WO2014034409A1 - 溶融塩電池およびその製造方法ならびに溶融塩電池用電池要素の製造装置 - Google Patents

溶融塩電池およびその製造方法ならびに溶融塩電池用電池要素の製造装置 Download PDF

Info

Publication number
WO2014034409A1
WO2014034409A1 PCT/JP2013/071605 JP2013071605W WO2014034409A1 WO 2014034409 A1 WO2014034409 A1 WO 2014034409A1 JP 2013071605 W JP2013071605 W JP 2013071605W WO 2014034409 A1 WO2014034409 A1 WO 2014034409A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
solution
electrolyte
molten salt
battery element
Prior art date
Application number
PCT/JP2013/071605
Other languages
English (en)
French (fr)
Inventor
瑛子 井谷
稲澤 信二
新田 耕司
将一郎 酒井
篤史 福永
昂真 沼田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2014034409A1 publication Critical patent/WO2014034409A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a molten salt battery containing an electrolyte which is solid at room temperature and has sodium ion conductivity, and particularly relates to an improvement of the manufacturing method.
  • lithium ion secondary batteries are promising in that they are lightweight and have a high electromotive force.
  • the lithium ion secondary battery uses an organic solvent as an electrolyte component, it has a drawback of low heat resistance.
  • the price of lithium resources is also rising. Therefore, development of a molten salt battery that has high heat resistance and can be expected to be produced at low cost is underway.
  • a molten salt battery is a generic term for batteries that contain molten salt (molten salt) as an electrolyte.
  • the salt used as the electrolyte of the molten salt battery is solid at room temperature (for example, 25 to 40 ° C.), but becomes a liquid having ion conductivity (ionic liquid) when melted by heating.
  • a salt having a melting point of 90 ° C. or less a mixture of sodium bis (fluorosulfonyl) imide (NaFSA) and potassium bis (fluorosulfonyl) imide (KFSA) has been developed (Patent Document 1).
  • a general battery manufacturing process is performed in the order of the configuration of an electrode group, accommodation of the electrode group in the battery case, and impregnation of the electrolyte in the electrode group in the battery case. That is, a positive electrode and a negative electrode are laminated or wound with a separator interposed therebetween to form an electrode group, the electrode group is accommodated in a battery case, and then an electrolyte to the electrode group in a reduced pressure environment Is impregnated.
  • the electrode group in order to impregnate the electrode group with the molten salt, it is necessary to heat the salt to a melting point or higher (eg, 90 ° C. or higher). Furthermore, since the molten salt has a high viscosity, a sufficient amount of the molten salt is not impregnated in the electrode group, and the electrolyte distribution in the electrode group may become non-uniform. In this case, if charging and discharging are repeated, the discharge capacity is deteriorated relatively early.
  • a melting point or higher eg, 90 ° C. or higher
  • one aspect of the present invention is (i) preparing at least one battery element selected from the group consisting of a positive electrode, a negative electrode, and a separator, and (ii) having sodium ion conductivity at least when melted.
  • a step of preparing a solution containing an electrolyte that is solid at room temperature and a solvent that dissolves the electrolyte is a step of holding the solution in the battery element; and (iv) a step of removing the solvent from the battery element holding the solution.
  • X 1 and X 2 each independently represent at least a first salt of a bissulfonylimide anion and a sodium ion, which are a fluorine atom or a C 1-8 perfluoroalkyl group. It is preferable to include.
  • the electrolyte contains the first salt, high sodium ion conductivity can be secured. Moreover, the viscosity of an ionic liquid can be reduced and the operativity of a molten salt battery can be improved.
  • the electrolyte may further contain a second salt of a bissulfonylimide anion represented by the above formula (1) and an alkali metal or alkaline earth metal cation other than sodium.
  • a second salt of a bissulfonylimide anion represented by the above formula (1) and an alkali metal or alkaline earth metal cation other than sodium.
  • the separator is preferably formed of at least one selected from the group consisting of polyolefin resin, fluororesin, glass fiber, polyamide resin and polyphenylene sulfide resin. These have advantages such as high versatility as a separator material, high affinity with the electrolyte, and easy impregnation with the electrolyte.
  • Step (iii) may include applying a solution to the surface of the battery element or immersing the battery element in the solution. According to such a method, the battery element can hold the solution more easily.
  • the solvent preferably contains at least one selected from the group consisting of ketone, alcohol and nitrile.
  • the content of the electrolyte in the solution is preferably 40 to 70 parts by mass with respect to 100 parts by mass of the solvent.
  • Step (iv) may comprise heating the battery element holding the solution under reduced pressure. In this case, the solvent can be removed more efficiently.
  • Another aspect of the present invention is a molten salt battery in which capacity deterioration due to repeated charge / discharge does not occur, more specifically, a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and at least when molten When a charge / discharge cycle is repeated in a state where a solid electrolyte at room temperature having sodium ion conductivity and a battery case containing a positive electrode, a negative electrode, a separator, and an electrolyte are provided and finishing charge / discharge is completed, 1
  • the present invention relates to a molten salt battery in which the ratio of the discharge capacity at the 20th cycle to the discharge capacity at the cycle is 90% or more.
  • a sufficient amount of electrolyte can be filled in the molten salt battery, and the electrolyte is uniformly impregnated over the entire electrode group. Can do. Therefore, the battery reaction can be performed uniformly and stably. Moreover, the fall of battery capacity when charging / discharging is repeated can be suppressed significantly.
  • Still another aspect of the present invention includes a solution storage unit that contains a solution containing at least an electrolyte that is solid at room temperature that has sodium ion conductivity at the time of melting, and a solvent that dissolves the electrolyte. And at least one battery element selected from the group consisting of separators, and a removal device for removing the solvent from the battery element holding the solution, manufacturing a battery element for a molten salt battery Relates to the device.
  • a sufficient amount of molten salt for operation of the molten salt battery can be easily held in the battery element.
  • the battery manufacturing process can be simplified. Further, since a sufficient amount of molten salt can be impregnated into the electrode group uniformly and with good reproducibility, a molten salt battery having excellent charge / discharge cycle characteristics can be provided.
  • the solution supply device preferably has a mechanism for sending the battery element to the solution storage unit, immersing the battery element in the solution in the solution storage unit, and then recovering the battery element from the solution.
  • the solution supply device preferably has a mechanism for receiving supply of the solution from the solution storage unit and coating the supplied solution on the surface of the battery element. In these cases, the battery element can be more efficiently impregnated with the solution, and as a result, the electrolyte can be more effectively retained in the battery element.
  • the removal device may include a housing part that houses the battery element, a pump that decompresses the inside of the housing part, and a heater that heats the battery element.
  • the solvent contained in the solution can be more efficiently removed from the solution impregnated in the battery element.
  • the present invention it is possible to omit the step of injecting molten salt into the electrode group in the battery case and impregnating the electrode group in a reduced pressure environment.
  • the battery manufacturing process can be greatly simplified.
  • a sufficient amount of molten salt can be impregnated into the electrode group uniformly and with good reproducibility, and a molten salt battery having excellent charge / discharge cycle characteristics can be obtained.
  • FIG. 2 is a sectional view taken along line II-II in FIG. It is a front view of the negative electrode which concerns on one Embodiment of this invention.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is the perspective view which notched a part of battery case of the molten salt battery which concerns on one Embodiment of this invention.
  • FIG. 6 is a longitudinal sectional view schematically showing a section taken along line VI-VI in FIG. 5. It is a schematic diagram which shows roughly the manufacturing apparatus of the battery element for molten salt batteries which concerns on one Embodiment of this invention. It is a schematic diagram which shows roughly the manufacturing apparatus of the battery element for molten salt batteries which concerns on other one Embodiment of this invention.
  • the battery element is made to hold the electrolyte before forming the electrode group using a solution containing an electrolyte that is solid at room temperature and has sodium ion conductivity at the time of melting. Unlike a molten salt, a solution containing an electrolyte has a very low viscosity.
  • the electrolyte is held in advance not by the assembled electrode group but by the battery element which is a constituent element thereof. Therefore, the battery element can easily and quickly hold the electrolyte.
  • the electrolyte is held in the battery element using the solution containing the electrolyte before the electrode group is formed. Therefore, since the complicated process for impregnating the conventional electrolyte can be omitted, the battery manufacturing process can be greatly simplified. Thereby, while being able to raise manufacturing efficiency, manufacturing cost can be reduced.
  • the viscosity of the solution containing the electrolyte to be used is extremely low compared to the viscosity of the molten salt. Therefore, a sufficient amount of molten salt can be uniformly and reproducibly impregnated into the battery element, and thus the electrode group. Therefore, when charging / discharging is repeated, it can suppress that a discharge capacity deteriorates, and, thereby, the molten salt battery which has the outstanding charging / discharging cycling characteristics can be obtained. As a result, the performance and quality of the molten salt battery can be stabilized.
  • the molten salt battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, an electrolyte that is solid at room temperature having sodium ion conductivity at least when melted, and a battery case that accommodates these.
  • a battery case that accommodates these.
  • the positive electrode for example, a positive electrode capable of electrochemically inserting and extracting sodium ions is used.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material fixed to the positive electrode current collector, and may include a binder, a conductive agent, and the like as optional components.
  • a sodium-containing transition metal compound is preferably used from the viewpoint of thermal stability and electrochemical stability.
  • FIG. 1 is a front view of a positive electrode according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the positive electrode 2 includes a positive electrode current collector 2a and a positive electrode mixture 2b fixed to the positive electrode current collector 2a.
  • the positive electrode mixture 2b includes, for example, a positive electrode active material, a binder, and a conductive agent.
  • the positive electrode current collector 2a a metal foil, a non-woven fabric made of metal fibers, a porous metal sheet, or the like is used.
  • the metal constituting the positive electrode current collector is preferably aluminum or an aluminum alloy because it is stable at the positive electrode potential, but is not particularly limited.
  • the thickness of the metal foil serving as the positive electrode current collector is, for example, 10 to 50 ⁇ m, and the thickness of the metal fiber nonwoven fabric or the metal porous sheet is, for example, 100 to 600 ⁇ m.
  • a current collecting lead piece 2c may be formed on the positive electrode current collector 2a. As shown in FIG. 1, the lead piece 2 c may be formed integrally with the positive electrode current collector, or a separately formed lead piece may be connected to the positive electrode current collector by welding or the like.
  • the sodium-containing transition metal compound used as the positive electrode active material is preferably a compound having a layered structure in which sodium can enter and exit between layers, but is not particularly limited.
  • the sodium-containing transition metal compound is, for example, at least one selected from the group consisting of sodium chromate (such as NaCrO 2 ) and sodium ferromanganate (such as Na 2/3 Fe 1/3 Mn 2/3 O 2 ). Preferably there is.
  • a part of Cr or Na in sodium chromate may be substituted with other elements, and a part of Fe, Mn or Na in sodium ferromanganate may be substituted with other elements.
  • Na 1-x M 1 x Cr 1-y M 2 y O 2 (0 ⁇ x ⁇ 2/3, 0 ⁇ y ⁇ 2/3, M 1 and M 2 are independently other than Cr and Na
  • a metal element for example, at least one selected from the group consisting of Ni, Co, Mn, Fe and Al
  • Na 2 / 3-x M 3 x Fe 1 / 3-y Mn 2 / 3-z M 4 y + z O 2 (0 ⁇ x ⁇ 1/3, 0 ⁇ y ⁇ 1/3, 0 ⁇ z ⁇ 1/3, M 3 and M 4 are each independently Fe, Mn and Na
  • a metal element other than for example, at least one selected from the group consisting of Ni, Co, Al and Cr).
  • a positive electrode active material may be used individually by 1 type, and may be used in
  • the binder serves to bond the positive electrode active materials to each other and fix the positive electrode active material to the positive electrode current collector.
  • the binder include fluorine resins such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer, and polyvinylidene fluoride (PVDF); polyamide resins such as aromatic polyamide; polyimide (aromatic Polyimide) and polyimide resins such as polyamideimide.
  • the amount of the binder is preferably 1 to 10 parts by weight and more preferably 3 to 5 parts by weight per 100 parts by weight of the positive electrode active material.
  • the conductive agent examples include carbonaceous conductive agents such as graphite, carbon black, and carbon fiber. Among these, carbon black is particularly preferable because it can easily form a sufficient conductive path when used in a small amount.
  • the amount of the conductive agent is preferably 5 to 15 parts by mass and more preferably 5 to 10 parts by mass per 100 parts by mass of the positive electrode active material.
  • the positive electrode mixture layer for example, a paste in which a positive electrode active material, a binder and a conductive agent are dispersed in a dispersion medium is applied to the surface of the positive electrode current collector and dried.
  • a dispersion medium include ketones such as acetone; ethers such as tetrahydrofuran; nitriles such as acetonitrile; amides such as dimethylacetamide; N-methyl-2-pyrrolidone (NMP) and the like.
  • These dispersion media may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Examples of the negative electrode include a sodium negative electrode, a negative electrode capable of electrochemically storing and releasing sodium ions, and a negative electrode including a material capable of alloying with sodium.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material fixed to the negative electrode current collector, and may include a binder, a conductive agent, and the like as optional components.
  • the negative electrode active material elutes sodium ions at a lower potential than the sodium-containing transition metal compound used for the positive electrode, precipitates sodium, occludes and releases sodium ions, and alloys and de-alloys with sodium. It is a material that can be converted into a material.
  • FIG. 3 is a front view of a negative electrode according to an embodiment of the present invention
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • the negative electrode 3 includes a negative electrode current collector 3a and a negative electrode active material layer 3b fixed to the negative electrode current collector 3a.
  • the negative electrode active material layer may be formed of, for example, only a negative electrode active material, or may be formed of a negative electrode mixture containing a negative electrode active material and a binder, and optionally including a conductive agent.
  • a metal foil, a non-woven fabric made of metal fibers, a porous metal sheet, or the like is used as the negative electrode current collector.
  • the metal constituting the negative electrode current collector copper, copper alloy, nickel, nickel alloy, aluminum, aluminum alloy and the like are preferable but not particularly limited because they are not alloyed with sodium and stable at the negative electrode potential.
