WO2014024829A1 - Processing method for wafer - Google Patents

Processing method for wafer Download PDF

Info

Publication number
WO2014024829A1
WO2014024829A1 PCT/JP2013/071123 JP2013071123W WO2014024829A1 WO 2014024829 A1 WO2014024829 A1 WO 2014024829A1 JP 2013071123 W JP2013071123 W JP 2013071123W WO 2014024829 A1 WO2014024829 A1 WO 2014024829A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
ultraviolet rays
support plate
processing method
irradiation
Prior art date
Application number
PCT/JP2013/071123
Other languages
French (fr)
Japanese (ja)
Inventor
亨 利根川
隆浩 麻生
洸造 上田
博秀 藪口
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020147014753A priority Critical patent/KR101476115B1/en
Priority to CN201380041694.7A priority patent/CN104541356B/en
Priority to JP2013539027A priority patent/JP5433113B1/en
Publication of WO2014024829A1 publication Critical patent/WO2014024829A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • C09J2301/502Additional features of adhesives in the form of films or foils characterized by process specific features process for debonding adherents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Definitions

  • the present invention relates to a wafer processing method for processing a wafer in a state where the wafer is fixed to a support plate via an adhesive composition, and relates to a wafer processing method that achieves higher production efficiency.
  • the wafer is fixed to a support plate in order to facilitate handling during wafer processing and prevent damage.
  • a thick film wafer cut from a high-purity silicon single crystal or the like is ground to a predetermined thickness to form a thin film wafer
  • the thick film wafer can be bonded to a support plate via an adhesive composition. Done.
  • Patent Document 1 discloses a wafer using a double-sided adhesive tape having an adhesive layer containing a gas generating agent that generates a gas upon irradiation with ultraviolet rays such as an azo compound. A processing method is described. In the wafer processing method described in Patent Document 1, first, the wafer is fixed to a support plate via a double-sided adhesive tape.
  • the gas generated from the gas generating agent is released to the interface between the surface of the tape and the wafer, and at least a part is peeled off by the pressure.
  • the wafer processing method described in Patent Document 1 is an extremely excellent method because it can be peeled without damaging the processed wafer and without leaving adhesive residue. However, due to the increasingly widespread use of semiconductor devices, further improvements in wafer processing methods are constantly being sought. The wafer processing method described in Patent Document 1 has also been felt unsatisfactory in terms of production efficiency today.
  • the present invention provides a wafer processing method for processing a wafer in a state where the wafer is fixed to a support plate via an adhesive composition, and provides a wafer processing method that achieves higher production efficiency.
  • the purpose is to do.
  • the present invention provides a support plate fixing step of fixing a wafer to a support plate via an adhesive composition containing an adhesive component and a gas generating agent that generates gas when irradiated with ultraviolet rays;
  • a wafer having a wafer processing step for processing a fixed wafer, and a support plate peeling step for peeling the support plate from the wafer by irradiating the processed wafer with ultraviolet rays to generate gas from the gas generating agent.
  • the wafer is irradiated by scanning the entire surface of the wafer using a dotted or linear ultraviolet ray having an irradiation intensity of 100 mW / cm 2 or more.
  • the inventor of the present application reviewed the production efficiency over the entire wafer processing method described in Patent Document 1. And it discovered that the process which peels a support plate from a wafer by irradiating an ultraviolet-ray to a processed wafer and generating gas from a gas generating agent has become rate-limiting. That is, it takes time until the wafer and the support plate can be peeled after starting the irradiation of ultraviolet rays, thereby affecting the overall production efficiency.
  • the entire surface of the wafer is irradiated with ultraviolet rays uniformly. However, with this method, the irradiation intensity of ultraviolet rays was low, and the peeling pressure due to the generation of gas was insufficient.
  • an ultraviolet irradiation device having a high irradiation ability it was considered to use an ultraviolet irradiation device having a high irradiation ability, but at the present time, an ultraviolet irradiation device having a large irradiation amount is not commercially available so far, and it is expensive even if it exists. There is also a risk that the wafer will be adversely affected by high temperature. Furthermore, when the entire surface of the wafer is irradiated with ultraviolet rays uniformly, the generated gas stays between the support plate and the adhesive composition, thereby destroying the thin and fragile wafer or deforming the support plate. There is a possibility that the adhesive composition on the wafer side peels off, and only the support plate cannot be peeled off, which greatly affects the work process of the wafer processing.
  • An ultraviolet irradiation device that can irradiate ultraviolet rays with a high irradiation intensity of 100 mW / cm 2 or more is commercially available if it is narrowed down to a narrow point-like or linear region. Therefore, as a result of further diligent study, the inventors of the present application devised a region where gas is generated by irradiating the entire surface of the wafer with spot or linear ultraviolet rays having an irradiation intensity of 100 mW / cm 2 or more. It is possible to control the generated gas so that it does not stay between the support plate and the adhesive composition, and the wafer and the support plate can be peeled off after starting the irradiation of ultraviolet rays. The present invention has been completed by finding that the time required for the process can be significantly shortened, thereby improving the overall production efficiency.
  • a support plate fixing step of fixing the wafer to the support plate through an adhesive composition containing an adhesive component and a gas generating agent that generates gas upon stimulation is performed.
  • the adhesive component is not particularly limited, and may contain either a non-curable adhesive or a curable adhesive.
  • a gas is generated from the gas generating agent by giving a stimulus to the adhesive composition in a support plate peeling process described later, and the generated gas is softer.
  • the entire adhesive component is foamed to form irregularities on the surface, and the adhesive area with the adherend is reduced and peeled off.
  • gas is generated from the gas generating agent by stimulating the adhesive composition in a support plate peeling step described later, and the generated gas is cured. It is released from the adhesive component to the interface with the adherend, and at least a part of the adherend is peeled off by the pressure.
  • the non-curable adhesive is not particularly limited.
  • a rubber adhesive an acrylic adhesive, a vinyl alkyl ether adhesive, a silicone adhesive, a polyester adhesive, a polyamide adhesive, and a urethane adhesive.
  • Agents styrene / diene block copolymer adhesives, and the like.
  • the curable adhesive is not particularly limited, and examples thereof include a photocurable adhesive and a thermosetting adhesive containing a polymerizable polymer as a main component and a photopolymerization initiator and a thermal polymerization initiator.
  • Such photo-curing adhesives and thermosetting adhesives are uniformly and rapidly polymerized and integrated by light irradiation or heating so that the elastic modulus is significantly increased by polymerization curing. Thus, the adhesive strength is greatly reduced.
  • gas is generated from the gas generating agent in a hard cured product having an increased elastic modulus, most of the generated gas is released to the outside, and the released gas is released from the adherend to the adhesive surface of the adhesive. Remove at least a portion to reduce the adhesive strength.
  • the polymerizable polymer is prepared by, for example, previously synthesizing a (meth) acrylic polymer having a functional group in the molecule (hereinafter referred to as a functional group-containing (meth) acrylic polymer) It can be obtained by reacting with a compound having a reactive functional group and a radical polymerizable unsaturated bond (hereinafter referred to as a functional group-containing unsaturated compound).
  • the functional group-containing (meth) acrylic polymer is an acrylic polymer having an alkyl group usually in the range of 2 to 18 as a polymer having adhesiveness at room temperature, as in the case of general (meth) acrylic polymers.
  • a functional group-containing monomer, and, if necessary, another modifying monomer copolymerizable therewith by a conventional method It is obtained.
  • the weight average molecular weight of the functional group-containing (meth) acrylic polymer is usually about 200,000 to 2,000,000.
  • Examples of the functional group-containing monomer include a carboxyl group-containing monomer such as acrylic acid and methacrylic acid; a hydroxyl group-containing monomer such as hydroxyethyl acrylate and hydroxyethyl methacrylate; and an epoxy group containing glycidyl acrylate and glycidyl methacrylate.
  • Examples of other modifying monomers that can be copolymerized include various monomers used in general (meth) acrylic polymers such as vinyl acetate, acrylonitrile, and styrene.
  • the functional group-containing unsaturated compound to be reacted with the functional group-containing (meth) acrylic polymer is the same as the functional group-containing monomer described above according to the functional group of the functional group-containing (meth) acrylic polymer. it can.
  • the functional group of the functional group-containing (meth) acrylic polymer is a carboxyl group
  • an epoxy group-containing monomer or an isocyanate group-containing monomer is used
  • the functional group is a hydroxyl group
  • an isocyanate group-containing monomer is used.
  • the functional group is an epoxy group
  • a carboxyl group-containing monomer or an amide group-containing monomer such as acrylamide is used
  • the functional group is an amino group
  • an epoxy group-containing monomer is used.
  • Examples of the photopolymerization initiator include those activated by irradiation with light having a wavelength of 250 to 800 nm.
  • Examples of such a photopolymerization initiator include acetophenone derivative compounds such as methoxyacetophenone; Benzoin ether compounds such as benzoinpropyl ether and benzoin isobutyl ether; ketal derivative compounds such as benzyldimethyl ketal and acetophenone diethyl ketal; phosphine oxide derivative compounds; bis ( ⁇ 5-cyclopentadienyl) titanocene derivative compounds, benzophenone, Michler's ketone, Chlorothioxanthone, todecylthioxanthone, dimethylthioxanthone, diethylthioxanthone, ⁇ -hydroxycyclohexyl phenyl ketone, 2-hydroxymethylphenylpropane, etc.
  • These radical photopolymerization initiators These
  • thermal polymerization initiator examples include those that decompose by heat and generate active radicals that initiate polymerization and curing. Examples thereof include dicumyl peroxide, di-t-butyl peroxide, and t-butyl peroxybenzoale. T-butyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramentane hydroperoxide, di-t-butyl peroxide and the like.
  • a thermal polymerization initiator having a thermal decomposition temperature of 200 ° C. or higher as the thermal polymerization initiator.
  • thermal polymerization initiator having a high thermal decomposition temperature examples include cumene hydroperoxide, paramentane hydroperoxide, and di-t-butyl peroxide. Although it does not specifically limit as what is marketed among these thermal polymerization initiators, For example, perbutyl D, perbutyl H, perbutyl P, permenta H (all are the NOF Corporation make) etc. are suitable. These thermal polymerization initiators may be used independently and 2 or more types may be used together.
  • the photocurable adhesive and thermosetting adhesive preferably further contain a radical polymerizable polyfunctional oligomer or monomer.
  • a radical polymerizable polyfunctional oligomer or monomer By containing a radically polymerizable polyfunctional oligomer or monomer, photocurability and thermosetting are improved.
  • the polyfunctional oligomer or monomer preferably has a molecular weight of 10,000 or less, and more preferably has a molecular weight of 5000 or less so that the three-dimensional network of the pressure-sensitive adhesive layer can be efficiently formed by heating or light irradiation.
  • the number of radically polymerizable unsaturated bonds in the molecule is 2 to 20.
  • the polyfunctional oligomer or monomer is, for example, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, or the same methacrylate as described above. And the like.
  • Examples include 1,4-butylene glycol diacrylate, 1,6-hexanediol diacrylate, polypropylene glycol # 700 diacrylate, polyethylene glycol diacrylate, commercially available oligoester acrylate, and methacrylates similar to those described above. These polyfunctional oligomers or monomers may be used alone or in combination of two or more.
  • the said gas generating agent is not specifically limited, For example, conventionally well-known gas generating agents, such as an azo compound and an azide compound, can be used.
  • a gas generating agent that does not peel off by these treatments, that is, has excellent resistance to these treatments.
  • a gas generating agent for example, a carboxylic acid compound represented by the following general formula (1) or a salt thereof is also suitable.
  • Such a gas generating agent generates gas (carbon dioxide gas) by irradiating light such as ultraviolet rays, and has high heat resistance that does not decompose even at a high temperature of about 200 ° C.
  • Such a gas generating agent does not react and generate gas even in a severe wafer processing process.
  • R 1 to R 7 each represents hydrogen or an organic group.
  • R 1 to R 7 may be the same or different.
  • Two of R 1 to R 7 may be bonded to each other to form a cyclic structure.
  • Examples of the organic group in the general formula (1) include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, and an isobutyl group, an alkoxy group such as a methoxy group and an ethoxy group, a carboxyl group, a hydroxyl group, , Aromatic groups such as nitro groups and phenyl groups, polycyclic hydrocarbon groups such as naphthyl groups, fluorenyl groups and pyrenyl groups, ring-assembled hydrocarbon groups such as biphenyl groups, and heterocyclic groups such as xanthenyl groups Etc.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, and an isobutyl group
  • an alkoxy group such as a methoxy group and an ethoxy group
  • a carboxyl group such as a hydroxyl group
  • R 3 to R 7 in the general formula (1) is an organic group represented by the following general formula (2), or R 3 in the general formula (1) It is preferable that two adjacent ones of R 7 are bonded to each other to form a cyclic structure represented by the following formula (3).
  • R 8 to R 12 each represent hydrogen or an organic group.
  • R 8 to R 12 may be the same or different.
  • Two of R 8 to R 12 may be bonded to each other to form a cyclic structure.
  • R 13 to R 16 each represent hydrogen or an organic group.
  • R 13 to R 16 may be the same or different.
  • Two of R 13 to R 16 may be bonded to each other to form a cyclic structure.
  • R ⁇ 1 > in the said General formula (1) is a methyl group.
  • carboxylic acid compound represented by the above formula (1) include, for example, phenylacetic acid, diphenylacetic acid, triphenylacetic acid, 2-phenylpropionic acid, 2,2-diphenylpropionic acid, 2,2,2- Triphenylpropionic acid, 2-phenylbutyric acid, ⁇ -methoxyphenylacetic acid, mandelic acid, atrolactone acid, benzylic acid, tropic acid, phenylmalonic acid, phenylsuccinic acid, 3-methyl-2-phenylbutyric acid, orthotoluylacetic acid , Metatoluylacetic acid, 4-isobutyl- ⁇ -methylphenylacetic acid, p-toluylacetic acid, 1,2-phenylenediacetic acid, 1,3-phenylenediacetic acid, 1,4-phenylenediacetic acid, 2-methoxyphenylacetic acid, 2-hydroxy Phenylacetic acid, 2-nitrophenylacetic acid, 3-nitro
  • the carboxylic acid compound represented by the above formula (1) is ketoprofen represented by the following formula (1-1) or 2-xanthone acetic acid represented by the following formula (1-2). preferable.
  • the salt of the carboxylic acid compound represented by the above formula (1) also has a skeleton derived from the carboxylic acid compound represented by the above formula (1), decarboxylation easily occurs when irradiated with light, Carbon dioxide gas can be generated.
  • the salt of the carboxylic acid compound represented by the above formula (1) can be easily passed through a complicated synthesis route simply by mixing the carboxylic acid compound represented by the above formula (1) and the basic compound in a container.
  • the basic compound is not particularly limited, and examples thereof include amines, hydrazine compounds, quaternary ammonium hydroxide salts, and phosphine compounds.
  • the amine is not particularly limited, and any of primary amines, secondary amines, and tertiary amines can be used.
  • the basic compound is preferably a monoalkylamine or a dialkylamine.
  • the polarity of the obtained salt of the carboxylic acid compound represented by the formula (1) can be reduced, and the solubility with the adhesive component can be increased. More preferably, it is a monoalkylamine or dialkylamine having 6 to 12 carbon atoms.
  • gas generating agent a tetrazole compound represented by the following general formula (4), general formula (5) or general formula (6) or a salt thereof is also suitable.
  • gas generating agents also generate gas (nitrogen gas) by irradiating light such as ultraviolet rays, and have high heat resistance that does not decompose even at a high temperature of about 200 ° C. Moreover, it is excellent also in tolerance with respect to chemical
  • R 21 and R 22 represent hydrogen, an alkyl group having 1 to 7 carbon atoms, an alkylene group, a phenyl group, a mercapto group, a hydroxyl group, or an amino group.
  • the salt of the tetrazole compound represented by the general formulas (4) to (6) also has a skeleton derived from the tetrazole compound represented by the general formula (4) to (6), light is irradiated. And nitrogen gas can be generated.
  • the salt of the tetrazole compound represented by the general formulas (4) to (6) is not particularly limited, and examples thereof include a sodium salt, a potassium salt, and an ammonium salt.
  • the salt of the tetrazole compound represented by the general formulas (4) to (6) can be obtained by simply mixing the tetrazole compound and the basic compound represented by the general formulas (4) to (6) in a container. It can be easily prepared without going through a complicated synthetic route.
  • the basic compound is not particularly limited, and examples thereof include amines, hydrazine compounds, quaternary ammonium hydroxide salts, and phosphine compounds.
  • the amine is not particularly limited, and any of primary amines, secondary amines, and tertiary amines can be used. Among these, the basic compound is preferably a monoalkylamine or a dialkylamine.
  • the polarity of the resulting salt of the tetrazole compound represented by the general formulas (4) to (6) can be reduced, and the solubility with the adhesive component is increased. be able to. More preferably, it is a monoalkylamine or dialkylamine having 6 to 12 carbon atoms.
  • the tetrazole compound represented by the above general formula (4) or a salt thereof is not particularly limited. Specifically, for example, 1H-tetrazole, 5-phenyl-1H-tetrazole, 5,5-azobis-1H-tetrazole, 5 -Amino-1H-tetrazole, 5-methyl-1H-tetrazole, 1-methyl-5-mercapto-1H-tetrazole, 1-methyl-5-ethyl-1H-tetrazole, 1- (dimethylaminoethyl) -5-mercapto -1H-tetrazole and the like.
  • the tetrazole compound represented by the general formula (5) or a salt thereof is not particularly limited, and specific examples include 5,5'-bistetrazole diammonium salt.
  • the tetrazole compound represented by the general formula (6) or a salt thereof is not particularly limited, and specific examples include 5,5'-bistetrazoleamine monoammonium salt.
  • a preferable lower limit with respect to 100 parts by weight of the adhesive component is 5 parts by weight, and a preferable upper limit is 50 parts by weight.
  • a preferable upper limit is 50 parts by weight.
  • the content of the gas generating agent is less than 5 parts by weight, gas generation due to ultraviolet irradiation is reduced and sufficient peeling may not be performed.
  • the content exceeds 50 parts by weight it is dissolved in the adhesive component.
  • the adhesive strength may be reduced.
  • the minimum with more preferable content of the said gas generating agent is 10 weight part, and a more preferable upper limit is 30 weight part.
  • the adhesive composition may contain a photosensitizer. Since the photosensitizer has an effect of amplifying stimulation by light on the gas generating agent, gas can be released by irradiation with less light. In addition, gas can be emitted by light in a wider wavelength region.
  • the photosensitizer is not particularly limited as long as it has excellent heat resistance.
  • the photosensitizer excellent in heat resistance include polycyclic aromatic compounds having at least one alkoxy group.
  • a substituted alkoxy polycyclic aromatic compound having an alkoxy group partially substituted with a glycidyl group or a hydroxyl group is preferable.
  • These photosensitizers have high resistance to sublimation and can be used at high temperatures.
  • the solubility in the adhesive component is increased, and bleeding out can be prevented.
  • the polycyclic aromatic compound is preferably an anthracene derivative.
  • the alkoxy group preferably has 1 to 18 carbon atoms, and more preferably has 1 to 8 carbon atoms.
  • polycyclic aromatic compound having at least one alkoxy group examples include 9,10-dimethoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, 2-tbutyl-9,10-dimethoxyanthracene, 2, 3-dimethyl-9,10-dimethoxyanthracene, 9-methoxy-10-methylanthracene, 9,10-diethoxyanthracene, 2-ethyl-9,10-diethoxyanthracene, 2-tbutyl-9,10-di Ethoxyanthracene, 2,3-dimethyl-9,10-diethoxyanthracene, 9-ethoxy-10-methylanthracene, 9,10-dipropoxyanthracene, 2-ethyl-9,10-dipropoxyanthracene, 2-tbutyl -9,10-dipropoxyanthracene, 2,3-dimethyl-9, 0-dipropoxyanthracene
  • the substituted alkoxy polycyclic aromatic compound having an alkoxy group partially substituted with a glycidyl group or a hydroxyl group includes, for example, 9,10-di (glycidyloxy) anthracene, 2-ethyl-9,10-di (glycidyloxy) ) Anthracene, 2-tbutyl-9,10-di (glycidyloxy) anthracene, 2,3-dimethyl-9,10-di (glycidyloxy) anthracene, 9- (glycidyloxy) -10-methylanthracene, 9, 10-di (2-vinyloxyethoxy) anthracene, 2-ethyl-9,10-di (2-vinyloxyethoxy) anthracene, 2-tbutyl-9,10-di (2-vinyloxyethoxy) anthracene, 2 , 3-Dimethyl-9,10-di (2-vinyloxyeth
  • the content of the photosensitizer is preferably 0.05 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the adhesive component.
  • the content of the photosensitizer is less than 0.05 parts by weight, a sufficient sensitizing effect may not be obtained.
  • the content exceeds 10 parts by weight the residue derived from the photosensitizer increases. , Sufficient peeling may not be performed.
  • the minimum with more preferable content of the said photosensitizer is 0.1 weight part, and a more preferable upper limit is 5 weight part.
  • the adhesive composition suitably contains various polyfunctional compounds that are blended in general pressure-sensitive adhesives such as isocyanate compounds, melamine compounds, and epoxy compounds as needed for the purpose of adjusting the cohesive force as pressure-sensitive adhesives. May be.
  • the adhesive composition may contain known additives such as a plasticizer, a resin, a surfactant, a wax, and a fine particle filler.
  • An adhesive composition for use in the wafer processing method of the present invention the adhesive composition containing an adhesive component and a gas generating agent that generates gas when irradiated with ultraviolet rays, is also included in 1 of the present invention.
  • the adhesive composition containing an adhesive component and a gas generating agent that generates gas when irradiated with ultraviolet rays, is also included in 1 of the present invention.
  • the wafer and the support plate may be bonded directly by the adhesive composition, or a double-sided pressure-sensitive adhesive tape having an adhesive layer made of the adhesive composition on at least one surface. May be used for bonding.
  • the double-sided pressure-sensitive adhesive tape may be a support tape having a pressure-sensitive adhesive layer on both sides of the base material, or may be a non-support tape having no base material.
  • the base material is, for example, a sheet or mesh made of a transparent resin such as acrylic, olefin, polycarbonate, vinyl chloride, ABS, polyethylene terephthalate (PET), nylon, urethane, or polyimide. And a sheet having a hole-like structure and a sheet having holes.
  • a wafer processing step is performed for processing the wafer fixed to the support plate.
  • the process for the wafer include a grinding process for grinding the wafer to a certain thickness.
  • chemical treatment, heat treatment, or treatment with heat generation is also performed.
  • the chemical treatment include plating treatment such as electrolytic plating and electroless plating, wet etching treatment using hydrofluoric acid, tetramethylammonium hydroxide aqueous solution (TMAH), N-methyl-2-pyrrolidone, monoethanolamine, and the like.
  • TMAH tetramethylammonium hydroxide aqueous solution
  • TMAH tetramethylammonium hydroxide aqueous solution
  • TMAH tetramethylammonium hydroxide aqueous solution
  • TMAH tetramethylammonium hydroxide aqueous solution
  • TMAH tetramethylammonium hydroxide aqueous solution
  • TMAH tetramethylammonium hydroxide
  • the wafer processing step of the present invention may include a dicing tape attaching step of attaching a dicing tape to the processed surface of the wafer after the processing, prior to a support plate peeling step described later.
  • a dicing tape attaching step of attaching a dicing tape to the processed surface of the wafer after the processing, prior to a support plate peeling step described later.
  • a support plate peeling step is then performed in which the wafer after the above treatment is irradiated with ultraviolet rays to generate a gas from the gas generating agent, thereby peeling the support plate from the wafer.
  • the adhesive composition for bonding the wafer and the support plate contains a gas generating agent, the wafer can be easily peeled from the support plate without damaging the wafer by irradiation with ultraviolet rays.
  • irradiation is performed so as to scan the entire surface of the wafer using a dotted or linear ultraviolet ray having an irradiation intensity of 100 mW / cm 2 or more.
  • a dotted or linear ultraviolet ray having an irradiation intensity of 100 mW / cm 2 or more.
  • Irradiation is preferably carried out so as to scan the entire surface of the wafer using dot-like or linear ultraviolet rays having an irradiation intensity of 200 mW / cm 2 or more, more preferably an irradiation intensity of 300 mW / cm 2 or more.
  • punctate or linear ultraviolet-ray in the said indicator plate peeling process is 2000 mW / cm ⁇ 2 >.
  • the irradiation intensity of ultraviolet rays exceeds 2000 mW / cm 2 , the heat generation amount increases and the adhesive composition may be burnt.
  • a more preferable upper limit of the irradiation intensity of ultraviolet rays is 1750 mW / cm 2 , and a more preferable upper limit is 1600 mW / cm 2 .
  • the preferable lower limit of the scanning speed when irradiating the entire surface of the wafer with a spot or linear ultraviolet ray having an irradiation intensity of 100 mW / cm 2 or more is 1 mm / sec, and the preferable upper limit is 200 mm / sec.
  • the adhesive composition may be burned by heat from an ultraviolet light source.
  • the scanning speed exceeds 200 mm / sec, gas is generated from the adhesive composition. It may be insufficient.
  • a more preferable lower limit of the scanning speed is 3 mm / sec or more, a more preferable upper limit is 150 mm / sec, and a more preferable upper limit is 100 mm / sec.
  • FIG. 1 An example of a specific method for irradiating the whole surface of the wafer with the above-described spot-shaped ultraviolet rays having an irradiation intensity of 100 mW / cm 2 or more will be described with reference to FIG.
  • a processed wafer 1 is fixed to a support plate 3 via an adhesive composition 2.
  • point-like ultraviolet rays having an irradiation intensity of 100 mW / cm 2 or more are irradiated from the ultraviolet irradiation port 4 from the support plate 3 side (FIG. 1A). Since the ultraviolet rays are irradiated in the form of dots, the entire surface of the wafer is not irradiated.
  • irradiation can be performed so as to scan the entire surface of the wafer (see FIG. 1 (b)).
  • scanning was performed by moving the ultraviolet irradiation port 4, but the same effect can be obtained by moving the processed wafer 1 / adhesive composition 2 / support plate 3 side.
  • FIG. 2 is a schematic diagram showing an example of a scanning pattern in the case of irradiating ultraviolet rays so as to scan the entire surface of the wafer using dotted ultraviolet rays.
  • FIG. 2A shows a scanning pattern for irradiating dotted ultraviolet rays such that the locus of ultraviolet irradiation becomes spiral from the outer peripheral portion to the central portion of the wafer.
  • FIG. 2B shows a scanning pattern for irradiating dotted ultraviolet rays so that the locus of ultraviolet irradiation reciprocates over the entire surface of the wafer.
  • FIG. 2C shows a scanning pattern for irradiating dotted ultraviolet rays such that the locus of ultraviolet irradiation reciprocates on one half of the wafer and then reciprocates on the other half.
  • FIG. 2D shows a scanning pattern for irradiating dotted ultraviolet rays so that the locus of ultraviolet irradiation covers the entire surface of the wafer while reciprocating between the outer peripheral portion and the central portion of
  • FIG. 3 An example of a specific method for irradiating the whole surface of the wafer with linear ultraviolet rays having an irradiation intensity of 100 mW / cm 2 or more will be described with reference to FIG.
  • the processed wafer 1 is fixed to a support plate 3 via an adhesive composition 2.
  • linear ultraviolet rays having an irradiation intensity of 100 mW / cm 2 or more are irradiated from the support plate 3 side through the ultraviolet irradiation port 5 (FIG. 3A). Since the ultraviolet rays are irradiated linearly, the entire surface of the wafer is not irradiated.
  • the entire surface of the wafer can be scanned (FIG. 3). (B)).
  • the scanning was performed by moving the ultraviolet irradiation port 5, but the same operation can be performed by moving the processed wafer 1 / adhesive composition 2 / support plate 3 on a belt conveyor or the like. The effect of can be obtained.
  • the irradiation of the dotted or linear ultraviolet rays starts from the outer peripheral portion of the wafer. Thereby, peeling of a support plate can be performed more reliably.
  • the direction of scanning when irradiating dotted ultraviolet rays is not particularly limited, and may be clockwise or counterclockwise. Further, the scanning direction when performing irradiation with linear ultraviolet rays is not particularly limited, and may be from the right or from the left.
  • the ultraviolet irradiation apparatus capable of irradiating the above-mentioned irradiation intensity of 100 mW / cm 2 or more with a dotted or linear ultraviolet ray is not particularly limited.
  • a commercially available high pressure mercury lamp, medium pressure mercury lamp, low pressure mercury lamp, metal halide lamp, LED lamp, spot A UV device, a pulse laser UV irradiation device, a conveyor-type UV lamp, a scanning UV lamp, or the like can be used.
  • a commercially available ultraviolet irradiation device such as “Spot Cure” manufactured by Ushio Electric Co., Ltd. or “Igrantage” manufactured by Eye Graphics Co., Ltd. can be used.
  • the wafer processing method of the present invention it is possible to control the portion where the gas is generated so that the generated gas does not stay between the support plate and the adhesive composition, and the ultraviolet ray is generated.
  • the time from the start of irradiation to the time when the wafer and the support plate can be peeled can be significantly shortened, thereby improving the overall production efficiency.
  • a wafer processed by the wafer processing method of the present invention is also one aspect of the present invention.
  • a wafer processing method for processing a wafer in a state in which the wafer is fixed to a support plate via an adhesive composition and provides a wafer processing method that realizes higher production efficiency. it can.
  • Example 1 Preparation of pressure-sensitive adhesive tape A reactor equipped with a thermometer, a stirrer, and a cooling tube was prepared. In this reactor, 94 parts by weight of 2-ethylhexyl acrylate, 1 part by weight of acrylic acid, and 5 parts by weight of 2-hydroxyethyl acrylate , 0.01 parts by weight of lauryl mercapcaptan and 180 parts by weight of ethyl acetate were added, and then the reactor was heated to start refluxing. Subsequently, 0.01 parts by weight of 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane was added as a polymerization initiator in the reactor, and polymerization was started under reflux.
  • 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane was added as a polymerization initiator in the reactor, and polymerization was started under reflux.
  • the resin solid content of 100 parts by weight of the ethyl acetate solution containing the acrylic copolymer thus obtained is reacted by adding 3.5 parts by weight of 2-isocyanatoethyl methacrylate, and further the resin of the ethyl acetate solution after the reaction.
  • 0.1 parts by weight of a photopolymerization initiator (Esacure One, manufactured by Nippon Shibel Hegner) and 2.5 parts by weight of a polyisocyanate-based crosslinking agent (Coronate L45, manufactured by Nippon Polyurethane) are mixed and bonded to 100 parts by weight of solid content.
  • An ethyl acetate solution of agent (1) was prepared.
  • the obtained adhesive composition was coated with a doctor knife on the corona-treated surface of a transparent polyethylene terephthalate film having a thickness of 50 ⁇ m, which was corona-treated on one side, so that the thickness of the dry film was 30 ⁇ m.
  • the coating solution was dried by heating at 110 ° C. for 5 minutes. Thereafter, static curing was performed at 40 ° C. for 3 days to obtain an adhesive tape.
  • the obtained adhesive tape was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 ⁇ m in a vacuum.
  • a quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate.
  • the wafer side of the obtained laminate was ground and polished to a thickness of 50 ⁇ m.
  • the 254 nm ultraviolet ray was irradiated to the laminated body obtained from the glass plate side to the left and right, and the irradiation intensity was 300 mW / cm.
  • 2 linear ultraviolet rays were irradiated so as to scan the entire surface of the wafer.
  • the movement of the ultraviolet irradiation port was performed so that the scanning pattern was as shown in FIG. 3, and the time from the start of ultraviolet irradiation to the completion of scanning of the entire wafer surface was 30 seconds (scanning speed: 6.5 mm / sec). .
  • the glass plate and the wafer were peeled off. It took 2 minutes from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer.
  • Example 2 The pressure-sensitive adhesive tape obtained by the same method as in Example 1 was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 ⁇ m in a vacuum. A quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate. Using a conveyor type UV irradiator (“Igrantage” manufactured by I-Graphics Co., Ltd.) from the glass plate side, 254 nm UV light is applied to the wafer with linear UV light with an irradiation intensity of 100 mW / cm 2 while moving the UV irradiation port left and right.
  • Igrantage manufactured by I-Graphics Co., Ltd.
  • the wafer was processed in the same manner as in Example 1 except that irradiation was performed so as to scan the entire surface. Then, after visually observing from the glass plate side and confirming that gas was generated sufficiently, the glass plate and the wafer were peeled off. It took 4 minutes and 30 seconds from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer.
  • Example 3 The pressure-sensitive adhesive tape obtained by the same method as in Example 1 was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 ⁇ m in a vacuum. A quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate. The wafer side of the obtained laminate was ground and polished to a thickness of 50 ⁇ m.
  • the resulting laminate was irradiated with 254 nm ultraviolet rays while moving the ultraviolet irradiation port back and forth and left and right 2 cm with an irradiation intensity of 500 mW / cm 2 .
  • Ultraviolet rays were irradiated so as to scan the entire surface of the wafer in an area of ⁇ 2 cm.
  • the movement of the ultraviolet irradiation port was performed as shown in FIG. 2A, and the time from the start of ultraviolet irradiation to the completion of scanning of the entire wafer surface was 180 seconds (scanning speed: 11 mm / sec). .
  • the glass plate and the wafer were peeled off. It took 4 minutes from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer.
  • Example 4 The pressure-sensitive adhesive tape obtained by the same method as in Example 1 was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 ⁇ m in a vacuum. A quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate. The wafer side of the obtained laminate was ground and polished to a thickness of 50 ⁇ m.
  • the resulting laminate was irradiated with 254 nm ultraviolet rays while moving the ultraviolet irradiation port back and forth and left and right 2 cm with an irradiation intensity of 500 mW / cm 2 .
  • Ultraviolet rays were irradiated so as to scan the entire surface of the wafer in an area of ⁇ 2 cm.
  • the movement of the UV irradiation port was performed as shown in FIG. 2B, and the time from the start of UV irradiation to the completion of scanning of the entire wafer surface was 180 seconds (scanning speed: 11 mm / sec). .
  • the glass plate and the wafer were peeled off. It took 4 minutes from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer.
  • Example 5 The pressure-sensitive adhesive tape obtained by the same method as in Example 1 was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 ⁇ m in a vacuum. A quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate. The wafer side of the obtained laminate was ground and polished to a thickness of 50 ⁇ m.
  • the resulting laminate was irradiated with 254 nm ultraviolet rays while moving the ultraviolet irradiation port back and forth and left and right 2 cm with an irradiation intensity of 500 mW / cm 2 .
  • Ultraviolet rays were irradiated so as to scan the entire surface of the wafer in an area of ⁇ 2 cm.
  • the movement of the ultraviolet irradiation port was performed as shown in FIG. 2C, and the time from the start of ultraviolet irradiation to the completion of scanning of the entire wafer surface was 200 seconds (scanning speed: 10 mm / sec). .
  • the glass plate and the wafer were peeled off. It took 4 minutes from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer.
  • Example 6 The pressure-sensitive adhesive tape obtained by the same method as in Example 1 was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 ⁇ m in a vacuum. A quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate. The wafer side of the obtained laminate was ground and polished to a thickness of 50 ⁇ m.
  • the resulting laminate was irradiated with 254 nm ultraviolet rays while moving the ultraviolet irradiation port back and forth and left and right 2 cm with an irradiation intensity of 500 mW / cm 2 .
  • Ultraviolet rays were irradiated so as to scan the entire surface of the wafer in an area of ⁇ 2 cm.
  • the movement of the ultraviolet irradiation port was performed as shown in FIG. 2D, and the time from the start of ultraviolet irradiation to the completion of scanning of the entire wafer surface was set to 200 seconds (scanning speed: 10 mm / sec). .
  • the glass plate and the wafer were peeled off. It took 4 minutes from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer.
  • Example 1 The pressure-sensitive adhesive tape obtained by the same method as in Example 1 was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 ⁇ m in a vacuum. A quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate. The wafer side of the obtained laminate was ground and polished to a thickness of 50 ⁇ m.
  • the entire surface of the resulting laminate is irradiated for 6 minutes with an irradiation intensity of 254 nm adjusted to an irradiation intensity of 80 mW / cm 2 on the glass plate surface. did. Then, after visually observing from the glass plate side and confirming that gas was generated sufficiently, the glass plate and the wafer were peeled off. It took 10 minutes from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer. Since the generated gas accumulated between the glass plate and the adhesive tape, and the wafer side was partially peeled off, it took time to peel the glass plate from the wafer.
  • a wafer processing method for processing a wafer in a state in which the wafer is fixed to a support plate via an adhesive composition and provides a wafer processing method that realizes higher production efficiency. it can.

