempering device 8 may be arranged away from the production line. In short, the quenching device 7 and the tempering device 8 may be arranged offline.
- FIG. 2 is a flowchart showing the manufacturing process of the seamless steel pipe according to this embodiment.
- FIG. 3 is a diagram showing a change in surface temperature with respect to time of a workpiece (steel material, raw pipe and seamless steel pipe) being manufactured.
- reference numeral A1 when the workpiece is heated, shows the A c1 point, showing the r1 point A in a case where the workpiece is cooled.
- A3 when the workpiece is heated, shows the A c3 point shows r3 point A in a case where the workpiece is cooled.
- a c1 point, A c3 point, A r1 point, and A r3 point are obtained by drawing a CCT diagram in a formaster test on a test piece taken from steel having a predetermined chemical composition. This is a value obtained from the CCT diagram.
- the steel material is heated in heating furnace 1 (heating process: S1).
- the steel material is, for example, a round billet.
- the steel material may be manufactured by a continuous casting apparatus such as round CC.
- the steel material may be manufactured by hot working (forging or split rolling) an ingot or slab. In this example, the description is continued for the case where the steel material is a round billet.
- the hot round billet is hot-worked into a seamless steel pipe (S2 and S3).
- a round billet is pierced and rolled by a piercing machine 2 to form a blank pipe (piercing and rolling step: S2).
- the raw pipe is rolled by the drawing mill 3 and the constant diameter rolling machine 4 to obtain a seamless steel pipe (stretching rolling process and constant diameter rolling process: S3).
- the seamless steel pipe manufactured by hot working is heated to a predetermined temperature by the auxiliary heating furnace 5 as necessary (reheating step: S4).
- the seamless steel pipe is cooled (cooling step: S5).
- the seamless steel pipe is cooled by water cooling (accelerated cooling) with the water cooling device 6 (accelerated cooling process: S51), or the seamless steel pipe is cooled by air cooling (air cooling process: S52).
- the cooled seamless steel pipe is quenched using the quenching device 7 (quenching step: S6), and tempered using the tempering device 8 at a specific tempering temperature (tempering step: S7).
- quenching step: S6 quenching step: S6
- tempering step: S7 tempered using the tempering device 8 at a specific tempering temperature
- Heating step (S1) The round billet is heated in the heating furnace 1.
- a preferred heating temperature is 1100 ° C. to 1300 ° C. When the round billet is heated within this temperature range, the carbonitride in the steel is dissolved.
- the heating temperature of the slab or ingot may not be 1100 to 1300 ° C. This is because carbonitrides in the steel are dissolved when the ingot and slab are heated.
- the heating furnace 1 is, for example, a walking beam furnace or a rotary furnace.
- the drilling machine 2 includes a plurality of inclined rolls and a plug.
- the plug is disposed between the inclined rolls.
- the drilling machine 2 is a cross-type drilling machine. It is preferable to use a cross-type drilling machine because drilling can be performed with a high tube expansion rate.
- the drawing mill 3 includes a plurality of roll stands arranged in series.
- the drawing mill 3 is, for example, a mandrel mill.
- the drawn and drawn raw pipe is drawn and rolled by the constant diameter rolling mill 4 to produce a seamless steel pipe.
- the constant diameter rolling mill 4 includes a plurality of roll stands arranged directly.
- the constant diameter rolling mill 4 is, for example, a sizer or a stretch reducer.
- the drawing and rolling process and the constant diameter rolling process may be collectively referred to as a rolling process.
- the reheating in the reheating step (S4) is performed as necessary. That is, the manufacturing method according to the present embodiment may not include the reheating step (S4). Specifically, the reheating step (S4) is performed when water cooling is performed by the accelerated cooling step (S51) and the temperature of the seamless steel pipe before water cooling is increased. When not performing reheating, it progresses to step S5 from step S3 in FIG. When the reheating is not performed, the auxiliary heating furnace 5 may not be arranged in FIG.
- the finishing temperature surface temperature of the seamless steel pipe immediately after the end of the step of S3
- the Ar3 point and accelerated cooling is performed in the next step
- the seamless steel pipe is inserted into the auxiliary heating furnace 5 and heated.
- a preferable heating temperature in the auxiliary heating furnace 5 is 900 to 1100 ° C.
- a preferable soaking time is 30 minutes or less. This is because if the soaking time is too long, carbonitrides (Ti, Nb) (C, N) composed of Ti, Nb, C and N may be precipitated and coarsened.
- an induction heating device may be used instead of the auxiliary heat furnace 5.
- the seamless steel pipe is water cooled (accelerated cooling) by the water cooling device 6.
- the temperature (surface temperature) of the seamless steel pipe immediately before water cooling is Ar3 or higher, preferably 800 ° C or higher.
- the Ar3 point of the seamless steel pipe according to this embodiment having the chemical composition in the above-described range is 750 ° C. or lower.
- the cooling rate in the accelerated cooling step is preferably 100 ° C./min or more. A cooling rate of less than 100 ° C./min is not preferable because ferrite is generated.
- the cooling stop temperature is preferably set to Ar 1 point or less. When the cooling stop temperature is at or above the Ar1 point, the retained austenite increases, which is not preferable.
- the Ar1 point of the seamless steel pipe according to this embodiment having the chemical composition in the above-described range is 550 ° C. or lower.
- a preferable cooling stop temperature is 450 ° C. or lower.
- the configuration of the water cooling device 6 used for accelerated cooling is, for example, as follows.
- the water cooling device 6 includes a plurality of rotating rollers, a laminar water flow device, and a jet water flow device.
- the plurality of rotating rollers are arranged in two rows, and the seamless steel pipe is arranged between the plurality of rotating rollers arranged in two rows. At this time, each of the two rows of rotating rollers comes into contact with the lower part of the outer surface of the seamless steel pipe.
- the laminar water flow device is disposed above the rotating roller and pours water from above into the seamless steel pipe. At this time, the water poured into the seamless steel pipe forms a laminar water flow.
- the jet water flow device is arranged in the vicinity of the end of the seamless steel pipe arranged on the rotating roller.
- a jet water flow apparatus injects a jet water flow toward the inside of a steel pipe from the end of a seamless steel pipe.
- the outer surface and the inner surface of the seamless steel pipe are simultaneously cooled by the laminar water flow device and the jet water flow device.
- Such a configuration of the water cooling device 6 is particularly suitable for accelerated cooling of a thick-walled seamless steel pipe having a thickness of 35 mm or more.
- the water cooling device 6 may be a device other than the above-described rotating roller, laminar water flow device, and jet water flow device.