  • the thickness of the metal foil serving as the negative electrode current collector is, for example, 10 to 50 ⁇ m, and the thickness of the metal fiber non-woven fabric or metal porous sheet is, for example, 100 to 600 ⁇ m.
  • a current collecting lead piece 3c may be formed on the negative electrode current collector 3a. As shown in FIG. 3, the lead piece 3c may be formed integrally with the negative electrode current collector, or a separately formed lead piece may be connected to the negative electrode current collector by welding or the like.
  • Examples of the negative electrode active material include metals such as sodium, titanium, zinc, indium, tin, and silicon, or alloys thereof, or compounds thereof; carbonaceous materials. In addition to these metals, the alloy may further contain other alkali metals and / or alkaline earth metals. Examples of the metal compound include sodium-containing titanium compounds such as sodium titanate. Examples of the carbonaceous material include graphitizable carbon (soft carbon) and non-graphitizable carbon (hard carbon). A negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the negative electrode active material layer can be obtained by forming a metal or alloy film on the negative electrode current collector by a method such as plating, vapor deposition, or sputtering.
  • a negative electrode active material layer can be formed irrespective of the kind of negative electrode active material.
  • the binder plays a role of bonding the negative electrode active materials to each other and fixing the negative electrode active material to the negative electrode current collector.
  • a binder the thing similar to what was illustrated as a binder used for positive mix can be used.
  • a polyamide resin, a polyimide resin, or the like may be used as a binder.
  • the amount of the binder is preferably 1 to 10 parts by mass and more preferably 3 to 5 parts by mass per 100 parts by mass of the negative electrode active material.
  • the negative electrode may contain a conductive agent such as carbon black, depending on the type of the negative electrode active material, as in the positive electrode.
  • a conductive agent such as carbon black
  • metals, alloys, hard carbon, etc. are used as the negative electrode active material, it is easy to obtain relatively high conductivity with the negative electrode active material, so that sufficient conductivity can be obtained even without using a conductive agent. it can.
  • a metal compound such as a sodium-containing titanium compound
  • a conductive agent may be used to ensure sufficient conductivity.
  • the amount of the conductive agent is preferably 5 to 15 parts by mass and more preferably 5 to 10 parts by mass per 100 parts by mass of the negative electrode active material.
  • the negative electrode mixture layer (negative electrode active material layer) is formed by, for example, applying a paste in which a negative electrode active material, a binder, and optionally a conductive agent are dispersed in a dispersion medium, to the surface of the negative electrode current collector and drying. And it can form by rolling as needed.
  • a dispersion medium the thing similar to what was illustrated about the positive electrode active material layer can be used.
  • a separator plays the role which isolates a positive electrode and a negative electrode physically, and prevents an internal short circuit.
  • the separator is made of a porous material, and the void is impregnated with an electrolyte, and has a sodium ion permeability in order to ensure a battery reaction.
  • a nonwoven fabric other than a resin microporous film can be used.
  • the separator may be formed of only a microporous membrane or a non-woven fabric layer, or may be formed of a laminate of a plurality of layers having different compositions and forms.
  • Examples of the laminate include a laminate having a plurality of resin porous layers having different compositions and a laminate having a microporous membrane layer and a nonwoven fabric layer.
  • the material of the separator can be selected considering the operating temperature of the battery.
  • the resin contained in the fibers forming the microporous membrane and the nonwoven fabric include polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymer; fluorine resins such as PTEF and PVDF; polyphenylene such as polyphenylene sulfide and polyphenylene sulfide ketone Examples thereof include sulfide resins; polyamide resins such as aromatic polyamide resins (such as aramid resins); polyimide resins and the like. One of these resins may be used alone, or two or more thereof may be used in combination.
  • the fibers forming the nonwoven fabric may be inorganic fibers such as glass fibers.
  • the separator is preferably formed of at least one selected from the group consisting of polyolefin resin, fluororesin, glass fiber, polyamide resin and polyphenylene sulfide resin.
  • the separator may contain an inorganic filler in order to improve wettability with respect to the electrolyte.
  • the inorganic filler include ceramics such as silica, alumina, zeolite, and titania; talc, mica, wollastonite, and the like.
  • the inorganic filler is preferably particulate or fibrous.
  • the content of the inorganic filler in the separator is, for example, 10 to 90% by mass, preferably 20 to 80% by mass.
  • the resin porous membrane contains an inorganic filler.
  • the wettability of the separator with respect to the electrolyte is low, the impregnation property of the electrolyte is low, and it is difficult to uniformly impregnate the electrolyte.
  • a separator using a fluororesin such as PTFE has low wettability with respect to the electrolyte, so that it is very difficult to uniformly impregnate the electrolyte with the conventional method of impregnating the molten electrolyte.
  • an electrolyte solution is used to hold a battery element such as a separator. Therefore, even when the separator includes a resin having low wettability such as PTFE, the electrolyte can be impregnated uniformly and quickly.
  • the thickness of the separator is not particularly limited, but may be, for example, 10 to 70 ⁇ m, and preferably 20 to 50 ⁇ m.
  • the electrolyte melts at a temperature equal to or higher than the melting point to become an ionic liquid, but a solid salt is used at room temperature (for example, 25 to 40 ° C.).
  • the electrolyte has sodium ion conductivity at least when melted.
  • the electrolyte exhibits high sodium ion conductivity in the molten state. Therefore, the electrolyte includes at least a salt (first salt) containing sodium ions serving as charge carriers in the molten salt battery as a cation.
  • a salt for example, a salt of an anion containing a bissulfonylimide anion and a sodium ion can be used.
  • a 1st salt may contain only a sodium ion as a cation, and the double salt containing a sodium ion and another cation may be sufficient as it.
  • Examples of the bissulfonylimide anion include an anion having a bissulfonylimide skeleton and a fluorine atom in the sulfonyl group.
  • Examples of the sulfonyl group having a fluorine atom include a sulfonyl group having a fluoroalkyl group in addition to a fluorosulfonyl group.
  • the fluoroalkyl group may be a perfluoroalkyl group in which some of the hydrogen atoms of the alkyl group are replaced with fluorine atoms, or all of the hydrogen atoms are replaced with fluorine atoms.
  • the sulfonyl group having a fluorine atom is preferably a fluorosulfonyl group or a perfluoroalkylsulfonyl group.
  • a bissulfonylimide anion specifically, the following formula (1):
  • X 1 and X 2 are each independently a fluorine atom or a C 1-8 perfluoroalkyl group.
  • the anion represented by these is mentioned.
  • Examples of the perfluoroalkyl group represented by X 1 and X 2 include a trifluoromethyl group, a pentafluoroethyl group, and a heptafluoropropyl group. From the viewpoint of reducing the viscosity of the ionic liquid, at least one of X 1 and X 2 is preferably a perfluoroalkyl group, both X 1 and X 2, the perfluoroalkyl group are more preferable. Further, from the viewpoint of reducing the viscosity of the ionic liquid, the carbon number of the perfluoroalkyl group is preferably 1 to 3, and more preferably 1 or 2.
  • bissulfonylimide anion examples include bisfluorosulfonylimide anion (FSA ⁇ ); bis (trifluoromethylsulfonyl) imide anion (TFSA ⁇ ), bis (pentafluoroethylsulfonyl) imide anion, fluorotrifluoromethylsulfonylimide And bis (perfluoroalkylsulfonyl) imide anion (PFSA ⁇ ) such as an anion ((FSO 2 ) (CF 3 SO 2 ) N ⁇ ).
  • FSA ⁇ bisfluorosulfonylimide anion
  • TFSA ⁇ bis (trifluoromethylsulfonyl) imide anion
  • PFSA ⁇ bis (perfluoroalkylsulfonyl) imide anion
  • the first salt, sodium ions and FSA - and salt (NaFSA), sodium bis sodium ions and PFSA such (trifluoromethylsulfonyl) imide (NaTFSA) - such as the salts of (NaPFSA) are preferred.
  • the electrolyte melts at a temperature equal to or higher than the melting point, becomes an ionic liquid, and exhibits sodium ion conductivity, whereby the molten salt battery can be operated.
  • the electrolyte preferably has a low melting point. In order to lower the melting point of the electrolyte, it is preferable to use a mixture of two or more salts as the electrolyte.
  • the electrolyte preferably further contains a salt (second salt) of an anion containing a bissulfonylimide anion and a cation other than a sodium ion in addition to the first salt.
  • a salt (second salt) of an anion containing a bissulfonylimide anion and a cation other than a sodium ion in addition to the first salt.
  • the bissulfonylimide anion that forms the second salt include those exemplified for the first salt.
  • cations include inorganic cations [alkali metal cations other than sodium ions (lithium ions, potassium ions, etc.), alkaline earth metal cations (magnesium ions, calcium ions, etc.), transition metal cations, etc .; ammonium cations, etc. ]: Organic cations such as pyridinium cation and pyrrolidinium cation. Other cations may be used alone or in combination of two or more. Of the other cations, alkali metal cations, alkaline earth metal cations, and the like are preferable.
  • a salt of potassium ion and FSA ⁇ KFSA
  • a salt of potassium ion such as potassium bis (trifluoromethylsulfonyl) imide (KTFSA) and PFSA ⁇ (KPFSA) and the like are preferable.
  • the molar ratio of the first salt to the second salt is, for example, 40/60 to 70/30, taking into account the balance between the melting point, viscosity, and sodium ion conductivity of the electrolyte. It is preferably 45/55 to 65/35, and more preferably 50/50 to 60/40.
  • the electrolyte Since the electrolyte has a high viscosity in the molten state, it is difficult to uniformly impregnate the electrode group even if the molten electrolyte is injected into the battery case containing the electrode group by a conventional method. If charging / discharging is repeated in a state where the electrolyte is not uniformly impregnated, the battery capacity tends to decrease. Therefore, in a molten salt battery filled with an electrolyte by a conventional method, when charge / discharge is repeated in a state where finish charge / discharge is completed, the ratio of the discharge capacity at the 20th cycle to the discharge capacity at the first cycle is 80 Usually, it becomes less than%, and the fall of discharge capacity cannot be suppressed.
  • an electrolyte solution is used to hold the electrolyte in the battery element.
  • a sufficient amount of electrolyte can be filled in the molten salt battery, and the electrolyte can be uniformly impregnated over the entire electrode group. Therefore, in the molten salt battery of the present invention, the battery reaction can be performed uniformly and stably. Moreover, the fall of battery capacity when charging / discharging is repeated can be suppressed significantly.
  • the ratio of the discharge capacity at the 20th cycle to the discharge capacity at the first cycle is 90% or more. , Preferably 95% or more or 97% or more.
  • the molten salt battery may have a variation in the initial discharge capacity (discharge capacity at the first cycle), it is repeatedly charged and discharged until the capacity is stabilized. Charging / discharging at this time is called finish charging / discharging.
  • the finish charge / discharge is usually 5 cycles or less, preferably less, for example, 3 cycles or less.
  • this invention since an electrolyte can be uniformly impregnated in an electrode group, the number of charge / discharge cycles required for finishing charge / discharge can be reduced.
  • the electrolyte may be held in at least one battery element selected from the group consisting of a positive electrode, a negative electrode, and a separator, and is preferably held at least in the separator.
  • the molten salt battery in particular, the molten salt battery in an activated state, it is necessary to ensure sodium ion conductivity, so that the electrolyte is impregnated in all the battery elements.
  • the electrolyte may be further added to the battery case, for example, after the electrolyte is held in advance in at least one of the above battery elements to form an electrode group and accommodated in the battery case.
  • a molten salt battery is used in a state in which a positive electrode, a negative electrode, a separator interposed therebetween, and an electrolyte are accommodated in a battery case.
  • the electrode group is formed by laminating or winding a positive electrode and a negative electrode with a separator interposed therebetween.
  • a metal battery case by making one of the positive electrode and the negative electrode conductive with the battery case, a part of the battery case can be used as the first external terminal.
  • the other of the positive electrode and the negative electrode is connected to a second external terminal led out of the battery case in a state insulated from the battery case, using a lead piece or the like.
  • the structure of the molten salt battery according to one embodiment of the present invention will be described with reference to the drawings.
  • the structure of the molten salt battery of the present invention is not limited to the following structure.
  • FIG. 5 is a perspective view of a molten salt battery in which a part of the battery case is cut out
  • FIG. 6 is a longitudinal sectional view schematically showing a cross section taken along line VI-VI in FIG.
  • the molten salt battery 100 includes a stacked electrode group 11, an electrolyte (not shown), and a rectangular aluminum battery case 10 for housing them.
  • the battery case 10 includes a bottomed container body 12 having an upper opening and a lid 13 that closes the upper opening.
  • an electrolyte solution is held by application or impregnation to at least one battery element selected from the group consisting of a positive electrode, a negative electrode, and a separator, and the battery element holding the solution is used. By removing at least a part of the solvent contained in the solution, the battery element is allowed to retain the electrolyte.
  • An electrode group 11 is formed by laminating or winding a positive electrode, a negative electrode, and a separator interposed between the positive electrode, the negative electrode, and a separator interposed between them in a state where an electrolyte is held in at least one of the battery elements. Inserted.
  • the molten salt battery 100 is heated to bring the electrolyte into a molten state, and the gaps of the separator 1, the positive electrode 2, and the negative electrode 3 constituting the electrode group 11 are impregnated.
  • the step of bringing the electrolyte into a molten state may be performed before the battery case 10 is sealed, or may be performed after the sealing.
  • a molten electrolyte may be added to the battery case 10.
  • an external positive electrode terminal 14 that penetrates the lid portion 13 while being electrically connected to the battery case 10 is provided near one side of the lid portion 13, and at a position near the other side of the lid portion 13,
  • An external negative electrode terminal 15 that penetrates the lid 13 while being insulated from the battery case 10 is provided.
  • a safety valve 16 is provided for releasing gas generated inside when the internal pressure of the electronic case 10 rises.
  • the stacked electrode group 11 is composed of a plurality of positive electrodes 2, a plurality of negative electrodes 3, and a plurality of separators 1 interposed between them, each having a rectangular sheet shape.
  • the separator 1 is formed in a bag shape so as to surround the positive electrode 2, but the form of the separator is not particularly limited.
  • the plurality of positive electrodes 2 and the plurality of negative electrodes 3 are alternately arranged in the stacking direction in the electrode group 11.
  • a positive electrode lead piece 2 a may be formed at one end of each positive electrode 2.
  • the plurality of positive electrodes 2 are connected in parallel by bundling the positive electrode lead pieces 2 a of the plurality of positive electrodes 2 and connecting them to the external positive terminal 14 provided on the lid portion 13 of the battery case 10.
  • a negative electrode lead piece 3 a may be formed at one end of each negative electrode 3.
  • a plurality of negative electrodes 3 are connected in parallel by bundling the negative electrode lead pieces 3 a of the plurality of negative electrodes 3 and connecting them to the external negative terminal 15 provided on the lid portion 13 of the battery case 10. It is desirable that the bundle of the positive electrode lead pieces 2a and the bundle of the negative electrode lead pieces 3a be arranged on the left and right sides of the one end face of the electrode group 11 with a gap so as to avoid mutual contact.