Abstract

The purpose of the present invention is to provide a processing method for a wafer that processes the wafer in a state in which the wafer is affixed to a support plate via an adhesive composition, and that achieves higher production efficiency. The present invention is a processing method for a wafer having: a support plate affixing step in which the wafer is affixed to the support plate via the adhesive composition, which includes an adhesive component and a gas generating agent that generates a gas by being irradiated by ultraviolet light; a wafer processing step in which processing is carried out on the wafer affixed to the support plate; and a support plate detachment step in which the gas is generated by the gas generating agent by irradiating the wafer with ultraviolet light after the processing and the support plate is detached from the wafer. In the support plate detachment step, using point shaped or linear ultraviolet light with an irradiation intensity of 100 mW/cm2 or greater, irradiation is carried out so as to scan the entire surface of the wafer.

Description

ウエハの処理方法Wafer processing method
本発明は、接着剤組成物を介してウエハを支持板に固定した状態でウエハを処理するウエハの処理方法であって、より高い生産効率を実現したウエハの処理方法に関する。 The present invention relates to a wafer processing method for processing a wafer in a state where the wafer is fixed to a support plate via an adhesive composition, and relates to a wafer processing method that achieves higher production efficiency.
半導体チップの製造工程においては、ウエハの加工時に取扱いを容易にし、破損したりしないようにするためにウエハを支持板に固定することが行われている。例えば、高純度なシリコン単結晶等から切り出した厚膜ウエハを所定の厚さにまで研削して薄膜ウエハとする場合に、接着剤組成物を介して厚膜ウエハを支持板に接着することが行われる。 In the semiconductor chip manufacturing process, the wafer is fixed to a support plate in order to facilitate handling during wafer processing and prevent damage. For example, when a thick film wafer cut from a high-purity silicon single crystal or the like is ground to a predetermined thickness to form a thin film wafer, the thick film wafer can be bonded to a support plate via an adhesive composition. Done.
ウエハを支持板に接着する接着剤組成物には、加工工程中にウエハを強固に固定できるだけの高い粘着性とともに、工程終了後にはウエハを損傷することなく剥離できることが求められる(以下、「高接着易剥離」ともいう。)。
高接着易剥離を実現した接着剤組成物として特許文献1には、アゾ化合物等の紫外線を照射することにより気体を発生する気体発生剤を含有する粘着層を有する両面粘着テープを用いたウエハの処理方法が記載されている。特許文献1に記載されたウエハの処理方法では、まず、両面粘着テープを介してウエハを支持板に固定する。その状態で研削工程等を行った後に紫外線を照射すると、気体発生剤から発生した気体がテープの表面とウエハとの界面に放出され、その圧力によって少なくとも一部が剥離される。
Adhesive compositions that adhere a wafer to a support plate are required to have high adhesiveness that can firmly fix the wafer during the processing step and to be able to be peeled off after the step without damaging the wafer (hereinafter referred to as “high” Also referred to as “adhesive easy peeling”.)
As an adhesive composition realizing high adhesion and easy peeling, Patent Document 1 discloses a wafer using a double-sided adhesive tape having an adhesive layer containing a gas generating agent that generates a gas upon irradiation with ultraviolet rays such as an azo compound. A processing method is described. In the wafer processing method described in Patent Document 1, first, the wafer is fixed to a support plate via a double-sided adhesive tape. When ultraviolet rays are irradiated after performing a grinding process or the like in this state, the gas generated from the gas generating agent is released to the interface between the surface of the tape and the wafer, and at least a part is peeled off by the pressure.
特許文献1に記載されたウエハの処理方法は、処理後のウエハを損傷することなく、かつ、糊残りもすることなく剥離できることから、極めて優れた方法である。しかしながら、半導体装置のますますの普及により、ウエハの処理方法には常に更なる改良が求められ続けている。特許文献1に記載されたウエハの処理方法も、今日においては生産効率の点で不満足に感じられるようになってきていた。 The wafer processing method described in Patent Document 1 is an extremely excellent method because it can be peeled without damaging the processed wafer and without leaving adhesive residue. However, due to the increasingly widespread use of semiconductor devices, further improvements in wafer processing methods are constantly being sought. The wafer processing method described in Patent Document 1 has also been felt unsatisfactory in terms of production efficiency today.
特開2003-231872号公報JP 2003-231872 A
本発明は、上記現状に鑑み、接着剤組成物を介してウエハを支持板に固定した状態でウエハを処理するウエハの処理方法であって、より高い生産効率を実現したウエハの処理方法を提供することを目的とする。 In view of the above situation, the present invention provides a wafer processing method for processing a wafer in a state where the wafer is fixed to a support plate via an adhesive composition, and provides a wafer processing method that achieves higher production efficiency. The purpose is to do.
本発明は、接着剤成分と、紫外線を照射することにより気体を発生する気体発生剤とを含有する接着剤組成物を介してウエハを支持板に固定する支持板固定工程と、前記支持板に固定されたウエハに処理を施すウエハ処理工程と、前記処理後のウエハに紫外線を照射して前記気体発生剤から気体を発生させて、支持板をウエハから剥離する支持板剥離工程とを有するウエハの処理方法であって、前記支持板剥離工程において、照射強度100mW/cm以上の点状又は線状の紫外線を用いてウエハの全面を走査するように照射するウエハの処理方法である。
以下に本発明を詳述する。
The present invention provides a support plate fixing step of fixing a wafer to a support plate via an adhesive composition containing an adhesive component and a gas generating agent that generates gas when irradiated with ultraviolet rays; A wafer having a wafer processing step for processing a fixed wafer, and a support plate peeling step for peeling the support plate from the wafer by irradiating the processed wafer with ultraviolet rays to generate gas from the gas generating agent. In the supporting plate peeling step, the wafer is irradiated by scanning the entire surface of the wafer using a dotted or linear ultraviolet ray having an irradiation intensity of 100 mW / cm 2 or more.
The present invention is described in detail below.
本願の発明者は、特許文献1に記載されたウエハの処理方法の全般にわたって生産効率の再検討を行った。そして、処理後のウエハに紫外線を照射して気体発生剤から気体を発生させて支持板をウエハから剥離する工程が律速になっていることを見出した。即ち、紫外線の照射を開始してからウエハと支持板とを剥離可能になるまでに時間がかかり、それによって全体の生産効率に影響を与えていた。
従来のウエハの処理方法では、紫外線はウエハの全面に均一に照射していた。しかしながらこの方法では、紫外線の照射強度が低く、気体の発生による剥離圧力が不充分であったため、剥離に時間を要したものと思われた。これに対して、高照射能の紫外線照射装置を用いることも考えられたが、そもそも現時点ではそれほどまでに大照射量の紫外線照射装置は市販されておらず、仮にあったとしても高価であるうえ、高温を発してウエハに悪影響を与える恐れもある。更に、紫外線をウエハの全面に均一に照射した場合、発生した気体が支持板と接着剤組成物との間に留まることにより、薄く脆弱なウエハを破壊してしまったり、支持板が変形してウエハ側の接着剤組成物が剥離してしまい、支持板のみを剥離することができずにウエハの処理の作業工程に大きな影響を与えてしまったりする恐れもある。
点状又は線状の狭い領域に絞り込むのであれば、100mW/cm以上の高照射強度で紫外線を照射できる紫外線照射装置は市販されている。そこで本願の発明者は、更に鋭意検討の結果、照射強度100mW/cm以上の点状又は線状の紫外線を用いてウエハの全面を走査するように照射することにより、気体が発生する部位を制御して、発生した気体が支持板と接着剤組成物との間に留まることがないようにすることができ、かつ、紫外線の照射を開始してからウエハと支持板とを剥離可能になるまでの時間を著しく短縮し、それによって全体の生産効率を改善できることを見出し、本発明を完成した。
The inventor of the present application reviewed the production efficiency over the entire wafer processing method described in Patent Document 1. And it discovered that the process which peels a support plate from a wafer by irradiating an ultraviolet-ray to a processed wafer and generating gas from a gas generating agent has become rate-limiting. That is, it takes time until the wafer and the support plate can be peeled after starting the irradiation of ultraviolet rays, thereby affecting the overall production efficiency.
In the conventional wafer processing method, the entire surface of the wafer is irradiated with ultraviolet rays uniformly. However, with this method, the irradiation intensity of ultraviolet rays was low, and the peeling pressure due to the generation of gas was insufficient. On the other hand, it was considered to use an ultraviolet irradiation device having a high irradiation ability, but at the present time, an ultraviolet irradiation device having a large irradiation amount is not commercially available so far, and it is expensive even if it exists. There is also a risk that the wafer will be adversely affected by high temperature. Furthermore, when the entire surface of the wafer is irradiated with ultraviolet rays uniformly, the generated gas stays between the support plate and the adhesive composition, thereby destroying the thin and fragile wafer or deforming the support plate. There is a possibility that the adhesive composition on the wafer side peels off, and only the support plate cannot be peeled off, which greatly affects the work process of the wafer processing.
An ultraviolet irradiation device that can irradiate ultraviolet rays with a high irradiation intensity of 100 mW / cm 2 or more is commercially available if it is narrowed down to a narrow point-like or linear region. Therefore, as a result of further diligent study, the inventors of the present application devised a region where gas is generated by irradiating the entire surface of the wafer with spot or linear ultraviolet rays having an irradiation intensity of 100 mW / cm 2 or more. It is possible to control the generated gas so that it does not stay between the support plate and the adhesive composition, and the wafer and the support plate can be peeled off after starting the irradiation of ultraviolet rays. The present invention has been completed by finding that the time required for the process can be significantly shortened, thereby improving the overall production efficiency.
本発明のウエハの処理方法では、まず、接着剤成分と、刺激により気体を発生する気体発生剤とを含有する接着剤組成物を介してウエハを支持板に固定する支持板固定工程を行う。ウエハを支持板に固定することにより、加工時に取扱いを容易にし、破損したりしないようにすることができる。 In the wafer processing method of the present invention, first, a support plate fixing step of fixing the wafer to the support plate through an adhesive composition containing an adhesive component and a gas generating agent that generates gas upon stimulation is performed. By fixing the wafer to the support plate, handling can be facilitated during processing, and damage can be prevented.
上記接着剤成分は特に限定されず、非硬化型の接着剤、硬化型の接着剤のいずれを含有するものであってもよい。
上記接着剤成分が非硬化型の接着剤を含有する場合には、後述する支持板剥離工程において接着剤組成物に刺激を与えることにより上記気体発生剤から気体が発生し、発生した気体により柔らかい接着剤成分の全体が発泡して表面に凹凸が形成され、被着体との接着面積が減少して剥離する。
上記接着剤成分が硬化型の接着剤を含有する場合には、後述する支持板剥離工程において接着剤組成物に刺激を与えることにより上記気体発生剤から気体が発生し、発生した気体は硬化した接着剤成分から被着体との界面へと放出され、その圧力によって被着体の少なくとも一部が剥離する。
なかでも、糊残りを生ずることなく確実な剥離を行うことができることから、刺激により弾性率が上昇する硬化型の接着剤を含有することが好ましい。
The adhesive component is not particularly limited, and may contain either a non-curable adhesive or a curable adhesive.
When the adhesive component contains a non-curable adhesive, a gas is generated from the gas generating agent by giving a stimulus to the adhesive composition in a support plate peeling process described later, and the generated gas is softer. The entire adhesive component is foamed to form irregularities on the surface, and the adhesive area with the adherend is reduced and peeled off.
In the case where the adhesive component contains a curable adhesive, gas is generated from the gas generating agent by stimulating the adhesive composition in a support plate peeling step described later, and the generated gas is cured. It is released from the adhesive component to the interface with the adherend, and at least a part of the adherend is peeled off by the pressure.
Especially, since reliable peeling can be performed without generating adhesive residue, it is preferable to contain a curable adhesive whose elastic modulus is increased by stimulation.
上記非硬化型の接着剤は特に限定されず、例えば、ゴム系接着剤、アクリル系接着剤、ビニルアルキルエーテル系接着剤、シリコーン系接着剤、ポリエステル系接着剤、ポリアミド系接着剤、ウレタン系接着剤、スチレン・ジエンブロック共重合体系接着剤等が挙げられる。 The non-curable adhesive is not particularly limited. For example, a rubber adhesive, an acrylic adhesive, a vinyl alkyl ether adhesive, a silicone adhesive, a polyester adhesive, a polyamide adhesive, and a urethane adhesive. Agents, styrene / diene block copolymer adhesives, and the like.
上記硬化型の接着剤は特に限定されないが、例えば、重合性ポリマーを主成分として、光重合開始剤や熱重合開始剤を含有する光硬化型接着剤や熱硬化型接着剤が挙げられる。
このような光硬化型接着剤や熱硬化型接着剤は、光の照射又は加熱により接着剤の全体が均一にかつ速やかに重合架橋して一体化するため、重合硬化による弾性率の上昇が著しくなり、接着力が大きく低下する。また、弾性率の上昇した硬い硬化物中で上記気体発生剤から気体を発生させると、発生した気体の大半は外部に放出され、放出された気体は、被着体から粘着剤の接着面の少なくとも一部を剥がし接着力を低下させる。
The curable adhesive is not particularly limited, and examples thereof include a photocurable adhesive and a thermosetting adhesive containing a polymerizable polymer as a main component and a photopolymerization initiator and a thermal polymerization initiator.
Such photo-curing adhesives and thermosetting adhesives are uniformly and rapidly polymerized and integrated by light irradiation or heating so that the elastic modulus is significantly increased by polymerization curing. Thus, the adhesive strength is greatly reduced. In addition, when gas is generated from the gas generating agent in a hard cured product having an increased elastic modulus, most of the generated gas is released to the outside, and the released gas is released from the adherend to the adhesive surface of the adhesive. Remove at least a portion to reduce the adhesive strength.
上記重合性ポリマーは、例えば、分子内に官能基を持った(メタ)アクリル系ポリマー(以下、官能基含有(メタ)アクリル系ポリマーという。)をあらかじめ合成し、分子内に上記の官能基と反応する官能基とラジカル重合性の不飽和結合とを有する化合物(以下、官能基含有不飽和化合物という。)と反応させることにより得ることができる。 The polymerizable polymer is prepared by, for example, previously synthesizing a (meth) acrylic polymer having a functional group in the molecule (hereinafter referred to as a functional group-containing (meth) acrylic polymer) It can be obtained by reacting with a compound having a reactive functional group and a radical polymerizable unsaturated bond (hereinafter referred to as a functional group-containing unsaturated compound).
上記官能基含有(メタ)アクリル系ポリマーは、常温で粘着性を有するポリマーとして、一般の(メタ)アクリル系ポリマーの場合と同様に、アルキル基の炭素数が通常2~18の範囲にあるアクリル酸アルキルエステル及び/又はメタクリル酸アルキルエステルを主モノマーとし、これと官能基含有モノマーと、更に必要に応じてこれらと共重合可能な他の改質用モノマーとを常法により共重合させることにより得られるものである。上記官能基含有(メタ)アクリル系ポリマーの重量平均分子量は通常20万~200万程度である。 The functional group-containing (meth) acrylic polymer is an acrylic polymer having an alkyl group usually in the range of 2 to 18 as a polymer having adhesiveness at room temperature, as in the case of general (meth) acrylic polymers. By copolymerizing an acid alkyl ester and / or methacrylic acid alkyl ester as a main monomer, a functional group-containing monomer, and, if necessary, another modifying monomer copolymerizable therewith by a conventional method It is obtained. The weight average molecular weight of the functional group-containing (meth) acrylic polymer is usually about 200,000 to 2,000,000.
