WO2014032204A1 - 具暗区填补的led驱动电路结构 - Google Patents

具暗区填补的led驱动电路结构 Download PDF

Info

Publication number
WO2014032204A1
WO2014032204A1 PCT/CN2012/001150 CN2012001150W WO2014032204A1 WO 2014032204 A1 WO2014032204 A1 WO 2014032204A1 CN 2012001150 W CN2012001150 W CN 2012001150W WO 2014032204 A1 WO2014032204 A1 WO 2014032204A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
led
electrically connected
unit
capacitor
Prior art date
Application number
PCT/CN2012/001150
Other languages
English (en)
French (fr)
Inventor
谢嘉德
陈明鸿
Original Assignee
海立尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海立尔股份有限公司 filed Critical 海立尔股份有限公司
Priority to PCT/CN2012/001150 priority Critical patent/WO2014032204A1/zh
Publication of WO2014032204A1 publication Critical patent/WO2014032204A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices

Definitions

  • the invention relates to an LED driving circuit structure with dark region filling, in particular to a multi-step voltage linear constant current driving, and a dark region filled LED driving circuit structure, the background technology
  • FIG. 1 it is a conventional multi-level voltage LED linear constant-strip driving circuit structure, which is mainly rectified by the RG in the figure to the AC AC power (AC+, AC-), after rectification.
  • the input voltage (Vin) and the incoming current (lin) form a supply voltage and current source, and then the LED (LED1-LED3) is controlled by the flip chip.
  • the driver chip has a voltage control and is turned on or off.
  • the current source is fixed so that the lighting current flowing through each S LED is a fixed value, and in addition, PS1 in S is a passive component unit composed of a resistor or a capacitor.
  • the existing multi-level voltage LED linear constant current driving method shown in FIG. 1 has the biggest disadvantage in that the voltage value of a specific region is reduced to an inability to ignite the LED during each cycle of the inrush voltage (Vin).
  • Vin inrush voltage
  • the frequency of Taiwan, Vin, is 120Hz, that is, there will be a dark area every 1/120th.
  • a multi-level voltage swaying LED illuminator has a dark area, it appears in the actual situation as the flashing of the lighting, and the flashing of the lighting is often a major problem in life. Therefore, consider the actual The improvement of life application and the increase of luminous efficiency of LED lighting device itself, the invention and improvement of dark area filling technology will become a key item in the development of LED lighting in this stage. Summary of the invention
  • the invention relates to an LED driving circuit structure with dark region filling, which comprises a whole 3 ⁇ 4t unit, a dark region filling unit, and an LED multi-step voltage constant tear driving unit.
  • the illumination of the illumination LED can be stabilized, the flicker caused by the dark region effect caused by the change of the supply voltage level is not generated, the efficiency of the LED illumination is improved, and the application can achieve a more perfect illumination effect. .
  • the present invention provides an LED driving circuit structure with dark region filling for driving at least two sets of LED units connected in series
  • the LED driving circuit structure with dark region filling includes: a rectifying unit; a region filling unit, wherein the output terminal is configured to provide a total voltage drop of the LED unit, and the dark region filling unit further includes a first capacitor, a first diode, a second diode, a second capacitor, and a third diode; and an LED multi-step voltage constant current driving unit electrically connected to the output end of the dark region padding unit and outputting at least two sets of clamping voltages to different LEDs.
  • the illumination LED can be unaffected by the supply voltage source in the low voltage dark area to achieve a more perfect illumination without flicker.
  • FIG. 1 is a conventional conventional LED driving circuit diagram.
  • FIG. 2 is a diagram showing an embodiment of an LED driving circuit structure with dark region filling according to the present invention.
  • Figure 3 is a diagram showing an embodiment of a dark area padding unit of an LED driving circuit of the present invention.
  • FIG. 4 is a diagram showing a state of charge of a dark-area padding unit of the present invention.
  • Fig. 5 is a view showing an embodiment of a discharge state of a dark area padding unit of the present invention.
  • the figure shows a dark-area voltage waveform diagram for a conventional illumination LED driver circuit.
  • Fig. 6B is a light-dark table corresponding to each time zone LED1-LED3 of Fig. 6A.