  • the external positive terminal 14 and the external negative terminal 15 are both columnar, and at least a portion exposed to the outside has a screw groove.
  • a nut 7 is fitted in the screw groove of each terminal, and the nut 7 is fixed to the lid portion 13 by rotating the nut 7.
  • a flange portion 8 is provided in a portion of each terminal accommodated in the battery case, and the flange portion 8 is fixed to the inner surface of the lid portion 13 via a washer 9 by the rotation of the nut 7.
  • the molten salt battery specifically includes: (I) preparing at least one battery element selected from the group consisting of a positive electrode, a negative electrode, and a separator; (Ii) preparing a solution containing an electrolyte and a solvent that dissolves the electrolyte; (Iii) let the battery element hold the solution; (Iv) removing at least a portion of the solvent from the battery element holding the solution; (V) After removing at least a part of the solvent from the battery element, an electrode group including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode is formed, (Vi) It can be manufactured by housing the electrode group in a battery case.
  • step (i) as each battery element, those described above can be used, commercially available products may be used, or they may be produced by known methods.
  • the electrolyte before assembling the molten salt battery, specifically, before assembling the electrode group, the electrolyte is held in advance in the battery element using the electrolyte solution. An electrolyte solution for that purpose is prepared in step (ii).
  • the electrolyte solution can be prepared by dissolving the electrolyte in a solvent. Since the electrolyte may be decomposed by moisture, the solvent is preferably a non-aqueous organic solvent capable of dissolving the electrolyte, particularly a polar organic solvent.
  • the polar organic solvent may be either protic or aprotic.
  • the amount of the electrolyte dissolved in 100 parts by mass of the solvent at 25 ° C. can be, for example, 50 parts by mass or more, preferably 60 parts by mass or more.
  • Such a solvent can be appropriately selected depending on the type of salt of the electrolyte.
  • examples thereof include alcohols (alkanols such as methanol, ethanol, 1-propanol and 2-propanol); ketones such as acetone and ethyl methyl ketone; acetonitrile And nitriles such as propionitrile.
  • a solvent may be used individually by 1 type and may be used in combination of 2 or more type. Of these solvents, lower ones, specifically, C 1-3 alkanol, di-C 1-2 alkyl ketone, C 2-4 nitrile and the like are particularly preferable.
  • the content of the electrolyte in the solution is, for example, 40 to 70 parts by weight, preferably 50 to 70 parts by weight, and more preferably 60 to 70 parts by weight with respect to 100 parts by weight of the solvent.
  • the electrolyte content is within such a range, a sufficient amount of electrolyte can be effectively retained in the battery element, so that when the electrolyte is in a molten state, the entire electrode group is easily impregnated with the electrolyte. .
  • the viscosity of the solution at 25 ° C. is, for example, 50 mPa ⁇ s or less, preferably 20 mPa ⁇ s or less, and more preferably 10 mPa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, and may be, for example, 0.2 mPa ⁇ s or more, preferably 0.3 mPa ⁇ s or more, depending on the type of solvent, electrolyte, and the like.
  • the amount of the additive is, for example, 10 parts by mass or less, preferably 3 to 8 parts by mass with respect to 100 parts by mass of the electrolyte.
  • step (iii) the electrolyte is held by bringing the battery element into contact with the solution.
  • the contact of the solution with the battery element can be performed, for example, by applying the solution to the surface of the battery element or immersing the battery element in the solution.
  • coating of a solution can be performed by apply
  • the solution is preferably held at least in the separator. Even when the electrolyte is held only by the separator, for example, the separator is impregnated with a solution containing an amount of electrolyte necessary for the molten salt battery, the solvent is removed, and the electrode group is formed or after the electrode group is formed, The electrolyte can be moved from the separator to the positive electrode and the negative electrode while applying pressure under heating.
  • the battery elements it is more preferable to hold the solution in all the battery elements of the positive electrode, the negative electrode, and the separator. When all the battery elements are held, it becomes easy to secure an amount of electrolyte necessary for the molten salt battery.
  • step (iv) in order to easily form the electrode group in step (v), at least a part of the solvent is removed from the battery element holding the solution. Removal of the solvent temporarily fixes the electrolyte to the battery element.
  • the solvent may be removed to such an extent that the electrolyte is fixed to the battery element to facilitate the formation of the electrode group. For example, it is removed until the solvent contained in the solution becomes, for example, 3% by mass or less, preferably 1% by mass or less.
  • the removal of the solvent may be carried out under normal pressure or under reduced pressure. Moreover, you may perform the removal of a solvent under a heating as needed. In order to efficiently remove the solvent, it is preferable to heat the battery element holding the solution under reduced pressure.
  • the heating temperature of the battery element can be appropriately set according to the type of the solvent and / or electrolyte, and is, for example, 60 to 100 ° C., preferably 80 to 100 ° C., more preferably 90 to 100 ° C.
  • step (v) the positive electrode, the negative electrode, and the separator are stacked or wound to form an electrode group, and the obtained electrode group is accommodated in the battery case in step (vi). Formation of the electrode group and assembly of the molten salt battery can be performed as described above.
  • the electrolyte held in the battery element is heated to a melting point or higher and melted, and the molten electrolyte is spread over the entire electrode group. Impregnation and homogenize the distribution.
  • the molten electrolyte has a high viscosity, in the present invention, since it is held in advance in the battery element, the entire electrode group can be impregnated with the electrolyte even more efficiently and uniformly.
  • the apparatus for manufacturing a battery element for a molten salt battery is not particularly limited as long as an apparatus and a mechanism included in the manufacturing apparatus can be used as long as the electrolyte can be held in the battery element using an electrolyte solution. Therefore, the following apparatus is only an example. Specifically, the battery element manufacturing apparatus removes the solvent from the solution storage unit that stores the solution containing the electrolyte and the solvent, the solution supply device that holds the solution in the battery element, and the battery element that holds the solution. And a removal device.
  • the solution storage unit is not particularly limited as long as it can accommodate the solution, and examples thereof include a storage tank such as a tank.
  • the solution supply apparatus should just have the structure which can make a solution contact a battery element.
  • the solution supply device preferably includes, for example, a device or mechanism for applying the solution to the surface of the battery element, a device or mechanism for immersing and collecting the battery element in the solution, and the like.
  • the solution supply device has a mechanism for receiving the supply of the solution from the solution storage unit and coating the supplied solution on the surface of the battery element.
  • a mechanism for receiving the supply of the solution from the solution storage unit and coating the supplied solution on the surface of the battery element examples include an application mechanism that coats the solution with a blade or the like, and a spray mechanism that sprays the solution.
  • the solution is supplied through a pipe, for example, from a solution reservoir.
  • FIG. 7 is a schematic view schematically showing an apparatus for manufacturing a battery element for a molten salt battery according to an embodiment of the present invention.
  • the apparatus for manufacturing a battery element for a molten salt battery includes a spray mechanism for spraying a solution. Specifically, the manufacturing apparatus removes the solvent contained in the solution after spraying the solution 25 after spraying the solution 25 containing the electrolyte on the surface of the battery element 21 such as a separator. Removal device 23.
  • the spray mechanism 24 includes a solution storage unit 26a for containing the solution 25, a nozzle 24a for spraying the solution 25 supplied from the solution storage unit 26a onto the battery element 21, and a solution from the solution storage unit 26a to the nozzle 24a. And a pipe 24 b for supplying 25.
  • the removing device 23 includes a heater 23 a for heating the battery element 21 and a pump 23 b for reducing the pressure inside the removing device 23 in order to remove the solvent contained in the solution 25.
  • the battery element 21 is unwound from a supply reel 22 a that accommodates the battery element 21 in a state of being wound in a roll shape, and is supplied to the lower portion of the nozzle 24 a of the spray mechanism 24.
  • a solution 25 containing an electrolyte is sprayed.
  • the battery element 21 holding the solution 25 by spraying the solution 25 is supplied to the removing device 23, and at least a part of the solvent contained in the solution 25 is removed in the removing device 23. Then, the battery element 21 from which the solvent is removed and the electrolyte is retained is collected on the collection reel 22b.
  • the solution supply device has a mechanism for feeding the battery element to the solution storage unit, immersing the battery element in the solution in the solution storage unit, and then recovering the battery element from the solution.
  • FIG. 8 is a schematic view schematically showing an apparatus for manufacturing a battery element for a molten salt battery according to another embodiment of the present invention.
  • the manufacturing apparatus of FIG. 8 includes a solution storage unit 26b for immersing the battery element 21 in a solution 25 containing an electrolyte.
  • the battery element 21 is unwound from the supply reel 22 a and supplied to a roll 22 c installed in a state of being immersed in an electrolyte solution 25 accommodated in the solution storage unit 26.
  • the battery element 21 supplied to the solution storage unit 26 via the roll 22c is immersed in the solution 25, then taken out from the solution 25, and conveyed to the removing device 23 via the roll 22d.
  • the battery element 21 from which the solvent is removed in the removing device 23 is unloaded from the removing device 23 and wound around the collection reel 22b.
  • Example 1 Production of positive electrode A positive electrode paste was prepared by dispersing 90 parts by mass of NaCrO 2 (positive electrode active material), 5 parts by mass of acetylene black (conductive agent) and 5 parts by mass of PVDF (binder) in NMP. The obtained positive electrode paste was applied to both sides of an aluminum foil (length 10 cm ⁇ width 10 cm, thickness 20 ⁇ m), sufficiently dried, rolled, and a total thickness of 50 ⁇ m having a positive electrode mixture layer having a thickness of 15 ⁇ m on both sides. Ten positive electrodes were prepared. In addition, the lead piece for current collection was formed in the one side edge part of the one side of a positive electrode.
  • NaCrO 2 positive electrode active material
  • acetylene black conductive agent
  • PVDF binder
  • Electrode group A total of 3 parts by mass of NaFSA and KFSA as an electrolyte was dissolved in 5 parts by mass of methanol to prepare a solution.
  • NaFSA and KFSA were used in a 56:44 molar ratio.
  • the solution was applied to both surfaces of the positive and negative electrodes and the polyolefin microporous membrane as a separator, and then heated at 100 ° C. under reduced pressure to remove methanol.
  • the total amount of the electrolyte retained on the positive electrode, the negative electrode, and the separator was 170 g.
  • a separator is interposed between the positive electrode and the negative electrode so that the positive electrode lead pieces and the negative electrode lead pieces overlap each other, and the bundle of the positive electrode lead pieces and the bundle of the negative electrode lead pieces are arranged at the left and right target positions.
  • an electrode group was produced. At one end of the electrode group, a negative electrode having a negative electrode active material layer only on one side was disposed so that the negative electrode active material layer faces the positive electrode. Moreover, the negative electrode which has a negative electrode active material layer only on one side was arrange
  • the final charge / discharge of the prepared molten salt battery was performed as follows.
  • the molten salt battery was heated to 90 ° C., charged with a constant current until the current value at a rate of 0.2C rate was 3.2 V, and charged with a constant voltage at 3.2 V. And it discharged until it became 2.7V with the electric current value of the time rate 0.2C rate.
  • the discharge capacity of the battery at this time was measured, and when the measured value was not stable (or when the discharge capacity was low), the above charge / discharge cycle (finish charge / discharge cycle) was repeated until it stabilized.
  • Comparative Example 1 An electrode group was formed in the same manner as in Example 1 except that a solution containing an electrolyte was not applied to any of the positive electrode, the negative electrode, and the separator, and was accommodated in a battery case.
  • NaFSA and KFSA as an electrolyte were mixed at a molar ratio of 56:44 and heated at 90 ° C. to obtain a molten salt.
  • Molten salt as an electrolyte was poured into the battery case and impregnated into the electrode group under a reduced pressure environment (10 to 20 Pa). The time required for pouring the same amount of electrolyte as in Example 1 into the battery case was about 168 hours.
  • Example 1 After injecting the molten salt, the battery case was sealed to produce a molten salt battery with a nominal capacity of 2.6 Ah. Evaluation was performed in the same manner as in Example 1 using the obtained molten salt battery. The initial discharge capacity was expressed as a ratio (%) for the ten molten salt batteries of Example 1 with the average initial discharge capacity being 100%. The results of Examples and Comparative Examples are shown in Table 1.
  • Comparative Example 1 the initial discharge capacity was as low as 50 to 72%, and the number of finish charge / discharge cycles required until the capacity was stabilized was 5 cycles. On the other hand, in Example 1, a high discharge capacity was obtained from the first time, and the number of cycles required for finishing charge / discharge was only one. Moreover, in the comparative example 1, after repeating charge / discharge of 20 cycles, the capacity
  • Example 1 As a result of disassembling the molten salt battery and confirming the impregnation property of the electrolyte, in Example 1, the entire battery element was impregnated. On the other hand, in Comparative Example 1, there was a region where the battery element was not impregnated. It is considered that the difference in the impregnation property of the electrolyte between Example 1 and Comparative Example 1 leads to the difference in discharge capacity and capacity retention rate as shown in Table 1.
  • Examples 2-4 A molten salt battery was prepared and the battery was evaluated in the same manner as in Example 1 except that the electrolyte-containing solution was applied to only one of the positive electrode, the negative electrode, and the separator.
  • the amount of the solution applied is such that the amount of electrolyte retained in one of the positive electrode, negative electrode, and separator is the same as the total amount of electrolyte retained in the positive electrode, negative electrode, and separator in Example 1, respectively. did.
  • the same results as in Example 1 were obtained.
  • the step of impregnating the electrode group with a molten high-viscosity electrolyte can be omitted, so that a molten salt battery can be manufactured with high productivity.
  • the molten salt battery of the present invention is excellent in charge / discharge cycle characteristics because the electrolyte is uniformly impregnated. Therefore, the molten salt battery is useful, for example, as a power storage power source such as nighttime power storage or a battery for an electric vehicle.
  • Electrode group 12: container body, 13: lid, 14: external positive terminal, 15: external negative terminal, 16: safety valve 21: battery element, 22a: supply reel, 22b: recovery reel, 22c, 22d: roll, 23 : Removal device, 23a: heater, 23b: pump, 24: spray mechanism, 24a: nozzle, 24b: pipe, 25: solution containing electrolyte, 26a, 26b: solution reservoir

