WO2014034238A1 - 光集積回路、および光集積回路における光デバイスの検査方法 - Google Patents

光集積回路、および光集積回路における光デバイスの検査方法 Download PDF

Info

Publication number
WO2014034238A1
WO2014034238A1 PCT/JP2013/067299 JP2013067299W WO2014034238A1 WO 2014034238 A1 WO2014034238 A1 WO 2014034238A1 JP 2013067299 W JP2013067299 W JP 2013067299W WO 2014034238 A1 WO2014034238 A1 WO 2014034238A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
waveguides
integrated circuit
inspection
Prior art date
Application number
PCT/JP2013/067299
Other languages
English (en)
French (fr)
Inventor
大典 岡本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/422,986 priority Critical patent/US20150247779A1/en
Priority to JP2014532850A priority patent/JP6206409B2/ja
Publication of WO2014034238A1 publication Critical patent/WO2014034238A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices

Definitions

  • the present invention relates to an optical integrated circuit used in an optical communication system and an optical information processing system, and an optical device inspection method in the optical integrated circuit.
  • An optical integrated circuit used in an optical communication system or an optical information processing system has, for example, an optical waveguide provided with a core layer and a cladding layer made of a silicon-based material on a silicon substrate, as described in Patent Document 1. It is being provided with high performance and low cost using a method for manufacturing such an optical integrated circuit.
  • Non-Patent Document 1 discloses an optical coupler that uses a diffraction grating (grating) and makes light from an optical fiber incident from the wafer surface and coupled to an optical waveguide. As a result of using this optical coupler, inspection in a wafer state is possible before dicing.
  • grating diffraction grating
  • optical integrated circuit in a wafer state, it is necessary to inspect characteristics of many optical devices. Since the optical integrated circuit is formed with a high density, a high alignment accuracy is required to couple the optical fiber to the optical waveguide of the optical integrated circuit via an optical coupler during inspection.
  • Optical device characteristic inspection involves coupling an optical fiber to the optical waveguide provided with the optical device via an optical coupler, inputting inspection light from the optical fiber to the optical waveguide, and monitoring the output light. Do. For this reason, if it is going to test
  • an object of the present invention is to provide an optical integrated circuit capable of simply and surely performing characteristic inspection of a large number of optical devices in a wafer state, and an optical device inspection method in the optical integrated circuit. is there.
  • the optical integrated circuit of the present invention propagates in the optical coupler in which light is incident from the surface of the semiconductor substrate, the optical waveguide that propagates the inspection light incident on the optical coupler, and the optical waveguide.
  • An optical distributor that distributes the inspection light to a plurality of optical waveguides; and an optical device that is connected to each of the plurality of optical waveguides distributed using the optical distributor.
  • the present invention is also a method for inspecting the optical device in the optical integrated circuit as described above, wherein the inspection light is incident from the optical coupler, and each of the plurality of optical waveguides is made using the optical distributor. And the optical characteristics of the optical device are evaluated based on output light obtained by the distributed inspection light passing through the optical device.
  • light incident from one optical coupler is distributed to a plurality of optical waveguides each provided with an optical device, so that characteristic inspection of a large number of optical devices can be easily and reliably performed in a wafer state. It becomes possible.
  • FIG. 1 schematically shows an example of an inspection circuit 10 ⁇ / b> A formed on a wafer (semiconductor substrate) 100.
  • a plurality of optical devices 20 in each optical integrated circuit C and inspection light are incident on each optical device 20 on the wafer 100 on which the plurality of optical integrated circuits C are formed.
  • the inspection circuit 10A for inspecting the optical characteristics is formed.
  • the inspection circuit 10 ⁇ / b> A includes an optical coupler 11 provided on the wafer 100, an optical distributor 12 that distributes light, and an optical waveguide 13.
  • the wafer 100 is made of a semiconductor substrate material, and its specific material is not particularly limited, and may be silicon or a compound semiconductor.
  • the optical coupler 11 has a function of coupling the inspection light S 1 incident from the surface of the wafer 100 to the optical waveguide 13 A connected to the optical coupler 11.
  • the optical coupler 11 can be configured using, for example, a diffraction grating, a 45-degree mirror, or the like.
  • a diffraction grating for the optical coupler 11 that can be manufactured by a general semiconductor process and can flexibly design a wavelength band, an incident angle of light, and the like.
  • the wavelength band of the inspection light S1 input from the optical coupler 11 is not particularly limited, and an optimal one can be used as appropriate in consideration of the substrate material, the manufacturing process, and the like.
  • the light distributor 12 distributes the light propagated through the optical waveguide 13 to a plurality of optical waveguides 13.
  • the optical distributor 12 distributes the light propagated through the one optical waveguide 13 to the two optical waveguides 13.
  • the two optical waveguides 13B are connected to the optical distributor 12 connected to the optical coupler 11 through the optical waveguide 13A, and the optical distributors are respectively connected to the two optical waveguides 13B and 13B.
  • 12 are provided and distributed to the two optical waveguides 13C and 13C, respectively.
  • Each of the optical waveguides 13 ⁇ / b> C branched into four systems in this way is connected to the input port of the optical device 20.
  • a distribution coupler having a Y-shaped branch structure or the like may be used, or a multimode interferometer may be used.
  • An optical switch may be used as the optical distributor 12. In this case, the optical switch is switched, light is alternately supplied to the optical waveguides 13 of a plurality of systems, and the light is distributed in a time division manner. The optical switch can select the optical waveguide 13 to which light is supplied in accordance with electrical control.
  • a distribution coupler or the like is used for the optical distributor 12, the light is simultaneously distributed to a plurality of optical waveguides 13, so that in the individual optical waveguides 13 to be supplied, the light energy is reduced due to the division.
  • the light is supplied to the optical waveguide 13 as a distribution destination in a time division manner, so that the light is not attenuated for distribution, and the inspection light is not attenuated. Energy can be increased. Therefore, the energy of the inspection light S1 can be small (the output of the light source can be small).
  • the path from the optical coupler 11 to each optical device 20 is divided into four paths L1 to L4.
  • these four paths L1 to L4 are formed so that the path lengths from the optical coupler 11 to the optical device 20 are equal.
  • the two optical waveguides 13B and 13B between the first-stage optical distributor 12 and the second-stage optical distributor 12 as viewed from the optical coupler 11 are made equal in length, and The four optical waveguides 13C, 13C,... Between the two optical distributors 12 at the stage and the respective optical devices 20 have the same length.
  • the inspection light S1 incident on the optical coupler 11 from the surface of the wafer 100 using an optical fiber or the like is propagated through the optical waveguide 13 and uses the optical distributors 12, 12,.
  • the optical distributors 12, 12, are distributed to a plurality of systems and reach each optical device 20.
  • various optical characteristics of the optical device 20 can be inspected. For example, when the optical device 20 is an optical modulator, it is possible to inspect loss, extinction ratio, frequency characteristics, and the like.
  • a light receiving element is provided on the same wafer 100 where the optical device 20 is provided, and this light is converted into an electrical signal and monitored using this electrical signal. Is also possible.
  • a diffraction grating or the like can be provided on the rear side of the optical device 20, and the light passing through the optical device 20 can be emitted from the surface of the wafer 100 to the outside and coupled to an optical fiber or the like to monitor this light. .
  • the characteristic inspection of the plurality of optical devices 20 can be performed only by inputting the inspection light S ⁇ b> 1 to one optical coupler 11. Therefore, inspection of a large number of optical devices 20 can be performed easily and efficiently on the wafer 100.
  • the inspection light S1 is input to the four optical devices 20 to be inspected simultaneously through the same optical coupler 11, it is not affected by variations in characteristics of the optical coupler 11 and is highly accurate. Detection can be performed.
  • the energy of the inspection light S1 is equally distributed to each optical device 20. Thereby, a highly accurate comparison using the absolute value of the detection result is possible between the optical devices 20. Then, the energy distribution of the output light S2 output from each optical device 20 is measured, a deviation from the average value of the distribution is obtained for each optical device 20, and when the obtained deviation exceeds a preset deviation. It is also possible to detect that the optical device 20 is abnormal.
  • the optical distributor 12 is arranged in two stages in series. However, the optical distributor 12 may be arranged in only one stage or in three or more stages. Further, the number of systems distributed by the optical distributor 12 is not limited to two, and may be three or more. Therefore, for example, if the number of stages of the optical distributor 12 is increased and the number of distribution in each optical distributor 12 is increased, the number of systems that can be distributed from one optical coupler 11 can be greatly increased.
  • each optical device passes from the optical coupler 11 through a plurality of stages (three stages in the present embodiment) of optical distributors 12. Paths L1 to L8 leading to 20 are of unequal length. In the first embodiment, an example in which the paths L1 to L4 have the same length is shown.
  • FIG. 2 of the present embodiment schematically shows such a case.