  • Fig. 7A is a view showing an embodiment of a dark region ⁇ voltage waveform of an LED driving circuit structure with a dark region padding according to the present invention.
  • Fig. 7B is a light-dark table corresponding to each time zone LED1-LED3 of Fig. 7A.
  • FIG. 1 is a schematic diagram of a conventional illumination LED driving circuit.
  • 2 is a view showing an embodiment of a structure of an LED driving circuit with a dark region filling according to the present invention.
  • 3 is an LED driving power of the present invention
  • a dark area fill unit embodiment diagram of the road. 4 is a diagram showing an embodiment of a state of charge of a dark area padding unit.
  • FIG. 5 is a diagram of a discharge state of a dark area padding unit
  • FIG. 6A is a waveform diagram of a dark area voltage generated by a conventional illumination LED driving circuit
  • Fig. 6B is a light-dark table corresponding to each time zone LED1-LED3 of Fig. 6A
  • Fig. 7A is a view showing an embodiment of a dark region padding voltage waveform of an LED driving circuit structure with a dark region padding according to the present invention.
  • Figure 7B is a light and dark table corresponding to each time zone LED1-LED3 of Figure 7A.
  • a dark area-filled LED driving circuit structure 200 of the present invention includes: a rectifying unit 10, a dark area padding unit 20, and an LED multi-step voltage constant current driving unit 30.
  • the dark area filling unit ⁇ further includes: a first capacitor C1, a second capacitor C2, a first diode D1, a second tube D2, and a third diode D3.
  • a first capacitor C1 a second capacitor C2
  • a first diode D1 a second tube D2
  • a third diode D3 There are three embodiments for illuminating LEDs in series, but the number of illumination LEDs is not limited to this.
  • the rectifying unit 1 which can be a bridge full-wave rectifier, the function of the rectifying unit 10 in the structure of the circuit is to rectify the alternating current power into a direct current power supply as a total voltage source for supplying the overall circuit structure and the illumination LED.
  • Icl-Ic3 in 3 ⁇ 4 2 is the three constant current sources in the LED multi-level voltage constant current
  • the action mode is as follows: Only when I1 is turned on, only Icl is turned on via SW1, where SW1 is controlled by 50V voltage; when LED1 and LED2 are turned on, only Ic2 is turned on via SW2, where S 2 is 100V.
  • Voltage control is turned on; when LED1 and LED2 and LE3 are turned on, only Ic3 is turned on via SW3, where S3 is controlled by 140V voltage control; this ensures that all turned-on LEDs pass through regardless of the conduction of several LEDs.
  • the currents are all constant currents of the same magnitude.
  • the dark area ⁇ unit 20 includes a first capacitor C1, a first diode D1, a second diode D2, a second capacitor C2, and a third diode Tube 3.
  • the first capacitor C1 has a first end portion 21 and a second end portion 22, the first end portion 21 is electrically connected to the output end of the rectifying unit 10, and the first capacitor C1 is used as an element for storing electric energy.
  • the input voltage Tin and the input current I in of the first end portion 21 are trapped and stored in the first capacitor C1, and when the input voltage Vin at the first end portion 21 is insufficient to drive the illumination LED, the first Capacitor C1 takes the voltage to supply electrical energy.
  • the first tube D1 has a negative terminal electrically connected to the second end portion 22 and a positive terminal thereof connected to the ground; when the inrush voltage Vin of the first end portion 21 charges the first capacitor C1, the first tube D1 is Reverse, not conductive.
  • the first end portion 21 is for providing a total electric power of at least two-stage illumination LED unit; when the input voltage Vin of the first end portion 2i is For When the first capacitor CI is charged and charged, the second diode D2* is reversed and non-conducting.
  • the second capacitor C2 has a third end portion 23 and a fourth end portion 24, and the third end portion 23 Electrically connected to the positive terminal of the second diode D2, the fourth end portion 24 is grounded; the second capacitor C 2 is also an element for storing electrical energy, the rushing voltage Vin and the input current from the first end portion 21 l iii input charge and stored in the second capacitor C2, and when the input voltage Vin of the first end portion 21 is insufficient to drive the illumination LED, the second capacitor C2 and the first capacitor C1 output voltage to supply electric energy.
