WO2014034505A1 - 受信装置、受信方法及びプログラム - Google Patents

受信装置、受信方法及びプログラム Download PDF

Info

Publication number
WO2014034505A1
WO2014034505A1 PCT/JP2013/072345 JP2013072345W WO2014034505A1 WO 2014034505 A1 WO2014034505 A1 WO 2014034505A1 JP 2013072345 W JP2013072345 W JP 2013072345W WO 2014034505 A1 WO2014034505 A1 WO 2014034505A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission signal
channel estimation
transmission
unit
signal
Prior art date
Application number
PCT/JP2013/072345
Other languages
English (en)
French (fr)
Inventor
和彦 府川
鈴木 博
聡 須山
良太 山田
加藤 勝也
貴司 吉本
Original Assignee
国立大学法人東京工業大学
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, シャープ株式会社 filed Critical 国立大学法人東京工業大学
Priority to US14/423,772 priority Critical patent/US9191155B2/en
Publication of WO2014034505A1 publication Critical patent/WO2014034505A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present invention relates to a reception device reception method and a program for receiving a transmission signal transmitted from a transmission device by a MIMO transmission method.
  • MIMO Multiple Input Multiple Multiple Output
  • MIMO transmission that uses a plurality of transmission / reception antennas and can perform high-speed transmission without widening the frequency bandwidth has been adopted in many systems.
  • MIMO transmission since a plurality of data streams are transmitted using the same frequency, it is necessary to detect a MIMO signal in a receiving apparatus.
  • MLD Maximum Likelihood Detection
  • Non-Patent Document 1 reduces performance degradation from MLD by performing multidimensional search on noise enhancement caused by MMSE based on MMSE (Minimum Mean Square Error: Minimum ⁇ Square Error) detection, which is a linear detection method.
  • MMSE Minimum Mean Square Error: Minimum ⁇ Square Error
  • a method for generating transmission signal candidates in Non-Patent Document 1 will be described.
  • N R represents the number of receiving antennas.
  • the number of transmission antennas is NT .
  • H is a channel matrix of N R rows and N T columns
  • s is a transmission signal vector of N T dimension
  • n is a noise vector of N R dimension.
  • the MMSE detection result x ⁇ is as follows. However, ⁇ n 2 represents noise power, and INT represents a unit matrix of N T rows and N T columns. Superscript H represents a complex conjugate transpose matrix.
  • Non-Patent Document 1 s ⁇ is next quantized using the MMSE detection result x ⁇ to generate a transmission signal candidate.
  • N P is 1 ⁇ N P ⁇ N T
  • a k is obtained as follows.
  • b (m) is one of the modulation system constellations, and 1 ⁇ m ⁇ M.
  • M is the number of constellations.
  • M 4 for QPSK (Quadrature Phase Shift Keying)
  • M 16 for 16 QAM (Quadrature Amplitude Modulation).
  • ( ⁇ ) K represents the k-th element of the vector.
  • C to k are ⁇ 1 to ⁇ NP and v 1 to v NP represent eigenvalues and eigenvectors obtained by eigenvalue decomposition of P as follows.
  • Non-Patent Document 1 has a problem that it is necessary to obtain eigenvalues and eigenvectors when generating transmission signal candidates, and the amount of calculation is still large.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a receiving apparatus reception method and program capable of reducing the amount of calculation while reducing performance deterioration from the MLD.
  • the present invention is a receiving device for receiving a transmission signal transmitted from a transmitting device in a MIMO transmission method, A channel estimation unit that performs channel estimation using a received signal and obtains a channel estimation value; a signal detection unit that generates a bit log likelihood ratio by MIMO-separating the reception signal based on the channel estimation value; and the bit logarithm A decoding unit that performs error correction decoding on the likelihood ratio,
  • the signal detection unit makes a hard decision on a transmission signal candidate search unit that searches for a transmission signal candidate based on an error in linear detection based on the received signal and the channel estimation value, and makes a hard decision on the output of the transmission signal candidate search unit.
  • a transmission signal candidate generation unit that generates a candidate, and a determination unit that generates the bit log likelihood ratio using the transmission signal candidate.
  • the signal detection unit may obtain the error of the linear detection from a component that causes noise enhancement in the weight of the linear detection, or obtain the error of the linear detection based on an equivalent amplitude after the linear detection. Also good.
  • the transmission signal candidate search unit may search for a transmission signal candidate based on the linear detection error based on a linear detection result, or a different transmission signal candidate may be generated by the transmission signal candidate generation unit.
  • the transmission signal may be searched as described above.
