WO2014033875A1 - 電子写真現像剤用キャリア芯材の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤 - Google Patents

電子写真現像剤用キャリア芯材の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤 Download PDF

Info

Publication number
WO2014033875A1
WO2014033875A1 PCT/JP2012/072023 JP2012072023W WO2014033875A1 WO 2014033875 A1 WO2014033875 A1 WO 2014033875A1 JP 2012072023 W JP2012072023 W JP 2012072023W WO 2014033875 A1 WO2014033875 A1 WO 2014033875A1
Authority
WO
WIPO (PCT)
Prior art keywords
core material
electrophotographic developer
carrier core
calcium
carrier
Prior art date
Application number
PCT/JP2012/072023
Other languages
English (en)
French (fr)
Other versions
WO2014033875A9 (ja
Inventor
岳志 河内
智英 飯田
Original Assignee
Dowaエレクトロニクス株式会社
Dowa Ipクリエイション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社, Dowa Ipクリエイション株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to KR1020157005157A priority Critical patent/KR20150041639A/ko
Priority to US14/423,227 priority patent/US9651886B2/en
Priority to CN201280075453.XA priority patent/CN104603694B/zh
Priority to PCT/JP2012/072023 priority patent/WO2014033875A1/ja
Priority to EP12883523.8A priority patent/EP2891925B1/en
Publication of WO2014033875A1 publication Critical patent/WO2014033875A1/ja
Publication of WO2014033875A9 publication Critical patent/WO2014033875A9/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/105Bases for charge-receiving or other layers comprising electroconductive macromolecular compounds
    • G03G5/107Bases for charge-receiving or other layers comprising electroconductive macromolecular compounds the electroconductive macromolecular compounds being cationic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/108Ferrite carrier, e.g. magnetite
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0815Post-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/1075Structural characteristics of the carrier particles, e.g. shape or crystallographic structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/108Ferrite carrier, e.g. magnetite
    • G03G9/1085Ferrite carrier, e.g. magnetite with non-ferrous metal oxide, e.g. MgO-Fe2O3
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1132Macromolecular components of coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1132Macromolecular components of coatings
    • G03G9/1135Macromolecular components of coatings obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/1136Macromolecular components of coatings obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon atoms