上記官能基含有モノマーとしては、例えば、アクリル酸、メタクリル酸等のカルボキシル基含有モノマー;アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチル等のヒドロキシル基含有モノマー;アクリル酸グリシジル、メタクリル酸グリシジル等のエポキシ基含有モノマー;アクリル酸イソシアネートエチル、メタクリル酸イソシアネートエチル等のイソシアネート基含有モノマー;アクリル酸アミノエチル、メタクリル酸アミノエチル等のアミノ基含有モノマー等が挙げられる。 Examples of the functional group-containing monomer include a carboxyl group-containing monomer such as acrylic acid and methacrylic acid; a hydroxyl group-containing monomer such as hydroxyethyl acrylate and hydroxyethyl methacrylate; and an epoxy group containing glycidyl acrylate and glycidyl methacrylate. Monomers; Isocyanate group-containing monomers such as isocyanate ethyl acrylate and isocyanate ethyl methacrylate; and amino group-containing monomers such as aminoethyl acrylate and aminoethyl methacrylate.
上記共重合可能な他の改質用モノマーとしては、例えば、酢酸ビニル、アクリロニトリル、スチレン等の一般の(メタ)アクリル系ポリマーに用いられている各種のモノマーが挙げられる。 Examples of other modifying monomers that can be copolymerized include various monomers used in general (meth) acrylic polymers such as vinyl acetate, acrylonitrile, and styrene.
上記官能基含有(メタ)アクリル系ポリマーに反応させる官能基含有不飽和化合物としては、上記官能基含有(メタ)アクリル系ポリマーの官能基に応じて上述した官能基含有モノマーと同様のものを使用できる。例えば、上記官能基含有(メタ)アクリル系ポリマーの官能基がカルボキシル基の場合はエポキシ基含有モノマーやイソシアネート基含有モノマーが用いられ、同官能基がヒドロキシル基の場合はイソシアネート基含有モノマーが用いられ、同官能基がエポキシ基の場合はカルボキシル基含有モノマーやアクリルアミド等のアミド基含有モノマーが用いられ、同官能基がアミノ基の場合はエポキシ基含有モノマーが用いられる。  The functional group-containing unsaturated compound to be reacted with the functional group-containing (meth) acrylic polymer is the same as the functional group-containing monomer described above according to the functional group of the functional group-containing (meth) acrylic polymer. it can. For example, when the functional group of the functional group-containing (meth) acrylic polymer is a carboxyl group, an epoxy group-containing monomer or an isocyanate group-containing monomer is used, and when the functional group is a hydroxyl group, an isocyanate group-containing monomer is used. When the functional group is an epoxy group, a carboxyl group-containing monomer or an amide group-containing monomer such as acrylamide is used, and when the functional group is an amino group, an epoxy group-containing monomer is used. *
上記光重合開始剤は、例えば、250~800nmの波長の光を照射することにより活性化されるものが挙げられ、このような光重合開始剤としては、例えば、メトキシアセトフェノン等のアセトフェノン誘導体化合物;ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル系化合物;ベンジルジメチルケタール、アセトフェノンジエチルケタール等のケタール誘導体化合物;フォスフィンオキシド誘導体化合物;ビス(η5-シクロペンタジエニル)チタノセン誘導体化合物、ベンゾフェノン、ミヒラーケトン、クロロチオキサントン、トデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、α-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシメチルフェニルプロパン等の光ラジカル重合開始剤が挙げられる。これらの光重合開始剤は、単独で用いられてもよく、2種以上が併用されてもよい。 Examples of the photopolymerization initiator include those activated by irradiation with light having a wavelength of 250 to 800 nm. Examples of such a photopolymerization initiator include acetophenone derivative compounds such as methoxyacetophenone; Benzoin ether compounds such as benzoinpropyl ether and benzoin isobutyl ether; ketal derivative compounds such as benzyldimethyl ketal and acetophenone diethyl ketal; phosphine oxide derivative compounds; bis (η5-cyclopentadienyl) titanocene derivative compounds, benzophenone, Michler's ketone, Chlorothioxanthone, todecylthioxanthone, dimethylthioxanthone, diethylthioxanthone, α-hydroxycyclohexyl phenyl ketone, 2-hydroxymethylphenylpropane, etc. These radical photopolymerization initiators. These photoinitiators may be used independently and 2 or more types may be used together.
上記熱重合開始剤としては、熱により分解し、重合硬化を開始する活性ラジカルを発生するものが挙げられ、例えば、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエール、t-ブチルハイドロパーオキサイド、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド等が挙げられる。
ただし、本発明の接着剤組成物が高い耐熱性を発揮するためには、上記熱重合開始剤は、熱分解温度が200℃以上である熱重合開始剤を用いることが好ましい。このような熱分解温度が高い熱重合開始剤は、クメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド等が挙げられる。
これらの熱重合開始剤のうち市販されているものとしては特に限定されないが、例えば、パーブチルD、パーブチルH、パーブチルP、パーメンタH(以上いずれも日油社製)等が好適である。これら熱重合開始剤は、単独で用いられてもよく、2種以上が併用されてもよい。
Examples of the thermal polymerization initiator include those that decompose by heat and generate active radicals that initiate polymerization and curing. Examples thereof include dicumyl peroxide, di-t-butyl peroxide, and t-butyl peroxybenzoale. T-butyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramentane hydroperoxide, di-t-butyl peroxide and the like.
However, in order for the adhesive composition of the present invention to exhibit high heat resistance, it is preferable to use a thermal polymerization initiator having a thermal decomposition temperature of 200 ° C. or higher as the thermal polymerization initiator. Examples of the thermal polymerization initiator having a high thermal decomposition temperature include cumene hydroperoxide, paramentane hydroperoxide, and di-t-butyl peroxide.
Although it does not specifically limit as what is marketed among these thermal polymerization initiators, For example, perbutyl D, perbutyl H, perbutyl P, permenta H (all are the NOF Corporation make) etc. are suitable. These thermal polymerization initiators may be used independently and 2 or more types may be used together.
上記光硬化型接着剤や熱硬化型接着剤は、更に、ラジカル重合性の多官能オリゴマー又はモノマーを含有することが好ましい。ラジカル重合性の多官能オリゴマー又はモノマーを含有することにより、光硬化性、熱硬化性が向上する。
上記多官能オリゴマー又はモノマーは、分子量が1万以下であるものが好ましく、より好ましくは加熱又は光の照射による粘着剤層の三次元網状化が効率よくなされるように、その分子量が5000以下でかつ分子内のラジカル重合性の不飽和結合の数が2~20個のものである。
The photocurable adhesive and thermosetting adhesive preferably further contain a radical polymerizable polyfunctional oligomer or monomer. By containing a radically polymerizable polyfunctional oligomer or monomer, photocurability and thermosetting are improved.
The polyfunctional oligomer or monomer preferably has a molecular weight of 10,000 or less, and more preferably has a molecular weight of 5000 or less so that the three-dimensional network of the pressure-sensitive adhesive layer can be efficiently formed by heating or light irradiation. In addition, the number of radically polymerizable unsaturated bonds in the molecule is 2 to 20.
上記多官能オリゴマー又はモノマーは、例えば、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート又は上記同様のメタクリレート類等が挙げられる。その他、1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ポリプロピレングリコール#700ジアクリレート、ポリエチレングリコールジアクリレート、市販のオリゴエステルアクリレート、上記同様のメタクリレート類等が挙げられる。これらの多官能オリゴマー又はモノマーは、単独で用いられてもよく、2種以上が併用されてもよい。 The polyfunctional oligomer or monomer is, for example, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, or the same methacrylate as described above. And the like. Other examples include 1,4-butylene glycol diacrylate, 1,6-hexanediol diacrylate, polypropylene glycol # 700 diacrylate, polyethylene glycol diacrylate, commercially available oligoester acrylate, and methacrylates similar to those described above. These polyfunctional oligomers or monomers may be used alone or in combination of two or more.
上記気体発生剤は特に限定されず、例えば、アゾ化合物、アジド化合物等の従来公知の気体発生剤を用いることができる。
また、薬液処理、加熱処理又は発熱を伴う処理をウエハに施す場合には、これらの処理によっても剥離しない、即ち、これらの処理に対する耐性に優れる気体発生剤を用いることが好ましい。このような気体発生剤としては、例えば、下記一般式(1)で表されるカルボン酸化合物又はその塩も好適である。このような気体発生剤は、紫外線等の光を照射することにより気体(二酸化炭素ガス)を発生する一方、200℃程度の高温化でも分解しない高い耐熱性を有する。また、酸、アルカリ、有機溶剤等の薬液に対する耐性にも優れる。このような気体発生剤は、過酷なウエハ処理工程においても反応して気体を発生してしまうことがない。
The said gas generating agent is not specifically limited, For example, conventionally well-known gas generating agents, such as an azo compound and an azide compound, can be used.
In addition, when the wafer is subjected to chemical treatment, heat treatment or heat generation, it is preferable to use a gas generating agent that does not peel off by these treatments, that is, has excellent resistance to these treatments. As such a gas generating agent, for example, a carboxylic acid compound represented by the following general formula (1) or a salt thereof is also suitable. Such a gas generating agent generates gas (carbon dioxide gas) by irradiating light such as ultraviolet rays, and has high heat resistance that does not decompose even at a high temperature of about 200 ° C. Moreover, it is excellent also in the tolerance with respect to chemical | medical solutions, such as an acid, an alkali, and an organic solvent. Such a gas generating agent does not react and generate gas even in a severe wafer processing process.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
式(1)中、R~Rは、それぞれ水素又は有機基を示す。R~Rは、同一であってもよく、異なっていてもよい。R~Rのうちの2つが互いに結合し、環状構造を形成していてもよい。 In formula (1), R 1 to R 7 each represents hydrogen or an organic group. R 1 to R 7 may be the same or different. Two of R 1 to R 7 may be bonded to each other to form a cyclic structure.
上記一般式(1)における有機基は、例えば、メチル基、エチル基、プロピル基、ブチル基、イソブチル基等のアルキル基や、メトキシ基、エトキシ基等のアルコキシ基や、カルボキシル基や、水酸基や、ニトロ基や、フェニル基等の芳香族基や、ナフチル基、フルオレニル基、ピレニル基等の多環式炭化水素基や、ビフェニル基等の環集合炭化水素基や、キサンテニル基等のヘテロ環基等が挙げられる。
なかでも、上記一般式(1)中のR~Rのうちの1つが、下記一般式(2)で表される有機基であるか、又は、上記一般式(1)中のR~Rのうちの隣り合う2つが互いに結合して下記式(3)で表される環状構造を形成していることが好ましい。
Examples of the organic group in the general formula (1) include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, and an isobutyl group, an alkoxy group such as a methoxy group and an ethoxy group, a carboxyl group, a hydroxyl group, , Aromatic groups such as nitro groups and phenyl groups, polycyclic hydrocarbon groups such as naphthyl groups, fluorenyl groups and pyrenyl groups, ring-assembled hydrocarbon groups such as biphenyl groups, and heterocyclic groups such as xanthenyl groups Etc.
Among them, one of R 3 to R 7 in the general formula (1) is an organic group represented by the following general formula (2), or R 3 in the general formula (1) It is preferable that two adjacent ones of R 7 are bonded to each other to form a cyclic structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
式(2)中、R~R12は、それぞれ水素又は有機基を示す。R~R12は、同一であってもよく、異なっていてもよい。R~R12のうちの2つが互いに結合し、環状構造を形成していてもよい。
式(3)中、R13~R16は、それぞれ水素又は有機基を示す。R13~R16は、同一であってもよく、異なっていてもよい。R13~R16のうちの2つが互いに結合し、環状構造を形成していてもよい。
また、上記一般式(1)中のRは、メチル基であることが好ましい。
In the formula (2), R 8 to R 12 each represent hydrogen or an organic group. R 8 to R 12 may be the same or different. Two of R 8 to R 12 may be bonded to each other to form a cyclic structure.
In the formula (3), R 13 to R 16 each represent hydrogen or an organic group. R 13 to R 16 may be the same or different. Two of R 13 to R 16 may be bonded to each other to form a cyclic structure.
Moreover, it is preferable that R < 1 > in the said General formula (1) is a methyl group.
上記式(1)で表されるカルボン酸化合物の具体例としては、例えば、フェニル酢酸、ジフェニル酢酸、トリフェニル酢酸、2-フェニルプロピオン酸、2,2-ジフェニルプロピオン酸、2,2,2-トリフェニルプロピオン酸、2-フェニルブチル酸、α-メトキシフェニル酢酸、マンデリック酸、アトロラクトン酸、ベンジリック酸、トロピック酸、フェニルマロン酸、フェニルコハク酸、3-メチル-2-フェニル酪酸、オルトトルイル酢酸、メタトルイル酢酸、4-イソブチル-α-メチルフェニル酢酸、パラトルイル酢酸、1,2-フェニレンジ酢酸、1,3-フェニレンジ酢酸、1,4-フェニレンジ酢酸、2-メトキシフェニル酢酸、2-ヒドロキシフェニル酢酸、2-ニトロフェニル酢酸、3-ニトロフェニル酢酸、4-ニトロフェニル酢酸、2-(4-ニトロフェニル)プロピオン酸、3-(4-ニトロフェニル)プロピオン酸、4-(4-ニトロフェニル)プロピオン酸、3,4-ジメトキシフェニル酢酸、3,4-(メチレンジオキシ)フェニル酢酸、2,5-ジメトキシフェニル酢酸、3,5-ジメトキシフェニル酢酸、3,4,5-トリメトキシフェニル酢酸、2,4-ジニトロフェニル酢酸、4-ビフェニル酢酸、1-ナフチル酢酸、2-ナフチル酢酸、6-メトキシ-α-メチル-2-ナフチル酢酸、1-ピレン酢酸、9-フルオレンカルボン酸又は9H-キサンテン-9-カルボン酸等が挙げられる。 Specific examples of the carboxylic acid compound represented by the above formula (1) include, for example, phenylacetic acid, diphenylacetic acid, triphenylacetic acid, 2-phenylpropionic acid, 2,2-diphenylpropionic acid, 2,2,2- Triphenylpropionic acid, 2-phenylbutyric acid, α-methoxyphenylacetic acid, mandelic acid, atrolactone acid, benzylic acid, tropic acid, phenylmalonic acid, phenylsuccinic acid, 3-methyl-2-phenylbutyric acid, orthotoluylacetic acid , Metatoluylacetic acid, 4-isobutyl-α-methylphenylacetic acid, p-toluylacetic acid, 1,2-phenylenediacetic acid, 1,3-phenylenediacetic acid, 1,4-phenylenediacetic acid, 2-methoxyphenylacetic acid, 2-hydroxy Phenylacetic acid, 2-nitrophenylacetic acid, 3-nitrophenylacetic acid, 4-ni Trophenylacetic acid, 2- (4-nitrophenyl) propionic acid, 3- (4-nitrophenyl) propionic acid, 4- (4-nitrophenyl) propionic acid, 3,4-dimethoxyphenylacetic acid, 3,4- ( Methylenedioxy) phenylacetic acid, 2,5-dimethoxyphenylacetic acid, 3,5-dimethoxyphenylacetic acid, 3,4,5-trimethoxyphenylacetic acid, 2,4-dinitrophenylacetic acid, 4-biphenylacetic acid, 1-naphthyl Examples include acetic acid, 2-naphthylacetic acid, 6-methoxy-α-methyl-2-naphthylacetic acid, 1-pyreneacetic acid, 9-fluorenecarboxylic acid, and 9H-xanthene-9-carboxylic acid.
なかでも上記式(1)で表されるカルボン酸化合物は、下記式(1-1)で表されるケトプロフェン、又は、下記式(1-2)で表される2-キサントン酢酸であることが好ましい。 In particular, the carboxylic acid compound represented by the above formula (1) is ketoprofen represented by the following formula (1-1) or 2-xanthone acetic acid represented by the following formula (1-2). preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
上記式(1)で表されるカルボン酸化合物の塩も、上記式(1)で表されるカルボン酸化合物に由来する骨格を有することから、光が照射されると容易に脱炭酸を起こし、二酸化炭素ガスを発生させることができる。 Since the salt of the carboxylic acid compound represented by the above formula (1) also has a skeleton derived from the carboxylic acid compound represented by the above formula (1), decarboxylation easily occurs when irradiated with light, Carbon dioxide gas can be generated.
上記式(1)で表されるカルボン酸化合物の塩は、上記式(1)で表されるカルボン酸化合物と塩基性化合物とを容器中で混合するだけで、複雑な合成経路を経ること簡単に調製することができる。
上記塩基性化合物は特に限定されないが、例えば、アミン、ヒドラジン化合物、水酸化四級アンモニウム塩、ホスフィン化合物等が挙げられる。
上記アミンは特に限定されず、一級アミン、二級アミン及び三級アミンのいずれをも用いることができる。
なかでも上記塩基性化合物は、モノアルキルアミン又はジアルキルアミンが好適である。モノアルキルアミン又はジアルキルアミンを用いた場合には、得られる上記式(1)で表されるカルボン酸化合物の塩の極性を低極性化でき、接着剤成分との溶解性を高めることできる。より好ましくは、炭素数6~12のモノアルキルアミン又はジアルキルアミンである。
The salt of the carboxylic acid compound represented by the above formula (1) can be easily passed through a complicated synthesis route simply by mixing the carboxylic acid compound represented by the above formula (1) and the basic compound in a container. Can be prepared.
The basic compound is not particularly limited, and examples thereof include amines, hydrazine compounds, quaternary ammonium hydroxide salts, and phosphine compounds.
The amine is not particularly limited, and any of primary amines, secondary amines, and tertiary amines can be used.
Among these, the basic compound is preferably a monoalkylamine or a dialkylamine. When monoalkylamine or dialkylamine is used, the polarity of the obtained salt of the carboxylic acid compound represented by the formula (1) can be reduced, and the solubility with the adhesive component can be increased. More preferably, it is a monoalkylamine or dialkylamine having 6 to 12 carbon atoms.
