WO2014034057A1 - Battery system, electric vehicle equipped with battery system and electricity storage device - Google Patents

Battery system, electric vehicle equipped with battery system and electricity storage device Download PDF

Info

Publication number
WO2014034057A1
WO2014034057A1 PCT/JP2013/004978 JP2013004978W WO2014034057A1 WO 2014034057 A1 WO2014034057 A1 WO 2014034057A1 JP 2013004978 W JP2013004978 W JP 2013004978W WO 2014034057 A1 WO2014034057 A1 WO 2014034057A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery system
flat secondary
intermediate reinforcing
reinforcing plate
Prior art date
Application number
PCT/JP2013/004978
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 岸井
一広 藤井
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2014034057A1 publication Critical patent/WO2014034057A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery system in which a plurality of flat secondary batteries are stacked, end plates are arranged at both ends thereof, and end plates are connected by a bind bar, an electric vehicle including the battery system, and a power storage device.
  • the above battery system is arranged such that a plurality of flat secondary batteries 201 are stacked on a base plate 209 to form a battery stack 202, and end plates are provided at both ends of the battery stack 202. 203 is disposed, and the end plate 203 is connected by a bind bar (not shown) to fix the flat secondary battery 201 in a stacked state.
  • a heat radiating plate 205 is arranged in the central portion in order to eliminate the disadvantage that the flat secondary battery 201 in the central portion becomes high temperature and causes a temperature difference. The heat radiating plate 205 radiates heat at the center of the battery stack 202 to reduce the temperature difference of the battery stack 202.
  • a large number of flat secondary batteries are connected in series to increase output voltage, and are connected in parallel.
  • the output can be increased by increasing the output current.
  • a plurality of flat secondary batteries are stacked and fixed in a stacked state, there is a feature that the volume efficiency can be increased and the charge / discharge capacity with respect to the volume can be increased. Since this feature is utilized, the battery system of this structure is used in an optimum state as a power supply device that supplies electric power to a motor that drives the vehicle or a power storage device that stores natural energy or midnight power.
  • Battery systems used for various purposes may be subject to relatively strong vibrations.
  • a battery system mounted on a vehicle is always exposed to vibration, sufficient vibration resistance strength is required.
  • the flat secondary battery is enlarged in order to increase the output, it becomes more difficult to realize sufficient vibration resistance strength in various applications.
  • the flat secondary battery relatively moves and causes various adverse effects.
  • the adjacent flat secondary battery has a metal plate bus bar fixed to the electrode terminal by welding or the like, so if the adjacent flat secondary battery moves relatively, the bus bar and the electrode terminal An unreasonable stress acts on the connecting portion or the connecting portion between the electrode terminal and the outer case of the flat secondary battery, and this causes a bad effect such as damage or deformation of the connecting portion.
  • the positions of the discharge duct and the flat secondary battery are shifted. As a result, the exhaust gas from the exhaust valve cannot be reliably connected to the exhaust duct.
  • the spacer disposed between the flat secondary batteries may be damaged, or
  • a strong distortion force acts on the pressing surface of the flat secondary battery in a direction parallel to the surface, which causes a negative effect such as damaging the outer case of the flat secondary battery.
  • An important object of the present invention is to provide a battery system, an electric vehicle including the battery system, and a power storage device that can improve the vibration resistance strength of the battery stack while stacking a large number of flat secondary batteries in a pressurized state. It is in.
  • an important object of the present invention is to provide a battery system, an electric vehicle including the battery system, and a power storage device that can improve the vibration resistance strength of the battery stack while stacking large flat secondary batteries. .
  • a plurality of flat secondary batteries 1 are stacked in the thickness direction, and battery stacks 2 and 32 are formed by connecting electrode terminals 13 of adjacent flat secondary batteries 1 by bus bars 14. And a pair of end plates 3 arranged on both end surfaces of the battery stacks 2 and 32 in the stacking direction, and the flat secondary battery 1 connected to the pair of end plates 3 to pressurize the flat secondary battery 1 in the stacking direction.
  • a fixed bind bar 4 is provided.
  • the battery system includes intermediate reinforcing plates 5 and 35 arranged between the flat secondary batteries 1 constituting the battery stacks 2 and 32, and the intermediate reinforcing plates 5 and 35 are bound.
  • the laminated flat secondary battery 1 is fixed in a pressurized state by being fixed to the bar 4 and with the end plate 3 and the intermediate reinforcing plates 5 and 35.
  • the above battery system realizes an excellent feature that the vibration resistance strength of the battery stack can be improved while a large number of flat secondary batteries are stacked in a pressurized state.
  • the battery system described above can improve the vibration resistance of the battery stack even when the flat secondary battery is large and heavy.
  • an intermediate reinforcing plate is disposed in the middle part of a battery stack in which a plurality of flat secondary batteries are stacked, and the intermediate reinforcing plate is fixed to the bind bar, and the end plate and This is because the flat secondary batteries stacked with the intermediate reinforcing plate are fixed in a pressurized state.
  • the battery system of the present invention includes a base plate 9 on which the battery stack 2 is placed, and can fix both the end plate 3 and the intermediate reinforcing plate 5 to the base plate 9.
  • the battery system described above is characterized in that the battery laminate is placed on the base plate and both the intermediate reinforcing plate and the end plate are fixed to the base plate, so that the vibration resistance strength of the battery laminate can be further improved.
  • the flat secondary battery 1 includes a discharge valve 11 that opens at a predetermined internal pressure, and the battery stack 2 has the flat shape by disposing the discharge valve 11 on the first surface 2A.
  • a secondary battery 1 is stacked, and a discharge duct 6 arranged on the first surface 2A of the battery stack 2 and connected to an opening of the discharge valve 11 is provided, and an intermediate portion of the discharge duct 6 is provided. It can be fixed to the intermediate reinforcing plate 5.
  • the above battery system can prevent relative displacement between the discharge duct and the battery stack while improving the vibration resistance strength of the battery stack. This is because the middle part of the elongated discharge duct is fixed to the middle reinforcing plate.
  • This discharge duct has a feature that gas and electrolyte discharged from a discharge valve opened by the flat secondary battery can be reliably exhausted.
  • the heat capacity of the intermediate reinforcing plate 5 can be made larger than that of the end plate 3.
  • the thermal energy of the intermediate part of the battery stack can be efficiently absorbed by the intermediate reinforcing plate, and the temperature difference of the flat secondary battery can be reduced.
  • the intermediate reinforcing plate 5 can be a plate that is thicker than the end plate 3 and has a larger heat capacity.
  • the intermediate reinforcing plate is made thicker than the end plate to increase the heat capacity, so that the intermediate secondary plate has sufficient strength, that is, while improving the vibration resistance strength of the battery stack, the flat secondary The feature that can reduce the temperature difference of the battery is also realized.
  • the intermediate reinforcing plate 5 can be a metal plate having a larger heat capacity than the end plate 3.
  • the intermediate reinforcing plate is a metal plate having a larger heat capacity than the end plate, so that the intermediate reinforcing plate is a sufficiently strong metal plate to improve the vibration resistance strength of the battery stack, and further to the flat two A feature that can reduce the temperature difference of the secondary battery is also realized.
  • the intermediate reinforcing plate 5 can include the cooling gap 16 between the flat secondary battery 1.
  • the above battery system can cool the intermediate reinforcing plate and the flat secondary battery by sending air to the cooling gap provided in the intermediate reinforcing plate, so that the temperature difference between the flat secondary battery can be reduced and the battery stack Can equalize the temperature.
  • the intermediate reinforcing plate 35 can have a cooling through hole 35 ⁇ / b> A extending in the longitudinal direction of the flat secondary battery 1.
  • the intermediate reinforcing plate can be cooled by blowing air to the cooling through-hole provided in the intermediate reinforcing plate or circulating the cooling liquid. The temperature difference of the secondary battery can be reduced.
  • the battery system of the present invention can be a power supply device that is mounted on a vehicle and supplies power to a motor 93 that runs the vehicle.
  • the above battery system is mounted on a vehicle that receives vibration to achieve sufficient vibration resistance. Therefore, it is mounted on the vehicle, and it is possible to stably supply power to the vehicle motor for a long period of time, and to realize a feature that can reduce the deterioration and extend the life.
  • the base plate 9 can be used as the chassis 92 of the vehicle as a power supply device that is mounted on the vehicle and supplies power to the motor 93 that runs the vehicle.
  • the above battery system uses the vehicle chassis together with the base plate to fix the battery stack, so the flat secondary battery is efficiently cooled by the vehicle chassis, and the dedicated base plate is omitted to reduce the component cost.
  • the vibration resistance of the battery stack can be improved with the vehicle chassis.
  • the battery system of the present invention can be a power supply device that stores either natural energy or midnight power.
  • the battery system described above can prevent harmful effects caused by vibrations while being used in a power supply device that stores large power.
  • An electric vehicle includes any one of the battery systems 100 described above, a motor 93 for traveling that is supplied with power from the battery system 100, a vehicle main body 90 including the battery system 100 and the motor 93, and a motor. And a wheel 97 that is driven by the vehicle 93 and causes the vehicle main body 90 to travel.
  • the above-described electric vehicle can realize sufficient vibration resistance strength of a battery system that is mounted on the vehicle and receives vibration. For this reason, it is possible to stably supply electric power to the vehicle driving motor from a battery system mounted on the vehicle for a long period of time, thereby realizing stable driving.
  • the power storage device of the present invention includes any one of the battery systems 100 described above and a power controller 84 that controls charging / discharging of the battery system 100.
  • the power supply controller 84 can charge the flat secondary battery 1 with electric power from the outside and can control the flat secondary battery 1 to be charged.
  • the above power storage device can prevent harmful effects caused by vibration while using a battery system that stores large power.
  • FIG. 3 is a vertical longitudinal sectional view of the battery system shown in FIG. 2.
  • FIG. 3 is an exploded perspective view of the battery system shown in FIG. 2.
  • It is a disassembled perspective view of the battery laminated body shown in FIG.
  • It is a disassembled perspective view which shows the laminated structure of a flat secondary battery and a spacer.
  • It is a disassembled perspective view of the battery laminated body formed by laminating
  • the embodiments described below exemplify a battery system, an electric vehicle including the battery system, and a power storage device for embodying the technical idea of the present invention.
  • the present invention includes a battery system and a battery system.
  • the electric vehicle and power storage device provided are not specified as follows. Furthermore, this specification does not limit the members shown in the claims to the members of the embodiments.
  • a battery system 100 shown in FIGS. 2 to 6 is a battery in which a plurality of flat secondary batteries 1 are stacked in the thickness direction, and electrode terminals 13 of adjacent flat secondary batteries 1 are connected by a bus bar 14.
  • the laminated body 2, the pair of end plates 3 disposed at both ends of the battery laminated body 2 in the stacking direction, and the pair of end plates 3 are connected to press the flat secondary battery 1 in the stacking direction.
  • a binding bar 4 that is fixed.
  • the flat secondary battery 1 is a rectangular battery having a width wider than the thickness, in other words, a square battery thinner than the width, and is stacked in the thickness direction to form a battery stack 2. Yes.
  • the flat secondary battery 1 is a lithium ion secondary battery.
  • the flat secondary battery may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery.
  • the flat secondary battery 1 shown in the figure is a battery in which both surfaces having a wide width are rectangular, and the both surfaces are stacked so as to face each other to form a battery stack 2.
  • an electrode case (not shown) is housed in an outer case 10 having a rectangular outer shape and filled with an electrolytic solution.
  • the outer case 10 includes an outer can 10A in which a metal plate is pressed into a cylindrical shape that closes the bottom, and a sealing plate 10B that airtightly closes the opening of the outer can 10A.
  • the sealing plate 10B is a flat metal plate, and its outer shape is the shape of the opening of the outer can 10A.
  • the sealing plate 10B is laser-welded and fixed to the outer peripheral edge of the outer can 10A to airtightly close the opening of the outer can 10A.
  • the sealing plate 10 ⁇ / b> B fixed to the outer can 10 ⁇ / b> A has positive and negative electrode terminals 13 fixed to both ends thereof, and a gas discharge port 12 is provided between the positive and negative electrode terminals 13.
  • a discharge valve 11 that opens at a predetermined internal pressure is provided inside the gas discharge port 12.
  • the battery stack 2 shown in FIGS. 4 and 5 includes a plurality of flat secondary batteries 1 stacked in such a manner that the surfaces on which the discharge valves 11 are provided are positioned substantially on the same plane.
  • the discharge valve 11 is arranged on the first surface 2A.
  • a plurality of flat secondary batteries 1 are stacked in a posture with the sealing plate 10 ⁇ / b> B provided with the discharge valve 11 as an upper surface.
  • the discharge valve 11 is opened when the internal pressure of the flat secondary battery 1 becomes higher than the set pressure, thereby preventing the internal pressure from increasing.
  • the discharge valve 11 has a built-in valve body (not shown) that closes the gas discharge port 12.
  • the valve body is a thin film that is destroyed at a set pressure, or a valve that is pressed against the valve seat by an elastic body so as to open at the set pressure.
  • a plurality of flat secondary batteries 1 stacked on each other are connected in series and / or in parallel with each other by connecting positive and negative electrode terminals 13.
  • positive and negative electrode terminals 13 of adjacent flat secondary batteries 1 are connected to each other in series and / or in parallel via a bus bar 14.
  • a battery system in which adjacent flat secondary batteries are connected in series with each other can increase the output voltage by increasing the output voltage, and can connect adjacent flat secondary batteries in parallel to increase the charge / discharge current.
  • the battery stack 2 has a spacer 7 sandwiched between the stacked flat secondary batteries 1.
  • the spacer 7 insulates the adjacent flat secondary battery 1.
  • the spacer 7 shown in the figure is an insulating plate formed of plastic in a plate shape.
  • the spacer 7 can be stacked so that the adjacent flat secondary battery 1 is not displaced as a shape in which the flat secondary battery 1 is fitted and disposed at a fixed position.
  • the spacer formed of plastic can cool the flat secondary battery by providing a cooling gap on the surface for allowing a cooling gas such as air to pass through.
  • This structure can efficiently cool the outer can of the flat secondary battery directly by forcing air into the cooling gap.
  • the spacer formed from a plastic material having a low thermal conductivity has an effect of effectively preventing thermal runaway of the adjacent flat secondary battery.
  • the flat secondary battery 1 insulated and stacked by the spacer 7 can have an outer can made of metal such as aluminum.
  • the battery stack it is not always necessary for the battery stack to interpose a spacer between the flat secondary batteries.
  • flat secondary batteries that are adjacent to each other can be formed by insulating the outer can of a flat secondary battery with an insulating material, or by coating the outer periphery of the outer can of a flat secondary battery with an insulating sheet or insulating paint. It is because a spacer can be made unnecessary by insulating batteries.
  • the battery stack without interposing a spacer between the flat secondary batteries adopts an air cooling method in which cooling air is forced between the flat secondary batteries to cool the flat secondary batteries.
  • a flat secondary battery can be cooled by employing a direct cooling method using a refrigerant or the like.
  • the spacer 7 has air or the like sandwiched between the flat secondary battery 1 in order to effectively cool the flat secondary battery 1.
  • the cooling gap 16 for allowing the cooling gas to pass therethrough is provided.
  • the spacer 7 in FIGS. 3 and 6 is provided with grooves 15 extending to both side edges on the surface facing the flat secondary battery 1, and a cooling gap 16 is provided between the flat secondary battery 1.
  • a plurality of grooves 15 are provided in parallel with each other at a predetermined interval.
  • grooves 15 are provided on both surfaces, and a cooling gap 16 is provided between the flat secondary battery 1 and the spacer 7 adjacent to each other.
  • This structure has an advantage that the flat secondary battery 1 on both sides can be effectively cooled by the cooling gaps 16 formed on both sides of the spacer 7.
  • the separator can be provided with a groove only on one side to provide a cooling gap between the flat secondary battery and the separator.
  • the cooling gap 16 in the figure is provided in the horizontal direction so as to open to the left and right of the battery stack 2.
  • the air forcedly blown into the cooling gap 16 directly and efficiently cools the outer can 10 ⁇ / b> A of the flat secondary battery 1.
  • This structure is characterized in that the flat secondary battery 1 can be efficiently cooled while effectively preventing thermal runaway of the flat secondary battery 1.
  • the spacer 7 described above is provided with a cooling gap 16 between the flat secondary battery 1 and the cooling gap 16 is forcibly blown with a cooling gas such as cooling air. Can be cooled. However, the spacer does not necessarily need to provide a cooling gap with the flat secondary battery. As shown in FIG. 7, the spacer 37 is exposed to the surface of the battery stack 32, and the exposed portion 37 ⁇ / b> A is formed.