- the water cooling device 6 may be a water tank, for example. In this case, the seamless steel pipe is immersed in a water tank and accelerated and cooled.
- the water cooling device 6 may also be only a laminar water flow device. In short, the type of the cooling device 6 is not limited.
- the accelerated cooling step (S51) is effective in obtaining higher toughness.
- an air cooling step (S52) described below may be performed instead of the accelerated cooling step (S51).
- Air cooling step (S52) In the manufacturing process of the seamless steel pipe of the present embodiment, an air cooling process (S52) may be performed instead of the accelerated cooling process (S51). In the air cooling step (S52), the seamless steel pipe manufactured in step S3 is air cooled. Therefore, when the air cooling step (S52) is performed, the reheating step (S4) may not be performed.
- the air cooling step (S52) air cooling is performed until the surface temperature of the seamless steel pipe is 400 ° C. or lower.
- the seamless steel pipe may be cooled to room temperature.
- a quenching treatment is performed on the seamless steel pipe after the accelerated cooling step (S51) or after the air cooling step (S52). Specifically, the seamless steel pipe is heated by the quenching device 7. By this heating, the metal structure of the seamless steel pipe is austenitized. Then, the heated seamless steel pipe is quenched by accelerated cooling. Thereby, the metal structure of the seamless steel pipe is made a metal structure mainly composed of martensite or bainite.
- the temperature of the seamless steel pipe is heated to the Ac3 point or higher by heating in the quenching apparatus 7. Further, it is preferable to soak for 5 to 90 minutes in the temperature range.
- the Ac3 point of the seamless steel pipe according to this embodiment having the chemical composition in the above range is 800 to 900 ° C.
- the seamless steel pipe heated to the Ac3 point or higher is quenched by accelerated cooling.
- the quenching start temperature is at least Ac3 .
- the cooling rate when the temperature of the seamless steel pipe is between 800 and 500 ° C. is 5 ° C./second (300 ° C./minute) or more. Thereby, a uniform hardened structure is obtained.
- the cooling stop temperature is set to Ar 1 point or less. If the cooling stop temperature exceeds the Ar1 point, retained austenite increases, which is not preferable.
- a preferable cooling stop temperature is 450 ° C. or lower.
- the seamless steel pipe may be cooled to room temperature by accelerated cooling.
- Tempering is performed on the quenched seamless steel pipe.
- the tempering temperature is 660 ° C. to 700 ° C.
- the holding time is preferably 10 to 120 minutes.
- the specific carbide having a size of 20 nm or more can be finely dispersed in the seamless steel pipe.
- the strength grade of the seamless steel pipe can be set to X80 or more based on the API standard, that is, the yield strength of the seamless steel pipe can be set to 550 MPa or more.
- the size of the specific carbide is 20 nm or more, good toughness and HIC resistance can be obtained even in HAZ after the circumferential welding is performed.
- the above manufacturing method is particularly suitable for a seamless steel pipe having a wall thickness of 35 mm or more, and can also be applied to a seamless steel pipe having a wall thickness of 40 mm or more.
- the upper limit of the wall thickness is not particularly limited, but is usually 60 mm or less.
- a plurality of seamless steel pipes having various chemical compositions were manufactured, and the strength, toughness, inner surface hardness, and HIC resistance of the seamless steel pipes were investigated. Furthermore, circumferential welding was performed on the seamless steel pipe, and the toughness, hardness and HIC resistance of the circumferential welded portion were investigated.
- each manufactured round billet was heated to 1100-1300 ° C. in a heating furnace. Subsequently, each round billet was pierced and rolled with a piercing machine to form a raw pipe. Subsequently, each raw tube was drawn and rolled by a mandrel mill. Subsequently, each raw pipe was drawn and rolled (constant diameter rolling) with a sizer to produce a plurality of seamless steel pipes. The wall thickness of each seamless steel pipe was 40 mm.
- Tables 2-1 and 2-2 show the manufacturing conditions for each manufacturing process after the standard rolling.
- the starting temperature (° C.) of the “accelerated cooling step (S51)” in Table 2-1 is the temperature of the seamless steel pipe after the constant diameter rolling or after heating in the auxiliary heating furnace and immediately before executing the accelerated cooling. (Surface temperature, ° C.).
- the cooling rate (° C./min) at the time of accelerated cooling was as shown in the cooling rate (° C./min) of “Accelerated cooling step (S51)” in Table 2-1.
- the cooling stop temperature of these seamless steel pipes subjected to accelerated cooling was 450 ° C. or lower.
- each seamless steel pipe was heated and quenched.
- each seamless steel pipe was charged into the quenching device 7 and heated to the quenching temperature (° C.) described in the heating temperature of “Quenching step (S6)” in Table 2-1. It was soaked for the time (minutes) described in the soaking time of “Quenching step (S6)”.
- accelerated cooling was performed at the cooling rate (° C./min) described in the cooling rate of “Quenching step (S6)” in Table 2-1. Then, the accelerated cooling was stopped at the cooling stop temperature (° C.) shown in Table 2-1. After the accelerated cooling was stopped at the cooling stop temperature, the seamless steel pipe was air-cooled to room temperature.
- the tempering temperature was as shown in Table 2-1. Each holding time at the tempering temperature of each test number was 30 minutes.
- yield strength and tensile strength test The yield strength and tensile strength of each seamless steel pipe of test numbers 1 to 18 were investigated. Specifically, No. 12 test piece (width 25 mm, gauge distance 200 mm) defined in JIS Z 2201 was collected from the seamless steel pipe in the longitudinal direction (L direction) of the steel pipe. Using the collected specimens, a tensile test based on JIS Z 2241 was carried out in the air at normal temperature (25 ° C.), and yield strength (MPa) and tensile strength (MPa) were determined. Yield strength was determined by the 0.5% total elongation method. The yield strength (MPa) and tensile strength (MPa) obtained are shown in Table 2-2. In Table 2-2, “YS” indicates the yield strength obtained with the test piece of each test number, and “TS” indicates the tensile strength.
- the HIC resistance of seamless steel pipes with test numbers 1 to 18 was investigated. Specifically, in each seamless steel pipe, a test piece including the inner surface of the seamless steel pipe, a test piece including the center of the wall thickness, and a test piece including the outer surface were collected. That is, three test pieces were collected from each seamless steel pipe. Each specimen had a thickness of 30 mm, a width (circumferential direction) of 20 mm, and a length of 100 mm.
- the HIC resistance of each test piece was evaluated according to NACE (National Association of Corrosion Engineers) TM0284-2003.
