WO2014032359A1 - Dispositif de remorquage destiné à une prospection magnétique maritime de haute précision - Google Patents

Dispositif de remorquage destiné à une prospection magnétique maritime de haute précision Download PDF

Info

Publication number
WO2014032359A1
WO2014032359A1 PCT/CN2012/082780 CN2012082780W WO2014032359A1 WO 2014032359 A1 WO2014032359 A1 WO 2014032359A1 CN 2012082780 W CN2012082780 W CN 2012082780W WO 2014032359 A1 WO2014032359 A1 WO 2014032359A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating body
processing module
data processing
fixed
magnetometer
Prior art date
Application number
PCT/CN2012/082780
Other languages
English (en)
Chinese (zh)
Inventor
刘雁春
Original Assignee
付建国
王海亭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 付建国, 王海亭 filed Critical 付建国
Publication of WO2014032359A1 publication Critical patent/WO2014032359A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/56Towing or pushing equipment
    • B63B21/66Equipment specially adapted for towing underwater objects or vessels, e.g. fairings for tow-cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2211/00Applications
    • B63B2211/02Oceanography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat

Definitions

  • the invention relates to a marine magnetic measurement
  • the auxiliary device in particular, a high-precision marine magnetic measuring towing device which is stable in draft water, accurate in positioning of the magnetic measuring position and capable of preventing damage to the magnetometer by collision with underwater obstacles.
  • the tow measurement mode is the main means to obtain the magnetic information of the ocean geospatial.
  • the known drag measurement method is to place the ocean magnetometer on the towing device, and the tow device is directly towed by the ship cable for navigation measurement, that is, the magnetic force of the magnetic measurement position (the horizontal position of the ocean magnetometer) is measured in real time.
  • the length of the towing cable is generally three times the length of the ship according to the relevant work specifications. Since the existing towing device is simply a non-magnetic float or life jacket, the following problems exist:
  • the speed of the surveying ship has a great influence on the draft of the magnetometer (that is, the depth of the magnetometer from the sea surface).
  • the draught depth of the magnetometer is equal to the set static draught depth, that is, the magnetometer is from the float. Or the depth of the life jacket; when the ship's speed is high, the magnetometer is subjected to the towing force to produce a certain floating (the floating amplitude is proportional to the speed), and the magnetometer's draft is less than the set static draft.
  • the change in the depth of the magnetometer's draught affects the accuracy of the magnetic measurement to the uniform datum and also the detection resolution of the submarine magnetic target.
  • the magnetic measurement position is calculated from the position of the ship according to the straight line assumption.
  • the positioning error is large and the measurement accuracy is low, especially when the ship and the towing device are affected by wind and flow, or when the ship and the towing device turn,
  • the calculated magnetic measurement position error is larger, which further reduces the accuracy of the magnetic measurement.
  • the present invention is to solve the above technical problems existing in the prior art, and provides a stable draft of the draft, accurate positioning of the magnetic measurement position, and prevention of collision with the underwater obstacle to damage the magnetometer. High precision marine magnetic measuring towing device.
  • the technical solution of the present invention is: a high precision marine magnetic measuring towing device,
  • the floating body is provided with a streamer connection device at the front end of the floating body, and the front support and the rear support are fixed on the floating body, one end of the rotating rod is connected with the front support through the rotating shaft, and the other end of the rotating rod passes through the pin shaft and the rear support
  • Connected to the rotating rod there is a fixed length rod with adjustable length, the lower end of the fixed rod is fixedly connected with a flow guiding shield;
  • a data processing module is fixed in the floating body, and a satellite positioning device and an interface circuit are connected with the data processing module.
  • the floating body is formed by two cross beams connecting two streamlined buoys, and the streamer connecting device is located on the beam at the front end.
  • a collision detecting sensor is disposed at a front end of the flow guiding shield, and an output of the collision detecting sensor is connected to the data processing module.
  • the invention adopts a fixed length rod and a flow guiding protective cover with adjustable length.
  • the magnetometer When measuring, the magnetometer is placed in the flow guiding protective cover, and the speed of the measuring ship has little influence on the drafting depth of the magnetometer, and the measuring precision and the magnetic property of the seabed are improved.