  • FIG. 3A, FIG. 3B, and FIG. 3C show the relationship between the wiring length and the change in detected energy caused by the influence of loss according to the wiring length.
  • the light energy intensity in the path L1 with the longest path length and the light energy intensity in the path L8 with the shortest path length had an intermediate length.
  • the reference value of the light energy in the paths L2 to L7 is calculated (the chain line in FIGS. 3A and 3B). Then, the malfunction of the optical device 20 can be determined according to whether or not the deviation of the actual measurement value of the light energy in the paths L2 to L7 from the reference value is greater than or equal to a predetermined value.
  • the optical energy input to each optical device 20 can be made equal by adjusting the energy branching ratio in the optical distributor 12.
  • the material and dimensions of the optical waveguide 13 are appropriately selected and the propagation loss of each of the paths L1 to L8 is adjusted, the inspection light energy input to each optical device 20 can be made equal.
  • the optical waveguide 13 can be made of a material such as a polymer with low loss, SiON, SiN or the like.
  • the propagation loss can be adjusted by changing the waveguide width of the optical waveguide 13.
  • the path L2 ⁇ having an intermediate length between the intensity of light energy in the path L1 having the longest path length and the intensity of light energy in the path L8 having the shortest path length.
  • the reference value of the light energy at L7 was calculated.
  • the reference value of the optical energy in the paths having other path lengths is calculated. The measured values of these routes can also be evaluated.
  • outputs of light input from the optical coupler 11 are respectively provided for the paths L2 to L7 provided with the optical device 20 and the reference optical waveguides 30A and 30B of the paths L1 and L8.
  • the light S2 is monitored.
  • the detection values in the paths L1 and L8 are not affected by the optical device 20, and the length is known from the design value. Therefore, the loss of the optical waveguide 13 whose length is known from the design value in each of the paths L2 to L7 can be calculated based on the detected value. If the loss in the optical waveguide 13 is excluded from the detection values in the paths L2 to L7, the evaluation of the optical device 20 in the paths L2 to L7 can be performed more stably and with high accuracy.
  • the chips 200 and 200 may be divided using mechanical processing such as dicing. In this case, even if the optical waveguide 13 constituting the inspection circuit 10D is divided for dicing, no trouble occurs.
  • the inspection circuit 10D is formed across the two chips 202 and 200, but of course, the inspection circuit may be formed across the three or more chips 200.
  • the optical modulator 25 is composed of a 2 ⁇ 2 Mach-Zehnder interferometer having two ports for input and output.
  • One input port P1 of the optical modulator 25 is connected to an optical waveguide 41 through which light is transmitted from the signal transmission light source 40 constituting the optical integrated circuit C.
  • An optical fiber 43 is connected to one output port P ⁇ b> 2 of the optical modulator 25 through an optical waveguide 42.
  • the signal light S 5 input from the signal transmission light source 40 through the optical waveguide 41 is modulated, and the modulated signal light S 5 is output from the optical fiber 43 to the outside through the optical waveguide 42.
  • optical waveguide 13 distributed by using the optical distributor 12 in the inspection circuit 10E is coupled to the other input port P3 of the optical modulator 25.
  • a monitor light receiver 45 is provided on the other output port P4 of the optical modulator 25 via the optical waveguide 44.
  • the inspection light S1 coupled to the optical waveguide 13 via the optical coupler 11 of the inspection circuit 10E is distributed to each optical modulator 25 using the optical distributor 12. If the output light S2 is monitored by the monitor light receiver 45, the characteristics of each light modulator 25 can be inspected.
  • the optical modulator 25 having two ports for input and output as the optical device 20 to be inspected, the signal transmission that is the original function of the optical device 20 and the optical characteristics of the optical device 20 are improved. Both inspections can be realized on the wafer 100.
  • the inspection circuit 10F of the optical integrated circuit C in the present embodiment has a configuration that uses a wavelength multiplexing technique for the inspection light S1 in addition to the configuration of the inspection circuit 10E in the fifth embodiment. ing. That is, the optical waveguide 13 branched into a plurality through the first duplexer 18 and the second duplexer 19 is connected to the input port P3 of the optical device 20.
  • An optical waveguide 48 is branched from the optical waveguide 44 connected to the output port P4 of each optical device 20 via a duplexer 47.
  • the optical waveguide 48 merges into one optical waveguide 48 via the multiplexers 50 and 50 and is connected to the optical coupler 51.
  • the inspection light S1 on which light of a plurality of wavelengths ( ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5) different from the wavelength ( ⁇ 1) of the signal light S5 output from the signal transmission light source 40 is superimposed is the optical coupler 11.
  • the inspection light S1 is input for each wavelength using the first demultiplexer 18 and the second demultiplexer 19, and inspection light having different wavelengths ( ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5) for each optical device 20. S1 is input.
  • the light that has passed through the optical device 20 is input to the demultiplexer 47, the signal light S5 ( ⁇ 1) is branched to the monitor light receiver 45, and the output light S2 ( ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5) is the other optical waveguide 48. Fork. Thereafter, the output light S ⁇ b> 2 is multiplexed by the multiplexer 50 and output from the optical coupler 51.
  • each wavelength ( ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5) Optical characteristics of the optical device 20 corresponding to [lambda] 3, [lambda] 4, [lambda] 5) can be obtained.
  • the output light S2 from the plurality of optical devices 20 can also be output and detected from one optical coupler 51, so that a simpler inspection is possible.
  • the optical modulator 25 as the optical device 20 using the Mach-Zehnder interferometer has no wavelength dependence in principle, the wavelength ⁇ 1 of the signal light S5 and the wavelengths of the inspection light S1 ( ⁇ 2, ⁇ 3, ⁇ 4, It does not matter if ⁇ 5) is different. Further, it is possible to suppress excessive loss at the intersection between the optical waveguide 13 and the optical waveguide 48 by using multilayer wiring or the like.
  • the inspection circuit 10G of the optical integrated circuit C uses the inspection light S1 having the same wavelength as the signal light S5, and uses the delay due to the difference in wiring length. Disassembly is performed and the output light S2 is collectively measured.
  • an optical switch 55 is provided in the optical waveguide 44 connected to the output port P4 of each optical device 20.
  • a monitor light receiver 45 and an optical waveguide 60 are connected to the optical switch 55, and the connection destination can be switched.
  • the paths L1 to L4 are set so that the path lengths from the optical devices 20 to the optical couplers (output optical couplers) 63 are different from each other.
  • Each optical waveguide 60 merges into one optical waveguide 60 via optical multiplexers 62 and 62, and this one optical waveguide 60 is connected to an optical coupler 63.
  • the inspection light S ⁇ b> 1 having the same wavelength as the signal light S ⁇ b> 5 from the signal transmission light source 40 is input via the optical coupler 11.
  • the optical switch 55 is used to output the output light S2 output from each optical modulator 25 to the optical waveguide 60.
  • the inspection information of each optical modulator 25 is included in the output light S2 having the same wavelength.
  • the output light S2 is output according to the path length. There is a delay. Therefore, each optical modulator 25 can be inspected by performing time resolution on the output light S2 output from the optical coupler 63.
  • the output light S2 from the plurality of optical devices 20 can be output from the single optical coupler 63 and detected, so that simple inspection is possible. Become.
  • the inspection circuit 10H of the optical integrated circuit C in this embodiment is provided with a plurality of optical couplers 11A and 11B for inputting the inspection light S1. That is, the optical waveguide 13 branched from the two optical couplers 11A and 11B via the optical distributors 12, 12,... Is provided.
  • the optical waveguide 13 branched from one optical coupler 11A is connected to one of the two input ports of each optical modulator 25 to be inspected, and branched from the other optical coupler 11B to the other input port.
  • the optical waveguide 13 is connected.
  • the two optical couplers 11A and 11B are provided as inspection ports, and the light modulator 25 includes light input from the optical coupler 11A and light input from the optical coupler 11B. Evaluate the optical properties. Then, the obtained optical characteristics can be averaged or the detection result can be validated when the difference between the optical characteristics is within a certain range. Thereby, the influence resulting from the dispersion
  • optical integrated circuit of the present invention and the optical device inspection method in the optical integrated circuit are not limited to the above-described embodiments described with reference to the drawings, and various modifications are possible within the technical scope thereof. Can be considered.
  • the optical modulator 25 having two ports for both input and output is taken as an example, but the number of ports may be three or more. .
  • the optical device 20 other than the optical modulator 25 can be the inspection target.
  • the optical couplers 11, 11A, 11B are removed by etching or the like, and one or a plurality of signal transmission signals are transmitted.
  • a light source may be mounted.
  • the configurations shown in the first to eighth embodiments can be appropriately combined. In addition to this, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate without departing from the gist of the present invention.
  • the present invention can be used in optical communication systems and optical information processing systems.
  • characteristic inspection of a large number of optical devices can be easily and reliably performed in a wafer state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Integrated Circuits (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