- the test bath in which the test piece was immersed was a room temperature 5% sodium chloride + 0.5% acetic acid aqueous solution saturated with 1 atm hydrogen sulfide gas.
- each test piece was cut into three equal parts in the longitudinal direction.
- the cross section at this time was a cross section of thickness x width (circumferential direction) of the test piece.
- the largest value among the above-mentioned three test pieces taken from each steel pipe was defined as the crack length ratio CLR of the test number.
- Table 2-2 shows the crack length ratio CLR obtained.
- test piece including the inner surface of the seamless steel pipe was subjected to ultrasonic flaw detection (UT) on the surface corresponding to the inner surface of the seamless steel pipe (20 mm ⁇ 100 mm) after the HIC test, and blister The presence or absence of blistering due to cracks in the vicinity of the surface was confirmed, and the number of blisters generated on the test piece was counted.
- Table 2-2 shows the number of blisters.
- a Charpy V-notch specimen including a welded portion including a weld metal, a heat-affected zone and a base material
- L direction longitudinal direction
- a Charpy V-notch specimen including a welded portion including a weld metal, a heat-affected zone and a base material
- FL portion three test pieces in which V notches are arranged in the fusion boundary portion (FL) where the toughness is likely to deteriorate in the weld heat affected zone (HAZ) are collected (hereinafter referred to as FL portion).
- three test pieces having V notches arranged in the two-phase region HAZ (V. HAZ) were collected (hereinafter referred to as V. HAZ part test pieces).
- the two-phase region HAZ is a portion of the HAZ where the base material is heated to the two-phase region by welding heat (that is, a portion heated at a temperature between the A c1 to A c3 transformation points).
- a cross section (hereinafter referred to as an observation surface) having a thickness TH and a width WI was mirror-polished.
- the metal structure was made to appear on the mirror-polished observation surface by the night rusting solution.
- the Vickers hardness test based on JISZ2244 was implemented for every 1 mm interval in the range from 1 mm inside from outer surface OS to 1 mm inside from outer surface OS along fusion boundary line part FL. As a result, 38 points of hardness were measured in each micro test piece.
- the test force F of the Vickers hardness test was 9.8N. Among the obtained 38 points of hardness, the one with the largest value was defined as the hardness (HV) of the melting boundary line part of the test number.
- Test numbers 5 and 6 were compared, and 50% FATT of test number 5 in which accelerated cooling was performed was lower and superior to test number 6. Similarly, comparing test numbers 10 and 11, 12 and 13, the 50% FATT of test numbers 10 and 12 was superior to test numbers 11 and 13. That is, for seamless steel pipes of the same steel type, toughness was better when accelerated cooling was performed.
- test number 2 as shown in Table 2-1, the tempering temperature was too low. Therefore, the size of the specific carbide was less than 20 nm. Therefore, the inner surface hardness of Test No. 2 was excessively high and exceeded 248HV10. Moreover, the crack length ratio CLR was high and the number of blisters was also large. That is, the HIC resistance was low.
- test number 14 the V content was too high. Therefore, the inner surface hardness was excessively high and exceeded 248HV10. The crack area ratio CLR was high and the number of blisters was large.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本願は、2012年08月29日に、日本に出願された特願2012-188634号に基づき優先権を主張し、その内容をここに援用する。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15…(a)
