WO2020073359A1 - 调光调色无频闪筒灯电路设计 - Google Patents

调光调色无频闪筒灯电路设计 Download PDF

Info

Publication number
WO2020073359A1
WO2020073359A1 PCT/CN2018/111584 CN2018111584W WO2020073359A1 WO 2020073359 A1 WO2020073359 A1 WO 2020073359A1 CN 2018111584 W CN2018111584 W CN 2018111584W WO 2020073359 A1 WO2020073359 A1 WO 2020073359A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
dimming
constant current
led
circuit
Prior art date
Application number
PCT/CN2018/111584
Other languages
English (en)
French (fr)
Inventor
王忆云
张新辉
严守平
Original Assignee
忆云有限公司
上海莱托思电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 忆云有限公司, 上海莱托思电子科技有限公司 filed Critical 忆云有限公司
Publication of WO2020073359A1 publication Critical patent/WO2020073359A1/zh
Priority to AU2020100626A priority Critical patent/AU2020100626A4/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the invention relates to the technical field of LED drive control, in particular to a circuit design of a dimming and toning strobless downlight.
  • LED is a kind of semiconductor electronic component that can emit light. This electronic component can only emit low-light red light in the early days. With the continuous progress of technology, it has now developed to the extent that it can emit visible light, infrared light and ultraviolet light. Big improvement. LED has the advantages of high efficiency, long life, not easy to break, high switching speed, high reliability and other traditional light sources. It has been widely used in the field of indicator lights, displays and lighting.
  • an object of the present invention is to provide a dimming and torchless strobe downlight circuit design, which is used to solve the dimming and torchless strobe downlight circuit design dimming 3.
  • the present invention provides a circuit design of a dimmable tonal stroboscopic downlight, which includes at least:
  • Rectifier module used to provide input voltage
  • each LED module includes a series of LED lamp groups and a color temperature selection switch;
  • Constant current control module connected to the output of each LED module, used for constant current control of each LED module
  • a thyristor dimming module is connected to both ends of the rectifier module, and is used for dimming control of each LED module.
  • the constant current control module includes a first power switch tube, a sampling resistor, and a linear constant current drive circuit;
  • the drain of the first power switch is used as the input end of the constant current control module, the source is connected to the sampling resistor and then grounded; the input end of the linear constant current drive circuit is connected to the first power switch The drain, the sampling end is connected to the source of the first power switch, and the output end is connected to the gate of the first power switch.
  • the thyristor dimming module includes a first linear constant current circuit, a first resistor, and a second sampling resistor;
  • the input terminal of the first linear constant current circuit is connected to the output terminal of the rectifier module through the first resistor, and the sampling terminal is grounded through the second sampling resistor.
  • the circuit design of the dimming and toning strobless downlight further includes a de-stroboscopic stabilization current module, the de-stroboscopic stabilization current module is connected between each LED module and the constant current control module It is used to de-ripple the current flowing through each LED module.
  • the stroboscope stabilizing current module includes a first capacitor, a second power switch tube, a third sampling resistor, a second resistor, a second capacitor, and a second linear constant current circuit;
  • One end of the first capacitor is connected to the input end of each LED module, and the other end is connected to the input end of the constant current control module;
  • the drain of the second power switch is used as the input terminal of the stroboscope stabilization module, the drain and the gate of the second power switch are connected by a second resistor, and the second power switch The gate and source of the tube are connected by a second capacitor;
  • the input end of the second linear constant current circuit is connected to the source of the second power switch tube, and the sampling end is connected to the third sampling resistor; the other end of the third sampling resistor is connected to the constant current control module Input.
  • each LED lamp group includes a plurality of LEDs, and each LED is connected in series, parallel, or series-parallel.
  • the color temperature difference of each LED lamp group is greater than 1200 degrees.
  • the color temperature selection switch is a toggle mechanical switch.
  • a diode is further included between the rectifier module and the input terminal of each LED module, the anode of the diode is connected to the output terminal of the rectifier module, and the cathode is connected to the input terminal of each LED module.
  • the dimming and toneless strobe downlight circuit is designed as a downlight.
  • the circuit design of the dimming and toning strobless downlight of the present invention has the following beneficial effects:
  • the circuit design of the dimming and toning strobless downlight of the present invention adopts a linear driving architecture to achieve dimming, constant current control and de-ripple control, requiring fewer devices, which can greatly reduce the size of the system and achieve integration, At the same time, it solves the problem of compatibility between LED drivers and thyristors, greatly reduces costs, and uses the same lamp to meet customer needs for different color temperatures.
  • FIG. 1 is a schematic structural diagram of the circuit design of the dimming and toning strobless downlight of the present invention.
  • FIGS. 2 to 5 show schematic diagrams of the working waveforms of the circuit design of the dimming and toning strobless downlight of the present invention.
  • the present invention provides a circuit design 1 for dimming and toning stroboscopic downlight circuit
  • the circuit design 1 for dimming and toning stroboscopic downlight is through a thyristor dimmer (not shown in the figure ) Connected to commercial power (120V or 230V or 240V), the circuit design 1 of the dimming and toning strobless downlight includes:
  • a rectifier module 11 a plurality of LED modules, a stroboscope stabilizing current module 13, a constant current control module 14 and a thyristor dimming module 15.
  • the rectifier module 11 is used to provide an input voltage Vin.
  • the rectification module 11 receives the AC input voltage Vac and rectifies the AC input voltage Vac.
  • the rectifier module 11 includes two sets of diode groups connected in parallel, each diode group includes two diodes connected in series, and the two poles of the AC input voltage are respectively connected between the two diodes of each diode group.