上記気体発生剤は、また、下記一般式(4)、一般式(5)又は一般式(6)で表されるテトラゾール化合物若しくはその塩も好適である。これらの気体発生剤も、紫外線等の光を照射することにより気体(チッソガス)を発生する一方、200℃程度の高温化でも分解しない高い耐熱性を有する。また、酸、アルカリ、有機溶剤等の薬液に対する耐性にも優れる。これらの気体発生剤は、後述する過酷なウエハ処理工程においても反応して気体を発生してしまうことがない。 As the gas generating agent, a tetrazole compound represented by the following general formula (4), general formula (5) or general formula (6) or a salt thereof is also suitable. These gas generating agents also generate gas (nitrogen gas) by irradiating light such as ultraviolet rays, and have high heat resistance that does not decompose even at a high temperature of about 200 ° C. Moreover, it is excellent also in tolerance with respect to chemical | medical solutions, such as an acid, an alkali, and an organic solvent. These gas generating agents do not react and generate gas even in the severe wafer processing steps described later.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(4)~(6)中、R21、R22は、水素、炭素数が1~7のアルキル基、アルキレン基、フェニル基、メルカプト基、水酸基又はアミノ基を表す。 In formulas (4) to (6), R 21 and R 22 represent hydrogen, an alkyl group having 1 to 7 carbon atoms, an alkylene group, a phenyl group, a mercapto group, a hydroxyl group, or an amino group.
上記一般式(4)~(6)で表されるテトラゾール化合物の塩も、上記一般式(4)~(6)で表されるテトラゾール化合物に由来する骨格を有することから、光が照射されるとチッソガスを発生させることができる。
上記一般式(4)~(6)で表されるテトラゾール化合物の塩は特に限定されず、例えば、ナトリウム塩、カリウム塩、アンモニウム塩等が挙げられる。
Since the salt of the tetrazole compound represented by the general formulas (4) to (6) also has a skeleton derived from the tetrazole compound represented by the general formula (4) to (6), light is irradiated. And nitrogen gas can be generated.
The salt of the tetrazole compound represented by the general formulas (4) to (6) is not particularly limited, and examples thereof include a sodium salt, a potassium salt, and an ammonium salt.
上記一般式(4)~(6)で表されるテトラゾール化合物の塩は、上記一般式(4)~(6)で表されるテトラゾール化合物と塩基性化合物とを容器中で混合するだけで、複雑な合成経路を経ることなく簡単に調製することができる。
上記塩基性化合物は特に限定されないが、例えば、アミン、ヒドラジン化合物、水酸化四級アンモニウム塩、ホスフィン化合物等が挙げられる。
上記アミンは特に限定されず、一級アミン、二級アミン及び三級アミンのいずれをも用いることができる。
なかでも上記塩基性化合物は、モノアルキルアミン又はジアルキルアミンが好適である。モノアルキルアミン又はジアルキルアミンを用いた場合には、得られる上記一般式(4)~(6)で表されるテトラゾール化合物の塩の極性を低極性化でき、接着剤成分との溶解性を高めることができる。より好ましくは、炭素数6~12のモノアルキルアミン又はジアルキルアミンである。
The salt of the tetrazole compound represented by the general formulas (4) to (6) can be obtained by simply mixing the tetrazole compound and the basic compound represented by the general formulas (4) to (6) in a container. It can be easily prepared without going through a complicated synthetic route.
The basic compound is not particularly limited, and examples thereof include amines, hydrazine compounds, quaternary ammonium hydroxide salts, and phosphine compounds.
The amine is not particularly limited, and any of primary amines, secondary amines, and tertiary amines can be used.
Among these, the basic compound is preferably a monoalkylamine or a dialkylamine. When monoalkylamine or dialkylamine is used, the polarity of the resulting salt of the tetrazole compound represented by the general formulas (4) to (6) can be reduced, and the solubility with the adhesive component is increased. be able to. More preferably, it is a monoalkylamine or dialkylamine having 6 to 12 carbon atoms.
上記一般式(4)で表されるテトラゾール化合物又はその塩は特に限定されないが、具体的には例えば、1H-テトラゾール、5-フェニル-1H-テトラゾール、5,5-アゾビス-1H-テトラゾール、5-アミノ-1H-テトラゾール、5-メチル-1H-テトラゾール、1-メチル-5-メルカプト-1H-テトラゾール、1-メチル-5-エチル-1H-テトラゾール、1-(ジメチルアミノエチル)-5-メルカプト-1H-テトラゾール等が挙げられる。 The tetrazole compound represented by the above general formula (4) or a salt thereof is not particularly limited. Specifically, for example, 1H-tetrazole, 5-phenyl-1H-tetrazole, 5,5-azobis-1H-tetrazole, 5 -Amino-1H-tetrazole, 5-methyl-1H-tetrazole, 1-methyl-5-mercapto-1H-tetrazole, 1-methyl-5-ethyl-1H-tetrazole, 1- (dimethylaminoethyl) -5-mercapto -1H-tetrazole and the like.
上記一般式(5)で表されるテトラゾール化合物又はその塩は特に限定されないが、具体的には例えば、5,5’-ビステトラゾールジアンモニウム塩等が挙げられる。 The tetrazole compound represented by the general formula (5) or a salt thereof is not particularly limited, and specific examples include 5,5'-bistetrazole diammonium salt.
上記一般式(6)で表されるテトラゾール化合物又はその塩は特に限定されないが、具体的には例えば、5,5’-ビステトラゾールアミンモノアンモニウム塩等が挙げられる。 The tetrazole compound represented by the general formula (6) or a salt thereof is not particularly limited, and specific examples include 5,5'-bistetrazoleamine monoammonium salt.
上記気体発生剤の含有量は、上記接着剤成分100重量部に対する好ましい下限が5重量部、好ましい上限が50重量部である。上記気体発生剤の含有量が5重量部未満であると、紫外線照射による気体の発生が少なくなり充分な剥離を行うことができないことがあり、50重量部を超えると、接着剤成分へ溶けきれなくなり接着力が低下してしまうことがある。上記気体発生剤の含有量のより好ましい下限は10重量部、より好ましい上限は30重量部である。 As for the content of the gas generating agent, a preferable lower limit with respect to 100 parts by weight of the adhesive component is 5 parts by weight, and a preferable upper limit is 50 parts by weight. When the content of the gas generating agent is less than 5 parts by weight, gas generation due to ultraviolet irradiation is reduced and sufficient peeling may not be performed. When the content exceeds 50 parts by weight, it is dissolved in the adhesive component. The adhesive strength may be reduced. The minimum with more preferable content of the said gas generating agent is 10 weight part, and a more preferable upper limit is 30 weight part.
上記接着剤組成物は、光増感剤を含有してもよい。
上記光増感剤は、上記気体発生剤への光による刺激を増幅する効果を有することから、より少ない光の照射により気体を放出させることができる。また、より広い波長領域の光により気体を放出させることができる。
The adhesive composition may contain a photosensitizer.
Since the photosensitizer has an effect of amplifying stimulation by light on the gas generating agent, gas can be released by irradiation with less light. In addition, gas can be emitted by light in a wider wavelength region.
上記光増感剤は、耐熱性に優れるものであれば特に限定されない。
耐熱性に優れた光増感剤は、例えば、アルコキシ基を少なくとも1つ以上有する多環芳香族化合物が挙げられる。なかでも、一部がグリシジル基又は水酸基で置換されたアルコキシ基を有する置換アルコキシ多環芳香族化合物が好適である。これらの光増感剤は、耐昇華性が高く、高温下で使用することができる。また、アルコキシ基の一部がグリシジル基や水酸基で置換されることにより、上記接着剤成分への溶解性が高まり、ブリードアウトを防止することができる。
The photosensitizer is not particularly limited as long as it has excellent heat resistance.
Examples of the photosensitizer excellent in heat resistance include polycyclic aromatic compounds having at least one alkoxy group. Among these, a substituted alkoxy polycyclic aromatic compound having an alkoxy group partially substituted with a glycidyl group or a hydroxyl group is preferable. These photosensitizers have high resistance to sublimation and can be used at high temperatures. Moreover, when a part of the alkoxy group is substituted with a glycidyl group or a hydroxyl group, the solubility in the adhesive component is increased, and bleeding out can be prevented.
上記多環芳香族化合物は、アントラセン誘導体が好ましい。上記アルコキシ基は、炭素数1~18のものが好ましく、炭素数1~8のものがより好ましい。 The polycyclic aromatic compound is preferably an anthracene derivative. The alkoxy group preferably has 1 to 18 carbon atoms, and more preferably has 1 to 8 carbon atoms.
上記アルコキシ基を少なくとも1つ以上有する多環芳香族化合物は、例えば、9,10-ジメトキシアントラセン、2-エチル-9,10-ジメトキシアントラセン、2-tブチル-9,10-ジメトキシアントラセン、2,3-ジメチル-9,10-ジメトキシアントラセン、9-メトキシ-10-メチルアントラセン、9,10-ジエトキシアントラセン、2-エチル-9,10-ジエトキシアントラセン、2-tブチル-9,10-ジエトキシアントラセン、2,3-ジメチル-9,10-ジエトキシアントラセン、9-エトキシ-10-メチルアントラセン、9,10-ジプロポキシアントラセン、2-エチル-9,10-ジプロポキシアントラセン、2-tブチル-9,10-ジプロポキシアントラセン、2,3-ジメチル-9,10-ジプロポキシアントラセン、9-イソプロポキシ-10-メチルアントラセン、9,10-ジブトキシアントラセン、9,10-ジベンジルオキシアントラセン、2-エチル-9,10-ジベンジルオキシアントラセン、2-tブチル-9,10-ジベンジルオキシアントラセン、2,3-ジメチル-9,10-ジベンジルオキシアントラセン、9-ベンジルオキシ-10-メチルアントラセン、9,10-ジ-α-メチルベンジルオキシアントラセン、2-エチル-9,10-ジ-α-メチルベンジルオキシアントラセン、2-tブチル-9,10-ジ-α-メチルベンジルオキシアントラセン、2,3-ジメチル-9,10-ジ-α-メチルベンジルオキシアントラセン、9-(α-メチルベンジルオキシ)-10-メチルアントラセン、9,10-ジ(2-ヒドロキシエトキシ)アントラセン、2-エチル-9,10-ジ(2-カルボキシエトキシ)アントラセン等のアントラセン誘導体等が挙げられる。 Examples of the polycyclic aromatic compound having at least one alkoxy group include 9,10-dimethoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, 2-tbutyl-9,10-dimethoxyanthracene, 2, 3-dimethyl-9,10-dimethoxyanthracene, 9-methoxy-10-methylanthracene, 9,10-diethoxyanthracene, 2-ethyl-9,10-diethoxyanthracene, 2-tbutyl-9,10-di Ethoxyanthracene, 2,3-dimethyl-9,10-diethoxyanthracene, 9-ethoxy-10-methylanthracene, 9,10-dipropoxyanthracene, 2-ethyl-9,10-dipropoxyanthracene, 2-tbutyl -9,10-dipropoxyanthracene, 2,3-dimethyl-9, 0-dipropoxyanthracene, 9-isopropoxy-10-methylanthracene, 9,10-dibutoxyanthracene, 9,10-dibenzyloxyanthracene, 2-ethyl-9,10-dibenzyloxyanthracene, 2-tbutyl -9,10-dibenzyloxyanthracene, 2,3-dimethyl-9,10-dibenzyloxyanthracene, 9-benzyloxy-10-methylanthracene, 9,10-di-α-methylbenzyloxyanthracene, 2- Ethyl-9,10-di-α-methylbenzyloxyanthracene, 2-tbutyl-9,10-di-α-methylbenzyloxyanthracene, 2,3-dimethyl-9,10-di-α-methylbenzyloxy Anthracene, 9- (α-methylbenzyloxy) -10-methylanthracase , 9,10-di (2-hydroxyethoxy) anthracene, and the like anthracene derivative such as 2-ethyl-9,10-di (2-carboxyethoxy) anthracene.
上記一部がグリシジル基又は水酸基で置換されたアルコキシ基を有する置換アルコキシ多環芳香族化合物は、例えば、9,10-ジ(グリシジルオキシ)アントラセン、2-エチル-9,10-ジ(グリシジルオキシ)アントラセン、2-tブチル-9,10-ジ(グリシジルオキシ)アントラセン、2,3-ジメチル-9,10-ジ(グリシジルオキシ)アントラセン、9-(グリシジルオキシ)-10-メチルアントラセン、9,10-ジ(2-ビニルオキシエトキシ)アントラセン、2-エチル-9,10-ジ(2-ビニルオキシエトキシ)アントラセン、2-tブチル-9,10-ジ(2-ビニルオキシエトキシ)アントラセン、2,3-ジメチル-9,10-ジ(2-ビニルオキシエトキシ)アントラセン、9-(2-ビニルオキシエトキシ)-10-メチルアントラセン、9,10-ジ(3-メチル-3-オキセタニルメトキシ)アントラセン、2-エチル-9,10-ジ(3-メチル-3-オキセタニルメメトキシ)アントラセン、2-tブチル-9,10-ジ(3-メチル-3-オキセタニルメメトキシ)アントラセン、2,3-ジメチル-9,10-ジ(3-メチル-3-オキセタニルメメトキシ)アントラセン、9-(3-メチル-3-オキセタニルメメトキシ)-10-メチルアントラセン、9,10-ジ(p-エポキシフェニルメトキシ)アントラセン、2-エチル-9,10-ジ(p-エポキシフェニルメトキシ)アントラセン、2-tブチル-9,10-ジ(p-エポキシフェニルメトキシ)アントラセン、2,3-ジメチル-9,10-ジ(p-エポキシフェニルメトキシ)アントラセン、9-(p-エポキシフェニルメトキシ)-10-メチルアントラセン、9,10-ジ(p-ビニルフェニルメトキシ)アントラセン、2-エチル-9,10-ジ(p-ビニルフェニルメトキシ)アントラセン、2-tブチル-9,1-ジ(p-ビニルフェニルメトキシ)アントラセン、2,3-ジメチル-9,10-ジ(p-ビニルフェニルメトキシ)アントラセン、9-(p-ビニルフェニルメトキシ)-10-メチルアントラセン、9,10-ジ(2-ヒドロキシエトキシ)アントラセン、9,10-ジ(2-ヒドロキシプロポキシ)アントラセン、9,10-ジ(2-ヒドロキシブトキシ)アントラセン、9,10-ジ(2-ヒドロキシ-3-ブトキシプロポキシ)アントラセン、9,10-ジ(2-ヒドロキシ-3-(2-エチルヘキシルオキシ)プロポキシ)アントラセン、9,10-ジ(2-ヒドロキシ-3-アリロキシプロポキシ)アントラセン、9,10-ジ(2-ヒドロキシ-3-フェノキシプロポキシ)アントラセン、9,10-ジ(2,3-ジヒドロキシプロポキシ)アントラセン等が挙げられる。 The substituted alkoxy polycyclic aromatic compound having an alkoxy group partially substituted with a glycidyl group or a hydroxyl group includes, for example, 9,10-di (glycidyloxy) anthracene, 2-ethyl-9,10-di (glycidyloxy) ) Anthracene, 2-tbutyl-9,10-di (glycidyloxy) anthracene, 2,3-dimethyl-9,10-di (glycidyloxy) anthracene, 9- (glycidyloxy) -10-methylanthracene, 9, 10-di (2-vinyloxyethoxy) anthracene, 2-ethyl-9,10-di (2-vinyloxyethoxy) anthracene, 2-tbutyl-9,10-di (2-vinyloxyethoxy) anthracene, 2 , 3-Dimethyl-9,10-di (2-vinyloxyethoxy) anthracene, 9- (2-vinyloxy) Ethoxy) -10-methylanthracene, 9,10-di (3-methyl-3-oxetanylmethoxy) anthracene, 2-ethyl-9,10-di (3-methyl-3-oxetanylmemethoxy) anthracene, 2-t Butyl-9,10-di (3-methyl-3-oxetanylmemethoxy) anthracene, 2,3-dimethyl-9,10-di (3-methyl-3-oxetanylmemethoxy) anthracene, 9- (3-methyl -3-Oxetanylmemethoxy) -10-methylanthracene, 9,10-di (p-epoxyphenylmethoxy) anthracene, 2-ethyl-9,10-di (p-epoxyphenylmethoxy) anthracene, 2-tbutyl- 9,10-di (p-epoxyphenylmethoxy) anthracene, 2,3-dimethyl-9,10-di (p-ethylene) Xylphenylmethoxy) anthracene, 9- (p-epoxyphenylmethoxy) -10-methylanthracene, 9,10-di (p-vinylphenylmethoxy) anthracene, 2-ethyl-9,10-di (p-vinylphenylmethoxy) ) Anthracene, 2-tbutyl-9,1-di (p-vinylphenylmethoxy) anthracene, 2,3-dimethyl-9,10-di (p-vinylphenylmethoxy) anthracene, 9- (p-vinylphenylmethoxy) ) -10-methylanthracene, 9,10-di (2-hydroxyethoxy) anthracene, 9,10-di (2-hydroxypropoxy) anthracene, 9,10-di (2-hydroxybutoxy) anthracene, 9,10- Di (2-hydroxy-3-butoxypropoxy) anthracene, 9,10-di (2-hydroxy-3- (2-ethylhexyloxy) propoxy) anthracene, 9,10-di (2-hydroxy-3-allyloxypropoxy) anthracene, 9,10-di (2-hydroxy-3-phenoxypropoxy) Anthracene, 9,10-di (2,3-dihydroxypropoxy) anthracene and the like can be mentioned.
上記光増感剤の含有量は、上記接着剤成分100重量部に対する好ましい下限が0.05重量部、好ましい上限が10重量部である。上記光増感剤の含有量が0.05重量部未満であると、充分な増感効果が得られないことがあり、10重量部を超えると、光増感剤に由来する残存物が増え、充分な剥離を行えなくなることがある。上記光増感剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 The content of the photosensitizer is preferably 0.05 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the adhesive component. When the content of the photosensitizer is less than 0.05 parts by weight, a sufficient sensitizing effect may not be obtained. When the content exceeds 10 parts by weight, the residue derived from the photosensitizer increases. , Sufficient peeling may not be performed. The minimum with more preferable content of the said photosensitizer is 0.1 weight part, and a more preferable upper limit is 5 weight part.
上記接着剤組成物は、粘着剤としての凝集力の調節を図る目的で、所望によりイソシアネート化合物、メラミン化合物、エポキシ化合物等の一般の粘着剤に配合される各種の多官能性化合物を適宜含有してもよい。
上記接着剤組成物は、可塑剤、樹脂、界面活性剤、ワックス、微粒子充填剤等の公知の添加剤を含有してもよい。
The adhesive composition suitably contains various polyfunctional compounds that are blended in general pressure-sensitive adhesives such as isocyanate compounds, melamine compounds, and epoxy compounds as needed for the purpose of adjusting the cohesive force as pressure-sensitive adhesives. May be.
The adhesive composition may contain known additives such as a plasticizer, a resin, a surfactant, a wax, and a fine particle filler.
本発明のウエハの処理方法に用いる接着剤組成物であって、接着剤成分と、紫外線を照射することにより気体を発生する気体発生剤とを含有する接着剤組成物もまた、本発明の1つである。 An adhesive composition for use in the wafer processing method of the present invention, the adhesive composition containing an adhesive component and a gas generating agent that generates gas when irradiated with ultraviolet rays, is also included in 1 of the present invention. One.
上記支持板固定工程においてウエハと支持板との接着は、上記接着剤組成物により直接接着してもよいし、少なくとも一方の面に上記接着剤組成物からなる接着剤層を有する両面粘着テープを用いて接着してもよい。 In the support plate fixing step, the wafer and the support plate may be bonded directly by the adhesive composition, or a double-sided pressure-sensitive adhesive tape having an adhesive layer made of the adhesive composition on at least one surface. May be used for bonding.
上記両面粘着テープは、基材の両面に粘着剤層を有するサポートテープであってもよく、基材を有しないノンサポートテープであってもよい。
上記両面粘着テープがサポートテープである場合、上記基材は、例えば、アクリル、オレフィン、ポリカーボネート、塩化ビニル、ABS、ポリエチレンテレフタレート(PET)、ナイロン、ウレタン、ポリイミド等の透明な樹脂からなるシート、網目状の構造を有するシート、孔が開けられたシート等が挙げられる。
The double-sided pressure-sensitive adhesive tape may be a support tape having a pressure-sensitive adhesive layer on both sides of the base material, or may be a non-support tape having no base material.
When the double-sided pressure-sensitive adhesive tape is a support tape, the base material is, for example, a sheet or mesh made of a transparent resin such as acrylic, olefin, polycarbonate, vinyl chloride, ABS, polyethylene terephthalate (PET), nylon, urethane, or polyimide. And a sheet having a hole-like structure and a sheet having holes.
