WO2014032396A1 - 一种微流控芯片及其应用 - Google Patents

一种微流控芯片及其应用 Download PDF

Info

Publication number
WO2014032396A1
WO2014032396A1 PCT/CN2013/001004 CN2013001004W WO2014032396A1 WO 2014032396 A1 WO2014032396 A1 WO 2014032396A1 CN 2013001004 W CN2013001004 W CN 2013001004W WO 2014032396 A1 WO2014032396 A1 WO 2014032396A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfluidic chip
main channel
substrate
temperature control
cover sheet
Prior art date
Application number
PCT/CN2013/001004
Other languages
English (en)
French (fr)
Inventor
张国豪
黄国亮
王璨
郭素
王磊
邢婉丽
程京
Original Assignee
博奥生物有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博奥生物有限公司, 清华大学 filed Critical 博奥生物有限公司
Priority to US14/424,995 priority Critical patent/US9895690B2/en
Publication of WO2014032396A1 publication Critical patent/WO2014032396A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1861Means for temperature control using radiation
    • B01L2300/1872Infrared light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1894Cooling means; Cryo cooling

Definitions

  • the invention relates to a microfluidic chip and an application thereof, and belongs to the field of microfluidic chips and the field of biological detection. Background technique
  • microfluidic chip is a technology based on MEMS processing technology, which forms a network on the chip by micro-pipes, and controls microfluidics throughout the system and completes various biological and chemical processes.
  • chip capillary electrophoresis is its mainstream technology.
  • the chip used is simple in structure and single in function.
  • microfluidic chips have begun to develop rapidly in the direction of functionalization and integration, such as DNA amplification reaction and immunity. Important biological and chemical processes such as reaction and cell lysis become new hotspots. In order to study these complex biochemical reactions, it is usually necessary to make a large number of independent, uniform microcells on the chip. These microcells together constitute a microreactor. Array.
  • the second step is to isolate the microcells using valves or media to ensure uniformity and independence of each microcell. Sex.
  • current reagents are dispensed in a variety of ways, such as hydrophilic tubing (CN1996009B), vacuum negative pressure (CN101590389A), and centrifugal (US6627159, US20050199500A1, US6919058B2, US20030166265A1, WO9533986A1) and the like.
  • the micro-cell isolation method is limited, only the pipeline deformation isolation (US6627159), mineral oil / silicone oil isolation (CN101590389A), the air is naturally isolated.
  • Pipe deformation isolation is the use of external equipment to deform the metal substrate with pressure sensitive adhesive, which blocks the flow path.
  • the drawback of this method is that it cannot be automated, and there are restrictions on the material of the chip substrate, and the composition of the pressure sensitive adhesive may interfere with the reactor.
  • Mineral oil sequestration is done by adding mineral oil again after the reagent has been dispensed, using oil/water surface tension differences for isolation.
  • the drawback of this method is that the user needs to apply the sample twice, and since the chip usually uses the strip to close the inlet and outlet, the mineral oil will dissolve the strip to cause the reagent to leak and pollute the environment.
  • the chip containing the microcell is usually the overall temperature control, and the material and structure difference exist in different regions of the chip, which causes the liquid in the microcell to gradually evaporate and condense in the main channel without liquid, and condense out.
  • the small droplets will gradually enlarge and even form a liquid film.
  • the object of the present invention is to provide a microfluidic chip and a method thereof.
  • the microfluidic chip is provided with a local temperature control device, which can control the temperature in the main channel of the chip to be higher than the temperature in the microcell, and can effectively avoid the microcell reagent. Reduce and avoid the condensed liquid to produce a liquid film, to ensure the uniformity and independence of the micro-cell.
  • a microfluidic chip provided by the present invention comprises a substrate and a cover sheet; the substrate is provided with a microreactor array; the microreactor array comprises at least one main channel and at least two respectively a microcell in which the main channels are connected;
  • the microfluidic chip further includes at least one local temperature control device that heats the main channel or cools the microcell.
  • the microfluidic chip includes two parallel main channels, and the plurality of microcells are connected between the two main channels;
  • the local temperature control device is a Pt electrode disposed on the cover sheet, and the Pt electrode corresponds to a position of the main channel.
  • the second microfluidic chip provided by the present invention the microfluidic chip comprises two parallel main channels, and the plurality of microcells are connected between the two main channels;
  • the local temperature control device is a cooling pipe disposed on a glass substrate, the glass substrate is attached to the substrate or the cover sheet, and the cooling pipe corresponds to the position of the microcell.
  • the microfluidic chip comprises a circular main channel, and the main channel is formed by connecting a plurality of V-shaped pipes end to end; a buffer zone and a reaction zone; a top of each of the V-shaped pipes is in communication with the buffer zone;
  • the local temperature control device is an annular resistive film; the resistive film is disposed on the substrate or the cover sheet and is spaced from the substrate or the cover sheet; the resistive film and the main channel The location corresponds accordingly.
  • the distance between the resistive film and the substrate or the cover sheet is 0-0.5 mm, but not 0; the substrate or the cover sheet is opposite to the hollow portion of the resistive film Positioning holes are provided at the corresponding points.
  • the upper surface of the substrate is a surface hydrophobized by a silicon deuteration reagent
  • the hydrophobization reagent may be octadecyltrichlorosilane or octadecyltrimethoxysilane.
  • the cover sheet is an aluminum foil film
  • the microfluidic chip further includes a mechanical deformation device, the boss of the mechanical deformation device is provided with a plurality of cylindrical protrusions, and the plurality of the cylindrical protrusions are arranged in a circle and can be combined with a plurality of the buffers The location corresponds.
  • the microfluidic chip includes a plurality of rows of main channels connected to each other, and the plurality of rows of main channels are arranged in a rectangular shape; the main channel is end to end by a plurality of V-shaped pipes Connected, the top of each of the V-shaped tubes is in communication with the micro-pool;
  • the local temperature control device includes a Peltier, and the Peltier is provided with a plurality of thermally conductive aluminum blocks; when the Peltier is mated with the substrate or the cover sheet, the thermally conductive aluminum block and the main The position of the channel corresponds.
  • the microfluidic chip comprises a spiral main channel, and an outer wall of the main channel is connected with a plurality of weighing cells, the weighing cell and the The microcells are connected;
  • the local temperature control device comprises an annular aluminum foil and a plurality of LED lamps arranged in a ring shape; the annular aluminum foil is attached to the substrate or the cover sheet and corresponds to the position of the main channel; A spacing is provided between the annular aluminum foil and the annular aluminum foil.
  • the distance between the LED lamp and the annular aluminum foil is 0-10 mm, but not 0; the substrate or the cover sheet is corresponding to the hollow portion of the aluminum foil. Positioning holes.
  • the microfluidic chip comprises a circular main channel formed by connecting a plurality of elliptical regions; each of the elliptical regions and the microcell Connected
  • the local temperature control device is a copper ring; the copper ring is attached to the substrate or the cover sheet and corresponds to the position of the microcell.
  • the substrate or the cover sheet is provided with a positioning hole corresponding to the hollow portion of the copper ring.
  • a method for ensuring uniformity and independence of microcells using the above microfluidic chip includes the steps of: turning on the local temperature control device to heat the main channel or cooling the microcell, so that the main The temperature in the channel is higher than the temperature in the microcell, which ensures the uniformity and independence of the microcell.
  • the invention also provides the use of the above microfluidic chip in biological detection or medical examination; the biological detection or medical test may specifically be an immunoassay, a nucleic acid amplification reaction, a nucleic acid hybridization reaction analysis or a protein-receptor binding reaction.
  • the biological detection or medical test may specifically be an immunoassay, a nucleic acid amplification reaction, a nucleic acid hybridization reaction analysis or a protein-receptor binding reaction.
  • FIG. 1 is a schematic diagram of a microcell after dispensing a reagent in a conventional microfluidic chip.
  • Fig. 2 is a schematic diagram of the microcells in the overall temperature control of the existing microfluidic chip, in which the volume of the liquid in each microcell is no longer uniform.
  • Figure 3 is a schematic diagram of the microcells of the existing microfluidic chip during overall temperature control, in which the liquid in each microcell is no longer independent.
  • 4 is a schematic diagram of a microfluidic chip in Embodiment 1.
  • Fig. 5 is a schematic view showing the microfluidic chip in the second embodiment.
  • Fig. 6 is a view showing the resistive film in the embodiment 2.
  • Figure 7 is a fluorescence diagram of the isothermal amplification reaction of the experimental group in Example 2.
  • Figure 8 is a graph showing the isothermal amplification reaction of the control group in Example 2.
  • FIG. 9 is a schematic diagram of a microfluidic chip in Embodiment 3.
  • Figure 10 is a schematic view of the infrared LED heating device in Embodiment 3.
  • Figure 11 is a schematic view of the mechanical deformation device of Embodiment 4.
  • Figure 12 is a schematic diagram of the microfluidic chip in Embodiment 5.
  • Figure 13 is a schematic view of the microfluidic chip in the sixth embodiment.
  • Figure 14 is a schematic view of the microfluidic chip in the seventh embodiment.
  • Figure 15 is a schematic view of the Peltier in Example 7.
  • Figure 16 is a schematic view showing manual centrifugation of the microfluidic chip of Example 7.