  • the present invention is a reception method for receiving a transmission signal transmitted from a transmission device by a MIMO transmission method, A channel estimation step of performing channel estimation using the received signal to obtain a channel estimation value; a signal detection step of generating a bit log likelihood ratio by MIMO-separating the received signal based on the channel estimation value; and the bit logarithm A decoding step for performing error correction decoding on the likelihood ratio,
  • the signal detection step includes a transmission signal candidate search step for searching for a transmission signal candidate based on an error of linear detection based on the received signal and the channel estimation value, and a transmission signal candidate by making a hard decision on a result of searching for the transmission signal candidate.
  • the present invention is a program for causing a computer to execute each step of the receiving method.
  • the present invention it is possible to search in a multidimensional manner regarding noise enhancement without obtaining eigenvalues and eigenvectors, and the amount of calculation can be greatly reduced without degrading performance as compared with the prior art.
  • the number of transmission antennas is N T
  • the number of reception antennas is N R
  • the transmission data stream is described as being transmitted from each transmission antenna, that is, the number of data streams is equal to the number of transmission antennas.
  • the case where the number of streams is transmitted is also included in the present invention.
  • the case where the present invention is applied to OFDM (Orthogonal Frequency Division Multiplexing) will be described, but the present invention is not limited to this.
  • FIG. 1 is a block diagram illustrating a configuration of the transmission device 100 according to the present embodiment.
  • Transmitting apparatus 100 includes encoding section 101, serial-parallel conversion section 102, modulation sections 103-1 to 103-N T , pilot signal generation section 104, mapping sections 105-1 to 105-N T , IFFT (inverse fast Fourier transform). : Inverse Fast Fourier Transform) units 106-1 to 106-N T , GI (Guard Interval) insertion units 107-1 to 107-N T , radio transmission units 108-1 to 108-N T , and transmitting antenna 109 -1 to 109- NT are provided.
  • Inverse Fast Fourier Transform Inverse Fast Fourier Transform
  • GI Guard Interval
  • the encoding unit 101 generates encoded bits by performing error correction encoding such as turbo code and LDPC (Low Density Parity Check) code on the transmission bits.
  • the serial / parallel converter 102 performs serial / parallel conversion on the encoded bits.
  • Each encoded bit subjected to serial / parallel conversion is mapped to modulation symbols such as PSK (Phase Shift Keying) and QAM (Quadrature Amplitude Modulation) by the modulators 103-1 to 103- NT .
  • Mapping sections 105-1 to 105- NT arrange pilot signals and modulation symbols generated by pilot signal generation section 104 in resources defined by time and frequency.
  • the output of the mapping unit 105-1 ⁇ 105-N T is frequency-time conversion by the IFFT unit 106-1 ⁇ 106-N T, is inserted into the guard interval in the GI insertion unit 107-1 ⁇ 107-N T, wireless transmission Digital signals / analog conversion, waveform shaping, frequency conversion, and the like are performed by the units 108-1 to 108- NT and transmitted from the transmission antennas 109-1 to 109- NT .
  • FIG. 2 is a block diagram illustrating a configuration of the receiving device 200 in the present embodiment.
  • FIG. 3 is a flowchart showing the operation of the receiving apparatus 200.
  • the receiving apparatus 200 includes receiving antennas 201-1 to 201-N R , radio receiving units 202-1 to 202-N R , GI removing units 203-1 to 203-N R , FFT (Fast Fourier Transform: Fast Fourier transform units 204-1 to 204-N R , a channel estimation unit 205, a signal detection unit 206, and a decoding unit 207.
  • FFT Fast Fourier Transform
  • Received wave received by the receiving antennas 201-1 ⁇ 201-N R is frequency-converted by radio reception section 202-1 ⁇ 202-N R, filtering, an analog-digital conversion, and output as a received signal (step S1) .
  • Received signal, the guard interval is removed by the GI removing section 203-1 ⁇ 203-N R, are time-frequency converted by the FFT unit 204-1 ⁇ 204-N R, a pilot signal is output to the channel estimation unit 205, data
  • the signal is output to the signal detection unit 206.
  • the channel estimation unit 205 performs channel estimation using the pilot signal (step S2).
  • the signal detection unit 206 performs MIMO signal detection using the received signal and the channel estimation value to generate a coded bit LLR (Log Likelihood Ratio) (step S4). Details of the signal detection unit 206 will be described later.
  • the decoding unit 207 performs error correction decoding on the coded bit LLR to obtain a transmission bit (step S5).
  • FIG. 4 is a block diagram showing the configuration of the signal detection unit 206
  • FIG. 5 is a flowchart showing the operation (step S3) of the signal detection unit 206.