  • the detection resolution of the target; the set data processing module and the satellite positioning device can accurately locate the magnetic measurement position, and solve the error problem existing in the prior art due to the calculation; when the collision with the underwater obstacle occurs, the generated stress The pin is broken, and the depth rod will drive the magnetometer to rise with the rotation of the rotating rod, which protects the magnetometer.
  • the invention Compared with the prior art, the invention has the advantages of stable draft of the draft, accurate positioning of the magnetic measurement position, and prevention of collision with underwater obstacles and damage of the magnetometer.
  • FIG. 1 is a schematic view showing the structure of a first embodiment of the present invention.
  • Fig. 2 is a block diagram showing the circuit principle of the embodiment 1 of the present invention.
  • Fig. 3 is a perspective view showing the structure of a second embodiment of the present invention.
  • Figure 4 is a front view of Figure 3.
  • Figure 5 is a left side view of Figure 3.
  • Figure 6 is a top view of Figure 3.
  • Figure 7 is a block diagram showing the circuit principle of Embodiment 2 of the present invention.
  • floating body 1 For the integrated boat structure, non-magnetic boats, such as small slabs, can be directly used.
  • the front end of the floating body 1 has a streamer connecting device 2 for tying the streamer, and a front support at the front side of the floating body 1 is fixed.
  • a rear support 4 at the rear one end of the rotating rod 5 is connected to the front support 3 through a rotating shaft, and the other end of the rotating rod 5 is connected to the rear support 4 through a pin shaft, and the rotating rod 5 Connected to a fixed length rod 6 of adjustable length and located on the side of the floating body 1.
  • the depth rod 6 is preferably fixed to the side of the rotating rod 5 near the pin shaft to obtain a large rotational torque.
  • Depth rod 6 The lower end is fixedly connected with a flow guiding shield 7 , and the front end of the deflecting shield 7 is filled with a shock absorbing material and is streamlined to reduce navigation resistance, and a data processing module 8 is fixed on the floating body 1 , and the data processing module 8 is adopted.
  • the C51 MCU selects the non-volatile FLASH RAM to record the stored data.
  • the data processing module 8 is connected to the satellite positioning device 9 and the interface circuit 10 .
  • Satellite positioning device 9 can be used GPS receiver or GLONASS receiver, interface circuit 10 can be wired (R485, R232 Etc.), by wired (streamer) to the ship, wireless communication interface circuit (GPRS or Wi-Fi) Etc.), rumored by wireless. All structural parts are made of non-magnetic materials such as FRP, wood, and non-magnetic steel.
  • the magnetometer 14 When measuring, place the magnetometer 14 in the flow guide cover 7 and adjust the length of the depth bar 6 (drink depth) and the rotating lever as needed. The location on the top.
  • the ship is connected to the streamer connecting device 2 through a cable, and the ship is towed by the ship to perform the navigation measurement in the first embodiment of the present invention.
  • the satellite positioning device 9 can accurately determine the horizontal position of the magnetometer and transmit it to the data processing module. 8.
  • the magnetometer transmits the measured data to the data processing module 8, and the data processing module 8 stores and passes through the interface circuit 10 Passed to the ship.
  • the generated stress breaks the pin, and the depth rod 6 will drive the magnetometer to rotate with the rotation of the rotating rod 5 to prevent the magnetometer from being damaged by the collision.
  • Embodiment 1 the basic structure is the same as that of Embodiment 1, and the difference from Embodiment 1 is the floating body.
  • the two streamlined buoys 12 are integrally connected by two front and rear beams 11, and the streamer connecting device 2 is located on the beam 11 at the front end.
  • Two streamlined buoys in the float 1 12 The upper front support 3 at the front and the two rear support 4 at the rear are respectively fixed, and the rotating rod 5 is a rectangular frame, and one end (front frame) of the rotating rod 5 passes through the rotating shaft and the two front branches.
  • the other end (the rear frame) of the rotating rod 5 is connected to the two rear supports 4 through the pin shaft, and the two length-adjustable depth rods 6 are respectively connected with the front frame and the rear frame of the rotating rod 5, Two depth rods 6
  • the lower end is fixedly connected to the flow guiding shield 7, and a collision detecting sensor 13 is disposed at the front end of the deflector shield 7, and the output of the collision detecting sensor 13 is connected to the data processing module 8.
  • Collision detection sensor 13 may be a pressure sensor or an acceleration sensor. When colliding with an underwater obstacle, the collision detecting sensor 13 detects a changed pressure or acceleration signal and transmits it to the data processing module 8 by the data processing module 8 Make a judgment and output an alarm signal to alert the alarm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