  • the chip fabrication techniques and methods of use are conventional techniques and methods in the field of microfluidic chips and in the field of biological detection.
  • Embodiment 1 The local temperature control zone is located in the main channel region, and the local temperature control device is a Pt electrode on the chip.
  • the microfluidic chip comprises two layers, and the substrate is a polymethyl methacrylate having a thickness of 4 mm.
  • the microreactor array comprises two parallel main channels 401, and a plurality of microcells 402 are connected between the two main channels 401, wherein the microcell 402 is a shuttle-like structure with a width of 6 mm, and each microcell volume is 144 ⁇ ; main channel 401 is 4mm wide, all structural depths are lmm.
  • a Pt electrode 501 (hatched area) is formed on the cover sheet, and the Pt electrode 501 corresponds to the position of the main channel 401 to form a local temperature control region 403.
  • the microreactor array described above can be fabricated by prior art techniques such as laser engraving, machining, or thermocompression sealing.
  • the Pt electrode 501 can be fabricated by a prior art such as sputtering or wet etching.
  • the PMMA cover sheet and the glass back sheet are joined together by a glue seal.
  • the Pt electrode 501 is connected by an external power source for the purpose of heating only the local temperature control zone 403 by the electrode resistance, thereby avoiding heating the microcell 402.
  • the reagent is SDS solution (10% W/V).
  • SDS solution 10% W/V
  • the incompatible and non-reactive fluid used is air, that is, the microfluidic chip at this time. Only the microcells have reagents inside, and the rest are air.
  • the chip inlet and outlet are sealed and juxtaposed The whole temperature is heated in the oven at a temperature of 40 ° C.
  • the temperature of the local temperature control zone is heated by the Pt electrode to be 90 ° C, so that the temperature of the main channel region is always higher than the temperature of the microcell during the heating process.
  • the chip After heating for 1 hour, the chip was taken out from the oven, and the volume change of the solution in the microcell was observed by a microscope. It was found that there was substantially no bubble in the microcell of the experimental group, and there was no droplet or liquid film in the main channel, indicating the uniformity and independence of the microcell. Sex is guaranteed. In the control group, there were bubbles of different sizes in each micro-pool, and the liquid membrane connected the micro-pools, and the uniformity and independence of the control pool were damaged.
  • Embodiment 2 The local temperature control zone is located in the main channel area, and the local temperature control device is a resistive film outside the chip.
  • the microfluidic chip of this embodiment comprises two layers, the cover sheet is a PMMA film having a thickness of 0.1 mm, and the substrate is a PMMA film having a thickness of 2 mm.
  • a microreactor array is disposed on the upper surface of the substrate. Microreactor arrays can be fabricated by prior art techniques such as laser engraving, machining, or thermocompression sealing. The substrate and the cover sheet are integrally joined by a glue seal.
  • the microreactor array includes a main channel 401 and 24 microcells 402 in parallel with the main channel 401.
  • the distance between the microcells 402 is equal; wherein the main channel 401 is formed by connecting 24 V-shaped tubes end to end. a circular channel;
  • the microcell 402 includes a reaction zone 601 and a buffer zone 602, each of which is in communication with a buffer zone 602 at the top end of the V-shaped pipe;
  • the buffer zone 602 is cylindrical, and the bottom surface is 1.5 mm in diameter;
  • the reaction zone 601 is also cylindrical and has a bottom surface diameter of 2 mm.
  • the local temperature control device is an annular resistive film 701 (shown in FIG. 6).
  • the resistive film 701 is disposed on the cover sheet and maintains a distance of 0.5 mm from the cover sheet, and the position of the resistive film 701 and the main channel 401.
  • a partial temperature control region 403 is formed; a position of the hollow portion of the resistive film 701 on the substrate and the cover sheet is provided with a rotating shaft positioning hole 603 which is a half circle and has a radius of 5 mm.
  • the isothermal amplification reaction was carried out using this chip and the supporting device.
  • the experimental process and results are as follows:
  • the primer sequences are as follows:
  • the primers A, B, C, and D were dissolved in water to obtain an aqueous solution containing four kinds of primers (the concentrations of A, B, C, and D in the solution were all ⁇ . ⁇ /L); and the 0.7 ⁇ primer mixture was sampled.
  • the even reaction zone is not spotted (ie 2, 4, 6 , 8, 10, 12, 14, 16, 18, 20, 22, 24 are negative).
  • the spotted chip was placed in an oven at 50 ° C, and taken out after 30 minutes (when the primer was solid-adsorbed at the bottom of the reaction zone), the film of the chip and the cover sheet were sealed and stored at room temperature. Second, reagent loading and distribution
  • Composition of the amplification reaction solution consists of a system and a template.
  • the system consists of the following:
  • BSA Bovine serum albumin
  • the syringe pump was used to load the main channel 401 at a flow rate of 60 ⁇ 7 ⁇ , the reagent entered the main channel, and then the inlet and outlet were closed.
  • the chip was fixed on the rotating shaft of the centrifuge at a speed of 5000 rpm/min. After 30 s, the reagent entered the reaction zone 601 of the microcell 402 from the main channel 401, the remaining air in the main channel 401, and the reagent dispensing step was completed.
  • the chip is placed in the test instrument, and the overall temperature control device (not shown) of the test instrument performs temperature control on the whole chip, and is kept at 67 ° C for 73 min.
  • the resistive film 701 in the instrument controls the temperature at 69 ° C for 73 min. In this way, the temperature of the local temperature control zone 403 is higher than the temperature of the microcell 402.
  • control instrument without the resistive membrane was used for comparison, and the difference of positive amplification time (Tp value) and negative amplification between the two were compared.
  • Tp value positive amplification time
  • the reagents and chips of the control group were the same as those of the experimental group.
  • the amplification reaction effect was examined by real-time fluorescence detection. Fluorescent dyes can indicate the extent to which the reaction proceeds. Only the reaction zone 601 of the microcell 402 is detected.
  • Fig. 7 is an amplification curve of the fluorescence intensity of the isothermal amplification reaction of the experimental group as a function of reaction time;
  • Fig. 8 is an amplification curve of the control group. Where ⁇ are odd holes and B are even holes.
  • the odd-numbered hole amplification curves of the experimental group are smooth, no significant jitter, and the difference of Tp values of each hole is small; the even-numbered holes have no amplification in 73 minutes. Keep negative. This indicates that the reagent volume in each reaction zone 601 is constant, and there is no bubble in the reaction zone 601; there is no cross-contamination between the odd-numbered holes and the even-numbered holes.
  • the odd-numbered pore expansion curves of the control group are obviously jittery, which greatly affects the software interpretation.
  • the Tp values of each well vary greatly; the even-numbered pores begin to appear false at 58 minutes. Positive amplification. This indicates that the volume of the reagents in the microcells is reduced to different extents, and the different reaction volumes cause a sharp increase in the difference in Tp values. At the same time, the bubbles appear to interfere with the detection of the instrument, resulting in jitter of the amplification curve; as the liquid in the microcell continues to evaporate and condense In the main conduit, the liquid membrane is connected to the odd and even pores, resulting in false positive amplification of the even pores.
  • the chip was taken out from the measuring instrument, and the volume change of the microcell was observed by a microscope. It was found that there were substantially no bubbles in the microcell of the experimental group, and there were bubbles of different sizes in each microcell of the control group. These phenomena and amplification curves The results are consistent.
  • the local temperature control zone 403 main channel region of the chip is locally heated by the resistive film 701, so that the microcell reagent can be prevented from condensing in other regions, so that the reaction volume of the microcell does not change during the reaction, and there is no cross between the microcells. Contamination, that is, the uniformity and independence of the micro-pools is guaranteed.
  • Embodiment 3 The local temperature control zone is located in the main channel area, and the local temperature control device is an infrared LED lamp outside the chip.
  • the chip of the present embodiment includes three layers, the upper layer is an aluminum foil ring 1002 having a thickness of 0.05 mm, the middle layer is a PMMA film (cover sheet) having a thickness of 0.1 mm, and the lower layer is a PMMA film having a thickness of 2 mm (base layer). sheet).
  • a microreactor array is disposed on the upper surface of the underlying film.
  • the microreactor array in this embodiment includes a spiral main channel 401, and the outer sidewall of the main channel 401 is in communication with 24 uniformly arranged weighing cells 1001, and the weighing cell 1001 is in communication with the microcell 402; 401 has a width of 1.5 mm; the microcell 402 has a cylindrical shape, and the bottom surface has a diameter of 2 mm; the aluminum foil ring 1002 is attached to the cover sheet, and a local temperature control region 403 is formed corresponding to the position of the main passage 401; as shown in FIG.
  • the temperature control device is four infrared LEDs 1101 arranged in a ring shape with a wavelength of 850 nm and a power of 5 W; the infrared LED 1101 is disposed above the aluminum foil ring 1002 with a spacing of 10 mm therebetween; the substrate and the cover sheet are covered with the aluminum foil ring 1002.
  • the hollow portion is provided with a rotating shaft positioning hole 603 corresponding to a half circle with a radius of 5 mm.
  • the syringe pump was used to load the main channel 401 at a flow rate of 60 ⁇ 7 ⁇ , the reagent entered the main channel 401, and then the inlet and outlet were closed.
  • the chip is fixed on the rotating shaft of the centrifuge at a speed of 600 rpm/min. After 30 s, the reagent is filled with the weighing cells 1001 in sequence with the spiral main channel 401; then centrifuged at a speed of 5000 rpm/min, and after 10 seconds, the reagents are taken from the weighing cell. 1001 enters the microcell 402, the remaining air in the main channel 401 and the weighing cell 1001, and the reagent dispensing step is completed.