  • the signal detection unit 206 includes a transmission signal candidate search unit 301, a transmission signal candidate generation unit 302, and a determination unit 303.
  • Transmission signal candidate search section 301 performs linear detection such as ZF (Zero Forcing) detection and MMSE (Minimum Mean Square Error) detection based on the data signal from FFT section 204 and the channel estimation value from channel estimation section 205.
  • the transmission signal candidates are searched with a low amount of computation in consideration of degradation of linear detection performance, that is, errors in linear detection (step S11).
  • the transmission signal candidate generation unit 302 quantizes the output of the transmission signal candidate search unit 301 (result of searching for a transmission signal) to generate a transmission signal candidate (step S12).
  • the determination unit 303 obtains the bit LLR of the maximum likelihood sequence using the transmission signal candidate obtained by the transmission signal candidate generation unit 302 (step S13). Details of the transmission signal candidate search unit 301 will be described using mathematical expressions.
  • the NR- dimensional received signal vector y in a certain subcarrier can be expressed as follows.
  • H is N R rows N T columns channel matrix
  • s is N T dimensional transmission signal vector
  • n represents an N R-dimensional noise vector.
  • Equation (18) is a likelihood function, and in order to maximize it, Should be minimized.
  • b (m) represent one of the modulation symbols.
  • the minimum error e opt is obtained. Note that 1 ⁇ k ⁇ NT . e opt can be obtained using Lagrange's undetermined multiplier method.
  • ck is a vector in which the k-th element is 1 and the other elements are 0.
  • represents a Lagrange multiplier, and the superscript * represents a complex conjugate.
  • Transmission signal candidate generation section 302 quantizes s (m, k) to generate transmission signal candidates. There are M ⁇ N T e opts, and when one of the MMSE detection results is added, M ⁇ N T +1 transmission signal candidates are generated.
  • the determination unit 303 obtains the bit LLR of the maximum likelihood sequence as follows.
  • ⁇ k, n is the log likelihood ratio of the nth bit of the modulation symbol transmitted from the kth transmission antenna.
  • ⁇ k, n is obtained by the difference between the minimum metric generated using b + and the minimum metric generated using b ⁇ . Further, as shown in Expression (20), transmission signal candidates are generated for all constellations in a certain stream, and therefore the bit LLR can be calculated without fail.
  • the transmission signal s k of the k-th stream is fixed to b (m) and the search signal s ⁇ (m, k) is generated by performing MMSE, as in the following equation.
  • h k is the k-th column vector of the matrix H.
  • Equation (29) may be calculated as it is, but PH H H in the first term of equation (29) is the equivalent amplitude after MMSE, and this calculation can be performed as follows. First, let X be the equivalent amplitude to be obtained.
  • Equation (32) the simultaneous equations in Equation (32) can be solved by using a solution using Cholesky decomposition (Cholesky decomposition method). Note that L is a lower triangular matrix. If (X) k is obtained for all k, the equivalent amplitude can be obtained.
  • the transmission signal is searched using the equivalent amplitude in this way, it can be calculated without directly obtaining the inverse matrix, and there is an effect that the calculation can be performed with high accuracy when mounting at a fixed point.
  • P- 1 can be solved by modified Cholesky decomposition as follows.
  • L here is a lower triangular matrix whose diagonal element is 1.
  • D is a diagonal matrix.
  • the number of divisions when (X) k is obtained is 1 ⁇ 2 that when the Cholesky factorization is used, and the equivalent amplitude can be obtained with a small amount of computation.
  • the encoded bits are serially parallel converted into a data stream.
  • the present invention is not limited to this, and the encoded bits may be obtained by encoding for each stream.
  • the bit log likelihood ratio was calculated
  • the program that operates in the receiving apparatus is a program that controls the CPU and the like (a program that causes a computer to function) so as to realize the functions of the above-described embodiments according to the present invention.
  • Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
  • the processing is performed in cooperation with the operating system or other application programs.
  • the functions of the invention may be realized.
  • the program when distributing to the market, can be stored and distributed on a portable recording medium, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • Each functional block of the receiving apparatus may be individually formed as a chip, or a part or all of them may be integrated into a chip. When each functional block is integrated, an integrated circuit controller for controlling them is added.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)