ここで、前記式(a)中の元素記号には、対応する元素の、単位質量%の含有量が代入され、前記各元素記号に対応する元素が含有されない場合、前記元素記号に「0」が代入される。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15…(b)
ここで、前記式(b)中の元素記号には、対応する元素の含有量(質量%)が代入され、前記各元素記号に対応する元素が含有されない場合、前記元素記号に「0」が代入される。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15…(1)
ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。各元素記号に対応する元素が含有されていない場合、元素記号に「0」が代入される。
本実施形態の継目無鋼管は、以下の化学組成を有する。
炭素(C)は、鋼の強度を高める。C含有量が0.02%未満では、上記効果が十分に得られない。一方、C含有量が0.10%を超えると、継目無鋼管の円周溶接部の靱性が低下する。したがって、C含有量は0.02~0.10%である。C含有量の好ましい下限は0.02%超であり、より好ましくは0.04%である。C含有量の好ましい上限は、0.08%である。
シリコン(Si)は、鋼を脱酸する。Si含有量が0.05%以上であれば、上記効果が顕著に得られる。しかしながら、Si含有量が0.5%超では、鋼の靱性が低下する。したがって、Si含有量の上限は0.5%である。Si含有量の好ましい下限は、0.05%超であり、より好ましくは0.08%であり、さらに好ましくは0.10%である。Si含有量の好ましい上限は、0.5%未満であり、より好ましくは0.25%であり、さらに好ましくは0.20%である。
マンガン(Mn)は、鋼の焼入れ性を高め、鋼の強度を高める。Mn含有量が1.0%未満では、上記効果が有効に得られにくく、X80グレード以上の降伏強度が得られにくい。一方、Mn含有量が2.0%を超えると、Mnが鋼中で偏析し、その結果、円周溶接により形成される溶接熱影響部(HAZ)の靱性や継目無鋼管自体(母材)の靱性が低下する。したがって、Mn含有量は1.0~2.0%である。Mn含有量の好ましい下限は、1.0%超であり、より好ましくは、1.3%であり、さらに好ましくは1.4%である。Mn含有量の好ましい上限は、2.0%未満であり、より好ましくは、1.8%であり、さらに好ましくは1.6%である。
モリブデン(Mo)は、鋼の焼入れ性を高め、鋼の強度を高める。Moはさらに、鋼中のC、Vと結合し、後述の、Ti及びNbの1種以上を含有する微細な特定炭化物を形成する。特定炭化物の大きさが20nm以上であれば、高い強度が安定して得られる。また、円周溶接後に熱処理が実施されても、特定炭化物は粗大化しにくいため、特定炭化物の大きさが20nm以上であれば、鋼の強度を維持できる。特定炭化物については、後述する。Mo含有量が0.5%未満では、上記効果が得られにくい。一方、Mo含有量が1.0%を超えると、鋼の溶接性及びHAZ靱性が低下する。したがって、Mo含有量は0.5~1.0%である。Mo含有量の好ましい下限は、0.5%超であり、より好ましくは0.6%であり、さらに好ましくは0.7%である。Mo含有量の好ましい上限は1.0%未満であり、より好ましくは0.9%であり、さらに好ましくは0.8%である。
クロム(Cr)は鋼の焼入れ性を高め、鋼の強度を高める。Crはさらに、鋼の焼戻し軟化抵抗を高める。しかしながら、Cr含有量が0.1%未満では、上記効果が有効に得られない。一方、Cr含有量が1.0%を超えると、鋼の溶接性及びHAZ靱性が低下する。したがって、Cr含有量は0.1~1.0%である。Cr含有量の好ましい下限は0.1%超であり、さらに好ましくは0.2%である。Cr含有量の好ましい上限は1.0%未満であり、さらに好ましくは0.8%である。
アルミニウム(Al)は、Nと結合して微細なAl窒化物を形成し、鋼の靱性を高める。しかしながら、Al含有量が0.01%未満では、上記効果が有効に得られない。一方、Al含有量が0.10%超では、Al窒化物が粗大化し、鋼の靱性が低下する。したがって、Al含有量は0.01~0.10%である。Al含有量の好ましい下限は0.01%超であり、さらに好ましくは0.02%である。Al含有量の好ましい上限は0.1%未満であり、より好ましくは0.08%であり、さらに好ましくは0.06%である。本明細書におけるAl含有量は、酸可溶Al(いわゆるSol.Al)の含有量を意味する。
燐(P)は不純物である。Pは鋼の靱性を低下させる。したがって、P含有量はなるべく低い方が好ましい。そのため、P含有量は0.03%以下に制限する。好ましいP含有量の上限は0.03%未満であり、より好ましい上限は0.015%であり、さらに好ましい上限は0.012%である。
硫黄(S)は不純物である。Sは、Mnと結合して粗大なMnSを形成し、鋼の靱性及び耐HIC性を低下させる。したがって、S含有量はなるべく低い方が好ましい。そのため、S含有量は0.005%以下に制限する。好ましいS含有量の上限は0.005%未満であり、より好ましい上限は、0.003%であり、さらに好ましい上限は0.002%である。
カルシウム(Ca)は、鋼中のSと結合してCaSを形成する。CaSの形成により、MnSの形成が抑制される。そのため、Caは、鋼の靱性及び耐HIC性を高める。しかしながら、Ca含有量が0.0005%未満では、上記効果が有効に得られない。一方、Ca含有量が0.005%超では、鋼の清浄度が低下し、鋼の靱性及び耐HIC性が低下する。したがって、Ca含有量は0.0005~0.005%である。Ca含有量の好ましい下限は0.0005%超であり、より好ましくは0.0008%であり、さらに好ましくは0.001%である。Ca含有量の好ましい上限は0.005%未満であり、より好ましくは0.003%であり、さらに好ましくは0.002%である。
バナジウム(V)は、鋼中のCと結合してV炭化物を形成し、鋼の強度を高める。Vはさらに、Mo炭化物中に固溶して特定炭化物を形成する。Vを含むことにより、特定炭化物は粗大化しにくくなる。V含有量が0.010%未満では、上記効果が有効に得られない。一方、V含有量が0.040%超では、V炭化物が粗大化する。したがって、V含有量は0.010~0.040%である。V含有量の好ましい下限は0.010%超であり、さらに好ましくは0.02%である。V含有量の好ましい上限は0.040%未満である。
窒素(N)はAlと結合して微細なAl窒化物を形成し、鋼の靱性を高める。上記効果を得るためには、N含有量の下限は0.002%であることが好ましい。しかしながら、N含有量が高すぎると、鋼中に固溶したNが鋼の靱性を低下させる。さらに、N含有量が高すぎると、炭窒化物が粗大化し、鋼の靱性が低下する。したがって、N含有量は0.007%以下である。N含有量の好ましい上限は0.007%未満であり、さらに好ましくは0.006%であり、さらに好ましくは、0.005%である。
チタン(Ti)は、鋼中のNと結合してTiNを形成し、鋼中に固溶したNによる鋼の靱性の低下を抑制する。さらに、分散析出した微細なTiNは鋼の靱性を高める。Tiはさらに、Mo炭化物中に固溶して特定炭化物を形成し、特定炭化物の粗大化を抑制する。Tiが少しでも含有されれば、上記効果が得られる。なお、Ti含有量が0.001%以上であれば、上記効果が顕著に得られる。一方、Ti含有量が0.008%超では、TiNが粗大化したり、粗大なTiCが生成したりして、鋼の靱性が低下する。要するに、Tiを含有させる場合には、窒化物及び特定炭化物を微細分散するために、Ti含有量を制限する必要がある。Ti含有量の上限は0.008%以下である。Ti含有量の好ましい上限は0.008%未満であり、より好ましい上限は0.005%であり、さらに好ましい上限は、0.003%であり、さらに一層好ましい上限は、0.002%である。
ニオブ(Nb)は、鋼中のC及び/又はNと結合して微細なNb炭化物、Nb窒化物またはNb炭窒化物を形成し、鋼の靱性を高める。Nbはさらに、Mo炭化物中に固溶して特定炭化物を形成し、特定炭化物の粗大化を抑制する。Nb含有量が0.02%未満では、上記効果が有効に得られない。そのため、含有させる場合のNb含有量の下限は0.02%である。一方、Nb含有量が0.05%超では、特定炭化物が粗大化する。したがって、Nb含有量は0.02~0.05%であることが好ましい。Nb含有量の好ましい下限は、0.02%超であり、さらに好ましい上限は0.03%である。Nb含有量の好ましい上限は0.05%未満であり、さらに好ましい上限は0.04%である。