  • each LED module is connected to the output terminal of the rectifier module 11.
  • each LED module is connected in parallel.
  • the LED module includes a series-connected LED lamp group and a color temperature selection switch.
  • the anode of the LED lamp group is connected to the input voltage Vin
  • the cathode of the LED lamp group is connected to the color temperature switch.
  • Each LED lamp group includes a plurality of LEDs, and each LED is connected in series, parallel, or series-parallel. In this embodiment, each LED is connected in series to form the LED lamp group. In actual applications, the LED lamp group can be set as required. This embodiment is limited.
  • the forward voltage Vf of each LED lamp group is basically the same, and the color temperature of each LED lamp group is significantly different to ensure the application requirements of covering warm light, yellow light and white light.
  • each color temperature selection switch is a toggle mechanical switch, and the user can select an LED light group with a suitable color temperature according to needs during installation.
  • each color temperature selection switch can also be set as a single-pole multi-throw switch or For a plurality of single-pole single-throw switches, the type of the color temperature selection switch is selected according to needs, which will not be repeated here.
  • a diode D1 is further included between the rectifier module 11 and the input terminal of each LED module, the anode of the diode D1 is connected to the output terminal of the rectifier module 11, and the cathode is connected to each The input of the LED module.
  • the diode D1 is used to limit the direction of current flow and avoid current backflow.
  • the de-stroboscopic stable current module 13 is connected between each LED module and the constant current control module 14, and is used to de-ripple the current flowing through each LED module.
  • the de-stroboscopic stabilization module 13 adopts a linear driving architecture to keep the average current flowing through the selected LED lamp group stable under normal working and dimming conditions, thereby realizing the dimming toning strobless tube No flicker for lamp circuit design 1.
  • the stroboscope stabilizing current module 13 includes a first capacitor C1, a second power switch M2, a third sampling resistor Rcs3, a second resistor R2, a second capacitor C2, and a second Linear constant current circuit 131.
  • One end of the first capacitor C1 is connected to the input end of each LED module, and the other end is connected to the input end of the constant current control module 14; the drain of the second power switch tube M2 is used as the stroboscope stabilizing current module
  • the drain and the gate of the second power switch M2 are connected by a second resistor R2, and the gate and the source of the second power switch M2 are connected by a second capacitor C2 .
  • the input terminal D of the second linear constant current circuit 131 is connected to the source of the second power switch M2, the sampling terminal CS is connected to the third sampling resistor Rcs3, and the ground terminal GND is connected to the constant current control module 14 Input terminal; the other end of the third sampling resistor Rcs3 is connected to the input terminal of the constant current control module 14.
  • the first capacitor C1 serves as a filter capacitor, and forms an independent filter system with the second power switch M2 and the second linear constant current circuit 131.
  • the reference ground of the de-stroboscopic stabilization module 13 is the input end of the constant-current control module 14 instead of the common reference ground of the dimming and tonal stroboscopic downlight circuit design 1.
  • the de-stroboscopic The current stabilizing module 13 adopts a floating structure, so as to ensure that the voltage on the first capacitor C1 has a small voltage ripple.
  • Vc1 Vled + Vds-M2 + Vds-131, where Vled is the voltage on the LED lamp group, and Vds-M2 is the second power switch tube
  • Vds-M2 the second power switch tube
  • the drain-source voltage of M2, Vds-131 is the drain-source voltage of the power switch in the second linear constant current circuit 131; the excess voltage will be borne by the constant current control module 14.
  • the average current of the LED module is realized by a constant current circuit in which the second power switch tube M2 and the second linear constant current circuit 131 are connected in series, wherein the second linear constant current circuit 131 determines normal operation
  • the maximum current of the second power switch tube M2 further limits the large fluctuation of the current; in the dimming state, the actual working current is much smaller than the normal set working current, the second power switch tube M2 will undertake to The main function of current ripple.
  • the second linear constant current circuit 131 may adopt a constant current circuit of any structure, wherein the second linear constant current circuit 131 includes a constant current driving part and a power switch tube for implementing constant current control Those skilled in the art are familiar with the principle and structure of the constant current control circuit, which will not be repeated here.
  • the second linear constant current circuit 131 is implemented using a LA5110 constant current chip.
  • the constant current control module 14 is connected to the output end of the de-stroboscopic stable current module 13 and is used to perform constant current control on each LED module.
  • the constant current control module 14 includes a first power switch M1, a first sampling resistor Rcs1, and a linear constant current drive circuit 141.
  • the drain of the first power switch M1 is used as the input terminal of the constant current control module 14, the source is connected to the first sampling resistor Rcs1 and then grounded (the dimming and torchless downlight circuit design 1 Common reference ground);
  • the input terminal Bus of the linear constant current drive circuit 141 is connected to the drain of the first power switch tube M1
  • the sampling terminal CS is connected to the source of the first power switch tube M1, and the output terminal G
  • the grid of the first power switch tube M1 is connected, and the ground terminal GND is connected to the common reference ground of the dimming and flicker-free downlight circuit design 1.
  • the maximum operating current of the constant current control module 14 can be determined by the resistance of the first sampling resistor Rcs1, and the first sampling can be selected based on the system power design of the dimming toning strobless downlight circuit design 1 The resistance of resistor Rcs1.
  • the total current of the system is determined by the constant current control module 14.
  • the constant current control module 14 may use a constant current circuit of any structure