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

充放電サイクル特性に優れる溶融塩電池を、高い生産性で製造する。 溶融塩電池の製造方法は、(i)正極、負極、およびセパレータよりなる群から選択される少なくとも1つの電池要素を準備する工程と、(ii)少なくとも溶融時にナトリウムイオン伝導性を有する常温で固体の電解質と、電解質を溶解する溶媒と、を含む溶液を準備する工程と、(iii)電池要素に、溶液を保持させる工程と、(iv)溶液を保持した電池要素から、溶媒の少なくとも一部を除去する工程と、(v)電池要素から溶媒の少なくとも一部を除去した後、正極、負極および正極と負極との間に介在するセパレータを含む電極群を形成する工程と、(vi)電極群を電池ケースに収容する工程と、を具備する。

Description

溶融塩電池およびその製造方法ならびに溶融塩電池用電池要素の製造装置
 本発明は、ナトリウムイオン伝導性を有する常温で固体の電解質を含む溶融塩電池に関し、特にその製造方法の改良に関する。
 近年、太陽光、風力などの自然エネルギーを電気エネルギーに変換する技術が注目を集めている。また、多くの電気エネルギーを蓄えることができる高エネルギー密度の電池として、非水電解質二次電池の需要が拡大している。非水電解質二次電池の中では、リチウムイオン二次電池が、軽量かつ高い起電力を有する点で有望である。しかし、リチウムイオン二次電池は、有機溶媒を電解質成分として用いるため、耐熱性が低いという欠点がある。また、非水電解質二次電池の市場の拡大に伴い、リチウム資源の価格も上昇しつつある。そこで、耐熱性が高く、かつ低コストでの生産が期待できる溶融塩電池の開発が進められている。
 溶融塩電池とは、溶融状態の塩(溶融塩)を電解質として含む電池の総称である。溶融塩電池の電解質として使用される塩は、常温(例えば、25~40℃)では固体であるが、加熱により溶融した状態ではイオン伝導性を有する液体(イオン性液体)となる。例えば、90℃以下の融点を有する塩として、ナトリウムビス(フルオロスルフォニル)イミド(NaFSA)とカリウムビス(フルオロスルフォニル)イミド(KFSA)との混合物が開発されている(特許文献1)。
特開2011-192474号公報
 溶融塩電池の機能を十分に発揮させるためには、電池を構成する正極、負極およびセパレータの細孔内に溶融塩(電解質)を含浸させる必要がある。しかし、このような電解質は、溶融状態であっても、比較的粘性が高いため、正極、負極およびセパレータの細孔内に含浸させることは容易ではない。
 一般的な電池の製造プロセスは、電極群の構成、電池ケースへの電極群の収容、電池ケース内の電極群への電解質の含浸、という順序で行われる。すなわち、正極と負極とを、これらの間にセパレータを介在させて、積層または捲回して電極群を構成し、電極群を電池ケースに収容し、その後、減圧環境下において、電極群への電解質の含浸が行われる。
 しかし、溶融塩を電極群に含浸させるためには、塩を融点以上(例えば90℃以上)に加熱する必要がある。さらに、溶融塩の粘度が高いことから、十分量の溶融塩が電極群に含浸されずに、電極群内における電解質の分布が不均一になることがある。この場合、充放電を繰り返すと、比較的早期に放電容量の劣化を招くことになる。
 以上に鑑み、本発明の一局面は、(i)正極、負極、およびセパレータよりなる群から選択される少なくとも1つの電池要素を準備する工程と、(ii)少なくとも溶融時にナトリウムイオン伝導性を有する常温で固体の電解質と、電解質を溶解する溶媒と、を含む溶液を準備する工程と、(iii)電池要素に、溶液を保持させる工程と、(iv)溶液を保持した電池要素から、溶媒の少なくとも一部を除去する工程と、(v)電池要素から溶媒の少なくとも一部を除去した後、正極、負極および正極と負極との間に介在するセパレータを含む電極群を形成する工程と、(vi)電極群を電池ケースに収容する工程と、を具備する、溶融塩電池の製造方法に関する。このような製造方法によれば、溶融塩を減圧環境下で電極群に含浸させる工程を省略することができるため、電池の製造工程を簡略化できる。また、電極群に十分量の溶融塩を均質かつ再現性よく含浸させることができるため、充放電サイクル特性に優れる溶融塩電池を提供できる。
 電解質は、下記式(1):
Figure JPOXMLDOC01-appb-C000002
で表され、ただし、X1およびX2は、それぞれ独立に、フッ素原子または炭素数1~8のパーフルオロアルキル基である、ビススルフォニルイミドアニオンと、ナトリウムイオンと、の第1塩を、少なくとも含むことが好ましい。電解質が第1塩を含むことにより、高いナトリウムイオン伝導性を確保できる。また、イオン性液体の粘度を低減して、溶融塩電池の作動性を高めることができる。
 電解質は、さらに、上記式(1)で表されるビススルフォニルイミドアニオンと、ナトリウム以外のアルカリ金属またはアルカリ土類金属のカチオンと、の第2塩を含んでもよい。電解質が第2塩を含む場合、電解質の融点をより有効に低下させることができるので、適度な温度で電池を作動させ易い。
 セパレータは、ポリオレフィン樹脂、フッ素樹脂、ガラス繊維、ポリアミド樹脂およびポリフェニレンサルファイド樹脂よりなる群から選択される少なくとも1種により形成することが好ましい。これらは、セパレータ材料として汎用性が高い、電解質との親和性が高く電解質を含浸し易いなどといった利点を有する。
 工程(iii)は、電池要素の表面に溶液を塗布すること、または電池要素を溶液に浸漬すること、を含んでもよい。このような方法によれば、電池要素に、より簡便に溶液を保持させることができる。
 溶媒は、ケトン、アルコールおよびニトリルよりなる群から選択される少なくとも1種を含むことが好ましい。このような溶媒を用いることにより、電解質を溶解し易く、電解質の濃度を調整し易くなる。そのため、電池要素に、溶液を含浸させ易く、また、十分な量の電解質を保持させ易い。
 溶液中の電解質の含有量は、溶媒100質量部に対して、40~70質量部であることが好ましい。溶液中の電解質の含有量がこのような範囲である場合、電池要素に、溶液を含浸させ易い上、十分な量の電解質を保持させ易い。
 工程(iv)は、溶液を保持した電池要素を減圧下で加熱すること、を含んでもよい。この場合、溶媒の除去をより効率よく行うことができる。
 本発明の別の局面は、充放電の繰り返しに伴う容量劣化が起りにくい溶融塩電池、より具体的には、正極と、負極と、正極と負極との間に介在するセパレータと、少なくとも溶融時にナトリウムイオン伝導性を有する常温で固体の電解質と、正極、負極、セパレータおよび電解質を収容する電池ケースと、を具備し、仕上げ充放電が完了した状態で、充放電サイクルを繰り返した場合に、1サイクル目の放電容量に対する20サイクル目の放電容量の割合が、90%以上である、溶融塩電池に関する。このような溶融塩電池では、電池を作動可能な状態にした場合に、十分な量の電解質を溶融塩電池内に充填することができるとともに、電解質を、電極群全体に亘り均一に含浸させることができる。そのため、電池反応を均一かつ安定して行うことができる。また、充放電を繰り返したときの電池容量の低下を大きく抑制できる。
 本発明のさらに別の局面は、少なくとも溶融時にナトリウムイオン伝導性を有する常温で固体の電解質と、電解質を溶解する溶媒と、を含む溶液を収容する溶液貯蔵部と、溶液を、正極、負極、およびセパレータよりなる群から選択される少なくとも1つの電池要素に保持させる溶液供給装置と、溶液を保持させた電池要素から溶媒を除去する除去装置と、を具備する、溶融塩電池用電池要素の製造装置に関する。このような製造装置では、溶融塩電池の作動に十分な量の溶融塩を、電池要素に簡便に保持させることができる。このような電池要素を用いると、電池の製造工程を簡略化できる。また、電極群に十分量の溶融塩を均質かつ再現性よく含浸させることができるため、充放電サイクル特性に優れる溶融塩電池を提供できる。
 溶液供給装置は、溶液貯蔵部に電池要素を送り、溶液貯蔵部内の溶液中に電池要素を浸漬した後、電池要素を溶液から回収する機構を有することが好ましい。また、溶液供給装置は、溶液貯蔵部から溶液の供給を受け、供給された溶液を電池要素の表面に塗工する機構を有することも好ましい。これらの場合、電池要素に、溶液をより効率よく含浸させることができ、ひいては、電池要素に電解質をより有効に保持させることができる。
 除去装置は、電池要素を収容する収容部、収容部内を減圧するポンプおよび電池要素を加熱するヒーターを具備してもよい。この場合、電池要素に含浸させた溶液から、溶液中の含まれる溶媒を、より効率よく除去することができる。
 本発明によれば、溶融塩を電池ケース内の電極群に注液し、減圧環境下にて電極群に含浸させる工程を省くことが可能となる。よって、電池の製造工程を大幅に簡略化することができる。また、電極群に十分量の溶融塩を均質かつ再現性よく含浸させることが可能であり、優れた充放電サイクル特性を有する溶融塩電池が得られる。
本発明の一実施形態に係る正極の正面図である。 図1のII-II線断面図である。 本発明の一実施形態に係る負極の正面図である。 図3のIV-IV線断面図である。 本発明の一実施形態に係る溶融塩電池の電池ケースの一部を切り欠いた斜視図である。 図5のVI-VI線断面を概略的に示す縦断面図である。 本発明の一実施形態に係る溶融塩電池用電池要素の製造装置を概略的に示す模式図である。 本発明の他の一実施形態に係る溶融塩電池用電池要素の製造装置を概略的に示す模式図である。
 本発明では、少なくとも溶融時にナトリウムイオン伝導性を有する常温で固体の電解質を含む溶液を用いて、電極群の形成前に、電池要素に電解質を保持させる。電解質を含む溶液は、溶融塩とは異なり、粘度が極めて低い。しかも、組み立てられた電極群ではなく、その構成要素である電池要素に予め電解質を保持させる。そのため、電池要素に、簡便かつ速やかに電解質を保持させることができる。
 多くの溶融塩は、粘度が高いので、従来の方法により、電池ケース内の電極群に注液しても、電極群に、均質かつ効率よく含浸させることが難しい。そのため、溶融塩を、電池ケース内の電極群に注液した後、減圧環境下にて電極群に含浸させている。しかし、このような方法では、含浸にかなりの長期間を要する。また、減圧環境下で電極群への溶融塩の含浸を行っても、溶融塩の粘度が高いため、電極群に十分量の溶融塩を均質かつ再現性よく含浸させることが難しい。電極群において、電解質が含浸されていない部分が生じると、電池容量が低下したり、抵抗が増大したりすることになる。
 それに対し、本発明では、電解質を含む溶液を用いて、電極群の形成前に、電池要素に電解質を保持させる。そのため、従来の電解質を含浸させるための煩雑な工程を省くことができるので、電池の製造工程を大幅に簡略化することができる。これにより、製造効率を高めることができるとともに、製造コストを低減できる。
 また、使用する電解質を含む溶液の粘度は、溶融塩の粘度に比べて極めて低い。よって、電池要素、ひいては電極群に、十分な量の溶融塩を均質かつ再現性よく含浸させることができる。そのため、充放電を繰り返した場合に、放電容量が劣化するのを抑制でき、これにより、優れた充放電サイクル特性を有する溶融塩電池を得ることができる。結果として、溶融塩電池の性能および品質を安定化することができる。
 以下、溶融塩電池の各構成要素について、より具体的に説明する。
[溶融塩電池]
 溶融塩電池は、正極と、負極と、正極と負極との間に介在するセパレータと、少なくとも溶融時にナトリウムイオン伝導性を有する常温で固体の電解質と、これらを収容する電池ケースと、を具備する。
 以下、溶融塩電池の各構成要素について、より具体的に説明する。
 (正極)
 正極としては、例えば、電気化学的にナトリウムイオンを吸蔵および放出可能な正極などが使用される。
 正極は、正極集電体および正極集電体に固定化された正極活物質を含み、任意成分として、結着剤、導電剤などを含んでもよい。正極活物質としては、熱的安定性および電気化学的安定性の観点から、ナトリウム含有遷移金属化合物が好ましく用いられる。
 図1は、本発明の一実施形態に係る正極の正面図であり、図2は図1のII-II線断面図である。
 正極2は、正極集電体2aおよび正極集電体2aに固定化された正極合剤2bを含む。