  • the cooling plate 20 may be connected to the cooling plate 20 in a thermally coupled state. This battery system can cool the cooling plate 20, cool the spacer 37 with the cooling plate 20, and cool the flat secondary battery 1 with the spacer 37.
  • the cooling plate 20 can be cooled by providing heat radiation fins (not shown) on the surface, or can be forcibly cooled by circulating a cooling refrigerant or coolant inside. Furthermore, although not shown, the surface of the flat secondary battery can be insulated without providing a spacer between the flat secondary batteries.
  • the intermediate reinforcing plate 5 is disposed in the middle part of the battery stack 2 in which the plurality of flat secondary batteries 1 are stacked. Further, the battery stack 2 is placed on the base plate 9, and the end plate 3 and the intermediate reinforcing plate 5 are fixed to the base plate 9.
  • the flat secondary battery 1 is arranged in a vertical posture on the base plate 9, both the end plate 3 and the intermediate reinforcing plate 5 are fixed to the base plate 9, and the end plate 3 and the intermediate reinforcing plate 5 are A plurality of flat secondary batteries 1 are fixed in a stacked pressure state.
  • the intermediate reinforcing plate 5 is arranged between the flat secondary batteries 1 and the flat secondary batteries 1 are arranged on both surfaces. That is, the intermediate reinforcing plate 5 is disposed so that the flat secondary battery 1 is disposed on both surfaces and is sandwiched between the flat secondary batteries 1.
  • the intermediate reinforcing plate 5 is fixed to the bind bar 4, and the end plate 3 and the intermediate reinforcing plate 5 fix the plurality of flat secondary batteries 1 stacked in a pressure stacked state.
  • the end plate 3 is connected to the bind bar 4, pressurizes the battery stack 2 from both end surfaces, and presses the flat secondary battery 1 in the stacking direction.
  • the end plate 3 is fixed to the bind bar 4 to fix each flat secondary battery 1 of the battery stack 2 in a pressurized state with a predetermined tightening pressure.
  • the outer shape of the end plate 3 is substantially equal to or slightly larger than the outer shape of the flat secondary battery 1, and bind bars 4 are connected to the four corners to fix the battery stack 2 in a pressurized state. It is a square plate that does not deform.
  • the end plate 3 has bind bars 4 connected to the four corners thereof, and is in close contact with the surface of the flat secondary battery 1 in a surface contact state, thereby fixing the flat secondary battery 1 in a pressurized state with a uniform pressure.
  • the end plate 3 is disposed at both ends of the battery stack 2 and the intermediate reinforcing plate 5 is disposed at the middle, and the end plates 3 at both ends are pressed by a press machine so that the flat secondary battery 1 is stacked in the stacking direction.
  • the bind bar 4 is fixed to the end plate 3 and the intermediate reinforcing plate 5, and the battery stack 2 is held and fixed at a predetermined tightening pressure.
  • the pressurization state of the press is released.
  • the intermediate reinforcing plate 5 is arranged in the middle of the battery stack 2 to improve the vibration resistance strength of the battery stack 2.
  • the intermediate reinforcing plate 5 is fixed to an intermediate portion of the bind bar 4 and partitions the elongated battery stack 2 into a plurality of blocks to improve the vibration resistance strength. Further, the intermediate reinforcing plate 5 absorbs thermal energy from the flat secondary battery 1 laminated on both surfaces, and equalizes the temperature difference of the battery stack 2.
  • the intermediate reinforcing plate 5 is preferably made of metal.
  • the metal intermediate reinforcing plate 5 is excellent in strength for improving vibration resistance strength and a characteristic of efficiently absorbing heat energy from the flat secondary battery 1 disposed on both sides.
  • the metal intermediate reinforcing plate 5 is made of aluminum or an aluminum alloy.
  • the intermediate reinforcing plate 5 is light and realizes excellent strength and cooling characteristics.
  • the intermediate reinforcing plate is not necessarily made of aluminum or an aluminum alloy, can be made of other metals, and can be made of a material having excellent heat
  • the intermediate reinforcing plate 5 has a larger heat capacity than the end plate 3 and effectively absorbs heat energy from the flat secondary battery 1 laminated on both sides.
  • the intermediate reinforcing plate 5 is made of a material thicker than the end plate 3 or having a large product of specific heat and weight.
  • the intermediate reinforcing plate 5 is made of metal and the end plate 3 is made of plastic, so that the heat capacity of the intermediate reinforcing plate 5 can be made larger than that of the end plate 3.
  • both the intermediate reinforcing plate 5 and the end plate 3 are made of metal, and the intermediate reinforcing plate 5 is formed thicker than the end plate 3, whereby the heat capacity of the intermediate reinforcing plate 5 can be made larger than that of the end plate 3.
  • the intermediate reinforcing plate 5 is entirely made of a metal plate, and the end plate 3 has a structure in which a thin metal plate is laminated on plastic, so that the heat capacity of the intermediate reinforcing plate 5 can be made larger than that of the end plate 3.
  • the intermediate reinforcing plate 5 is arranged in a thermally coupled state to the flat secondary battery 1 on both sides, and the end plate 3 is arranged in a thermally coupled state to the flat plate secondary battery 1 on one side.
  • the heat capacity is larger than that of the end plate 3, and preferably the heat capacity is approximately doubled, so that the temperature difference of the battery stack 2 can be equalized in an ideal state. This is because the heat generated by the flat secondary battery 1 disposed at the center of the battery stack 2 can be effectively radiated by the intermediate reinforcing plate 5.
  • the battery system generates heat by the charged / discharged current, and the amount of generated heat increases as the current increases.
  • the current for charging and discharging the battery system is not always constant.
  • a battery system used for a power supply device of a hybrid car or an electric vehicle is discharged with a large current when accelerating the vehicle, and is charged with a large current during regenerative braking, particularly during sudden braking.
  • the acceleration time of the vehicle and the time of regenerative braking at the time of sudden braking are short and are discharged with a large current, and even when charged with a large current, the time for the large current to flow is considerably short.
  • the short-time large current causes the flat secondary battery 1 to generate heat temporarily, it does not generate heat continuously, so that the total amount of heat generation energy is limited to a predetermined energy. Therefore, the heat energy generated in this state can be absorbed by the intermediate reinforcing plate 5 to reduce the temperature difference of the battery stack 2.
  • the battery system can more effectively limit the temperature rise at the center of the battery stack 2 as a structure for forcibly cooling the intermediate reinforcing plate 5.
  • the intermediate reinforcing plate 5 shown in FIG. 8 has cooling gaps 16 on both sides.
  • the cooling groove 15 is provided in the spacer 7 and the cooling gap 16 is provided.
  • the cooling gap 16 may be provided by providing a cooling groove on the surface of the intermediate reinforcing plate.
  • the cooling gap 16 is connected to a blowing mechanism (not shown) that forcibly blows a cooling gas such as air.
  • the air blowing mechanism forcibly blows air into the cooling gap 16 to forcibly cool the intermediate reinforcing plate 5.
  • the air blowing mechanism detects the temperature of the intermediate reinforcing plate 5 and the temperature of the flat secondary battery 1 arranged on both surfaces thereof. When the detected temperature becomes higher than the set value, the air is forced to blow into the cooling gap 16 and The reinforcing plate 5 and the flat secondary battery 1 are forcibly cooled.
  • the intermediate reinforcing plate 35 of FIG. 9 is provided with a cooling through hole 35 a extending in the longitudinal direction of the flat secondary battery 1.
  • the cooling through hole 35a is connected to a cooling mechanism (not shown) that forcibly blows a cooling gas such as air or circulates a refrigerant.
  • the cooling mechanism supplies a cooling gas or a refrigerant to the cooling through hole 35 a to forcibly cool the intermediate reinforcing plate 35.
  • the refrigerant evaporates inside the cooled liquid or the cooling through hole 35a, and forcibly cools the intermediate reinforcing plate 35 with heat of vaporization.
  • the intermediate reinforcing plate 35 is forcibly cooled by the cooling mechanism to reduce the temperature rise at the center of the battery unit.
  • the intermediate reinforcing plate 35 cooled by the heat of vaporization of the refrigerant effectively cools the flat secondary battery 1 that is cooled to a low temperature and disposed on both sides.
  • the end plate 3 and the intermediate reinforcing plate 5 are fixed to the bind bar 4 to fix the battery stack 2 in a pressurized state.
  • the bind bar 4 is a metal plate having an L-shaped cross section. End plates 4A that contact the outer surface of the end plate 3 are provided at both ends, and the intermediate reinforcing plate 5 is connected to the middle portion. A fixing portion 4B is provided.
  • the end plate 4 ⁇ / b> A is connected to the L-shaped end surface of the bind bar 4 and contacts the outer surface of the end plate 3.
  • the bind bar 4 is connected to the end plate 3 with the end plate 4 ⁇ / b> A disposed on the outer surface of the end plate 3.
  • the bind bar 4 connects the end plate 4 ⁇ / b> A to the end plate 3 and fixes the flat secondary battery 1 in a pressurized state by the end plate 3. Furthermore, the bind bar 4 is fixed to the outer peripheral surface of the end plate 3 by a method such as screwing.
  • the fixing part 4B of the bind bar 4 is provided with a through hole 4b through which the fixing screw 25 is inserted as a wide part.
  • the fixing screw 25 inserted through the through hole 4 b passes through the through hole 5 b provided in the intermediate reinforcing plate 5 and is fixed to the base plate 9, and the bind bar 4 is fixed to the intermediate reinforcing plate 5.
  • both ends of the bind bar 4 are fixed to the pair of end plates 3, the intermediate portion is fixed to the intermediate reinforcing plate 5, and the battery stack 2 is sandwiched between the end plate 3 and the intermediate reinforcing plate 5.
  • the clamping pressure of the flat secondary battery 1 is a pressing force per unit area that acts on both surfaces of the flat secondary battery 1.
  • the tightening pressure is calculated by [pressing force by which the end plate 3 and the intermediate reinforcing plate 5 press the battery stack 2 in the stacking direction] / [area of the flat portion of the flat secondary battery 1].
  • This clamping pressure is preferably set to 10 MPa or more and 1 MPa or less.
  • the tightening pressure is set to an optimum value within the above-mentioned range in consideration of the type and size of the flat secondary battery 1 and the material, shape, thickness, size, and electrode body properties of the outer case 10. Is done.
  • the discharge duct 6 is disposed on the first surface 2A (the upper surface of the battery stack 2 in the figure) on which the discharge valve 11 of the flat secondary battery 1 is disposed. is doing.
  • the discharge duct 6 is a groove type that opens a surface facing the flat secondary battery 1, and the opening is disposed in the gas discharge port 12 of the discharge valve 11.
  • the discharge duct 6 is fixed by screwing the intermediate portion to the upper surface of the intermediate reinforcing plate 5.
  • the discharge duct 6 has ribs 6A protruding on both sides of the opening.
  • a rubber-like elastic packing (not shown) is sandwiched between the rib 6A and the battery stack 2 to close the gap between the discharge duct 6 and the battery stack 2.
  • the discharge duct 6 is fixed to the intermediate reinforcing plate 5 with a set screw 26 penetrating the rib 6A.
  • the set screw 26 passes through the rib 6 ⁇ / b> A and is screwed into the female screw hole 5 c of the intermediate reinforcing plate 5 to fix the discharge duct 6 to the intermediate reinforcing plate 5. Further, both ends of the discharge duct 6 are screwed to the end plate 3 and are more securely fixed to the battery stack 2.
  • the base plate 9 fixes both the end plate 3 and the intermediate reinforcing plate 5.
  • the end plate 3 and the intermediate reinforcing plate 5 are provided with through holes 3a and 5b extending in the vertical direction in the drawing extending in a direction parallel to the flat secondary battery 1 on both sides.
  • Set screws 23, 25 are inserted into the through holes 3 a, 5 b, and the set screws 23, 25 fix the end portions to the base plate 9 and fix the end plate 3 and the intermediate reinforcing plate 5 to the base plate 9.
  • the set screws 23 and 25 are screwed into female screw holes 9a and 9b provided in the base plate 9 and fixed to the base plate 9, or are screwed into nuts provided on the bottom surface of the base plate and fixed to the base plate.
  • a battery system 100 that is mounted on a vehicle and supplies electric power to a motor 93 that runs the vehicle can use the base plate 9 as a chassis 92 of the vehicle.
  • the battery system 100 is placed on a chassis 92 of the vehicle, set screws 23 and 25 are inserted into through holes 3a and 5b provided in the end plate 3 and the intermediate reinforcing plate 5, and the set screws 23 and 25 are inserted into the chassis 92. And is fixed to the vehicle chassis 92 by being screwed into a female screw hole (not shown).
  • the base plate 9 is the vehicle chassis 92, but the base plate is not necessarily specified as the vehicle chassis.
  • the base plate 9 can be made of a metal plate, and the battery system 100 can be fixed on the base plate 9.
  • the battery system 100 can be mounted on a vehicle with the base plate 9 fixed on a vehicle chassis 92.
  • the above battery system is optimal for a power supply device that supplies electric power to a motor that drives an electric vehicle.
  • the present invention does not specify the use of the battery system as a power supply device mounted on an electric vehicle, and can be used, for example, as a power supply device that stores natural energy such as solar power generation or wind power generation, and stores midnight power.
  • power supply devices such as power supply devices, it is optimal for all applications that store large amounts of power.
  • an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and used as a power source for these electric vehicles. Is done.
  • FIG. 10 shows an example in which a battery system is mounted on a hybrid vehicle that runs with both an engine and a motor.
  • a vehicle HV equipped with the battery system shown in this figure includes an engine 96 and a traveling motor 93 for traveling the vehicle HV, a battery system 100 for supplying electric power to the motor 93, and a flat secondary battery of the battery system 100.
  • the battery system 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels by both the motor 93 and the engine 96 while charging and discharging the flat secondary battery of the battery system 100.
  • the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
  • the motor 93 is driven by power supplied from the battery system 100.
  • the generator 94 is driven by the engine 96, or is driven by regenerative braking when the vehicle is braked, and charges the flat secondary battery of the battery system 100.
  • FIG. 11 shows an example in which a battery system is mounted on an electric vehicle that runs only with a motor.
  • a vehicle EV equipped with the battery system shown in this figure charges a motor 93 for running the vehicle EV, a battery system 100 that supplies power to the motor 93, and a flat secondary battery of the battery system 100.
  • the battery system 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the motor 93 is driven by power supplied from the battery system 100.
  • the generator 94 is driven by energy when regeneratively braking the vehicle EV, and charges the flat secondary battery of the battery system 100.
  • this battery system can be used not only as a power source for a mobile body but also as a stationary power storage facility.
  • a power source for home and factory use a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals.
  • FIG. The battery system 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery blocks 81 in a unit form. Each battery block 81 has a plurality of flat secondary batteries connected in series and / or in parallel.
  • Each battery block 81 is controlled by a power supply controller 84.
  • the battery system 100 drives the load LD after charging the battery unit 82 with the charging power source CP. For this reason, the battery system 100 includes a charge mode and a discharge mode.
  • the load LD and the charging power source CP are connected to the battery system 100 via the discharging switch DS and the charging switch CS, respectively.
  • ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the battery system 100.
  • the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging of the battery system 100 from the charging power source CP.
  • the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge.
  • the mode is switched and discharging from the battery system 100 to the load LD is permitted.
  • the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the battery system 100 simultaneously.
  • the load LD driven by the battery system 100 is connected to the battery system 100 via the discharge switch DS.
  • the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the battery system 100.
  • the discharge switch DS a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the battery system 100.
  • the power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 12, the host device HT is connected according to an existing communication protocol such as UART or RS-232c. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
  • Each battery block 81 includes a signal terminal and a power supply terminal.
  • the signal terminals include an input / output terminal DI, an abnormal output terminal DA, and a connection terminal DO.
  • the input / output terminal DI is a terminal for inputting / outputting a signal from the other battery block 81 or the power supply controller 84
  • the connection terminal DO is a terminal for inputting / outputting a signal to / from the other battery block 81.
  • the abnormality output terminal DA is a terminal for outputting abnormality of the battery block 81 to the outside.
  • the power supply terminal is a terminal for connecting the battery blocks 81 in series and in parallel.
  • the battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
  • the battery system of the present invention is optimally used for a power supply device that supplies power to a motor of a vehicle that requires a large amount of power, or a power storage device that stores natural energy or midnight power.
  • Cooling plate 23 ... Set screw 25 ... Set screw 26 ... Set screw 32 ... Battery stack 35 ... Intermediate reinforcement plate 35a ... Cooling through hole 37 ... Spacer 37A ... exposed part 81 ... electric Battery block 82 ... Battery unit 84 ... Power supply controller 85 ... Parallel connection switch 90 ... Vehicle main body 92 ... Chassis 93 ... Motor 94 ... Generator 95 ... DC / AC inverter 96 ... Engine 97 ... Wheel 201 ... Flat secondary battery 202 ... Battery stack 203 ... End plate 205 ... Radiation plate 209 ... Base plate EV ... Vehicle HV ... Vehicle LD ... Load CP ... Charging power supply DS ... Discharge switch CS ... Charge switch OL ... Output line HT ... Host equipment DI ... I / O terminal DA ... Abnormal output terminal DO ... Connection terminal