  • the linear constant current drive circuit 141 may use a constant current drive circuit of any structure.
  • the linear constant current driving circuit 141 is implemented by using a LA5111C constant current driving chip.
  • the LA5111C chip driving the first power switch tube M1 can be adapted to users' different power application requirements.
  • the thyristor dimming module 15 is connected to both ends of the rectifier module 11 and is used for dimming control of each LED module.
  • the thyristor dimming module 15 includes a first linear constant current circuit 151, a first resistor R1 and a second sampling resistor Rcs2.
  • the input terminal D of the first linear constant current circuit 151 is connected to the output terminal of the rectifier module 11 through the first resistor R1, and the sampling terminal CS is connected to the dimming toning frequencyless through the second sampling resistor Rcs2 Common reference ground for flashlight circuit design 1.
  • the cut-in start of the thyristor dimmer (not shown) is not triggered, the input voltage is a very low (close to zero V) DC, the LED cannot be turned on, and the thyristor dimming module 15 is turned on.
  • the thyristor dimming module 15 is automatically turned off until the next cycle voltage zero point, the thyristor dimming module 15 repeats again Turn on to provide maintenance and starting current for the thyristor dimmer.
  • the circuit design 1 of the dimming and toning stroboscopic downlight is a downlight.
  • the circuit design 1 of the dimming and toning stroboscopic downlight circuit may be Any type of lamps, including but not limited to pendant lamps, ceiling lamps, floor lamps, wall lamps, table lamps and spot lights.
  • the AC input voltage Vac is commercial power, including but not limited to 120V or 230V or 240V.
  • the AC input voltage Vac gradually increases from zero, the thyristor dimming module 15 is turned on, and the current IDIM flowing through the thyristor dimming module 15 gradually increases.
  • the absolute value of the AC input voltage Vac (the input voltage Vin) is greater than the forward voltage Vf of the LED lamp group, the thyristor dimming module 15 is automatically turned off, and a current flows through the LED
  • the lamp group is subjected to constant current control through the constant current control module 14, and the current I M1 flowing through the first power switch tube M1 is constant.
  • the current IDIM of the thyristor dimming module 15 gradually decreases as the absolute value of the AC input voltage Vac decreases until it reaches zero voltage. Based on the de-stroboscopic current stabilization module 13, de-ripple processing is performed, so that the current I LED flowing through the LED lamp group is stable and does not fluctuate throughout the cycle.
  • the conduction angle of the thyristor is reduced on the basis of FIG. 2.
  • the conduction angle of the thyristor has no effect on the conduction angle of the LED lamp group, and the first power flows through switch M1 current I M1, the current flowing through the LED lamp set without affecting I LED.
  • the AC input voltage Vac is input to the rectifier module 11 after the thyristor is turned on, and the current IDIM flowing through the thyristor dimming module 15 receives the AC input voltage at the rectifier module 11 After Vac starts to rise, other waveform changes are the same as in Fig. 2, so I won't repeat them one by one here.
  • the conduction angle of the thyristor is reduced.
  • the conduction angle of the thyristor has an influence on the conduction angle of the LED lamp group.
  • the The thyristor is turned on at the peak value of the AC input voltage Vac, therefore, the conduction angle of the LED lamp group is reduced by half.
  • the conduction time of the current I M1 flowing through the first power switch M1 is reduced by half, and the current I LED flowing through the LED lamp group is reduced by half; and the thyristor dimming module 15 There is no increased part of the current I DIM .
  • the other waveform changes are the same as those in FIG. 3 and will not be repeated here.
  • the conduction angle of the thyristor is reduced.
  • the conduction angle of the thyristor has an influence on the conduction angle of the LED lamp group.
  • the The thyristor turns on after the absolute value of the AC input voltage Vac is less than the forward voltage Vf of the LED lamp group, so the LED lamp group cannot be turned on.
  • this embodiment only lists four waveform diagrams in the case of dimming.
  • the user can adjust the conduction angle of the thyristor as needed, and then control the luminous flux to achieve the dimming operation.
  • the AC input voltage is rectified by the rectifier module and then input to the positive pole of the LED lamp group. Only a group of LEDs is selected through the color temperature selection switch. It forms a loop with the de-stroboscopic steady current module and the constant current control module and enters normal operation.
  • the constant current control module ensures that the LED lamp group works within the set current range, and the de-stroboscopic steady current module controls the current flowing through the LED lamp group to always maintain a current ripple of no more than 3% (no strobe).
  • the thyristor dimming module provides the thyristor dimmer with additional start and sustain currents needed to support thyristor dimming.
  • the present invention provides a circuit design for dimming and toning strobless downlight, which at least includes: a rectifier module for providing input voltage; a plurality of LED modules, the input ends of each LED module are connected to the rectifier module The output of each LED module; each LED module includes a series of LED lamp groups and color temperature selection switches; a constant current control module, connected to the output of each LED module, for constant current control of each LED module; a thyristor dimming module, It is connected to both ends of the rectifier module and is used for dimming control of each LED module.
  • the circuit design of the dimming and toning strobless downlight of the present invention adopts a linear driving architecture to achieve dimming, constant current control and de-ripple control, requiring fewer devices, which can greatly reduce the size of the system and achieve integration, At the same time, it solves the problem of compatibility between LED drivers and thyristors, greatly reduces costs, and uses the same lamp to meet customer needs for different color temperatures. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种调光调色无频闪筒灯电路(1),包括:整流模块(11),用于提供输入电压;多个LED模块(121,122,123),各LED模块的输入端连接所述整流模块的输出端;各LED模块包括串联的LED灯组及色温选择开关;恒流控制模块(14),连接于各LED模块的输出端,用于对各LED模块进行恒流控制;可控硅调光模块(15),连接于所述整流模块的两端,用于对各LED模块进行调光控制。调光调色无频闪筒灯电路设计采用线性驱动架构实现调光、恒流控制及去纹波控制,仅需较少的器件,可大幅减小系统的体积,实现集成化,同时解决了LED驱动与可控硅兼容的问题,大大降低成本,采用同一盏灯满足客户对不同色温的需求。

Description

调光调色无频闪筒灯电路设计 技术领域
本发明涉及LED驱动控制技术领域,特别是涉及一种调光调色无频闪筒灯电路设计。
背景技术
LED是一种能发光的半导体电子元件,这种电子元件早期只能发出低光度的红光,随着技术的不断进步,现在已发展到能发出可见光、红外线及紫外线的程度,光度也有了很大的提高。LED具有效率高、寿命长、不易破损、开关速度高、高可靠性等传统光源不及的优点,已被广泛应用于指示灯、显示器及照明领域。
由于LED的光谱较集中,采用不同波长的LED可以改变光谱色温,实现调光和调色,高集成、可调色、调光全程无频闪的LED筒灯在欧美及大陆市场有很好的应用需求。适用不同的生活场景,调色LED照明近年开始见诸市场;另一方面,调光一直是欧美、澳洲家用的传统方式。而现有的灯具调光基本上是采用LED驱动不容易匹配的可控硅(TRIAC)控制,存在兼容和成本的问题。
因此,实现优质、稳定的无频闪调光控制有相当的技术难度,如何在有限的灯具空间内实现复杂多功能LED照明控制是本领域技术人员亟待解决的问题之一。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种调光调色无频闪筒灯电路设计,用于解决现有技术中调光调色无频闪筒灯电路设计调光、调色方案中存在的稳定性差、电路结构复杂、体积大等问题。
为实现上述目的及其他相关目的,本发明提供一种调光调色无频闪筒灯电路设计,所述调光调色无频闪筒灯电路设计至少包括:
整流模块,用于提供输入电压;
多个LED模块,各LED模块的输入端连接所述整流模块的输出端;各LED模块包括串联的LED灯组及色温选择开关;
恒流控制模块,连接于各LED模块的输出端,用于对各LED模块进行恒流控制;
可控硅调光模块,连接于所述整流模块的两端,用于对各LED模块进行调光控制。
可选地,所述恒流控制模块包括第一功率开关管、采样电阻及线性恒流驱动电路;
所述第一功率开关管的漏极作为所述恒流控制模块的输入端,源极连接所述采样电阻后 接地;所述线性恒流驱动电路的输入端连接所述第一功率开关管的漏极,采样端连接所述第一功率开关管的源极,输出端连接所述第一功率开关管的栅极。
可选地,所述可控硅调光模块包括第一线性恒流电路、第一电阻及第二采样电阻;
所述第一线性恒流电路的输入端通过所述第一电阻连接所述整流模块的输出端,采样端通过所述第二采样电阻接地。
可选地,所述调光调色无频闪筒灯电路设计还包括去频闪稳流模块,所述去频闪稳流模块连接于各LED模块与所述恒流控制模块之间,用于对流经各LED模块的电流进行去纹波控制。
更可选地,所述去频闪稳流模块包括第一电容、第二功率开关管、第三采样电阻、第二电阻、第二电容及第二线性恒流电路;
所述第一电容的一端连接各LED模块的输入端,另一端连接所述恒流控制模块的输入端;
所述第二功率开关管的漏极作为所述去频闪稳流模块的输入端,所述第二功率开关管的漏极与栅极之间通过第二电阻连接,所述第二功率开关管的栅极与源极之间通过第二电容连接;
所述第二线性恒流电路的输入端连接所述第二功率开关管的源极,采样端连接所述第三采样电阻;所述第三采样电阻的另一端连接所述恒流控制模块的输入端。
可选地,各LED灯组包括多个LED,各LED串联、并联或串并联。
可选地,各LED灯组的色温差大于1200度。
可选地,所述色温选择开关为拨动机械式开关。
可选地,所述整流模块与各LED模块的输入端之间还包括一二极管,所述二极管的正极连接所述整流模块的输出端,负极连接各LED模块的输入端。
可选地,所述调光调色无频闪筒灯电路设计为筒灯。
如上所述,本发明的调光调色无频闪筒灯电路设计,具有以下有益效果:
本发明的调光调色无频闪筒灯电路设计采用线性驱动架构实现调光、恒流控制及去纹波控制,仅需较少的器件,可大幅减小系统的体积,实现集成化,同时解决了LED驱动与可控硅兼容的问题,大大降低成本,采用同一盏灯满足客户对不同色温的需求。
附图说明
图1显示为本发明的调光调色无频闪筒灯电路设计的结构示意图。
图2~图5显示为本发明的调光调色无频闪筒灯电路设计的工作波形示意图。
元件标号说明
1       调光调色无频闪筒灯电路
        设计
11      整流模块
121     第一LED模块
122     第二LED模块
123     第三LED模块
13      去频闪稳流模块
131     第二线性恒流电路
14      恒流控制模块
141     线性恒流驱动电路
15      可控硅调光模块
151     第一线性恒流电路
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1~图5。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
如图1所示,本发明提供一种调光调色无频闪筒灯电路设计1,所述调光调色无频闪筒灯电路设计1通过可控硅调光器(图中未显示)连接至市电(120V或230V或240V),所述调光调色无频闪筒灯电路设计1包括:
整流模块11,多个LED模块,去频闪稳流模块13,恒流控制模块14及可控硅调光模块15。
如图1所示,所述整流模块11用于提供输入电压Vin。
具体地,所述整流模块11接收交流输入电压Vac,对所述交流输入电压Vac进行整流。 在本实施例中,所述整流模块11包括并联的两组二极管组,各二极管组包括串联的两个二极管,所述交流输入电压的两极分别连接于各二极管组的两个二极管之间。
如图1所示,各LED模块的输入端连接所述整流模块11的输出端。
具体地,在本实施例中,包括三个LED模块,分别为第一LED模块121,第二LED模块122及第三LED模块123,各LED模块并联连接。
更具体地,所述LED模块包括串联的LED灯组及色温选择开关,在本实施例中,所述LED灯组的正极连接所述输入电压Vin,所述LED灯组的负极连接所述色温选择开关。各LED灯组包括多个LED,各LED串联、并联或串并联,在本实施例中,各LED串联形成所述LED灯组,在实际应用中可根据需要设定所述LED灯组,不以本实施例为限。各LED灯组的正向导通电压Vf基本一致,各LED灯组的色温存在明显差别,以确保覆盖暖光、黄光和白光的应用需求。在本实施例中,各LED灯组的色温差设定为大于300,优选为大于600度或大于1200度,可根据实际需要设定各LED灯组的色温差,不以本实施例为限。在本实施例中,各色温选择开关为拨动机械式开关,用户在安装时可根据需要选择合适色温的LED灯组,在实际应用中,各色温选择开关也可设置为单刀多掷开关或多个单刀单掷开关,根据需要选择所述色温选择开关的类型,在此不一一赘述。
需要说明的是,在本实施例中,所述整流模块11与各LED模块的输入端之间还包括一二极管D1,所述二极管D1的正极连接所述整流模块11的输出端,负极连接各LED模块的输入端。所述二极管D1用于限制电流的流动方向,避免电流倒灌。
如图1所示,所述去频闪稳流模块13连接于各LED模块与所述恒流控制模块14之间,用于对流经各LED模块的电流进行去纹波控制。
具体地,所述去频闪稳流模块13采用线性驱动架构在正常工作及调光条件下保持流经被选中的LED灯组的平均电流稳定,从而实现所述调光调色无频闪筒灯电路设计1的无频闪。
更具体地,在本实施例中,所述去频闪稳流模块13包括第一电容C1、第二功率开关管M2、第三采样电阻Rcs3、第二电阻R2、第二电容C2及第二线性恒流电路131。所述第一电容C1的一端连接各LED模块的输入端,另一端连接所述恒流控制模块14的输入端;所述第二功率开关管M2的漏极作为所述去频闪稳流模块13的输入端,所述第二功率开关管M2的漏极与栅极之间通过第二电阻R2连接,所述第二功率开关管M2的栅极与源极之间通过第二电容C2连接。所述第二线性恒流电路131的输入端D连接所述第二功率开关管M2的源极,采样端CS连接所述第三采样电阻Rcs3,接地端GND连接所述恒流控制模块14的输入端;所述第三采样电阻Rcs3的另一端连接所述恒流控制模块14的输入端。所述第一电容C1作 为滤波电容,与所述第二功率开关管M2及所述第二线性恒流电路131组成一个独立的滤波系统。所述去频闪稳流模块13的参考地为所述恒流控制模块14的输入端,而不是所述调光调色无频闪筒灯电路设计1的公共参考地,所述去频闪稳流模块13采用浮地架构,以此可确保所述第一电容C1上的电压具有较小的电压纹波。在输入电压波动时,所述第一电容上的电压Vc1=Vled+Vds-M2+Vds-131,其中,Vled为所述LED灯组上的电压,Vds-M2为所述第二功率开关管M2的漏源电压,Vds-131为所述第二线性恒流电路131中功率开关管的漏源电压;多余的电压将由所述恒流控制模块14来承受。所述LED模块的平均电流由所述第二功率开关管M2和所述第二线性恒流电路131串联的恒流电路来实现的,其中,所述第二线性恒流电路131确定了正常工作的最大电流,而所述第二功率开关管M2进一步限制了电流的大幅波动;在调光状态下,实际工作电流远小于正常设定工作电流时,所述第二功率开关管M2将承担去电流纹波的主要功能。
需要说明的是,所述第二线性恒流电路131可采用任意结构的恒流电路,其中,所述第二线性恒流电路131包括恒流驱动部分及功率开关管,用于实现恒流控制,本领域技术人员均熟知恒流控制电路的原理及结构,在此不一一赘述。在本实施例中,所述第二线性恒流电路131采用LA5110恒流芯片实现。
如图1所示,所述恒流控制模块14连接于所述去频闪稳流模块13的输出端,用于对各LED模块进行恒流控制。
具体地,所述恒流控制模块14包括第一功率开关管M1、第一采样电阻Rcs1及线性恒流驱动电路141。所述第一功率开关管M1的漏极作为所述恒流控制模块14的输入端,源极连接所述第一采样电阻Rcs1后接地(所述调光调色无频闪筒灯电路设计1的公共参考地);所述线性恒流驱动电路141的输入端Bus连接所述第一功率开关管M1的漏极,采样端CS连接所述第一功率开关管M1的源极,输出端G连接所述第一功率开关管M1的栅极,接地端GND连接所述调光调色无频闪筒灯电路设计1的公共参考地。所述恒流控制模块14的最大工作电流可由所述第一采样电阻Rcs1的阻值决定,可基于所述调光调色无频闪筒灯电路设计1的系统功率设计选择所述第一采样电阻Rcs1的阻值。当输入电压大于LED灯组的工作电压时,系统的总电流(所述第一电容C1的冲动电流和LED灯组的工作电流之和)由所述恒流控制模块14决定。
需要说明的是,所述恒流控制模块14可采用任意结构的恒流电路,所述线性恒流驱动电路141可采用任意结构的恒流驱动电路,本领域技术人员均熟知恒流控制电路的原理及结构,在此不一一赘述。在本实施例中,所述线性恒流驱动电路141采用LA5111C恒流驱动芯片实 现,所述LA5111C芯片带动所述第一功率开关管M1可适用于用户不同功率的应用需求。
如图1所示,所述可控硅调光模块15连接于所述整流模块11的两端,用于对各LED模块进行调光控制。
具体地,所述可控硅调光模块15包括第一线性恒流电路151、第一电阻R1及第二采样电阻Rcs2。所述第一线性恒流电路151的输入端D通过所述第一电阻R1连接所述整流模块11的输出端,采样端CS通过所述第二采样电阻Rcs2连接所述调光调色无频闪筒灯电路设计1的公共参考地。在可控硅调光器(图中未显示)的切入启动未触发时,输入电压为一个很低(接近零V)的直流,LED不能导通,所述可控硅调光模块15开启,提供可控硅调光器启动的充电电流,当可控硅调光器触发使市电高压经整流输入时,输入电压高于LED的正向导通电压、所述去频闪稳流模块13的工作电压及所述恒流控制模块14的工作电压,LED灯组导通,所述可控硅调光模块15自动关闭,直至下一个周期电压零点,所述可控硅调光模块15再重复开启为可控硅调光器提供维持和启动电流。
需要说明的是,在本实施例中,所述调光调色无频闪筒灯电路设计1为筒灯,在实际应用中,所述调光调色无频闪筒灯电路设计1可以是任意类型的灯具,包括但不限于吊灯、吸顶灯、落地灯、壁灯、台灯及射灯。
如图2所示,所述交流输入电压Vac为市电,包括但不限于120V或230V或240V。所述交流输入电压Vac从零逐渐增大,所述可控硅调光模块15开启,且流过所述可控硅调光模块15的电流I DIM逐渐增大。当所述交流输入电压Vac的绝对值(所述输入电压Vin)大于所述LED灯组的正向导通电压Vf时,所述可控硅调光模块15自动关闭,有电流流过所述LED灯组,并经过所述恒流控制模块14进行恒流控制,流过所述第一功率开关管M1的电流I M1恒定。随着所述交流输入电压Vac的绝对值减小至所述LED灯组的正向导通电压Vf,没有电流流过所述LED灯组及所述第一功率开关管M1,流过所述可控硅调光模块15的电流I DIM随所述交流输入电压Vac的绝对值减小而逐渐减小,直至零电压。基于所述去频闪稳流模块13进行去纹波处理,以使得流经所述LED灯组的电流I LED在整个周期内稳定、无波动。
如图3所示,在图2的基础上减小可控硅的导通角,此时,可控硅导通角对LED灯组的导通角没有影响,则对流过所述第一功率开关管M1的电流I M1、流经所述LED灯组的电流I LED在没有影响。所述交流输入电压Vac在所述可控硅导通后输入所述整流模块11,流过所述可控硅调光模块15的电流I DIM在所述整流模块11接收到所述交流输入电压Vac后开始上升,其它波形变化过程与图2相同,在此不一一赘述。
如图4所示,在图3的基础上减小可控硅的导通角,此时,可控硅导通角对LED灯组的 导通角产生影响,在本实施例中,所述可控硅在所述交流输入电压Vac的峰值导通,因此,所述LED灯组的导通角减少一半。此时,流过所述第一功率开关管M1的电流I M1的导通时间减少一半,流经所述LED灯组的电流I LED减少一半;且流过所述可控硅调光模块15的电流I DIM不存在增大的部分,其它波形变化过程与图3相同,在此不一一赘述。
如图5所示,在图4的基础上减小可控硅的导通角,此时,可控硅导通角对LED灯组的导通角产生影响,在本实施例中,所述可控硅在所述交流输入电压Vac的绝对值小于所述LED灯组的正向导通电压Vf后导通,因此,所述LED灯组无法导通。此时,没有电流流过所述LED灯组及所述第一功率开关管M1,其它波形变化过程与图4相同,在此不一一赘述。
需要说明的是,本实施例仅列举4中调光情况下的波形示意图,在实际应用中,使用者可根据需要调节可控硅的导通角,进而控制光通量,实现调光操作。