  • the chip detection process is the same as in Embodiment 2.
  • the aluminum foil ring 1002 absorbs heat and raises the temperature in the main channel 401, and the other areas of the chip have almost no temperature due to the low absorption of the PMMA material to the infrared light.
  • the temperature range in the main channel 401 can be controlled at 68-72 °C.
  • the overall temperature control device of the test instrument (not shown) The microcell area temperature of the sheet was 67 °C.
  • Embodiment 4 The local temperature control zone is located in the main channel area, and the local temperature control device is a resistive film outside the chip; the chip has a local temperature control zone, a buffer zone, and a hydrophobic surface.
  • the microfluidic chip of this example was similar to that of Example 2 except that the upper 0.1 mm PMMA film was replaced with an aluminum foil film having a thickness of 0.1 mm.
  • the lower PMMA film was hydrophobized.
  • the process was as follows: The washed PMMA chip was treated with plasma under the conditions of 0 2 flow rate 40 sccm, pressure 18 Pa, plasma power 130 W, duration 10 min. The treated chip was immersed in an octadecyltrimethoxysilane solution (1%, V/V, the solvent was n-hexane), and the chip was taken out after 4 hours (preserved by N 2 gas). The chip was washed with n-hexane and dried, and vacuum-dried in an oven at 70 ° C for 1 hour. It was washed with anhydrous methanol and then placed in an oven for 2 hours.
  • the reagent dispensing step was the same as in Example 2, after which the chip inlet and outlet were sealed.
  • the mechanical deformation device (Fig. 11) is inverted on the chip, and the 24 cylindrical protrusions 1201 on the mechanical deformation device are corresponding to the 24 buffers 602 of the chip, and a certain pressure is manually applied, and the upper aluminum foil film of the chip is recessed.
  • the buffer zone 602 adjusts the pressure applied by hand, and the recessed aluminum foil film can completely block the gas-liquid transmission path of the reaction zone 601 and the main channel 401.
  • the reaction process and detection process of the chip were the same as those in Example 2. After lh, the chip was taken out, and the volume of the reagent in each microcell was completely unchanged. There was no bubble in the microcell, and there was no droplet or liquid film in the main channel. The uniformity and independence of the pool are guaranteed.
  • three modes namely, local temperature control zone temperature rise, buffer deformation, and chip hydrophobicization, are used to ensure the independence of the microcells and avoid cross-contamination between the microcells. Even if any two of them fail, the remaining methods are still valid.
  • the temperature rise in the local temperature control zone can minimize the condensation of reagents in other areas.
  • the deformation of the buffer can completely isolate the gas-liquid transport between the micro-pools.
  • the hydrophobic surface can not reduce evaporation, it can make the condensed reagents aggregate into isolated droplets instead of spreading.
  • the liquid film avoids communication between the microcells.
  • Embodiment 5 The local temperature control zone is located in the microcell area, and the local temperature control device is a copper heat dissipation ring.
  • the chip of this embodiment comprises three layers, the upper layer being a PMMA cover sheet having a thickness of 2 mm, the middle layer being a PMMA substrate having a thickness of 1 mm, and the lower layer being a copper ring 1301.
  • a microreactor array was placed on the upper surface of the intermediate PMMA sheet. Microreactor arrays can be fabricated by prior art techniques such as laser engraving, machining, or thermocompression sealing.
  • the upper PMMA cover sheet and the intermediate PMMA backsheet are integrally sealed by heat sealing.
  • the lower copper ring 1301 and the chip are bonded together by glue.
  • the microreactor array of the middle PMMA sheet comprises a circular main pass connected by 24 elliptical regions Lane 401; each elliptical region is in communication with the microcell 402; wherein the elliptical region is 0.7 mm deep, the major axis is 4.5 mm, and the short axis is 2 mm; the other regions of the main channel 401 are 1 mm wide and 0.2 mm deep; the microcell 402 is a cylinder Shape, bottom surface diameter 3mm, depth 0.7mm; local temperature control device is a copper ring 1301, thickness lmm, the copper ring 1301 attached to the cover sheet and corresponding to the position of the micro-cell 402, forming a local temperature control A 403; a rotating shaft positioning hole 603 is provided on the substrate or the cover sheet at a position corresponding to the hollow portion of the copper ring 1301, which is a half circle and has a radius of 5 mm.
  • the local temperature control zone 403 is located in the microcell area and uses a copper ring 1301 to dissipate heat from the local temperature control zone 403.
  • the optical path of the test instrument passes the upper PMMA transparent cover to detect the signal, so the copper ring does not affect the signal acquisition.
  • the chip has a diameter of 62mm and a ring diameter of 75mm. Therefore, the outer edge of the copper ring is exposed to the outside of the overall temperature control device (not shown) of the measuring instrument. Since the thermal conductivity of copper is 401 W/(m*K), At this time, the copper ring acts to dissipate heat from the microcell area.
  • the reagent dispensing step is similar to that of Example 2, in which the reagent enters the microcell 402 by centrifugation, leaving air in the elliptical region and other regions of the main channel 401.
  • the detection process of the chip is similar to that of the second embodiment.
  • the chip is placed in the detection instrument, and the overall temperature control device of the detection instrument (not shown) performs temperature control on the whole chip, and is kept at 67 ° C for 73 min ; due to the heat dissipation of the copper ring
  • the actual temperature of the local temperature control zone 403 is 66.9 °C.
  • the temperature of the microcell 402 during this detection is lower than the temperature in the main channel 401.
  • the chip was taken out, and the volume of the reagent in each microcell was basically unchanged. There was only a very small amount of bubbles in the microcell, and there were no droplets and liquid film in the main channel, which indicated that the uniformity and independence of the microcell were ensured.
  • Embodiment 6 The local temperature control zone is located in the microcell area, and the local temperature control device is equipped with a cooling pipeline.
  • the chip is similar to Embodiment 1, but includes three layers, the upper layer is a polymethyl methacrylate (PMMA) cover sheet having a thickness of 4 mm, the middle layer is a PDMS film having a thickness of 0.05 mm, and the lower layer is a thickness of 2mm glass negative.
  • a microreactor array is disposed on the lower surface of the upper cover sheet, and the microreactor array is designed according to the scheme of Patent CN1996009B.
  • the middle layer PDMS film has no structure, and a cooling line 1401 is formed on the upper surface of the lower glass back sheet.
  • the cooling line 1401 corresponds to the position of the microcell 402, and a local temperature control zone 403 is formed; the underlying glass backsheet has a structural depth of 0.2 mm, which can be fabricated by prior art such as wet etching. Ambient air is delivered to the cooling line 1401 by the diaphragm pump for the purpose of cooling only the microcell region 402 while avoiding cooling of the main passage 401.
  • the reagent dispensing step is the same as in the first embodiment, after which the chip inlet and outlet are sealed and placed in an oven for overall heating at a temperature of 70 ° C.
  • the diaphragm pump is used to deliver ambient air to the cooling line 1401, and the flow rate is controlled for 1 hour.
  • the chip was taken out, and the volume of the reagent in each microcell was basically unchanged. There was only a small amount of bubbles in the microcell, and there was no droplet or liquid film in the main channel, which indicated that the uniformity and independence of the microcell were ensured.
  • the local temperature control zone is located in the main channel area, and the local temperature control device is Peltier
  • the chip used in this embodiment is similar in appearance to the embodiment 2, but the arrangement of the microcells is rectangular, that is, the microcell 402 is rectangularly arranged; there is no buffer, and there is no rotating shaft positioning hole. The other dimensions are the same as in the second embodiment.
  • each row of main channels 401 is formed by a plurality of V-shaped pipes connected end to end, and the top of each V-shaped pipe is connected with the micro-pool 402;
  • the control device comprises a Peltier 1602, and 5 thermal conductive aluminum blocks 1601 are arranged on the Peltier 1602; when the Peltier 1602 is mated with the substrate, the five thermally conductive aluminum blocks 1601 are corresponding to the positions of each row of the main channels 401, forming A local temperature control zone 403 is provided.
  • the local temperature control zone 403 is heated using the Peltier 1602. During the heating process, the thermally conductive aluminum block 1601 is in close contact with the lower PMMA plate of the chip and corresponds to the local temperature control zone 403. Although the microcell 402 is not heated, the microcell 402 can maintain a slightly lower temperature due to thermal conduction.
  • the reagent dispensing process does not require a syringe pump and a centrifuge. Manually pipette the sample into the main channel 401, then close the inlet and outlet. As shown in Figure 16, the handheld chip, with the wrist or elbow as the axis, slams the chip down (as if the water droplets are removed from the hand), the reagent enters the microcell 402 from the main channel 401, and the main channel 401 remains air, reagent The assignment step is complete.
  • the chip is placed in the detecting instrument, and the temperature of the Peltier heating module is controlled to be 72 ° C; at this time, the actual temperature of the micro cell 402 is 67 ° C, and the temperature of the local temperature control zone 403 is higher than that of the micro cell 402 during the whole testing process. High temperature.
  • the reagents in the microcell do not condense in the main channel, so that the volume of the reagent in each microcell remains unchanged, and the uniformity of the microcell is ensured. There is no liquid film in the main channel that communicates with each microcell, which ensures the independence of the microcell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