Definitions

  • the present invention relates to a method for producing a carrier core material for an electrophotographic developer (hereinafter sometimes simply referred to as “carrier core material”), a carrier core material for an electrophotographic developer, and a carrier for an electrophotographic developer (hereinafter simply referred to as “a carrier core material”).
  • Carrier and electrophotographic developer (hereinafter also simply referred to as “developer”), and particularly for electrophotographic developers used in copiers and MFPs (Multifunctional Printers).
  • developer electrophotographic developer
  • the present invention relates to an electrophotographic developer carrier core material, a method for producing the same, an electrophotographic developer carrier provided in the electrophotographic developer, and an electrophotographic developer.
  • a one-component developer using only toner as a component of developer and a two-component developer using toner and carrier as components of developer are provided. is there.
  • toner charged to a predetermined charge amount is supplied to the photoreceptor.
  • the electrostatic latent image formed on the photosensitive member is visualized with toner and transferred to a sheet.
  • the visible image with toner is fixed on the paper to obtain a desired image.
  • the developing device includes a rotatable magnet roller in which a plurality of S poles and N poles are alternately provided in the circumferential direction, and a stirring roller that stirs and mixes the toner and the carrier in the developing device.
  • a carrier made of magnetic powder is carried by a magnet roller.
  • a linear magnetic brush made of carrier particles is formed by the magnetic force of the magnet roller.
  • a plurality of toner particles adhere to the surface of the carrier particles by frictional charging by stirring. Toner is supplied to the surface of the photoconductor by rotating the magnet roller so that the magnetic brush is applied to the photoconductor. In a two-component developer, development is performed in this way.
  • the toner in the developing device is sequentially consumed by fixing to the paper, so new toner corresponding to the consumed amount is supplied from time to time to the developing device from the toner hopper attached to the developing device.
  • the carrier is not consumed by development and is used as it is until the end of its life.
  • the carrier which is a constituent material of the two-component developer includes a toner charging function and an insulating property for efficiently charging the toner by frictional charging by stirring, a toner transporting ability to appropriately transport and supply the toner to the photoreceptor, etc.
  • Various functions are required.
  • the carrier is required to have an appropriate electrical resistance value (hereinafter sometimes simply referred to as a resistance value) and an appropriate insulating property.
  • the above-described carrier is composed of a core material, that is, a carrier core material constituting a core portion, and a coating resin provided so as to cover the surface of the carrier core material.
  • the carrier core material is desired to have good magnetic properties.
  • the carrier is carried on the magnet roller by magnetic force in the developing device.
  • the magnetism of the carrier core material itself specifically, the magnetization of the carrier core material itself is low, the holding force against the magnet roller is weakened, and so-called carrier scattering may occur.
  • the particle size of toner particles in order to meet the demand for higher image quality of formed images, there is a tendency to reduce the particle size of toner particles, and accordingly, the particle size of carrier particles also tends to be reduced. If the carrier particle size is reduced, the carrier force of each carrier particle may be reduced. Therefore, a more effective countermeasure against the above-described carrier scattering problem is desired.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-241742
  • the carrier core material has good electrical characteristics. Specifically, for example, the carrier core material itself has a high charge amount and has a high dielectric breakdown voltage. It is desired that the core material itself has an appropriate resistance value.
  • the carrier core is often used with its surface coated with a coating resin.
  • a part of the coating resin may be peeled off due to stress caused by stirring in the developing device, and the surface of the carrier core material may be exposed.
  • it is preferable that other characteristics such as magnetic characteristics are also favorable.
  • Still another object of the present invention is to provide a carrier for an electrophotographic developer having high charging performance and good characteristics.
  • Still another object of the present invention is to provide an electrophotographic developer capable of forming an image with good image quality.
  • the inventor of the present application uses calcium (Ca), which is a metal element, as a component of the core of the carrier core material in order to improve the frictional charging ability on the surface of the carrier core material. I thought to add. Furthermore, the inventor of the present application is not limited to the case where calcium contained as a constituent material of the carrier core material exhibits good dispersibility on the surface thereof, but the contained calcium is not only the surface of the carrier core material, As shown in Fig. 5, it was considered that the carrier core material must be well dispersed.
  • the inventor of the present application can provide a carrier having a good solid solution state of calcium in the spinel structure inside the carrier core material forming a spinel structure mainly composed of iron (Fe) and manganese (Mn). It was considered that the lattice constant of the crystal constituting the core material was increased, and the characteristics of retaining a charged charge were improved. As a result, the charging performance of the carrier core material was improved. And, when improving the degree of dispersion of calcium added as a raw material, conventional calcination and pulverization as a pretreatment of raw materials containing calcium are insufficient, and it is necessary to disperse in atomic order or micron order Thought.
  • the method for producing a carrier core material for an electrophotographic developer according to the present invention is a method for producing a carrier core material for an electrophotographic developer containing iron, manganese, and calcium as a core composition, the raw material containing iron, A mixing step of mixing a raw material containing manganese and a raw material containing calcium, a granulation step of granulating the mixed mixture after the mixing step, and a powdery material granulated by the granulation step at a predetermined temperature A firing step of firing to form a magnetic phase.
  • the raw material containing calcium is granular, and the volume average particle size of the primary particles is 1 ⁇ m or less.
  • the carrier core material manufactured by such a method for manufacturing a carrier core material has good dispersibility of calcium contained on the surface and inside of the carrier core material. Therefore, the manufactured carrier core material itself has high charging performance and good characteristics.
  • the mixing step may include a step of mixing a raw material containing calcium in a solution state.
  • production of the aggregation of the raw material containing the calcium to add can be suppressed efficiently, and the dispersibility of the calcium in a carrier core material can be improved more reliably.
  • the mixing step includes a step of mixing at least one selected from the group consisting of calcium nitrate, calcium acetate, and calcium carbonate as a raw material containing calcium. What is selected from such a group is relatively easy to obtain the above-mentioned volume average particle diameter.
  • the mixing step may further mix a raw material containing magnesium.
  • a carrier core material can further improve the magnetic characteristics.
  • the carrier core material for an electrophotographic developer is a carrier core material for an electrophotographic developer containing iron, manganese, and calcium as a core composition, the raw material containing iron, the raw material containing manganese And a raw material containing calcium are mixed to granulate the mixture, and the granulated particles are fired at a predetermined temperature to form a magnetic phase.
  • the raw material containing calcium is granular, and the volume average particle size of the primary particles is 1 ⁇ m or less.
  • Such a carrier core material for an electrophotographic developer has good dispersibility of calcium contained as a constituent material of the carrier core material on the surface and inside of the carrier core material. It is good.
  • the carrier core material for electrophotographic developer according to the present invention is a carrier core material for electrophotographic developer containing iron, manganese, and calcium as a core composition, and the lattice constant thereof is larger than 8.490. . Since such a carrier core material has a good solid solution state of calcium in the spinel structure, its characteristics are good.
  • the carrier core material for an electrophotographic developer according to the present invention is a carrier core material for an electrophotographic developer containing iron, manganese, and calcium as a core composition, and the particle cross section of the carrier core material for an electrophotographic developer Is magnified 3000 times with an electron microscope, and the area occupied by the segregated calcium is the whole of the particle cross section when the calcium element is mapped and observed in EDX (Energy Dispersive X-ray spectroscopy). 4% or less.
  • an electrophotographic developer carrier is an electrophotographic developer carrier used for an electrophotographic developer, and the carrier core material for an electrophotographic developer described above, And a resin that covers the surface of the carrier core material for the electrophotographic developer.
  • Such a carrier for an electrophotographic developer has high charging performance and good characteristics.
  • the electrophotographic developer is an electrophotographic developer used for electrophotographic development, and the triboelectric charging between the above-described electrophotographic developer carrier and the electrophotographic developer carrier. And a toner capable of being charged in electrophotography.
  • Such an electrophotographic developer includes the electrophotographic developer carrier having the above-described configuration, a high-quality image can be formed.
  • the carrier core material for an electrophotographic developer according to the present invention has high charging performance and good characteristics.
  • the electrophotographic developer carrier according to the present invention has high charging performance and good characteristics.
  • the electrophotographic developer according to the present invention can form a high-quality image.
  • the result of the elemental analysis of Ca element in EDX within the visual field range of the electron micrograph of the carrier core material according to Example 1 is shown.
  • the result of the elemental analysis of Ca element in EDX in the visual field range of the electron micrograph of the carrier core material according to Example 2 is shown.
  • the result of the elemental analysis of Ca element in EDX within the visual field range of the electron micrograph of the carrier core material according to Example 3 is shown.
  • the result of the elemental analysis of Ca element in EDX within the visual field range of the electron micrograph of the carrier core material according to Comparative Example 1 is shown.
  • the schematic of the result of the elemental analysis of Ca element in EDX in the visual field range of the electron micrograph of the carrier core material which concerns on Example 1 is shown.
  • the schematic of the result of the elemental analysis of Ca element in EDX in the visual field range of the electron micrograph of the carrier core material which concerns on Example 2 is shown.
  • the schematic of the result of the elemental analysis of Ca element in EDX in the visual field range of the electron micrograph of the carrier core material which concerns on Example 3 is shown.
  • the schematic of the result of the elemental analysis of Ca element in EDX in the visual field range of the electron micrograph of the carrier core material which concerns on the comparative example 1 is shown.
  • the external shape is a substantially spherical shape.
  • the particle diameter of the carrier core material according to one embodiment of the present invention is about 35 ⁇ m and has an appropriate particle size distribution. That is, the above-mentioned particle size means a volume average particle size.
  • the particle size and particle size distribution are arbitrarily set depending on required developer characteristics, yield in the manufacturing process, and the like.
  • minute irregularities formed mainly in the baking step described later are formed.
  • the outer shape of the carrier is substantially spherical, similar to the carrier core material.
  • the carrier is obtained by thinly coating the surface of the carrier core material with a resin, that is, the particle diameter of the carrier is almost the same as that of the carrier core material. Unlike the carrier core material, the surface of the carrier is almost completely covered with resin.
  • the developer according to one embodiment of the present invention is composed of the above carrier and toner.
  • the outer shape of the toner is also substantially spherical.
  • the toner is mainly composed of a styrene acrylic resin or a polyester resin, and contains a predetermined amount of pigment, wax or the like.
  • Such a toner is manufactured by, for example, a pulverization method or a polymerization method.
  • a toner having a particle diameter of about 5 ⁇ m, which is about 1/7 of the particle diameter of the carrier is used.
  • the mixing ratio of the toner and the carrier is also arbitrarily set according to the required developer characteristics and the like.
  • Such a developer is produced by mixing a predetermined amount of carrier and toner with an appropriate mixer.