La présente invention a trait à un dispositif de remorquage destiné à une prospection magnétique maritime de haute précision, lequel dispositif de remorquage est équipé d'un corps flottant (1). L'extrémité avant du corps flottant (1) est pourvue d'un dispositif de raccordement de remorque (2). Un socle avant (3) et un socle arrière (4) sont fixés sur le corps flottant (1). Une extrémité d'une traverse (5) est raccordée au socle avant (3) par l'intermédiaire d'un arbre de rotation, et l'autre extrémité de la traverse (5) est raccordée au socle arrière (4) par l'intermédiaire d'un arbre de broche. Une tige de détermination de profondeur (6) qui est dotée d'une longueur réglable est raccordée à la traverse (5), et l'extrémité inférieure de la tige de détermination de profondeur (6) est raccordée à demeure à un couvercle de protection de guidage de l'écoulement (7). Un module de traitement de données (8) est fixé sur le corps flottant (1), et un dispositif de géolocalisation par satellite (9) ainsi qu'un circuit d'interface (10) sont connectés au module de traitement de données (8). Le présent dispositif est stable en termes de tirant d'eau et précis en termes de localisation de la position de prospection magnétique, et permet d'empêcher une collision avec un obstacle sous-marin qui endommagerait un magnétomètre.
PCT/CN2012/082780 2012-08-30 2012-10-11 Dispositif de remorquage destiné à une prospection magnétique maritime de haute précision WO2014032359A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210314037.2A CN102826208B (zh) 2012-08-30 2012-08-30 高精度海洋磁力测量拖曳装置
CN201210314037.2 2012-08-30

Publications (1)

Publication Number Publication Date
WO2014032359A1 true WO2014032359A1 (fr) 2014-03-06

Family

ID=47329565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082780 WO2014032359A1 (fr) 2012-08-30 2012-10-11 Dispositif de remorquage destiné à une prospection magnétique maritime de haute précision

Country Status (2)