Abstract

The purpose of the present invention is to improve a vibration resistance strength of a battery laminate while laminating a number of flat type secondary batteries in a pressurized state. A battery system comprises: a battery laminate (2) in which a plurality of flat type secondary batteries (1) is laminated in the thickness direction and the electrode terminals of adjoining flat type secondary batteries (1) are connected with a bus bar (14); a pair of end plates (3) that is arranged on both end surfaces in the lamination direction of the battery laminate (2); and a bind bar (4) that is connected to the pair of end plates (3) to pressurize and fix the flat type second batteries (1) in the lamination direction. Further, the battery system is provided with an intermediate reinforcing plate (5) that is arranged between the flat type secondary batteries (1) constituting the battery laminate (2), and the intermediate reinforcing plate (5) is fixed to the bind bar (4) so that the end plates (3) and the intermediate reinforcing plate (5) may fix the laminated flat type secondary batteries (1) in a pressurized state.

Description

バッテリシステム及びバッテリシステムを備える電動車両並びに蓄電装置Battery system, electric vehicle including battery system, and power storage device
 本発明は、複数の扁平形二次電池を積層して、その両端にエンドプレートを配置して、エンドプレートをバインドバーで連結してなるバッテリシステム及びバッテリシステムを備える電動車両並びに蓄電装置に関する。 The present invention relates to a battery system in which a plurality of flat secondary batteries are stacked, end plates are arranged at both ends thereof, and end plates are connected by a bind bar, an electric vehicle including the battery system, and a power storage device.
 多数の扁平形二次電池を積層して、その両端面にエンドプレートを配置し、エンドプレートをバインドバーで連結して、一対のエンドプレートで扁平形二次電池を加圧積層状態に固定しているバッテリシステムは開発されている。(特許文献1参照) A large number of flat secondary batteries are stacked, end plates are arranged on both end faces, the end plates are connected by a bind bar, and the flat secondary batteries are fixed in a pressure-laminated state with a pair of end plates. A battery system has been developed. (See Patent Document 1)
 以上のバッテリシステムは、図1に示すように、ベースプレート209の上に、複数の扁平形二次電池201を積層するように配置して電池積層体202とし、電池積層体202の両端にエンドプレート203を配置して、エンドプレート203をバインドバー(図示せず)で連結して、扁平形二次電池201を積層状態に固定している。さらに、このバッテリシステムは、中央部の扁平形二次電池201が高温になって温度差ができる欠点を解消するために、中央部に放熱プレート205を配置している。放熱プレート205は、電池積層体202の中央部を放熱して、電池積層体202の温度差を少なくする。 As shown in FIG. 1, the above battery system is arranged such that a plurality of flat secondary batteries 201 are stacked on a base plate 209 to form a battery stack 202, and end plates are provided at both ends of the battery stack 202. 203 is disposed, and the end plate 203 is connected by a bind bar (not shown) to fix the flat secondary battery 201 in a stacked state. Further, in this battery system, a heat radiating plate 205 is arranged in the central portion in order to eliminate the disadvantage that the flat secondary battery 201 in the central portion becomes high temperature and causes a temperature difference. The heat radiating plate 205 radiates heat at the center of the battery stack 202 to reduce the temperature difference of the battery stack 202.
特開2003-249205号公報Japanese Patent Laid-Open No. 2003-249205
 図1に示すように、多数の扁平形二次電池を積層して電池積層体とするバッテリシステムは、多数の扁平形二次電池を直列に接続して出力電圧を高く、また並列に接続して出力電流を大きくして出力を大きくできる。また、複数の扁平形二次電池を積層して積層状態に固定するので、容積効率を高くして、容積に対する充放電容量を大きくできる特徴もある。この特徴が生かされることから、この構造のバッテリシステムは、車両を走行させるモータに電力を供給する電源装置や、自然エネルギーや深夜電力を蓄電する蓄電装置の電源として最適な状態で使用される。 As shown in FIG. 1, in a battery system in which a large number of flat secondary batteries are stacked to form a battery stack, a large number of flat secondary batteries are connected in series to increase output voltage, and are connected in parallel. The output can be increased by increasing the output current. In addition, since a plurality of flat secondary batteries are stacked and fixed in a stacked state, there is a feature that the volume efficiency can be increased and the charge / discharge capacity with respect to the volume can be increased. Since this feature is utilized, the battery system of this structure is used in an optimum state as a power supply device that supplies electric power to a motor that drives the vehicle or a power storage device that stores natural energy or midnight power.
 種々の用途に使用されるバッテリシステムは、比較的強い振動を受ける場合がある。特に、車両に搭載されるバッテリシステムは、常に振動にさらされるため、充分な耐振動強度が要求される。一方で、出力を大きくするために、扁平形二次電池が大型化されると、種々の用途において充分な耐振動強度を実現するのがさらに難しくなる。このような種々の用途で使用されるバッテリシステムであって、充分な耐振動強度を実現できないバッテリシステムが振動を受けると、扁平形二次電池が相対的に運動して種々の弊害を与える。たとえば、隣接する扁平形二次電池は、電極端子に金属板のバスバーを溶接等の方法で固定しているので、隣の扁平形二次電池が相対的に運動すると、バスバーと電極端子との連結部や電極端子と扁平形二次電池の外装ケースとの連結部等に無理な応力が作用して、これ等の連結部を損傷し、あるいは変形させる等の弊害が発生する。また、扁平形二次電池の開閉弁に連結するように、たとえば電池積層体に上面に排出ダクトを固定しているバッテリシステムにあっては、排出ダクトと扁平形二次電池との位置がずれて、排出弁からの排気ガスを確実に排出ダクトに連結できなくなる等の弊害が発生する。また、扁平形二次電池を加圧状態に積層して、隣の扁平形二次電池が相対的に運動すると、扁平形二次電池の間に配置しているスペーサなどを損傷し、あるいは又、扁平形二次電池の加圧面に表面と平行な方向に強い歪み力が作用して、扁平形二次電池の外装ケースを損傷する等の弊害も発生する。 ∙ Battery systems used for various purposes may be subject to relatively strong vibrations. In particular, since a battery system mounted on a vehicle is always exposed to vibration, sufficient vibration resistance strength is required. On the other hand, when the flat secondary battery is enlarged in order to increase the output, it becomes more difficult to realize sufficient vibration resistance strength in various applications. When a battery system used in various applications as described above, which is not capable of realizing sufficient vibration resistance, is subjected to vibration, the flat secondary battery relatively moves and causes various adverse effects. For example, the adjacent flat secondary battery has a metal plate bus bar fixed to the electrode terminal by welding or the like, so if the adjacent flat secondary battery moves relatively, the bus bar and the electrode terminal An unreasonable stress acts on the connecting portion or the connecting portion between the electrode terminal and the outer case of the flat secondary battery, and this causes a bad effect such as damage or deformation of the connecting portion. In addition, for example, in a battery system in which a discharge duct is fixed on the upper surface of a battery stack so as to be connected to an open / close valve of a flat secondary battery, the positions of the discharge duct and the flat secondary battery are shifted. As a result, the exhaust gas from the exhaust valve cannot be reliably connected to the exhaust duct. In addition, if a flat secondary battery is stacked in a pressurized state and the adjacent flat secondary battery moves relatively, the spacer disposed between the flat secondary batteries may be damaged, or In addition, a strong distortion force acts on the pressing surface of the flat secondary battery in a direction parallel to the surface, which causes a negative effect such as damaging the outer case of the flat secondary battery.
 本発明は、扁平形二次電池を積層している以上のバッテリシステムの欠点を解決することを目的に開発されたものである。本発明の重要な目的は、多数の扁平形二次電池を加圧状態に積層しながら、電池積層体の耐振動強度を向上できるバッテリシステム及びバッテリシステムを備える電動車両並びに蓄電装置を提供することにある。とくに、本発明の大切な目的は、大型の扁平形二次電池を積層しながら、電池積層体の耐振動強度を向上できるバッテリシステム及びバッテリシステムを備える電動車両並びに蓄電装置を提供することにある。 The present invention has been developed for the purpose of solving the drawbacks of the battery system described above in which flat secondary batteries are stacked. An important object of the present invention is to provide a battery system, an electric vehicle including the battery system, and a power storage device that can improve the vibration resistance strength of the battery stack while stacking a large number of flat secondary batteries in a pressurized state. It is in. In particular, an important object of the present invention is to provide a battery system, an electric vehicle including the battery system, and a power storage device that can improve the vibration resistance strength of the battery stack while stacking large flat secondary batteries. .
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 本発明のバッテリシステムは、複数の扁平形二次電池1が厚さ方向に積層され、かつ隣接する扁平形二次電池1の電極端子13をバスバー14で接続してなる電池積層体2、32と、この電池積層体2、32の積層方向の両端面に配置してなる一対のエンドプレート3と、一対のエンドプレート3に連結されて、扁平形二次電池1を積層方向に加圧して固定してなるバインドバー4とを備えている。さらに、バッテリシステムは、電池積層体2、32を構成している扁平形二次電池1の間に配置してなる中間補強プレート5、35を備えており、この中間補強プレート5、35がバインドバー4に固定されて、エンドプレート3及び中間補強プレート5、35でもって、積層された扁平形二次電池1を加圧状態に固定している。 In the battery system of the present invention, a plurality of flat secondary batteries 1 are stacked in the thickness direction, and battery stacks 2 and 32 are formed by connecting electrode terminals 13 of adjacent flat secondary batteries 1 by bus bars 14. And a pair of end plates 3 arranged on both end surfaces of the battery stacks 2 and 32 in the stacking direction, and the flat secondary battery 1 connected to the pair of end plates 3 to pressurize the flat secondary battery 1 in the stacking direction. A fixed bind bar 4 is provided. Further, the battery system includes intermediate reinforcing plates 5 and 35 arranged between the flat secondary batteries 1 constituting the battery stacks 2 and 32, and the intermediate reinforcing plates 5 and 35 are bound. The laminated flat secondary battery 1 is fixed in a pressurized state by being fixed to the bar 4 and with the end plate 3 and the intermediate reinforcing plates 5 and 35.
 以上のバッテリシステムは、多数の扁平形二次電池を加圧状態に積層しながら、電池積層体の耐振動強度を向上できるという優れた特徴を実現する。とくに、以上のバッテリシステムは、扁平形二次電池が大きく、重くなっても、電池積層体の耐振動強度を向上できる。それは、以上のバッテリシステムが、複数の扁平形二次電池を積層している電池積層体の中間部に中間補強プレートを配置して、この中間補強プレートをバインドバーに固定して、エンドプレートと中間補強プレートで積層している扁平形二次電池を加圧状態に固定しているからである。 The above battery system realizes an excellent feature that the vibration resistance strength of the battery stack can be improved while a large number of flat secondary batteries are stacked in a pressurized state. In particular, the battery system described above can improve the vibration resistance of the battery stack even when the flat secondary battery is large and heavy. In the battery system described above, an intermediate reinforcing plate is disposed in the middle part of a battery stack in which a plurality of flat secondary batteries are stacked, and the intermediate reinforcing plate is fixed to the bind bar, and the end plate and This is because the flat secondary batteries stacked with the intermediate reinforcing plate are fixed in a pressurized state.
 本発明のバッテリシステムは、電池積層体2を載置してなるベースプレート9を備えて、エンドプレート3と中間補強プレート5の両方をベースプレート9に固定することができる。
 以上のバッテリシステムは、電池積層体をベースプレートに載置して、中間補強プレートとエンドプレートの両方をベースプレートに固定するので、電池積層体の耐振動強度をさらに向上できる特徴がある。
The battery system of the present invention includes a base plate 9 on which the battery stack 2 is placed, and can fix both the end plate 3 and the intermediate reinforcing plate 5 to the base plate 9.
The battery system described above is characterized in that the battery laminate is placed on the base plate and both the intermediate reinforcing plate and the end plate are fixed to the base plate, so that the vibration resistance strength of the battery laminate can be further improved.
 本発明のバッテリシステムは、扁平形二次電池1が、所定の内圧で開弁する排出弁11を備え、電池積層体2が、排出弁11を第1の表面2Aに配置して各扁平形二次電池1を積層すると共に、電池積層体2の第1の表面2Aに配置されて、排出弁11の開口部に連結してなる排出ダクト6を備えて、この排出ダクト6の中間部を中間補強プレート5に固定することができる。
 以上のバッテリシステムは、電池積層体の耐振動強度を向上しながら、排出ダクトと電池積層体の相対的に位置ずれを防止できる。それは、細長い排出ダクトの中間部を中間補強プレートに固定しているからである。この排出ダクトは、扁平形二次電池の開弁する排出弁から排出されるガスや電解液を確実に排気できる特徴がある。
In the battery system of the present invention, the flat secondary battery 1 includes a discharge valve 11 that opens at a predetermined internal pressure, and the battery stack 2 has the flat shape by disposing the discharge valve 11 on the first surface 2A. A secondary battery 1 is stacked, and a discharge duct 6 arranged on the first surface 2A of the battery stack 2 and connected to an opening of the discharge valve 11 is provided, and an intermediate portion of the discharge duct 6 is provided. It can be fixed to the intermediate reinforcing plate 5.
The above battery system can prevent relative displacement between the discharge duct and the battery stack while improving the vibration resistance strength of the battery stack. This is because the middle part of the elongated discharge duct is fixed to the middle reinforcing plate. This discharge duct has a feature that gas and electrolyte discharged from a discharge valve opened by the flat secondary battery can be reliably exhausted.
 本発明のバッテリシステムは、中間補強プレート5の熱容量を、エンドプレート3よりも大きくすることができる。
 以上のバッテリシステムは、電池積層体の中間部の熱エネルギーを中間補強プレートで効率よく吸熱して、扁平形二次電池の温度差を少なくできる。
In the battery system of the present invention, the heat capacity of the intermediate reinforcing plate 5 can be made larger than that of the end plate 3.
In the battery system described above, the thermal energy of the intermediate part of the battery stack can be efficiently absorbed by the intermediate reinforcing plate, and the temperature difference of the flat secondary battery can be reduced.
 本発明のバッテリシステムは、中間補強プレート5を、エンドプレート3よりも厚くて熱容量の大きいプレートとすることができる。
 以上のバッテリシステムは、中間補強プレートをエンドプレートより厚くして熱容量を大きくするので、中間補強プレートを充分な強度としながら、すなわち、電池積層体の耐振動強度を向上しながら、扁平形二次電池の温度差を少なくできる特徴も実現する。
In the battery system of the present invention, the intermediate reinforcing plate 5 can be a plate that is thicker than the end plate 3 and has a larger heat capacity.
In the above battery system, the intermediate reinforcing plate is made thicker than the end plate to increase the heat capacity, so that the intermediate secondary plate has sufficient strength, that is, while improving the vibration resistance strength of the battery stack, the flat secondary The feature that can reduce the temperature difference of the battery is also realized.
 本発明のバッテリシステムは、中間補強プレート5を、エンドプレート3よりも熱容量の大きい金属板とすることができる。
 以上のバッテリシステムは、中間補強プレートをエンドプレートよりも熱容量の大きい金属板とするので、中間補強プレートを充分な強度の金属板として、電池積層体の耐振動強度を向上し、さらに扁平形二次電池の温度差を少なくできる特徴も実現する。
In the battery system of the present invention, the intermediate reinforcing plate 5 can be a metal plate having a larger heat capacity than the end plate 3.
In the battery system described above, the intermediate reinforcing plate is a metal plate having a larger heat capacity than the end plate, so that the intermediate reinforcing plate is a sufficiently strong metal plate to improve the vibration resistance strength of the battery stack, and further to the flat two A feature that can reduce the temperature difference of the secondary battery is also realized.
 本発明のバッテリシステムは、中間補強プレート5が、扁平形二次電池1との間に冷却隙間16を備えることができる。
 以上のバッテリシステムは、中間補強プレートに設けた冷却隙間に送風して、中間補強プレートと扁平形二次電池とを冷却できるので、扁平形二次電池の温度差をより少なくして電池積層体の温度を均等化できる。
In the battery system of the present invention, the intermediate reinforcing plate 5 can include the cooling gap 16 between the flat secondary battery 1.
The above battery system can cool the intermediate reinforcing plate and the flat secondary battery by sending air to the cooling gap provided in the intermediate reinforcing plate, so that the temperature difference between the flat secondary battery can be reduced and the battery stack Can equalize the temperature.
 本発明のバッテリシステムは、中間補強プレート35が、扁平形二次電池1の長手方向に延びる冷却貫通孔35Aを有することができる。
 以上のバッテリシステムは、中間補強プレートに設けた冷却貫通孔に送風し、あるいは冷却液体を循環して中間補強プレートを冷却できるので、中間補強プレートで電池積層体の中間部を冷却して、扁平形二次電池の温度差をより少なくできる。
In the battery system of the present invention, the intermediate reinforcing plate 35 can have a cooling through hole 35 </ b> A extending in the longitudinal direction of the flat secondary battery 1.
In the above battery system, the intermediate reinforcing plate can be cooled by blowing air to the cooling through-hole provided in the intermediate reinforcing plate or circulating the cooling liquid. The temperature difference of the secondary battery can be reduced.
 本発明のバッテリシステムは、車両に搭載されて、車両を走行させるモータ93に電力を供給する電源装置とすることができる。
 以上のバッテリシステムは、振動を受ける車両に搭載されて充分な耐振動強度を実現する。したがって、車両に搭載されて、長期間にわたって安定して車両の走行用モータに電力を供給でき、劣化を少なく寿命を長くできる特徴を実現する。
The battery system of the present invention can be a power supply device that is mounted on a vehicle and supplies power to a motor 93 that runs the vehicle.
The above battery system is mounted on a vehicle that receives vibration to achieve sufficient vibration resistance. Therefore, it is mounted on the vehicle, and it is possible to stably supply power to the vehicle motor for a long period of time, and to realize a feature that can reduce the deterioration and extend the life.