本発明のウエハの処理方法では、次いで、上記支持板に固定されたウエハに処理を施すウエハ処理工程を行う。
上記ウエハへの処理としては、例えば、ウエハを一定の厚みになるまで研削するグラインド処理等が挙げられる。また、近年では薬液処理、加熱処理又は発熱を伴う処理を施すことも行われる。
上記薬液処理としては、例えば、電解めっき、無電解めっき等のめっき処理や、フッ酸、水酸化テトラメチルアンモニウム水溶液(TMAH)等によるウェットエッチング処理や、N-メチル-2-ピロリドン、モノエタノールアミン、DMSO等によるレジスト剥離プロセスや、濃硫酸、アンモニア水、過酸化水素水等による洗浄プロセス等が挙げられる。
上記加熱処理又は発熱を伴う処理としては、例えば、スパッタリング、蒸着、エッチング、化学気相成長法(CVD)、物理気相成長法(PVD)、レジスト塗布・パターンニング、リフロー等が挙げられる。
Next, in the wafer processing method of the present invention, a wafer processing step is performed for processing the wafer fixed to the support plate.
Examples of the process for the wafer include a grinding process for grinding the wafer to a certain thickness. In recent years, chemical treatment, heat treatment, or treatment with heat generation is also performed.
Examples of the chemical treatment include plating treatment such as electrolytic plating and electroless plating, wet etching treatment using hydrofluoric acid, tetramethylammonium hydroxide aqueous solution (TMAH), N-methyl-2-pyrrolidone, monoethanolamine, and the like. And a resist stripping process using DMSO or the like, and a cleaning process using concentrated sulfuric acid, ammonia water, hydrogen peroxide water, or the like.
Examples of the heat treatment or treatment accompanied by heat generation include sputtering, vapor deposition, etching, chemical vapor deposition (CVD), physical vapor deposition (PVD), resist coating / patterning, and reflow.
本発明のウエハの処理工程は、後述する支持板剥離工程に先立って、上記処理後のウエハの処理面にダイシングテープを貼付するダイシングテープ貼付工程を有してもよい。予めダイシングテープを貼付しておくことにより、支持板剥離工程において支持板を剥離した後、速やかにダイシング工程に進むことができる。 The wafer processing step of the present invention may include a dicing tape attaching step of attaching a dicing tape to the processed surface of the wafer after the processing, prior to a support plate peeling step described later. By sticking a dicing tape in advance, after the support plate is peeled off in the support plate peeling step, the dicing step can be promptly performed.
本発明のウエハの処理方法では、次いで、上記処理後のウエハに紫外線を照射して気体発生剤から気体を発生させて、支持板をウエハから剥離する支持板剥離工程を行う。上記ウエハと支持板とを接着する接着剤組成物が気体発生剤を含有することにより、紫外線を照射することによりウエハを破損することなく、容易にウエハを支持板から剥離することができる。 In the wafer processing method of the present invention, a support plate peeling step is then performed in which the wafer after the above treatment is irradiated with ultraviolet rays to generate a gas from the gas generating agent, thereby peeling the support plate from the wafer. When the adhesive composition for bonding the wafer and the support plate contains a gas generating agent, the wafer can be easily peeled from the support plate without damaging the wafer by irradiation with ultraviolet rays.
上記支持板剥離工程においては、照射強度100mW/cm以上の点状又は線状の紫外線を用いてウエハの全面を走査するように照射する。これにより、紫外線の照射を開始してからウエハと支持板とを剥離可能になるまでの時間を著しく短縮し、それによって全体の生産効率を改善できる。紫外線の照射強度が100mW/cm未満であると、充分な量の気体が発生せず剥離圧力が低くなって、剥離ができないことがある。好ましくは照射強度200mW/cm以上、より好ましくは照射強度300mW/cm以上の点状又は線状の紫外線を用いてウエハの全面を走査するように照射する。
上記指示板剥離工程における点状又は線状の紫外線の照射強度の好ましい上限は2000mW/cmである。紫外線の照射強度が2000mW/cmを超えると、発熱量が大きくなり、上記接着剤組成物が焦げてしまうことがある。紫外線の照射強度のより好ましい上限は1750mW/cm、更に好ましい上限は1600mW/cmである。
In the support plate peeling step, irradiation is performed so as to scan the entire surface of the wafer using a dotted or linear ultraviolet ray having an irradiation intensity of 100 mW / cm 2 or more. As a result, the time from the start of ultraviolet irradiation until the wafer and the support plate can be peeled off can be significantly shortened, thereby improving the overall production efficiency. If the irradiation intensity of the ultraviolet rays is less than 100 mW / cm 2 , a sufficient amount of gas is not generated, and the peeling pressure becomes low, and peeling may not be possible. Irradiation is preferably carried out so as to scan the entire surface of the wafer using dot-like or linear ultraviolet rays having an irradiation intensity of 200 mW / cm 2 or more, more preferably an irradiation intensity of 300 mW / cm 2 or more.
The upper limit with preferable irradiation intensity | strength of the dotted | punctate or linear ultraviolet-ray in the said indicator plate peeling process is 2000 mW / cm < 2 >. When the irradiation intensity of ultraviolet rays exceeds 2000 mW / cm 2 , the heat generation amount increases and the adhesive composition may be burnt. A more preferable upper limit of the irradiation intensity of ultraviolet rays is 1750 mW / cm 2 , and a more preferable upper limit is 1600 mW / cm 2 .
上記支持板剥離工程において、照射強度100mW/cm以上の点状又は線状の紫外線を用いてウエハの全面を走査するように照射する際の走査速度の好ましい下限は1mm/sec、好ましい上限は200mm/secである。上記走査速度が1mm/sec未満であると、紫外線の光源からの熱により上記接着剤組成物が焼けてしまうことがあり、200mm/secを超えると、上記接着剤組成物からの気体の発生が不充分となることがある。上記走査速度のより好ましい下限は3mm/sec以上、より好ましい上限は150mm/secであり、更に好ましい上限は100mm/secである。 In the above support plate peeling step, the preferable lower limit of the scanning speed when irradiating the entire surface of the wafer with a spot or linear ultraviolet ray having an irradiation intensity of 100 mW / cm 2 or more is 1 mm / sec, and the preferable upper limit is 200 mm / sec. When the scanning speed is less than 1 mm / sec, the adhesive composition may be burned by heat from an ultraviolet light source. When the scanning speed exceeds 200 mm / sec, gas is generated from the adhesive composition. It may be insufficient. A more preferable lower limit of the scanning speed is 3 mm / sec or more, a more preferable upper limit is 150 mm / sec, and a more preferable upper limit is 100 mm / sec.
上記照射強度100mW/cm以上の点状の紫外線を用いてウエハの全面を走査するように照射する具体的な方法の一例を、図1を用いて説明する。
図1においては、処理後のウエハ1が、接着剤組成物2を介して支持板3に固定されている。このような状態で、支持板3側から、紫外線照射口4より、照射強度100mW/cm以上の点状の紫外線を照射する(図1(a))。紫外線は点状に照射されることから、ウエハの全面には照射されないが、照射しながら紫外線照射口4を前後左右に動かすことにより、ウエハの全面を走査するように照射することができる(図1(b))。
なお、図1においては紫外線照射口4を動かして走査を行ったが、処理後のウエハ1/接着剤組成物2/支持板3の積層体側を動かしても同様の効果を得ることができる。
An example of a specific method for irradiating the whole surface of the wafer with the above-described spot-shaped ultraviolet rays having an irradiation intensity of 100 mW / cm 2 or more will be described with reference to FIG.
In FIG. 1, a processed wafer 1 is fixed to a support plate 3 via an adhesive composition 2. In such a state, point-like ultraviolet rays having an irradiation intensity of 100 mW / cm 2 or more are irradiated from the ultraviolet irradiation port 4 from the support plate 3 side (FIG. 1A). Since the ultraviolet rays are irradiated in the form of dots, the entire surface of the wafer is not irradiated. However, by moving the ultraviolet irradiation port 4 back and forth and right and left while irradiating, irradiation can be performed so as to scan the entire surface of the wafer (see FIG. 1 (b)).
In FIG. 1, scanning was performed by moving the ultraviolet irradiation port 4, but the same effect can be obtained by moving the processed wafer 1 / adhesive composition 2 / support plate 3 side.
点状の紫外線を用いてウエハの全面を走査するように紫外線を照射する場合の、走査パターンの一例を示す模式図を図2に示した。
図2(a)は、紫外線照射の軌跡がウエハの外周部から中心部に向かって渦巻き状になるように、点状の紫外線を照射する走査パターンである。
図2(b)は、紫外線照射の軌跡がウエハの全面を往復するように、点状の紫外線を照射する走査パターンである。
図2(c)は、紫外線照射の軌跡がウエハの一方の半面を往復した後、他方の半面を往復するように、点状の紫外線を照射する走査パターンである。
図2(d)は、紫外線照射の軌跡がウエハの外周部と中心部とを往復しながらウエハの全面を覆うように、点状の紫外線を照射する走査パターンである。
FIG. 2 is a schematic diagram showing an example of a scanning pattern in the case of irradiating ultraviolet rays so as to scan the entire surface of the wafer using dotted ultraviolet rays.
FIG. 2A shows a scanning pattern for irradiating dotted ultraviolet rays such that the locus of ultraviolet irradiation becomes spiral from the outer peripheral portion to the central portion of the wafer.
FIG. 2B shows a scanning pattern for irradiating dotted ultraviolet rays so that the locus of ultraviolet irradiation reciprocates over the entire surface of the wafer.
FIG. 2C shows a scanning pattern for irradiating dotted ultraviolet rays such that the locus of ultraviolet irradiation reciprocates on one half of the wafer and then reciprocates on the other half.
FIG. 2D shows a scanning pattern for irradiating dotted ultraviolet rays so that the locus of ultraviolet irradiation covers the entire surface of the wafer while reciprocating between the outer peripheral portion and the central portion of the wafer.
上記照射強度100mW/cm以上の線状の紫外線を用いてウエハの全面を走査するように照射する具体的な方法の一例を、図3を用いて説明する。
図3においては、処理後のウエハ1が、接着剤組成物2を介して支持板3に固定されている。このような状態で、支持板3側から、紫外線照射口5より、照射強度100mW/cm以上の線状の紫外線を照射する(図3(a))。紫外線は線状に照射されることから、ウエハの全面には照射されないが、照射しながら紫外線照射口5を左右に動かすことにより、ウエハの全面を走査するように照射することができる(図3(b))。
なお、図3においては紫外線照射口5を動かして走査を行ったが、処理後のウエハ1/接着剤組成物2/支持板3の積層体側を、例えばベルトコンベア等に乗せて動かしても同様の効果を得ることができる。
An example of a specific method for irradiating the whole surface of the wafer with linear ultraviolet rays having an irradiation intensity of 100 mW / cm 2 or more will be described with reference to FIG.
In FIG. 3, the processed wafer 1 is fixed to a support plate 3 via an adhesive composition 2. In such a state, linear ultraviolet rays having an irradiation intensity of 100 mW / cm 2 or more are irradiated from the support plate 3 side through the ultraviolet irradiation port 5 (FIG. 3A). Since the ultraviolet rays are irradiated linearly, the entire surface of the wafer is not irradiated. However, by irradiating the ultraviolet irradiation port 5 to the left and right while irradiating, the entire surface of the wafer can be scanned (FIG. 3). (B)).
In FIG. 3, the scanning was performed by moving the ultraviolet irradiation port 5, but the same operation can be performed by moving the processed wafer 1 / adhesive composition 2 / support plate 3 on a belt conveyor or the like. The effect of can be obtained.
例えば、図2(a)~(d)に記載するように、点状又は線状の紫外線の照射は、ウエハの外周部から開始することが好ましい。これにより、より確実に支持板の剥離を行うことができる。
なお、点状の紫外線の照射を行う際の走査の方向は特に限定されず、右回りであっても、左回りであってもよい。また、線状の紫外線の照射を行う際の走査の方向は特に限定されず、右からでも、左からでもよい。
For example, as described in FIGS. 2A to 2D, it is preferable that the irradiation of the dotted or linear ultraviolet rays starts from the outer peripheral portion of the wafer. Thereby, peeling of a support plate can be performed more reliably.
Note that the direction of scanning when irradiating dotted ultraviolet rays is not particularly limited, and may be clockwise or counterclockwise. Further, the scanning direction when performing irradiation with linear ultraviolet rays is not particularly limited, and may be from the right or from the left.
上記照射強度100mW/cm以上の点状又は線状の紫外線を照射できる紫外線照射装置としては特に限定されず、例えば、市販の高圧水銀灯、中圧水銀灯、低圧水銀灯、メタルハライドランプ、LEDランプ、スポットUV装置、パルスレーザーUV照射装置、コンベア式UVランプ、スキャン式UVランプ等を用いることができる。
具体的には、例えば、ウシオ電機株式会社製「スポットキュア」や、アイグラフィクス社製「アイグランテージ」等の市販の紫外線照射装置を用いることができる。
The ultraviolet irradiation apparatus capable of irradiating the above-mentioned irradiation intensity of 100 mW / cm 2 or more with a dotted or linear ultraviolet ray is not particularly limited. For example, a commercially available high pressure mercury lamp, medium pressure mercury lamp, low pressure mercury lamp, metal halide lamp, LED lamp, spot A UV device, a pulse laser UV irradiation device, a conveyor-type UV lamp, a scanning UV lamp, or the like can be used.
Specifically, for example, a commercially available ultraviolet irradiation device such as “Spot Cure” manufactured by Ushio Electric Co., Ltd. or “Igrantage” manufactured by Eye Graphics Co., Ltd. can be used.
本発明のウエハの処理方法によれば、気体が発生する部位を制御して、発生した気体が支持板と接着剤組成物との間に留まることがないようにすることができ、かつ、紫外線の照射を開始してからウエハと支持板とを剥離可能になるまでの時間を著しく短縮し、それによって全体の生産効率を改善できる。
本発明のウエハの処理方法により処理されたことウエハもまた、本発明の1つである。
According to the wafer processing method of the present invention, it is possible to control the portion where the gas is generated so that the generated gas does not stay between the support plate and the adhesive composition, and the ultraviolet ray is generated. The time from the start of irradiation to the time when the wafer and the support plate can be peeled can be significantly shortened, thereby improving the overall production efficiency.
A wafer processed by the wafer processing method of the present invention is also one aspect of the present invention.
本発明によれば、接着剤組成物を介してウエハを支持板に固定した状態でウエハを処理するウエハの処理方法であって、より高い生産効率を実現したウエハの処理方法を提供することができる。 According to the present invention, there is provided a wafer processing method for processing a wafer in a state in which the wafer is fixed to a support plate via an adhesive composition, and provides a wafer processing method that realizes higher production efficiency. it can.
照射強度100mW/cm以上の点状の紫外線を用いてウエハの全面を走査するように照射する方法の一例を説明する模式図である。It is a schematic diagram explaining an example of the method of irradiating so that the whole surface of a wafer may be scanned using dotted ultraviolet rays with an irradiation intensity of 100 mW / cm 2 or more. 点状の紫外線を用いてウエハの全面を走査するように紫外線を照射する場合の走査パターンの一例を示す模式図である。It is a schematic diagram which shows an example of the scanning pattern in the case of irradiating an ultraviolet-ray so that the whole surface of a wafer may be scanned using a dotted | punctate ultraviolet-ray. 照射強度100mW/cm以上の線状の紫外線を用いてウエハの全面を走査するように照射する方法の一例を説明する模式図である。It is a schematic diagram explaining an example of the method of irradiating so that the whole surface of a wafer may be scanned using linear ultraviolet rays with an irradiation intensity of 100 mW / cm 2 or more.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
(1)粘着テープの調製
温度計、攪拌機、冷却管を備えた反応器を用意し、この反応器内に、2-エチルヘキシルアクリレート94重量部、アクリル酸1重量部、2-ヒドロキシエチルアクリレート5重量部、ラウリルメルカプカプタン0.01重量部と、酢酸エチル180重量部を加えた後、反応器を加熱して還流を開始した。続いて、上記反応器内に、重合開始剤として1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン0.01重量部を添加し、還流下で重合を開始させた。次に、重合開始から1時間後及び2時間後にも、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサンを0.01重量部ずつ添加し、更に、重合開始から4時間後にt-ヘキシルパーオキシピバレートを0.05重量部添加して重合反応を継続させた。そして、重合開始から8時間後に、固形分55重量%、重量平均分子量60万のアクリル共重合体を得た。
得られたアクリル共重合体を含む酢酸エチル溶液の樹脂固形分100重量部に対して、2-イソシアナトエチルメタクリレート3.5重量部を加えて反応させ、更に、反応後の酢酸エチル溶液の樹脂固形分100重量部に対して、光重合開始剤(エサキュアワン、日本シイベルヘグナー社製)0.1重量部、ポリイソシアネート系架橋剤(コロネートL45、日本ポリウレタン社製)2.5重量部を混合し接着剤(1)の酢酸エチル溶液を調製した。
(Example 1)