Country Link
CN (1) CN102826208B (fr)
WO (1) WO2014032359A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826208A (zh) * 2012-08-30 2012-12-19 刘雁春 高精度海洋磁力测量拖曳装置
CN109061746A (zh) * 2018-09-12 2018-12-21 国家海洋局第海洋研究所 一种卫星传输海洋磁力探测装置
CN111580168A (zh) * 2020-04-29 2020-08-25 山东省物化探勘查院 一种海洋磁法测量系统及其应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399359A (zh) * 2013-08-21 2013-11-20 国家海洋局第二海洋研究所 一种海底地球物理观测装置
CN106741753B (zh) * 2015-11-23 2018-07-31 中国科学院沈阳自动化研究所 一种自主水下机器人磁力探头伸缩搭载装置
CN109001819A (zh) * 2018-05-07 2018-12-14 哈尔滨工程大学 一种用于水下监测的海洋磁力探测装置及探测网
CN108657393B (zh) * 2018-07-12 2019-11-12 广州海洋地质调查局 一种水下拖曳式高精度重磁探测系统及方法
CN109991669B (zh) * 2019-04-11 2020-09-22 河海大学 一种无人船拖曳水下磁法探测系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010706A (en) * 1973-12-13 1977-03-08 Etat Francais Represente Par Le Delegue Ministeriel Pour L'armement Towed device for measuring magnetic field and the vertical gradient thereof at sea
US4175432A (en) * 1978-07-07 1979-11-27 Gibson Carl H Apparatus for towing an underwater instrumentation package
CN1283157A (zh) * 1997-12-23 2001-02-07 施鲁博格控股份有限公司 带有缓冲器的偏导器
US6518913B1 (en) * 2000-05-19 2003-02-11 Caterpillar Inc Apparatus and method for locating objects under a body of water
US7002350B1 (en) * 2003-11-19 2006-02-21 Telluric Exploration, Llc Marine oil and gas exploration system using telluric currents as a natural electromagnatic energy source
CN101046517A (zh) * 2006-03-29 2007-10-03 Pgs地球物理公司 用于地下探测的低噪声拖曳式电磁系统
CN201707446U (zh) * 2010-06-25 2011-01-12 中国石油天然气集团公司 极浅水及河流勘探气枪阵列收放装置
CN202783742U (zh) * 2012-08-30 2013-03-13 刘雁春 高精度海洋磁力测量拖曳装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637039B (zh) * 2012-04-19 2013-09-18 中国船舶重工集团公司第七一〇研究所 海洋拖曳线阵三翼定位方法
CN102826208B (zh) * 2012-08-30 2015-12-30 刘雁春 高精度海洋磁力测量拖曳装置
CN102923283A (zh) * 2012-11-22 2013-02-13 刘雁春 水下定深定高拖曳装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010706A (en) * 1973-12-13 1977-03-08 Etat Francais Represente Par Le Delegue Ministeriel Pour L'armement Towed device for measuring magnetic field and the vertical gradient thereof at sea
US4175432A (en) * 1978-07-07 1979-11-27 Gibson Carl H Apparatus for towing an underwater instrumentation package
CN1283157A (zh) * 1997-12-23 2001-02-07 施鲁博格控股份有限公司 带有缓冲器的偏导器
US6518913B1 (en) * 2000-05-19 2003-02-11 Caterpillar Inc Apparatus and method for locating objects under a body of water
US7002350B1 (en) * 2003-11-19 2006-02-21 Telluric Exploration, Llc Marine oil and gas exploration system using telluric currents as a natural electromagnatic energy source
CN101046517A (zh) * 2006-03-29 2007-10-03 Pgs地球物理公司 用于地下探测的低噪声拖曳式电磁系统
CN201707446U (zh) * 2010-06-25 2011-01-12 中国石油天然气集团公司 极浅水及河流勘探气枪阵列收放装置
CN202783742U (zh) * 2012-08-30 2013-03-13 刘雁春 高精度海洋磁力测量拖曳装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826208A (zh) * 2012-08-30 2012-12-19 刘雁春 高精度海洋磁力测量拖曳装置
CN109061746A (zh) * 2018-09-12 2018-12-21 国家海洋局第海洋研究所 一种卫星传输海洋磁力探测装置
CN109061746B (zh) * 2018-09-12 2023-08-22 国家海洋局第一海洋研究所 一种卫星传输海洋磁力探测装置
CN111580168A (zh) * 2020-04-29 2020-08-25 山东省物化探勘查院 一种海洋磁法测量系统及其应用

Also Published As

Publication number Publication date
CN102826208A (zh) 2012-12-19
CN102826208B (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
WO2014032359A1 (fr) Dispositif de remorquage destiné à une prospection magnétique maritime de haute précision
AU2011200269B2 (en) Tension management control system and methods used with towed marine sensor arrays
CN102923283A (zh) 水下定深定高拖曳装置
JP2012032273A (ja) 港湾構造物計測装置
AU2013251267A1 (en) Steerable towed signal source
CN104386216B (zh) 一种声速标定式船舶吃水检测系统及其工作方法
CN109163709A (zh) 一种无人船一体化水下地形的测量方法
KR20130068305A (ko) 흘수 측정장치
CN110087985B (zh) 拖船接近控制
US9383468B2 (en) Streamers without tailbuoys
CN108803630A (zh) 一种无人船系统及基于该无人船系统进行地形测量的方法
CN202987483U (zh) 水下定深定高拖曳装置
US20140301163A1 (en) Marine seismic variable depth control method and device
CN207129106U (zh) 一种具有水下噪声源被动定位功能的海上浮标
CN202783742U (zh) 高精度海洋磁力测量拖曳装置
US4406242A (en) Oceanographic sensor system
JP2007101512A (ja) 淡水域並びに海域の探査装置
CN110568426A (zh) 一种侧扫声呐仪的防拖装置
CN204250320U (zh) 一种声速标定式船舶吃水检测系统
CN208453221U (zh) 一种用于快艇上固定多波束探测装置的安装支架
CN107202988A (zh) 一种简易的水声定位方法
EP3087225B1 (fr) Dispositif et procédé pour obtenir des informations sur le sol d'une zone pour le dragage.
Zhang et al. Advanced Mapping of the Seafloor Using Sea Vehicle Mounted Sounding Technologies
Russell Precision Hydrographic Surveys in the North Sea—Location of Wrecks and Obstructions
Bassani SAIC marine unexploded ordnance (UXO) survey system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883772

Country of ref document: EP

Kind code of ref document: A1