銅(Cu)は選択元素である。Cuは、鋼の焼入れ性を高め、鋼の強度を高める。Cuが少しでも含有されれば、上記効果が得られる。Cu含有量が0.05%以上であれば、上記効果が顕著に得られる。一方、Cu含有量が1.0%超では、鋼の溶接性が低下する。Cu含有量が高すぎると、さらに、高温における鋼の粒界強度が低下し、鋼の熱間加工性が低下する。したがって、Cu含有量の上限は1.0%である。Cu含有量の好ましい下限は0.05%超であり、より好ましい下限は0.1%であり、さらに好ましい下限は0.2%である。
ニッケル(Ni)は選択元素である。Niは鋼の焼入れ性を高め、鋼の強度を高める。Niが少しでも含有されれば、上記効果が得られる。Ni含有量は0.05%以上であれば、上記効果が顕著に得られる。一方、Ni含有量が1.0%超では、耐SSC性が低下する。したがって、Ni含有量の上限は1.0%である。Ni含有量の好ましい下限は0.05%超であり、より好ましい下限は0.1%であり、さらに好ましい下限は0.2%である。Ni含有量の好ましい上限は1.0%未満であり、より好ましい上限は0.7%であり、さらに好ましい上限は0.5%である。
本実施形態による継目無鋼管は、下記式(1)で定義される炭素当量Ceqが0.50~0.58%である。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15…(1)
本実施形態に係る継目無鋼管は、その大きさが20nm以上である複数の特定炭化物を含有する。ここで、特定炭化物は、Moを主体として、Vを含有し、かつ、Ti及びNbのうちの1種又は2種を含有する炭化物を意味する。「Moを主体として」とは、炭化物中のMo含有量が、炭化物全体の質量に対して50質量%以上であることを意味する。また、炭化物全体の質量に対して、Vは、1~50質量%、Ti、Nbは、1~30質量%であることが望ましい。
本実施形態に係る継目無鋼管の製造方法の一例を説明する。本例では、熱間加工により製造された継目無鋼管を冷却(空冷又は加速冷却)する。そして、冷却後の継目無鋼管に対して、焼入れ及び特定の焼戻し温度での焼戻しを実施する。以下、製造方法の詳細を説明する。
図1は、本実施形態に係る継目無鋼管の製造ラインの一例を示すブロック図である。図1を参照して、製造ラインは、加熱炉1と、穿孔機2と、延伸圧延機3と、定径圧延機4と、補熱炉5と、水冷装置6と、焼入れ装置7と、焼戻し装置8とを備える。各装置間には、複数の搬送ローラ10が配置される。図1では、焼入れ装置7及び焼戻し装置8も製造ラインに含まれる。しかしながら、焼入れ装置7及び焼戻し装置8は、製造ラインから離れて配置されてもよい。要するに、焼入れ装置7及び焼戻し装置8は、オフラインに配置されてもよい。
図2は、本実施形態に係る継目無鋼管の製造工程を示すフロー図である。図3は、製造中のワークピース(鋼素材、素管及び継目無鋼管)の、時間に対する表面温度の変化を示す図である。ここで、図中A1は、ワークピースが加熱される場合には、Ac1点を示し、ワークピースが冷却される場合にはAr1点を示す。また、図中A3は、ワークピースが加熱される場合には、Ac3点を示し、ワークピースが冷却される場合にはAr3点を示す。
本実施形態において、Ac1点、Ac3点、Ar1点、Ar3点とは、所定の化学成分を有する鋼から採取した試験片に関して、フォーマスター試験にてCCT図を作図し、得られたCCT図から求めた値である。
丸ビレットを加熱炉1で加熱する。好ましい加熱温度は1100℃~1300℃である。この温度範囲で丸ビレットを加熱すれば、鋼中の炭窒化物が溶解する。スラブ又はインゴットから熱間加工により丸ビレットが製造される際の、スラブ又はインゴットの加熱温度は1100~1300℃でなくてもよい。インゴット及びスラブが加熱されるときに、鋼中の炭窒化物が溶解するからである。加熱炉1はたとえば、ウォーキングビーム炉又はロータリー炉である。
丸ビレットを加熱炉1から出した後、加熱された丸ビレットを穿孔機2により穿孔圧延し、素管とする。穿孔機2は複数の傾斜ロールと、プラグとを備える。プラグは、傾斜ロールの間に配置される。好ましくは、穿孔機2は、交叉型の穿孔機である。交叉型の穿孔機を用いると、高い拡管率で穿孔できるので好ましい。
次に、素管を圧延する。具体的には、素管を延伸圧延機3により延伸圧延する。延伸圧延機3は直列に配列された複数のロールスタンドを含む。延伸圧延機3はたとえば、マンドレルミルである。続いて、延伸圧延された素管を、定径圧延機4により絞り圧延して、継目無鋼管を製造する。定径圧延機4は、直接に配列された複数のロールスタンドを含む。定径圧延機4はたとえば、サイザ、ストレッチレデューサ等である。なお、延伸圧延工程及び定径圧延工程をまとめて、単に圧延工程という場合がある。
再加熱工程(S4)における再加熱は、必要に応じて実施される。つまり、本実施形態に係る製造方法は、再加熱工程(S4)を含まなくてもよい。具体的には、再加熱工程(S4)は、加速冷却工程(S51)による水冷を実施する場合であって、水冷前の継目無鋼管の温度を高める場合に実施される。再加熱を実施しない場合、図2において、ステップS3からステップS5に進む。再加熱を実施しない場合、図1において、補熱炉5は配置されなくてもよい。
ステップS3で製造された継目無鋼管、又は、ステップS4で再加熱された継目無鋼管は、冷却される。冷却は、加速冷却工程(S51)、または、空冷工程(S52)のいずれで行われてもよい。加速冷却工程(S51)と空冷工程(S52)とをまとめて冷却工程(S5)と呼ぶ。
継目無鋼管の靱性をさらに高める場合、空冷工程(S52)ではなく、加速冷却工程(S51)における冷却が実施される。加速冷却工程(S51)では、継目無鋼管を水冷装置6により水冷(加速冷却)する。水冷直前の継目無鋼管の温度(表面温度)は、Ar3点以上であり、好ましくは800℃以上である。上述した範囲の化学組成を有する本実施形態に係る継目無鋼管のAr3点は、750℃以下である。水冷直前の継目無鋼管の温度がAr3点を下回る場合、フェライトが生成し、焼き入れ不足となるため好ましくない。加速冷却前の継目無鋼管の温度がAr3点未満である場合、再加熱工程(S4)にて継目無鋼管を再加熱して、その温度をAr3点以上とする。
本実施形態の継目無鋼管の製造工程では、加速冷却工程(S51)に代えて、空冷工程(S52)を実施してもよい。空冷工程(S52)では、ステップS3で製造された継目無鋼管を空冷する。したがって、空冷工程(S52)を実施する場合、再加熱工程(S4)は実施しなくてよい。
加速冷却工程(S51)後、又は、空冷工程(S52)後の継目無鋼管に対して焼入れ処理を実施する。具体的には、焼入れ装置7で継目無鋼管を加熱する。この加熱により、継目無鋼管の金属組織はオーステナイト化される。そして、加熱された継目無鋼管を加速冷却により焼入れする。これにより、継目無鋼管の金属組織を、マルテンサイト又はベイナイトを主体とする金属組織とする。
焼入れされた継目無鋼管に対して、焼戻しを実施する。焼戻し温度は、660℃~700℃とする。保持時間は、10~120分とすることが好ましい。このような条件で焼戻しを行うことにより、20nm以上の大きさの特定炭化物を継目無鋼管中に微細分散させることが出来る。その結果、継目無鋼管の強度グレードを、API規格に基づくX80以上、つまり、継目無鋼管の降伏強度を550MPa以上にすることができる。さらに、特定炭化物の大きさが20nm以上となるため、円周溶接を実施した後のHAZにおいても良好な靱性、耐HIC性が得られる。
表1に示す化学組成を有する複数の溶鋼を40tの電気炉にて製造した。溶鋼からインゴットを製造した。インゴットを熱間鍛造して、丸ビレットを製造した。
なお、表1中の「‐」は、含有量が測定限界以下であることを示している。
各試験番号1~18の継目無鋼管の降伏強度及び引張強度を調査した。具体的には、継目無鋼管からJIS Z 2201に規定された12号試験片(幅25mm、標点距離200mm)を、鋼管の長手方向(L方向)に採取した。採取された試験片を用いて、JIS Z 2241に準拠した引張試験を、常温(25℃)の大気中で実施し、降伏強度(MPa)及び引張強度(MPa)を求めた。降伏強度は、0.5%全伸び法により求めた。得られた降伏強度(MPa)及び引張強度(MPa)を表2-2に示す。表2-2中の「YS」は各試験番号の試験片で得られた降伏強度を示し、「TS」は引張強度を示す。
各試験番号1~18の継目無鋼管の靭性を調査した。具体的には、各継目無鋼管の肉厚中央部からJIS Z 2242に準拠したVノッチ試験片を、継目無鋼管の長手方向に対して垂直(T方向)に採取した。Vノッチ試験片は角棒状であり、横断面は10mm×10mmであった。また、Vノッチの深さは2mmであった。Vノッチ試験片を用いて、JIS Z 2242に準拠したシャルピー衝撃試験を、種々の温度で実施した。そして、各継目無鋼管の延性脆性破面遷移温度(50%FATT)を求めた。表2-2に、各試験番号の試験片により得られた50%FATT(℃)を示す。50%FATTは、試験片の破断面において、延性破面率が50%となる温度を意味する。
試験番号1~18の継目無鋼管の横断面(中心軸に垂直な断面)において、継目無鋼管の内面から肉厚方向に1mm内側の任意の3点にて、JIS Z 2244に準拠したビッカース硬さ試験を実施した。ビッカース硬さ試験の試験力Fは10kgf(98.07N)であった。得られた3点の値の平均を、その試験番号の継目無鋼管の内面表層硬さ(HV10)と定義した。得られた内面表層硬さを表2-2に示す。
試験番号1~18の継目無鋼管の横断面において、上述の方法により、特定炭化物の大きさ(nm)を求めた。なお、特定炭化物を特定するとき、特定炭化物に含有される元素(Mo、V、Ti、Nb)も同定した。特定炭化物の大きさ(nm)及び炭化物中において同定された元素について、表2-2に示す。
試験番号1~18の継目無鋼管の耐HIC性を調査した。具体的には、各継目無鋼管において、継目無鋼管の内面を含む試験片、肉厚中央を含む試験片、外面を含む試験片をそれぞれ採取した。つまり、各継目無鋼管から3つの試験片を採取した。各試験片の厚さは30mmであり、幅(円周方向)は20mmであり、長さは100mmであった。NACE(National Association of Corrosion Engineers)TM0284-2003に従って、各試験片の耐HIC性を評価した。試験片を浸漬する試験浴は、1atmの硫化水素ガスを飽和させた常温の5%食塩+0.5%酢酸水溶液であった。
試験番号3、5、9、12、17及び18の継目無鋼管に対して円周溶接試験を実施した。具体的には、当該試験番号の継目無鋼管を長手方向中央部で切断し、切断部を開先加工し、図4に示す縦断形状にした。そして、表3に示す溶接条件に基づいて、2つに切り離された継目無鋼管の切断部同士を円周溶接した。
円周溶接された継目無鋼管において、図5の破線領域に示すとおり、溶接部を含むミクロ試験片(厚さTH=40mm、幅WI=20mm、長さ20mm)を採取した。図5中のOSは外面であり、ISは内面である。
図6に示すとおり、円周溶接された継目無鋼管において、内表面IS及び溶接部WLを含む角材試験片(厚さTH=30mm、幅WI=20mm、長さ=100mm)を採取した。角材試験片を、上述の母材の耐HIC試験と同じ試験浴に96時間浸漬した。試験浴から角材試験片を取り出し、溶融境界線部FLに対して垂直方向から超音波探傷を実施しHICの有無を調査した。表4に試験結果を示す。表4中の「N」は、HICが確認されなかったことを示す。「F」は、HICが確認されたことを示す。
表1、2-1、2-2を参照して、試験番号1、3~13の継目無鋼管では、化学組成が本発明の範囲内であり、炭素当量は0.50%以上であった。そのため、これらの試験番号の降伏強度は、いずれも550MPa以上であり、API規格に基づくX80以上の強度グレードに相当した。さらに、これらの試験番号の50%FATTは-50℃以下であり、優れた靭性を有した。さらに、これらの試験番号の特定炭化物の大きさは20nm以上であった。そのため、内面表層硬さが248HV10以下であった。そのため、割れ長さ率CLRは低く、ブリスタの発生個数も少なかった。
2 穿孔機
3 延伸圧延機
4 定径圧延機
5 補熱炉
6 水冷装置
7 焼入れ装置
8 焼戻し装置
FL 溶融境界線部
IS 内面
OS 外面
Claims (7)
- 化学成分が、質量%で、
C:0.02~0.10%、
Si:0.05~0.5%、
Mn:1.0~2.0%、
Mo:0.5~1.0%、
Cr:0.1~1.0%、
Al:0.01~0.10%、
P:0.03%以下、
S:0.005%以下、
Ca:0.0005~0.005%、
V:0.010~0.040%、及び、
N:0.002~0.007%を含有し、
さらに、
Ti:0.008%以下、及び、
Nb:0.02~0.05%からなる群から選択される1種又は2種を含有し、
残部はFe及び不純物であり;
下記式(1)で定義される炭素当量Ceqが0.50~0.58%であり;
Moを50質量%以上の割合で含有し、Vを含有し、さらに、Ti及びNbからなる群から選択される1種又は2種を含有し、長径の平均値で定義される大きさが20nm以上である特定炭化物を含有する;
ことを特徴とする継目無鋼管。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15…(1)
ここで、前記式(1)中の元素記号には、対応する元素の、単位質量%の含有量が代入され、前記各元素記号に対応する前記元素が含有されない場合、前記元素記号に「0」が代入される。 - 前記Feの一部に代えて、Cu:1.0%以下、及び、Ni:1.0%以下からなる群から選択される1種又は2種を含有することを特徴とする請求項1に記載の継目無鋼管。
- 降伏強度が550MPa以上であり、内面から1mm内側の位置でのビッカース硬さが248HV10以下であることを特徴とする請求項1または2に記載の継目無鋼管。
- 焼入れと660~700℃での焼戻しとを含む工程により製造されることを特徴とする請求項1~3のいずれか一項に記載の継目無鋼管。
- 化学成分が、質量%で、
C:0.02~0.10%、
Si:0.05~0.5%、
Mn:1.0~2.0%、
Mo:0.5~1.0%、
Cr:0.1~1.0%、
Al:0.01~0.10%、
P:0.03%以下、
S:0.005%以下、
Ca:0.0005~0.005%、
V:0.010~0.040%、及び、
N:0.002~0.007%を含有し、
さらに、Ti:0.008%以下、及びNb:0.02~0.05%からなる群から選択される1種又は2種を含有し、
残部はFe及び不純物であり、
下記式(2)で定義される炭素当量Ceqが0.50~0.58%である鋼素材を加熱する加熱工程と;
前記加熱工程後の前記鋼素材を穿孔圧延して素管を製造する穿孔圧延工程と;
前記素管を圧延して継目無鋼管を製造する圧延工程と;
前記継目無鋼管をAc3点以上の焼入れ温度で焼入れする焼入れ工程と;
前記焼入れ工程後の前記継目無鋼管を660~700℃の焼戻し温度で焼戻しする焼戻し工程と;
を備えることを特徴とする継目無鋼管の製造方法。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15…(2)
ここで、前記式(2)中の元素記号には、対応する元素の含有量(質量%)が代入され、前記各元素記号に対応する前記元素が含有されない場合、前記元素記号に「0」が代入される。 - さらに、前記圧延工程と前記焼入れ工程との間に、前記継目無鋼管を、前記継目無鋼管の温度がAr1点以下になるまで、100℃/分以上の冷却速度で加速冷却する加速冷却工程を備え、
前記焼入れ工程では、前記加速冷却工程後の前記継目無鋼管を焼入れする、
ことを特徴とする請求項5に記載の継目無鋼管の製造方法。 - 前記化学成分は、前記Feの一部に代えて、Cu:1.0%以下、及び、Ni:1.0%以下からなる群から選択される1種又は2種を含有することを特徴とする請求項5または6に記載の継目無鋼管の製造方法。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112015004263A BR112015004263A2 (pt) | 2012-08-29 | 2013-08-28 | tubo de aço sem costura e método para produção do mesmo |
JP2013544916A JP5516831B1 (ja) | 2012-08-29 | 2013-08-28 | 継目無鋼管及びその製造方法 |
ES13832808.3T ES2659008T3 (es) | 2012-08-29 | 2013-08-28 | Tubo de acero sin costura y método para la producción del mismo |
US14/423,480 US10131962B2 (en) | 2012-08-29 | 2013-08-28 | Seamless steel pipe and method for producing same |