提供了一种微流控芯片,其包括基片和盖片,基片上设有微反应器阵列,微反应器阵列包括至少1个主通道(401)和至少2个分别与主通道(401)相连通的微池(402)。微流控芯片还包括至少1个局部温控装置,局部温控装置对主通道(401)加热或对微池(402)进行冷却。使用该微流控芯片,保证了微池(402)的均一性和独立性。还提供了该微流控芯片在生物检测或医疗检验中的应用。

Description

一种微流控芯片及其应用 技术领域
本发明涉及一种微流控芯片及其应用,属于微流控芯片领域以及生物检测领域。 背景技术
微流控芯片是以微机电加工技术为基础, 由微管路在芯片上形成网络, 以可控 微流体贯穿整个系统并完成各种生物和化学过程的一种技术。 在微流控芯片技术发 展早期, 芯片毛细管电泳是其主流技术, 所用芯片结构简单, 功能单一; 近年来, 微流控芯片开始向功能化、 集成化方向飞速发展, 诸如 DNA扩增反应、 免疫反应、 细胞裂解等重要的生物和化学过程成为新的热点, 而为了研究这些复杂的生物化学 反应, 通常需要在芯片上制作大量、 独立、 均一的微池, 这些微池共同构成了微反 应器阵列。
构建微反应器阵列需要两步: 第一步, 分配试剂以形成大量、 均一的微池 (见 图 1 ); 第二步, 运用阀或介质隔离微池, 保证各微池的均一性和独立性。 对于第一 步, 当前的试剂分配方式多种多样, 如亲水管路式 (CN1996009B )、 真空负压式 ( CN101590389A ) 、 离 心 式 ( US6627159,US20050199500A1,US6919058B2, US20030166265A1, WO9533986A1 ) 等。 对于第二步, 微池的隔离方式比较有限, 只有管路变形隔离(US6627159), 矿物油 /硅油隔离(CN101590389A), 空气自然隔 离。
管路变形隔离是采用外部设备将附有压敏胶的金属基材变形, 进而堵塞流路。 此方法的缺陷是无法自动化, 对芯片基材的材质有限制性要求, 而且压敏胶的成分 会对反应器产生干扰。 矿物油隔离是在试剂完成分配后, 再次加入矿物油, 利用油 / 水的表面张力差异来进行隔离。 此方法的缺陷是需要使用者二次加样, 而且由于芯 片通常使用胶条封闭进出口, 矿物油会溶蚀胶条造成试剂泄露, 污染环境。
空气自然隔离是在试剂完成分配后, 原来的主通道就变为了空气, 利用自然形 成的空气间隔来隔离。 此方法原理简单, 使用方便, 但缺陷也最突出。 在实际使用 过程中, 包含微池的芯片通常是整体温度控制, 而芯片的不同区域存在材质、 结构 差异, 这就导致微池内的液体会逐渐蒸发并在没有液体的主通道内冷凝, 冷凝出的 小液滴会逐渐扩大甚至形成液膜。 蒸发首先导致各反应池试剂不同程度的减少, 损 害各微池的均一性 (见图 2); 而且形成的液膜会连通各微池, 造成交叉污染, 损害 各微池的独立性 (见图 3 )。 发明内容
本发明的目的是提供一种微流控芯片及其在应用, 所述微流控芯片设有局部温 度控制装置, 可以控制芯片内主通道内温度高于微池内温度, 可以有效避免微池试 剂减少并避免冷凝液体产生液膜, 保证微池的均一性和独立性。
本发明所提供的一种微流控芯片, 包括基片和盖片; 所述基片上设有微反应器 阵列; 所述微反应器阵列包括至少 1个主通道和至少 2个分别与所述主通道相连通 的微池;
所述微流控芯片还包括至少 1个局部温控装置, 所述局部温控装置对所述主通 道加热或对所述微池进行冷却。
上述的微流控芯片中, 所述微流控芯片包括 2个平行的主通道, 所述 2个主通 道之间连通有若干个所述微池;
所述局部温控装置为设置于所述盖片上的 Pt电极,所述 Pt电极与所述主通道的 位置相应。
本发明所提供的第 2种微流控芯片, 所述微流控芯片包括 2个平行的主通道, 所述 2个主通道之间连通有若干个所述微池;
所述局部温控装置为设置于玻璃基片上的冷却管路, 所述玻璃基片贴附于所述 基片或盖片上, 且所述冷却管路与所述微池的位置相应。
本发明所提供的第 3种微流控芯片, 所述微流控芯片包括 1个圆形的主通道, 所述主通道由若干个 V型管路首尾连接而成; 所述微池包括相连通的缓冲区和反应 区; 每个所述 V型管路的顶部与所述缓冲区相连通;
所述局部温控装置为一环形的电阻膜; 所述电阻膜设于所述基片或盖片上且与 所述基片或盖片之间设有间距; 所述电阻膜与所述主通道的位置相应。
上述的微流控芯片, 所述电阻膜与所述基片或盖片之间的间距为 0~0.5mm, 但 不为 0; 所述基片或盖片上与所述电阻膜的空心部位相对应处设有定位孔。
上述的微流控芯片, 所述基片的上表面为经硅垸化试剂疏水化的表面, 所述疏 水化的试剂可为十八垸基三氯硅垸、 十八垸基三甲氧基硅垸、 辛基三乙氧基硅垸、 异丁基三乙氧基硅垸、 甲基三乙氧基硅垸或其同系物及其衍生物;
所述盖片为一铝箔膜;
所述微流控芯片还包括机械变形装置, 该机械变形装置的凸台上设有若干个圆 柱形凸起, 若干个所述圆柱形凸起呈圆形排列且可与若干个所述缓冲区位置对应。
本发明所提供的第 4种微流控芯片, 所述微流控芯片包括相连通的若干排主通 道, 所述若干排主通道呈矩形排列; 所述主通道由若干个 V型管路首尾连接而成, 每个所述 V型管路的顶部与所述微池相连通; 所述局部温控装置包括帕尔贴, 所述帕尔贴上设有若干个导热铝块; 所述帕尔 贴与所述基片或盖片配合时, 所述导热铝块与所述主通道的位置相应。
本发明所提供的第 5种微流控芯片,所述微流控芯片包括 1个螺旋形的主通道, 所述主通道的外壁与若干个称量池相连通, 所述称量池与所述微池相连通;
所述局部温控装置包括一环形的铝箔和若干个呈环形排列的 LED灯; 所述环形 的铝箔贴附于所述基片或盖片上且与所述主通道的位置相应; 所述 LED灯设于所述 环形的铝箔上且与所述环形的铝箔之间设有间距。
上述的微流控芯片, 所述 LED灯与所述环形的铝箔之间的间距为 0~10mm, 但 不为 0; 所述基片或盖片上与所述铝箔的空心部位相对应处设有定位孔。
本发明所提供的第 6种微流控芯片, 所述微流控芯片包括 1个由若干个椭圆形 区域连接而成的圆形的主通道; 每个所述椭圆形区域与所述微池相连通;
所述局部温控装置为一铜质圆环; 所述铜质圆环贴附于所述基片或盖片上且与 所述微池的位置相应。
上述的微流控芯片, 所述基片或盖片上与所述铜质圆环的空心部位相对应处设 有定位孔。
利用上述微流控芯片的保证微池均一性和独立性的方法, 包括如下步骤: 开启 所述局部温控装置以对所述主通道进行加热或对所述微池进行冷却, 使所述主通道 内的温度高于所述微池内的温度, 即可保证所述微池的均一性和独立性。
本发明还提供了上述微流控芯片在生物检测或医疗检验中的应用; 所述生物检 测或医疗检验具体可为免疫分析、 核酸扩增反应、 核酸杂交反应分析或蛋白一受体 结合反应。 附图说明
图 1为现有微流控芯片中试剂分配后的微池示意图。
图 2为对现有微流控芯片整体温控时微池示意图, 此时各微池内液体的体积不 再均一。
图 3为对现有微流控芯片整体温控时微池示意图,此时各微池内液体不再独立。 图 4为实施例 1中的微流控芯片示意图。
图 5为实施例 2中的微流控芯片示意图。
图 6 为实施例 2中的电阻膜示意图。
图 7 为实施例 2中实验组的等温扩增反应荧光图。
图 8 为实施例 2中对照组的等温扩增反应荧光图。
图 9 为实施例 3中的微流控芯片示意图。 图 10 为实施例 3中的红外 LED加热装置示意图。
图 11 为实施例 4中的机械变形装置示意图。
图 12 为实施例 5中的微流控芯片示意图。
图 13为实施例 6中的微流控芯片示意图。
图 14为实施例 7中的微流控芯片示意图。
图 15为实施例 7中的帕尔贴示意图。
图 16为对实施例 7中的微流控芯片进行手动离心的示意图。
其中, 附图标记说明如下:
401 主通道; 402微池; 403局部温控区; 501 Pt电极; 601 反应区; 602 缓冲 区; 603 定位孔; 701 电阻膜; 1001 称量池; 1002 铝箔圆环; 1101 红外 LED; 1201 圆柱形凸起; 1301 铜质圆环; 1401 冷却管路。 具体实施方式
下述实施例中所使用的实验方法如无特殊说明, 均为常规方法。