  • FIG. 1 is a flowchart showing typical steps in a manufacturing method for manufacturing a carrier core material according to an embodiment of the present invention.
  • a method for manufacturing a carrier core material according to an embodiment of the present invention will be described below with reference to FIG.
  • a raw material containing iron, a raw material containing manganese, a raw material containing calcium, and a raw material containing magnesium are prepared. And the prepared raw material is mix
  • an appropriate blending ratio is a blending ratio that the finally obtained carrier core material contains.
  • the raw material containing the iron which comprises the carrier core material which concerns on one Embodiment of this invention what is necessary is just metallic iron or its oxide.
  • Fe 2 O 3 , Fe 3 O 4 , Fe, and the like that exist stably at normal temperature and pressure are preferably used.
  • the raw material containing manganese may be metallic manganese or an oxide thereof.
  • metals Mn, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , and MnCO 3 that exist stably at normal temperature and pressure are preferably used.
  • metallic magnesium or its oxide is used suitably.
  • MgCO 3 which is a carbonate
  • Mg (OH) 2 which is a hydroxide
  • MgO which is an oxide
  • a raw material containing calcium metallic calcium or its oxide
  • CaCO 3 that is a carbonate
  • Ca (OH) 2 that is a hydroxide
  • CaO that is an oxide, and the like
  • the raw materials iron raw material, manganese raw material, calcium raw material, magnesium raw material, etc.
  • the raw material containing calcium is granular, and the volume average particle size of the primary particles is preferably 1 ⁇ m or less. Since the raw material containing calcium has a small particle size, the dispersibility in the carrier core material is good.
  • it may be configured to include a step of mixing a raw material containing calcium in a solution state.
  • the measurement of the volume average particle diameter of the primary particles of the raw material containing calcium will be described as follows.
  • the raw material containing calcium to be used 1g was added with respect to 100ml of water, and it processed for 1 minute with the ultrasonic cleaner (output: 100W, frequency: 50Hz).
  • the obtained dispersion solution was measured with a laser diffraction particle size distribution analyzer (Microtrack, Model 9320-X100 manufactured by Nikkiso Co., Ltd.). Since fine particles tend to be aggregates, in the case of aggregated powder, the dispersion is monodispersed using a dispersant and measured. Further, since calcium nitrate and calcium acetate have high solubility and are dissolved in the solution, the volume average particle diameter of the primary particles is set to 0.01 ⁇ m or less.
  • the mixing step includes a step of mixing at least one selected from the group consisting of calcium nitrate, calcium acetate, and calcium carbonate as a raw material containing calcium. What is selected from such a group is relatively easy to obtain the above-mentioned volume average particle diameter.
  • the mixed raw material is slurried (FIG. 1 (B)). That is, these raw materials are weighed according to the target composition of the carrier core material and mixed to obtain a slurry raw material.
  • a reducing agent may be further added to the slurry raw material described above in order to advance the reduction reaction in a part of the baking process described later.
  • the reducing agent carbon powder, polycarboxylic acid organic substances, polyacrylic acid organic substances, maleic acid, acetic acid, polyvinyl alcohol (PVA (polyvinyl alcohol)) organic substances, and mixtures thereof are preferably used.
  • the water is added to the slurry raw material described above and mixed and stirred, so that the solid content concentration is 40% by weight or more, preferably 50% by weight or more. If the solid content concentration of the slurry raw material is 50% by weight or more, it is preferable because the strength of the granulated pellet can be maintained.
  • the slurryed raw material is granulated (FIG. 1 (C)).
  • Granulation of the slurry obtained by mixing and stirring is performed using a spray dryer.
  • the atmospheric temperature during spray drying may be about 100 to 300 ° C. Thereby, a granulated powder having a particle diameter of 10 to 200 ⁇ m can be obtained.
  • the obtained granulated powder is preferably adjusted for particle size at this point in consideration of the final particle size of the product by removing coarse particles and fine powder using a vibration sieve or the like.
  • the granulated product is fired (FIG. 1D). Specifically, the obtained granulated powder is put into a furnace heated to about 900 to 1500 ° C., held for 1 to 24 hours and fired to produce a desired fired product.
  • the oxygen concentration in the firing furnace may be any condition as long as the ferritization reaction proceeds. Specifically, at 1200 ° C., the oxygen concentration of the introduced gas is set to be 10 ⁇ 7 % or more and 3% or less. Adjust and fire under flow conditions.
  • the reducing atmosphere necessary for ferritization may be controlled by adjusting the reducing agent.
  • a temperature of 900 ° C. or higher is preferable.
  • the firing temperature is 1500 ° C. or lower, the particles are not excessively sintered, and a fired product can be obtained in the form of powder.
  • the amount of oxygen in the core composition may be excessive.
  • the oxygen concentration during cooling in the firing step it is conceivable to set the oxygen concentration during cooling in the firing step to a predetermined amount or more. That is, in the firing step, when cooling to about room temperature, the cooling may be performed in an atmosphere in which the oxygen concentration is higher than a predetermined concentration, specifically, 0.03%.
  • the oxygen concentration of the introduced gas introduced into the electric furnace is set to be more than 0.03%, and the process is performed in a flow state.
  • the oxygen amount in a ferrite can exist excessively in the inner layer of a carrier core material.
  • the content is 0.03% or less, the oxygen content in the inner layer is relatively reduced. Therefore, here, cooling is performed in an environment of the above oxygen concentration.
  • the fired product is coarsely pulverized with a hammer mill or the like. That is, pulverization is performed on the baked granular material (FIG. 1E). After that, classification is performed using a vibrating screen. That is, classification is performed on the pulverized granular material (FIG. 1 (F)).
  • grains of the carrier core material with a desired particle size can be obtained.
  • the classified granular material is oxidized (FIG. 1G). That is, the particle surface of the carrier core material obtained at this stage is heat-treated (oxidation treatment). Then, the dielectric breakdown voltage of the particles is increased to 250 V or more, and the electric resistance value is set to an appropriate electric resistance value of 1 ⁇ 10 6 to 1 ⁇ 10 13 ⁇ ⁇ cm. By raising the electrical resistance value of the carrier core material by oxidation treatment, the risk of carrier scattering due to charge leakage can be reduced.
  • the target carrier core material is obtained by holding at 200 to 700 ° C. for 0.1 to 24 hours in an atmosphere having an oxygen concentration of 10 to 100%. More preferably, it is 0.5 to 20 hours at 250 to 600 ° C., and more preferably 1 to 12 hours at 300 to 550 ° C. In addition, about such an oxidation treatment process, it is arbitrarily performed as needed.
  • the carrier core material according to one embodiment of the present invention is manufactured. That is, the method for producing a carrier core material for an electrophotographic developer according to one embodiment of the present invention is a method for producing a carrier core material for an electrophotographic developer containing iron, manganese, and calcium as a core composition, A raw material containing manganese, a raw material containing manganese, and a raw material containing calcium, a granulating step of granulating the mixed mixture after the mixing step, and a powdered material granulated by the granulating step And a firing step of firing at a predetermined temperature to form a magnetic phase.
  • the raw material containing calcium is granular, and the volume average particle size of the primary particles is 1 ⁇ m or less.
  • the carrier core material manufactured by such a manufacturing method of the carrier core material since the dispersibility of the contained calcium is good on the surface and inside of the carrier core material, the carrier manufactured as described above.
  • the core material itself has high charging performance and good characteristics.
  • a carrier core material for an electrophotographic developer is a carrier core material for an electrophotographic developer containing iron, manganese, and calcium as a core composition, and includes a raw material containing iron, manganese.
  • a raw material containing calcium and a raw material containing calcium are mixed to granulate the mixture, and the granulated granule is fired at a predetermined temperature to form a magnetic phase.
  • the raw material containing calcium is granular, and the volume average particle size of the primary particles is 1 ⁇ m or less.
  • Such a carrier core material for an electrophotographic developer has good dispersibility of calcium contained as a constituent material of the carrier core material on the surface and inside of the carrier core material. It is good.
  • an electrophotographic developer carrier according to an embodiment of the present invention is obtained.
  • a coating method such as silicone resin or acrylic resin can be performed by a known method. That is, an electrophotographic developer carrier according to an embodiment of the present invention is an electrophotographic developer carrier used for an electrophotographic developer, and includes the above-described carrier core material for an electrophotographic developer, and electrophotography. And a resin that covers the surface of the carrier core material for developer.
  • Such a carrier for an electrophotographic developer has high charging performance and good characteristics.
  • the carrier for an electrophotographic developer according to one embodiment of the present invention obtained by the above-described manufacturing method is mixed with an appropriate known toner.
  • the electrophotographic developer according to one embodiment of the present invention can be obtained.
  • an arbitrary mixer such as a ball mill is used.
  • An electrophotographic developer according to an embodiment of the present invention is an electrophotographic developer used for electrophotographic development, and is obtained by frictional charging between the above-described electrophotographic developer carrier and the electrophotographic developer carrier. And a toner capable of being charged in electrophotography. Since such an electrophotographic developer includes the carrier for an electrophotographic developer having the above-described configuration, an image with good image quality can be formed.
  • Example 1 Fe 2 O 3 (average particle size: 1 ⁇ m) 13.7 kg, Mn 3 O 4 (average particle size: 1 ⁇ m) 6.5 kg, MgFe 2 O 4 (average particle size: 3 ⁇ m) 2.3 kg in 7.5 kg of water 135 g of ammonium polycarboxylate dispersant as a dispersant, 68 g of carbon black as a reducing agent, calcium nitrate tetrahydrate (Ca (NO 3 ) 2 .4H 2 O) (volume average of primary particles) 264 g of (particle diameter: 0.01 ⁇ m or less) was added to obtain a mixture. As a result of measuring the solid content concentration at this time, it was 75% by weight. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
  • the slurry was sprayed into hot air at about 130 ° C. with a spray dryer to obtain dry granulated powder. At this time, granulated powder other than the target particle size distribution was removed by sieving. This granulated powder was put into an electric furnace and fired at 1130 ° C. for 3 hours. At this time, the electric furnace flowed to an electric furnace whose atmosphere was adjusted so that the oxygen concentration was 0.8%. The obtained fired product was classified using a sieve after pulverization to an average particle size of 25 ⁇ m. Furthermore, the obtained carrier core material was oxidized at 470 ° C. for 1 hour in the atmosphere to obtain a carrier core material according to Example 1.
  • Tables 1 and 2 show the composition, magnetic characteristics, and electrical characteristics of the obtained carrier core material.
  • the core material compositions x, y, and z shown in Table 1 in the case where the above-described carrier core material is represented by the general formula: (Mn x Mg y Ca z ) Fe 3-xyz O 4 It is the result obtained by measuring the obtained carrier core material by the analysis method shown below.
  • the Mn content of the carrier core material was quantitatively analyzed according to the ferromanganese analysis method (potentiometric titration method) described in JIS G1311-1987.
  • the Mn content of the carrier core material described in the present invention is the amount of Mn obtained by quantitative analysis by this ferromanganese analysis method (potentiometric titration method).
  • the Ca and Mg contents of the carrier core material were analyzed by the following method.
  • the carrier core material according to the present invention was dissolved in an acid solution, and quantitative analysis was performed by ICP.
  • the Ca and Mg contents of the carrier core material described in the present invention are the amounts of Ca and Mg obtained by this quantitative analysis by ICP.
  • VSM magnetic susceptibility
  • ⁇ s saturation magnetization
  • ⁇ 1k (1000) magnetization in the case of an external magnetic field 1 k (1000) Oe
  • ⁇ 500 external The magnetization in the case of the magnetic field 500 Oe
  • ⁇ 2000 is the magnetization in the case of the external magnetic field 2000 Oe.
  • the value of ⁇ 500 is higher.
  • the core charge amount as an electrical characteristic in the table is the charge amount of the core, that is, the carrier core material.
  • the measurement of the charge amount will be described.
  • 9.5 g of carrier core material and 0.5 g of commercially available full-color toner are put into a 100 ml stoppered glass bottle and left to stand for 12 hours in an environment of 25 ° C. and 50% relative humidity to adjust the humidity.
  • the conditioned carrier core material and toner are shaken for 30 minutes with a shaker and mixed.