 本発明のバッテリシステムは、車両に搭載されて、車両を走行させるモータ93に電力を供給する電源装置として、ベースプレート9を車両のシャーシ92とすることができる。
 以上のバッテリシステムは、車両のシャーシをベースプレートに併用して、電池積層体を固定するので、扁平形二次電池を車両のシャーシで効率よく冷却し、さらに、専用のベースプレートを省略して部品コストを低減するにもかかわらず、車両のシャーシでもって電池積層体の耐振動強度を向上できる。
In the battery system of the present invention, the base plate 9 can be used as the chassis 92 of the vehicle as a power supply device that is mounted on the vehicle and supplies power to the motor 93 that runs the vehicle.
The above battery system uses the vehicle chassis together with the base plate to fix the battery stack, so the flat secondary battery is efficiently cooled by the vehicle chassis, and the dedicated base plate is omitted to reduce the component cost. However, the vibration resistance of the battery stack can be improved with the vehicle chassis.
 本発明のバッテリシステムは、自然エネルギーと深夜電力の何れかを蓄電する電源装置とすることができる。
 以上のバッテリシステムは、大電力を蓄電する電源装置に使用しながら、振動による弊害を防止できる。
The battery system of the present invention can be a power supply device that stores either natural energy or midnight power.
The battery system described above can prevent harmful effects caused by vibrations while being used in a power supply device that stores large power.
 本発明の電動車両は、上記のいずれかのバッテリシステム100と、このバッテリシステム100から電力供給される走行用のモータ93と、バッテリシステム100及びモータ93を搭載してなる車両本体90と、モータ93で駆動されて車両本体90を走行させる車輪97とを備えている。
 以上の電動車両は、車両に搭載されて振動を受けるバッテリシステムの充分な耐振動強度を実現できる。このため、車両に搭載されるバッテリシステムから、長期間にわたって安定して車両の走行用モータに電力を供給して、安定した走行を実現できる。
An electric vehicle according to the present invention includes any one of the battery systems 100 described above, a motor 93 for traveling that is supplied with power from the battery system 100, a vehicle main body 90 including the battery system 100 and the motor 93, and a motor. And a wheel 97 that is driven by the vehicle 93 and causes the vehicle main body 90 to travel.
The above-described electric vehicle can realize sufficient vibration resistance strength of a battery system that is mounted on the vehicle and receives vibration. For this reason, it is possible to stably supply electric power to the vehicle driving motor from a battery system mounted on the vehicle for a long period of time, thereby realizing stable driving.
 本発明の蓄電装置は、上記のいずれかのバッテリシステム100を備えると共に、バッテリシステム100への充放電を制御する電源コントローラ84を備えている。この電源コントローラ84は、外部からの電力により扁平形二次電池1への充電を可能とすると共に、扁平形二次電池1に対し充電を行うよう制御することができる。
 以上の蓄電装置は、大電力を蓄電するバッテリシステムを使用しながら、振動による弊害を防止できる。
The power storage device of the present invention includes any one of the battery systems 100 described above and a power controller 84 that controls charging / discharging of the battery system 100. The power supply controller 84 can charge the flat secondary battery 1 with electric power from the outside and can control the flat secondary battery 1 to be charged.
The above power storage device can prevent harmful effects caused by vibration while using a battery system that stores large power.
従来のバッテリシステムの斜視図である。It is a perspective view of the conventional battery system. 本発明の一実施の形態にかかるバッテリシステムの斜視図である。It is a perspective view of the battery system concerning one embodiment of the present invention. 図2に示すバッテリシステムの垂直縦断面図である。FIG. 3 is a vertical longitudinal sectional view of the battery system shown in FIG. 2. 図2に示すバッテリシステムの分解斜視図である。FIG. 3 is an exploded perspective view of the battery system shown in FIG. 2. 図4に示す電池積層体の分解斜視図である。It is a disassembled perspective view of the battery laminated body shown in FIG. 扁平形二次電池とスペーサの積層構造を示す分解斜視図である。It is a disassembled perspective view which shows the laminated structure of a flat secondary battery and a spacer. 他の構造のスペーサと扁平形二次電池とを積層してなる電池積層体の分解斜視図である。It is a disassembled perspective view of the battery laminated body formed by laminating | stacking the spacer of another structure, and a flat secondary battery. 中間補強プレートを強制的に冷却する一例を示す分解斜視図である。It is a disassembled perspective view which shows an example which cools an intermediate | middle reinforcement plate compulsorily. 中間補強プレートを強制的に冷却する他の一例を示す斜視図である。It is a perspective view which shows another example which forcibly cools an intermediate | middle reinforcement plate. エンジンとモータで走行するハイブリッドカーにバッテリシステムを搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a battery system in the hybrid car which drive | works with an engine and a motor. モータのみで走行する電気自動車にバッテリシステムを搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a battery system in the electric vehicle which drive | works only with a motor. 蓄電装置にバッテリシステムを使用する例を示すブロック図である。It is a block diagram which shows the example which uses a battery system for an electrical storage apparatus.
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するためのバッテリシステム及びバッテリシステムを備える電動車両並びに蓄電装置を例示するものであって、本発明はバッテリシステム及びバッテリシステムを備える電動車両並びに蓄電装置を以下のものに特定しない。さらに、この明細書は、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments described below exemplify a battery system, an electric vehicle including the battery system, and a power storage device for embodying the technical idea of the present invention. The present invention includes a battery system and a battery system. The electric vehicle and power storage device provided are not specified as follows. Furthermore, this specification does not limit the members shown in the claims to the members of the embodiments.
 図2ないし図6に示すバッテリシステム100は、複数の扁平形二次電池1を厚さ方向に積層して、隣接する扁平形二次電池1の電極端子13をバスバー14で接続している電池積層体2と、この電池積層体2の積層方向の両端部に配置している一対のエンドプレート3と、一対のエンドプレート3に連結されて、扁平形二次電池1を積層方向に加圧して固定しているバインドバー4とを備える。 A battery system 100 shown in FIGS. 2 to 6 is a battery in which a plurality of flat secondary batteries 1 are stacked in the thickness direction, and electrode terminals 13 of adjacent flat secondary batteries 1 are connected by a bus bar 14. The laminated body 2, the pair of end plates 3 disposed at both ends of the battery laminated body 2 in the stacking direction, and the pair of end plates 3 are connected to press the flat secondary battery 1 in the stacking direction. And a binding bar 4 that is fixed.
 扁平形二次電池1は、図5と図6に示すように、厚さに比べて幅が広い、言い換えると幅よりも薄い角形の電池で、厚さ方向に積層されて電池積層体2としている。この扁平形二次電池1は、リチウムイオン二次電池である。ただし、扁平形二次電池は、ニッケル水素電池やニッケルカドミウム電池等の二次電池とすることもできる。図の扁平形二次電池1は、幅の広い両表面を四角形とする電池で、両表面を対向するように積層して電池積層体2としている。 As shown in FIGS. 5 and 6, the flat secondary battery 1 is a rectangular battery having a width wider than the thickness, in other words, a square battery thinner than the width, and is stacked in the thickness direction to form a battery stack 2. Yes. The flat secondary battery 1 is a lithium ion secondary battery. However, the flat secondary battery may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery. The flat secondary battery 1 shown in the figure is a battery in which both surfaces having a wide width are rectangular, and the both surfaces are stacked so as to face each other to form a battery stack 2.
 扁平形二次電池1は、外形を角形とする外装ケース10に、電極体(図示せず)を収納して電解液を充填している。外装ケース10は、底を閉塞する筒状に金属板をプレス加工している外装缶10Aと、この外装缶10Aの開口部を気密に閉塞している封口板10Bとを備えている。封口板10Bは平面状の金属板で、その外形を外装缶10Aの開口部の形状としている。この封口板10Bはレーザー溶接して外装缶10Aの外周縁に固定されて外装缶10Aの開口部を気密に閉塞している。外装缶10Aに固定される封口板10Bは、その両端部に正負の電極端子13を固定しており、さらに正負の電極端子13の中間にはガス排出口12を設けている。ガス排出口12の内側には、所定の内圧で開弁する排出弁11を設けている。図4と図5に示す電池積層体2は、複数の扁平形二次電池1を、排出弁11を設けた面が略同一面に位置する姿勢で積層して、各扁平形二次電池1の排出弁11を第1の表面2Aに配置している。図の電池積層体2は、排出弁11を設けている封口板10Bを上面とする姿勢で、複数の扁平形二次電池1を積層している。 In the flat secondary battery 1, an electrode case (not shown) is housed in an outer case 10 having a rectangular outer shape and filled with an electrolytic solution. The outer case 10 includes an outer can 10A in which a metal plate is pressed into a cylindrical shape that closes the bottom, and a sealing plate 10B that airtightly closes the opening of the outer can 10A. The sealing plate 10B is a flat metal plate, and its outer shape is the shape of the opening of the outer can 10A. The sealing plate 10B is laser-welded and fixed to the outer peripheral edge of the outer can 10A to airtightly close the opening of the outer can 10A. The sealing plate 10 </ b> B fixed to the outer can 10 </ b> A has positive and negative electrode terminals 13 fixed to both ends thereof, and a gas discharge port 12 is provided between the positive and negative electrode terminals 13. A discharge valve 11 that opens at a predetermined internal pressure is provided inside the gas discharge port 12. The battery stack 2 shown in FIGS. 4 and 5 includes a plurality of flat secondary batteries 1 stacked in such a manner that the surfaces on which the discharge valves 11 are provided are positioned substantially on the same plane. The discharge valve 11 is arranged on the first surface 2A. In the illustrated battery stack 2, a plurality of flat secondary batteries 1 are stacked in a posture with the sealing plate 10 </ b> B provided with the discharge valve 11 as an upper surface.
 排出弁11は、扁平形二次電池1の内圧が設定圧力よりも高くなると開弁して、内圧の上昇を防止する。この排出弁11は、ガス排出口12を閉塞する弁体(図示せず)を内蔵している。弁体は、設定圧力で破壊される薄膜、あるいは設定圧力で開弁するように弾性体で弁座に押圧されている弁である。排出弁11が開弁されると、ガス排出口12を介して扁平形二次電池1の内部が外部に開放され、内部のガスを放出して内圧の上昇が防止される。 The discharge valve 11 is opened when the internal pressure of the flat secondary battery 1 becomes higher than the set pressure, thereby preventing the internal pressure from increasing. The discharge valve 11 has a built-in valve body (not shown) that closes the gas discharge port 12. The valve body is a thin film that is destroyed at a set pressure, or a valve that is pressed against the valve seat by an elastic body so as to open at the set pressure. When the discharge valve 11 is opened, the inside of the flat secondary battery 1 is opened to the outside through the gas discharge port 12, and the internal gas is discharged to prevent the internal pressure from increasing.
 互いに積層される複数の扁平形二次電池1は、正負の電極端子13を接続して互いに直列及び/又は並列に接続される。バッテリシステムは、隣接する扁平形二次電池1の正負の電極端子13を、バスバー14を介して互いに直列及び/又は並列に接続する。隣接する扁平形二次電池を互いに直列に接続するバッテリシステムは、出力電圧を高くして出力を大きくでき、隣接する扁平形二次電池を並列に接続して、充放電の電流を大きくできる。 A plurality of flat secondary batteries 1 stacked on each other are connected in series and / or in parallel with each other by connecting positive and negative electrode terminals 13. In the battery system, positive and negative electrode terminals 13 of adjacent flat secondary batteries 1 are connected to each other in series and / or in parallel via a bus bar 14. A battery system in which adjacent flat secondary batteries are connected in series with each other can increase the output voltage by increasing the output voltage, and can connect adjacent flat secondary batteries in parallel to increase the charge / discharge current.
 図3~図5に示す電池積層体2は、14個の扁平形二次電池1を、スペーサ7を介して互いに積層しており、これらの扁平形二次電池1を直列に接続している。図の電池積層体2は、互いに隣接する扁平形二次電池1同士を逆向きに並べており、その両側において隣接する電極端子13同士をバスバー14で連結して、隣り合う2個の扁平形二次電池1を直列に接続して、すべての扁平形二次電池1を直列に接続している。ただ、本発明は、電池積層体を構成する扁平形二次電池の個数とその接続状態を特定しない。 In the battery stack 2 shown in FIGS. 3 to 5, 14 flat secondary batteries 1 are stacked on each other via a spacer 7, and these flat secondary batteries 1 are connected in series. . In the illustrated battery stack 2, adjacent flat secondary batteries 1 are arranged in opposite directions, and adjacent electrode terminals 13 on both sides thereof are connected by a bus bar 14, so that two adjacent flat secondary batteries 1 are connected. The secondary batteries 1 are connected in series, and all the flat secondary batteries 1 are connected in series. However, the present invention does not specify the number of flat secondary batteries constituting the battery stack and the connection state thereof.
 電池積層体2は、図3、図5、及び図6に示すように、積層している扁平形二次電池1の間にスペーサ7を挟着している。スペーサ7は、隣接する扁平形二次電池1を絶縁する。図に示すスペーサ7は、プラスチックを板状に成形した絶縁プレートである。このスペーサ7は、扁平形二次電池1を嵌着して定位置に配置する形状として、隣接する扁平形二次電池1を位置ずれしないように積層できる。 As shown in FIGS. 3, 5, and 6, the battery stack 2 has a spacer 7 sandwiched between the stacked flat secondary batteries 1. The spacer 7 insulates the adjacent flat secondary battery 1. The spacer 7 shown in the figure is an insulating plate formed of plastic in a plate shape. The spacer 7 can be stacked so that the adjacent flat secondary battery 1 is not displaced as a shape in which the flat secondary battery 1 is fitted and disposed at a fixed position.
 また、プラスチックで成形されるスペーサは、空気などの冷却気体を通過させる冷却隙間を表面に設けて、扁平形二次電池を冷却することもできる。この構造は、冷却隙間に空気を強制送風させて、扁平形二次電池の外装缶を直接に効率よく冷却できる。さらに、熱伝導率の小さい材質のプラスチックで成形されるスペーサは、隣接する扁平形二次電池の熱暴走を効果的に防止できる効果もある。 Also, the spacer formed of plastic can cool the flat secondary battery by providing a cooling gap on the surface for allowing a cooling gas such as air to pass through. This structure can efficiently cool the outer can of the flat secondary battery directly by forcing air into the cooling gap. Furthermore, the spacer formed from a plastic material having a low thermal conductivity has an effect of effectively preventing thermal runaway of the adjacent flat secondary battery.
 以上のように、スペーサ7で絶縁して積層される扁平形二次電池1は、外装缶をアルミニウムなどの金属製にできる。ただ、電池積層体は、必ずしも扁平形二次電池の間にスペーサを介在させる必要はない。例えば、扁平形二次電池の外装缶を絶縁材で成形し、あるいは扁平形二次電池の外装缶の外周を絶縁シートや絶縁塗料等で被覆する等の方法で、互いに隣接する扁平形二次電池同士を絶縁することによって、スペーサを不要とできるからである。さらに、扁平形二次電池の間にスペーサを介在させない電池積層体は、扁平形二次電池の間に冷却風を強制送風して扁平形二次電池を冷却する空冷式を採用することなく、冷媒等を用いて直接冷却する方式を採用して扁平形二次電池を冷却できる。 As described above, the flat secondary battery 1 insulated and stacked by the spacer 7 can have an outer can made of metal such as aluminum. However, it is not always necessary for the battery stack to interpose a spacer between the flat secondary batteries. For example, flat secondary batteries that are adjacent to each other can be formed by insulating the outer can of a flat secondary battery with an insulating material, or by coating the outer periphery of the outer can of a flat secondary battery with an insulating sheet or insulating paint. It is because a spacer can be made unnecessary by insulating batteries. Furthermore, the battery stack without interposing a spacer between the flat secondary batteries adopts an air cooling method in which cooling air is forced between the flat secondary batteries to cool the flat secondary batteries. A flat secondary battery can be cooled by employing a direct cooling method using a refrigerant or the like.
 さらに、スペーサ7は、図3と図6に示すように、扁平形二次電池1を効果的に冷却するために、扁平形二次電池1との間に挟着される部分に、空気などの冷却気体を通過させる冷却隙間16を設けている。図3と図6のスペーサ7は、扁平形二次電池1との対向面に、両側縁まで延びる溝15を設けて、扁平形二次電池1との間に冷却隙間16を設けている。図のスペーサ7は、複数の溝15を、互いに平行に所定の間隔で設けている。図のスペーサ7は、両面に溝15を設けており、互いに隣接する扁平形二次電池1とスペーサ7との間に冷却隙間16を設けている。この構造は、スペーサ7の両側に形成される冷却隙間16で、両側の扁平形二次電池1を効果的に冷却できる特長がある。ただ、セパレータは、片面にのみ溝を設けて、扁平形二次電池とセパレータとの間に冷却隙間を設けることもできる。図の冷却隙間16は、電池積層体2の左右に開口するように水平方向に設けている。冷却隙間16に強制送風される空気は、扁平形二次電池1の外装缶10Aを直接に効率よく冷却する。この構造は、扁平形二次電池1の熱暴走を有効に阻止しながら、扁平形二次電池1を効率よく冷却できる特徴がある。 Furthermore, as shown in FIGS. 3 and 6, the spacer 7 has air or the like sandwiched between the flat secondary battery 1 in order to effectively cool the flat secondary battery 1. The cooling gap 16 for allowing the cooling gas to pass therethrough is provided. The spacer 7 in FIGS. 3 and 6 is provided with grooves 15 extending to both side edges on the surface facing the flat secondary battery 1, and a cooling gap 16 is provided between the flat secondary battery 1. In the illustrated spacer 7, a plurality of grooves 15 are provided in parallel with each other at a predetermined interval. In the illustrated spacer 7, grooves 15 are provided on both surfaces, and a cooling gap 16 is provided between the flat secondary battery 1 and the spacer 7 adjacent to each other. This structure has an advantage that the flat secondary battery 1 on both sides can be effectively cooled by the cooling gaps 16 formed on both sides of the spacer 7. However, the separator can be provided with a groove only on one side to provide a cooling gap between the flat secondary battery and the separator. The cooling gap 16 in the figure is provided in the horizontal direction so as to open to the left and right of the battery stack 2. The air forcedly blown into the cooling gap 16 directly and efficiently cools the outer can 10 </ b> A of the flat secondary battery 1. This structure is characterized in that the flat secondary battery 1 can be efficiently cooled while effectively preventing thermal runaway of the flat secondary battery 1.