下述实施例中所用的材料、 试剂等, 如无特殊说明, 均可从商业途径得到。 下述实施例中, 芯片制作技术和使用方法均为微流控芯片领域和生物检测领域 的常规技术和方法。 实施例 1、 局部温控区位于主通道区域, 局部温控装置是芯片上的 Pt电极 如图 4所示, 微流控芯片包括两层, 基片是厚度为 4mm的聚甲基丙烯酸甲酯
(PMMA) 片, 盖片是厚度为 2mm的玻璃底片; 在基片的上表面上设置了微反应器 阵列, 微反应器阵列是根据公开号为 CN1996009B 的专利公开的方案设计的。 微反 应器阵列包括 2个平行设置的主通道 401, 2个主通道 401之间连接有多个微池 402, 其中微池 402为类似梭形结构, 最宽处 6mm, 每个微池体积是 144μί; 主通道 401 宽 4mm, 所有结构深度均为 lmm。 在盖片上制作了 Pt电极 501 (斜线区域), Pt 电极 501与主通道 401的位置相对应, 形成局部温控区 403。
上述的微反应器阵列可通过激光雕刻、 机械加工或热压封接等现有技术制作。 Pt电极 501可通过溅射、 湿法刻蚀等现有技术制作。 PMMA盖片和玻璃底片通过胶 封接为一体。 通过外接电源连接 Pt电极 501, 目的为通过电极电阻只加热局部温控 区 403, 而避免加热微池 402。
试剂为 SDS溶液 (10% W/V), 试剂分配过程参见专利 CN1996009B中的实施 例 1, 需注意的是所使用的不相溶和不相反应的流体为空气, 即此时微流控芯片内只 有微池有试剂, 其余部分为空气。 试剂分配步骤完成后, 将芯片进出口密封, 并置 于烘箱内整体加热, 温度为 40°C ; 同时通过 Pt电极加热并控制局部温控区的温度为 90°C, 这样加热过程中, 主通道区域的温度一直比微池温度高。
同时以无 Pt电极的芯片作为对照。
加热 1 小时, 将芯片从烘箱内取出, 显微镜观察微池内溶液的体积变化, 发现 实验组的微池内基本无气泡, 主通道内也没有液滴和液膜, 这说明微池的均一性和 独立性得到保证。 而对照组的各微池内均有大小不一的气泡, 液膜将各微池连通, 对照组微池均一性和独立性均被损害。
实施例 2、 局部温控区位于主通道区域, 局部温控装置是芯片外部的电阻膜。 如图 5所示, 本实施例的微流控芯片包括两层, 盖片是厚度为 0.1mm的 PMMA 膜, 基片是厚度为 2mm的 PMMA底片。 在基片的上表面上设置了微反应器阵列。 微反应器阵列可通过激光雕刻、 机械加工或热压封接等现有技术制作。 基片和盖片 通过胶封接为一体。
微反应器阵列包括主通道 401以及与主通道 401并行连通的 24个微池 402, 各 个微池 402之间的距离是相等的;其中主通道 401是由 24个 V型管路首尾连接而成 的圆形通道; 微池 402包括相连通的反应区 601和缓冲区 602, 每个 V型管路的顶 端处均与一缓冲区 602相连通; 缓冲区 602为圆柱形, 底面直径 1.5mm; 反应区 601 也为圆柱形, 底面直径 2mm。 局部温控装置为一环形的电阻膜 701 (如图 6所示), 电阻膜 701设于盖片之上且与盖片之间保持 0.5mm的距离, 且电阻膜 701与主通道 401的位置相对应进而形成了局部温控区 403; 基片和盖片上与电阻膜 701的空心部 分的位置相应处设有一个旋转轴定位孔 603, 其为一半圆, 半径为 5mm。
使用此芯片及配套装置进行等温扩增反应, 实验过程和结果如下:
一、 芯片制备
引物序列如下:
A: TTGTAA AACGACGGCC AGTG ,
B: GACC ATGATTACGCC A AGCG ,
将引物 A、 B、 C、 D溶于水, 得到含有 4种引物的水溶液 (A、 B、 C、 D在溶 液中的浓度均为 Ο.ΐμηιοΐ/L); 取 0.7μί引物混合液点样于 PMMA底片的奇数反应区 中 (即 1、 3、 5、 7、 9、 11、 13、 15、 17、 19、 21、 23为阳性), 偶数反应区不点样 (即 2、 4、 6、 8、 10、 12、 14、 16、 18、 20、 22、 24为阴性)。 将点样后的芯片置 于 50°C烘箱中, 30分钟后取出 (此时引物呈固态吸附在反应区底部), 将芯片的底 片和盖片封接, 室温保存。 二、 试剂加样和分配
扩增反应液的组成: 由体系和模板组成。 体系组成如下:
序号 反应物成分 终浓度
1 Bst ONA聚合酶大片段 0.32 U/μΙ
Bst酶反应缓冲液
2 (ThermoPol Reaction 1 X
Buffer)
脱氧核糖核苷三磷酸
3 0.4 mmol/L (各)
(dNTPs)
4 EvaGreen染料 0.6 X
5 牛血清白蛋白 (BSA) 0.5 mg/ml
6 甜菜碱 (betaine) 0.8 mol/L
模板是 EZ-T 载体质粒 DNA 购自北京康润诚业生物科技有限公司, 货号: T168-10, 浓度为
Figure imgf000008_0001
体系: 模板 =23 : 2, v/v。
使用注射泵往主通道 401中加样, 流速为 60μΙ7ηώι, 试剂进入主通道, 然后封 闭进样口和出样口。 将芯片固定在离心机的旋转轴上, 转速 5000rpm/min, 30s后, 试剂从主通道 401进入微池 402的反应区 601, 主通道 401内剩余空气,试剂分配步 骤完成。
三、 芯片检测过程
将芯片放入检测仪器, 检测仪器的整体温控设备 (图中未显示) 对芯片整体执 行温度控制, 67°C保持 73min;同时仪器内的电阻膜 701控制温度在 69 °C,保持 73min。 这样检测过程中局部温控区 403的温度均比微池 402内温度高。
同时以没有电阻膜的检测仪器进行对照, 比较二者之间的阳性扩增时间(Tp值) 差异和阴性扩增情况。 对照组的试剂和芯片均与实验组相同。
扩增反应效果通过实时荧光检测来检验。 荧光染料可以指示反应进行程度。 只 检测微池 402的反应区 601。
四、 实验结果
图 7为实验组等温扩增反应荧光强度随反应时间变化的扩增曲线; 图 8为对照 组扩增曲线。 其中 Α均为奇数孔, B均为偶数孔。
如图 7, 实验组 (有电阻膜 701加热局部温控区 403 ) 的奇数孔扩增曲线平滑, 无明显抖动, 各孔的 Tp值差异很小; 偶数孔在 73分钟内均无扩增, 保持阴性。 这 说明各反应区 601 内试剂体积均不变, 反应区 601 内无气泡; 奇数孔和偶数孔之间 没有交叉污染。 如图 8, 对照组 (无电阻膜 701加热局部温控区 403 ) 的奇数孔扩增曲线明显抖 动, 极大影响软件判读, 各孔的 Tp值差异很大; 偶数孔在 58分钟开始出现假阳性 扩增。 这说明个微池内试剂体积有不同程度的减少, 不同的反应体积进而引起 Tp值 差异急剧增大, 同时出现的气泡干扰了仪器检测, 导致扩增曲线抖动; 随着微池内 液体持续蒸发并冷凝在主管道内, 液膜连通了奇数孔和偶数孔, 导致偶数孔出现假 阳性扩增。
反应结束后, 将芯片从检测仪器内取出, 显微镜观察微池体积变化, 发现实验 组的微池内基本无气泡, 而对照组的各微池内均有大小不一的气泡, 这些现象与扩 增曲线结果相符。
实验表明, 使用电阻膜 701对芯片的局部温控区 403 (主通道区域) 局部加热, 可以避免微池试剂在其他区域冷凝, 这样反应过程中微池反应体积不变, 各微池之 间没有交叉污染, 即微池的均一性和独立性得到保证。
实施例 3、 局部温控区位于主通道区域, 局部温控装置是芯片外部的红外 LED 灯
如图 9所示, 本实施例的芯片包括三层, 上层是厚度 0.05mm的铝箔圆环 1002, 中层是厚度为 0.1mm的 PMMA膜 (盖片), 下层是厚度为 2mm的 PMMA底片 (基 片)。 在下层底片的上表面上设置了微反应器阵列。 本实施例中的微反应器阵列包括 呈螺旋形的主通道 401,主通道 401的外侧壁与 24个均匀排列的称量池 1001相连通, 称量池 1001与微池 402相连通; 主通道 401宽度为 1.5mm; 微池 402为圆柱形, 底 面直径 2mm; 铝箔圆环 1002贴附在盖片上,且与主通道 401的位置相应形成了局部 温控区 403; 如图 10所示, 局部温控装置为呈环形排列的 4个红外 LED1101 , 波长 850nm, 功率 5W; 红外 LED1101设于铝箔圆环 1002的上方, 且之间设有 10mm的 间距;基片和盖片上与铝箔圆环 1002的空心部分相应处设有一个旋转轴定位孔 603, 为一半圆, 半径为 5mm。