交流输入电压经整流模块整流后输入至LED灯组的正极,通过色温选择开关仅选定一组LED,与去频闪稳流模块及恒流控制模块构成回路,进入正常工作。恒流控制模块保证LED灯组工作在设定的电流范围内,去频闪稳流模块控制流经LED灯组的电流始终维持不大于3%的电流纹波(无频闪)。同时,可控硅调光模块为可控硅调光器提供额外需要的启动和维持电流以支持可控硅调光。
综上所述,本发明提供一种调光调色无频闪筒灯电路设计,至少包括:整流模块,用于提供输入电压;多个LED模块,各LED模块的输入端连接所述整流模块的输出端;各LED模块包括串联的LED灯组及色温选择开关;恒流控制模块,连接于各LED模块的输出端,用于对各LED模块进行恒流控制;可控硅调光模块,连接于所述整流模块的两端,用于对各LED模块进行调光控制。本发明的调光调色无频闪筒灯电路设计采用线性驱动架构实现调光、恒流控制及去纹波控制,仅需较少的器件,可大幅减小系统的体积,实现集成化,同时解决了LED驱动与可控硅兼容的问题,大大降低成本,采用同一盏灯满足客户对不同色温的需求。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种调光调色无频闪筒灯电路设计,其特征在于,所述调光调色无频闪筒灯电路设计至少包括:
    整流模块,用于提供输入电压;
    多个LED模块,各LED模块的输入端连接所述整流模块的输出端;各LED模块包括串联的LED灯组及色温选择开关;
    恒流控制模块,连接于各LED模块的输出端,用于对各LED模块进行恒流控制;
    可控硅调光模块,连接于所述整流模块的两端,用于对各LED模块进行调光控制。
  2. 根据权利要求1所述的调光调色无频闪筒灯电路设计,其特征在于:所述恒流控制模块包括第一功率开关管、第一采样电阻及线性恒流驱动电路;
    所述第一功率开关管的漏极作为所述恒流控制模块的输入端,源极连接所述第一采样电阻后接地;所述线性恒流驱动电路的输入端连接所述第一功率开关管的漏极,采样端连接所述第一功率开关管的源极,输出端连接所述第一功率开关管的栅极。
  3. 根据权利要求1所述的调光调色无频闪筒灯电路设计,其特征在于:所述可控硅调光模块包括第一线性恒流电路、第一电阻及第二采样电阻;
    所述第一线性恒流电路的输入端通过所述第一电阻连接所述整流模块的输出端,采样端通过所述第二采样电阻接地。
  4. 根据权利要求1~3任意一项所述的调光调色无频闪筒灯电路设计,其特征在于:所述调光调色无频闪筒灯电路设计还包括去频闪稳流模块,所述去频闪稳流模块连接于各LED模块与所述恒流控制模块之间,用于对流经各LED模块的电流进行去纹波控制。
  5. 根据权利要求4所述的调光调色无频闪筒灯电路设计,其特征在于:所述去频闪稳流模块包括第一电容、第二功率开关管、第三采样电阻、第二电阻、第二电容及第二线性恒流电路;
    所述第一电容的一端连接各LED模块的输入端,另一端连接所述恒流控制模块的输入端;
    所述第二功率开关管的漏极作为所述去频闪稳流模块的输入端,所述第二功率开关管的漏极与栅极之间通过第二电阻连接,所述第二功率开关管的栅极与源极之间通过第二电容连接;
    所述第二线性恒流电路的输入端连接所述第二功率开关管的源极,采样端连接所述第三采样电阻;所述第三采样电阻的另一端连接所述恒流控制模块的输入端。
  6. 根据权利要求1所述的调光调色无频闪筒灯电路设计,其特征在于:各LED灯组包括多个LED,各LED串联、并联或串并联。
  7. 根据权利要求1所述的调光调色无频闪筒灯电路设计,其特征在于:各LED灯组的色温差大于1200度。
  8. 根据权利要求1所述的调光调色无频闪筒灯电路设计,其特征在于:所述色温选择开关为拨动机械式开关。
  9. 根据权利要求1所述的调光调色无频闪筒灯电路设计,其特征在于:所述整流模块与各LED模块的输入端之间还包括一二极管,所述二极管的正极连接所述整流模块的输出端,负极连接各LED模块的输入端。
  10. 根据权利要求1所述的调光调色无频闪筒灯电路设计,其特征在于:所述调光调色无频闪筒灯电路设计为筒灯。
PCT/CN2018/111584 2018-10-11 2018-10-24 调光调色无频闪筒灯电路设计 WO2020073359A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020100626A AU2020100626A4 (en) 2018-10-11 2020-04-24 Dimming and color tuning flicker-free downlight circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821649220.7 2018-10-11
CN201821649220.7U CN209462651U (zh) 2018-10-11 2018-10-11 调色调光led灯具