Abstract

 MLDからの性能劣化を少なくしながら演算量を低減可能にする。 本発明は、MIMO伝送方式にて送信装置から送信された送信信号を受信する受信装置である。受信信号を用いてチャネル推定を行い、チャネル推定値を求めるチャネル推定部(205)と、前記チャネル推定値に基づいて受信信号をMIMO分離してビット対数尤度比を生成する信号検出部(206)と、前記ビット対数尤度比に対して誤り訂正復号を行う復号部(207)と、を備える。信号検出部(206)は、前記受信信号と前記チャネル推定値による線形検出の誤差に基づいて送信信号候補を探索する送信信号候補探索部(301)と、前記送信信号候補探索部の出力を硬判定して送信信号候補を生成する送信信号候補生成部(302)と、前記送信信号候補を用いてビット対数尤度比を生成する判定部(303)と、を備える。

Description

受信装置、受信方法及びプログラム
 本発明は、MIMO伝送方式にて送信装置から送信された送信信号を受信する受信装置受信方法及びプログラムに関する。
 近年の無線通信の分野では、複数の送受信アンテナを用い、周波数帯域幅を広げずに高速伝送が可能なMIMO(Multiple Input Multiple Output)伝送が多くのシステムで採用されている。一般に、MIMO伝送では、複数のデータストリームを同一周波数を用いて伝送するため、受信装置でMIMO信号検出が必要となる。
 MIMO信号検出技術の中で、最適な検出技術として最尤検出(MLD:Maximum Likelihood Detection)がある。これは全ての送信信号候補のうち、尤度関数を最大にするものを検出する技術である。送信信号候補は変調方式のコンスタレーション数や送信ストリーム数に従って指数関数的に増大するため、MLDは計算量が非常に多くなるという問題がある。
 非特許文献1には、線形検出方式であるMMSE(最小平均2乗誤差:Minimum Mean Square Error)検出を基点としてMMSEが引き起こす雑音強調に関して多次元に探索することで、MLDからの性能劣化を少なくしながら低演算量に送信信号候補を削減することでMLDの計算量を削減する技術が記載されている。非特許文献1での送信信号候補の生成方法を説明する。
 N次元受信信号ベクトルyを次のように表す。なお、Nは受信アンテナ数を表す。また、送信アンテナ数はNとする。
Figure JPOXMLDOC01-appb-M000001
 ただし、HはN行N列のチャネル行列、sはN次元の送信信号ベクトル、nはN次元の雑音ベクトルを表す。
MMSE検出結果x^は次のようになる。
Figure JPOXMLDOC01-appb-M000002
 ただし、σ は雑音電力、INTはN行N列の単位行列を表す。また上付きのHは複素共役転置行列を表す。
 非特許文献1ではMMSE検出結果x^を用いて次にs^を量子化して送信信号候補を生成している。
Figure JPOXMLDOC01-appb-M000003
 Nは1≦N≦Nであり、aは次のように求める。
Figure JPOXMLDOC01-appb-M000004
 なお、b(m)は変調方式のコンスタレーションの1つであり、1≦m≦Mである。Mはコンスタレーション数であり、例えばQPSK(4相位相変調:Quadrature Phase Shift Keying)であればM=4、16QAM(直交振幅変調:Quadrature Amplitude Modulation)であればM=16である。また(・)はベクトルの第k要素を表す。
 また、c
Figure JPOXMLDOC01-appb-M000005
であり、λ~λNP、v~vNPはそれぞれ次のようにPを固有値分解して得られる固有値とその固有ベクトルを表す。
Figure JPOXMLDOC01-appb-M000006
 なお、diag[・]は対角行列を表す。
Liming Zheng,Kazuhiko Fukawa,Hiroshi Suzuki,Satoshi Suyama,"Near-Optimal Signal Detection Based on the MMSE Detection Using Multi-Dimensional Search for Correlated MIMO Channels,"IEICE transactions on Communications,Vol.e94-B、No.8、2011年8月.
 しかしながら、非特許文献1に記載の技術は、送信信号候補を生成する際に、固有値及び固有ベクトルを求める必要があり、演算量は依然として多いという問題がある。
 本発明はこのような事情を鑑みてなされたものであり、その目的は、MLDからの性能劣化を少なくしながら演算量を低減可能な受信装置受信方法及びプログラムを提供することにある。
 本発明は、MIMO伝送方式にて送信装置から送信された送信信号を受信する受信装置であって、
 受信信号を用いてチャネル推定を行い、チャネル推定値を求めるチャネル推定部と、前記チャネル推定値に基づいて受信信号をMIMO分離してビット対数尤度比を生成する信号検出部と、前記ビット対数尤度比に対して誤り訂正復号を行う復号部と、を備え、
 前記信号検出部は、前記受信信号と前記チャネル推定値による線形検出の誤差に基づいて送信信号候補を探索する送信信号候補探索部と、前記送信信号候補探索部の出力を硬判定して送信信号候補を生成する送信信号候補生成部と、前記送信信号候補を用いて前記ビット対数尤度比を生成する判定部と、を備えることを特徴とする。
 ここで、前記信号検出部は、線形検出の重みのうち雑音強調を引き起こす成分から前記線形検出の誤差を求めてもよいし、線形検出後の等価振幅に基づいて前記線形検出の誤差を求めてもよい。
 また、前記送信信号候補探索部は、線形検出結果を基点として、前記線形検出の誤差に基づいて送信信号候補を探索してもよいし、前記送信信号候補生成部で異なる送信信号候補が生成されるように送信信号を探索してもよい。
 また、本発明は、MIMO伝送方式にて送信装置から送信された送信信号を受信する受信方法であって、
 受信信号を用いてチャネル推定を行い、チャネル推定値を求めるチャネル推定ステップと、前記チャネル推定値に基づいて受信信号をMIMO分離してビット対数尤度比を生成する信号検出ステップと、前記ビット対数尤度比に対して誤り訂正復号を行う復号ステップと、を備え、
 前記信号検出ステップは、前記受信信号と前記チャネル推定値による線形検出の誤差に基づいて送信信号候補を探索する送信信号候補探索ステップと、送信信号候補を探索した結果を硬判定して送信信号候補を生成する送信信号候補生成ステップと、前記送信信号候補を用いて前記ビット対数尤度比を生成する判定ステップと、
を備えることを特徴とする。
 また、本発明は、コンピュータに、前記受信方法の各ステップを実行させるためのプログラムである。
 本発明によれば、固有値及び固有ベクトルを求めなくても、雑音強調に関して多次元に探索可能であり、従来技術と比べて性能を劣化させずに大幅に演算量を削減することができる。
本実施形態における送信装置の構成を示すブロック図である。 本実施形態における受信装置の構成を示すブロック図である。 本実施形態における受信装置の動作を示すフローチャートである。 本実施形態における信号検出部の構成を示すブロック図である。 本実施形態における信号検出部の動作を示すフローチャートである。
 以下、図面を用いて本発明の詳細を説明していく。
 以下の実施形態では送信アンテナ数をN、受信アンテナ数をNとする。また、送信データストリームは各送信アンテナから送信されるものとして、つまりデータストリーム数と送信アンテナ数は等しいものとして、説明するが、本発明はこれに限らず、送信アンテナ数よりも少ない複数のデータストリーム数が送信される場合も本発明に含まれる。また、以下の実施形態ではOFDM(直交周波数分割多重:Orthogonal Frequency Division Multiplexing)に本発明を適用した場合を説明するが、本発明はこれに限らない。
 (第1の実施形態)
 図1は、本実施形態における送信装置100の構成を示すブロック図である。
 送信装置100は、符号化部101、直列並列変換部102、変調部103-1~103-N、パイロット信号生成部104、マッピング部105-1~105-N、IFFT(逆高速フーリエ変換:Inverse Fast Fourier Transform)部106-1~106-N、GI(ガードインターバル:Guard Interval)挿入部107-1~107-N、無線送信部108-1~108-N、送信アンテナ109-1~109-Nを備える。
 符号化部101は、送信ビットをターボ符号、LDPC(低密度パリティチェック:Low Density Parity Check)符号等の誤り訂正符号化を行って符号化ビットを生成する。直列並列変換部102は、符号化ビットを直列並列変換する。直列並列変換された各符号化ビットは変調部103-1~103-NでPSK(位相変調:Phase Shift Keying)、QAM(直交振幅変調:Quadrature Amplitude Modulation)等の変調シンボルにマッピングされる。
 マッピング部105-1~105-Nは、パイロット信号生成部104で生成されるパイロット信号と変調シンボルを時間と周波数で定義されるリソースに配置する。マッピング部105-1~105-Nの出力は、IFFT部106-1~106-Nで周波数時間変換され、GI挿入部107-1~107-Nでガードインターバルに挿入され、無線送信部108-1~108-Nでデジタル・アナログ変換、波形整形、周波数変換等が行われ、送信アンテナ109-1~109-Nから送信される。
 図2は、本実施形態における受信装置200の構成を示すブロック図である。図3は、受信装置200の動作を示すフローチャートである。
 受信装置200は、受信アンテナ201-1~201-N、無線受信部202-1~202-N、GI除去部203-1~203-N、FFT(高速フーリエ変換:Fast
Fourier Transform)部204-1~204-N、チャネル推定部205、信号検出部206、復号部207を備える。
 受信アンテナ201-1~201-Nで受信した受信波は、無線受信部202-1~202-Nで周波数変換、フィルタリング、アナログ・デジタル変換され、受信信号として出力される(ステップS1)。受信信号は、GI除去部203-1~203-Nでガードインターバルが除去され、FFT部204-1~204-Nで時間周波数変換され、パイロット信号はチャネル推定部205に出力され、データ信号は信号検出部206に出力される。チャネル推定部205は、パイロット信号を用いてチャネル推定を行う(ステップS2)。信号検出部206は受信信号及びチャネル推定値を用いてMIMO信号検出を行って符号化ビットLLR(対数尤度比:Log Likelihood Ratio)を生成する(ステップS4)。信号検出部206の詳細は後述する。復号部207は符号化ビットLLRに対して誤り訂正復号を行い、送信ビットを求める(ステップS5)。
 図4は、信号検出部206の構成を示すブロック図であり、図5は、信号検出部206の動作(ステップS3)を示すフローチャートである。
 信号検出部206は、送信信号候補探索部301、送信信号候補生成部302、判定部303を備える。
 送信信号候補探索部301は、FFT部204からのデータ信号とチャネル推定部205からのチャネル推定値によるZF(Zero Forcing)検出、MMSE(最小平均2乗誤差:Minimum Mean Square Error)検出といった線形検出を基点として、線形検出性能の劣
化、つまり線形検出の誤差を考慮して、低演算量に送信信号候補を探索する(ステップS11)。送信信号候補生成部302は、送信信号候補探索部301の出力(送信信号を探索した結果)を量子化して送信信号候補を生成する(ステップS12)。判定部303は、送信信号候補生成部302で得られた送信信号候補を用いて、最尤系列のビットLLRを求める(ステップS13)。送信信号候補探索部301の詳細を数式を用いて説明する。
 あるサブキャリア(サブキャリア番号は省略する)におけるN次元の受信信号ベクトルyは次のように表せる。
Figure JPOXMLDOC01-appb-M000007
 ただし、HはN行N列チャネル行列、sはN次元送信信号ベクトル、nはN次元雑音ベクトルである。
 MMSE検出結果x^は次のようになる。
Figure JPOXMLDOC01-appb-M000008
 なお、ZF検出を用いる場合は、P=(HH)-1となる。
 MMSE検出の誤差をeとすると、
Figure JPOXMLDOC01-appb-M000009
となる。Pは線形検出の重みのうち雑音協調を引き起こす成分である。
Figure JPOXMLDOC01-appb-M000010
 であり、eは複素ガウス過程であるとすると、eの確率密度関数は次のようになる。
Figure JPOXMLDOC01-appb-M000011
 式(18)は尤度関数であり、これを最大とするためには
Figure JPOXMLDOC01-appb-M000012
を最小とすればよい。b(m)を変調シンボルの1つを表すとする。変調方式のコンスタレーション数をMとすると、1≦m≦Mである。例えばQPSKではM=4、16QAMではM=16である。
Figure JPOXMLDOC01-appb-M000013
という拘束条件のもと、最小誤差eoptを求める。なお、1≦k≦Nである。eoptはラグランジェの未定乗数法を用いて求めることができる。
Figure JPOXMLDOC01-appb-M000014
 ただし、cは第k要素が1でそれ以外の要素が0のベクトルである。またλはラグランジェ乗数、上付きの*は複素共役を表す。
 ここで、
Figure JPOXMLDOC01-appb-M000015
となり、最終的にeoptは次のようになる。
Figure JPOXMLDOC01-appb-M000016
 送信信号候補探索部301は、全てのm、kについてeoptを求め、探索信号s^(m,k)=x^+eoptを出力する。
 送信信号候補生成部302は、s^(m,k)を量子化して送信信号候補を生成する。eoptはM×N通りあり、MMSE検出結果の1通りを加えると、送信信号候補はM×N+1個生成される。判定部303は次のように最尤系列のビットLLRを求める。
Figure JPOXMLDOC01-appb-M000017
 ただし、λk,nは第k送信アンテナから送信された変調シンボルの第nビットの対数尤度比である。またsはb=[b1,1,…,bk,n,…,bNT,N]で定める送信信号候補を表す。bはbのうちbk,n=1となる集合を表しており、b=[b1,1,…,bk,n=1,…,bNT,N]である。bはbのうちbk,n=0となる集合を表しており、b=[b1,1,…,bk,n=0,…,bNT,N]である。従って、λk,nはbを用いて生成される最小メトリックとbを用いて生成される最小メトリックの差で求められる。また、式(20)で示しているように、あるストリームにおいて全てのコンスタレーションに対して送信信号候補が生成されるため、必ずビットLLRを計算することができる。
 このように上記実施形態のようにすれば、固有値及び固有ベクトルを求めなくても、雑音強調に関して多次元に探索可能であり、また、非特許文献1に記載の技術と同等の性能が得られる。また、式(24)の計算には、実数割算1回、複素乗算(N-1)回でよく、送信信号候補の生成には複素加算N回、複素量子化N回でよい。固有値及び固有ベクトルを求めるためには、少なくともNの2乗の複素乗算が必要なことから、従来技術と比べて性能を劣化させずに大幅に演算量を削減することができる。
 (第2の実施形態)
 本実施形態では、第1の実施形態とは異なる方法で送信信号候補を求める方法について説明する。なお、第1の実施形態との違いは、図3の送信信号候補探索部301の動作であり、その他は第1の実施形態と同様であるので、ここでは送信信号候補探索部301の動作のみを説明する。
 本実施形態では、次式のように、第kストリームの送信信号sをb(m)に固定し、MMSEを行うことで探索信号s^(m,k)を生成する。
Figure JPOXMLDOC01-appb-M000018
 ただし、hは行列Hの第k列ベクトルである。
 式(27)を逆行列の補助定理を用いて整理し、再度探索信号を求めると、次のようになる。
Figure JPOXMLDOC01-appb-M000019
 このように、本実施形態では、P’を用いて送信信号を探索するようにした。式(29)はこのまま計算しても良いが、式(29)の第1項のPHHはMMSE後の等価振幅であり、この計算は次のように行うことができる。まず、求めたい等価振幅をXとおく。
Figure JPOXMLDOC01-appb-M000020
 P-1のコレスキー分解を式(31)のように表すと、式(32)の連立方程式を、コレスキー分解を用いた解法(コレスキー分解法)を用いて解くことができる。
Figure JPOXMLDOC01-appb-M000021
 なお、Lは下三角行列である。すべてのkについて(X)を求めれば、等価振幅を求めることができる。
 このように等価振幅を用いて送信信号の探索を行えば、逆行列を直接求めなくても、計算可能であり、固定小数点での実装時に精度よく計算することができるという効果を有する。
 また、次のようにP-1を修正コレスキー分解して解くこともできる。
Figure JPOXMLDOC01-appb-M000022
 ただし、ここでのLは対角要素が1の下三角行列である。また、Dは対角行列である。
 修正コレスキー分解を用いると、(X)を求める際の除算回数がコレスキー分解を用いる場合の1/2となり、低演算量で等価振幅を求めることができる。
 なお、上記実施形態では、符号化ビットを直列並列変換してデータストリームとしていたが、本発明はこれに限らず、ストリーム毎に符号化して符号化ビットを求めても良い。
 また、上記実施形態では、信号検出部206でビット対数尤度比を求めていたが、硬判定値を求めても良い。
 なお、本発明に関わる受信装置で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
 また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における移動局装置および基地局装置の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。受信装置の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。各機能ブロックを集積回路化した場合に、それらを制御する集積回路制御部が付加される。
 また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
200 受信装置
201 受信アンテナ
202 無線受信部
203 除去部
204 FFT部
205 チャネル推定部
206 信号検出部
207 復号部
301 送信信号候補探索部
302 送信信号候補生成部
303 判定部