(1) Preparation of pressure-sensitive adhesive tape A reactor equipped with a thermometer, a stirrer, and a cooling tube was prepared. In this reactor, 94 parts by weight of 2-ethylhexyl acrylate, 1 part by weight of acrylic acid, and 5 parts by weight of 2-hydroxyethyl acrylate , 0.01 parts by weight of lauryl mercapcaptan and 180 parts by weight of ethyl acetate were added, and then the reactor was heated to start refluxing. Subsequently, 0.01 parts by weight of 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane was added as a polymerization initiator in the reactor, and polymerization was started under reflux. It was. Next, after 1 hour and 2 hours from the start of polymerization, 0.01 parts by weight of 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane was added, and the polymerization was started. 4 hours later, 0.05 part by weight of t-hexylperoxypivalate was added to continue the polymerization reaction. And 8 hours after the start of polymerization, an acrylic copolymer having a solid content of 55% by weight and a weight average molecular weight of 600,000 was obtained.
The resin solid content of 100 parts by weight of the ethyl acetate solution containing the acrylic copolymer thus obtained is reacted by adding 3.5 parts by weight of 2-isocyanatoethyl methacrylate, and further the resin of the ethyl acetate solution after the reaction. 0.1 parts by weight of a photopolymerization initiator (Esacure One, manufactured by Nippon Shibel Hegner) and 2.5 parts by weight of a polyisocyanate-based crosslinking agent (Coronate L45, manufactured by Nippon Polyurethane) are mixed and bonded to 100 parts by weight of solid content. An ethyl acetate solution of agent (1) was prepared.
接着剤(1)の酢酸エチル溶液の樹脂固形分100重量部に対して、気体発生剤としてビステトラゾールNa塩(増田化学社製)20重量部、光増感剤として9,10-ジグリシジルオキシアントラセン1重量部を混合して、接着剤組成物を得た。 20 parts by weight of bistetrazole Na salt (manufactured by Masuda Chemical Co., Ltd.) as a gas generating agent and 9,10-diglycidyloxy as a photosensitizer with respect to 100 parts by weight of the resin solid content of the ethyl acetate solution of the adhesive (1) 1 part by weight of anthracene was mixed to obtain an adhesive composition.
得られた接着剤組成物を、片面にコロナ処理を施した厚さ50μmの透明なポリエチレンテレフタレートフィルムのコロナ処理面上に、乾燥皮膜の厚さが30μmとなるようにドクターナイフで塗工し、110℃、5分間加熱して塗工溶液を乾燥させた。その後、40℃、3日間静置養生を行い、接着テープを得た。 The obtained adhesive composition was coated with a doctor knife on the corona-treated surface of a transparent polyethylene terephthalate film having a thickness of 50 μm, which was corona-treated on one side, so that the thickness of the dry film was 30 μm. The coating solution was dried by heating at 110 ° C. for 5 minutes. Thereafter, static curing was performed at 40 ° C. for 3 days to obtain an adhesive tape.
(2)ウエハの処理
得られた粘着テープを直径20cmの円形に切断し、直径20cm、厚さ約750μmのシリコンウエハに真空中で貼り付けた。シリコンウエハに貼り付けた面と反対の面に、直径20cm、厚さ1mmの石英ガラス板を真空中で貼りつけて積層体を得た。
得られた積層体のウエハ側をグラインド研削及び研磨を行い、厚み50μmまで研削した。
得られた積層体に対して、ガラス板側からコンベア式UV照射機(アイグラフィクス社製「アイグランテージ」)を用いて、紫外線照射口を左右に動かしながら254nmの紫外線を照射強度300mW/cmの線状の紫外線をウエハの全面を走査するように照射した。なお、紫外線照射口の移動は走査パターンが図3になるように行い、紫外線の照射開始からウエハ全面の走査完了までの時間が30秒となるようにした(走査速度:6.5mm/sec)。その後、ガラス板側から目視にて観察して、気体が充分に発生したのを確認してから、ガラス板とウエハとを剥離した。
上記紫外線の照射からガラス板とウエハとの剥離にまで2分間を要した。
(2) Processing of wafer The obtained adhesive tape was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 μm in a vacuum. A quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate.
The wafer side of the obtained laminate was ground and polished to a thickness of 50 μm.
Using the conveyor-type UV irradiator ("Igrantage" manufactured by AiGraphics) from the glass plate side, the 254 nm ultraviolet ray was irradiated to the laminated body obtained from the glass plate side to the left and right, and the irradiation intensity was 300 mW / cm. 2 linear ultraviolet rays were irradiated so as to scan the entire surface of the wafer. The movement of the ultraviolet irradiation port was performed so that the scanning pattern was as shown in FIG. 3, and the time from the start of ultraviolet irradiation to the completion of scanning of the entire wafer surface was 30 seconds (scanning speed: 6.5 mm / sec). . Then, after visually observing from the glass plate side and confirming that gas was generated sufficiently, the glass plate and the wafer were peeled off.
It took 2 minutes from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer.
(実施例2)
実施例1と同様の方法により得られた粘着テープを直径20cmの円形に切断し、直径20cm、厚さ約750μmのシリコンウエハに真空中で貼り付けた。シリコンウエハに貼り付けた面と反対の面に、直径20cm、厚さ1mmの石英ガラス板を真空中で貼りつけて積層体を得た。
ガラス板側からコンベア式UV照射機(アイグラフィクス社製「アイグランテージ」)を用いて、紫外線照射口を左右に動かしながら254nmの紫外線を照射強度100mW/cmの線状の紫外線をウエハの全面を走査するように照射した以外は、実施例1と同様の方法でウエハの処理を行った。その後、ガラス板側から目視にて観察して、気体が充分に発生したのを確認してから、ガラス板とウエハとを剥離した。
上記紫外線の照射からガラス板とウエハとの剥離にまで4分30秒間を要した。
(Example 2)
The pressure-sensitive adhesive tape obtained by the same method as in Example 1 was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 μm in a vacuum. A quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate.
Using a conveyor type UV irradiator (“Igrantage” manufactured by I-Graphics Co., Ltd.) from the glass plate side, 254 nm UV light is applied to the wafer with linear UV light with an irradiation intensity of 100 mW / cm 2 while moving the UV irradiation port left and right. The wafer was processed in the same manner as in Example 1 except that irradiation was performed so as to scan the entire surface. Then, after visually observing from the glass plate side and confirming that gas was generated sufficiently, the glass plate and the wafer were peeled off.
It took 4 minutes and 30 seconds from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer.
(実施例3)
実施例1と同様の方法により得られた粘着テープを直径20cmの円形に切断し、直径20cm、厚さ約750μmのシリコンウエハに真空中で貼り付けた。シリコンウエハに貼り付けた面と反対の面に、直径20cm、厚さ1mmの石英ガラス板を真空中で貼りつけて積層体を得た。
得られた積層体のウエハ側をグラインド研削及び研磨を行い、厚み50μmまで研削した。
得られた積層体に対して、ガラス板側からスポットUV(ウシオ電機社製「スポットキュア」)を用いて、紫外線照射口を前後左右に動かしながら254nmの紫外線を照射強度500mW/cmの2cm×2cmの面積で紫外線をウエハの全面を走査するように照射した。なお、紫外線照射口の移動は図2(a)のようになるように行い、紫外線の照射開始からウエハ全面の走査完了までの時間が180秒となるようにした(走査速度:11mm/sec)。その後、ガラス板側から目視にて観察して、気体が充分に発生したのを確認してから、ガラス板とウエハとを剥離した。
上記紫外線の照射からガラス板とウエハとの剥離にまで4分間を要した。
(Example 3)
The pressure-sensitive adhesive tape obtained by the same method as in Example 1 was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 μm in a vacuum. A quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate.
The wafer side of the obtained laminate was ground and polished to a thickness of 50 μm.
Using the spot UV ("Spot Cure" manufactured by Ushio Electric Co., Ltd.) from the glass plate side, the resulting laminate was irradiated with 254 nm ultraviolet rays while moving the ultraviolet irradiation port back and forth and left and right 2 cm with an irradiation intensity of 500 mW / cm 2 . Ultraviolet rays were irradiated so as to scan the entire surface of the wafer in an area of × 2 cm. The movement of the ultraviolet irradiation port was performed as shown in FIG. 2A, and the time from the start of ultraviolet irradiation to the completion of scanning of the entire wafer surface was 180 seconds (scanning speed: 11 mm / sec). . Then, after visually observing from the glass plate side and confirming that gas was generated sufficiently, the glass plate and the wafer were peeled off.
It took 4 minutes from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer.
(実施例4)
実施例1と同様の方法により得られた粘着テープを直径20cmの円形に切断し、直径20cm、厚さ約750μmのシリコンウエハに真空中で貼り付けた。シリコンウエハに貼り付けた面と反対の面に、直径20cm、厚さ1mmの石英ガラス板を真空中で貼りつけて積層体を得た。
得られた積層体のウエハ側をグラインド研削及び研磨を行い、厚み50μmまで研削した。
得られた積層体に対して、ガラス板側からスポットUV(ウシオ電機社製「スポットキュア」)を用いて、紫外線照射口を前後左右に動かしながら254nmの紫外線を照射強度500mW/cmの2cm×2cmの面積で紫外線をウエハの全面を走査するように照射した。なお、紫外線照射口の移動は図2(b)のようになるように行い、紫外線の照射開始からウエハ全面の走査完了までの時間が180秒となるようにした(走査速度:11mm/sec)。その後、ガラス板側から目視にて観察して、気体が充分に発生したのを確認してから、ガラス板とウエハとを剥離した。
上記紫外線の照射からガラス板とウエハとの剥離にまで4分間を要した。
Example 4
The pressure-sensitive adhesive tape obtained by the same method as in Example 1 was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 μm in a vacuum. A quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate.
The wafer side of the obtained laminate was ground and polished to a thickness of 50 μm.
Using the spot UV ("Spot Cure" manufactured by Ushio Electric Co., Ltd.) from the glass plate side, the resulting laminate was irradiated with 254 nm ultraviolet rays while moving the ultraviolet irradiation port back and forth and left and right 2 cm with an irradiation intensity of 500 mW / cm 2 . Ultraviolet rays were irradiated so as to scan the entire surface of the wafer in an area of × 2 cm. The movement of the UV irradiation port was performed as shown in FIG. 2B, and the time from the start of UV irradiation to the completion of scanning of the entire wafer surface was 180 seconds (scanning speed: 11 mm / sec). . Then, after visually observing from the glass plate side and confirming that gas was generated sufficiently, the glass plate and the wafer were peeled off.
It took 4 minutes from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer.
(実施例5)
実施例1と同様の方法により得られた粘着テープを直径20cmの円形に切断し、直径20cm、厚さ約750μmのシリコンウエハに真空中で貼り付けた。シリコンウエハに貼り付けた面と反対の面に、直径20cm、厚さ1mmの石英ガラス板を真空中で貼りつけて積層体を得た。
得られた積層体のウエハ側をグラインド研削及び研磨を行い、厚み50μmまで研削した。
得られた積層体に対して、ガラス板側からスポットUV(ウシオ電機社製「スポットキュア」)を用いて、紫外線照射口を前後左右に動かしながら254nmの紫外線を照射強度500mW/cmの2cm×2cmの面積で紫外線をウエハの全面を走査するように照射した。なお、紫外線照射口の移動は図2(c)のようになるように行い、紫外線の照射開始からウエハ全面の走査完了までの時間が200秒となるようにした(走査速度:10mm/sec)。その後、ガラス板側から目視にて観察して、気体が充分に発生したのを確認してから、ガラス板とウエハとを剥離した。
上記紫外線の照射からガラス板とウエハとの剥離にまで4分間を要した。
(Example 5)
The pressure-sensitive adhesive tape obtained by the same method as in Example 1 was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 μm in a vacuum. A quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate.
The wafer side of the obtained laminate was ground and polished to a thickness of 50 μm.
Using the spot UV ("Spot Cure" manufactured by Ushio Electric Co., Ltd.) from the glass plate side, the resulting laminate was irradiated with 254 nm ultraviolet rays while moving the ultraviolet irradiation port back and forth and left and right 2 cm with an irradiation intensity of 500 mW / cm 2 . Ultraviolet rays were irradiated so as to scan the entire surface of the wafer in an area of × 2 cm. The movement of the ultraviolet irradiation port was performed as shown in FIG. 2C, and the time from the start of ultraviolet irradiation to the completion of scanning of the entire wafer surface was 200 seconds (scanning speed: 10 mm / sec). . Then, after visually observing from the glass plate side and confirming that gas was generated sufficiently, the glass plate and the wafer were peeled off.
It took 4 minutes from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer.
(実施例6)
実施例1と同様の方法により得られた粘着テープを直径20cmの円形に切断し、直径20cm、厚さ約750μmのシリコンウエハに真空中で貼り付けた。シリコンウエハに貼り付けた面と反対の面に、直径20cm、厚さ1mmの石英ガラス板を真空中で貼りつけて積層体を得た。
得られた積層体のウエハ側をグラインド研削及び研磨を行い、厚み50μmまで研削した。
得られた積層体に対して、ガラス板側からスポットUV(ウシオ電機社製「スポットキュア」)を用いて、紫外線照射口を前後左右に動かしながら254nmの紫外線を照射強度500mW/cmの2cm×2cmの面積で紫外線をウエハの全面を走査するように照射した。なお、紫外線照射口の移動は図2(d)のようになるように行い、紫外線の照射開始からウエハ全面の走査完了までの時間が200秒となるようにした(走査速度:10mm/sec)。その後、ガラス板側から目視にて観察して、気体が充分に発生したのを確認してから、ガラス板とウエハとを剥離した。
上記紫外線の照射からガラス板とウエハとの剥離にまで4分間を要した。
(Example 6)
The pressure-sensitive adhesive tape obtained by the same method as in Example 1 was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 μm in a vacuum. A quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate.
The wafer side of the obtained laminate was ground and polished to a thickness of 50 μm.
Using the spot UV ("Spot Cure" manufactured by Ushio Electric Co., Ltd.) from the glass plate side, the resulting laminate was irradiated with 254 nm ultraviolet rays while moving the ultraviolet irradiation port back and forth and left and right 2 cm with an irradiation intensity of 500 mW / cm 2 . Ultraviolet rays were irradiated so as to scan the entire surface of the wafer in an area of × 2 cm. The movement of the ultraviolet irradiation port was performed as shown in FIG. 2D, and the time from the start of ultraviolet irradiation to the completion of scanning of the entire wafer surface was set to 200 seconds (scanning speed: 10 mm / sec). . Then, after visually observing from the glass plate side and confirming that gas was generated sufficiently, the glass plate and the wafer were peeled off.
It took 4 minutes from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer.
(比較例1)
実施例1と同様の方法により得られた粘着テープを直径20cmの円形に切断し、直径20cm、厚さ約750μmのシリコンウエハに真空中で貼り付けた。シリコンウエハに貼り付けた面と反対の面に、直径20cm、厚さ1mmの石英ガラス板を真空中で貼りつけて積層体を得た。
得られた積層体のウエハ側をグラインド研削及び研磨を行い、厚み50μmまで研削した。
得られた積層体の全面に対して、ガラス板側から超高圧水銀灯を用いて、254nmの紫外線をガラス板表面への照射強度が80mW/cmとなるよう照射強度を調節して6分間照射した。
その後、ガラス板側から目視にて観察して、気体が充分に発生したのを確認してから、ガラス板とウエハとを剥離した。
上記紫外線の照射からガラス板とウエハとの剥離にまで10分間を要した。発生した気体がガラス板と接着テープとの間に溜まってしまい、ウエハ側が一部剥離してしまったため、ガラス板をウエハから剥離するのに時間がかかった。
(Comparative Example 1)
The pressure-sensitive adhesive tape obtained by the same method as in Example 1 was cut into a circle having a diameter of 20 cm and attached to a silicon wafer having a diameter of 20 cm and a thickness of about 750 μm in a vacuum. A quartz glass plate having a diameter of 20 cm and a thickness of 1 mm was attached to the surface opposite to the surface attached to the silicon wafer in a vacuum to obtain a laminate.
The wafer side of the obtained laminate was ground and polished to a thickness of 50 μm.
Using a super high pressure mercury lamp from the side of the glass plate, the entire surface of the resulting laminate is irradiated for 6 minutes with an irradiation intensity of 254 nm adjusted to an irradiation intensity of 80 mW / cm 2 on the glass plate surface. did.
Then, after visually observing from the glass plate side and confirming that gas was generated sufficiently, the glass plate and the wafer were peeled off.
It took 10 minutes from the irradiation of the ultraviolet rays to the separation of the glass plate and the wafer. Since the generated gas accumulated between the glass plate and the adhesive tape, and the wafer side was partially peeled off, it took time to peel the glass plate from the wafer.
本発明によれば、接着剤組成物を介してウエハを支持板に固定した状態でウエハを処理するウエハの処理方法であって、より高い生産効率を実現したウエハの処理方法を提供することができる。 According to the present invention, there is provided a wafer processing method for processing a wafer in a state in which the wafer is fixed to a support plate via an adhesive composition, and provides a wafer processing method that realizes higher production efficiency. it can.
1 処理後のウエハ
2 接着剤組成物
3 支持板
4 紫外線照射口
5 紫外線照射口
DESCRIPTION OF SYMBOLS 1 Wafer after processing 2 Adhesive composition 3 Support plate 4 Ultraviolet irradiation port 5 Ultraviolet irradiation port