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2020100626A Division AU2020100626A4 (en) 2018-10-11 2020-04-24 Dimming and color tuning flicker-free downlight circuit

Publications (1)

Publication Number Publication Date
WO2020073359A1 true WO2020073359A1 (zh) 2020-04-16

Family

ID=68035260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111584 WO2020073359A1 (zh) 2018-10-11 2018-10-24 调光调色无频闪筒灯电路设计

Country Status (2)

Country Link
CN (1) CN209462651U (zh)
WO (1) WO2020073359A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840424A (zh) * 2020-06-23 2021-12-24 华润微集成电路(无锡)有限公司 一种可控硅调光led驱动系统及其方法
CN114258170A (zh) * 2021-11-29 2022-03-29 中山市特新电子科技有限公司 一种灯具控制装置、可控色温灯及数据传输方法
EP4152894A4 (en) * 2020-05-15 2024-05-22 Vertex Lighting And Electrical Co Ltd LINEAR SILICON-CONTROLLED LED LAMP DIMMING CONTROLLER

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113766702A (zh) * 2020-06-05 2021-12-07 漳州立达信光电子科技有限公司 一种照明灯具及其调光调色方法
WO2022048114A1 (zh) * 2020-09-02 2022-03-10 佛山市威得士灯饰电器有限公司 线性可控硅调光灯具及其驱动方法
CN116981124B (zh) * 2023-09-25 2023-12-26 佛山市南海区平翊电子有限公司 一种调光调色温电路、pcb板及照明装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103929854A (zh) * 2014-04-02 2014-07-16 深圳市明微电子股份有限公司 一种led驱动装置及其led调光控制器
CN203748073U (zh) * 2014-03-03 2014-07-30 深圳市明微电子股份有限公司 一种led电流纹波抑制电路及led发光装置
CN104093252A (zh) * 2014-07-16 2014-10-08 浙江大学 一种无频闪非隔离型led恒流驱动电路
CN105392256A (zh) * 2015-12-04 2016-03-09 佛山电器照明股份有限公司 一种led线性恒流调光电路
CN206181449U (zh) * 2016-11-15 2017-05-17 深圳市明微电子股份有限公司 一种消除电流纹波的线性恒流led驱动电路以及led发光装置
CN106710530A (zh) * 2016-12-27 2017-05-24 北京太坦科技有限公司 一种手机屏幕亮度控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203748073U (zh) * 2014-03-03 2014-07-30 深圳市明微电子股份有限公司 一种led电流纹波抑制电路及led发光装置
CN103929854A (zh) * 2014-04-02 2014-07-16 深圳市明微电子股份有限公司 一种led驱动装置及其led调光控制器
CN104093252A (zh) * 2014-07-16 2014-10-08 浙江大学 一种无频闪非隔离型led恒流驱动电路
CN105392256A (zh) * 2015-12-04 2016-03-09 佛山电器照明股份有限公司 一种led线性恒流调光电路
CN206181449U (zh) * 2016-11-15 2017-05-17 深圳市明微电子股份有限公司 一种消除电流纹波的线性恒流led驱动电路以及led发光装置
CN106710530A (zh) * 2016-12-27 2017-05-24 北京太坦科技有限公司 一种手机屏幕亮度控制装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152894A4 (en) * 2020-05-15 2024-05-22 Vertex Lighting And Electrical Co Ltd LINEAR SILICON-CONTROLLED LED LAMP DIMMING CONTROLLER
CN113840424A (zh) * 2020-06-23 2021-12-24 华润微集成电路(无锡)有限公司 一种可控硅调光led驱动系统及其方法
CN113840424B (zh) * 2020-06-23 2024-03-22 华润微集成电路(无锡)有限公司 一种可控硅调光led驱动系统及其方法
CN114258170A (zh) * 2021-11-29 2022-03-29 中山市特新电子科技有限公司 一种灯具控制装置、可控色温灯及数据传输方法

Also Published As

Publication number Publication date
CN209462651U (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2020073359A1 (zh) 调光调色无频闪筒灯电路设计
WO2013051658A1 (ja) Led照明装置
JP4375251B2 (ja) 調光装置及び照明装置
JP3172933U (ja) 発光ダイオードの駆動装置およびそれを使用する照明設備
JP3173888U (ja) 発光ダイオードの駆動装置およびそれが使用する照明設備
CN107027212B (zh) 调光模块以及固态光源装置
CN204929313U (zh) Led灯具发光控制装置和系统
JP2010245014A (ja) 非抵抗発光負荷のための非点滅輝度調整装置
JP5947609B2 (ja) Led照明機器及びこれに用いられる半導体装置
CN107404784B (zh) 调光模块、调光方法以及照明装置
US20150319816A1 (en) Single-wire dimming method
US20160113080A1 (en) Light-emitting device capable of adjusting brightness
KR101349516B1 (ko) Led 전원 장치.
CN106793330B (zh) 调光调色温的电路
KR101326988B1 (ko) 블리드 회로, 이를 포함하는 조명 제어 회로, 조명 제어 방법
US11122656B1 (en) Application structure of gallium nitride field-effect transistor in dimmer circuit
JP5972313B2 (ja) 3色led調光ランプ
AU2020100626A4 (en) Dimming and color tuning flicker-free downlight circuit
TWI436685B (zh) 照明控制電路與照明系統
CN102595713A (zh) 一种倍频调光控制器
JP6764543B2 (ja) Led構成及びled駆動方法
CN202435684U (zh) 一种倍频调光控制器
CN203039951U (zh) 可记忆调光的led球泡灯
CN209845369U (zh) 一种开关多段变色led调光电路
Wu et al. Design and Implementation of Active Bleeder for TRIAC Dimmable LED Driver

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936521

Country of ref document: EP

Kind code of ref document: A1