正極合剤2bは、例えば、正極活物質、結着剤および導電剤を含む。
 正極集電体2aとしては、金属箔、金属繊維製の不織布、金属多孔体シートなどが用いられる。正極集電体を構成する金属としては、正極電位で安定であることから、アルミニウムやアルミニウム合金が好ましいが、特に限定されない。正極集電体となる金属箔の厚さは、例えば10~50μmであり、金属繊維の不織布や金属多孔体シートの厚さは、例えば100~600μmである。正極集電体2aには、集電用のリード片2cを形成してもよい。リード片2cは、図1に示すように、正極集電体と一体に形成してもよく、別途形成したリード片を溶接などで正極集電体に接続してもよい。
 正極活物質として使用されるナトリウム含有遷移金属化合物としては、ナトリウムが層間に出入り可能な層状構造を有する化合物が好ましいが、特に限定されない。
 ナトリウム含有遷移金属化合物は、例えば、クロム酸ナトリウム(NaCrO2など)および鉄マンガン酸ナトリウム(Na2/3Fe1/3Mn2/32など)よりなる群から選択される少なくとも1種であることが好ましい。
 また、クロム酸ナトリウムのCrまたはNaの一部を他元素で置換してもよく、鉄マンガン酸ナトリウムのFe、MnまたはNaの一部を他元素で置換してもよい。例えば、Na1-x1 xCr1-y2 y2(0≦x≦2/3、0≦y≦2/3、M1およびM2は、それぞれ独立にCrおよびNa以外の金属元素であって、例えば、Ni、Co、Mn、FeおよびAlよりなる群から選択される少なくとも1種である)や、Na2/3-x3 xFe1/3-yMn2/3-z4 y+z2(0≦x≦1/3、0≦y≦1/3、0≦z≦1/3、M3およびM4は、それぞれ独立にFe、MnおよびNa以外の金属元素であって、例えばNi、Co、AlおよびCrよりなる群から選択される少なくとも1種である)などを用いることもできる。正極活物質は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
なお、M1およびM3はNaサイト、M2はCrサイト、M4はFeまたはMnサイトを占める元素である。
 結着剤は、正極活物質同士を結合させるとともに、正極活物質を正極集電体に固定する役割を果たす。結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂;芳香族ポリアミドなどのポリアミド樹脂;ポリイミド(芳香族ポリイミドなど)、ポリアミドイミドなどのポリイミド樹脂などが例示できる。結着剤の量は、正極活物質100質量部あたり、1~10質量部が好ましく、3~5質量部がより好ましい。
 導電剤としては、例えば、黒鉛、カーボンブラック、炭素繊維などの炭素質導電剤が挙げられる。これらのうちでは、少量使用で十分な導電経路を形成しやすいことから、カーボンブラックが特に好ましい。導電剤の量は、正極活物質100質量部あたり、5~15質量部が好ましく、5~10質量部がより好ましい。
 正極合剤の層(正極活物質層)は、例えば、正極活物質、結着剤および導電剤を、分散媒に分散させたペーストを、正極集電体の表面に塗布し、乾燥し、必要により圧延することにより形成できる。分散媒としては、アセトンなどのケトン;テトラヒドロフランなどのエーテル;アセトニトリルなどのニトリル;ジメチルアセトアミドなどのアミド;N-メチル-2-ピロリドン(NMP)などが例示できる。これらの分散媒は、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。
 (負極)
 負極としては、例えば、ナトリウム負極の他、電気化学的にナトリウムイオンを吸蔵および放出可能な負極、ナトリウムと合金化可能な材料を含む負極などが使用される。
 負極は、負極集電体および負極集電体に固定化された負極活物質を含み、任意成分として、結着剤、導電剤などを含んでもよい。負極活物質は、正極に用いられるナトリウム含有遷移金属化合物よりも卑な電位で、ナトリウムイオンを溶出し、かつナトリウムを析出したり、ナトリウムイオンを吸蔵および放出したり、ナトリウムと合金化および脱合金化したりすることが可能な材料である。
 図3は、本発明の一実施形態に係る負極の正面図であり、図4は図3のIV-IV線断面図である。
 負極3は、負極集電体3aおよび負極集電体3aに固定化された負極活物質層3bを含む。負極活物質層は、例えば、負極活物質だけで形成してもよく、負極活物質および結着剤を含み、任意成分として、導電剤などを含む負極合剤で形成してもよい。
 負極集電体としては、金属箔、金属繊維製の不織布、金属多孔体シートなどが用いられる。負極集電体を構成する金属としては、ナトリウムと合金化せず、負極電位で安定であることから、銅、銅合金、ニッケル、ニッケル合金、アルミニウム、アルミニウム合金などが好ましいが、特に限定されない。負極集電体となる金属箔の厚さは、例えば10~50μmであり、金属繊維の不織布や金属多孔体シートの厚さは、例えば100~600μmである。負極集電体3aには、集電用のリード片3cを形成してもよい。リード片3cは、図3に示すように、負極集電体と一体に形成してもよく、別途形成したリード片を溶接などで負極集電体に接続してもよい。
 負極活物質としては、ナトリウム、チタン、亜鉛、インジウム、スズ、ケイ素などの金属またはその合金、もしくはその化合物;炭素質材料などが例示できる。なお、合金は、これらの金属以外に、さらに他のアルカリ金属および/またはアルカリ土類金属などを含んでもよい。金属化合物としては、チタン酸ナトリウムなどのナトリウム含有チタン化合物が例示できる。炭素質材料としては、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)などが例示できる。負極活物質は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 負極活物質が金属や合金などである場合、負極活物質層は、メッキ、蒸着、スパッタリングなどの方法により、負極集電体に金属または合金の被膜を形成することにより得ることができる。
 また、負極合剤を用いれば、負極活物質の種類によらず、負極活物質層を形成できる。
負極合剤で形成される負極活物質層において、結着剤は、負極活物質同士を結合させるとともに、負極活物質を負極集電体に固定する役割を果たす。このような結着剤としては、正極合剤に使用される結着剤として例示したものと同様のものが使用できる。負極電位でも安定で、還元分解されない観点から、結着剤として、ポリアミド樹脂、ポリイミド樹脂などを用いてもよい。結着剤の量は、負極活物質100質量部あたり、1~10質量部が好ましく、3~5質量部がより好ましい。
 負極にも、負極活物質の種類によって、正極と同様に、カーボンブラックなどの導電剤を含有させてもよい。金属や合金、ハードカーボンなどを負極活物質として用いる場合には、負極活物質により比較的高い導電性が得られ易いため、特に、導電剤を用いなくても、十分な導電性を得ることができる。一方、ナトリウム含有チタン化合物などの金属化合物を負極活物質として用いる場合には、十分な導電性を確保するために、導電剤を用いてもよい。導電剤の量は、負極活物質100質量部あたり、5~15質量部が好ましく、5~10質量部がより好ましい。
 負極合剤の層(負極活物質層)は、例えば、負極活物質、結着剤、および必要により導電剤を、分散媒に分散させたペーストを、負極集電体の表面に塗布し、乾燥し、必要により圧延することにより形成できる。分散媒としては、正極活物質層について例示したものと同様のものが使用できる。
 (セパレータ)
 セパレータは、正極と負極とを物理的に隔絶して、内部短絡を防止する役割を果たす。
セパレータは、多孔質材料からなり、その空隙には電解質が含浸され、電池反応を確保するために、ナトリウムイオン透過性を有する。
 セパレータとしては、例えば、樹脂製の微多孔膜の他、不織布などが使用できる。セパレータは、微多孔膜や不織布の層だけで形成してもよく、組成や形態の異なる複数の層の積層体で形成してもよい。積層体としては、組成の異なる複数の樹脂多孔層を有する積層体、微多孔膜の層と不織布の層とを有する積層体などが例示できる。
 セパレータの材質は、電池の使用温度を考慮して選択できる。微多孔膜や不織布を形成する繊維に含まれる樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などのポリオレフィン樹脂;PTEF、PVDFなどのフッ素樹脂;ポリフェニレンサルファイド、ポリフェニレンサルファイドケトンなどのポリフェニレンサルファイド樹脂;芳香族ポリアミド樹脂(アラミド樹脂など)などのポリアミド樹脂;ポリイミド樹脂などが例示できる。これらの樹脂は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、不織布を形成する繊維は、ガラス繊維などの無機繊維であってもよい。セパレータは、ポリオレフィン樹脂、フッ素樹脂、ガラス繊維、ポリアミド樹脂およびポリフェニレンサルファイド樹脂よりなる群から選択される少なくとも1種で形成するのが好ましい。
 セパレータは、電解質に対する濡れ性を高めるために、無機フィラーを含んでもよい。
無機フィラーとしては、シリカ、アルミナ、ゼオライト、チタニアなどのセラミックス;タルク、マイカ、ウォラストナイトなどが例示できる。無機フィラーは、粒子状または繊維状が好ましい。セパレータ中の無機フィラーの含有量は、例えば、10~90質量%、好ましくは20~80質量%である。特に、樹脂製の多孔膜が、無機フィラーを含むことが好ましい。セパレータが無機フィラーを含むと、耐熱性を高めることもできる。
 なお、セパレータの電解質に対する濡れ性が低いと、電解質の含浸性が低くなり、電解質を均一に含浸させることが難しい。例えば、PTFEなどのフッ素樹脂を用いたセパレータは、電解質に対する濡れ性が低いため、溶融状態の電解質を含浸させる従来の方法では、電解質を均一に含浸させることが極めて困難である。一方、本発明では、電解質の溶液を用いて、電解質をセパレータなどの電池要素に保持させる。よって、セパレータが、PTFEなどの濡れ性の低い樹脂を含む場合でも、均一かつ速やかに電解質を含浸させることができる。
 セパレータの厚さは、特に限定されないが、例えば10~70μmであればよく、20~50μmであることが好ましい。
 (電解質)
 電解質としては、融点以上の温度で溶融して、イオン性液体となるが、常温(例えば、25~40℃)では固体の塩が使用される。
 電解質は、少なくとも溶融時にナトリウムイオン伝導性を有する。電解質は、溶融状態においては、高いナトリウムイオン伝導性を示す。そのため、電解質は、少なくとも、カチオンとして、溶融塩電池内において電荷のキャリアとなるナトリウムイオンを含む塩(第1塩)を含む。このような第1塩としては、例えば、ビススルフォニルイミドアニオンを含むアニオンと、ナトリウムイオンとの塩が使用できる。なお、第1塩は、カチオンとして、ナトリウムイオンだけを含んでもよく、ナトリウムイオンと、他のカチオンを含む複塩であってもよい。
 ビススルフォニルイミドアニオンとしては、ビススルフォニルイミド骨格を有し、スルフォニル基にフッ素原子を有する構造のアニオンが例示できる。フッ素原子を有するスルフォニル基としては、例えば、フルオロスルフォニル基の他、フルオロアルキル基を有するスルフォニル基が挙げられる。フルオロアルキル基は、アルキル基の一部の水素原子が、フッ素原子で置き換わっていてもよく、全ての水素原子がフッ素原子で置き換わったパーフルオロアルキル基であってもよい。フッ素原子を有するスルフォニル基としては、フルオロスルフォニル基、パーフルオロアルキルスルフォニル基が好ましい。
 このようなビススルフォニルイミドアニオンとしては、具体的には、下記式(1):
Figure JPOXMLDOC01-appb-C000003
(X1およびX2は、それぞれ独立に、フッ素原子または炭素数1~8のパーフルオロアルキル基である。)
で表されるアニオンが挙げられる。
 X1およびX2で表されるパーフルオロアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基などが例示できる。イオン性液体の粘度を低減する観点から、X1およびX2のうち少なくとも一方は、パーフルオロアルキル基であるのが好ましく、X1およびX2の双方が、パーフルオロアルキル基であるのがさらに好ましい。また、イオン性液体の粘度を低減する観点からは、パーフルオロアルキル基の炭素数は、好ましくは1~3であり、1または2であるのがさらに好ましい。
 ビススルフォニルイミドアニオンの具体例としては、ビスフルオロスルフォニルイミドアニオン(FSA-);ビス(トリフルオロメチルスルフォニル)イミドアニオン(TFSA-)、ビス(ペンタフルオロエチルスルフォニル)イミドアニオン、フルオロトリフルオロメチルスルフォニルイミドアニオン((FSO2)(CF3SO2)N-)などのビス(パーフルオロアルキルスルフォニル)イミドアニオン(PFSA-)が挙げられる。
 第1塩としては、ナトリウムイオンとFSA-との塩(NaFSA)、ナトリウムビス(トリフルオロメチルスルフォニル)イミド(NaTFSA)などのナトリウムイオンとPFSA-との塩(NaPFSA)などが好ましい。
 電解質は、融点以上の温度で溶融して、イオン性液体となり、ナトリウムイオン伝導性を示すことにより、溶融塩電池を作動させることができる。コストおよび使用環境を考慮して、適度な温度で電池を作動させる観点から、電解質の融点は、低い方が好ましい。電解質の融点を低下させるために、二種以上の塩の混合物を電解質として用いるのが好ましい。
 具体的には、電解質は、第1塩に加え、さらに、ビススルフォニルイミドアニオンを含むアニオンと、ナトリウムイオン以外の他のカチオンとの塩(第2塩)を含むことが好ましい。第2塩を形成するビススルフォニルイミドアニオンとしては、前記第1塩について例示したものと同様のものが挙げられる。
 他のカチオンとしては、無機カチオン[ナトリウムイオン以外のアルカリ金属カチオン(リチウムイオン、カリウムイオンなど)、アルカリ土類金属カチオン(マグネシウムイオン、カルシウムイオンなど)、遷移金属カチオンなどの金属カチオン;アンモニウムカチオンなど];ピリジニウムカチオン、ピロリジニウムカチオンなどの有機カチオンなどが例示できる。他のカチオンは、一種を単独で使用してもよく、二種以上を用いてもよい。他のカチオンのうち、アルカリ金属カチオン、アルカリ土類金属カチオンなどが好ましい。
 第2塩としては、カリウムイオンとFSA-との塩(KFSA)、カリウムビス(トリフルオロメチルスルフォニル)イミド(KTFSA)などのカリウムイオンとPFSA-との塩(KPFSA)などが好ましい。
 第1塩と第2塩とのモル比(第1塩/第2塩)は、電解質の融点、粘度およびナトリウムイオン伝導性のバランスを考慮すると、例えば、40/60~70/30であり、45/55~65/35であることが好ましく、50/50~60/40であることがさらに好ましい。
 電解質は、溶融状態の粘度が高いため、従来の方法により、溶融状態の電解質を、電極群を収容した電池ケース内に注液しても、電極群に均一に含浸させることは難しい。電解質が均一に含浸されていない状態で充放電を繰り返すと、電池容量が低下し易い。そのため、従来の方法で、電解質を充填した溶融塩電池では、仕上げ充放電が完了した状態で、充放電を繰り返した場合に、1サイクル目の放電容量に対する20サイクル目の放電容量の割合は80%未満になることが通常であり、放電容量の低下を抑制できない。
 ところが、本発明では、電解質の溶液を用いて、電池要素に電解質を保持させる。これにより、溶融塩電池が作動可能な状態にした場合に、十分な量の電解質を溶融塩電池内に充填することができるとともに、電解質を、電極群全体に亘り均一に含浸させることができる。そのため、本発明の溶融塩電池では、電池反応を均一かつ安定して行うことができる。また、充放電を繰り返したときの電池容量の低下を大きく抑制できる。具体的には、本発明の溶融塩電池では、仕上げ充放電が完了した状態で、充放電を繰り返した場合に、1サイクル目の放電容量に対する20サイクル目の放電容量の割合が、90%以上、好ましくは95%以上または97%以上である。
 なお、溶融塩電池は、初回放電容量(1サイクル目の放電容量)にばらつきが見られることがあるため、容量が安定するまで、充放電を繰り返す。このときの充放電を仕上げ充放電という。仕上げ充放電は、通常、5サイクル以下であり、より少ないことが好ましく、例えば、3サイクル以下であってもよい。
 従来の方法により溶融状態の電解質を電極群に含浸させた溶融塩電池では、電解質を、電極群全体に均一に含浸させることが難しいため、仕上げ充放電に要する充放電サイクル数も多くなる。これに対し、本発明では、電解質を、電極群に均一に含浸させることができるため、仕上げ充放電に要する充放電サイクル数を低減できる。
 溶融塩電池を作製する段階では、電解質は、正極、負極およびセパレータからなる群より選択される少なくとも1つの電池要素に保持させればよく、少なくともセパレータに保持されるのが好ましい。ただし、作製した溶融塩電池、特に、作動させる状態にした溶融塩電池では、ナトリウムイオン伝導性を確保する必要があるため、電解質は、上記の電池要素の全てに含浸された状態となる。上記の電池要素のうち少なくとも1つに予め電解質を保持させ、電極群を形成し、電池ケースに収容した後などに、電解質を電池ケース内にさらに添加してもよい。
 (電極群)
 溶融塩電池は、正極と、負極と、これらの間に介在するセパレータと、電解質とを、電池ケースに収容した状態で用いられる。電極群は、正極と負極とを、これらの間にセパレータを介在させて積層または捲回することにより形成される。このとき、金属製の電池ケースを用いるとともに、正極および負極の一方を電池ケースと導通させることにより、電池ケースの一部を第1外部端子として利用することができる。一方、正極および負極の他方は、電池ケースと絶縁された状態で電池ケース外に導出された第2外部端子と、リード片などを用いて接続される。
 次に、図面を参照しながら、本発明の一実施形態に係る溶融塩電池の構造について説明する。ただし、本発明の溶融塩電池の構造は、下記構造に限定されるものではない。
 図5は、電池ケースの一部を切り欠いた溶融塩電池の斜視図であり、図6は、図5におけるVI-VI線断面を概略的に示す縦断面図である。
 溶融塩電池100は、積層型の電極群11、電解質(図示せず)およびこれらを収容する角型のアルミニウム製の電池ケース10を具備する。電池ケース10は、上部が開口した有底の容器本体12と、上部開口を塞ぐ蓋部13とで構成されている。
 溶融塩電池100を組み立てる際には、まず、正極、負極およびセパレータからなる群より選択される少なくとも一種の電池要素に、電解質の溶液を塗布または含浸などにより保持させ、溶液を保持した電池要素から、溶液に含まれる溶媒の少なくとも一部を除去することにより、電池要素に電解質を保持させる。そして、少なくともいずれかの電池要素に電解質を保持した状態で、正極、負極およびこれらの間に介在するセパレータを積層または捲回することにより電極群11が構成され、電池ケース10の容器本体12に挿入される。その後、溶融塩電池100を加熱して、電解質を溶融状態にし、電極群11を構成するセパレータ1、正極2および負極3の空隙に含浸させる。なお、電解質を溶融状態にする工程は、電池ケース10の封口前に行ってもよく、封口後に行ってもよい。電極群11を電池ケース10に収容した後、電池ケース10内に溶融した電解質を追加してもよい。
 溶融塩電池100において、蓋部13の一方側寄りには、電池ケース10と導通した状態で蓋部13を貫通する外部正極端子14が設けられ、蓋部13の他方側寄りの位置には、電池ケース10と絶縁された状態で蓋部13を貫通する外部負極端子15が設けられている。蓋部13の中央には、電子ケース10の内圧が上昇したときに内部で発生したガスを放出するための安全弁16が設けられている。
 積層型の電極群11は、いずれも矩形のシート状である、複数の正極2と複数の負極3およびこれらの間に介在する複数のセパレータ1により構成されている。図6では、セパレータ1は、正極2を包囲するように袋状に形成されているが、セパレータの形態は特に限定されない。複数の正極2と複数の負極3は、電極群11内で積層方向に交互に配置される。
 各正極2の一端部には、正極リード片2aを形成してもよい。複数の正極2の正極リード片2aを束ねるとともに、電池ケース10の蓋部13に設けられた外部正極端子14に接続することにより、複数の正極2が並列に接続される。同様に、各負極3の一端部には、負極リード片3aを形成してもよい。複数の負極3の負極リード片3aを束ねるとともに、電池ケース10の蓋部13に設けられた外部負極端子15に接続することにより、複数の負極3が並列に接続される。正極リード片2aの束と負極リード片3aの束は、互いの接触を避けるように、電極群11の一端面の左右に、間隔を空けて配置することが望ましい。
 外部正極端子14および外部負極端子15は、いずれも柱状であり、少なくとも外部に露出する部分が螺子溝を有する。各端子の螺子溝にはナット7が嵌められ、ナット7を回転することにより蓋部13に対してナット7が固定される。各端子の電池ケース内部に収容される部分には、鍔部8が設けられており、ナット7の回転により、鍔部8が、蓋部13の内面に、ワッシャ9を介して固定される。
[溶融塩電池の製造方法]
 本発明において、溶融塩電池は、具体的には、
 (i)正極、負極、およびセパレータよりなる群から選択される少なくとも1つの電池要素を準備し、
 (ii)電解質と、電解質を溶解する溶媒と、を含む溶液を準備し、
 (iii)電池要素に、溶液を保持させ、
 (iv)溶液を保持した電池要素から、溶媒の少なくとも一部を除去し、
 (v)電池要素から溶媒の少なくとも一部を除去した後、正極、負極および正極と負極との間に介在するセパレータを含む電極群を形成し、
 (vi)電極群を電池ケースに収容する、ことにより製造できる。
 工程(i)において、各電池要素としては、既述のものが使用でき、市販品を使用してもよく、公知の方法により作製してもよい。
 本発明では、溶融塩電池を組み立てる前、具体的には、電極群を組み立てる前に、電解質の溶液を用いて、予め電池要素に電解質を保持させる。そのための電解質の溶液を、工程(ii)で準備する。
 電解質の溶液は、電解質を溶媒に溶解させることにより準備できる。
 電解質は、水分により分解される場合があるため、溶媒としては、電解質を溶解可能な非水系の有機溶媒、特に極性有機溶媒が好ましい。極性有機溶媒は、プロトン性および非プロトン性のいずれであってもよい。このような溶媒としては、例えば、25℃において、100質量部の溶媒に溶解する電解質の量が、例えば、50質量部以上、好ましくは60質量部以上のものを使用できる。
 このような溶媒としては、電解質の塩の種類に応じて適宜選択でき、例えば、アルコール(メタノール、エタノール、1-プロパノール、2-プロパノールなどのアルカノールなど);アセトン、エチルメチルケトンなどのケトン;アセトニトリル、プロピオニトリルなどのニトリルなどが例示できる。溶媒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの溶媒のうち、特に、低級のもの、具体的には、C1-3アルカノール、ジC1-2アルキルケトン、C2-4ニトリルなどが好ましい。
 溶液中の電解質の含有量は、溶媒100質量部に対して、例えば、40~70質量部であり、好ましくは50~70質量部であり、さらに好ましくは60~70質量部である。
電解質の含有量がこのような範囲である場合、十分な量の電解質を電池要素に効果的に保持させることができるので、電解質を溶融状態としたときに、電極群全体に電解質を含浸させやすい。
 溶液の粘度は、25℃において、例えば、50mPa・s以下、好ましくは20mPa・s以下、さらに好ましくは10mPa・s以下である。溶液の粘度がこのような範囲である場合、必要十分な量の電解質を、電池要素に速やかに保持させ易いため有利である。
なお、上記粘度の下限は、特に制限されず、溶媒、電解質などの種類に応じて、例えば、0.2mPa・s以上、好ましくは0.3mPa・s以上であってもよい。
 溶液には、必要に応じて、溶融塩電池の電解質に含有させる公知の添加剤を添加してもよい。添加剤の量は、電解質100質量部に対して、例えば、10質量部以下、好ましくは3~8質量部である。
 工程(iii)では、電池要素に、溶液を接触させることにより、電解質を保持させる。