使用注射泵往主通道 401 中加样, 流速为 60μΙ7ηώι, 试剂进入主通道 401, 然 后封闭进样口和出样口。 将芯片固定在离心机的旋转轴上, 转速 600rpm/min, 30s 后, 试剂随螺旋形主通道 401依次充满各称量池 1001 ; 然后以转速 5000rpm/min离 心, 10s后, 试剂从称量池 1001进入微池 402, 主通道 401和称量池 1001内剩余空 气, 试剂分配步骤完成。
芯片检测过程与实施例 2相同。 当红外 LED1101照射时, 铝箔圆环 1002会吸 收热量并升高主通道 401内温度, 而芯片的其他区域由于 PMMA材质对红外光的低 吸收性, 温度几乎不变。 通过控制红外 LED1101的电压和照射时间, 可以将主通道 401内温度范围控制在 68-72°C。 而检测仪器的整体温控设备 (图中未显示) 控制芯 片的微池区域温度为 67°C。
加热 1 小时, 将芯片取出, 显微镜观察发现各微池内试剂体积基本无变化, 微 池内只有极少量气泡, 主通道内也没有液滴和液膜, 这说明微池的均一性和独立性 得到保证。
实施例 4: 局部温控区位于主通道区域, 局部温控装置是芯片外部的电阻膜; 芯 片同时存在局部温控区、 缓冲区、 疏水化表面
本实施例的微流控芯片与实施例 2类似, 但上层 0.1mm的 PMMA膜换成了厚 度为 0.1mm的铝箔膜。 此外还对下层 PMMA底片进行了疏水化处理, 过程如下: 取洗净的 PMMA芯片, 用等离子进行处理, 条件是 02流量 40sccm, 压强 18pa, 等 离子功率 130W, 持续时间 10min。 将处理后的芯片浸泡于十八垸基三甲氧基硅垸溶 液内 (1%, V/V, 溶剂为正己垸), 4小时 (预先通 N2气保护) 后取出芯片。 再用正 己垸清洗芯片并吹干, 置于 70°C烘箱中抽真空烘干 1小时。 再用无水甲醇清洗, 再 置于烘箱中抽真空 2小时。
试剂分配步骤与实施例 2相同, 之后将芯片进出口密封。 将机械变形装置 (如 图 11 )倒置在芯片上, 机械变形装置上的 24个圆柱形凸起 1201要与芯片的 24个缓 冲区 602对应, 手工施加一定压力, 芯片的上层铝箔膜会凹陷进入缓冲区 602, 调整 手工施加的压力, 凹陷的铝箔膜可以完全阻断反应区 601和主通道 401 的气液传输 路径。
芯片的反应过程和检测过程与实施例 2相同, lh后, 将芯片取出, 发现各微池 内试剂体积完全无变化, 微池内完全无气泡, 主通道内也没有液滴和液膜, 这说明 微池的均一性和独立性得到保证。
在此实施例中, 使用三种方式即局部温控区升温、 缓冲区变形、 芯片疏水化共 同保证微池的独立性, 避免微池之间的交叉污染。 即使其中的任意两种方式失效, 剩余的方式仍有效。 局部温控区升温可以尽量减少试剂在其他区域冷凝, 缓冲区变 形可以完全隔离微池之间气液传输, 疏水化表面尽管不能减少蒸发, 但可以使得冷 凝的试剂聚集成孤立的液滴而非铺展的液膜, 避免微池之间连通。
实施例 5、 局部温控区位于微池区域, 局部温控装置是铜质散热圆环。
如图 12所示, 本实施例的芯片包括三层, 上层是厚度为 2mm的 PMMA盖片, 中层是厚度为 lmm的 PMMA基片, 下层是一铜质圆环 1301。 在中层 PMMA片的 上表面上设置了微反应器阵列。 微反应器阵列可通过激光雕刻、 机械加工或热压封 接等现有技术制作。 上层 PMMA盖片和中层 PMMA底片通过热压封接为一体。 下 层铜质圆环 1301和芯片通过胶粘接为一体。
中层 PMMA片的微反应器阵列包括由 24个椭圆形区域连接而成的圆形的主通 道 401 ;每个椭圆形区域与微池 402相连通;其中椭圆形区域深 0.7mm,长轴 4.5mm, 短轴 2mm; 主通道 401的其他区域宽 lmm, 深 0.2mm; 微池 402为圆柱形, 底面直 径 3mm, 深 0.7mm; 局部温控装置为一铜质圆环 1301, 厚度 lmm, 该铜质圆环 1301 贴附于盖片上且与微池 402的位置相应, 形成了局部温控区 403 ; 基片或盖片上与铜 质圆环 1301的空心部分的位置相应处设有 1个旋转轴定位孔 603, 为一半圆, 半径 为 5mm。
局部温控区 403位于微池区域, 使用铜质圆环 1301对局部温控区 403散热。 检 测仪器的光路通过上层 PMMA透明盖片检测信号,因此铜质圆环并不影响信号采集。 芯片直径 62mm, 圆环直径 75mm, 因此铜质圆环的外沿暴露于检测仪器的整体温控 设备(图中未显示) 的外部, 由于铜的导热系数是 401 W/(m*K), 此时铜质圆环起到 对微池区域散热的作用。
试剂分配步骤与实施例 2类似,试剂通过离心进入微池 402,主通道 401的椭圆 形区域和其他区域剩余空气。 芯片的检测过程与实施例 2类似, 将芯片放入检测仪 器, 检测仪器的整体温控设备 (图中不显示) 对芯片整体执行温度控制, 67°C保持 73min; 由于铜质圆环的散热作用, 局部温控区 403的实际温度是 66.9°C。 这样检测 过程中微池 402的温度均比主通道 401内温度低。
lh后, 将芯片取出, 发现各微池内试剂体积基本无变化, 微池内只有极少量气 泡, 主通道内也没有液滴和液膜, 这说明微池的均一性和独立性得到保证。
实施例 6、 局部温控区位于微池区域, 局部温控装置是装有冷却管路
如图 13所示, 芯片与实施例 1类似, 但包括三层, 上层是厚度为 4mm的聚甲 基丙烯酸甲酯 (PMMA) 盖片, 中层是厚度为 0.05mm的 PDMS膜, 下层是厚度为 2mm的玻璃底片。 在上层盖片的下表面上设置了微反应器阵列, 微反应器阵列是根 据专利 CN1996009B中的方案设计的。 中层 PDMS膜无结构, 在下层玻璃底片的上 表面上制作了冷却管路 1401。冷却管路 1401与微池 402的位置相应, 形成了局部温 控区 403 ; 下层玻璃底片的结构深度均为 0.2mm, 可通过湿法刻蚀等现有技术制作。 通过膜片泵向冷却管路 1401内输送环境空气, 目的为只冷却微池区域 402, 而避免 冷却主通道 401。
试剂分配步骤与实施例 1相同, 之后将芯片进出口密封, 并置于烘箱内整体加 热, 温度为 70°C ; 同时使用膜片泵向冷却管路 1401输送外界环境空气, 控制流速为 lh后, 将芯片取出, 发现各微池内试剂体积基本无变化, 微池内只有极少量气 泡, 主通道内也没有液滴和液膜, 这说明微池的均一性和独立性得到保证。
实施例 7、 局部温控区位于主通道区域, 局部温控装置是帕尔贴 如图 14, 本实施例所用芯片与实施例 2外形类似, 但微池排列方式是矩形, 即 微池 402是矩形排列; 没有缓冲区, 没有旋转轴定位孔。 其他尺寸与实施例 2相同。
其包括相连通的 5排主通道 401, 并呈矩形排列; 每排主通道 401 由多个 V型 管路首尾连接而成, 每个 V型管路的顶部与微池 402相连通; 局部温控装置包括帕 尔贴 1602, 帕尔贴 1602上设有 5个导热铝块 1601 ; 当帕尔贴 1602与基片配合时, 5个导热铝块 1601与每排主通道 401的位置相应, 形成了局部温控区 403。
如图 15所示, 使用帕尔贴 1602对局部温控区 403加热。 加热过程中, 导热铝 块 1601与芯片的下层 PMMA板紧密贴合, 并与局部温控区 403对应。 尽管不对微 池 402加热, 但由于热传导作用, 微池 402可以保持稍低的温度。
本实施例中,试剂分配过程不需注射泵和离心机。手工操作移液器向主通道 401 中加样, 然后封闭进样口和出样口。如图 16所示, 手持芯片, 以腕部或肘部为轴心, 向下猛甩芯片 (如同甩去手上水滴), 试剂从主通道 401进入微池 402, 主通道 401 剩余空气, 试剂分配步骤完成。
芯片置于检测仪器内, 控制帕尔贴加热模块的温度为 72°C ; 此时微池 402的实 际温度为 67°C, 整个检测过程中局部温控区 403的温度均比微池 402内温度高。
加热 1小时, 将芯片取出, 显微镜观察发现各微池内试剂体积基本无变化, 主通道 内也没有液滴和液膜, 这说明微池的均一性和独立性得到保证。 工业应用
本发明提供的此微流控芯片, 在局部温控装置的作用下, 微池内的试剂不会在 主通道内冷凝, 这样各微池内的试剂体积保持不变, 保证了微池的均一性, 主通道 内没有与各微池连通的液膜, 保证了微池的独立性。