CN201380056252.XA CN104755645B (zh) | 2012-08-29 | 2013-08-28 | 无缝钢管以及其的制造方法 |
IN1473DEN2015 IN2015DN01473A (ja) | 2012-08-29 | 2013-08-28 | |
AU2013310061A AU2013310061B2 (en) | 2012-08-29 | 2013-08-28 | Seamless steel pipe and method for producing same |
MX2015002529A MX366332B (es) | 2012-08-29 | 2013-08-28 | Tuberia de acero sin costuras y metodo para producirla. |
CA2882843A CA2882843C (en) | 2012-08-29 | 2013-08-28 | Seamless steel pipe and method for producing same |
EP13832808.3A EP2891725B1 (en) | 2012-08-29 | 2013-08-28 | Seamless steel pipe and method for producing same |
NO13832808A NO2891725T3 (ja) | 2012-08-29 | 2013-08-28 | |
US16/155,930 US20190040480A1 (en) | 2012-08-29 | 2018-10-10 | Seamless steel pipe and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-188634 | 2012-08-29 | ||
JP2012188634 | 2012-08-29 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/423,480 A-371-Of-International US10131962B2 (en) | 2012-08-29 | 2013-08-28 | Seamless steel pipe and method for producing same |
US16/155,930 Division US20190040480A1 (en) | 2012-08-29 | 2018-10-10 | Seamless steel pipe and method for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014034737A1 true WO2014034737A1 (ja) | 2014-03-06 |
Family
ID=50183543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/073048 WO2014034737A1 (ja) | 2012-08-29 | 2013-08-28 | 継目無鋼管及びその製造方法 |
Country Status (12)
Country | Link |
---|---|
US (2) | US10131962B2 (ja) |
EP (1) | EP2891725B1 (ja) |
JP (1) | JP5516831B1 (ja) |
CN (1) | CN104755645B (ja) |
AU (1) | AU2013310061B2 (ja) |
BR (1) | BR112015004263A2 (ja) |
CA (1) | CA2882843C (ja) |
ES (1) | ES2659008T3 (ja) |
IN (1) | IN2015DN01473A (ja) |
MX (1) | MX366332B (ja) |
NO (1) | NO2891725T3 (ja) |
WO (1) | WO2014034737A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6112267B1 (ja) * | 2016-02-16 | 2017-04-12 | 新日鐵住金株式会社 | 継目無鋼管及びその製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106555042A (zh) * | 2015-09-24 | 2017-04-05 | 宝山钢铁股份有限公司 | 一种有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法 |
CN106216430B (zh) * | 2016-07-29 | 2018-09-04 | 新昌县长城空调部件股份有限公司 | 燃气厨具用输气管制造工艺 |
JP6813140B1 (ja) * | 2019-02-20 | 2021-01-13 | Jfeスチール株式会社 | 角形鋼管およびその製造方法、並びに建築構造物 |
CN113528974B (zh) * | 2021-06-18 | 2022-06-21 | 首钢集团有限公司 | 一种防护用钢及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004124158A (ja) | 2002-10-01 | 2004-04-22 | Sumitomo Metal Ind Ltd | 継目無鋼管およびその製造方法 |
WO2007023804A1 (ja) | 2005-08-22 | 2007-03-01 | Sumitomo Metal Industries, Ltd. | ラインパイプ用継目無鋼管およびその製造方法 |
JP2010024504A (ja) * | 2008-07-22 | 2010-02-04 | Sumitomo Metal Ind Ltd | ラインパイプ用継目無鋼管およびその製造方法 |
WO2011152240A1 (ja) * | 2010-06-02 | 2011-12-08 | 住友金属工業株式会社 | ラインパイプ用継目無鋼管及びその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE330040T1 (de) | 1997-07-28 | 2006-07-15 | Exxonmobil Upstream Res Co | Ultrahochfeste, schweissbare stähle mit ausgezeichneter ultra-tief-temperatur zähigkeit |
CN100335670C (zh) * | 2002-02-07 | 2007-09-05 | 杰富意钢铁株式会社 | 高强度钢板及其制造方法 |
CN100432261C (zh) | 2003-06-12 | 2008-11-12 | 杰富意钢铁株式会社 | 低屈服比高强度高韧性的厚钢板和焊接钢管及它们的制造方法 |
JP4792778B2 (ja) | 2005-03-29 | 2011-10-12 | 住友金属工業株式会社 | ラインパイプ用厚肉継目無鋼管の製造方法 |
RU2481415C2 (ru) * | 2007-11-07 | 2013-05-10 | ДжФЕ СТИЛ КОРПОРЕЙШН | Стальной лист и стальная труба для трубопроводов |
EP2371982B1 (en) * | 2008-11-26 | 2018-10-31 | Nippon Steel & Sumitomo Metal Corporation | Seamless steel pipe and method for manufacturing same |
JP4821939B2 (ja) * | 2010-03-18 | 2011-11-24 | 住友金属工業株式会社 | スチームインジェクション用継目無鋼管及びその製造方法 |
-
2013
- 2013-08-28 EP EP13832808.3A patent/EP2891725B1/en active Active
- 2013-08-28 JP JP2013544916A patent/JP5516831B1/ja active Active
- 2013-08-28 CA CA2882843A patent/CA2882843C/en active Active
- 2013-08-28 WO PCT/JP2013/073048 patent/WO2014034737A1/ja active Application Filing