溶液の電池要素への接触は、例えば、溶液を電池要素の表面に塗布したり、電池要素を溶液に浸漬したりすることにより行うことができる。溶液の塗布は、コーターなどにより塗布したり、スプレーしたりすることにより行うことができる。
 電池要素のうち、溶液を、少なくともセパレータに保持させることが好ましい。セパレータのみに電解質を保持させる場合でも、例えば、セパレータに、溶融塩電池に必要な量の電解質を含む溶液を含浸させ、溶媒を除去し、電極群を形成する際または電極群を形成した後に、加熱下で加圧しながら、電解質をセパレータから正極および負極に移動させることができる。
 電池要素のうち、溶液を、正極、負極およびセパレータの全ての電池要素に保持させることがさらに好ましい。全ての電池要素に保持させると、溶融塩電池に必要な量の電解質の確保が容易になる。
 工程(iv)では、工程(v)での電極群の形成を容易に行うため、溶液を保持した電池要素から、溶媒の少なくとも一部を除去する。溶媒の除去により、電解質が電池要素に一時的に固定される。
 溶媒は、電解質を電池要素に固定して、電極群の形成を容易にする程度に除去すればよい。例えば、溶液に含まれる溶媒の、例えば、3質量%以下、好ましくは1質量%以下になるまで除去される。
 溶媒の除去は、常圧下で行ってもよく、減圧下で行うこともできる。また、溶媒の除去は、必要に応じて、加熱下で行ってもよい。溶媒の除去を効率よく行うためには、溶液を保持した電池要素を、減圧下で加熱することにより行うことが好ましい。
 電池要素の加熱温度は、溶媒および/または電解質の種類に応じて適宜設定でき、例えば、60~100℃、好ましくは80~100℃、さらに好ましくは90~100℃である。
 工程(v)では、正極、負極およびセパレータを積層または捲回することにより、電極群を形成し、得られた電極群を、工程(vi)において、電池ケースに収容する。電極群の形成および溶融塩電池の組み立ては、既述のようにして行うことができる。
 電極群を電池ケースに収容した後、または溶融塩電池を組み立てた後の適当な段階で、電池要素に保持させた電解質を、融点以上に加熱して溶融させ、溶融した電解質を電極群全体に含浸させ、その分布を均質化させる。溶融した電解質は粘性が高いが、本発明では、電池要素に予め保持させておくため、格段に効率よく電極群全体に電解質を均一に含浸させることができる。
[溶融塩電池用電池要素の製造装置]
 溶融塩電池用電池要素の製造装置は、電解質の溶液を用いて、電解質を電池要素に保持させることができる限り、製造装置に含まれる装置や機構は特に制限されない。よって、以下の装置は一例に過ぎない。
 具体的には、電池要素の製造装置は、電解質と溶媒を含む溶液を収容する溶液貯蔵部と、溶液を電池要素に保持させる溶液供給装置と、溶液を保持させた電池要素から溶媒を除去する除去装置と、を具備する。
 溶液貯蔵部としては、溶液を収容できる限り特に制限されず、例えば、タンクなどの貯蔵槽が挙げられる。
 溶液供給装置は、溶液を電池要素に接触させることができる構成を有していればよい。
具体的には、溶液供給装置は、例えば、溶液を電池要素の表面に塗工する装置や機構、電池要素を溶液に浸漬して回収する装置や機構などを備えていることが好ましい。
 好ましい態様では、溶液供給装置は、溶液貯蔵部から溶液の供給を受け、供給された溶液を電池要素の表面に塗工する機構を有する。このような機構としては、溶液をブレードなどによりコーティングする塗布機構、溶液を噴霧するためのスプレー機構などが例示できる。これらの機構では、溶液は、例えば、溶液貯蔵部から、パイプを通して供給される。
 図7は、本発明の一実施形態に係る溶融塩電池用電池要素の製造装置を概略的に示す模式図である。図7では、溶融塩電池用電池要素の製造装置は、溶液を噴霧するためのスプレー機構を備える。具体的には、製造装置は、セパレータなどの電池要素21の表面に、電解質を含む溶液25を噴霧するためのスプレー機構24と、溶液25を噴霧した後、溶液に含まれる溶媒を除去するための除去装置23とを備えている。スプレー機構24は、溶液25を収容するための溶液貯蔵部26aと、溶液貯蔵部26aから供給される溶液25を電池要素21に噴霧するためのノズル24aと、ノズル24aに溶液貯蔵部26aから溶液25を供給するためのパイプ24bとを備えている。
 除去装置23は、溶液25に含まれる溶媒を除去するため、電池要素21を加熱するためのヒーター23aと、除去装置23内を減圧するためのポンプ23bとを具備する。
 図7の製造装置では、電池要素21は、ロール状に巻回された状態で電池要素21を収容する供給リール22aから巻き出され、スプレー機構24のノズル24aの下部に供給され、ノズル24aから電解質を含む溶液25が噴霧される。溶液25の噴霧により溶液25を保持した電池要素21は、除去装置23に供給され、除去装置23内で、溶液25に含まれる溶媒の少なくとも一部が除去される。そして、溶媒が除去され、電解質が保持された電池要素21は、回収リール22bに回収される。
 別の好ましい態様では、溶液供給装置は、溶液貯蔵部に電池要素を送り、溶液貯蔵部内の溶液中に電池要素を浸漬した後、電池要素を溶液から回収する機構を有する。
 図8は、本発明の他の一実施形態に係る溶融塩電池用電池要素の製造装置を概略的に示す模式図である。図8の製造装置は、電池要素21を、電解質を含む溶液25中に浸漬するための溶液貯蔵部26bを具備する。このような製造装置では、電池要素21は、供給リール22aから巻き出され、溶液貯蔵部26内に収容された電解質の溶液25に浸漬された状態で設置されたロール22cに供給される。ロール22cを介して溶液貯蔵部26に供給された電池要素21は、溶液25に浸漬された後、溶液25から取り出され、ロール22dを介して、除去装置23に搬送される。除去装置23内で溶媒が除去された電池要素21は、除去装置23から搬出され、回収リール22bに巻き取られる。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 実施例1
(1)正極の作製
 NaCrO2(正極活物質)90質量部、アセチレンブラック(導電剤)5質量部およびPVDF(結着剤)5質量部を、NMPに分散させて、正極ペーストを調製した。得られた正極ペーストを、アルミニウム箔(縦10cm×横10cm、厚さ20μm)の両面に塗布し、十分に乾燥させ、圧延して、両面に厚さ15μmの正極合剤層を有する総厚50μmの正極を10枚作製した。なお、正極の一辺の一方側端部には、集電用のリード片を形成した。
(2)負極の作製
 負極集電体としてのアルミニウム箔(縦10cm×横10cm、厚さ20μm)の両面に、亜鉛をスパッタリングし、各表面に厚さ130nmの亜鉛膜(負極活物質層)を有する負極を9枚作製した。また、負極集電体の片面のみに負極活物質層を形成する以外は、上記と同様にして、2枚の負極を作製した。なお、負極の一辺の一方側端部には、集電用のリード片を形成した。
(3)電極群の作製
 電解質として、合計3質量部のNaFSAおよびKFSAを、5質量部のメタノールに溶解させて溶液を作製した。NaFSAとKFSAとは、56:44のモル比で使用した。
 溶液を、正極および負極、ならびにセパレータとしてのポリオレフィン微多孔膜のそれぞれの両面に塗布し、次いで、減圧下、100℃で加熱することにより、メタノールを除去した。正極、負極およびセパレータに保持された電解質の総量は、170gであった。
 正極と、負極との間に、セパレータを介在させて、正極リード片同士および負極リード片同士が重なり、かつ正極リード片の束と負極リード片の束とが左右対象な位置に配置されるように積層し、電極群を作製した。電極群の一方の端部には、片面のみに負極活物質層を有する負極を、その負極活物質層が正極と対向するように配置した。また、電極群の他方の端部にも、片面のみに負極活物質層を有する負極を、その負極活物質層が正極と対向するように配置した。
(4)溶融塩電池の組み立て
 上記(3)で得られた電極群を、アルミニウムラミネートフィルム製の電池ケースに収容し、密閉して、公称容量2.6Ahの溶融塩電池を完成させた。また、同様にして、さらに9個の溶融塩電池を作製した。
 次のようにして、作製した溶融塩電池の仕上げ充放電を行った。溶融塩電池を、90℃になるまで加熱し、時間率0.2Cレートの電流値で3.2Vになるまで定電流充電し、3.2Vで定電圧充電を行った。そして、時間率0.2Cレートの電流値で、2.7Vになるまで放電を行った。このときの電池の放電容量を測定し、測定値が安定しない場合(または放電容量が低い場合)には、安定するまで、上記の充放電サイクル(仕上げ充放電サイクル)を繰り返した。
[評価]
(1)放電容量および容量維持率
 仕上げ充放電後の溶融塩電池を、90℃で、仕上げ充放電と同じ充放電条件で1回充放電し、このときの電池の放電容量(初回放電容量、つまり、1サイクル目の放電容量)を測定した。さらに上記の充放電サイクルを20回繰り返し、電池の放電容量を測定し、20サイクル目の容量維持率を算出した。
(2)電解質の含浸性
 作製した電池を解体し、電解質の含浸状態を目視で確認した。
 比較例1
 正極、負極およびセパレータのいずれにも電解質を含む溶液を塗布しない以外は、実施例1と同様にして電極群を形成し、電池ケースに収容した。
 電解質としてのNaFSAおよびKFSAを56:44のモル比で混合し、90℃で加熱することにより溶融塩を得た。電解質としての溶融塩を、電池ケース内に注液し、減圧環境下(10~20Pa)にて、電極群に含浸させた。実施例1と同量の電解質を、電池ケース内に注液するまでに要した時間は、約168時間であった。
 溶融塩を注液した後、電池ケースを密閉することにより、公称容量2.6Ahの溶融塩電池を作製した。得られた溶融塩電池を用いて、実施例1と同様に評価を行った。なお、初回放電容量は、実施例1の10個の溶融塩電池について、初回放電容量の平均を100%とした比率(%)で表した。
 実施例および比較例の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1から明らかなように、比較例1では、初回放電容量が50~72%と低く、容量が安定するまでに要した仕上げ充放電サイクル数は5サイクルであった。これに対して、実施例1では、初回から、高い放電容量が得られ、仕上げ充放電に要するサイクル数は1回に過ぎなかった。また、比較例1では、20サイクルの充放電を繰り返した後には、76%にまで容量維持率が低下した。これに対し、実施例1では、20サイクルの充放電を繰り返した後でも、99%の高い容量維持率が得られた。
 また、溶融塩電池を解体して、電解質の含浸性を確認した結果、実施例1では、電池要素全体に含浸されていた。これに対し、比較例1では、電池要素に含浸されていない領域が存在した。実施例1と比較例1とのこのような電解質の含浸性の違いが、表1に示されるような放電容量や容量維持率の違いに結びつくと考えられる。
 実施例2~4
 電解質を含む溶液を、正極、負極およびセパレータのうち、1つだけの両面に塗布する以外は、実施例1と同様にして、溶融塩電池を作製し、電池の評価を行った。なお、溶液の塗布量は、それぞれ、正極、負極およびセパレータのうちの1つにおける電解質の保持量が、実施例1で、正極、負極およびセパレータに保持させた電解質の総量と同じになるようにした。
 その結果、これらの実施例でも、実施例1と同様の結果が得られた。 
 本発明では、溶融した粘度の高い電解質を電極群に含浸させる工程を省略することができるため、高い生産性で溶融塩電池を製造できる。本発明の溶融塩電池は、電解質が均一に含浸されているため、充放電サイクル特性に優れる。そのため、溶融塩電池は、例えば、夜間電力貯蔵などの電力貯蔵用電源や、電気自動車用バッテリーなどとして有用である。
100:溶融塩電池、1:セパレータ、2:正極、2a:正極リード片、3:負極、3a:負極リード片、7:ナット、8:鍔部、9:ワッシャ、10:電池ケース、11:電極群、12:容器本体、13:蓋部、14:外部正極端子、15:外部負極端子、16:安全弁
21:電池要素、22a:供給リール、22b:回収リール、22c、22d:ロール、23:除去装置、23a:ヒーター、23b:ポンプ、24:スプレー機構、24a:ノズル、24b:パイプ、25:電解質を含む溶液、26a,26b:溶液貯蔵部