  • the storage voltage of one capacitor C1 and the second capacitor C2 can be selected to be 70V (volts).
  • the third diode D3 has a positive terminal electrically connected to the second end portion 22, and a negative terminal thereof electrically connected to the third end portion 23; when the first end portion 21 is biased with the voltage a to supply power and is first When the capacitor C1 is charged, the third diode D3 is turned on, and the charging power can flow into the second capacitor C2 to charge the second capacitor C2.
  • the LED multi-step voltage constant current driving unit 30 is electrically connected to the output end of the dark region padding unit 20 and outputs at least two sets of clamping voltages respectively to the negative terminal of one LED; and the implementation of three Vietnamese LEDs in FIG.
  • the LED multi-level voltage constant the moving unit 30 clamps the lighting voltages of the LED1, the LED2, and the L1D3 to 50V, 50V, and 40V, respectively, and sets the electric current S of all the LEDs flowing in series.
  • the specific current value that is, the LED1 needs to be 50V, and the LED1+LED2 needs to ⁇ voltage, and the LED1+LED2+LED3 needs to be lit.
  • the intrusion voltage Vin of the spanning unit 20 at the first end portion 21 is higher than the first capacitor C1 and the second capacitor.
  • the first fel tube D1 and the second tube D2 are not turned on in the reverse direction, and the third diode D3 is turned on, and the input voltage of the first end portion 21 can be used for the first capacitor Ci and the first capacitor Two capacitor C2 charging.
  • the intrusion voltage Vin of the dark region padding unit 20 at the first end portion 21 is lower than the first capacitor C1 and the second capacitor C2.
  • the first diode M and the second diode D2 are turned on, and the third diode D3 is not turned on in reverse.
  • the first capacitor C1 and the second capacitor C2 release power, and supply 70V. -5OV voltage, illuminate LED1.
  • S6A a dark-area diagram is generated for the conventional LED swaying circuit, and S is shown as the input voltage Vin curve of the bridge-type full-wavelength first end portion 21, which is a DC voltage and is introduced. It can be changed at a frequency of 120 Hz from 0 to 0 (in Taiwan). Also as shown in ® 6A, one LED (LED1), two LEDs (LED1+LED2), and three LEDs (LED1+) can be lit. The voltage levels of LED2+LED3> are drawn at 50V, 100V, and OY, respectively, and ⁇ A divides the grab-in voltage into 7 regions (1-7). As can be seen from S 6A, the input voltage Viii is in Zone 1 and 7.
  • the voltage value of the zone is less than 50V.
  • the voltage value of the two zones is not enough to light the LE, so it is impossible to light two or three LEDs. At this time, all three LEDs are not lit, forming a dark zone, resulting in The reason for the lighting flashing,
  • the LEDs of the conventional illumination LED driving circuit are displayed in a bright (ON) or dark (OFF) table according to the input voltage Vin curve. Referring to the table shown in FIG. 6A and FIG. 6B, it can be clearly seen that LED1, LED2, and LED3 are not illuminated in Zones 1 and 7, and the illumination forms dark areas.
  • the rushing voltage begins to charge the first capacitor C1 and the second capacitor C2.
  • the charging path is as shown in FIG. 4, and the input voltage Vin is enough to illuminate one to three LEDs, and no dark area appears.
  • the input voltage ⁇ of the first end portion 21 is smaller, the first capacitor C1 and the second capacitor C2 start to discharge, and the discharge path is as shown in FIG. 5, and the capacitance characteristic of the discharge speed can be determined by selecting a capacitance value.
  • the discharge time of the first capacitor C1 and the second capacitor C2 continues from the voltage curve of the input voltage Vin to the voltage of the input voltage Vin to the next cycle.
  • the voltage curve of the input voltage Vin crosses 70V upward until the first capacitor C1 and the second capacitor C2 continue. Discharge and maintain the voltage above 50V.
  • the energy stored by the first capacitor C1 and the second capacitor C2 illuminates the LED1, and when the voltage of the Han people is higher than 70V, Voltage Vin is successively lit LED1, LED1 + LED2, and LED1 + LED2 + LED3.
  • the LEDs are displayed in a bright (ON) or dark (OFF) table according to the input voltage Vin curve.
  • a dark area padding unit 20 of the present invention is added. After that, regardless of whether the voltage of the input voltage is less than 50V, at least one of the LEDs will be lit, and the dark area will be filled with s LEDs, which will not cause flickering due to dark areas.