  • a NEW-YS type manufactured by Yayoi Co., Ltd. was used, and the shaking was performed 200 times / minute at an angle of 60 °.
  • the core charge amount ( ⁇ C (Coulomb) / g) measured charge (nC) ⁇ 10 3 ⁇ coefficient (1.00083 ⁇ 10 ⁇ 3 ) ⁇ toner weight (weight before suction (g) -Weight after suction (g)).
  • the calculation of the lattice constant is as follows.
  • the lattice constant of the crystal of the magnetic carrier core material related to the present invention was measured using an X-ray diffractometer (manufactured by Rigaku Corporation, Ultimate IV).
  • the X-ray source used Cu and generated X-rays at an acceleration voltage of 40 kV (kilovolts) and a current of 40 mA (milliamperes).
  • the measurement conditions of the powder X-ray are: scanning mode: FT (step scanning method), divergent slits: 1 ° and 10 mm, scattering slit: 1 °, light receiving slit: 0.3 mm, rotational speed: 5000 rpm, scanning range: 10.000 ⁇ 120.00 °, measurement interval was 0.02 °, counting time was 1 second, and number of integration was one.
  • FT step scanning method
  • divergent slits 1 ° and 10 mm
  • scattering slit 1 °
  • light receiving slit 0.3 mm
  • rotational speed 5000 rpm
  • scanning range 10.000 ⁇ 120.00 °
  • measurement interval was 0.02 °
  • counting time was 1 second
  • number of integration was one.
  • a diffraction line to be measured a diffraction line existing between 70 ° and 120 ° was used, and a lattice constant was calculated from the obtained XRD pattern.
  • the sample was used as it was without crushing the core material,
  • the ratio of the area occupied by segregated calcium was evaluated by the following method.
  • the carrier core material for an electrophotographic developer was kneaded into a resin, and the cross section of the particles was cut with an argon ion laser beam under a reduced pressure atmosphere using a cross section polisher (manufactured by JEOL Ltd., SM-09010).
  • the segregation site to be measured was a location where the major axis of the segregation site was 5 mm or more when the obtained image was output in A4 size.
  • the above-mentioned measurement was performed with respect to the cross section of 100 particles, and the average value was made into the ratio of the area
  • Example 2 From calcium nitrate tetrahydrate (Ca (NO 3 ) 2 .4H 2 O) to calcium acetate monohydrate (Ca (CH 3 COO) 2 ⁇ H 2 O) (primary particles)
  • the carrier core material according to Example 2 was obtained in the same manner as in Example 1 except that the volume average particle size was changed to 0.01 ⁇ m or less and the addition amount was changed to 197 g. Tables 1 and 2 show the composition, magnetic characteristics, and electrical characteristics of the obtained carrier core material.
  • Example 3 The calcium raw material to be added is changed from calcium nitrate tetrahydrate (Ca (NO 3 ) 2 .4H 2 O) to colloidal calcium carbonate (CaCO 3 ) (volume average particle size of primary particles: 0.04 ⁇ m). Obtained the carrier core material which concerns on Example 3 by the method similar to Example 1.
  • FIG. Tables 1 and 2 show the composition, magnetic characteristics, and electrical characteristics of the obtained carrier core material.
  • Example 4 The calcium raw material to be added is changed from calcium nitrate tetrahydrate (Ca (NO 3 ) 2 .4H 2 O) to calcium carbonate (CaCO 3 ) (volume average particle size of primary particles: 0.05 ⁇ m) and added.
  • a carrier core material according to Example 4 was obtained in the same manner as in Example 1, except that the amount was 113 g. Tables 1 and 2 show the composition, magnetic characteristics, and electrical characteristics of the obtained carrier core material.
  • Example 5 Fe 2 O 3 (average particle size: 1 ⁇ m) 11.0 kg, Mn 3 O 4 (average particle size: 1 ⁇ m) 4.4 kg are dispersed in 5.1 kg of water, and an ammonium polycarboxylate dispersant is used as a dispersant.
  • 92 g, 46.1 g of carbon black as a reducing agent, and 177 g of calcium nitrate tetrahydrate (Ca (NO 3 ) 2 .4H 2 O) (volume average particle size of primary particles: 0.01 ⁇ m or less) Obtained the carrier core material according to Example 5 in the same manner as in Example 1. Tables 1 and 2 show the composition, magnetic characteristics, and electrical characteristics of the obtained carrier core material.
  • Comparative Example 1 The calcium raw material to be added is changed from calcium nitrate tetrahydrate (Ca (NO 3 ) 2 .4H 2 O) to calcium carbonate (CaCO 3 ) (volume average particle size of primary particles: 1.5 ⁇ m), and added A carrier core material according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the amount was 113 g. Tables 1 and 2 show the composition, magnetic characteristics, and electrical characteristics of the obtained carrier core material.
  • Comparative Example 2 The calcium raw material to be added is changed from calcium nitrate tetrahydrate (Ca (NO 3 ) 2 .4H 2 O) to calcium carbonate (CaCO 3 ) (volume average particle size of primary particles: 4 ⁇ m).
  • a carrier core material according to Comparative Example 2 was obtained in the same manner as in Example 1 except that the amount was 113 g. Tables 1 and 2 show the composition, magnetic characteristics, and electrical characteristics of the obtained carrier core material.
  • the value of ⁇ 500 is 40.6 emu / g, 41.7 emu / g, 41.4 emu / g, 40.9 emu / g and 39.6 emu / g, which are high values.
  • the value of ⁇ 500 is 40.5 emu / g or more, and in order to improve the rise on the low magnetic field side, the MnMg based composition is used. It is preferable to do.
  • the core charge amounts were 16.5 ⁇ C / g and 13.2 ⁇ C / g, respectively.
  • the amounts are 22.5 ⁇ C / g, 22.2 ⁇ C / g, 21.2 ⁇ C / g, 20.9 ⁇ C / g, 22.0 ⁇ C / g, respectively, and all are 20.0 ⁇ C / g or more.
  • the carrier core materials in Examples 1 to 5 have improved magnetic characteristics and charging performance, that is, electrical characteristics, as compared with the carrier core materials in Comparative Examples 1 and 2. .
  • FIG. 2 is a graph showing the relationship between the core charge amount and the lattice constant for the above-described examples and comparative examples.
  • the vertical axis represents the core charge amount
  • the horizontal axis represents the lattice constant.
  • black circles indicate examples
  • black squares indicate comparative examples.
  • Comparative Examples 1 and 2 have low lattice constants, specifically 8.490 and 8.488, respectively, and 8.490 or less.
  • the core charge amount is also low, which are 16.5 ⁇ C / g and 13.2 ⁇ C / g, respectively, and 18.0 ⁇ C / g or less.
  • Examples 1 to 5 have high lattice constants, specifically 8.498, 8.495, 8,496, 8.492, and 8.501, respectively.
  • the core charge amount was also high, 22.5 ⁇ C / g, 22.2 ⁇ C / g, 21.2 ⁇ C / g, 20.9 ⁇ C / g, and 22.0 ⁇ C / g, respectively. 20.0 ⁇ C / g or more.
  • Example 2 and Example 5 in which the volume average particle size is 0.01 ⁇ m or less, a carrier core material having a core charge amount of 22.0 ⁇ C / g or more and a high core charge amount is obtained. Therefore, it can be seen that it is preferable to make the volume average particle size as small as possible.
  • the core charge amount is at least 16.5 ⁇ C / g, which is the core charge amount value of the carrier core material according to Comparative Example 1. Can be higher. Furthermore, if the volume average particle size of the primary particles of the raw material containing calcium is 0.1 ⁇ m or less, it can be made closer to the value of the example. Further, it can be understood from FIG. 2 that if the lattice constant is high, the core charge amount increases as the core charge amount increases.
  • the carrier core material for an electrophotographic developer is a carrier core material for an electrophotographic developer containing iron, manganese, and calcium as a core composition, and the lattice constant thereof is 8 Greater than .490. Since such a carrier core material has a good solid solution state of calcium in the spinel structure, its characteristics are good.
  • FIG. 3 shows the results of elemental analysis of Ca element in EDX within the field of view of the electron micrograph of the carrier core material according to Example 1.
  • FIG. 4 the result of the elemental analysis of Ca element in EDX in the visual field range of the electron micrograph of the carrier core material which concerns on Example 2 is shown.
  • FIG. 5 the result of the elemental analysis of Ca element in EDX in the visual field range of the electron micrograph of the carrier core material which concerns on Example 3 is shown.
  • FIG. 6 the result of the elemental analysis of Ca element in EDX in the visual field range of the electron micrograph of the carrier core material which concerns on the comparative example 1 is shown.
  • FIG. 7 shows a schematic diagram of the results of elemental analysis of Ca element in EDX within the field of view of the electron micrograph of the carrier core shown in FIG.
  • FIG. 8 shows a schematic diagram of the results of elemental analysis of Ca element in EDX within the field of view of the electron micrograph of the carrier core shown in FIG.
  • FIG. 9 shows a schematic diagram of the results of elemental analysis of Ca element in EDX within the field of view of the electron micrograph of the carrier core shown in FIG.
  • FIG. 10 shows a schematic diagram of the results of elemental analysis of Ca element in EDX within the field of view of the electron micrograph of the carrier core shown in FIG.
  • hatched regions 12, 15, 17, and 19 indicate regions where Ca is segregated.
  • regions 11, 14, 16, and 18 shown with a dot show the area
  • the particle cross-sectional area S 1 described above corresponds to the sum of the region 11, the region 12, and the region 13, and the cross-sectional area S 2 of the segregated portion corresponds to the region 12. .
  • Example 1 the areas 12 and 15 where Ca is segregated are very few. From the data shown in Table 2, Example 2 and Example 5 are also considered to have the same tendency as Example 1. Moreover, about Example 3, it can grasp
  • a carrier core material according to an embodiment of the present invention is a carrier core material for an electrophotographic developer containing iron, manganese, and calcium as a core composition, and the particle cross section of the carrier core material for an electrophotographic developer is observed with an electron microscope.
  • the area occupied by segregated calcium is less than 4% of the entire particle cross-section when observed by mapping calcium elements in EDX (Energy Dispersive X-ray spectroscopy). It is.
  • the carrier core material was resin-coated by the following method.
  • a silicone resin (trade name: KR251, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in toluene to prepare a coating resin solution.
  • the mixture was heated and stirred at 150 ° C. to 250 ° C. while being immersed for a period of time.
  • a carrier core material in which the resin was coated at a ratio of 1.0% by weight with respect to the weight of the carrier core material was obtained.
  • the carrier core material coated (coated) with this resin is placed in a hot-air circulating heating device, heated at 250 ° C. for 5 hours to cure the coating resin, and the carrier for an electrophotographic developer according to Example 1 Got.
  • the electrophotographic developer carrier and a commercially available toner having a particle size of about several ⁇ m were mixed with a V-type blender or a pot mill to obtain an electrophotographic developer. Then, image characteristics were evaluated using the electrophotographic developer thus obtained.
  • a 60-sheet machine adopting a digital reversal development method is used as an evaluation machine, and using the electrophotographic developer thus obtained, carrier skip, image density, fog density, fine line reproducibility, image quality From the initial stage, a printing durability test of 200K sheets (K: 1000 sheets) was performed.
  • image quality indicates an overall evaluation.
  • ⁇ (double circle) is a very good level
  • ⁇ (single circle) is a good level
  • ⁇ (triangle) is a usable level
  • x (cross) The level was unusable.
  • the evaluation of ⁇ (single circle) is the same level as the high-performance electrophotographic developer currently in practical use, and the evaluation of ⁇ (single circle) or higher was determined to be acceptable.
  • the image density, fog density, fine line reproducibility, and image quality not only in the initial stage but also after 100K sheets and 200K sheets From the point of view, it maintains a very good level or a good level.
  • Comparative Example 1 and Comparative Example 2 from the viewpoint of image density, fog density, fine line reproducibility, and image quality at the initial stage, it is a very good level or a good level.
  • Usable level and unusable level items occur, and after 200K, the usable level and unusable level items are increasing.
  • the characteristics are good.
  • a raw material containing iron, a raw material containing manganese, a raw material containing calcium, and a raw material containing magnesium are prepared, and these are mixed to obtain the present invention.
  • the present invention is not limited thereto.
  • Si metal oxides such as CaSiO 3 are prepared and mixed to obtain the carrier core material according to the present invention. Good.
  • magnesium is used as a raw material included in the carrier core material, but may be configured so as not to include magnesium.
  • the raw material containing calcium is mixed as a solution.
  • the present invention is not limited thereto, and may be mixed in a powder state.
  • the oxygen amount is set to be higher than a predetermined concentration during cooling in the firing step in order to make the carrier core material contain an excessive amount.
  • the present invention is not limited to this. For example, it is good also as adjusting the mixture ratio in a raw material mixing process, and making it contain in a carrier core material excessively. Moreover, it is good also as performing in the same atmosphere as a cooling process in the process which advances the sintering reaction which is a process before cooling.
  • the carrier core material for an electrophotographic developer, the carrier for an electrophotographic developer, and the electrophotographic developer according to the present invention are effectively used when applied to a copying machine or the like that requires high image quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