 以上のスペーサ7は、扁平形二次電池1との間に冷却隙間16を設けて、この冷却隙間16に冷却用の空気などの冷却気体を強制的に送風して、扁平形二次電池1を冷却できる。ただ、スペーサは、必ずしも扁平形二次電池との間に冷却隙間を設ける必要はなく、図7に示すように、スペーサ37を電池積層体32の表面に露出する長さとして、露出部37Aを冷却プレート20に熱結合状態に連結する構造とすることもできる。このバッテリシステムは、冷却プレート20を冷却し、冷却プレート20でスペーサ37を冷却して、スペーサ37で扁平形二次電池1を冷却することができる。冷却プレート20は、表面に放熱フィン(図示せず)を設けて冷却し、あるいは、内部に冷却用の冷媒や冷却液を循環させて強制的に冷却できる。さらに、図示しないが、扁平形二次電池の間にスペーサを配置することなく、扁平形二次電池の表面を絶縁して絶縁することもできる。 The spacer 7 described above is provided with a cooling gap 16 between the flat secondary battery 1 and the cooling gap 16 is forcibly blown with a cooling gas such as cooling air. Can be cooled. However, the spacer does not necessarily need to provide a cooling gap with the flat secondary battery. As shown in FIG. 7, the spacer 37 is exposed to the surface of the battery stack 32, and the exposed portion 37 </ b> A is formed. The cooling plate 20 may be connected to the cooling plate 20 in a thermally coupled state. This battery system can cool the cooling plate 20, cool the spacer 37 with the cooling plate 20, and cool the flat secondary battery 1 with the spacer 37. The cooling plate 20 can be cooled by providing heat radiation fins (not shown) on the surface, or can be forcibly cooled by circulating a cooling refrigerant or coolant inside. Furthermore, although not shown, the surface of the flat secondary battery can be insulated without providing a spacer between the flat secondary batteries.
 さらに、以上のバッテリシステム100は、複数の扁平形二次電池1を積層している電池積層体2の中間部に、中間補強プレート5を配置している。また、電池積層体2をベースプレート9の上に載せて、エンドプレート3と中間補強プレート5とをベースプレート9に固定している。このバッテリシステムは、扁平形二次電池1をベースプレート9に垂直姿勢に配置して、エンドプレート3と中間補強プレート5の両方をベースプレート9に固定して、エンドプレート3と中間補強プレート5とで複数の扁平形二次電池1を積層加圧状態に固定している。 Further, in the battery system 100 described above, the intermediate reinforcing plate 5 is disposed in the middle part of the battery stack 2 in which the plurality of flat secondary batteries 1 are stacked. Further, the battery stack 2 is placed on the base plate 9, and the end plate 3 and the intermediate reinforcing plate 5 are fixed to the base plate 9. In this battery system, the flat secondary battery 1 is arranged in a vertical posture on the base plate 9, both the end plate 3 and the intermediate reinforcing plate 5 are fixed to the base plate 9, and the end plate 3 and the intermediate reinforcing plate 5 are A plurality of flat secondary batteries 1 are fixed in a stacked pressure state.
 中間補強プレート5は、扁平形二次電池1の間に配置されて両面に扁平形二次電池1を配置している。すなわち、中間補強プレート5は、両面に扁平形二次電池1を配置して、扁平形二次電池1に挟まれるように配置される。この中間補強プレート5は、バインドバー4に固定されて、エンドプレート3と中間補強プレート5とが、積層している複数の扁平形二次電池1を加圧積層状態に固定している。 The intermediate reinforcing plate 5 is arranged between the flat secondary batteries 1 and the flat secondary batteries 1 are arranged on both surfaces. That is, the intermediate reinforcing plate 5 is disposed so that the flat secondary battery 1 is disposed on both surfaces and is sandwiched between the flat secondary batteries 1. The intermediate reinforcing plate 5 is fixed to the bind bar 4, and the end plate 3 and the intermediate reinforcing plate 5 fix the plurality of flat secondary batteries 1 stacked in a pressure stacked state.
 エンドプレート3は、バインドバー4に連結されて、電池積層体2を両端面から加圧して、扁平形二次電池1を積層方向に加圧する。エンドプレート3は、バインドバー4に固定されて、電池積層体2の各扁平形二次電池1を所定の締め付け圧で加圧状態に固定する。エンドプレート3の外形は、扁平形二次電池1の外形にほぼ等しく、あるいはこれよりもわずかに大きく、四隅部にバインドバー4を連結して、電池積層体2を加圧状態に固定して変形しない四角形の板状である。このエンドプレート3は、四隅部にバインドバー4を連結して、扁平形二次電池1の表面に面接触状態に密着し、扁平形二次電池1を均一な圧力で加圧状態に固定する。バッテリシステムは、電池積層体2の両端部にエンドプレート3を、中間部に中間補強プレート5を配置し、両端のエンドプレート3をプレス機で加圧して、扁平形二次電池1を積層方向に加圧する状態に保持し、この状態でエンドプレート3と中間補強プレート5にバインドバー4を固定して、電池積層体2を所定の締め付け圧に保持して固定する。エンドプレート3と中間補強プレート5とがバインドバー4に連結された後、プレス機の加圧状態は解除される。 The end plate 3 is connected to the bind bar 4, pressurizes the battery stack 2 from both end surfaces, and presses the flat secondary battery 1 in the stacking direction. The end plate 3 is fixed to the bind bar 4 to fix each flat secondary battery 1 of the battery stack 2 in a pressurized state with a predetermined tightening pressure. The outer shape of the end plate 3 is substantially equal to or slightly larger than the outer shape of the flat secondary battery 1, and bind bars 4 are connected to the four corners to fix the battery stack 2 in a pressurized state. It is a square plate that does not deform. The end plate 3 has bind bars 4 connected to the four corners thereof, and is in close contact with the surface of the flat secondary battery 1 in a surface contact state, thereby fixing the flat secondary battery 1 in a pressurized state with a uniform pressure. . In the battery system, the end plate 3 is disposed at both ends of the battery stack 2 and the intermediate reinforcing plate 5 is disposed at the middle, and the end plates 3 at both ends are pressed by a press machine so that the flat secondary battery 1 is stacked in the stacking direction. In this state, the bind bar 4 is fixed to the end plate 3 and the intermediate reinforcing plate 5, and the battery stack 2 is held and fixed at a predetermined tightening pressure. After the end plate 3 and the intermediate reinforcing plate 5 are connected to the bind bar 4, the pressurization state of the press is released.
 中間補強プレート5は、電池積層体2の中間に配置されて、電池積層体2の耐振動強度を向上する。中間補強プレート5はバインドバー4の中間部に固定されて、細長い電池積層体2を複数のブロックに区画して耐振動強度を向上する。また、中間補強プレート5は、両面に積層される扁平形二次電池1から熱エネルギーを吸収して、電池積層体2の温度差を均等化する。中間補強プレート5は、好ましくは金属で製作される。金属製の中間補強プレート5は、耐振動強度を向上する強度と、両側に配置している扁平形二次電池1から効率よく熱エネルギーを吸収する特性に優れている。金属製の中間補強プレート5は、アルミニウムやアルミニウム合金で製造される。この中間補強プレート5は、軽くて優れた強度と冷却特性を実現する。ただ、中間補強プレートは、必ずしもアルミニウムやアルミニウム合金で製造する必要はなく、他の金属で製造することができ、また、熱伝導の優れた材料で製作することもできる。 The intermediate reinforcing plate 5 is arranged in the middle of the battery stack 2 to improve the vibration resistance strength of the battery stack 2. The intermediate reinforcing plate 5 is fixed to an intermediate portion of the bind bar 4 and partitions the elongated battery stack 2 into a plurality of blocks to improve the vibration resistance strength. Further, the intermediate reinforcing plate 5 absorbs thermal energy from the flat secondary battery 1 laminated on both surfaces, and equalizes the temperature difference of the battery stack 2. The intermediate reinforcing plate 5 is preferably made of metal. The metal intermediate reinforcing plate 5 is excellent in strength for improving vibration resistance strength and a characteristic of efficiently absorbing heat energy from the flat secondary battery 1 disposed on both sides. The metal intermediate reinforcing plate 5 is made of aluminum or an aluminum alloy. The intermediate reinforcing plate 5 is light and realizes excellent strength and cooling characteristics. However, the intermediate reinforcing plate is not necessarily made of aluminum or an aluminum alloy, can be made of other metals, and can be made of a material having excellent heat conduction.
 中間補強プレート5は、エンドプレート3よりも熱容量を大きくして、両面に積層される扁平形二次電池1から効果的に熱エネルギーを吸収する。エンドプレート3より中間補強プレート5の熱容量を大きくするには、中間補強プレート5をエンドプレート3よりも厚く、あるいは比熱と重量の積が大きい材料で製作する。例えば、中間補強プレート5を金属で製作し、エンドプレート3をプラスチックで製作することにより、中間補強プレート5の熱容量をエンドプレート3よりも大きくできる。また、中間補強プレート5とエンドプレート3の両方を金属で製作して、中間補強プレート5をエンドプレート3よりも厚く成形することにより、中間補強プレート5の熱容量をエンドプレート3よりも大きくできる。また、中間補強プレート5は、全体を金属板とし、エンドプレート3はプラスチックに薄い金属板を積層する構造として、中間補強プレート5の熱容量をエンドプレート3よりも大きくできる。 The intermediate reinforcing plate 5 has a larger heat capacity than the end plate 3 and effectively absorbs heat energy from the flat secondary battery 1 laminated on both sides. In order to make the heat capacity of the intermediate reinforcing plate 5 larger than that of the end plate 3, the intermediate reinforcing plate 5 is made of a material thicker than the end plate 3 or having a large product of specific heat and weight. For example, the intermediate reinforcing plate 5 is made of metal and the end plate 3 is made of plastic, so that the heat capacity of the intermediate reinforcing plate 5 can be made larger than that of the end plate 3. Further, both the intermediate reinforcing plate 5 and the end plate 3 are made of metal, and the intermediate reinforcing plate 5 is formed thicker than the end plate 3, whereby the heat capacity of the intermediate reinforcing plate 5 can be made larger than that of the end plate 3. Further, the intermediate reinforcing plate 5 is entirely made of a metal plate, and the end plate 3 has a structure in which a thin metal plate is laminated on plastic, so that the heat capacity of the intermediate reinforcing plate 5 can be made larger than that of the end plate 3.
 中間補強プレート5は、両面に扁平形二次電池1に熱結合状態に配置して、エンドプレート3は、片面に扁平形二次電池1を熱結合状態に配置するので、中間補強プレート5の熱容量をエンドプレート3よりも大きく、好ましくは熱容量を約2倍として、電池積層体2の温度差を理想的な状態で均等化できる。電池積層体2の中央部に配置する扁平形二次電池1の発熱を中間補強プレート5で効果的に放熱できるからである。 The intermediate reinforcing plate 5 is arranged in a thermally coupled state to the flat secondary battery 1 on both sides, and the end plate 3 is arranged in a thermally coupled state to the flat plate secondary battery 1 on one side. The heat capacity is larger than that of the end plate 3, and preferably the heat capacity is approximately doubled, so that the temperature difference of the battery stack 2 can be equalized in an ideal state. This is because the heat generated by the flat secondary battery 1 disposed at the center of the battery stack 2 can be effectively radiated by the intermediate reinforcing plate 5.
 バッテリシステムは、充放電される電流で発熱し、電流が大きくなると発熱量も大きくなる。ただ、バッテリシステムを充放電させる電流は常に一定とは限らない。たとえば、ハイブリッドカーや電気自動車の電源装置に使用されるバッテリシステムは、車両を加速するときに大電流で放電され、また回生制動するとき、とくに急ブレーキのときに大電流で充電される。車両の加速時間や急ブレーキ時の回生制動の時間は短く、大電流で放電され、また大電流で充電されても、大電流が流れる時間は相当に短い。短時間の大電流は、扁平形二次電池1を一時的に発熱させるが、連続して発熱することはないので、この発熱エネルギーのトータル量は所定のエネルギーに制限される。したがって、この状態で発熱する熱エネルギーを中間補強プレート5に吸収して、電池積層体2の温度差を少なくできる。 The battery system generates heat by the charged / discharged current, and the amount of generated heat increases as the current increases. However, the current for charging and discharging the battery system is not always constant. For example, a battery system used for a power supply device of a hybrid car or an electric vehicle is discharged with a large current when accelerating the vehicle, and is charged with a large current during regenerative braking, particularly during sudden braking. The acceleration time of the vehicle and the time of regenerative braking at the time of sudden braking are short and are discharged with a large current, and even when charged with a large current, the time for the large current to flow is considerably short. Although the short-time large current causes the flat secondary battery 1 to generate heat temporarily, it does not generate heat continuously, so that the total amount of heat generation energy is limited to a predetermined energy. Therefore, the heat energy generated in this state can be absorbed by the intermediate reinforcing plate 5 to reduce the temperature difference of the battery stack 2.
 さらに、バッテリシステムは、中間補強プレート5を強制的に冷却する構造として、電池積層体2の中央部の温度上昇をより有効に制限できる。図8に示す中間補強プレート5は、両面に冷却隙間16を設けている。この図のバッテリシステムは、スペーサ7に冷却溝15を設けて、冷却隙間16を設けているが、中間補強プレートの表面に冷却溝を設けて、冷却隙間16を設けることもできる。冷却隙間16は空気などの冷却気体を強制送風する送風機構(図示せず)に連結される。送風機構が冷却隙間16に強制送風して、中間補強プレート5を強制的に冷却する。送風機構は、中間補強プレート5の温度や、その両面に配置される扁平形二次電池1の温度を検出し、検出温度が設定値よりも高くなると、冷却隙間16に強制送風して、中間補強プレート5や扁平形二次電池1を強制冷却する。 Furthermore, the battery system can more effectively limit the temperature rise at the center of the battery stack 2 as a structure for forcibly cooling the intermediate reinforcing plate 5. The intermediate reinforcing plate 5 shown in FIG. 8 has cooling gaps 16 on both sides. In the battery system shown in this figure, the cooling groove 15 is provided in the spacer 7 and the cooling gap 16 is provided. However, the cooling gap 16 may be provided by providing a cooling groove on the surface of the intermediate reinforcing plate. The cooling gap 16 is connected to a blowing mechanism (not shown) that forcibly blows a cooling gas such as air. The air blowing mechanism forcibly blows air into the cooling gap 16 to forcibly cool the intermediate reinforcing plate 5. The air blowing mechanism detects the temperature of the intermediate reinforcing plate 5 and the temperature of the flat secondary battery 1 arranged on both surfaces thereof. When the detected temperature becomes higher than the set value, the air is forced to blow into the cooling gap 16 and The reinforcing plate 5 and the flat secondary battery 1 are forcibly cooled.
 さらに、図9の中間補強プレート35は、扁平形二次電池1の長手方向に延びる冷却貫通孔35aを設けている。冷却貫通孔35aは、空気などの冷却気体を強制送風し、あるいは冷媒を循環させる冷却機構(図示せず)に連結される。冷却機構は、冷却気体や冷媒を冷却貫通孔35aに供給して、中間補強プレート35を強制的に冷却する。冷媒は冷却された液体、あるいは冷却貫通孔35aの内部で気化し、気化熱で中間補強プレート35を強制的に冷却する。この中間補強プレート35は、冷却機構で強制的に冷却されて、電池部中央部の温度上昇を少なくする。とくに、冷媒の気化熱で冷却される中間補強プレート35は、低温に冷却されて両面に配置される扁平形二次電池1を効果的に冷却する。 Furthermore, the intermediate reinforcing plate 35 of FIG. 9 is provided with a cooling through hole 35 a extending in the longitudinal direction of the flat secondary battery 1. The cooling through hole 35a is connected to a cooling mechanism (not shown) that forcibly blows a cooling gas such as air or circulates a refrigerant. The cooling mechanism supplies a cooling gas or a refrigerant to the cooling through hole 35 a to forcibly cool the intermediate reinforcing plate 35. The refrigerant evaporates inside the cooled liquid or the cooling through hole 35a, and forcibly cools the intermediate reinforcing plate 35 with heat of vaporization. The intermediate reinforcing plate 35 is forcibly cooled by the cooling mechanism to reduce the temperature rise at the center of the battery unit. In particular, the intermediate reinforcing plate 35 cooled by the heat of vaporization of the refrigerant effectively cools the flat secondary battery 1 that is cooled to a low temperature and disposed on both sides.
 エンドプレート3と中間補強プレート5はバインドバー4に固定されて、電池積層体2を加圧状態に固定する。バインドバー4は、横断面形状をL字状とする金属板で、両端には、エンドプレート3の外側面に接触する端部プレート4Aを設けて、中間部には中間補強プレート5に連結する固定部4Bを設けている。端部プレート4Aは、バインドバー4のL字状端面に連結されて、エンドプレート3の外側面に接触する。このバインドバー4は、端部プレート4Aをエンドプレート3の外側面に配置して、エンドプレート3に連結される。このバインドバー4は、端部プレート4Aをエンドプレート3に連結して、エンドプレート3でもって扁平形二次電池1を加圧状態に固定する。さらに、バインドバー4は、エンドプレート3の外周面にネジ止めなどの方法で固定される。バインドバー4の固定部4Bは、幅広部として固定ネジ25を挿通する貫通孔4bを設けている。この貫通孔4bに挿通される固定ネジ25は、中間補強プレート5に設けられた貫通孔5bを貫通してベースプレート9に固定されて、バインドバー4が中間補強プレート5に固定される。 The end plate 3 and the intermediate reinforcing plate 5 are fixed to the bind bar 4 to fix the battery stack 2 in a pressurized state. The bind bar 4 is a metal plate having an L-shaped cross section. End plates 4A that contact the outer surface of the end plate 3 are provided at both ends, and the intermediate reinforcing plate 5 is connected to the middle portion. A fixing portion 4B is provided. The end plate 4 </ b> A is connected to the L-shaped end surface of the bind bar 4 and contacts the outer surface of the end plate 3. The bind bar 4 is connected to the end plate 3 with the end plate 4 </ b> A disposed on the outer surface of the end plate 3. The bind bar 4 connects the end plate 4 </ b> A to the end plate 3 and fixes the flat secondary battery 1 in a pressurized state by the end plate 3. Furthermore, the bind bar 4 is fixed to the outer peripheral surface of the end plate 3 by a method such as screwing. The fixing part 4B of the bind bar 4 is provided with a through hole 4b through which the fixing screw 25 is inserted as a wide part. The fixing screw 25 inserted through the through hole 4 b passes through the through hole 5 b provided in the intermediate reinforcing plate 5 and is fixed to the base plate 9, and the bind bar 4 is fixed to the intermediate reinforcing plate 5.