Claims (13)

  1.  (i)正極、負極、およびセパレータよりなる群から選択される少なくとも1つの電池要素を準備する工程と、
     (ii)少なくとも溶融時にナトリウムイオン伝導性を有する常温で固体の電解質と、前記電解質を溶解する溶媒と、を含む溶液を準備する工程と、
     (iii)前記電池要素に、前記溶液を保持させる工程と、
     (iv)前記溶液を保持した電池要素から、前記溶媒の少なくとも一部を除去する工程と、
     (v)前記電池要素から前記溶媒の少なくとも一部を除去した後、前記正極、前記負極、および前記正極と前記負極との間に介在する前記セパレータを含む電極群を形成する工程と、
     (vi)前記電極群を電池ケースに収容する工程と、を具備する、溶融塩電池の製造方法。
  2.  前記電解質が、下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    で表され、ただし、X1およびX2は、それぞれ独立に、フッ素原子または炭素数1~8のパーフルオロアルキル基である、ビススルフォニルイミドアニオンと、
    ナトリウムイオンと、の第1塩を、少なくとも含む、請求項1記載の溶融塩電池の製造方法。
  3.  前記電解質が、さらに、前記式(1)で表されるビススルフォニルイミドアニオンと、ナトリウム以外のアルカリ金属またはアルカリ土類金属のカチオンと、の第2塩を含む、請求項2記載の溶融塩電池の製造方法。
  4.  前記セパレータは、ポリオレフィン樹脂、フッ素樹脂、ガラス繊維、ポリアミド樹脂およびポリフェニレンサルファイド樹脂よりなる群から選択される少なくとも1種により形成されている、請求項1~3のいずれか1項に記載の溶融塩電池の製造方法。
  5.  前記工程(iii)が、前記電池要素の表面に前記溶液を塗布すること、または前記電池要素を前記溶液に浸漬すること、を含む、請求項1~4のいずれか1項に記載の溶融塩電池の製造方法。
  6.  前記溶媒は、ケトン、アルコールおよびニトリルよりなる群から選択される少なくとも1種を含む、請求項1~5のいずれか1項に記載の溶融塩電池の製造方法。
  7.  前記溶液中の前記電解質の含有量が、前記溶媒100質量部に対して、40~70質量部である、請求項1~6のいずれか1項に記載の溶融塩電池の製造方法。
  8.  前記工程(iv)が、前記溶液を保持した電池要素を減圧下で加熱すること、を含む、請求項1~7のいずれか1項に記載の溶融塩電池の製造方法。
  9.  正極と、
     負極と、
     前記正極と前記負極との間に介在するセパレータと、
     少なくとも溶融時にナトリウムイオン伝導性を有する常温で固体の電解質と、
     前記正極、前記負極、前記セパレータおよび前記電解質を収容する電池ケースと、
    を具備し、
     仕上げ充放電が完了した状態で、充放電サイクルを繰り返した場合に、1サイクル目の放電容量に対する20サイクル目の放電容量の割合が、90%以上である、溶融塩電池。
  10.  少なくとも溶融時にナトリウムイオン伝導性を有する常温で固体の電解質と、前記電解質を溶解する溶媒と、を含む溶液を収容する溶液貯蔵部と、
     前記溶液を、正極、負極、およびセパレータよりなる群から選択される少なくとも1つの電池要素に保持させる溶液供給装置と、
     前記溶液を保持させた電池要素から前記溶媒を除去する除去装置と、を具備する、溶融塩電池用電池要素の製造装置。
  11.  前記溶液供給装置は、前記溶液貯蔵部に前記電池要素を送り、前記溶液貯蔵部内の前記溶液中に前記電池要素を浸漬した後、前記電池要素を前記溶液から回収する機構を有する、請求項10記載の溶融塩電池用電池要素の製造装置。
  12.  前記溶液供給装置は、前記溶液貯蔵部から前記溶液の供給を受け、前記供給された前記溶液を前記電池要素の表面に塗工する機構を有する、請求項10記載の溶融塩電池用電池要素の製造装置。
  13.  前記除去装置は、前記電池要素を収容する収容部、前記収容部内を減圧するポンプおよび前記電池要素を加熱するヒーターを具備する、請求項10~12のいずれか1項に記載の溶融塩電池用電池要素の製造装置。
PCT/JP2013/071605 2012-08-28 2013-08-09 溶融塩電池およびその製造方法ならびに溶融塩電池用電池要素の製造装置 WO2014034409A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012188058A JP2014044917A (ja) 2012-08-28 2012-08-28 溶融塩電池およびその製造方法ならびに溶融塩電池用電池要素の製造装置
JP2012-188058 2012-08-28

Publications (1)

Publication Number Publication Date
WO2014034409A1 true WO2014034409A1 (ja) 2014-03-06

Family

ID=50183225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071605 WO2014034409A1 (ja) 2012-08-28 2013-08-09 溶融塩電池およびその製造方法ならびに溶融塩電池用電池要素の製造装置

Country Status (2)

Country Link
JP (1) JP2014044917A (ja)
WO (1) WO2014034409A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653835A (zh) * 2020-06-18 2020-09-11 中国科学院上海应用物理研究所 一种大功率高温熔盐电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060152A (ja) * 1996-06-13 1998-03-03 Asahi Chem Ind Co Ltd ゲル系電解質および電気化学素子の製造方法
JP2003197261A (ja) * 2001-12-26 2003-07-11 Kuraray Co Ltd 高分子固体電解質及びこれを用いた二次電池
JP2004022294A (ja) * 2002-06-14 2004-01-22 Toyota Motor Corp 電池用電極およびその製造方法ならびに電池
JP2005179254A (ja) * 2003-12-19 2005-07-07 Kanto Denka Kogyo Co Ltd 常温溶融塩およびその製造方法
JP2007106875A (ja) * 2005-10-13 2007-04-26 Nitto Denko Corp (メタ)アクリルポリマーとその製造方法ならびにそれを用いた高分子固体電解質および電気化学素子
JP2008091343A (ja) * 2007-11-02 2008-04-17 Sony Corp 固体電解質、リチウムイオン電池及びその製造方法
JP2009067644A (ja) * 2007-09-14 2009-04-02 Kyoto Univ 溶融塩組成物及びその利用
WO2013069791A1 (ja) * 2011-11-11 2013-05-16 旭硝子株式会社 非水電解液二次電池
WO2013099816A1 (ja) * 2011-12-27 2013-07-04 住友電気工業株式会社 溶融塩電池および溶融塩電池の製造法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060152A (ja) * 1996-06-13 1998-03-03 Asahi Chem Ind Co Ltd ゲル系電解質および電気化学素子の製造方法
JP2003197261A (ja) * 2001-12-26 2003-07-11 Kuraray Co Ltd 高分子固体電解質及びこれを用いた二次電池
JP2004022294A (ja) * 2002-06-14 2004-01-22 Toyota Motor Corp 電池用電極およびその製造方法ならびに電池
JP2005179254A (ja) * 2003-12-19 2005-07-07 Kanto Denka Kogyo Co Ltd 常温溶融塩およびその製造方法
JP2007106875A (ja) * 2005-10-13 2007-04-26 Nitto Denko Corp (メタ)アクリルポリマーとその製造方法ならびにそれを用いた高分子固体電解質および電気化学素子
JP2009067644A (ja) * 2007-09-14 2009-04-02 Kyoto Univ 溶融塩組成物及びその利用
JP2008091343A (ja) * 2007-11-02 2008-04-17 Sony Corp 固体電解質、リチウムイオン電池及びその製造方法
WO2013069791A1 (ja) * 2011-11-11 2013-05-16 旭硝子株式会社 非水電解液二次電池
WO2013099816A1 (ja) * 2011-12-27 2013-07-04 住友電気工業株式会社 溶融塩電池および溶融塩電池の製造法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653835A (zh) * 2020-06-18 2020-09-11 中国科学院上海应用物理研究所 一种大功率高温熔盐电池

Also Published As

Publication number Publication date
JP2014044917A (ja) 2014-03-13

Similar Documents

Publication Publication Date Title
WO2012111601A1 (ja) 三次元網状アルミニウム多孔体、該アルミニウム多孔体を用いた電極、該電極を用いた非水電解質電池、非水電解液を用いたキャパシタ及びリチウムイオンキャパシタ
WO2012111612A1 (ja) 電気化学デバイス
US8497037B2 (en) Current collector using three-dimensional network aluminum porous body, electrode using the current collector, and nonaqueous electrolyte battery, capacitor and lithium-ion capacitor with nonaqueous electrolytic solution, each using the electrode, and method for producing the electrode
WO2012111613A1 (ja) 電気化学デバイス用電極およびその製造方法
JP6065443B2 (ja) 耐熱電池およびその充放電方法
KR20140003548A (ko) 집전체용 3차원 그물 형상 알루미늄 다공체, 당해 알루미늄 다공체를 이용한 집전체 및 당해 집전체를 이용한 전극, 그리고 당해 전극을 이용한 비수 전해질 전지, 커패시터 및 리튬 이온 커패시터
JP5976551B2 (ja) 三次元網状アルミニウム多孔体及び該アルミニウム多孔体を用いた電極並びに該電極を用いた非水電解質電池、非水電解液を用いたキャパシタ及びリチウムイオンキャパシタ
US9484570B2 (en) Method for producing electrode for electrochemical element
US20130040205A1 (en) Electrode for electrochemical element and method for producing the same
KR20140012060A (ko) 집전체용 3차원 그물 형상 알루미늄 다공체, 당해 알루미늄 다공체를 이용한 전극, 비수 전해질 전지, 커패시터 및 리튬 이온 커패시터
JP2014107141A (ja) 溶融塩電池およびその製造方法
WO2014136357A1 (ja) ナトリウム溶融塩電池用正極活物質、ナトリウム溶融塩電池用正極およびナトリウム溶融塩電池
WO2014119157A1 (ja) ナトリウム溶融塩電池用電極およびナトリウム溶融塩電池
US8541134B2 (en) Electrode using three-dimensional network aluminum porous body, and nonaqueous electrolyte battery, capacitor and lithium-ion capacitor with nonaqueous electrolytic solution, each using the electrode
JP2015153700A (ja) 蓄電デバイス
KR20140012057A (ko) 집전체용 3차원 그물 형상 알루미늄 다공체, 당해 알루미늄 다공체를 이용한 집전체, 전극, 비수 전해질 전지, 커패시터 및 리튬 이온 커패시터
WO2014034409A1 (ja) 溶融塩電池およびその製造方法ならびに溶融塩電池用電池要素の製造装置
JP2012243924A (ja) キャパシタ
US20130004854A1 (en) Electrode for electrochemical element
JP2015046342A (ja) 溶融塩電池の製造方法および溶融塩電池
JP2015153699A (ja) 蓄電デバイス
KR20150095242A (ko) 비전도성 다공막이 구비된 소듐 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832649

Country of ref document: EP

Kind code of ref document: A1