 電子写真現像剤用キャリア芯材の製造方法は、鉄、マンガン、およびカルシウムをコア組成として含む電子写真現像剤用キャリア芯材の製造方法であって、鉄を含む原料、マンガンを含む原料、およびカルシウムを含む原料を混合する混合工程(A)と、混合工程の後に、混合した混合物の造粒を行う造粒工程(C)と、造粒工程により造粒した粉状物を所定の温度で焼成して磁性相を形成する焼成工程(D)とを備える。ここで、カルシウムを含む原料は、粒状であって、その一次粒子の体積平均粒径は、1μm以下である。

Description

電子写真現像剤用キャリア芯材の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
 この発明は、電子写真現像剤用キャリア芯材(以下、単に「キャリア芯材」ということもある)の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア(以下、単に「キャリア」ということもある)、および電子写真現像剤(以下、単に「現像剤」ということもある)に関するものであり、特に、複写機やMFP(Multifunctional Printer)等に用いられる電子写真現像剤に備えられる電子写真現像剤用キャリア芯材、その製造方法、電子写真現像剤に備えられる電子写真現像剤用キャリア、および電子写真現像剤に関するものである。
 複写機やMFP等においては、電子写真における乾式の現像方式として、トナーのみを現像剤の成分とする一成分系現像剤と、トナーおよびキャリアを現像剤の成分とする二成分系現像剤とがある。いずれの現像方式においても、所定の電荷量に帯電させたトナーを感光体に供給する。そして、感光体上に形成された静電潜像をトナーによって可視化し、これを用紙に転写する。その後、トナーによる可視画像を用紙に定着させ、所望の画像を得る。
 ここで、二成分系現像剤における現像について、簡単に説明する。現像器内には、所定量のトナーおよび所定量のキャリアが収容されている。現像器には、S極とN極とが周方向に交互に複数設けられた回転可能なマグネットローラおよびトナーとキャリアとを現像器内で攪拌混合する攪拌ローラが備えられている。磁性粉から構成されるキャリアは、マグネットローラによって担持される。このマグネットローラの磁力により、キャリア粒子による直鎖状の磁気ブラシが形成される。キャリア粒子の表面には、攪拌による摩擦帯電により複数のトナー粒子が付着している。マグネットローラの回転により、この磁気ブラシを感光体に当てるようにして、感光体の表面にトナーを供給する。二成分系現像剤においては、このようにして現像を行なう。
 トナーについては、用紙への定着により現像器内のトナーが順次消費されていくため、現像器に取り付けられたトナーホッパーから、消費された量に相当する新しいトナーが、現像器内に随時供給される。一方、キャリアについては、現像による消費がなく、寿命に達するまでそのまま用いられる。二成分系現像剤の構成材料であるキャリアには、攪拌による摩擦帯電により効率的にトナーを帯電させるトナー帯電機能や絶縁性、感光体にトナーを適切に搬送して供給するトナー搬送能力等、種々の機能が求められる。例えば、トナーの帯電能力向上の観点から、キャリアについては、その電気抵抗値(以下、単に抵抗値ということもある)が適切であること、また、絶縁性が適切であることが要求される。
 昨今において、上記したキャリアは、そのコア、すなわち、核となる部分を構成するキャリア芯材と、このキャリア芯材の表面を被覆するようにして設けられるコーティング樹脂とから構成されている。
 ここで、キャリア芯材については、磁気的特性が良好であることが望まれる。簡単に説明すると、キャリアは、現像器内において、上記したようにマグネットローラに磁力で担持されている。このような使用状況下において、キャリア芯材自体の磁性、具体的には、キャリア芯材自体の磁化が低いとマグネットローラに対する保持力が弱まり、いわゆるキャリア飛散等の問題が生ずるおそれがある。特に、昨今においては、形成される画像の高画質化の要求に応えるため、トナー粒子の粒径を小さくする傾向にあり、これに対応して、キャリア粒子の粒径も小さくする傾向にある。キャリアの小粒径化を図ると、各キャリア粒子の担持力が小さくなってしまうおそれがある。したがって、上記したキャリア飛散の問題に対して、より効果的な対策が望まれる。
 キャリア芯材に関する技術が種々開示されているが、キャリア飛散防止という観点に着目した技術については、特開2008-241742号公報(特許文献1)に開示されている。
特開2008-241742号公報
 また、キャリア芯材については、電気的特性が良好であること、具体的には、例えば、キャリア芯材自体の帯電量の高いことや高い絶縁破壊電圧を有すること、さらに上記したように、キャリア芯材自体についても適切な抵抗値を有することが望まれる。
 特に昨今においては、キャリア芯材自体の帯電性能、具体的には、キャリア芯材の帯電量を高くすることが、強く望まれる傾向にある。上記したように、キャリア芯材は、その表面にコーティング樹脂を被覆されて用いられる場合が多い。ここで、現像器内での攪拌によるストレス等で、コーティング樹脂の一部が剥がれてしまい、キャリア芯材の表面が露出する場合もある。このような状況においては、キャリア芯材自体の露出した表面とトナーとの摩擦による帯電能力が強く求められる。もちろん、磁気的特性等、その他の特性についても、良好なことが好ましい。
 この発明の目的は、帯電性能が高く、特性が良好な電子写真現像剤用キャリア芯材を製造することができる電子写真現像剤用キャリア芯材の製造方法を提供することである。この発明の他の目的は、帯電性能が高く、特性が良好な電子写真現像剤用キャリア芯材を提供することである。
 この発明のさらに他の目的は、帯電性能が高く、特性が良好な電子写真現像剤用キャリアを提供することである。
 この発明のさらに他の目的は、良好な画質の画像を形成することができる電子写真現像剤を提供することである。
 本願発明者は、キャリア芯材の帯電性能を向上させるために、キャリア芯材の表面における摩擦帯電能力の向上を図るべく、金属元素であるカルシウム(Ca)を、キャリア芯材のコアの成分として添加しようと考えた。さらに、本願発明者は、キャリア芯材の構成材料として含有されるカルシウムが、その表面において良好な分散性を示せばよいのではなく、含有されるカルシウムがキャリア芯材の表面のみならず、以下に示すように、キャリア芯材の内部においても、良好に分散している必要があると考えた。すなわち、本願発明者は、鉄(Fe)およびマンガン(Mn)を主成分としたスピネル構造を形成するキャリア芯材の内部において、スピネル構造中へのカルシウムの固溶状態を良好にすれば、キャリア芯材を構成する結晶の格子定数が高くなり、帯電した電荷を保持する特性が向上し、その結果、キャリア芯材の帯電性能が向上すると考えた。そして、原材料として添加するカルシウムの分散度合いを向上させるに際し、従来のようなカルシウムを含む原料の前処理としての仮焼や粉砕では不十分であり、原子オーダーまたはミクロンオーダーで分散させる必要があると考えた。
 すなわち、この発明に係る電子写真現像剤用キャリア芯材の製造方法は、鉄、マンガン、およびカルシウムをコア組成として含む電子写真現像剤用キャリア芯材の製造方法であって、鉄を含む原料、マンガンを含む原料、およびカルシウムを含む原料を混合する混合工程と、混合工程の後に、混合した混合物の造粒を行う造粒工程と、造粒工程により造粒した粉状物を所定の温度で焼成して磁性相を形成する焼成工程とを備える。ここで、カルシウムを含む原料は、粒状であって、その一次粒子の体積平均粒径は、1μm以下である。
 このようなキャリア芯材の製造方法で製造されたキャリア芯材については、含有されるカルシウムの分散性が、キャリア芯材の表面および内部において良好である。したがって、製造されるキャリア芯材自体の帯電性能が高く、良好な特性を有する。
 好ましくは、混合工程は、カルシウムを含む原料を、溶液状態として混合する工程を含むよう構成してもよい。このように構成することにより、添加するカルシウムを含む原料の凝集の発生を効率的に抑制して、より確実にキャリア芯材中のカルシウムの分散性を向上させることができる。
 さらに好ましくは、混合工程は、硝酸カルシウム、酢酸カルシウム、および炭酸カルシウムからなる群から選択される少なくとも一つを、カルシウムを含む原料として混合する工程を含む。このような群から選択されるものは、上記した体積平均粒径のものを得ることが比較的容易である。
 さらに好ましい一実施形態として、混合工程は、さらにマグネシウムを含む原料を混合するようにしてもよい。このようなキャリア芯材は、磁気的特性をさらに向上することができる。
 この発明の他の局面において、電子写真現像剤用キャリア芯材は、鉄、マンガン、およびカルシウムをコア組成として含む電子写真現像剤用キャリア芯材であって、鉄を含む原料、マンガンを含む原料、およびカルシウムを含む原料を混合して混合物を造粒し、造粒した粒状物を所定の温度で焼成して磁性相を形成される。ここで、カルシウムを含む原料は、粒状であって、その一次粒子の体積平均粒径は、1μm以下である。
 このような電子写真現像剤用キャリア芯材は、キャリア芯材の構成材料として含有されるカルシウムの分散性が、キャリア芯材の表面および内部において良好であるため、帯電性能が高く、その特性が良好である。
 また、この発明に係る電子写真現像剤用キャリア芯材は、鉄、マンガン、およびカルシウムをコア組成として含む電子写真現像剤用キャリア芯材であって、その格子定数は、8.490よりも大きい。このようなキャリア芯材は、スピネル構造中へのカルシウムの固溶状態が良好であるため、その特性が良好である。
 また、この発明に係る電子写真現像剤用キャリア芯材は、鉄、マンガン、およびカルシウムをコア組成として含む電子写真現像剤用キャリア芯材であって、電子写真現像剤用キャリア芯材の粒子断面を電子顕微鏡で3000倍に拡大し、EDX(Energy Dispersive X-ray spectroscopy:エネルギー分散X線分光法)においてカルシウム元素をマッピングして観察した場合に、偏析したカルシウムの占める領域は、粒子断面全体の4%以下である。
 この発明のさらに他の局面において、電子写真現像剤用キャリアは、電子写真の現像剤に用いられる電子写真現像剤用キャリアであって、上記したいずれかの電子写真現像剤用キャリア芯材と、電子写真現像剤用キャリア芯材の表面を被覆する樹脂とを備える。
 このような電子写真現像剤用キャリアは、帯電性能が高く、その特性が良好である。
 この発明のさらに他の局面において、電子写真現像剤は、電子写真の現像に用いられる電子写真現像剤であって、上記した電子写真現像剤用キャリアと、電子写真現像剤用キャリアとの摩擦帯電により電子写真における帯電が可能なトナーとを備える。
 このような電子写真現像剤は、上記した構成の電子写真現像剤用キャリアを備えるため、高画質の画像を形成することができる。
 この発明に係る電子写真現像剤用キャリア芯材は、キャリア芯材自体の帯電性能が高く、その特性が良好である。
 また、この発明に係る電子写真現像剤用キャリアは、帯電性能が高く、その特性が良好である。
 また、この発明に係る電子写真現像剤は、高画質の画像を形成することができる。
この発明の一実施形態に係るキャリア芯材を製造する製造方法において、代表的な工程を示すフローチャートである。 コア帯電量と格子定数との関係を示すグラフである。 実施例1に係るキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果を示す。 実施例2に係るキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果を示す。 実施例3に係るキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果を示す。 比較例1に係るキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果を示す。 実施例1に係るキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果の概略図を示す。 実施例2に係るキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果の概略図を示す。 実施例3に係るキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果の概略図を示す。 比較例1に係るキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果の概略図を示す。
 以下、この発明の実施の形態を、図面を参照して説明する。まず、この発明の一実施形態に係るキャリア芯材について説明する。この発明の一実施形態に係るキャリア芯材については、その外形形状が、略球形状である。この発明の一実施形態に係るキャリア芯材の粒径は、約35μmであり、適当な粒度分布を有している。すなわち、上記した粒径は、体積平均粒径を意味する。この粒径および粒度分布については、要求される現像剤の特性や製造工程における歩留まり等により任意に設定される。キャリア芯材の表面には、主に後述する焼成工程で形成される微小の凹凸が形成されている。
 この発明の一実施形態に係るキャリアについても、キャリア芯材と同様に、その外形形状が、略球形状である。キャリアは、キャリア芯材の表面に薄く樹脂をコーティング、すなわち被覆したものであり、その粒径についても、キャリア芯材とほとんど変化は無い。キャリアの表面については、キャリア芯材と異なり、樹脂でほぼ完全に被覆されている。
 この発明の一実施形態に係る現像剤は、上記したキャリアと、トナーとから構成されている。トナーの外形形状についても、略球形状である。トナーは、スチレンアクリル系樹脂やポリエステル系樹脂を主成分とするものであり、所定量の顔料やワックス等が配合されている。このようなトナーは、例えば、粉砕法や重合法によって製造される。トナーの粒径は、例えば、キャリアの粒径の7分の1程度の約5μm程度のものが使用される。また、トナーとキャリアの配合比についても、要求される現像剤の特性等に応じて、任意に設定される。このような現像剤は、所定量のキャリアとトナーとを適当な混合器で混合することにより製造される。
 次に、この発明の一実施形態に係るキャリア芯材を製造する製造方法について説明する。図1は、この発明の一実施形態に係るキャリア芯材を製造する製造方法において、代表的な工程を示すフローチャートである。以下、図1に沿って、この発明の一実施形態に係るキャリア芯材の製造方法について説明する。
 まず、鉄を含む原料と、マンガンを含む原料と、カルシウムを含む原料と、マグネシウムを含む原料とを準備する。そして、準備した原料を、要求される特性に応じて、適当な配合比で配合し、これを混合する(図1(A))。ここで、適当な配合比とは、最終的に得られるキャリア芯材が、含有するような配合比である。