 以上のバッテリシステム100は、バインドバー4の両端を一対のエンドプレート3に固定し、中間部を中間補強プレート5に固定して、エンドプレート3と中間補強プレート5とで電池積層体2を挟んで、各扁平形二次電池1を所定の締め付け圧で積層方向に加圧して固定する。扁平形二次電池1の締め付け圧は、扁平形二次電池1の両面に作用する単位面積当たりの押圧力である。締め付け圧は、[エンドプレート3と中間補強プレート5とが電池積層体2を積層方向に加圧する押圧力]/[扁平形二次電池1の扁平部の面積]で演算される。この締め付け圧は、好ましくは、10kPa以上で1MPa以下に設定される。締め付け圧が弱すぎると、扁平形二次電池1の膨張を効果的に抑制できず、反対に強すぎると扁平形二次電池1の外装ケース10を損傷する弊害が発生する。したがって、締め付け圧は、扁平形二次電池1の種類や大きさ、さらに外装ケース10の材質、形状、肉厚、大きさ、電極体の物性などを考慮して前述の範囲で最適値に設定される。 In the battery system 100 described above, both ends of the bind bar 4 are fixed to the pair of end plates 3, the intermediate portion is fixed to the intermediate reinforcing plate 5, and the battery stack 2 is sandwiched between the end plate 3 and the intermediate reinforcing plate 5. Thus, each flat secondary battery 1 is pressed and fixed in the stacking direction with a predetermined clamping pressure. The clamping pressure of the flat secondary battery 1 is a pressing force per unit area that acts on both surfaces of the flat secondary battery 1. The tightening pressure is calculated by [pressing force by which the end plate 3 and the intermediate reinforcing plate 5 press the battery stack 2 in the stacking direction] / [area of the flat portion of the flat secondary battery 1]. This clamping pressure is preferably set to 10 MPa or more and 1 MPa or less. If the tightening pressure is too weak, the expansion of the flat secondary battery 1 cannot be effectively suppressed. On the other hand, if the tightening pressure is too strong, the outer case 10 of the flat secondary battery 1 is damaged. Accordingly, the tightening pressure is set to an optimum value within the above-mentioned range in consideration of the type and size of the flat secondary battery 1 and the material, shape, thickness, size, and electrode body properties of the outer case 10. Is done.
 さらに、図2~図4に示す電池積層体2は、扁平形二次電池1の排出弁11が配置された第1の表面2A(図において電池積層体2の上面)に排出ダクト6を配置している。排出ダクト6は扁平形二次電池1との対向面を開口する溝型で、開口部を排出弁11のガス排出口12に配置している。排出ダクト6は、中間部を中間補強プレート5の上面にネジ止めして固定している。排出ダクト6は、開口部の両側に突出するリブ6Aを有する。リブ6Aと電池積層体2との間には、ゴム状弾性体のパッキン(図示せず)が挟着されて、排出ダクト6と電池積層体2との間の隙間を閉塞している。排出ダクト6は、リブ6Aを貫通する止ネジ26で中間補強プレート5に固定される。止ネジ26は、リブ6Aを貫通して、中間補強プレート5の雌ねじ孔5cにねじ込まれて、排出ダクト6を中間補強プレート5に固定する。さらに、排出ダクト6はその両端部をエンドプレート3にネジ止めしてより確実に電池積層体2に固定される。 Further, in the battery stack 2 shown in FIGS. 2 to 4, the discharge duct 6 is disposed on the first surface 2A (the upper surface of the battery stack 2 in the figure) on which the discharge valve 11 of the flat secondary battery 1 is disposed. is doing. The discharge duct 6 is a groove type that opens a surface facing the flat secondary battery 1, and the opening is disposed in the gas discharge port 12 of the discharge valve 11. The discharge duct 6 is fixed by screwing the intermediate portion to the upper surface of the intermediate reinforcing plate 5. The discharge duct 6 has ribs 6A protruding on both sides of the opening. A rubber-like elastic packing (not shown) is sandwiched between the rib 6A and the battery stack 2 to close the gap between the discharge duct 6 and the battery stack 2. The discharge duct 6 is fixed to the intermediate reinforcing plate 5 with a set screw 26 penetrating the rib 6A. The set screw 26 passes through the rib 6 </ b> A and is screwed into the female screw hole 5 c of the intermediate reinforcing plate 5 to fix the discharge duct 6 to the intermediate reinforcing plate 5. Further, both ends of the discharge duct 6 are screwed to the end plate 3 and are more securely fixed to the battery stack 2.
 図3の断面図に示すバッテリシステム100は、電池積層体2を載置しているベースプレート9を備える。このベースプレート9は、エンドプレート3と中間補強プレート5の両方を固定している。ベースプレート9に固定するために、エンドプレート3と中間補強プレート5は、扁平形二次電池1と平行な方向に延びる、図において上下方向に延びる貫通孔3a、5bを両側に設けている。この貫通孔3a、5bには止ネジ23、25が挿入され、止ネジ23、25は先端部をベースプレート9に固定して、エンドプレート3と中間補強プレート5をベースプレート9に固定する。止ネジ23、25は、ベースプレート9に設けた雌ねじ孔9a、9b、にねじ込まれて、ベースプレート9に固定され、あるいはベースプレートの底面に設けたナットにねじ込まれて、ベースプレートに固定される。 3 is provided with a base plate 9 on which the battery stack 2 is placed. The base plate 9 fixes both the end plate 3 and the intermediate reinforcing plate 5. In order to fix to the base plate 9, the end plate 3 and the intermediate reinforcing plate 5 are provided with through holes 3a and 5b extending in the vertical direction in the drawing extending in a direction parallel to the flat secondary battery 1 on both sides. Set screws 23, 25 are inserted into the through holes 3 a, 5 b, and the set screws 23, 25 fix the end portions to the base plate 9 and fix the end plate 3 and the intermediate reinforcing plate 5 to the base plate 9. The set screws 23 and 25 are screwed into female screw holes 9a and 9b provided in the base plate 9 and fixed to the base plate 9, or are screwed into nuts provided on the bottom surface of the base plate and fixed to the base plate.
 図10に示すように、車両に搭載されて、車両を走行させるモータ93に電力を供給するバッテリシステム100は、ベースプレート9を車両のシャーシ92とすることができる。このバッテリシステム100は、車両のシャーシ92の上に載せられ、エンドプレート3と中間補強プレート5に設けた貫通孔3a、5bに止ネジ23、25を挿通し、止ネジ23、25をシャーシ92に設けた雌ねじ孔(図示せず)にねじ込んで、車両のシャーシ92に固定される。以上のバッテリシステムは、ベースプレート9を車両のシャーシ92とするが、ベースプレートは必ずしも車両のシャーシには特定しない。たとえば、図11に示すように、金属板でベースプレート9を製作して、このベースプレート9の上にバッテリシステム100を固定することができる。このバッテリシステム100は、ベースプレート9を車両のシャーシ92の上に固定して、車両に搭載できる。 As shown in FIG. 10, a battery system 100 that is mounted on a vehicle and supplies electric power to a motor 93 that runs the vehicle can use the base plate 9 as a chassis 92 of the vehicle. The battery system 100 is placed on a chassis 92 of the vehicle, set screws 23 and 25 are inserted into through holes 3a and 5b provided in the end plate 3 and the intermediate reinforcing plate 5, and the set screws 23 and 25 are inserted into the chassis 92. And is fixed to the vehicle chassis 92 by being screwed into a female screw hole (not shown). In the battery system described above, the base plate 9 is the vehicle chassis 92, but the base plate is not necessarily specified as the vehicle chassis. For example, as shown in FIG. 11, the base plate 9 can be made of a metal plate, and the battery system 100 can be fixed on the base plate 9. The battery system 100 can be mounted on a vehicle with the base plate 9 fixed on a vehicle chassis 92.
 以上のバッテリシステムは、電動車両を走行させるモータに電力を供給する電源装置に最適である。ただ、本発明はバッテリシステムの用途を電動車両に搭載する電源装置には特定せず、たとえば、太陽光発電、風力発電などの自然エネルギーを蓄電する電源装置として使用でき、また深夜電力を蓄電する電源装置等の電源装置のように、大電力を蓄電する全ての用途に最適である。 The above battery system is optimal for a power supply device that supplies electric power to a motor that drives an electric vehicle. However, the present invention does not specify the use of the battery system as a power supply device mounted on an electric vehicle, and can be used, for example, as a power supply device that stores natural energy such as solar power generation or wind power generation, and stores midnight power. Like power supply devices such as power supply devices, it is optimal for all applications that store large amounts of power.
 バッテリシステムを搭載する電動車両としては、エンジンとモータの両方で走行するハイブリッド自動車やプラグインハイブリッド自動車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの電動車両の電源として使用される。 As an electric vehicle equipped with a battery system, an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and used as a power source for these electric vehicles. Is done.
(ハイブリッド自動車用バッテリシステム)
 図10は、エンジンとモータの両方で走行するハイブリッド自動車にバッテリシステムを搭載する例を示す。この図に示すバッテリシステムを搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給するバッテリシステム100と、バッテリシステム100の扁平形二次電池を充電する発電機94と、エンジン96、モータ93、バッテリシステム100、及び発電機94を搭載してなる車両本体90と、エンジン96又はモータ93で駆動されて車両本体90を走行させる車輪97とを備えている。バッテリシステム100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、バッテリシステム100の扁平形二次電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、バッテリシステム100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、バッテリシステム100の扁平形二次電池を充電する。
(Battery system for hybrid vehicles)
FIG. 10 shows an example in which a battery system is mounted on a hybrid vehicle that runs with both an engine and a motor. A vehicle HV equipped with the battery system shown in this figure includes an engine 96 and a traveling motor 93 for traveling the vehicle HV, a battery system 100 for supplying electric power to the motor 93, and a flat secondary battery of the battery system 100. A generator 94 to be charged, a vehicle body 90 on which an engine 96, a motor 93, a battery system 100, and a generator 94 are mounted, and a wheel 97 that is driven by the engine 96 or the motor 93 to drive the vehicle body 90. I have. The battery system 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The vehicle HV travels by both the motor 93 and the engine 96 while charging and discharging the flat secondary battery of the battery system 100. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the battery system 100. The generator 94 is driven by the engine 96, or is driven by regenerative braking when the vehicle is braked, and charges the flat secondary battery of the battery system 100.
(電気自動車用バッテリシステム)
 また、図11は、モータのみで走行する電気自動車にバッテリシステムを搭載する例を示す。この図に示すバッテリシステムを搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給するバッテリシステム100と、このバッテリシステム100の扁平形二次電池を充電する発電機94と、モータ93、バッテリシステム100、及び発電機94を搭載してなる車両本体90と、モータ93で駆動されて車両本体90を走行させる車輪97とを備えている。バッテリシステム100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、バッテリシステム100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、バッテリシステム100の扁平形二次電池を充電する。
(Battery system for electric vehicles)
FIG. 11 shows an example in which a battery system is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the battery system shown in this figure charges a motor 93 for running the vehicle EV, a battery system 100 that supplies power to the motor 93, and a flat secondary battery of the battery system 100. And a vehicle body 90 on which the motor 93, the battery system 100, and the generator 94 are mounted, and a wheel 97 that is driven by the motor 93 and causes the vehicle body 90 to travel. The battery system 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The motor 93 is driven by power supplied from the battery system 100. The generator 94 is driven by energy when regeneratively braking the vehicle EV, and charges the flat secondary battery of the battery system 100.
(蓄電装置用バッテリシステム)
 さらに、このバッテリシステムは、移動体用の動力源としてのみならず、定置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図12に示す。この図に示すバッテリシステム100は、複数の電池ブロック81をユニット状に接続して電池ユニット82を構成している。各電池ブロック81は、複数の扁平形二次電池が直列及び/又は並列に接続されている。各電池ブロック81は、電源コントローラ84により制御される。このバッテリシステム100は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このためバッテリシステム100は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介してバッテリシステム100と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、バッテリシステム100の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPからバッテリシステム100への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、バッテリシステム100から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、バッテリシステム100への充電を同時に行うこともできる。
(Battery system for power storage device)
Furthermore, this battery system can be used not only as a power source for a mobile body but also as a stationary power storage facility. For example, as a power source for home and factory use, a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals. Such an example is shown in FIG. The battery system 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery blocks 81 in a unit form. Each battery block 81 has a plurality of flat secondary batteries connected in series and / or in parallel. Each battery block 81 is controlled by a power supply controller 84. The battery system 100 drives the load LD after charging the battery unit 82 with the charging power source CP. For this reason, the battery system 100 includes a charge mode and a discharge mode. The load LD and the charging power source CP are connected to the battery system 100 via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the battery system 100. In the charging mode, the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging of the battery system 100 from the charging power source CP. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load LD in a state where a capacity of a predetermined value or more is charged, the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge. The mode is switched and discharging from the battery system 100 to the load LD is permitted. Further, if necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the battery system 100 simultaneously.
 バッテリシステム100で駆動される負荷LDは、放電スイッチDSを介してバッテリシステム100と接続されている。バッテリシステム100の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、バッテリシステム100からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、バッテリシステム100の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図12の例では、UARTやRS-232c等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。 The load LD driven by the battery system 100 is connected to the battery system 100 via the discharge switch DS. In the discharge mode of the battery system 100, the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the battery system 100. As the discharge switch DS, a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the battery system 100. The power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 12, the host device HT is connected according to an existing communication protocol such as UART or RS-232c. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
 各電池ブロック81は、信号端子と電源端子を備える。信号端子は、入出力端子DIと、異常出力端子DAと、接続端子DOとを含む。入出力端子DIは、他の電池ブロック81や電源コントローラ84からの信号を入出力するための端子であり、接続端子DOは他の電池ブロック81に対して信号を入出力するための端子である。また異常出力端子DAは、電池ブロック81の異常を外部に出力するための端子である。さらに電源端子は、電池ブロック81同士を直列、並列に接続するための端子である。また電池ユニット82は並列接続スイッチ85を介して出力ラインOLに接続されて互いに並列に接続されている。 Each battery block 81 includes a signal terminal and a power supply terminal. The signal terminals include an input / output terminal DI, an abnormal output terminal DA, and a connection terminal DO. The input / output terminal DI is a terminal for inputting / outputting a signal from the other battery block 81 or the power supply controller 84, and the connection terminal DO is a terminal for inputting / outputting a signal to / from the other battery block 81. . The abnormality output terminal DA is a terminal for outputting abnormality of the battery block 81 to the outside. Furthermore, the power supply terminal is a terminal for connecting the battery blocks 81 in series and in parallel. The battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
 本発明のバッテリシステムは、大電力が要求される車両のモータに電力を供給する電源装置や、自然エネルギーや深夜電力を蓄電する蓄電装置に最適に使用される。 The battery system of the present invention is optimally used for a power supply device that supplies power to a motor of a vehicle that requires a large amount of power, or a power storage device that stores natural energy or midnight power.
100…バッテリシステム
  1…扁平形二次電池
  2…電池積層体       2A…第1の表面
  3…エンドプレート     3a…貫通孔
  4…バインドバー      4A…端部プレート
                4B…固定部
                4b…貫通孔
  5…中間補強プレート    5b…貫通孔
                5c…雌ねじ孔
  6…排出ダクト       6A…リブ
  7…スペーサ
  9…ベースプレート     9a…雌ねじ孔
                9b…雌ねじ孔
 10…外装ケース      10A…外装缶
               10B…封口板
 11…排出弁
 12…ガス排出口
 13…電極端子
 14…バスバー
 15…冷却溝
 16…冷却隙間
 20…冷却プレート
 23…止ネジ
 25…止ネジ
 26…止ネジ
 32…電池積層体
 35…中間補強プレート   35a…冷却貫通孔
 37…スペーサ       37A…露出部
 81…電池ブロック
 82…電池ユニット
 84…電源コントローラ
 85…並列接続スイッチ
 90…車両本体
 92…シャーシ
 93…モータ
 94…発電機
 95…DC/ACインバータ
 96…エンジン
 97…車輪
201…扁平形二次電池
202…電池積層体
203…エンドプレート
205…放熱プレート
209…ベースプレート
 EV…車両
 HV…車両
 LD…負荷
 CP…充電用電源
 DS…放電スイッチ
 CS…充電スイッチ
 OL…出力ライン
 HT…ホスト機器
 DI…入出力端子
 DA…異常出力端子
 DO…接続端子
DESCRIPTION OF SYMBOLS 100 ... Battery system 1 ... Flat secondary battery 2 ... Battery laminated body 2A ... 1st surface 3 ... End plate 3a ... Through-hole 4 ... Bind bar 4A ... End part plate 4B ... Fixed part 4b ... Through-hole 5 ... Middle Reinforcing plate 5b ... Through hole 5c ... Female screw hole 6 ... Discharge duct 6A ... Rib 7 ... Spacer 9 ... Base plate 9a ... Female screw hole 9b ... Female screw hole 10 ... Exterior case 10A ... Exterior can 10B ... Sealing plate 11 ... Discharge valve 12 ... Gas Ejection port 13 ... Electrode terminal 14 ... Bus bar 15 ... Cooling groove 16 ... Cooling gap 20 ... Cooling plate 23 ... Set screw 25 ... Set screw 26 ... Set screw 32 ... Battery stack 35 ... Intermediate reinforcement plate 35a ... Cooling through hole 37 ... Spacer 37A ... exposed part 81 ... electric Battery block 82 ... Battery unit 84 ... Power supply controller 85 ... Parallel connection switch 90 ... Vehicle main body 92 ... Chassis 93 ... Motor 94 ... Generator 95 ... DC / AC inverter 96 ... Engine 97 ... Wheel 201 ... Flat secondary battery 202 ... Battery stack 203 ... End plate 205 ... Radiation plate 209 ... Base plate EV ... Vehicle HV ... Vehicle LD ... Load CP ... Charging power supply DS ... Discharge switch CS ... Charge switch OL ... Output line HT ... Host equipment DI ... I / O terminal DA ... Abnormal output terminal DO ... Connection terminal