Abstract

一种具有暗区填补的LED驱动电路结构,其包括一整流单元,一暗区填补单元,及一LED多阶电压恒流驱动单元。其主要是应用在多阶线性驱动的LED照明灯具,且具有整流单元及LED多阶电压恒流驱动单元的驱动电路中加入一个暗区填补单元。该电路结构可使照明LED的发光稳定,不产生因供电压准位变化的影响产生暗区效应而导致的闪烁提高LED照明的发光效率。

Description

具暗区填补的 LED駆动电路结构 技术领域
本发明涉及一种具暗区填补的 LED驱动电路结构, 特別是涉及一种多 阶电压线性恒流驱动, 并具暗区填补的 LED驱动电路结构, 背景技术
如图 1所示, 为现有习知的多阶电压 LED线性恒浚驱动电路结构, 其 主要是由图示中的 RG对瑜入的 AC交流电(AC+, AC- )做整流, 由整流后的 输入电压(Vin)及 入电流(lin)形成供应电压及电流源, 再借由駆动芯片 ϋΐ控制 LED (LED1-LED3)的发光. 驱动芯片 ϋΐ 中并具有由电压控制导 通与否的定电流源以使流经每一 S LED的点亮电流为一固定值, 另外, S 中的 PS1为电阻或电容所组成的被动元件单元。
如图 1所示的现有的多阶电压 LED线性恒流驱动方式, 其最大缺点在 于揄入电压(Vin)每一周期皆有一特定区域的电压值会降低至无法爨动 LED,在此时间内没有任何一 « LED可以被点亮,以交流电 60Hz供电为倒 <台 湾即 Vin的頻率为 120Hz, 也就是每 1/120秒即会有一次暗区出现。 当一多阶电压駆动的 LED照明装置有暗区出现时, 其表现在实际状况 为 照明灯光的闪烁, 而照明灯光的闪烁在生活上经常是被要求改善的一大困 扰. 因此, 考虑实际生活应用上的改良及 LED照明装置本身发光效率的增 加, 暗区填补技术的发明与改良将成为本阶段 LED照明发展的一个重点項 闺。 发明内容
本发明为一种具暗区填补的 LED驱动电路结构,其包括一整 ¾t单元,一 暗区填补单元, 及一 LED多阶电压恒淚驱动单元。 借由本发明的实施可使 照明 LED的发光稳定, 不产生因供应电压准位变化的影响产生暗区效应而 导致的闪烁, 使 LED照明的发先效率提升, 其应用能达到更完美的发光功 效。
为达上迷功效, 本发明提供一种具暗区填补的 LED驱动电路结构用以 驱动至少两组串接的 LED单元, 此具暗区填补的 LED驱动电路结构包括:一 整流单元; 一暗区填孙单元, 其撿出端用以提供 LED单元的总压降, 暗区 填补单元又包括有一第一电容、 一第一二极管、 一第二二极管、 一第二电 容、 及一第三二极管; 以及一 LED多阶电压恒流驱动单元, 电性连接于暗 区填补单元的输出端且输出至少两组的箝制电压分别至不同的 LED. 借由本发明的实施, 至少可达到下列进步功效:
1、 照明 LED的发先可以不受供应电压源在低电压暗区的影响, 达到无 闪烁的更完美发光功效。
2、不但有保护使用者眼晴的功能,更可增加照明 LED灯具的发光效率。 上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征以及优点能够更明显易懂, 以下特举较佳实施例,并配合附 图,详细说明如下。 附困的筒要说明
图 1为现有习知的一种照明 LED驱动电路图。
图 2为本发明的一种具暗区填补的 LED驱动电路结构实施例图.
图 3为本发明的一种 LED驱动电路的暗区填补单元实施例图.
图 4为本发明的一种暗区填补单元的充电状态实施例 ¾ ·
图 5为本发明的一种暗区填补单元的放电状态实施例图。
图 为习知的照明 LED驱动电路产生暗区电压波形图.
图 6B为图 6A的对应各时区 LED1- LED3明暗表。
图 7A为本发明的一种具暗区填补的 LED驱动电路结构暗区楱补电压波 形实施例图。
图 7B为图 7A的对应各时区 LED1-LED3明暗表。
【主要元件符号说明】
100 现有 n知照明 LED驱动电路结构
200 具暗区填 的 LED驱动电路结构
10 整流单元 20 暗区填补单元
C1 第一电容 C2 第二电容
D1 第一 管 D2 第二二极管
D3 第三二极管 21 第一端部
22 第二端部 23 第三端部
24 第四端部 30 LED多阶电压恒 动单元
Vin 输入电压 I in 输入电流
PS1 被动元件 Icl-Ic3 定电流
SW1-SW3 切换开关 实现发明的最佳方式
图 1为现有习知的一种照明 LED驱动电路图。 图 2为本发明的一种具 暗区填补的 LED驱动电路结构实施例图。 图 3为本发明的一种 LED驱动电 路的暗区填补单元实施例图。 图 4为暗区填补单元的充电状态实施例图。 图
5为暗区填补单元的放电状态实施例图, 图 6A为现有习知的照明 LED驱动 电路产生暗区电压波形图。 图 6B为图 6A的对应各时区 LED1- LED3明暗表。 图 7A为本发明的一种具暗区填补的 LED驱动电路结构暗区填补电压波形实施 例图。 图 7B为图 7A的对应各时区 LED1-LED3明暗表.
如图 2所示, 为本发明的一种具暗区填补的 LED驱动电路结构 200, 其 包括: 一整流单元 10、 一暗区填补单元 20、 一 LED多阶电压恒流驱动单元 30。 暗区填^ «单元 20又包括有: 一第一电容 Cl、 一第二电容 C2、 一第一 二极管 Dl、一第二 管 D2、及一第三二极管 D3. 图 2所示为三个串接照 明 LED的实施例, 但照明 LED的数量并不以此为限.
整流单元 1», 其可为一桥式全波整流器, 整流单元 10在本电路结构 的功能为将交流电源整流为直流电源以做为供应整体电路结构及照明 LED 的总电压源.
如¾ 2中的 Icl-Ic3分別为 LED多阶电压恒流 |g动单元 30中的三个定 电流源, 其固定电流值为点亮 LED的设定电浚值, 并分别由 SW1- SW3三个 切换开关所控制, 在同一导通时间中, Icl- Ic3 中仅有一个会经由 SW1 或 SW2或 SW3导通。 其动作方式为: 仅 LED1导通发亮时只有 Icl经由 SW1导 通,其中 SW1是由 50V电压控制接通; LED1及 LED2导通发亮时只有 Ic2经 由 SW2导通,其中 S 2是由 100V电压控制接通; LED1及 LED2及 LE 3导通 发亮时只有 Ic3经由 SW3导通, 其中 S 3是由 140V电压控制接通; 如此可 确保不管导通几颗 LED,经过所有导通的 LED的电流皆为相同大小的定电流。
如图 3所示, 为本发明的一种暗区填补单元 20, 其直接与照明 LED并 联使用, 并在餘入电压 Vin过低时, 用以提供 LED单元的第一阶 LED点亮 的最低电压, 以使照明 LED不发生闪烁, 暗区^ 单元 20包括有一第一电 容 C1 , 一第一二极管 Dl, 一第二二极管 D2, —第二电容 C2, 及一第三二 极管 3.
第一电容 Cl, 其具有一第一端部 21及一第二端部 22, 第一端部 21电 性连接于该整流单元 10的输出端,第一电容 C1做为一储存电能的元件, 由 第一端部 21的输入电压 Tin及输入电流 I in搶入电荷并储存于第一电容 C1 内, 而在第一端部 21的输入电压 Vin不足以驱动一教照明 LED时, 由第一 电容 C1輪出电压供给电能。
第一 管 D1, 其负极端电性连接于该第二端部 22, 其正极端接地; 当 第一端部 21的瞼入电压 Vin对第一电容 C1充电时,第一^ ¾管 D1为逆向, 不 导通。
第二 ^1¼管 02, 其负极端电性连接于第一端部 21, 第一端部 21用以 提供至少两阶照明 LED单元的总电圧; 当第一端部 2i的输入电压 Vin于供 电并对第一电容 CI充电时, 第二二极管 D2 *为逆向, 不导通. 第二电容 C2, -其具有 第三端部 23及一第四端部 24, 第三端部 23电 性连接于第二二极管 D2的正极端, 第四端部 24則接地; 第二电容 C2亦傲 为一储存电能的元件, 由第一端部 21的搶入电压 Vin及输入电流 l iii输入 电荷并储存于第二电容 C2内, 而在第一端部 21的输入电压 Vin不足以驱 动一教照明 LED时, 第二电容 C2与第一电容 C1翰出电压供给电能. 其中 笫一电容 C1及第二电容 C2的佬存电压皆可选定在 70V (伏特)。
第三二极管 D3, 其正极端电性连接于第二端部 22, 其负极端电性连接 于第三端部 23; 当第一端部 21的缘入电压 a于供电并对第一电容 C1充 电时第三二极管 D3形成导通状态, 充电电能便可流入第二电容 C2对第二 电容 C2充电.
LED多阶电压恒流驱动单元 30,电性连接于暗区填补单元 20的输 端 且输出至少两组的箝制电压分別至一 LED的负极端; 以图 2中具三个藏明 LED的实施例为说明,此 LED多阶电压恒^:动单元 30将 LED1、 LED2、 L1D3 的点亮电压分別箝制在 50V、 50V、 40V, 并且将流过串接的所有 LED的电漾 S定在一特定电流值;亦即点亮 LED1需 50V电压,要点亮 LED1+LED2需 Ιβθν 电压, 要点亮 LED1+LED2+LED3需 电压。