 この発明の一実施形態に係るキャリア芯材を構成する鉄を含む原料については、金属鉄またはその酸化物であればよい。具体的には、常温常圧下で安定に存在するFeやFe、Feなどが好適に用いられる。また、マンガンを含む原料については、金属マンガンまたはその酸化物であればよい。具体的には、常温常圧下で安定に存在する金属Mn、MnO、Mn、Mn、MnCOが好適に使用される。また、マグネシウムを含む原料としては、金属マグネシウムまたはその酸化物が好適に用いられる。具体的には、例えば、炭酸塩であるMgCOや、水酸化物であるMg(OH)、酸化物であるMgO等が挙げられる。また、カルシウムを含む原料としては、金属カルシウムまたはその酸化物が好適に用いられる。具体的には、例えば、炭酸塩であるCaCOや、水酸化物であるCa(OH)、酸化物であるCaO等が挙げられる。なお、上記原料(鉄原料、マンガン原料、カルシウム原料、マグネシウム原料等)をそれぞれ、若しくは目的の組成になるように混合した原料を仮焼して粉砕し原料として用いても良い。
 ここで、カルシウムを含む原料は、粒状であって、その一次粒子の体積平均粒径は、1μm以下であることが好ましい。このようなカルシウムを含む原料は、その粒径が小さいことから、キャリア芯材中における分散性が良好である。
 また、カルシウムを含む原料を、溶液状態として混合する工程を含むよう構成してもよい。このように構成することにより、添加するカルシウムを含む原料の凝集の発生を効率的に抑制して、より確実にキャリア芯材中のカルシウムの分散性を向上させることができる。
 ここで、カルシウムを含む原料の一次粒子の体積平均粒径の測定について説明すると、以下の通りである。使用するカルシウムを含む原料については、水100mlに対して1g添加し、超音波洗浄器(出力:100W、周波数:50Hz)で1分間、処理した。得られた分散溶液は、レーザー回折式粒度分布測定装置(日機装株式会社製マイクロトラック、Model 9320-X100)により測定した。なお、微粒子ほど凝集体となる傾向が強いため、凝集粉の場合、分散剤を使用して単分散させ、測定する。また、硝酸カルシウム、酢酸カルシウムについては、溶解度が高く、溶液中に溶解するため、一次粒子の体積平均粒径は、0.01μm以下とした。
 なお、混合工程は、硝酸カルシウム、酢酸カルシウム、および炭酸カルシウムからなる群から選択される少なくとも一つを、カルシウムを含む原料として混合する工程を含む。このような群から選択されるものは、上記した体積平均粒径のものを得ることが比較的容易である。
 次に、混合した原料のスラリー化を行なう(図1(B))。すなわち、これらの原料を、キャリア芯材の狙いとする組成に合わせて秤量し、混合してスラリー原料とする。
 この発明に係るキャリア芯材を製造する際の製造工程においては、後述する焼成工程の一部において、還元反応を進めるため、上述したスラリー原料へ、さらに還元剤を添加してもよい。還元剤としては、カーボン粉末やポリカルボン酸系有機物、ポリアクリル酸系有機物、マレイン酸、酢酸、ポリビニルアルコール(PVA(polyvinyl alcohol))系有機物、及びそれらの混合物が好適に用いられる。
 上述したスラリー原料に水を加え混合攪拌して、固形分濃度を40重量%以上、好ましくは50重量%以上とする。スラリー原料の固形分濃度が50重量%以上であれば、造粒ペレットの強度を保つことができるので好ましい。
 次に、スラリー化した原料について、造粒を行なう(図1(C))。上記混合攪拌して得られたスラリーの造粒は、噴霧乾燥機を用いて行なう。なお、スラリーに対し、造粒前に、さらに湿式粉砕を施すことも好ましい。
 噴霧乾燥時の雰囲気温度は100~300℃程度とすればよい。これにより、概ね、粒子径が10~200μmの造粒粉を得ることができる。得られた造粒粉は製品の最終粒径を考慮し、振動ふるい等を用いて、粗大粒子や微粉を除去し、この時点で粒度調整することが望ましい。
 その後、造粒した造粒物について、焼成を行なう(図1(D))。具体的には、得られた造粒粉を、900~1500℃程度に加熱した炉に投入し、1~24時間保持して焼成し、目的とする焼成物を生成させる。このとき、焼成炉内の酸素濃度は、フェライト化の反応が進む条件であればよく、具体的には、1200℃の場合、10-7%以上3%以下となるよう導入ガスの酸素濃度を調整し、フロー状態下で焼成を行う。
 また、先の還元剤の調整により、フェライト化に必要な還元雰囲気を制御してもよい。もっとも、工業化時に十分な生産性を確保できる反応速度を得る観点からは、900℃以上の温度が好ましい。一方、焼成温度が1500℃以下であれば、粒子同士の過剰焼結が起こらず、粉体の形態で焼成物を得ることができる。
 ここで、コア組成中の酸素量を過剰気味にしてもよい。具体的には、コア組成中の酸素量を過剰気味にする一つの手段として、焼成工程における冷却時の酸素濃度を所定の量以上とすることが考えられる。すなわち、焼成工程において、室温程度まで冷却を行なう際に、酸素濃度を所定の濃度、具体的には、0.03%よりも多くした雰囲気下で冷却を行なうようにしてもよい。具体的には、電気炉内に導入する導入ガスの酸素濃度を0.03%よりも多くし、フロー状態下で行なう。このように構成することにより、キャリア芯材の内部層において、フェライト中の酸素量を過剰に存在させることができる。ここで、0.03%以下とすると、内部層における酸素の含有量が、相対的に少なくなる。したがって、ここでは、上記酸素濃度の環境下で、冷却を行なう。
 得られた焼成物は、さらにこの段階で粒度調整をすることが望ましい。例えば、焼成物をハンマーミル等で粗解粒する。すなわち、焼成を行った粒状物について、解粒を行なう(図1(E))。その後、振動ふるいなどで分級を行なう。すなわち、解粒した粒状物について、分級を行なう(図1(F))。こうすることにより、所望の粒径を持ったキャリア芯材の粒子を得ることができる。
 次に、分級した粒状物について、酸化を行う(図1(G))。すなわち、この段階で得られたキャリア芯材の粒子表面を熱処理(酸化処理)する。そして、粒子の絶縁破壊電圧を250V以上に上げ、電気抵抗値を適切な電気抵抗値である1×10~1×1013Ω・cmとする。酸化処理でキャリア芯材の電気抵抗値を上げることにより、電荷のリークによるキャリア飛散のおそれを低減することができる。
 具体的には、酸素濃度10~100%の雰囲気下において、200~700℃で0.1~24時間保持して、目的とするキャリア芯材を得る。より好ましくは、250~600℃で0.5~20時間、さらに好ましくは、300~550℃で1時間~12時間である。なお、このような酸化処理工程については、必要に応じて任意に行なわれるものである。
 このようにして、この発明の一実施形態に係るキャリア芯材を製造する。すなわち、この発明の一実施形態に係る電子写真現像剤用キャリア芯材の製造方法は、鉄、マンガン、およびカルシウムをコア組成として含む電子写真現像剤用キャリア芯材の製造方法であって、鉄を含む原料、マンガンを含む原料、およびカルシウムを含む原料を混合する混合工程と、混合工程の後に、混合した混合物の造粒を行う造粒工程と、造粒工程により造粒した粉状物を所定の温度で焼成して磁性相を形成する焼成工程とを備える。ここで、カルシウムを含む原料は、粒状であって、その一次粒子の体積平均粒径は、1μm以下である。このようなキャリア芯材の製造方法で製造されたキャリア芯材については、含有されるカルシウムの分散性が、キャリア芯材の表面および内部において良好であるため、上述したように、製造されるキャリア芯材自体の帯電性能が高く、良好な特性を有する。
 また、この発明の一実施形態に係る電子写真現像剤用キャリア芯材は、鉄、マンガン、およびカルシウムをコア組成として含む電子写真現像剤用キャリア芯材であって、鉄を含む原料、マンガンを含む原料、およびカルシウムを含む原料を混合して混合物を造粒し、造粒した粒状物を所定の温度で焼成して磁性相を形成される。ここで、カルシウムを含む原料は、粒状であって、その一次粒子の体積平均粒径は、1μm以下である。このような電子写真現像剤用キャリア芯材は、キャリア芯材の構成材料として含有されるカルシウムの分散性が、キャリア芯材の表面および内部において良好であるため、帯電性能が高く、その特性が良好である。
 次に、このようにして得られたキャリア芯材に対して、樹脂により被覆を行なう(図1(H))。具体的には、得られたこの発明に係るキャリア芯材をシリコーン系樹脂やアクリル樹脂等で被覆する。このようにして。この発明の一実施形態に係る電子写真現像剤用キャリアを得る。シリコーン系樹脂やアクリル樹脂等の被覆方法は、公知の手法により行うことができる。すなわち、この発明の一実施形態に係る電子写真現像剤用キャリアは、電子写真の現像剤に用いられる電子写真現像剤用キャリアであって、上記した電子写真現像剤用キャリア芯材と、電子写真現像剤用キャリア芯材の表面を被覆する樹脂とを備える。このような電子写真現像剤用キャリアは、帯電性能が高く、その特性が良好である。
 次に、このようにして得られたキャリアとトナーとを所定量ずつ混合する(図1(I))。具体的には、上記した製造方法で得られたこの発明の一実施形態に係る電子写真現像剤用キャリアと、適宜な公知のトナーとを混合する。このようにして、この発明の一実施形態に係る電子写真現像剤を得ることができる。混合は、例えば、ボールミル等、任意の混合器を用いる。この発明の一実施形態に係る電子写真現像剤は、電子写真の現像に用いられる電子写真現像剤であって、上記した電子写真現像剤用キャリアと、電子写真現像剤用キャリアとの摩擦帯電により電子写真における帯電が可能なトナーとを備える。このような電子写真現像剤は、上記した構成の電子写真現像剤用キャリアを備えるため、良好な画質の画像を形成することができる。
 (実施例1)
 Fe(平均粒径:1μm)13.7kg、Mn(平均粒径:1μm)6.5kg、MgFe(平均粒径:3μm)2.3kgを水7.5kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を135g、還元剤としてカーボンブラックを68g、硝酸カルシウムの四水和物(Ca(NO・4HO)(一次粒子の体積平均粒径:0.01μm以下)を264g添加して混合物とした。このときの固形分濃度を測定した結果、75重量%であった。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
 このスラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、乾燥造粒粉を得た。なお、このとき、目的の粒度分布以外の造粒粉は、ふるいにより除去した。この造粒粉を、電気炉に投入し、1130℃で3時間焼成した。このとき、電気炉内は酸素濃度が0.8%となるよう、雰囲気を調整した電気炉にフローした。得られた焼成物を解粒後にふるいを用いて分級し、平均粒径25μmとした。さらに、得られたキャリア芯材に対して、470℃、大気下で1時間保持することにより酸化処理を施し、実施例1に係るキャリア芯材を得た。
 得られたキャリア芯材の組成、磁気的特性および電気的特性を表1および表2に示す。なお、表1に記載の芯材組成x、y、zについては、上記したキャリア芯材を一般式:(MnMgCa)Fe3-x-y-zで表した場合において、得られたキャリア芯材を以下に示す分析方法で測定して得られた結果である。
 (Mnの分析)
 キャリア芯材のMn含有量は、JIS G1311-1987記載のフェロマンガン分析方法(電位差滴定法)に準拠して定量分析を行なった。本願発明に記載したキャリア芯材のMn含有量は、このフェロマンガン分析方法(電位差滴定法)で定量分析し得られたMn量である。
 (Ca、Mgの分析)
 キャリア芯材のCa、Mg含有量は、以下の方法で分析を行なった。本願発明に係るキャリア芯材を酸溶液中で溶解し、ICPにて定量分析を行なった。本願発明に記載したキャリア芯材のCa、Mg含有量は、このICPによる定量分析で得られたCa、Mg量である。
 また、表中の磁気的特性を示す磁化の測定については、VSM(東英工業株式会社製、VSM-P7)を用いて、磁化率を測定した。ここで、表中、「σs」とは、飽和磁化であり、「σ1k(1000)」とは、外部磁場1k(1000)Oeである場合における磁化であり、「σ500」とは、外部磁場500Oeである場合における磁化であり、「σ2000」とは、外部磁場2000Oeである場合における磁化である。磁化の立ち上がりについては、σ500の値が高い方が好ましい。
 表中の電気的特性としてのコア帯電量とは、コア、すなわち、キャリア芯材の帯電量のことである。ここで、帯電量の測定について説明する。キャリア芯材9.5g、市販のフルカラー機のトナー0.5gを100mlの栓付きガラス瓶に入れ、25℃、相対湿度50%の環境下で12時間放置して調湿する。調湿したキャリア芯材とトナーを振とう器で30分振とうし、混合する。ここで、振とう器については、株式会社ヤヨイ製のNEW-YS型を用い、200回/分、角度60°で行なった。混合したキャリア芯材とトナーを500mg計量し、帯電量測定装置で帯電量を測定した。この実施形態においては、日本パイオテク株式会社製のSTC-1-C1型を用い、吸引圧力5.0kPa、吸引用メッシュをSUS製の795meshで行なった。同一サンプルについて2回の測定を行い、これらの平均値を各コア帯電量とした。コア帯電量の算出式については、コア帯電量(μC(クーロン)/g)=実測電荷(nC)×10×係数(1.0083×10-3)÷トナー重量(吸引前重量(g)-吸引後重量(g))となる。
 また、格子定数の算出は、以下の通りである。本願発明に関する磁性キャリア芯材の結晶の格子定数は、X線回折装置(リガク社製、Ultima IV)を用いて測定した。X線源は、Cuを使用し、加速電圧40kV(キロボルト)、電流40mA(ミリアンペア)でX線を発生させた。粉末X線の測定条件は、走査モードをFT(ステップスキャニング法)、発散スリットを1°および10mm、散乱スリットを1°、受光スリットを0.3mm、回転速度を5000rpm、走査範囲を10.000~120.00°、測定間隔を0.02°、計数時間を1秒、積算回数1回とした。測定すべき回折線としては、70°~120°の間に存在する回折線を用い、得られたXRDパターンから格子定数を算出した。前処理として、試料は、コア芯材をすり潰さず、そのまま使用し、十分に面だしを行った。なお、実施例1、以下に示す実施例2~実施例5、比較例1、および比較例2については、全てX線における評価において、単相、即ち、単一の相から構成されていることが示されている。