Claims

权利要求
1、 一种微流控芯片, 包括基片和盖片; 所述基片上设有微反应器阵列; 所述微 反应器阵列包括至少 1个主通道和至少 2个分别与所述主通道相连通的微池;
其特征在于: 所述微流控芯片还包括至少 1个局部温控装置, 所述局部温控装 置对所述主通道加热或对所述微池进行冷却。
2、 根据权利要求 1所述的微流控芯片, 其特征在于: 所述微流控芯片包括 2个 平行的主通道, 所述 2个主通道之间连通有若干个所述微池;
所述局部温控装置为设置于所述盖片上的 Pt电极,所述 Pt电极与所述主通道的 位置相应。
3、 根据权利要求 1所述的微流控芯片, 其特征在于: 所述微流控芯片包括 2个 平行的主通道, 所述 2个主通道之间连通有若干个所述微池;
所述局部温控装置为设置于玻璃基片上的冷却管路, 所述玻璃基片贴附于所述 基片或盖片上, 且所述冷却管路与所述微池的位置相应。
4、 根据权利要求 1所述的微流控芯片, 其特征在于: 所述微流控芯片包括 1个 圆形的主通道, 所述主通道由若干个 V型管路首尾连接而成; 所述微池包括相连通 的缓冲区和反应区; 每个所述 V型管路的顶部与所述缓冲区相连通;
所述局部温控装置为一环形的电阻膜; 所述电阻膜设于所述基片或盖片上且与 所述基片或盖片之间设有间距; 所述电阻膜与所述主通道的位置相应。
5、 根据权利要求 4所述的微流控芯片, 其特征在于: 所述电阻膜与所述基片或 盖片之间的间距为 0~0.5mm,但不为 0;所述基片或盖片上与所述电阻膜的空心部位 相对应处设有定位孔。
6、 根据权利要求 4或 5所述的微流控芯片, 其特征在于: 所述基片的上表面为 经硅垸化试剂疏水化的表面;
所述盖片为一铝箔膜;
所述微流控芯片还包括机械变形装置, 该机械变形装置的凸台上设有若干个圆 柱形凸起, 若干个所述圆柱形凸起呈圆形排列且可与若干个所述缓冲区位置对应。
7、 根据权利要求 1所述的微流控芯片, 其特征在于: 所述微流控芯片包括相连 通的若干排主通道, 所述若干排主通道呈矩形排列; 所述主通道由若干个 V型管路 首尾连接而成, 每个所述 V型管路的顶部与所述微池相连通;
所述局部温控装置包括帕尔贴, 所述帕尔贴上设有若干个导热铝块; 所述帕尔 贴与所述基片或盖片配合时, 所述导热铝块与所述主通道的位置相应。
8、 根据权利要求 1所述的微流控芯片, 其特征在于: 所述微流控芯片包括 1个 螺旋形的主通道, 所述主通道的外壁与若干个称量池相连通, 所述称量池与所述微 池相连通;
所述局部温控装置包括一环形的铝箔和若干个呈环形排列的 LED灯; 所述环形 的铝箔贴附于所述基片或盖片上且与所述主通道的位置相应; 所述 LED灯设于所述 环形的铝箔上且与所述环形的铝箔之间设有间距。
9、 根据权利要求 8所述的微流控芯片, 其特征在于: 所述 LED灯与所述环形 的铝箔之间的间距为 0~10mm, 但不为 0; 所述基片或盖片上与所述铝箔的空心部位 相对应处设有定位孔。
10、 根据权利要求 1所述的微流控芯片, 其特征在于: 所述微流控芯片包括 1 个由若干个椭圆形区域连接而成的圆形的主通道; 每个所述椭圆形区域与所述微池 相连通;
所述局部温控装置为一铜质圆环; 所述铜质圆环贴附于所述基片或盖片上且与 所述微池的位置相应。
11、 根据权利要求 10所述的微流控芯片, 其特征在于: 所述基片或盖片上与所 述铜质圆环的空心部位相对应处设有定位孔。
12、 基于权利要求 1-11中任一项所述微流控芯片保证微池均一性和独立性的方 法, 包括如下步骤: 开启所述局部温控装置以对所述主通道进行加热或对所述微池 进行冷却, 使所述主通道内的温度高于所述微池内的温度, 即可保证所述微池的均 一性和独立性。
13、 权利要求 1-11中任一项所述微流控芯片在生物检测或医疗检验中的应用。
14、 根据权利要求 13所述的应用, 其特征在于: 所述生物检测或医疗检验为免 疫分析、 核酸扩增反应、 核酸杂交反应分析或蛋白一受体结合反应。
PCT/CN2013/001004 2012-08-28 2013-08-23 一种微流控芯片及其应用 WO2014032396A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/424,995 US9895690B2 (en) 2012-08-28 2013-08-23 Microfluidic chip and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210311357.2A CN102886280B (zh) 2012-08-28 2012-08-28 一种微流控芯片及其应用
CN201210311357.2 2012-08-28

Publications (1)

Publication Number Publication Date
WO2014032396A1 true WO2014032396A1 (zh) 2014-03-06

Family

ID=47530080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001004 WO2014032396A1 (zh) 2012-08-28 2013-08-23 一种微流控芯片及其应用

Country Status (3)

Country Link
US (1) US9895690B2 (zh)
CN (1) CN102886280B (zh)
WO (1) WO2014032396A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3113886A4 (en) * 2014-03-07 2017-10-25 CapitalBio Corporation A multi-index detection microfluidic chip and methods of use
CN109810875A (zh) * 2019-03-28 2019-05-28 苏州点晶生物科技有限公司 一种扇形核酸多联检装置
CN114100716A (zh) * 2021-12-01 2022-03-01 上海天马微电子有限公司 微流控装置及其驱动方法
CN117554380A (zh) * 2024-01-12 2024-02-13 江苏优众微纳半导体科技有限公司 用于流式检测的微流控芯片检测系统

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102886280B (zh) 2012-08-28 2014-06-11 博奥生物有限公司 一种微流控芯片及其应用
CN103252262A (zh) * 2013-04-15 2013-08-21 中国人民解放军军事医学科学院卫生学环境医学研究所 一种聚甲基丙烯酸甲酯材料微流控芯片加工技术方法
GB201401584D0 (en) * 2014-01-29 2014-03-19 Bg Res Ltd Intelligent detection of biological entities
CN106179549B (zh) * 2016-08-15 2020-11-17 南京大学 一种微流控芯片及其应用
CN106423319B (zh) * 2016-11-07 2018-11-13 北京博奥晶典生物技术有限公司 一种试样分析芯片及其使用方法
TWI636948B (zh) * 2017-06-08 2018-10-01 吳振嘉 防止流體逆流的微流體反應器
CN107570243A (zh) * 2017-07-31 2018-01-12 北京莱博泰克生物技术有限公司 一种手甩式多指标分析芯片及其使用方法和应用
CN107377023B (zh) * 2017-09-08 2020-02-14 上海萃励电子科技有限公司 一种可控温微流控芯片的制作方法
CN108315252B (zh) * 2018-03-30 2023-09-05 中国科学院天津工业生物技术研究所 一种光控芯片反应系统及方法
CN109603939B (zh) * 2019-01-04 2021-08-31 京东方科技集团股份有限公司 极板及微流控芯片
CN110132668B (zh) * 2019-04-28 2022-02-15 西安培华学院 一种常规载玻片超疏水处理方法
CN111944679A (zh) * 2019-05-17 2020-11-17 湖南乐准智芯生物科技有限公司 一种pcr微反应室阵列结构及进行混合液封装的方法
CN110568200B (zh) * 2019-09-12 2022-05-31 重庆科技学院 一种联合诊断纸基微流控芯片及检测方法
CN110736844A (zh) * 2019-12-07 2020-01-31 南京岚煜生物科技有限公司 一种心肌肌钙蛋白的检测方法
CN111500406B (zh) * 2020-04-20 2022-10-25 哈尔滨工业大学 一种微流控pcr芯片
CN114317250A (zh) * 2020-09-30 2022-04-12 富佳生技股份有限公司 加热结构、检测芯片、核酸检测盒及核酸检测设备
CN116928988A (zh) * 2022-04-02 2023-10-24 青岛海尔电冰箱有限公司 冰箱及其控制方法
CN116928972A (zh) * 2022-04-02 2023-10-24 青岛海尔电冰箱有限公司 微流控检测系统及其控制方法、冰箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996009A (zh) * 2007-01-10 2007-07-11 博奥生物有限公司 一种用于多样品分析的微流体器件和使用方法
CN101003010A (zh) * 2006-01-19 2007-07-25 财团法人工业技术研究院 自封式高温生化反应装置及其方法
CN101307834A (zh) * 2007-03-30 2008-11-19 霍夫曼-拉罗奇有限公司 微流体温度驱动的阀
CN101906378A (zh) * 2010-07-05 2010-12-08 博奥生物有限公司 一种气泡微阀及基于此气泡微阀的微流控芯片
CN102886280A (zh) * 2012-08-28 2013-01-23 博奥生物有限公司 一种微流控芯片及其应用