Claims (11)

  1. 接着剤成分と、紫外線を照射することにより気体を発生する気体発生剤とを含有する接着剤組成物を介してウエハを支持板に固定する支持板固定工程と、前記支持板に固定されたウエハに処理を施すウエハ処理工程と、前記処理後のウエハに紫外線を照射して前記気体発生剤から気体を発生させて、支持板をウエハから剥離する支持板剥離工程とを有するウエハの処理方法であって、
    前記支持板剥離工程において、照射強度100mW/cm以上の点状又は線状の紫外線を用いてウエハの全面を走査するように照射する
    ことを特徴とするウエハの処理方法。
    A support plate fixing step for fixing the wafer to the support plate via an adhesive composition containing an adhesive component and a gas generating agent that generates gas when irradiated with ultraviolet rays; and the wafer fixed to the support plate A wafer processing method comprising: a wafer processing step for performing processing on the substrate; and a support plate peeling step for peeling the support plate from the wafer by irradiating the processed wafer with ultraviolet rays to generate gas from the gas generating agent. There,
    In the supporting plate peeling step, the wafer processing method is characterized in that irradiation is performed so as to scan the entire surface of the wafer using dot-like or linear ultraviolet rays having an irradiation intensity of 100 mW / cm 2 or more.
  2. 支持板剥離工程において、紫外線照射の軌跡がウエハの外周部から中心部に向かって渦巻き状になるように、点状の紫外線を照射することを特徴とする請求項1記載のウエハの処理方法。 2. The wafer processing method according to claim 1, wherein in the supporting plate peeling step, the ultraviolet rays are irradiated so that the locus of the ultraviolet rays spirals from the outer peripheral portion toward the central portion of the wafer.
  3. 支持板剥離工程において、紫外線照射の軌跡がウエハの全面を往復するように、点状の紫外線を照射することを特徴とする請求項1記載のウエハの処理方法。 2. The wafer processing method according to claim 1, wherein in the supporting plate peeling step, the ultraviolet rays are irradiated so that the locus of the ultraviolet irradiation reciprocates over the entire surface of the wafer.
  4. 支持板剥離工程において、紫外線照射の軌跡がウエハの一方の半面を往復した後、他方の半面を往復するように、点状の紫外線を照射することを特徴とする請求項1記載のウエハの処理方法。 2. The wafer processing according to claim 1, wherein in the supporting plate peeling step, the ultraviolet rays are irradiated so that the locus of ultraviolet irradiation reciprocates on one half of the wafer and then reciprocates on the other half. Method.
  5. 支持板剥離工程において、紫外線照射の軌跡がウエハの外周部と中心部とを往復しながらウエハの全面を覆うように、点状の紫外線を照射することを特徴とする請求項1記載のウエハの処理方法。 2. The wafer according to claim 1, wherein in the supporting plate peeling step, the ultraviolet rays are irradiated so as to cover the entire surface of the wafer while reciprocating between the outer peripheral portion and the central portion of the wafer. Processing method.
  6. 支持板剥離工程において、ウエハ又は紫外線照射口を左右に動かしながら、線状の紫外線を照射することを特徴とする請求項1記載のウエハの処理方法。 2. The wafer processing method according to claim 1, wherein, in the supporting plate peeling step, linear ultraviolet rays are irradiated while moving the wafer or the ultraviolet irradiation port left and right.
  7. 支持板剥離工程において、点状又は線状の紫外線の照射は、ウエハの外周部から開始することを特徴すとる請求項1記載のウエハの処理方法。 2. The wafer processing method according to claim 1, wherein in the supporting plate peeling step, the irradiation of the dotted or linear ultraviolet rays starts from the outer peripheral portion of the wafer.
  8. 支持板剥離工程において照射する点状又は線状の紫外線の照射強度が2000mW/cm以下であることを特徴とする請求項1記載のウエハの処理方法。 2. The wafer processing method according to claim 1, wherein the irradiation intensity of the dotted or linear ultraviolet rays irradiated in the supporting plate peeling step is 2000 mW / cm 2 or less.
  9. 支持板剥離工程において照射強度100mW/cm以上の点状又は線状の紫外線を用いてウエハの全面を走査するように照射する際の走査速度が1~200mm/secであることを特徴とする請求項1記載のウエハの処理方法。 In the support plate peeling step, the scanning speed when irradiating the whole surface of the wafer with a spot or linear ultraviolet ray having an irradiation intensity of 100 mW / cm 2 or more is 1 to 200 mm / sec. The wafer processing method according to claim 1.
  10. 請求項1、2、3、4、5、6、7、8又は9記載のウエハの処理方法により処理されたことを特徴とするウエハ。 10. A wafer processed by the wafer processing method according to claim 1, 2, 3, 4, 5, 6, 7, 8, or 9.
  11. 請求項1、2、3、4、5、6、7、8又は9記載のウエハの処理方法に用いる接着剤組成物であって、接着剤成分と、紫外線を照射することにより気体を発生する気体発生剤とを含有することを特徴とする接着剤組成物。
     