Claims (13)

  1.  複数の扁平形二次電池が厚さ方向に積層され、かつ隣接する扁平形二次電池の電極端子をバスバーで接続してなる電池積層体と、
     この電池積層体の積層方向の両端面に配置してなる一対のエンドプレートと、
     一対のエンドプレートに連結されて、扁平形二次電池を積層方向に加圧して固定してなるバインドバーとを備えるバッテリシステムであって、
     前記電池積層体を構成している扁平形二次電池の間に配置してなる中間補強プレートを備え、
     この中間補強プレートが前記バインドバーに固定されて、前記エンドプレート及び前記中間補強プレートでもって、積層された前記扁平形二次電池を加圧状態に固定してなるバッテリシステム。
    A battery stack in which a plurality of flat secondary batteries are stacked in the thickness direction, and electrode terminals of adjacent flat secondary batteries are connected by a bus bar;
    A pair of end plates arranged on both end faces in the stacking direction of the battery stack,
    A battery system including a bind bar connected to a pair of end plates and formed by pressing and fixing a flat secondary battery in the stacking direction,
    Comprising an intermediate reinforcing plate arranged between flat secondary batteries constituting the battery stack,
    A battery system in which the intermediate reinforcing plate is fixed to the bind bar and the stacked flat secondary batteries are fixed in a pressurized state with the end plate and the intermediate reinforcing plate.
  2.  前記電池積層体を載置してなるベースプレートを備え、
     前記エンドプレートと前記中間補強プレートの両方を前記ベースプレートに固定してなる請求項1に記載されるバッテリシステム。
    A base plate on which the battery stack is placed;
    The battery system according to claim 1, wherein both the end plate and the intermediate reinforcing plate are fixed to the base plate.
  3.  前記扁平形二次電池が、所定の内圧で開弁する排出弁を備え、前記電池積層体が、前記排出弁を第1の表面に配置して各扁平形二次電池を積層しており、
     前記電池積層体の第1の表面に配置されて、前記排出弁の開口部に連結してなる排出ダクトを備えており、
     該排出ダクトの中間部を前記中間補強プレートに固定してなる請求項1または2に記載されるバッテリシステム。
    The flat secondary battery includes a discharge valve that opens at a predetermined internal pressure, and the battery stack has the flat valves arranged on the first surface to stack the flat secondary batteries,
    A discharge duct disposed on the first surface of the battery stack and connected to the opening of the discharge valve;
    The battery system according to claim 1 or 2, wherein an intermediate portion of the discharge duct is fixed to the intermediate reinforcing plate.
  4.  前記中間補強プレートの熱容量が前記エンドプレートよりも大きい請求項1から3のいずれかに記載されるバッテリシステム。 The battery system according to any one of claims 1 to 3, wherein a heat capacity of the intermediate reinforcing plate is larger than that of the end plate.
  5.  前記中間補強プレートが、前記エンドプレートよりも厚くて熱容量の大きいプレートである請求項4に記載されるバッテリシステム。 The battery system according to claim 4, wherein the intermediate reinforcing plate is a plate having a larger heat capacity than the end plate.
  6.  前記中間補強プレートが、前記エンドプレートよりも熱容量の大きい金属板である請求項4に記載されるバッテリシステム。 The battery system according to claim 4, wherein the intermediate reinforcing plate is a metal plate having a larger heat capacity than the end plate.
  7.  前記中間補強プレートが、表面に冷却隙間を設けてなる請求項1から6のいずれかに記載されるバッテリシステム。 The battery system according to any one of claims 1 to 6, wherein the intermediate reinforcing plate is provided with a cooling gap on a surface thereof.
  8.  前記中間補強プレートが、扁平形二次電池の長手方向に延びる冷却貫通孔を有する請求項1から7のいずれかに記載されるバッテリシステム。 The battery system according to any one of claims 1 to 7, wherein the intermediate reinforcing plate has a cooling through hole extending in a longitudinal direction of the flat secondary battery.
  9.  前記バッテリシステムが、車両に搭載されて、車両を走行させるモータに電力を供給する電源装置である請求項1から8のいずれかに記載されるバッテリシステム。 The battery system according to any one of claims 1 to 8, wherein the battery system is a power supply device that is mounted on a vehicle and supplies electric power to a motor that runs the vehicle.
  10.  前記バッテリシステムが、車両に搭載されて、車両を走行させるモータに電力を供給する電源装置で、前記ベースプレートが車両のシャーシである請求項2に記載されるバッテリシステム。 The battery system according to claim 2, wherein the battery system is a power supply device that is mounted on a vehicle and supplies electric power to a motor that runs the vehicle, and the base plate is a vehicle chassis.
  11.  前記バッテリシステムが、自然エネルギーと深夜電力の何れかを蓄電する電源装置である請求項1ないし8のいずれかに記載されるバッテリシステム。 The battery system according to any one of claims 1 to 8, wherein the battery system is a power supply device that stores either natural energy or midnight power.
  12.  請求項1から10のいずれかに記載のバッテリシステムを備えてなる電動車両であって、
     前記バッテリシステムと、該バッテリシステムから電力供給される走行用のモータと、前記バッテリシステム及び前記モータを搭載してなる車両本体と、前記モータで駆動されて前記車両本体を走行させる車輪とを備えることを特徴とするバッテリシステムを備える電動車両。
    An electric vehicle comprising the battery system according to any one of claims 1 to 10,
    The battery system, a travel motor powered by the battery system, a vehicle body on which the battery system and the motor are mounted, and wheels that are driven by the motor and cause the vehicle body to travel. An electric vehicle provided with the battery system characterized by the above.
  13.  請求項1から8、及び11のいずれかに記載のバッテリシステムを備えてなる蓄電装置であって、
     前記バッテリシステムへの充放電を制御する電源コントローラを備えており、
     前記電源コントローラでもって、外部からの電力により前記扁平形二次電池への充電を可能とすると共に、前記扁平形二次電池に対し充電を行うよう制御することを特徴とする蓄電装置。
    A power storage device comprising the battery system according to any one of claims 1 to 8, and 11.
    A power controller for controlling charging and discharging of the battery system;
    The power storage device, wherein the power source controller enables charging of the flat secondary battery with electric power from outside and controls the flat secondary battery to be charged.
PCT/JP2013/004978 2012-08-27 2013-08-23 Battery system, electric vehicle equipped with battery system and electricity storage device WO2014034057A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-187069 2012-08-27
JP2012187069A JP2014044884A (en) 2012-08-27 2012-08-27 Battery system, and electric vehicle and power storage device having battery system