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750015A (en) * 1990-02-28 1998-05-12 Soane Biosciences Method and device for moving molecules by the application of a plurality of electrical fields
US6953676B1 (en) * 1992-05-01 2005-10-11 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification device and method
US6664044B1 (en) * 1997-06-19 2003-12-16 Toyota Jidosha Kabushiki Kaisha Method for conducting PCR protected from evaporation
US6561208B1 (en) * 2000-04-14 2003-05-13 Nanostream, Inc. Fluidic impedances in microfluidic system
US6627159B1 (en) * 2000-06-28 2003-09-30 3M Innovative Properties Company Centrifugal filling of sample processing devices
US20020122747A1 (en) * 2000-09-19 2002-09-05 Mingqi Zhao Integrated microdevices for conducting chemical operations
GB0105831D0 (en) * 2001-03-09 2001-04-25 Toumaz Technology Ltd Method for dna sequencing utilising enzyme linked field effect transistors
US6418968B1 (en) * 2001-04-20 2002-07-16 Nanostream, Inc. Porous microfluidic valves
US6880576B2 (en) * 2001-06-07 2005-04-19 Nanostream, Inc. Microfluidic devices for methods development
US6981522B2 (en) * 2001-06-07 2006-01-03 Nanostream, Inc. Microfluidic devices with distributing inputs
US6803568B2 (en) * 2001-09-19 2004-10-12 Predicant Biosciences, Inc. Multi-channel microfluidic chip for electrospray ionization
AU2002232786A1 (en) * 2001-12-21 2003-07-24 3M Innovative Properties Company Centrifugal filling of sample processing devices
EP1415706B1 (en) * 2002-10-29 2017-07-12 Corning Incorporated Coated microstructure and method of manufacture
AU2003294602A1 (en) * 2002-12-13 2004-07-09 Aclara Biosciences, Inc. Closed-loop control of electrokinetic processes in microfludic devices based on optical readings
US7910064B2 (en) * 2003-06-03 2011-03-22 Nanosys, Inc. Nanowire-based sensor configurations
US20050095602A1 (en) * 2003-11-04 2005-05-05 West Jason A. Microfluidic integrated microarrays for biological detection
EP1547675A1 (en) * 2003-12-24 2005-06-29 Corning Incorporated Coated microstructures and methods of coating same
GB2414059B (en) * 2004-05-10 2008-06-11 E2V Tech Uk Ltd Microfluidic device
US7686040B2 (en) * 2004-06-24 2010-03-30 The Aerospace Corporation Electro-hydraulic devices
EP1864106A1 (en) * 2005-03-16 2007-12-12 Attogenix Biosystems Pte Ltd. Methods and device for transmitting, enclosing and analysing fluid samples
US7935318B2 (en) * 2005-06-13 2011-05-03 Hewlett-Packard Development Company, L.P. Microfluidic centrifugation systems
WO2007105584A1 (ja) * 2006-03-09 2007-09-20 Sekisui Chemical Co., Ltd. マイクロ流体デバイスおよび微量液体希釈方法
US20100151465A1 (en) * 2008-03-27 2010-06-17 Jingyue Ju Selective Capture and Release of Analytes
EP3964821A1 (en) * 2008-09-23 2022-03-09 Bio-Rad Laboratories, Inc. Droplet-based assay system
IT1397110B1 (it) * 2008-12-29 2012-12-28 St Microelectronics Rousset Microreattore autosigillante e metodo per eseguire una reazione
AU2010221102A1 (en) * 2009-03-06 2011-09-29 President And Fellows Of Harvard College Microfluidic, electrochemical devices
EP2419216A1 (en) * 2009-04-15 2012-02-22 Koninklijke Philips Electronics N.V. Microfluidic device comprising sensor
CN102439460B (zh) * 2009-05-19 2015-03-25 加利福尼亚大学董事会 多方向微流体装置和方法
UA120744C2 (uk) * 2009-11-24 2020-02-10 Опко Дайегностікс, Елелсі Мікрофлюїдна система

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003010A (zh) * 2006-01-19 2007-07-25 财团法人工业技术研究院 自封式高温生化反应装置及其方法
CN1996009A (zh) * 2007-01-10 2007-07-11 博奥生物有限公司 一种用于多样品分析的微流体器件和使用方法
CN101307834A (zh) * 2007-03-30 2008-11-19 霍夫曼-拉罗奇有限公司 微流体温度驱动的阀
CN101906378A (zh) * 2010-07-05 2010-12-08 博奥生物有限公司 一种气泡微阀及基于此气泡微阀的微流控芯片
CN102886280A (zh) * 2012-08-28 2013-01-23 博奥生物有限公司 一种微流控芯片及其应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3113886A4 (en) * 2014-03-07 2017-10-25 CapitalBio Corporation A multi-index detection microfluidic chip and methods of use
US10300483B2 (en) 2014-03-07 2019-05-28 Capitalbio Technology Corporation Multi-index detection microfluidic chip and methods of use
CN109810875A (zh) * 2019-03-28 2019-05-28 苏州点晶生物科技有限公司 一种扇形核酸多联检装置
CN114100716A (zh) * 2021-12-01 2022-03-01 上海天马微电子有限公司 微流控装置及其驱动方法
CN114100716B (zh) * 2021-12-01 2023-04-21 上海天马微电子有限公司 微流控装置及其驱动方法
CN117554380A (zh) * 2024-01-12 2024-02-13 江苏优众微纳半导体科技有限公司 用于流式检测的微流控芯片检测系统
CN117554380B (zh) * 2024-01-12 2024-03-26 江苏优众微纳半导体科技有限公司 用于流式检测的微流控芯片检测系统

Also Published As

Publication number Publication date
US9895690B2 (en) 2018-02-20
CN102886280A (zh) 2013-01-23
US20150217290A1 (en) 2015-08-06
CN102886280B (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
WO2014032396A1 (zh) 一种微流控芯片及其应用
US11214823B2 (en) Sample-to-answer system for microorganism detection featuring target enrichment, amplification and detection
AU2005208085B8 (en) A diagnostic system for carrying out a nucleic acid sequence amplification and detection process
JP4665960B2 (ja) 生体試料反応用チップ、生体試料反応装置、および生体試料反応方法
TWI411779B (zh) 微流體生物晶片及其自動化反應偵測系統
US10590477B2 (en) Method and apparatus for purifying nucleic acids and performing polymerase chain reaction assays using an immiscible fluid
US20210252506A1 (en) Microfluidic Device, Method for Producing Same, and Use Thereof
CN102199529A (zh) 一种生物芯片杂交系统
EA018889B1 (ru) Способ определения нуклеиновых кислот методом полимеразно-цепной реакции в режиме реального времени и устройство для его осуществления
US20140255270A1 (en) Removing sacrificial layer to form liquid containment structure and methods of use thereof
JP2009178146A (ja) 生体試料反応用チップおよび生体試料反応方法
TW202016236A (zh) 具有第一和第二黏著層的中介層
US20240165612A1 (en) Microfluidic reaction vessel array with patterned films
WO2017213586A1 (en) Rapid thermal cycling for sample analyses and processing
CN104884168A (zh) 从阱提取受抑制液体
Tong et al. Combining sensors and actuators with electrowetting-on-dielectric (EWOD): advanced digital microfluidic systems for biomedical applications
JP5131538B2 (ja) 反応液充填方法
Wu et al. Research to improve the efficiency of double stereo PCR microfluidic chip by passivating the Inner Surface of Steel Capillary with NOA61
Lin et al. Passively Driven Microfluidic Device with Simple Operation for Quantitative Droplet LAMP Sssay For Point-of-Care Analysis
CN116836792B (zh) 一种圆盘式核酸检测微流控芯片
JP2010063395A (ja) 生体試料反応用チップ及び生体試料反応方法
JP2009150754A (ja) 生体試料反応用チップ、生体試料反応装置、および生体試料反応方法
Shahid et al. Microfluidic devices for DNA amplification
Wang Reversing the Coffee-Ring Effect for Enrichment in Diagnostic Assays
US20200114361A1 (en) Method and system for localized heating by illumination of patterned thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14424995

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833263

Country of ref document: EP

Kind code of ref document: A1