    An adhesive composition for use in the wafer processing method according to claim 1, 2, 3, 4, 6, 7, 8, or 9, wherein the gas is generated by irradiating the adhesive component and ultraviolet rays. An adhesive composition comprising a gas generating agent.
PCT/JP2013/071123 2012-08-07 2013-08-05 Processing method for wafer WO2014024829A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147014753A KR101476115B1 (en) 2012-08-07 2013-08-05 Processing method for wafer
CN201380041694.7A CN104541356B (en) 2012-08-07 2013-08-05 The processing method of chip
JP2013539027A JP5433113B1 (en) 2012-08-07 2013-08-05 Wafer processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012175193 2012-08-07
JP2012-175193 2012-08-07

Publications (1)

Publication Number Publication Date
WO2014024829A1 true WO2014024829A1 (en) 2014-02-13

Family

ID=50068054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071123 WO2014024829A1 (en) 2012-08-07 2013-08-05 Processing method for wafer

Country Status (5)

Country Link
JP (2) JP5433113B1 (en)
KR (1) KR101476115B1 (en)
CN (1) CN104541356B (en)
TW (1) TWI588881B (en)
WO (1) WO2014024829A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228483A (en) * 2014-05-08 2015-12-17 東京応化工業株式会社 Supporting body separation method
JP2016092079A (en) * 2014-10-30 2016-05-23 東京応化工業株式会社 Method for support body separation
JP2016092333A (en) * 2014-11-10 2016-05-23 積水化学工業株式会社 Method of manufacturing grinding body, and laminate including ground body
EP4011995A4 (en) * 2019-08-08 2023-09-20 Nitto Denko Corporation Method for peeling adherend, and adhesive composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152010A1 (en) * 2014-03-31 2015-10-08 三井化学東セロ株式会社 Protective film, and production method for semiconductor device using protective film
CN111584417A (en) * 2020-05-29 2020-08-25 上海凯虹科技电子有限公司 Method for grinding wafer
JP2023082761A (en) 2021-12-03 2023-06-15 株式会社ディスコ Method for removing support plate and method for processing plate-like member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278066A (en) * 2009-05-26 2010-12-09 Nitto Denko Corp Ultraviolet irradiation device
JP2011049265A (en) * 2009-08-26 2011-03-10 Lintec Corp Light irradiation device, and light irradiation method
JP2011204793A (en) * 2010-03-24 2011-10-13 Sekisui Chem Co Ltd Wafer processing method
JP2011246725A (en) * 2010-03-24 2011-12-08 Sekisui Chem Co Ltd Adhesive composition, and adhesive tape
JP2012009642A (en) * 2010-06-25 2012-01-12 Lintec Corp Light irradiation device and light irradiation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001131A (en) 2002-05-31 2004-01-08 Sekisui Chem Co Ltd Pressure sensitive adhesive sheet for manufacturing ic chip, and method for manufacturing ic chip
JP4405246B2 (en) * 2003-11-27 2010-01-27 スリーエム イノベイティブ プロパティズ カンパニー Manufacturing method of semiconductor chip
JP5324130B2 (en) * 2008-05-22 2013-10-23 リンテック株式会社 Light irradiation device
JP2011049625A (en) * 2009-08-25 2011-03-10 Brother Industries Ltd Reception device
EP2617793B1 (en) * 2010-09-16 2020-08-05 Sekisui Chemical Co., Ltd. Pressure-sensitive adhesive compound, pressure-sensitive adhesive tape, and wafer treatment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278066A (en) * 2009-05-26 2010-12-09 Nitto Denko Corp Ultraviolet irradiation device
JP2011049265A (en) * 2009-08-26 2011-03-10 Lintec Corp Light irradiation device, and light irradiation method
JP2011204793A (en) * 2010-03-24 2011-10-13 Sekisui Chem Co Ltd Wafer processing method
JP2011246725A (en) * 2010-03-24 2011-12-08 Sekisui Chem Co Ltd Adhesive composition, and adhesive tape
JP2012009642A (en) * 2010-06-25 2012-01-12 Lintec Corp Light irradiation device and light irradiation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228483A (en) * 2014-05-08 2015-12-17 東京応化工業株式会社 Supporting body separation method
JP2016092079A (en) * 2014-10-30 2016-05-23 東京応化工業株式会社 Method for support body separation
JP2016092333A (en) * 2014-11-10 2016-05-23 積水化学工業株式会社 Method of manufacturing grinding body, and laminate including ground body
EP4011995A4 (en) * 2019-08-08 2023-09-20 Nitto Denko Corporation Method for peeling adherend, and adhesive composition

Also Published As

Publication number Publication date
JP2014053623A (en) 2014-03-20
KR20140079513A (en) 2014-06-26
JPWO2014024829A1 (en) 2016-07-25
CN104541356A (en) 2015-04-22
TWI588881B (en) 2017-06-21
JP6170401B2 (en) 2017-07-26
TW201411710A (en) 2014-03-16
KR101476115B1 (en) 2014-12-23
JP5433113B1 (en) 2014-03-05
CN104541356B (en) 2018-05-25

Similar Documents

Publication Publication Date Title
JP6170401B2 (en) Wafer processing method
TWI490293B (en) A method for treating a semiconductor wafer, and a method for manufacturing a TSV wafer
JP2011204793A (en) Wafer processing method
JP6212450B2 (en) Wafer processing method
JP5555578B2 (en) Adhesive composition and adhesive tape
JP6266993B2 (en) Wafer processing method
WO2016129577A1 (en) Method for manufacturing semiconductor chip
JP5941544B2 (en) Tetrazole compound or salt thereof, adhesive composition and adhesive tape
JP2018147990A (en) Processing method for taiko wafer
JP6564325B2 (en) Wafer processing method
JP2013028723A (en) Self-adhesive composition and self-adhesive tape
JPWO2011118488A1 (en) Adhesive composition and adhesive tape
JP2019194201A (en) Tetrazole compound-basic azo compound composite
JP2016128546A (en) Adhesive composition, adhesive tape, and method for processing wafer
JP6285738B2 (en) Wafer processing method
JP2017082094A (en) Double-sided adhesive tape for semiconductor processing
JP2016012631A (en) Processing method of circuit board, and curable adhesive composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013539027

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147014753

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828755

Country of ref document: EP

Kind code of ref document: A1