- 2013-08-28 US US14/423,480 patent/US10131962B2/en active Active
- 2013-08-28 CN CN201380056252.XA patent/CN104755645B/zh active Active
- 2013-08-28 NO NO13832808A patent/NO2891725T3/no unknown
- 2013-08-28 IN IN1473DEN2015 patent/IN2015DN01473A/en unknown
- 2013-08-28 MX MX2015002529A patent/MX366332B/es active IP Right Grant
- 2013-08-28 BR BR112015004263A patent/BR112015004263A2/pt not_active Application Discontinuation
- 2013-08-28 AU AU2013310061A patent/AU2013310061B2/en active Active
- 2013-08-28 ES ES13832808.3T patent/ES2659008T3/es active Active
-
2018
- 2018-10-10 US US16/155,930 patent/US20190040480A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004124158A (ja) | 2002-10-01 | 2004-04-22 | Sumitomo Metal Ind Ltd | 継目無鋼管およびその製造方法 |
WO2007023804A1 (ja) | 2005-08-22 | 2007-03-01 | Sumitomo Metal Industries, Ltd. | ラインパイプ用継目無鋼管およびその製造方法 |
WO2007023805A1 (ja) * | 2005-08-22 | 2007-03-01 | Sumitomo Metal Industries, Ltd. | ラインパイプ用継目無鋼管とその製造方法 |
WO2007023806A1 (ja) | 2005-08-22 | 2007-03-01 | Sumitomo Metal Industries, Ltd. | ラインパイプ用継目無鋼管およびその製造方法 |
JP2010024504A (ja) * | 2008-07-22 | 2010-02-04 | Sumitomo Metal Ind Ltd | ラインパイプ用継目無鋼管およびその製造方法 |
WO2011152240A1 (ja) * | 2010-06-02 | 2011-12-08 | 住友金属工業株式会社 | ラインパイプ用継目無鋼管及びその製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6112267B1 (ja) * | 2016-02-16 | 2017-04-12 | 新日鐵住金株式会社 | 継目無鋼管及びその製造方法 |
WO2017141341A1 (ja) * | 2016-02-16 | 2017-08-24 | 新日鐵住金株式会社 | 継目無鋼管及びその製造方法 |
RU2706257C1 (ru) * | 2016-02-16 | 2019-11-15 | Ниппон Стил Корпорейшн | Бесшовная стальная труба и способ ее производства |
Also Published As
Publication number | Publication date |
---|---|
ES2659008T3 (es) | 2018-03-13 |
US10131962B2 (en) | 2018-11-20 |
CA2882843A1 (en) | 2014-03-06 |
AU2013310061B2 (en) | 2016-03-17 |
CN104755645B (zh) | 2017-05-24 |
BR112015004263A2 (pt) | 2017-07-04 |
JP5516831B1 (ja) | 2014-06-11 |
MX366332B (es) | 2019-07-05 |
JPWO2014034737A1 (ja) | 2016-08-08 |
CN104755645A (zh) | 2015-07-01 |
MX2015002529A (es) | 2015-06-05 |
IN2015DN01473A (ja) | 2015-07-03 |
CA2882843C (en) | 2019-04-16 |
EP2891725A4 (en) | 2016-05-11 |
AU2013310061A1 (en) | 2015-03-12 |
EP2891725A1 (en) | 2015-07-08 |
EP2891725B1 (en) | 2018-01-17 |
NO2891725T3 (ja) | 2018-06-16 |
US20150315685A1 (en) | 2015-11-05 |
US20190040480A1 (en) | 2019-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4911265B2 (ja) | ラインパイプ用継目無鋼管及びその製造方法 | |
JP6677310B2 (ja) | 鋼材及び油井用鋼管 | |
AU2012200698B2 (en) | Heavy wall steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance | |
CA2849287C (en) | Method for producing high-strength steel material excellent in sulfide stress cracking resistance | |
JP6256652B2 (ja) | 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管 | |
JP6112267B1 (ja) | 継目無鋼管及びその製造方法 | |
US20190040480A1 (en) | Seamless steel pipe and method for producing same | |
JP7173405B2 (ja) | マルテンサイト系ステンレス鋼材 | |
JP5408389B1 (ja) | 継目無鋼管及びその製造方法 | |
JP6028863B2 (ja) | サワー環境で使用されるラインパイプ用継目無鋼管 | |
JPWO2014192251A1 (ja) | サワー環境で使用されるラインパイプ用継目無鋼管 | |
JP6256655B2 (ja) | 構造管用鋼板、構造管用鋼板の製造方法、および構造管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013544916 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13832808 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2882843 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14423480 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2015/002529 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201501283 Country of ref document: ID |
|
ENP | Entry into the national phase |
Ref document number: 2013310061 Country of ref document: AU Date of ref document: 20130828 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015004263 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015004263 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150226 |