 また、偏析したカルシウムの占める領域の割合については、以下の方法で評価を行った。まず、電子写真現像剤用キャリア芯材は、樹脂に混練し、クロスセクションポリッシャー(日本電子株式会社製、SM-09010)を用いて減圧雰囲気下でアルゴンイオンレーザービームにより粒子の断面を切断した。その後、得られた粒子の断面に対し、SEM(日本電子株式会社製、JSM-6390LA)とエネルギー分散型X線分析装置(日本電子株式会社製、JED-2300、加速電圧15kV、スイープ回数20回、デュエルタイム0.2秒)を用いて、カルシウムの組成のマッピングを行い、1粒子全体の断面が得られるように3000倍で撮影を行った。得られた画像から偏析したカルシウムの占める領域の割合を算出するため、Analysis FIVE(日本電子株式会社製)を用いて、粒子断面積Sと偏析箇所の断面積Sを測定した。測定対象とした偏析箇所は、得られた画像をA4サイズで出力した際に、偏析箇所の長径が5mm以上の場所とした。そして、粒子断面積Sに対する偏析箇所の断面積Sの百分率を、偏析したカルシウムの占める領域の割合とした。なお、粒子断面積Sは、粒子断面中の空孔面積も含むこととした。すなわち、偏析したカルシウムの占める領域の割合をAとすると、偏析したカルシウムの占める領域の割合A=S×100/Sで算出されるものである。なお、上記した測定は、100粒子の断面に対して行い、その平均値を、各実施例および比較例における偏析したカルシウムの占める領域の割合とした。
 (実施例2)
 添加するカルシウム原料を、硝酸カルシウムの四水和物(Ca(NO・4HO)から酢酸カルシウムの一水和物(Ca(CHCOO)・HO)(一次粒子の体積平均粒径:0.01μm以下)に変更し、添加量を197gとした以外は、実施例1と同様の方法で、実施例2に係るキャリア芯材を得た。得られたキャリア芯材の組成、磁気的特性および電気的特性を表1および表2に示す。
 (実施例3)
 添加するカルシウム原料を、硝酸カルシウムの四水和物(Ca(NO・4HO)からコロイダル炭酸カルシウム(CaCO)(一次粒子の体積平均粒径:0.04μm)に変更した以外は、実施例1と同様の方法で、実施例3に係るキャリア芯材を得た。得られたキャリア芯材の組成、磁気的特性および電気的特性を表1および表2に示す。
 (実施例4)
 添加するカルシウム原料を、硝酸カルシウムの四水和物(Ca(NO・4HO)から炭酸カルシウム(CaCO)(一次粒子の体積平均粒径:0.05μm)に変更し、添加量を113gとした以外は、実施例1と同様の方法で、実施例4に係るキャリア芯材を得た。得られたキャリア芯材の組成、磁気的特性および電気的特性を表1および表2に示す。
 (実施例5)
 Fe(平均粒径:1μm)11.0kg、Mn(平均粒径:1μm)4.4kgを水5.1kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を92g、還元剤としてカーボンブラックを46.1g、硝酸カルシウムの四水和物(Ca(NO・4HO)(一次粒子の体積平均粒径:0.01μm以下)を177g添加した以外は、実施例1と同様の方法で、実施例5に係るキャリア芯材を得た。得られたキャリア芯材の組成、磁気的特性および電気的特性を表1および表2に示す。
 (比較例1)
 添加するカルシウム原料を、硝酸カルシウムの四水和物(Ca(NO・4HO)から炭酸カルシウム(CaCO)(一次粒子の体積平均粒径:1.5μm)に変更し、添加量を113gとした以外は、実施例1と同様の方法で、比較例1に係るキャリア芯材を得た。得られたキャリア芯材の組成、磁気的特性および電気的特性を表1および表2に示す。
 (比較例2)
 添加するカルシウム原料を、硝酸カルシウムの四水和物(Ca(NO・4HO)から炭酸カルシウム(CaCO)(一次粒子の体積平均粒径:4μm)に変更し、添加量を113gとした以外は、実施例1と同様の方法で、比較例2に係るキャリア芯材を得た。得られたキャリア芯材の組成、磁気的特性および電気的特性を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2を参照して、磁気的特性については、実施例1~実施例5において、σ500の値がそれぞれ、40.6emu/g、41.7emu/g、41.4emu/g、40.9emu/g、39.6emu/gであり、高い値である。特に、MnMg(マンガンマグネシウム)系の組成である実施例1~4は、σ500の値が、40.5emu/g以上あり、低磁場側の立ち上がりをよくするためには、MnMg系の組成にすることが好ましい。
 また、電気的特性については、比較例1および比較例2において、コア帯電量がそれぞれ16.5μC/g、13.2μC/gであるのに対し、実施例1~実施例5において、コア帯電量がそれぞれ22.5μC/g、22.2μC/g、21.2μC/g、20.9μC/g、22.0μC/gであり、全て20.0μC/g以上となっている。このように、実施例1~実施例5におけるキャリア芯材は、比較例1および比較例2におけるキャリア芯材と比較して、磁気的特性および帯電性能、すなわち、電気的特性が向上している。
 図2は、上記した実施例および比較例について、コア帯電量と格子定数との関係を示すグラフである。図2中、縦軸は、コア帯電量を示し、横軸は、格子定数を示す。また、図2に示すグラフにおいて、黒丸印は実施例を示し、黒四角印は、比較例を示す。
 図2を参照して、比較例1および比較例2は、格子定数が低く、具体的にはそれぞれ、8.490、8.488であり、8.490以下である。そして、比較例1および比較例2は、コア帯電量も低く、それぞれ、16.5μC/g、13.2μC/gであって、18.0μC/g以下である。これに対し、実施例1~実施例5は、格子定数が高く、具体的にはそれぞれ8.498、8.495、8,496、8.492、8.501である。そして、実施例1~実施例5は、コア帯電量も高く、それぞれ、22.5μC/g、22.2μC/g、21.2μC/g、20.9μC/g、22.0μC/gであって、20.0μC/g以上である。特に、体積平均粒径が0.01μm以下である実施例1、実施例2および実施例5によると、コア帯電量が22.0μC/g以上であり、コア帯電量の高いキャリア芯材を得るためには、できるだけ体積平均粒径を小さくすることが好ましいことが分かる。すなわち、カルシウムを含む原料の一次粒子の体積平均粒径を1μm以下にすれば、コア帯電量の値を、少なくとも比較例1に係るキャリア芯材のコア帯電量の値である16.5μC/gより高くすることができる。さらには、カルシウムを含む原料の一次粒子の体積平均粒径を0.1μm以下にすれば、より実施例の値に近づけることができる。また、図2からすると、格子定数が高ければ、コア帯電量が高くなるに従い、コアの帯電量が増加することも把握できる。ここで、この発明の一実施形態に係る電子写真現像剤用キャリア芯材は、鉄、マンガン、およびカルシウムをコア組成として含む電子写真現像剤用キャリア芯材であって、その格子定数は、8.490よりも大きい。このようなキャリア芯材は、スピネル構造中へのカルシウムの固溶状態が良好であるため、その特性が良好である。
 図3に、実施例1に係るキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果を示す。図4に、実施例2に係るキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果を示す。図5に、実施例3に係るキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果を示す。図6に、比較例1に係るキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果を示す。図3に示すキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果の概略図を、図7に示す。図4に示すキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果の概略図を、図8に示す。図5に示すキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果の概略図を、図9に示す。図6に示すキャリア芯材の電子顕微鏡写真の視野範囲内のEDXにおけるCa元素の元素分析の結果の概略図を、図10に示す。
 図7~図10中、ハッチングで示す領域12、15、17、19が、Caの偏析している領域を示す。また、ドットで示す領域11、14、16、18が、Caが偏析していない領域を示す。なお、図7中に示す領域12中の長径の長さ寸法Lが5mm以上のものを、Caが偏析している箇所とするものである。すなわち、図7中において、長径が5mm未満であるハッチングで示す領域13の箇所については、偏析したカルシウムの占める領域に含まれないとするものである。なお、図7において、上記した粒子断面積Sは、領域11、領域12、領域13を全て足し合わせたものに相当し、偏析箇所の断面積Sは、領域12に相当するものである。
 図3~図10、表2を参照して、実施例1においては、Caが偏析している領域12、15が、非常に少ない。実施例2および実施例5についても、表2に示すデータからすると、実施例1と同様の傾向であると考えられる。また、実施例3については、Caが偏析している領域17が、相対的に少ないことが把握できる。実施例4についても、表2に示すデータからすると、実施例3と同様の傾向であると考えられる。一方、比較例1においては、Caが偏析している領域19が、多いことが把握できる。比較例2についても、表2に示すデータからすると、比較例1と同様の傾向であると考えられる。
 表2等から考察すると、一次粒子の体積平均粒径が大きくなるに従い、カルシウムの偏析した領域の割合が増加する傾向があるのが把握できる。また、カルシウムの偏析度合いと、コア帯電量との間に、多少の相関関係があることも推測できる。すなわち、偏析したカルシウムの占める領域の割合が増加すれば、コア帯電量が減少していく傾向があると考えられる。ここで、偏析したカルシウムの占める領域の割合に関しては、実施例1~実施例5については、いずれも4%以下であり、比較例1は、5.6%、比較例2は、6.0%である。この発明の一実施形態に係るキャリア芯材は、鉄、マンガン、およびカルシウムをコア組成として含む電子写真現像剤用キャリア芯材であって、電子写真現像剤用キャリア芯材の粒子断面を電子顕微鏡で3000倍に拡大し、EDX(Energy Dispersive X-ray spectroscopy:エネルギー分散X線分光法)においてカルシウム元素をマッピングして観察した場合に、偏析したカルシウムの占める領域は、粒子断面全体の4%以下である。
 次に、得られたキャリア芯材を用いて、電子写真現像剤用キャリアおよび電子写真現像剤を作製し、これらの評価も行った。評価結果については、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 ここで、電子写真現像剤用キャリアの製造方法について説明する。キャリア芯材は、次の方法で樹脂コーティングを行った。シリコーン系樹脂(商品名:KR251、信越化学株式会社製)をトルエンに溶解させてコーティング樹脂溶液を準備した。そして、上記のようにして得られたキャリア芯材とコーティング樹脂溶液とを重量比でキャリア芯材:コーティング樹脂溶液=9:1の割合で攪拌機に導入し、コーティング樹脂溶液にキャリア芯材を3時間浸漬しながら150℃~250℃にて加熱攪拌した。これにより、樹脂がキャリア芯材の重量に対し、1.0重量%の割合でコーティングされたキャリア芯材を得た。この樹脂によって被覆(コーティング)されたキャリア芯材を熱風循環式加熱装置に設置し、250℃で5時間加熱を行い、このコーティング樹脂を硬化させて、実施例1に係る電子写真現像剤用キャリアを得た。
 この電子写真現像剤用キャリアと、粒子径数μm程度の市販のトナーとを、V型ブレンダーまたはポットミルで混合し、電子写真現像剤を得た。そして、このようにして得られた電子写真現像剤を用いて、画像特性を評価した。
 画像特性は、デジタル反転現像方式を採用する60枚機を評価機として使用し、このようにして得られた電子写真現像剤を用いて、キャリア飛び、画像濃度、カブリ濃度、細線再現性、画質について、初期から200K枚(K:1000枚)の耐刷試験を実施した。これらの評価項目のうち、「画質」については、全体的な評価を示したものである。評価基準としては、◎(二重丸)については、非常に良好なレベル、○(一重丸)については、良好なレベル、△(三角)については、一応使用可能なレベル、×(バツ)については、使用不可能なレベルとした。ここで、○(一重丸)の評価が、現在実用化されている高性能な電子写真現像剤と同等のレベルであり、○(一重丸)の評価以上を合格と判定した。
 表3を参照して、実施例1~実施例5に係る電子写真用現像剤については、初期のみならず、100K枚後および200K枚後において、画像濃度、カブリ濃度、細線再現性、および画質の観点から、非常に良好なレベルまたは良好なレベルを維持している。一方、比較例1および比較例2においては、初期において画像濃度、カブリ濃度、細線再現性、および画質の観点から、非常に良好なレベルまたは良好なレベルであるものの、100K枚後においては、一応使用可能なレベルや使用不可能なレベルの項目が発生し、200K枚後においては、一応使用可能なレベルや使用不可能なレベルの項目が増加していっている。
 以上より、この発明に係る電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤によれば、その特性が良好である。
 なお、上記の実施の形態においては、製造方法として、鉄を含む原料と、マンガンを含む原料と、カルシウムを含む原料と、マグネシウムを含む原料とを準備し、これらを混合して、本願発明に係るキャリア芯材を得ることとしたが、これに限らず、例えば、CaSiO等のSiの金属酸化物を準備し、これらを混合して、本願発明に係るキャリア芯材を得ることにしてもよい。
 また、上記の実施の形態において、マグネシウムをキャリア芯材に含まれる原料としたが、マグネシウムを含まない構成としてもよい。
 なお、上記の実施の形態においては、混合工程において、カルシウムを含む原料を、溶液状態として混合することとしたが、これに限らず、粉末状態のまま混合することとしてもよい。
 また、上記の実施の形態において、酸素量については、キャリア芯材に過剰に含有させるために、焼成工程における冷却時の酸素濃度を所定の濃度よりも高くすることとしたが、これに限らず、例えば、原料混合工程における配合比率を調整して、キャリア芯材に過剰に含有させることとしてもよい。また、冷却する前の工程である焼結反応を進める工程において、冷却工程と同じ雰囲気下で行なうこととしてもよい。
 以上、図面を参照してこの発明の実施の形態を説明したが、この発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。
 この発明に係る電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤は、高画質が要求される複写機等に適用される場合に、有効に利用される。
 11,12,13,14,15,16,17,18,19 領域。