如图 4所示, 为本发明的一种暗区填 #单元 20的充电状态实施例,跨 区填补单元 20在第一端部 21的椽入电压 Vin高于第一电容 C1与第二电容 C2的佬存电压时第一^ fel管 D1及第二 管 D2逆向不导通, 而第三二极 管 D3頻向导通, 第一端部 21的输入电压 便可对第一电容 Ci与第二电 容 C2充电.
如图 5所示, 为本发明的一种暗区填补单元 20的放电状态实施例, 暗 区填补单元 20在第一端部 21的椽入电压 Vin低于第一电容 C1与第二电容 C2的储存电压时第一二极管 M及第二二极管 D2頫向导通, 而第三二极管 D3逆向不导通,此时第一电容 C1与第二电容 C2便释放电能,供应 70V-5OV 的电压, 点亮 LED1.
如 S 6A所示, 为¾ ^习知的照明 LED藜动电路产生暗区示意图, S中 所示为桥式全波整 后第一端部 21的输入电压 Vin曲线, 其为直流电压并 介于 0到 之间随时 以 120Hz的频率变化(以台湾为例). 又如 ® 6A 所示, 可将点亮一个 LED (LED1》 、 两个 LED(LED1+LED2》 、 三个 LED(LED1+LED2+LED3>的电压准位 50V、 100V、 OY分別画出, 并^ A将搶 入电压 区分为 7个区域 (①-⑦). 由 S 6A可以看出, 输入电压 Viii在 ①区及⑦区的电压值皆小于 50V, 在此两区的电压值已经不足以点亮 LE , 因此更无法点亮 2个或 3个 LED, 此时 3个 LED全不点亮, 形成暗区, 为造 成照明闪烁的原因, 如图 6B所示, 为現有习知的照明 LED驱动电路各 LED依据输入电压 Vin曲线产生的亮(ON)或暗 (OFF)的表格显示。 参照图 6A及國 6B所示的表 格更可以清楚看出在①区及⑦区内 LED1、 LED2、 LED3皆不发亮, 嚷置形成 照明暗区。
如 7A所示,为加入本发明的一种暗区填补单元 20后第一端部 21的 输入电压 Vin曲线, 当輪人电压 Vin大于第一电容 C1加上第二电容 C2的 储存电压电总和时(70Y+70V-140V), 搶入电压 开始对第一电容 C1与第 二电容 C2充电, 充电路径如图 4所示, 此时输入电压 Vin足够点亮一至三 个 LED, 无暗区出现, 而当第一端部 21的输入电压 Πη小于 时, 第一 电容 C1及第二电容 C2便开始放电, 放电路径如图 5所示, 经由选定一电 容值便可决定放电速度的电容特性, 第一电容 C1及第二电容 C2的放电时 间自输入电压 Vin的电压曲线向下穿越 70V开始至下一周期辕入电压 Vin 的电压曲线向上穿越 70V为止第一电容 C1及第二电容 C2持续放电并维持 电压在 50V以上, 在这段电容放电时间内由第一电容 C1及第二电容 C2储 存的电能点亮 LED1 , 而在翰人电压 Vin高于 70V以上时, 剁再由餘入电压 Vin陆续点亮 LED1、 LED1+LED2、 及 LED1+LED2+LED3.
由图 7A可以看出餘入电压 Vin的电压准位会一直维持在 50V以上,因 此, 所有串接的 LED在所有时间内最少会亮一顆 LED1, 输入电压 Via在① 区及⑦区的电压值皆已不小于 50V,暗区因而消除, 照明 LED不再有闪炼现 象发生,
再如图 7B所示, 为加入本发明的一种暗区填补单元 20后各 LED依据 输入电压 Vin曲线产生的亮 (ON)或暗 (OFF)的表格显示。 参照 @ 7A及图 7B 所示的表格又可以清楚看出在①区及⑦区内 LED1已经发亮, 明昱^ 了照 明暗区.亦即,在加入本发明的一种暗区填补单元 20后,无论翁入电压 ¥in 是否已低于 50V, 最少都有一教 LED会发亮, 暗区菝得填^ s LED 明 不 会再因暗区产生闪烁現象。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭示如上, 然而并非用以限定本发 明,任何熟悉本专业的扶术人员, 在不脱离本发明技术方案范闺内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案的内容, 依据本发明的技术实廣对以上实施例 所作的任何筒单修改、 等同变化与修饰, 均仍属于本发明技术方案的范围 内。

Claims

权 利 要 求
1、一种具暗区填补的 LED驱动电路结构,用以驱动至少两组 LED单元, 其特征在于, 该 LED驱动电路结构包括:
一整流单元;
一暗区填补单元, 其输出端用以提供上述 LED单元的第一阶 LED点亮 的最低电压, 该暗区填补单元又包括:
一第一电容, 其具有一第一端部及一第二端部, 该第一端部电性 连接于该整流单元的输出端;
一第一二极管, 其负极端电性连接于该第二端部, 其正极端接地; 一第二 j ^管, 其负极端电性连接于该第一端部;
一第二电容, 其具有一第三端部及一第四瑞部, 该第三端部电性 连接于该第二二极管的正极端, 该第四端部接地; 及
一第三二极管, 其正极端电性连接于该第二端部, 其负极端电性 连接于该第三端部; 以及
一 LED多阶电压恒流驱动单元, 电性连接于该暗区填补单元的输出端 且输出至少两组的箝制电压分别至上述 LED的负极端
2、如权利要求 1所述的 LED驱动电路结构, 其特征在于其中该整流单 元为一桥式全波整流器.
3、 一种 LED驱动电路的暗区填补单元, 其特征在于其包括:
一第一电容, 其具有一第一端部及一第二端部, 该第一端部电性连接 于一整流单元的输出端;
一第一 管, 其负极端电性连接于该第二端部, 其正极端接地; 一第二二极管, 其负极端电性连接于该第一端部, 又该负极端用以提 供一至少两阶照明 LED单元的总电压;
一第二电容, 其具有一第三端部及一第四端部, 该第三端部电性连接 于该第二二极管的正极端, 该第四端部接地; 以及
一第三二极管, 其正极端电性连接于该第二端部, 其负极端电性连接 于该第三端部。
PCT/CN2012/001150 2012-08-27 2012-08-27 具暗区填补的led驱动电路结构 WO2014032204A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/001150 WO2014032204A1 (zh) 2012-08-27 2012-08-27 具暗区填补的led驱动电路结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/001150 WO2014032204A1 (zh) 2012-08-27 2012-08-27 具暗区填补的led驱动电路结构

Publications (1)

Publication Number Publication Date
WO2014032204A1 true WO2014032204A1 (zh) 2014-03-06

Family

ID=50182335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001150 WO2014032204A1 (zh) 2012-08-27 2012-08-27 具暗区填补的led驱动电路结构

Country Status (1)

Country Link
WO (1) WO2014032204A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1429584A2 (en) * 1997-04-24 2004-06-16 Incerti &amp; Simonini di Incerti Edda &amp; C. S.n.c. Control circuit governing functioning of the led of a low-tension lighting device
CN101359841A (zh) * 2007-07-31 2009-02-04 上海施能电器设备厂 充电机
CN101861018A (zh) * 2010-05-05 2010-10-13 金杲易光电科技(深圳)有限公司 可调光的led开关电源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1429584A2 (en) * 1997-04-24 2004-06-16 Incerti &amp; Simonini di Incerti Edda &amp; C. S.n.c. Control circuit governing functioning of the led of a low-tension lighting device
CN101359841A (zh) * 2007-07-31 2009-02-04 上海施能电器设备厂 充电机
CN101861018A (zh) * 2010-05-05 2010-10-13 金杲易光电科技(深圳)有限公司 可调光的led开关电源

Similar Documents

Publication Publication Date Title
CN103974502B (zh) Led光引擎的电子控制装置及其应用
CN108633126B (zh) 线性高功率因素恒流无频闪led驱动电路及方法
TWI454174B (zh) 發光二極體型照明裝置及其操做方法
US9210772B2 (en) Actuating a plurality of series-connected luminous elements
WO2015024529A1 (zh) Led交流驱动电路
KR101302182B1 (ko) 발광다이오드의 점멸주파수를 변환시키는 전원공급회로
KR101377038B1 (ko) 엘이디 조명장치
CN205336575U (zh) 闪烁性能得到改善的led驱动电路及包括此的led照明装置
WO2020073359A1 (zh) 调光调色无频闪筒灯电路设计
JP3173888U (ja) 発光ダイオードの駆動装置およびそれが使用する照明設備
CN107211508A (zh) 闪烁性能得到改善的led驱动电路以及包括此的led照明装置
US8841856B1 (en) Capacitive ladder feed for AC LED
TWI590709B (zh) 不頻閃的交流發光二極體照明系統及控制方法
CN105873304B (zh) 一种交流直驱的智能调光led节能路灯
CN102469668A (zh) 匹配电子变压器的led电源电路
WO2014032204A1 (zh) 具暗区填补的led驱动电路结构
CN107710872B (zh) 具有改进的辉光减少的led光源
CN107820348B (zh) 一种线性全电压变频恒流电路及具有它的led灯
TW201212702A (en) LED driving system
CN202077230U (zh) 匹配电子变压器的led电源电路
CN202841636U (zh) 等占空比led脉动驱动电源电路
CN105208714B (zh) 照明装置
CN103052222A (zh) 一种220v可调光的恒流驱动高压led电路
CN103298194A (zh) 照明装置
JP2012160284A (ja) Led点灯装置、照明装置および照明制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883687

Country of ref document: EP

Kind code of ref document: A1