Publications (1)

Publication Number Publication Date
WO2014034057A1 true WO2014034057A1 (en) 2014-03-06

Family

ID=50182895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004978 WO2014034057A1 (en) 2012-08-27 2013-08-23 Battery system, electric vehicle equipped with battery system and electricity storage device

Country Status (2)

Country Link
JP (1) JP2014044884A (en)
WO (1) WO2014034057A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160190526A1 (en) * 2014-12-25 2016-06-30 Honda Motor Co., Ltd. Electricity storage module and electrically powered vehicle
WO2018074325A1 (en) * 2016-10-18 2018-04-26 株式会社日立製作所 Storage battery device for storage-battery electric railcar, and storage-battery electric railcar
CN108140791A (en) * 2015-10-23 2018-06-08 株式会社自动网络技术研究所 The manufacturing method of interconnection module, detection terminal and detection terminal
US10431785B2 (en) * 2016-11-30 2019-10-01 Ford Global Technologies, Llc Battery pack array frames with integrated fastener housings
CN111180622A (en) * 2018-11-12 2020-05-19 丰田自动车株式会社 Battery pack
WO2021024774A1 (en) * 2019-08-03 2021-02-11 三洋電機株式会社 Power supply device, electric vehicle comprising said power supply device, and power storage device
CN114207911A (en) * 2019-08-03 2022-03-18 三洋电机株式会社 Power supply device, electric vehicle provided with same, and power storage device
EP4131563A4 (en) * 2020-03-31 2024-01-24 Sanyo Electric Co Power source device, and vehicle and power storage device each equipped with same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012022765B4 (en) * 2012-11-22 2020-08-06 Dr. Ing. H.C. F. Porsche Ag Motor vehicle battery
JP2015210971A (en) * 2014-04-28 2015-11-24 三洋電機株式会社 Power supply device
JP6254904B2 (en) * 2014-05-26 2017-12-27 本田技研工業株式会社 Storage module and its fixing structure
KR101841801B1 (en) * 2014-06-11 2018-05-04 주식회사 엘지화학 Battery pack having bushing for coupling end plate
JP6247608B2 (en) * 2014-07-23 2017-12-13 日立オートモティブシステムズ株式会社 Battery pack
JP6363418B2 (en) 2014-07-30 2018-07-25 株式会社Gsユアサ Power storage device
DE102014216407A1 (en) * 2014-08-19 2016-02-25 Robert Bosch Gmbh Receptacle for a battery module and battery module having such a receptacle
DE102014223047A1 (en) 2014-11-12 2016-05-12 Robert Bosch Gmbh Receptacle for a battery module and battery module having such a receptacle
WO2016129474A1 (en) * 2015-02-12 2016-08-18 株式会社豊田自動織機 Battery pack
JP6631869B2 (en) * 2015-07-06 2020-01-15 株式会社Gsユアサ Power storage device
CN107851753B (en) * 2015-07-30 2020-12-22 三洋电机株式会社 Power supply device and vehicle using same
JP6726478B2 (en) 2016-02-19 2020-07-22 株式会社Gsユアサ Power storage device, method of manufacturing power storage device, and method of manufacturing adjacent member for power storage device
JP6831632B2 (en) 2016-02-19 2021-02-17 株式会社Gsユアサ Power storage device and manufacturing method of the power storage device
JP6685760B2 (en) 2016-02-19 2020-04-22 株式会社Gsユアサ Power storage device
JP6794709B2 (en) * 2016-08-09 2020-12-02 株式会社豊田自動織機 Battery module
DE102017101274A1 (en) * 2017-01-24 2018-07-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Battery modules with a plurality of submodules
JP6990063B2 (en) 2017-08-08 2022-02-03 株式会社ブルーエナジー Power storage device
CN111819712B (en) * 2018-03-06 2023-04-18 本田技研工业株式会社 Accumulator package
DE112019001500T5 (en) * 2018-03-23 2020-12-10 Gs Yuasa International Ltd. ENERGY STORAGE DEVICE
JP7070381B2 (en) * 2018-12-06 2022-05-18 トヨタ自動車株式会社 Battery module manufacturing method
JP7323324B2 (en) * 2019-04-19 2023-08-08 株式会社Subaru vehicle power supply
JP7172842B2 (en) * 2019-05-10 2022-11-16 トヨタ自動車株式会社 power storage device
KR20210017273A (en) * 2019-08-07 2021-02-17 주식회사 엘지화학 Battery pack that incorporates a battery module and a rigid beam and employs a reverse assembly
CN110993845B (en) * 2019-11-18 2021-12-07 比亚迪股份有限公司 Battery pack and electric vehicle
JP7353533B2 (en) 2021-07-30 2023-09-29 寧徳時代新能源科技股▲分▼有限公司 Batteries, power consuming devices, methods and equipment for manufacturing batteries

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236937A (en) * 1999-12-15 2001-08-31 Toyota Motor Corp Battery pack
JP2005317455A (en) * 2004-04-30 2005-11-10 Sanyo Electric Co Ltd Battery pack
JP2007265658A (en) * 2006-03-27 2007-10-11 Denso Corp Electric storage element module
JP2008123846A (en) * 2006-11-13 2008-05-29 Toyota Motor Corp Storage battery unit
JP2009170258A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Battery system
JP2011049011A (en) * 2009-08-26 2011-03-10 Sanyo Electric Co Ltd Battery pack
WO2012066875A1 (en) * 2010-11-17 2012-05-24 本田技研工業株式会社 Vehicle battery unit
JP2013045765A (en) * 2011-08-22 2013-03-04 Sb Limotive Co Ltd Battery module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236937A (en) * 1999-12-15 2001-08-31 Toyota Motor Corp Battery pack
JP2005317455A (en) * 2004-04-30 2005-11-10 Sanyo Electric Co Ltd Battery pack
JP2007265658A (en) * 2006-03-27 2007-10-11 Denso Corp Electric storage element module
JP2008123846A (en) * 2006-11-13 2008-05-29 Toyota Motor Corp Storage battery unit
JP2009170258A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Battery system
JP2011049011A (en) * 2009-08-26 2011-03-10 Sanyo Electric Co Ltd Battery pack
WO2012066875A1 (en) * 2010-11-17 2012-05-24 本田技研工業株式会社 Vehicle battery unit
JP2013045765A (en) * 2011-08-22 2013-03-04 Sb Limotive Co Ltd Battery module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160190526A1 (en) * 2014-12-25 2016-06-30 Honda Motor Co., Ltd. Electricity storage module and electrically powered vehicle
CN105742531A (en) * 2014-12-25 2016-07-06 本田技研工业株式会社 Electricity storage module and electrically powered vehicle with electricity storage module
US9698392B2 (en) * 2014-12-25 2017-07-04 Honda Motor Co., Ltd. Electricity storage module and electrically powered vehicle
CN108140791B (en) * 2015-10-23 2020-12-11 株式会社自动网络技术研究所 Wiring module, detection terminal, and method for manufacturing detection terminal
CN108140791A (en) * 2015-10-23 2018-06-08 株式会社自动网络技术研究所 The manufacturing method of interconnection module, detection terminal and detection terminal
JPWO2018074325A1 (en) * 2016-10-18 2019-10-03 株式会社日立製作所 Storage battery device for storage battery train and storage battery train
WO2018074325A1 (en) * 2016-10-18 2018-04-26 株式会社日立製作所 Storage battery device for storage-battery electric railcar, and storage-battery electric railcar
US10431785B2 (en) * 2016-11-30 2019-10-01 Ford Global Technologies, Llc Battery pack array frames with integrated fastener housings
US11342628B2 (en) 2016-11-30 2022-05-24 Ford Global Technologies, Llc Battery pack array frames with integrated fastener housings
CN111180622A (en) * 2018-11-12 2020-05-19 丰田自动车株式会社 Battery pack
WO2021024774A1 (en) * 2019-08-03 2021-02-11 三洋電機株式会社 Power supply device, electric vehicle comprising said power supply device, and power storage device
CN114207911A (en) * 2019-08-03 2022-03-18 三洋电机株式会社 Power supply device, electric vehicle provided with same, and power storage device
EP4131563A4 (en) * 2020-03-31 2024-01-24 Sanyo Electric Co Power source device, and vehicle and power storage device each equipped with same

Also Published As

Publication number Publication date
JP2014044884A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
WO2014034057A1 (en) Battery system, electric vehicle equipped with battery system and electricity storage device
JP7348180B2 (en) Battery system and electric vehicle and power storage device equipped with the battery system
JP5734704B2 (en) Power supply device and vehicle equipped with power supply device
JP6073583B2 (en) Power supply device, vehicle including this power supply device, and power storage device
JP6184959B2 (en) Battery system, vehicle including battery system, and power storage device
JP7284710B2 (en) Power supply device, vehicle equipped with power supply device, and power storage device
CN111630706B (en) Power supply device, and vehicle and power storage device provided with power supply device
WO2014010438A1 (en) Battery system, and vehicle and power storage device equipped with battery system
WO2014034107A1 (en) Power source device, electric vehicle provided with power source device, and power storage device
WO2014024432A1 (en) Vehicle battery system and electric vehicle provided with battery system
JP2012160347A (en) Power supply and vehicle with power supply
WO2013084756A1 (en) Power source device, vehicle equipped with same and electricity storage device
WO2012165493A1 (en) Power source device for supplying power and vehicle provided with power source device
JP2013125617A (en) Power supply device and vehicle having the same, and power storage device
JP6271178B2 (en) Battery device, electric vehicle and power storage device including the battery device
WO2021199493A1 (en) Power supply device, vehicle provided with same, and power storage device
WO2012147801A1 (en) Power supply device and vehicle equipped with power supply device
WO2021065160A1 (en) Battery module, and electric vehicle and power storage device comprising battery module
JP2013178894A (en) Power supply device
WO2021149299A1 (en) Power supply device, and electric vehicle and power storage device equipped with this power supply device
WO2019021778A1 (en) Battery module, and vehicle equipped with same
WO2021024772A1 (en) Power supply device, electric vehicle using same, and power storage device
WO2021039197A1 (en) Power supply device, electric vehicle using same, and power storage device
JP7286668B2 (en) Battery system, vehicle equipped with battery system, and power storage device
WO2021149298A1 (en) Power supply device, electric vehicle provided with power supply device, and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832907

Country of ref document: EP

Kind code of ref document: A1