Claims (7)

  1.  MIMO伝送方式にて送信装置から送信された送信信号を受信する受信装置であって、
     受信信号を用いてチャネル推定を行い、チャネル推定値を求めるチャネル推定部と、
     前記チャネル推定値に基づいて受信信号をMIMO分離してビット対数尤度比を生成する信号検出部と、
     前記ビット対数尤度比に対して誤り訂正復号を行う復号部と、
    を備え、
     前記信号検出部は、
     前記受信信号と前記チャネル推定値による線形検出の誤差に基づいて送信信号候補を探索する送信信号候補探索部と、
     前記送信信号候補探索部の出力を硬判定して送信信号候補を生成する送信信号候補生成部と、
     前記送信信号候補を用いて前記ビット対数尤度比を生成する判定部と、
    を備えることを特徴とする受信装置。
  2.  前記信号検出部は、
     線形検出の重みのうち雑音強調を引き起こす成分から前記線形検出の誤差を求めることを特徴とする請求項1に記載の受信装置。
  3.  前記信号検出部は、
     線形検出後の等価振幅に基づいて前記線形検出の誤差を求めることを特徴とする請求項1に記載の受信装置。
  4.  前記送信信号候補探索部は、
     線形検出結果を基点として、前記線形検出の誤差に基づいて送信信号候補を探索することを特徴とする請求項1に記載の受信装置。
  5.  前記送信信号候補探索部は、
     前記送信信号候補生成部で異なる送信信号候補が生成されるように送信信号を探索することを特徴とする請求項1に記載の受信装置。
  6.  MIMO伝送方式にて送信装置から送信された送信信号を受信する受信方法であって、
     受信信号を用いてチャネル推定を行い、チャネル推定値を求めるチャネル推定ステップと、
     前記チャネル推定値に基づいて受信信号をMIMO分離してビット対数尤度比を生成する信号検出ステップと、
     前記ビット対数尤度比に対して誤り訂正復号を行う復号ステップと、
    を備え、
     前記信号検出ステップは、
     前記受信信号と前記チャネル推定値による線形検出の誤差に基づいて送信信号候補を探索する送信信号候補探索ステップと、
     送信信号を探索した結果を硬判定して送信信号候補を生成する送信信号候補生成ステップと、
     前記送信信号候補を用いて前記ビット対数尤度比を生成する判定ステップと、
    を備えることを特徴とする受信方法。
  7.  コンピュータに、請求項6に記載の受信方法の各ステップを実行させるためのプログラム。
PCT/JP2013/072345 2012-08-29 2013-08-22 受信装置、受信方法及びプログラム WO2014034505A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/423,772 US9191155B2 (en) 2012-08-29 2013-08-22 Reception device, reception method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-189135 2012-08-29
JP2012189135A JP2014049822A (ja) 2012-08-29 2012-08-29 受信装置、受信方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2014034505A1 true WO2014034505A1 (ja) 2014-03-06

Family

ID=50183320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072345 WO2014034505A1 (ja) 2012-08-29 2013-08-22 受信装置、受信方法及びプログラム

Country Status (3)

Country Link
US (1) US9191155B2 (ja)
JP (1) JP2014049822A (ja)
WO (1) WO2014034505A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110771110A (zh) * 2017-06-27 2020-02-07 三菱电机株式会社 似然度生成装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188662A (ja) * 2008-02-05 2009-08-20 Tokyo Institute Of Technology 受信装置、受信方法及び通信システム
JP2011004142A (ja) * 2009-06-18 2011-01-06 Tokyo Institute Of Technology 受信装置及び受信方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60325921D1 (de) * 2002-08-22 2009-03-12 Imec Inter Uni Micro Electr Verfahren zur MIMO-Übertragung für mehrere Benutzer und entsprechende Vorrichtungen
CN101816139A (zh) * 2007-08-06 2010-08-25 夏普株式会社 接收机及接收方法
JP5177527B2 (ja) * 2008-07-28 2013-04-03 シャープ株式会社 通信システム、受信装置及び通信方法
JP5320174B2 (ja) * 2009-06-12 2013-10-23 シャープ株式会社 受信装置及び受信方法
KR101578935B1 (ko) * 2009-08-27 2015-12-18 삼성전자주식회사 다중 입출력 시스템에서 수신 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188662A (ja) * 2008-02-05 2009-08-20 Tokyo Institute Of Technology 受信装置、受信方法及び通信システム
JP2011004142A (ja) * 2009-06-18 2011-01-06 Tokyo Institute Of Technology 受信装置及び受信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIMING ZHENG ET AL.: "Low-Complexity Signal Detection by Multi-Dimensional Search for Correlated MIMO Channels", COMMUNICATIONS (ICC), 2011 IEEE INTERNATIONAL CONFERENCE, 5 June 2011 (2011-06-05), pages 1 - 5 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110771110A (zh) * 2017-06-27 2020-02-07 三菱电机株式会社 似然度生成装置
CN110771110B (zh) * 2017-06-27 2021-11-05 三菱电机株式会社 似然度生成装置

Also Published As

Publication number Publication date
US9191155B2 (en) 2015-11-17
US20150215072A1 (en) 2015-07-30
JP2014049822A (ja) 2014-03-17

Similar Documents

Publication Publication Date Title
US9008211B2 (en) Receiving device, receiving method, and receiving program
US7489746B1 (en) MIMO receiver using maximum likelihood detector in combination with QR decomposition
RU2303330C1 (ru) Способ приема сигнала в системе связи с несколькими каналами передачи и приема
US20080056396A1 (en) Method and apparatus for qr decomposition-based mimo detection and soft bit generation
US8737540B1 (en) System and method for providing reduced complexity maximum likelihood MIMO detection
US20090041165A1 (en) Receiver apparatus
US20150215010A1 (en) Method and apparatus for estimating communication channel in mobile communication system
KR20160126868A (ko) 미모 채널에서의 고차 직교 진폭 변조 심볼들의 소프트 탐지를 위한 방법 및 장치
JP2012503423A (ja) Qr分解を使用したmmsemimo復号器
CN112242861A (zh) 大规模mimo系统的用户活跃性和信号联合检测方法
KR102010562B1 (ko) 무선 통신 시스템에서 주파수-직각 진폭 변조된 신호의 복호 매트릭 생성 방법 및 장치
CN115250216A (zh) 一种基于深度学习的水声ofdm联合信道估计和信号检测方法
JP2014147029A (ja) Mimo−ofdm受信装置及びプログラム
JP6180333B2 (ja) 無線周波数受信機において信号を復号化する方法
US9979449B2 (en) Systems and methods for detecting data in a received multiple-input-multiple-output (MIMO) signal
WO2016121625A1 (en) Method for decoding block of data received over communication channel and receiver
CN110149285B (zh) 一种在低比特量化的高阶调制中降低相位误差的方法
WO2014034505A1 (ja) 受信装置、受信方法及びプログラム
KR101731723B1 (ko) 다중 안테나 시스템에서 연판정 검출 방법 및 장치
US20170118050A1 (en) Systems and Methods for Detecting Data in a Received Multiple-Input-Multiple-Output (MIMO) Signal
CN105553899A (zh) 基于线性方程组求近似解的信号检测方法及装置
JP5367474B2 (ja) 受信装置及び受信方法
WO2017204007A1 (ja) 無線通信装置及び無線通信方法
KR102132553B1 (ko) 1-비트 ADCs를 사용하는 무선통신링크에서 성능 향상과 저-복잡도를 위한 수신 방법 및 장치
Tseng et al. Hardware implementation of the joint precoding sub-system and MIMO detection preprocessor in IEEE 802.11 n/ac WLAN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833536

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14423772

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833536

Country of ref document: EP

Kind code of ref document: A1