 ウエハ状態で、多数の光デバイスの特性検査を、簡便かつ確実で行う。光集積回路は、半導体基板の表面から光が入射される光結合器と、光結合器に入射された検査光を伝搬する光導波路と、光導波路で伝搬される検査光を複数の光導波路に分配する光分配器と、光分配器を用いて分配された複数の光導波路にそれぞれ設けられた光デバイスとを備える。

Description

光集積回路、および光集積回路における光デバイスの検査方法
 本発明は、光通信システムや光情報処理システムで用いられる光集積回路、および光集積回路における光デバイスの検査方法に関する。
 光通信システムや光情報処理システムで用いられる光集積回路は、例えば特許文献1に記載されているように、シリコン基板上に、シリコン系材料からなるコア層、クラッド層を備えた光導波路を有した光集積回路を作製する手法を用いて、高性能かつ安価に提供されつつある。
 多数の光デバイスを集積した光集積回路においては、ウエハ状態で、光デバイスの光学特性の検査を行うことで、ウエハ状態の光集積回路をダイシングして個々のモジュールへ分割するに先立って、良品を選別するのが好ましい。
 そこで、例えば、非特許文献1には、回折格子(グレーティング)を用い、光ファイバからの光をウエハ表面から入射して光導波路に結合させる光結合器が開示されている。この光結合器を用いる結果、ダイシングする前にウエハ状態での検査が可能となっている。
日本特開2011-232567号公報
Attila Mekis et al., "A Grating-Coupler-Enabled CMOS Photonics Platform", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 17, NO. 3, pp. 597-608, 2011年 (Fig. 3).
 しかしながら、ウエハ状態の光集積回路においては、多数の光デバイスの特性検査が必要となる。光集積回路は、高密度に形成されているため、検査に際して、光結合器を介して光ファイバを光集積回路の光導波路に結合するには、高アライメント精度が要求される。
 光デバイスの特性検査は、その光デバイスが設けられた光導波路に、光結合器を介して光ファイバを結合させ、光ファイバから光導波路に検査光を入力し、その出力光をモニタリングすることで行う。このため、ウエハ上の多数のモジュールにそれぞれ設けられた光デバイスの全てを検査しようとすると、多大な時間がかかり、コスト上昇を招くという問題がある。
 また、複数組の光ファイバおよび光結合器を用い、複数の光デバイスの検査を同時に行うこともできる。しかし、その場合、複数の光結合器間での特性のばらつきに伴って、複数の光結合器と光ファイバとの結合ロスのばらつきが含まれてしまい、光デバイス特性の検査精度に影響が出るという問題もある。
 そこでなされた本発明の目的は、ウエハ状態で、多数の光デバイスの特性検査を、簡便にかつ確実に行うことのできる光集積回路、および光集積回路における光デバイスの検査方法を提供することである。
 本発明は、上記課題を解決するため、以下の手段を採用する。
 すなわち、本発明の光集積回路は、半導体基板の表面から光が入射される光結合器と、前記光結合器に入射された前記検査光を伝搬する光導波路と、前記光導波路で伝搬される前記検査光を複数の光導波路に分配する光分配器と、前記光分配器を用いて分配された複数の前記光導波路にそれぞれ接続された光デバイスと、を備える。
 また、本発明は、上記したような光集積回路における前記光デバイスの検査方法であって、前記光結合器から前記検査光を入射し、前記光分配器を用いて複数の前記光導波路のそれぞれに前記検査光を分配し、分配された前記検査光が前記光デバイスを経ることで得られる出力光に基づいて、前記光デバイスの光学特性を評価する。
 本発明では、一つの光結合器から入射した光を、それぞれ光デバイスが設けられた複数の光導波路に分配することで、多数の光デバイスの特性検査をウエハ状態で簡便かつ確実に行うことが可能となる。
第1の実施形態におけるウエハ上の光集積回路に備えられた検査回路の構成を示す図である。 第2の実施形態におけるウエハ上の光集積回路に備えられた検査回路の構成を示す図である。 長さが異なる二つの導波路における検出結果から、他の長さの導波路の評価を行う方法を示す図である。 長さが異なる二つの導波路における検出結果から、他の長さの導波路の評価を行う方法を示す図である。 長さが異なる二つの導波路における検出結果から、他の長さの導波路の評価を行う方法を示す図である。 第3の実施形態におけるウエハ上の光集積回路に備えられた検査回路の構成を示す図である。 第4の実施形態におけるウエハ上の光集積回路に備えられた検査回路の構成を示す図である。 第5の実施形態におけるウエハ上の光集積回路に備えられた検査回路の構成を示す図である。 第6の実施形態におけるウエハ上の光集積回路に備えられた検査回路の構成を示す図である。 第7の実施形態におけるウエハ上の光集積回路に備えられた検査回路の構成を示す図である。 第8の実施形態におけるウエハ上の光集積回路に備えられた検査回路の構成を示す図である。
 以下、添付図面を参照して、本発明に係る光集積回路、および光集積回路における光デバイスの検査方法を実施するための形態を説明する。しかし、本発明はこれらの実施形態のみに限定されるものではない。
(第1の実施形態)
 図1は、ウエハ(半導体基板)100上に形成された検査回路10Aの例を模式的に示す。
 図1に示すように、複数の光集積回路Cが形成されたウエハ100上には、それぞれの光集積回路Cにおいて、複数の光デバイス20と、それぞれの光デバイス20に検査光を入射して、その光学特性を検査する検査回路10Aと、が形成されている。
 検査回路10Aは、ウエハ100上に設けられた光結合器11と、光を分配する光分配器12と、光導波路13と、を備える。
 ウエハ100は、半導体基板材料からなり、その具体的材料については特に限定されるものではなく、シリコンでも化合物半導体でも良い。
 光結合器11は、ウエハ100の表面から入射させた検査光S1を、この光結合器11に接続された光導波路13Aに結合させる機能を有している。この光結合器11は、例えば、回折格子や45度ミラー等を用いて構成することができる。好ましくは、一般的な半導体プロセスで作製することができ、波長帯域や光の入射角等を柔軟に設計することのできる、回折格子を光結合器11に用いるのが好ましい。光結合器11から入力される検査光S1の波長帯についても特に限定されるものではなく、基板材料や製造プロセス等を勘案して適宜最適なものを用いることができる。
 光分配器12は、光導波路13を介して伝搬された光を複数系統の光導波路13に分配する。本実施形態では、光分配器12は、1系統の光導波路13を介して伝搬された光を2系統の光導波路13に分配する。具体的には、光結合器11に光導波路13Aを介して接続された光分配器12に2系統の光導波路13Bが接続され、さらに、2系統の光導波路13B,13Bのそれぞれに光分配器12が設けられ、それぞれ2系統の光導波路13C,13Cに分配されている。そして、このようにして計4系統に分岐された光導波路13Cのそれぞれが、光デバイス20の入力ポートに接続されている。
 光分配器12には、Y字型分岐構造の分配カプラ等を用いても良いし、マルチモード干渉計を用いても良い。また、光分配器12として、光スイッチを用いても良い。この場合、光スイッチを切り替えて、複数系統の光導波路13へ交互に光を供給し、時分割で光を分配する。光スイッチは、電気的な制御に従って、光の供給先となる光導波路13を選択することができる。光分配器12に分配カプラ等を用いた場合、光が複数系統の光導波路13に同時に分配されるため、供給先の個々の光導波路13においては、光のエネルギが分割のために小さくなる。これに対し、光スイッチを光分配器12に用いた場合、分配先の光導波路13には、光が時分割で供給されるため、分配のために光が減衰することがなく、検査光のエネルギを大きくすることができる。したがって、検査光S1のエネルギが小さくて済む(光源の出力が小さくて済む)。
 上記のようにして、光結合器11から各光デバイス20に至る経路は、4つの経路L1~L4に分割されている。
 本実施形態において、これら4つの経路L1~L4は、光結合器11から光デバイス20に至るまでの経路長が等しくなるよう形成されている。具体的には、光結合器11から見て1段目の光分配器12と、2段目の光分配器12との間の二本の光導波路13B,13Bを等しい長さとし、さらに、2段目の2つの光分配器12とそれぞれの光デバイス20との間の四本の光導波路13C,13C,…をそれぞれ等しい長さとした。
 このような構成においては、光ファイバ等を用いてウエハ100の表面から光結合器11に入射された検査光S1は、光導波路13を介して伝搬され、光分配器12,12,…を用いて複数系統に分配され、各光デバイス20に到達する。
 そして、各光デバイス20を経た出力光S2をモニタリングすれば、光デバイス20の各種光学特性を検査することが可能である。例えば、光デバイス20が光変調器である場合、損失、消光比、周波数特性等を検査することが可能である。
 出力光S2をモニタリングするために、光デバイス20が設けられているのと同一のウエハ100上に、受光素子を設け、この光を電気信号に変換してこの電気信号を使用してモニタリングすることも可能である。これ以外にも、光デバイス20の後段側に回折格子等を設け、光デバイス20を経た光をウエハ100の表面から外部に出射させて光ファイバ等に結合させ、この光をモニタリングすることもできる。
 上述したような構成を用いれば、1つの光結合器11に検査光S1を入力するだけで、複数の光デバイス20の特性検査を行うことができる。したがって、多数の光デバイス20の検査をウエハ100上で簡便かつ効率よく行うことができる。
 しかも、同時に検査される4個の光デバイス20には、同じ光結合器11を介して検査光S1が入力されるので、光結合器11の特性のばらつきの影響を受けずに、高精度な検出を行うことができる。
 また、光結合器11から各光デバイス20までの経路L1~L4の経路長が等しくなるようにこれら経路が形成されているので、検査光S1のエネルギが各光デバイス20に等しく配分される。これにより、各光デバイス20間で、検出結果の絶対値を用いた高精度な比較が可能となる。すると、各光デバイス20から出力される出力光S2のエネルギ分布を計測し、その分布の平均値からの偏差を各光デバイス20について求め、求められた偏差があらかじめ設定した偏差を超える場合には、その光デバイス20が異常であると検出することも可能となる。
 なお、上記第1の実施形態において、光分配器12を直列的に2段階に配置する構成としたが、光分配器12を1段階のみ、あるいは3段階以上に配置しても良い。
 また、光分配器12で分配する系統数は、2系統に限らず、3系統以上としても良い。
 そこで、例えば、光分配器12の段数を増やすとともに、各光分配器12における分配数を増やせば、一つの光結合器11から分配できる系統数を大幅に増やすことができる。
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。以下に説明する第2の実施形態において、上記第1の実施形態と共通する構成については、図中に同符号を付してその説明を省略し、上記第1の実施形態との差異を中心に説明を行う。
 図2に示すように、本実施形態での光集積回路Cの検査回路10Bにおいては、光結合器11から、複数段(本実施形態では3段)の光分配器12を経て、各光デバイス20へと至る経路L1~L8が、不等長とされている。上記第1の実施形態においては、経路L1~L4を等長とする例を示したが、実際に半導体基板上に光集積回路Cをレイアウトする場合、電気的・物理的なスペース、電気的・光学的クロストーク、迷光、光導波路13の最小曲げ寸法等の制約条件のために、経路L1~L8の長さが異なる場合がある。本実施形態の図2では、その場合を模式的に示している。
 このような構成において、経路L1~L8のそれぞれにおいて、各光デバイス20の光学特性を高精度に求めるためには、各デバイス20からの出力光S2が、経路L1~L8のそれぞれにおける光導波路13の伝搬損失の寄与を含んでいることを考慮する。
 図3A,図3B,図3Cは、配線長と、配線長に応じた損失の影響に起因する検出エネルギの変化との関係を示すものである。この場合、図3Aおよび図3Bに示すように、経路長が最も長い経路L1における光エネルギの強さと、経路長が最も短い経路L8における光エネルギの強さとから、その中間の長さを有した経路L2~L7における光エネルギの基準値を算出する(図3Aおよび図3B中の一点鎖線)。そして、経路L2~L7における光エネルギの実測値の、基準値からの偏差が、予め定めた以上であるか否かに応じて、光デバイス20の不具合を判定することができる。
 また、このような構成において、検査対象の光デバイス20が、入力光エネルギに対して非線形性を持つ場合、経路L1~L8の光導波路13が等長配線になっていなくても、分配される光エネルギを等しくする必要性が生じることがある。
 この場合、光分配器12におけるエネルギ分岐比を調整すれば、各光デバイス20に入力される光エネルギを等しくすることが可能である。
 また、光導波路13の材料や寸法を適宜選択して各経路L1~L8の伝搬損失を調整すれば、各光デバイス20に入力される検査光エネルギが等しくなるようにすることも可能である。より具体的には、光導波路13に、損失の少ないポリマー,SiON,SiN等の材料を用いることができる。または、光導波路13の導波路幅を変えることで伝搬損失の調整が可能である。
 なお、上記第2の実施形態では、経路長が最も長い経路L1における光エネルギの強さと、経路長が最も短い経路L8における光エネルギの強さとから、その中間の長さを有した経路L2~L7における光エネルギの基準値を算出するようにした。これ以外に、図3Cに示すように、経路長が最も長い経路L1と経路長が最も短い経路L8との組み合わせに限らず、それ以外の、2つ以上の経路(例えば、経路L5と経路L1)における光デバイス20の光エネルギの強さに基づき、それ以外の経路長を有した経路(この例では、経路L2,L3,L4,L6,L7,L8)における光エネルギの基準値を算出し、それらの経路の実測値を評価することもできる。
(第3の実施形態)
 次に、本発明の第3の実施形態について説明する。以下に説明する第3の実施形態において、上記第1、第2の実施形態と共通する構成については、図中に同符号を付してその説明を省略し、上記第1、第2の実施形態との差異を中心に説明を行う。
 本実施形態での光集積回路Cの検査回路10Cでは、図4に示すように、光分配器12を用いて分配された経路L1~L8のうちの二本が、光デバイス20が設けられていない参照用光導波路30A,30Bとされている。参照用光導波路30A,30Bは、光導波路13から形成されている。
 このような検査回路10Cにおいては、光デバイス20が設けられた経路L2~L7と、経路L1、L8の参照用光導波路30A、30Bとについて、それぞれ、光結合器11から入力される光の出力光S2をモニタリングする。
 このとき、経路L1、L8における検出値は、光デバイス20の影響を受けておらず、しかも長さが設計値から既知である。したがって、その検出値に基づき、経路L2~L7において、それぞれその長さが設計値から既知である光導波路13の損失を算出することができる。この光導波路13における損失を経路L2~L7における検出値から除外すると、経路L2~L7の光デバイス20の評価を、より安定して高精度に行うことができる。
(第4の実施形態)
 次に、本発明の第4の実施形態について説明する。以下に説明する第4の実施形態において、上記第1~第3の実施形態と共通する構成については、図中に同符号を付してその説明を省略し、上記第1~第3の実施形態との差異を中心に説明を行う。
 図5に示すように、本実施形態での光集積回路Cの検査回路10Dにおいては、一つの光結合器11から入射された光が、光分配器12を用いて、複数の集積回路C,Cのチップ200,200に跨るように分配されている。
 このような構成を用いれば、さらに多数の光デバイス20の検査を簡便にかつ効率良く行うことができる。
 検査を終え、良品選別を行った後であれば、これらのチップ200,200をダイシング等の機械的な加工を用いて分割しても良い。この場合、検査回路10Dを構成する光導波路13がダイシングのために分断されても、支障は生じない。
 なお、本実施形態では、検査回路10Dを、二つのチップ202,200に跨って形成したが、もちろん、三つ以上のチップ200に跨るように検査回路を形成しても良い。
(第5の実施形態)
 次に、本発明の第5の実施形態について説明する。以下に説明する第5の実施形態において、上記第1~第4の実施形態と共通する構成については、図中に同符号を付してその説明を省略し、上記第1~第4の実施形態との差異を中心に説明を行う。
 図6に示すように、本実施形態での光集積回路Cの検査回路10Eは、光変調器25を検査対象の光デバイス20としている。
 光変調器25は、入出力それぞれ2つのポートを有した、2×2マッハツェンダ干渉計より構成されている。光変調器25の一方の入力ポートP1には、光集積回路Cを構成する信号伝送用光源40から光が伝送される光導波路41が接続される。光変調器25の一方の出力ポートP2には、光導波路42を介して光ファイバ43が接続されている。この光変調器25では、信号伝送用光源40から光導波路41を経て入力された信号光S5が変調され、変調された信号光S5が光導波路42を経て、光ファイバ43から外部に出力される。
 また、光変調器25の他方の入力ポートP3には、検査回路10Eにおいて光分配器12を用いて分配された光導波路13が結合されている。また、光変調器25の他方の出力ポートP4には、光導波路44を経て、モニタ受光器45が設けられている。
 このような構成では、検査回路10Eの光結合器11を介して光導波路13に結合された検査光S1は、光分配器12を用いて各光変調器25に分配される。その出力光S2をモニタ受光器45でモニタすれば、各光変調器25の特性検査が可能である。
 上述したように、入出力それぞれ2つのポートを有した光変調器25を検査対象の光デバイス20とすることで、光デバイス20の本来の機能である信号伝送と、光デバイス20の光学特性の検査の双方を、ウエハ100上で実現することができる。
(第6の実施形態)
 次に、本発明の第6の実施形態について説明する。以下に説明する第6の実施形態において、上記第1~第5の実施形態と共通する構成については、図中に同符号を付してその説明を省略し、上記第1~第5の実施形態との差異を中心に説明を行う。
 図7に示すように、本実施形態での光集積回路Cの検査回路10Fは、上記第5の実施形態における検査回路10Eの構成に加え、検査光S1に波長多重技術を用いる構成を有している。
 すなわち、第1の分波器18,第2の分波器19を介して複数に分岐された光導波路13が、光デバイス20の入力ポートP3に接続されている。
 また、各光デバイス20の出力ポートP4に接続された光導波路44から、分波器47を介して光導波路48が分岐している。この光導波路48は、合波器50,50を経て、一本の光導波路48に合流し、光結合器51に接続されている。
 そして、信号伝送用光源40から出力される信号光S5の波長(λ1)とは異なる、複数の波長(λ2、λ3、λ4、λ5)の光が重畳された検査光S1が、光結合器11より入力され、第1の分波器18および第2の分波器19を用いて、波長ごとに分波され、光デバイス20毎に互いに異なる波長(λ2、λ3、λ4、λ5)の検査光S1が入力される。
 光デバイス20を経た光は、分波器47に入力され、信号光S5(λ1)はモニタ受光器45に分岐され、出力光S2(λ2、λ3、λ4、λ5)はもう一方の光導波路48に分岐される。その後、出力光S2は合波器50において合波され、光結合器51から出力される。
 したがって、光結合器51から出力された、合波された出力光S2の特性を、分光器等を用いて波長(λ2、λ3、λ4、λ5)ごとに分析すれば、それぞれの波長(λ2、λ3、λ4、λ5)に対応する光デバイス20の光学特性を求めることができる。
 このようにして、波長多重技術を用いることで、複数の光デバイス20からの出力光S2も、1つの光結合器51から出力させて検出できるため、さらに簡便な検査が可能となる。
 このとき、マッハツェンダ干渉計を用いた光デバイス20としての光変調器25は、原理的に波長依存性を持たないため、信号光S5の波長λ1と検査光S1の波長(λ2、λ3、λ4、λ5)が異なっていても問題とならない。また、多層配線等を用いて光導波路13と光導波路48との交差部分の過剰損失を抑えることもできる。
(第7の実施形態)
 次に、本発明の第7の実施形態について説明する。以下に説明する第7の実施形態において、上記第1~第6の実施形態と共通する構成については、図中に同符号を付してその説明を省略し、上記第1~第6の実施形態との差異を中心に説明を行う。
 図8に示すように、本実施形態での光集積回路Cの検査回路10Gは、信号光S5と同一の波長の検査光S1を用いて、配線長の違いに起因した遅延を利用して時間分解を行い、出力光S2の一括測定を行う。
 これには、上記第5の実施形態で示した構成に加え、各光デバイス20の出力ポートP4に接続された光導波路44に光スイッチ55を設ける。この光スイッチ55には、モニタ受光器45と、光導波路60が接続され、接続先を切替可能となっている。ここで、各経路L1~L4は、各光デバイス20から光結合器(出力光結合器)63までの経路長が、互いに異なるよう設定されている。
 各光導波路60は、光合波器62,62を経て1本の光導波路60に合流し、この1本の光導波路60は光結合器63に接続されている。
 このような構成の検査回路10Gでは、信号伝送用光源40からの信号光S5と同一の波長を持つ検査光S1を、光結合器11を介して入力する。
 検査を行う際には光スイッチ55を用い、各光変調器25から出力された出力光S2を、光導波路60に出力させる。このとき、同一波長の出力光S2に各光変調器25の検査情報が含まれているが、経路長が互いに異なる各経路L1~L4では、その経路長に応じて、出力光S2の出力に遅延が発生する。したがって、光結合器63から出力される出力光S2について時間分解を行うことで、各光変調器25の検査が可能となっている。
 なお、時間分解能のために、光結合器63から出力される出力光S2に、より大きな時間差が必要な場合、それぞれの光導波路60に、光遅延回路61を設けるのが好ましい。
 このようにして、経路長の違いに応じた時間遅延を用いることで、複数の光デバイス20からの出力光S2を1つの光結合器63から出力させて検出できるため、簡便な検査が可能となる。
(第8の実施形態)
 次に、本発明の第8の実施形態について説明する。以下に説明する第8の実施形態において、上記第1~第7の実施形態と共通する構成については、図中に同符号を付してその説明を省略し、上記第1~第7の実施形態との差異を中心に説明を行う。
 図9に示すように、本実施形態での光集積回路Cの検査回路10Hには、検査光S1を入力するための複数の光結合器11A,11Bが設けられている。
 すなわち、二つの光結合器11A,11Bのそれぞれから、光分配器12,12,…を経て分岐された光導波路13が設けられている。
 そして、検査対象となる各光変調器25の二つの入力ポートの一方に、一方の光結合器11Aから分岐した光導波路13が接続され、他方の入力ポートに、他方の光結合器11Bから分岐した光導波路13が接続されている。
 このような構成の検査回路10Hでは、二つの光結合器11A,11Bを検査ポートとして設け、光結合器11Aから入力した光と、光結合器11Bから入力した光とで、それぞれ光変調器25の光学特性を評価する。そして得られた双方の光学特性の平均を取ったり、双方の光学特性の差が一定範囲内であるときに、その検出結果を有効としたりすることができる。
 これにより、光結合器11A,11B、光分配器12、光導波路13の特性のばらつきに起因した影響をさらに低減することができる。また、光変調器25の2つの入力ポートに依存して特性が異なる場合、それらのばらつき等も検査することができる。
(その他の実施形態)
 なお、本発明の光集積回路、および光集積回路における光デバイスの検査方法は、図面を参照して説明した上述の各実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
 例えば、上記第5~第8の実施形態で、光デバイス20として、入出力ともに2ポートを有した光変調器25を例に挙げたが、そのポート数は、3ポート以上であっても良い。また、複数ポートを有するのであれば、光変調器25以外の光デバイス20を検査対象とすることもできる。
 また、検査回路10A~10Hにおいて、ウエハ100の状態で検査を行い、良品選別を行った後に、エッチング等で光結合器11,11A,11Bを除去し、1個または複数個の信号伝送用の光源を実装しても良い。
 さらに、上記第1~第8の実施形態で示した構成は、適宜組み合わせることも可能である。
 これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
 この出願は、2012年8月29日に出願された日本出願特願2012-188510号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、光通信システムや光情報処理システムにおいて利用することが可能である。本発明では、多数の光デバイスの特性検査をウエハ状態で簡便かつ確実に行うことができる。
10A~10H 検査回路
11,11A,11B  光結合器
12  光分配器
13,13A,13B,13C 光導波路
18,19   分波器
20  光デバイス
25  光変調器
30A,30B 参照用光導波路
40  信号伝送用光源
41,42,44    光導波路
43  光ファイバ
45  モニタ受光器
47  分波器
48  光導波路
50  合波器
51  光結合器(出力光結合器)
55  光スイッチ
60  光導波路
61  光遅延回路
62  光合波器
63  光結合器(出力光結合器)
100 ウエハ(半導体基板)
200 チップ
L1~L8   経路
P1  入力ポート
P2  出力ポート
P3  入力ポート
P4  出力ポート
S1  検査光
S2  出力光
S5  信号光

 

Claims (15)

  1.  半導体基板の表面から検査光が入射される光結合器と、
     前記光結合器に入射された前記検査光を伝搬する光導波路と、
     前記光導波路で伝搬される前記検査光を複数の光導波路に分配する光分配器と、
     前記光分配器を用いて分配された複数の前記光導波路にそれぞれ接続された光デバイスと、を備える光集積回路。
  2.  前記光デバイスが、複数の入力ポートを備え、前記入力ポートの少なくとも一つに複数の前記光導波路から前記光デバイスの光学特性を検査する検査光が入力される請求項1に記載の光集積回路。
  3.  前記光結合器と全ての前記光デバイスとの間に設けられた複数の前記光導波路の経路長が等長とされている請求項1または2に記載の光集積回路。
  4.  前記光分配器は、前記光デバイスに入力される前記検査光のエネルギが等しくなるよう、前記検査光を分配する請求項1または2に記載の光集積回路。
  5.  複数の前記光導波路間において、複数の前記光導波路を形成する材料と、前記光結合器から前記光デバイスまでの前記光導波路および複数の前記光導波路の経路長との少なくとも一方が互いに異なり、
     複数の前記光導波路は、前記光デバイスに入力される前記検査光のエネルギが等しくなるよう設定されている請求項1または2に記載の光集積回路。
  6.  前記光デバイスが設けられた複数の前記光導波路とは別に、光導波路のみからなる参照用光導波路が2以上設けられ、前記参照用光導波路には、複数の前記光導波路とともに前記光分配器から前記検査光が分配される請求項1から5のいずれか一項に記載の光集積回路。
  7.  前記半導体基板に、それぞれ1以上の前記光デバイスが配置された複数のチップが配置され、
     前記光分配器を用いて分岐された複数の前記光導波路が、複数の前記チップに分配されて前記光デバイスに接続されている請求項1から6のいずれか一項に記載の光集積回路。
  8.  前記光分配器は、互いに波長が異なる光を重畳させた検査光を波長ごとの光に分配して複数の前記光導波路のそれぞれに出力し、
     複数の前記光導波路のそれぞれにおいて前記光デバイスを経た出力光を重畳し、1つの光導波路に合流させる合波器と、
     前記合波器を経た前記出力光を外部に出力する出力光結合器と、をさらに備える請求項1から7のいずれか一項に記載の光集積回路。
  9.  複数の前記光導波路のそれぞれにおいて前記光デバイスを経て遅延時間が互いに異なる出力光を1つの光導波路に合流させる光合流器と、
     前記光合流器を経た前記出力光を外部に出力する出力光結合器と、をさらに備える請求項1から7のいずれか一項に記載の光集積回路。
  10.  複数の前記光導波路のそれぞれに、前記光デバイスを経た前記出力光に互いに異なる遅延時間を付与する光遅延回路がさらに設けられている請求項9に記載の光集積回路。
  11.  1つの前記光デバイスに対し、前記光結合器、前記光分配器、前記光導波路、および複数の前記光導波路が複数組接続されている請求項1から10のいずれか一項に記載の光集積回路。
  12.  請求項1から11のいずれか一項に記載の光集積回路における前記光デバイスの検査方法であって、
     前記光結合器から前記検査光を入射し、
     前記光分配器を用いて複数の前記光導波路のそれぞれに前記検査光を分配し、
     分配された前記検査光が前記光デバイスを経ることで得られる出力光に基づいて、前記光デバイスの光学特性を評価する光集積回路における光デバイスの検査方法。
  13.  前記光デバイスを経た前記出力光を外部に取出し、取出した前記出力光の光学特性を検出することで前記光デバイスを評価する請求項12に記載の光集積回路における光デバイスの検査方法。
  14.  前記光デバイスを経た前記出力光を受光器で電気信号に変換して外部に出力し、出力された前記電気信号に基づいて前記光デバイスの前記光学特性を評価する請求項12に記載の光集積回路における光デバイスの検査方法。
  15.  前記光デバイスが設けられた複数の前記光導波路が3以上設けられるとともに、前記光結合器と、全ての前記光デバイスとの間に設けられた前記光導波路および複数の前記光導波路の経路長が互いに異なり、
     経路長が互いに異なる二つの前記光導波路に設けられた前記光デバイスにおける光学特性の評価結果に基づき、他の経路長を有する前記光導波路に設けられた前記光デバイスにおける光学特性の基準値を算出し、前記基準値に基づいて、他の経路長を有する前記光導波路に設けられた前記光デバイスにおける光学特性を評価する請求項12から14のいずれか一項に記載の光集積回路における光デバイスの検査方法。
PCT/JP2013/067299 2012-08-29 2013-06-25 光集積回路、および光集積回路における光デバイスの検査方法 WO2014034238A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/422,986 US20150247779A1 (en) 2012-08-29 2013-06-25 Optical integrated circuit, and inspection method of optical device in optical integrated circuit
JP2014532850A JP6206409B2 (ja) 2012-08-29 2013-06-25 光集積回路、および光集積回路における光デバイスの検査方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012188510 2012-08-29
JP2012-188510 2012-08-29

Publications (1)

Publication Number Publication Date
WO2014034238A1 true WO2014034238A1 (ja) 2014-03-06

Family

ID=50183061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067299 WO2014034238A1 (ja) 2012-08-29 2013-06-25 光集積回路、および光集積回路における光デバイスの検査方法

Country Status (3)

Country Link
US (1) US20150247779A1 (ja)
JP (1) JP6206409B2 (ja)
WO (1) WO2014034238A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194349A1 (ja) * 2015-05-29 2016-12-08 日本電信電話株式会社 光コヒーレントミキサ回路
JP2019029620A (ja) * 2017-08-03 2019-02-21 富士通オプティカルコンポーネンツ株式会社 波長可変光源、及び光モジュール
JP2019096763A (ja) * 2017-11-24 2019-06-20 日本電信電話株式会社 光特性検査用回路
JP2019207305A (ja) * 2018-05-29 2019-12-05 日本電信電話株式会社 光検査回路
WO2020235083A1 (ja) * 2019-05-23 2020-11-26 日本電信電話株式会社 光検査回路および光検査方法
US11658738B2 (en) 2018-05-31 2023-05-23 Fujitsu Optical Components Limited Optical device, optical module using the same, and optical device testing method
JP7451376B2 (ja) 2020-08-28 2024-03-18 オープンライト フォトニクス インコーポレイテッド フォトニック回路製造における損失モニタリング

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249746A (ja) * 1999-02-26 2000-09-14 Ando Electric Co Ltd 集積回路試験装置
JP2002214072A (ja) * 2001-01-15 2002-07-31 Nikon Corp 光照射装置およびこの光照射装置を用いた検査装置
JP2005535899A (ja) * 2002-08-16 2005-11-24 サーノフ・コーポレーション 犠牲試験構造を含むフォトニックデバイスおよびpicならびにこれらの製造方法
JP2010044001A (ja) * 2008-08-18 2010-02-25 Asahi Spectra Co Ltd 複数点分光光度測定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3263949B2 (ja) * 1991-02-25 2002-03-11 日本電気株式会社 光集積回路の製造方法
US5523879A (en) * 1991-04-26 1996-06-04 Fuji Xerox Co., Ltd. Optical link amplifier and a wavelength multiplex laser oscillator
EP1436870A2 (en) * 2001-10-09 2004-07-14 Infinera Corporation TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPIC) AND OPTICAL TRANSPORT NETWORKS EMPLOYING TxPICs
US7672546B2 (en) * 2001-10-09 2010-03-02 Infinera Corporation Optical transport network having a plurality of monolithic photonic integrated circuit semiconductor chips
US7072557B2 (en) * 2001-12-21 2006-07-04 Infinera Corporation InP-based photonic integrated circuits with Al-containing waveguide cores and InP-based array waveguide gratings (AWGs) and avalanche photodiodes (APDs) and other optical components containing an InAlGaAs waveguide core
US7162113B2 (en) * 2002-10-08 2007-01-09 Infinera Corporation Deployment of electro-optic amplitude varying elements (AVEs) and electro-optic multi-functional elements (MFEs) in photonic integrated circuits (PICs)
US8175432B2 (en) * 2007-03-27 2012-05-08 Sumitomo Osaka Cement Co., Ltd. Method of adjusting optical axis of optical waveguide element, and optical waveguide element
US8269297B2 (en) * 2009-12-23 2012-09-18 Infinera Corporation Photodiode isolation in a photonic integrated circuit
KR101783621B1 (ko) * 2011-09-09 2017-10-11 삼성전자주식회사 광 연결 장치, 이의 제조 방법, 및 상기 광 연결 장치를 포함하는 메모리 시스템
US9383512B2 (en) * 2012-12-31 2016-07-05 Infinera Corporation Light absorption and scattering devices in a photonic integrated circuit that minimize optical feedback and noise
EP2980618B1 (en) * 2013-03-25 2018-07-04 Photonics Electronics Technology Research Association Optical circuit
US9411104B2 (en) * 2014-12-19 2016-08-09 Infinera Corporation Broadband waveguide based optical coupler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249746A (ja) * 1999-02-26 2000-09-14 Ando Electric Co Ltd 集積回路試験装置
JP2002214072A (ja) * 2001-01-15 2002-07-31 Nikon Corp 光照射装置およびこの光照射装置を用いた検査装置
JP2005535899A (ja) * 2002-08-16 2005-11-24 サーノフ・コーポレーション 犠牲試験構造を含むフォトニックデバイスおよびpicならびにこれらの製造方法
JP2010044001A (ja) * 2008-08-18 2010-02-25 Asahi Spectra Co Ltd 複数点分光光度測定装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194349A1 (ja) * 2015-05-29 2016-12-08 日本電信電話株式会社 光コヒーレントミキサ回路
JPWO2016194349A1 (ja) * 2015-05-29 2017-11-02 日本電信電話株式会社 光コヒーレントミキサ回路
US10295744B2 (en) 2015-05-29 2019-05-21 Nippon Telegraph And Telephone Corporation Coherent optical mixer circuit
JP2019029620A (ja) * 2017-08-03 2019-02-21 富士通オプティカルコンポーネンツ株式会社 波長可変光源、及び光モジュール
JP2019096763A (ja) * 2017-11-24 2019-06-20 日本電信電話株式会社 光特性検査用回路
WO2019230372A1 (ja) * 2018-05-29 2019-12-05 日本電信電話株式会社 光検査回路
JP2019207305A (ja) * 2018-05-29 2019-12-05 日本電信電話株式会社 光検査回路
US11415752B2 (en) 2018-05-29 2022-08-16 Nippon Telegraph And Telephone Corporation Optical inspection circuit
US11658738B2 (en) 2018-05-31 2023-05-23 Fujitsu Optical Components Limited Optical device, optical module using the same, and optical device testing method
WO2020235083A1 (ja) * 2019-05-23 2020-11-26 日本電信電話株式会社 光検査回路および光検査方法
JPWO2020235083A1 (ja) * 2019-05-23 2020-11-26
JP7143948B2 (ja) 2019-05-23 2022-09-29 日本電信電話株式会社 光検査回路および光検査方法
JP7451376B2 (ja) 2020-08-28 2024-03-18 オープンライト フォトニクス インコーポレイテッド フォトニック回路製造における損失モニタリング

Also Published As

Publication number Publication date
JPWO2014034238A1 (ja) 2016-08-08
US20150247779A1 (en) 2015-09-03
JP6206409B2 (ja) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6206409B2 (ja) 光集積回路、および光集積回路における光デバイスの検査方法
US10181696B2 (en) Photonic integrated circuit
CA2983691C (en) Coherent optical mixer circuit
US10190941B2 (en) Silicon optical circuit for flaw detection in an optical circuit element
CN108352922B (zh) 用于处理光学信号的装置、系统和方法
JP2011064657A (ja) 光回路
WO2020135849A1 (zh) 一种光交换装置、系统及功率计算方法
JP2004233070A (ja) Fbgセンシングシステム
US20130101254A1 (en) Optical performance monitoring system
US10921370B2 (en) Optoelectronic chip and method for testing photonic circuits of such chip
WO2010110186A1 (ja) 光信号検出装置および光信号検出方法
JP2017072495A (ja) 試験光合分波器及び光線路試験システム
JP2020072351A (ja) 光伝送装置及び光素子
JP2014071318A (ja) 光素子とその使用方法、及び光集積回路とその検査方法
US11686648B2 (en) Electrical test of optical components via metal-insulator-semiconductor capacitor structures
JP2013142640A (ja) 光導波路評価装置および光導波路評価方法
JP2004354077A (ja) 光ファイバの損失測定方法
US20230050697A1 (en) System for measuring a plurality of physical parameters at a measurement point with a multimode optical fiber
US7312858B2 (en) Polarization dependency identification
WO2024024095A1 (ja) 光送受信モジュールの検査システム
JP3064913B2 (ja) 光伝送路障害点検出装置
JP5165641B2 (ja) 光部品評価装置
NL1008206C2 (nl) Optisch circuit voor het verkrijgen van een monitorsignaal voor het bewaken van een optische schakelaar.
JP2002090572A (ja) 光合波器及び光分波器
KR101014775B1 (ko) 평판 광회로 장치 및 그의 파장 및 파워 모니터링 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532850

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14422986

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834183

Country of ref document: EP

Kind code of ref document: A1