Claims (9)

  1. 鉄、マンガン、およびカルシウムをコア組成として含む電子写真現像剤用キャリア芯材の製造方法であって、
     鉄を含む原料、マンガンを含む原料、およびカルシウムを含む原料を混合する混合工程と、
     前記混合工程の後に、混合した混合物の造粒を行う造粒工程と、
     前記造粒工程により造粒した粉状物を所定の温度で焼成して磁性相を形成する焼成工程とを備え、
     前記カルシウムを含む原料は、粒状であって、
     その一次粒子の体積平均粒径は、1μm以下である、電子写真現像剤用キャリア芯材の製造方法。
  2. 前記混合工程は、前記カルシウムを含む原料を、溶液状態として混合する工程を含む、請求項1に記載の電子写真現像剤用キャリア芯材の製造方法。
  3. 前記混合工程は、硝酸カルシウム、酢酸カルシウム、および炭酸カルシウムからなる群から選択される少なくとも一つを、前記カルシウムを含む原料として混合する工程を含む、請求項1または2に記載の電子写真現像剤用キャリア芯材の製造方法。
  4. 前記混合工程は、さらにマグネシウムを含む原料を混合する工程を含む、請求項1~3のいずれかに記載の電子写真現像剤用キャリア芯材の製造方法。
  5. 鉄、マンガン、およびカルシウムをコア組成として含む電子写真現像剤用キャリア芯材であって、
     鉄を含む原料、マンガンを含む原料、およびカルシウムを含む原料を混合して混合物を造粒し、造粒した粒状物を所定の温度で焼成して磁性相を形成され、
     前記カルシウムを含む原料は、粒状であって、
     その一次粒子の体積平均粒径は、1μm以下である、電子写真現像剤用キャリア芯材。
  6. 鉄、マンガン、およびカルシウムをコア組成として含む電子写真現像剤用キャリア芯材であって、
     その格子定数は、8.490よりも大きい、電子写真現像剤用キャリア芯材。
  7. 鉄、マンガン、およびカルシウムをコア組成として含む電子写真現像剤用キャリア芯材であって、
     電子写真現像剤用キャリア芯材の粒子断面を電子顕微鏡で3000倍に拡大し、EDX(Energy Dispersive X-ray spectroscopy:エネルギー分散X線分光法)においてカルシウム元素をマッピングして観察した場合に、偏析したカルシウムの占める領域は、粒子断面全体の4%以下である、電子写真現像剤用キャリア芯材。
  8. 電子写真の現像剤に用いられる電子写真現像剤用キャリアであって、
     請求項5~7のいずれかに記載の電子写真現像剤用キャリア芯材と、
     前記電子写真現像剤用キャリア芯材の表面を被覆する樹脂とを備える、電子写真現像剤用キャリア。
  9. 電子写真の現像に用いられる電子写真現像剤であって、
     請求項8に記載の電子写真現像剤用キャリアと、
     前記電子写真現像剤用キャリアとの摩擦帯電により電子写真における帯電が可能なトナーとを備える、電子写真現像剤。
PCT/JP2012/072023 2012-08-30 2012-08-30 電子写真現像剤用キャリア芯材の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤 WO2014033875A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157005157A KR20150041639A (ko) 2012-08-30 2012-08-30 전자 사진 현상제용 캐리어 심재의 제조 방법, 전자 사진 현상제용 캐리어 심재, 전자 사진 현상제용 캐리어, 및 전자 사진 현상제
US14/423,227 US9651886B2 (en) 2012-08-30 2012-08-30 Carrier core particles for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
CN201280075453.XA CN104603694B (zh) 2012-08-30 2012-08-30 电子照相显影剂用载体芯材的制造方法、电子照相显影剂用载体芯材、电子照相显影剂用载体、以及电子照相显影剂
PCT/JP2012/072023 WO2014033875A1 (ja) 2012-08-30 2012-08-30 電子写真現像剤用キャリア芯材の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
EP12883523.8A EP2891925B1 (en) 2012-08-30 2012-08-30 Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072023 WO2014033875A1 (ja) 2012-08-30 2012-08-30 電子写真現像剤用キャリア芯材の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤

Publications (2)

Publication Number Publication Date
WO2014033875A1 true WO2014033875A1 (ja) 2014-03-06
WO2014033875A9 WO2014033875A9 (ja) 2015-02-05

Family

ID=50182724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072023 WO2014033875A1 (ja) 2012-08-30 2012-08-30 電子写真現像剤用キャリア芯材の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤

Country Status (5)

Country Link
US (1) US9651886B2 (ja)
EP (1) EP2891925B1 (ja)
KR (1) KR20150041639A (ja)
CN (1) CN104603694B (ja)
WO (1) WO2014033875A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244573A1 (ja) * 2021-05-20 2022-11-24 Dowaエレクトロニクス株式会社 キャリア芯材並びにこれを用いた電子写真現像用キャリア及び電子写真用現像剤

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151413B2 (ja) * 2018-11-22 2022-10-12 株式会社リコー 電子写真画像形成用キャリア、電子写真画像形成用現像剤、電子写真画像形成方法、電子写真画像形成装置およびプロセスカートリッジ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116717A (ja) * 1996-10-14 1998-05-06 Fuji Elelctrochem Co Ltd 酸化物磁性材料およびそれを用いたキャリア
JP2006259294A (ja) * 2005-03-17 2006-09-28 Dowa Mining Co Ltd 電子写真現像剤用キャリア芯材および電子写真現像剤用キャリア粉並びにそれらの製造方法
JP2008241742A (ja) 2007-03-23 2008-10-09 Dowa Electronics Materials Co Ltd 電子写真現像剤用キャリア芯材およびその製造方法、電子写真現像剤用キャリア、並びに電子写真現像剤
WO2011125647A1 (ja) * 2010-03-31 2011-10-13 Dowaエレクトロニクス株式会社 電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
WO2012049900A1 (ja) * 2010-10-15 2012-04-19 Dowaエレクトロニクス株式会社 電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
JP2012076955A (ja) * 2010-09-30 2012-04-19 Dowa Electronics Materials Co Ltd フェライト粒子並びにそれを用いた電子写真現像用キャリア及び電子写真用現像剤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761921B2 (ja) 2010-03-30 2015-08-12 Dowaエレクトロニクス株式会社 フェライト粒子及びそれを用いた電子写真現像用キャリア、電子写真用現像剤並びにフェライト粒子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116717A (ja) * 1996-10-14 1998-05-06 Fuji Elelctrochem Co Ltd 酸化物磁性材料およびそれを用いたキャリア
JP2006259294A (ja) * 2005-03-17 2006-09-28 Dowa Mining Co Ltd 電子写真現像剤用キャリア芯材および電子写真現像剤用キャリア粉並びにそれらの製造方法
JP2008241742A (ja) 2007-03-23 2008-10-09 Dowa Electronics Materials Co Ltd 電子写真現像剤用キャリア芯材およびその製造方法、電子写真現像剤用キャリア、並びに電子写真現像剤
WO2011125647A1 (ja) * 2010-03-31 2011-10-13 Dowaエレクトロニクス株式会社 電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
JP2012076955A (ja) * 2010-09-30 2012-04-19 Dowa Electronics Materials Co Ltd フェライト粒子並びにそれを用いた電子写真現像用キャリア及び電子写真用現像剤
WO2012049900A1 (ja) * 2010-10-15 2012-04-19 Dowaエレクトロニクス株式会社 電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2891925A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244573A1 (ja) * 2021-05-20 2022-11-24 Dowaエレクトロニクス株式会社 キャリア芯材並びにこれを用いた電子写真現像用キャリア及び電子写真用現像剤

Also Published As

Publication number Publication date
US9651886B2 (en) 2017-05-16
EP2891925A1 (en) 2015-07-08
US20150220014A1 (en) 2015-08-06
EP2891925B1 (en) 2018-01-10
CN104603694A (zh) 2015-05-06
CN104603694B (zh) 2019-07-12
WO2014033875A9 (ja) 2015-02-05
EP2891925A4 (en) 2016-04-27
KR20150041639A (ko) 2015-04-16

Similar Documents

Publication Publication Date Title
JP5194194B2 (ja) 電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
JP5650773B2 (ja) 電子写真現像剤用キャリア芯材の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
JP5698057B2 (ja) 電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
JP5377386B2 (ja) 電子写真現像剤用キャリア芯材、その製造方法、電子写真現像剤用キャリア、および電子写真現像剤
US9429862B2 (en) Carrier for electrophotographic developer and electrophotographic developer
JP4897916B1 (ja) 電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
JP2006259294A (ja) 電子写真現像剤用キャリア芯材および電子写真現像剤用キャリア粉並びにそれらの製造方法
JP4534061B2 (ja) 電子写真現像用キャリア粉芯材のフェライト粒子の製造法
WO2014033875A1 (ja) 電子写真現像剤用キャリア芯材の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
JP2013231840A (ja) 電子写真現像剤用キャリア芯材の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
JP5804656B2 (ja) Mnフェライト粒子及びそれを用いた電子写真現像剤用キャリア、電子写真用現像剤
JP5352614B2 (ja) 電子写真現像剤用キャリア芯材の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
JP5352607B2 (ja) 電子写真現像剤用キャリア芯材の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
JP6134405B2 (ja) 電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤
WO2014033881A1 (ja) 電子写真現像剤用キャリア芯材の製造方法、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア、および電子写真現像剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883523

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14423227

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157005157

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP