WO2014024797A1 - Transfer device and substrate treatment apparatus - Google Patents

Transfer device and substrate treatment apparatus Download PDF

Info

Publication number
WO2014024797A1
WO2014024797A1 PCT/JP2013/071006 JP2013071006W WO2014024797A1 WO 2014024797 A1 WO2014024797 A1 WO 2014024797A1 JP 2013071006 W JP2013071006 W JP 2013071006W WO 2014024797 A1 WO2014024797 A1 WO 2014024797A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
porous
substrate
porous plate
transfer
Prior art date
Application number
PCT/JP2013/071006
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 智也
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201380040811.8A priority Critical patent/CN104507685B/en
Priority to JP2014529472A priority patent/JP6287839B2/en
Publication of WO2014024797A1 publication Critical patent/WO2014024797A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F17/00Printing apparatus or machines of special types or for particular purposes, not otherwise provided for
    • B41F17/08Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces
    • B41F17/10Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces on articles of indefinite length, e.g. wires, hoses, tubes, yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F17/00Printing apparatus or machines of special types or for particular purposes, not otherwise provided for
    • B41F17/08Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces
    • B41F17/14Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces on articles of finite length
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/18Deposition of organic active material using non-liquid printing techniques, e.g. thermal transfer printing from a donor sheet

Definitions

  • the present invention relates to a transfer apparatus and a substrate processing apparatus.
  • This application claims priority based on Japanese Patent Application No. 2012-173983 for which it applied on August 6, 2012, and uses the content here.
  • roller method As display elements constituting display devices such as display devices, for example, liquid crystal display elements, organic electroluminescence (organic EL) elements, electrophoretic elements used in electronic paper, and the like are known. As one of methods for manufacturing these elements, for example, a method called a roll-to-roll method (hereinafter simply referred to as “roll method”) is known (for example, refer to Patent Document 1).
  • a single sheet-like substrate wound around a substrate supply side roller is sent out, the substrate is transported while being wound up by a substrate recovery side roller, and the substrate is sent out after being sent out.
  • a pattern such as a display circuit or a driver circuit is sequentially formed on a substrate until it is formed.
  • a transfer method transfer method in which a pattern layer previously formed on a transfer plate is transferred to a substrate is known.
  • the transfer method when the pattern layer is transferred to the substrate, a part of the pattern may remain on the transfer plate.
  • An object of the present invention is to provide a transfer apparatus and a substrate processing apparatus that can suppress a pattern layer from remaining on a transfer plate during transfer.
  • a transfer apparatus includes a transfer plate having a porous plate formed of a porous material having a predetermined thickness and a pattern layer for transfer formed on one surface side of the porous plate. From the plate holding part to hold, the object to which the pattern layer of the transfer plate can be transferred, in close contact with or close to one side of the transfer plate, and the other side of the porous plate A fluid supply unit that supplies a fluid of a predetermined pressure toward one surface side.
  • a substrate processing apparatus includes a substrate transport unit that transports a substrate formed in a belt shape, and a plurality of substrate processing units that perform processing on the substrate transported by the substrate transport unit,
  • the transfer device is used as the substrate processing unit.
  • a device manufacturing method is a method of manufacturing an electronic device including a thin film transistor on a flexible substrate, and any two of an electrode layer, a semiconductor layer, and an insulating layer constituting the thin film transistor.
  • a fluid having a predetermined pressure is supplied from the other surface side of the porous plate toward the one surface side in a state where the surface side and the surface of the substrate are in close contact with each other;
  • FIG. 1 is a perspective view showing an overall configuration of a transfer apparatus according to a first embodiment of the present invention.
  • Sectional drawing which shows the structure of the porous sheet of this embodiment.
  • the perspective view which shows the structure of the gas ejection roller of this embodiment.
  • the perspective view which shows the internal structure of the gas ejection roller of this embodiment.
  • FIG. 6 is a partial cross-sectional view illustrating an example of a transfer operation according to the present embodiment.
  • FIG. 6 is a partial cross-sectional view illustrating an example of a transfer operation according to the present embodiment.
  • FIG. 6 is a partial cross-sectional view illustrating an example of a transfer operation according to the present embodiment.
  • Sectional drawing which shows the modification of the gas ejection roller in this embodiment.
  • Sectional drawing which shows the modification of the gas ejection roller in this embodiment.
  • Sectional drawing which shows the other structure of the porous sheet which concerns on this invention.
  • FIG. 1 is a perspective view illustrating a configuration of a transfer apparatus 100 according to the present embodiment.
  • the transfer apparatus 100 uses a porous sheet Ts as a transfer plate formed in an endless belt shape with flexibility and a porous material, and uses an outer peripheral surface Ta of the porous sheet Ts. Is a device for transferring the pattern layer formed on the film-like substrate P as an object to be transferred.
  • the transfer apparatus 100 includes a sheet holding unit (plate holding unit) 10 that holds the porous sheet Ts, a substrate holding unit (target holding unit) 20 that holds the substrate P, and the inner peripheral surface Tb side of the porous sheet Ts.
  • the gas supply part (fluid supply part) 30 which supplies gas toward the outer peripheral surface Ta side is provided.
  • a resin film such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate), a plastic sheet, an ultrathin bendable glass plate, a foil sheet obtained by rolling stainless steel into a foil, or a liquid
  • a flexible substrate such as paper or cloth processed so as to suppress the absorption of so-called flexible substrate.
  • a resin film or a plastic sheet is used as the substrate P, particularly paying attention to the low material cost.
  • FIG. 2 is a cross-sectional view showing the configuration of the porous sheet Ts.
  • the porous sheet Ts has a porous layer 11, a base metal layer 12 (covering portion), and a plating layer 13 (covering portion).
  • the porous layer 11 is formed using a porous material such as polyimide so as to have a film thickness of, for example, about 20 ⁇ m to 50 ⁇ m.
  • the porous layer 11 can allow gas to pass through.
  • the second surface 11b of the porous layer 11 corresponds to the inner peripheral surface Tb of the porous sheet Ts.
  • a porous polyimide membrane is disclosed, for example, in International Publication No. WO2010 / 038873.
  • the base metal layer 12 is formed on the first surface 11a of the porous layer 11 so as to have a predetermined pattern shape.
  • the pattern shape by the base metal layer 12 is complementary to the pattern layer to be transferred to the substrate P.
  • the pattern by the base metal layer 12 is formed, for example, by vapor deposition or the like, and closes a part of the first surface 11a of the porous layer 11.
  • the plating layer 13 is laminated on the base metal layer 12 by a plating method.
  • the surface 13a of the plating layer 13 corresponds to the outer peripheral surface (surface layer) Ta of the porous sheet Ts.
  • the plating layer 13 has the same pattern as the base metal layer 12.
  • the plated layer 13 is formed with a desired thickness by, for example, immersing a porous sheet Ts having a patterned base metal layer 12 in a plating solution for a predetermined time and performing electroless or electrolytic plating.
  • the first surface 11 a of the porous layer 11 is partially blocked by the pattern of the base metal layer 12 and the plating layer 13.
  • a pattern by the exposed portion 14 is formed in a region where the base metal layer 12 and the plating layer 13 are not provided.
  • the exposed portion 14 is filled with a material to be transferred that becomes a pattern layer to be transferred to the substrate P.
  • the porous sheet Ts functions in the same manner as the intaglio plate in printing because the porous sheet Ts is transferred by the exposed portion 14 that is recessed with respect to the base metal layer 12 and the plating layer 13.
  • the gas When passing a gas from the second surface 11b of the porous layer 11 to the first surface 11a, the gas is blocked by the base metal layer 12 and the plating layer 13 and is ejected from the exposed portion 14 of the first surface 11a.
  • This type of porous sheet (resin film, film, etc.) is made by cutting an aramid resin-based porous film with high heat resistance and dimensional stability, and a sintered porous molded body of ultrahigh molecular weight polyethylene powder.
  • An ultra-high molecular weight polyethylene porous film, a tetrafluoroethylene resin porous film excellent in properties such as liquid repellency, heat resistance, and chemical resistance can be used.
  • the surface 11a preferably has a pore size smaller than the minimum dimension of the fine pattern of the base metal layer 12 and good flatness.
  • porous sheet a surface fluorinated porous film in which the surface of the porous film made of a synthetic resin is fluorinated by treatment with fluorine gas may be used.
  • the sheet holding unit 10 includes a roller R1 and a roller R2 that convey the porous sheet Ts while applying a predetermined tension to the porous sheet Ts. At least one of the roller R1 and the roller R2 is rotatably provided by a driving unit (not shown). By rotating the roller, the endless porous sheet Ts can be rotated in one direction.
  • the substrate holding unit 20 has an impression drum DR that conveys the substrate P.
  • the impression drum DR is formed in a shape in which the outer peripheral surface DRa is a cylindrical surface, such as a cylindrical shape or a columnar shape, and the outer periphery is covered with a rubber material or a resin material having an appropriate thickness.
  • substrate P is conveyed in the state wound by outer peripheral surface DRa of the impression drum DR.
  • the impression drum DR is provided so as to be rotatable in the circumferential direction of the outer peripheral surface DRa by a rotation driving unit (not shown).
  • the impression drum DR is provided at a position where the substrate P wound around the outer peripheral surface DRa is in close contact with (or close to) the outer peripheral surface Ta of the porous sheet Ts.
  • the tension rollers TR1 and TR2 are arranged so that a certain length of the porous sheet Ts is in close contact with the substrate P wound around the outer peripheral surface DRa of the impression drum DR with respect to the longitudinal direction (feeding direction) of the porous sheet Ts. Provided.
  • the gas supply unit 30 is disposed inside the endless belt-like porous sheet Ts.
  • the gas supply unit 30 includes a gas ejection roller ABR that presses the porous sheet Ts against the substrate P and supplies gas to the porous sheet Ts, and a gas supply unit that can supply gas to the gas ejection roller ABR. 35.
  • FIG. 3 is a perspective view illustrating a configuration of the gas supply unit 30.
  • the gas ejection roller ABR includes a cylindrical shaft (tubular metallic shaft) 31 formed in a cylindrical shape, and bearings arranged one by one at both ends in the axial direction of the cylindrical shaft 31.
  • a cylindrical porous tube 33 that is formed in a cylindrical shape using a porous material and is rotatably supported by the bearing portion 32 outside the cylindrical shaft 31; and an outer peripheral surface of the cylindrical shaft 31; And a magnetic fluid 34 provided between the inner peripheral surface of the porous tube 33.
  • the porous tube 33 is formed by, for example, molding a porous ceramic material into a cylindrical shape having a predetermined inner and outer diameter with a thickness of several millimeters.
  • the porous tube 33 can allow pressurized gas to pass through an infinite number of minute porous (pores) from the inner peripheral surface toward the outer peripheral surface.
  • the average dimension and density of the porous are set according to the minimum dimension (line width or the like) of the pattern shape by the exposed portion 14 formed on the first surface 11a of the porous sheet Ts.
  • FIG. 4 is a perspective view showing a state in which the cylindrical porous tube 33 shown in FIG. 3 is removed, and the cylindrical shaft 31 has a hollow portion 31a.
  • the said hollow part 31a is connected to the gas supply part 35 via gas supply paths 35a, such as piping, for example.
  • the cylindrical shaft 31 has an opening 31b (a jet part) penetrating the hollow part 31a and the outside.
  • the opening 31b is formed in a slot shape with a length corresponding to the width of the porous sheet Ts in the direction in which the axis of the cylindrical shaft 31 (or the rotation center line of the porous tube 33) extends, and via the gas supply path 35a. Thus, it becomes a jet outlet for jetting the gas supplied from the gas supply section 35.
  • the pressure of the ejected gas is applied to the second surface 11b of the porous sheet Ts, and the pressurized gas that has passed through the porous layer 11 of the porous sheet Ts fills the exposed portion 14 on the first surface 11a side.
  • a force for peeling from the first surface 11a is applied to the pattern layer made of the material to be transferred.
  • the opening 31b of the cylindrical shaft 31 shown in FIGS. 3 and 4 is directed toward the impression drum DR. Therefore, the pattern layer made of the material to be transferred filled in the exposed portion 14 on the first surface 11a side of the porous sheet Ts is peeled off from the first surface 11a and strongly pressed against the surface of the substrate P to be transferred. .
  • the transfer force (crimping force) for pressing the pattern layer made of the material to be transferred on the porous sheet Ts side against the substrate P is the holding force between the substrate P and the porous sheet Ts by the impression drum DR and the porous tube 33.
  • the back pressure that the ejected gas presses against the second surface 11b side of the porous sheet Ts and the peeling force from the exposed portion 14 of the material to be transferred by the ejected gas are determined.
  • the bearing portion 32 supports the porous tube 33 so as to be rotatable in the circumferential direction of the cylindrical shaft 31. Since the porous tube 33 is formed of a porous material over a circumference of the circumferential direction, the pressurized gas from the opening 31b of the cylindrical shaft 31 can pass over the circumference of the circumference.
  • the second surface 11 b of the porous sheet Ts is in close contact with the outer peripheral surface 33 a of the porous tube 33.
  • the porous tube 33 can be rotated around the cylindrical shaft 31 by the bearing portion 32. For this reason, for example, the porous tube 33 is rotated in accordance with the movement of the porous sheet Ts, or is rotated in accordance with the rotation of the impression drum DR driven by a rotation drive unit (motor or the like). It is possible to
  • the magnetic fluid 34 shown in FIGS. 3 and 4 is filled in a slight gap (for example, 1 to several millimeters) formed between the outer peripheral surface of the cylindrical shaft 31 and the inner peripheral surface of the porous tube 33.
  • the main action is to prevent the pressurized gas ejected from the opening 31 b from entering the gap between the outer peripheral surface of the cylindrical shaft 31 and the inner peripheral surface of the porous tube 33. Therefore, the magnetic fluid 34 functions as a seal that enhances the airtightness between the opening 31 b and the inner peripheral surface of the porous tube 33.
  • the magnetic fluid 34 is captured by a magnetomotive member (permanent magnet, electromagnet, etc.) embedded in the outer peripheral surface of the cylindrical shaft 31.
  • a magnetomotive member permanent magnet, electromagnet, etc.
  • a strong magnetism generator IR earth permanent magnet
  • the transfer device 100 has a pattern layer forming portion PH that forms a pattern layer on the exposed portion 14 formed on the outer peripheral surface Ta of the porous sheet Ts, for example.
  • the pattern layer forming part PH functional materials constituting the pattern layer, for example, conductive ink containing nano metal particles, ultraviolet curable resin containing carbon nanowires, organic substances and oxides that crystallize when dried and become semiconductors
  • a print head that prints (fills) a liquid or gel-like functional material such as a solvent on the exposed portion 14 of the porous sheet Ts is used.
  • an ink jet head that can drop the functional material with the exposed portion 14 being aimed at is suitable as the print head, but is used in screen printing, gravure printing, letterpress printing, offset printing, and the like. (Lithographic plate or cylinder) can also be used as the head.
  • the base metal layer 12 and the plating layer 13 formed on the outer peripheral surface Ta of the porous sheet Ts serve as a partition layer (convex portion), and the surrounding exposed portion 14 is formed. It becomes a recess. Therefore, after the functional material is uniformly or selectively applied to the region where the exposed portion 14 on the porous sheet Ts is formed as the pattern layer forming portion PH, the base metal layer 12 and the plating layer 13 are used. It may have a coating mechanism that removes the functional material remaining on the partition wall layer and leaves the functional material in the exposed portion 14.
  • the pattern layer formation part PH may be provided with two or more so that it may rank with the conveyance direction of the porous sheet Ts.
  • the transfer device 100 has a support mechanism PLT that supports the inner peripheral surface Tb of the portion of the porous sheet Ts where the pattern layer (layer filled in the exposed portion 14) is formed by the pattern layer forming portion PH.
  • a support mechanism PLT for example, an air pad type holder that supports the inner peripheral surface Tb in a non-contact manner by a flat support surface, a rotating drum around which a part of the porous sheet Ts is wound, or the like can be used. .
  • the transfer device 100 has a predetermined relationship with respect to the exposed portion 14 of the porous sheet Ts in a state where the porous sheet Ts is supported by the support mechanism PLT as shown in FIG. A transferred material (liquid or gel functional material) is filled to form the transferred pattern layer 15.
  • the bottom portion of the exposed portion 14 (the first surface 11a of the porous layer 11) filled with the functional material to be the transferred pattern layer 15 has a molecular structure that has liquid repellency with respect to the functional material. That is, it is desirable that the functional material is difficult to enter the porous layer 11 and has poor adhesion.
  • a chemical treatment that modifies the surface of the bottom of the exposed portion 14 (the first surface 11a of the porous layer 11) with a fluorine group for example, a solution of a SAM (Self-Assemble-Monolayer) material having liquid repellency.
  • Application may be performed by a mist deposition method or the like so as not to fill the porous layer 11.
  • the transfer device 100 rotates the roller R1 and the roller R2 to move the porous sheet Ts, and also rotates the impression drum DR to move the substrate P, thereby moving the first surface of the porous sheet Ts.
  • the transferred pattern layer 15 formed on 11a (Ta) and the transfer target region on the substrate P are brought into contact (pressure bonding).
  • the pressurized gas is ejected from the opening 31b of the cylindrical shaft 31 constituting the gas ejection roller ABR toward the second surface 11b (Tb) of the porous sheet Ts.
  • the transfer device 100 supplies gas at a predetermined pressure from the gas ejection roller ABR to the inner peripheral surface Tb of the porous sheet Ts. Since the gas flow supplied from the inner peripheral surface Tb to the inside of the porous layer 11 is blocked in the region where the base metal layer 12 and the plating layer 13 are formed, pressure is applied to the exposed portion 14. . By this pressure (peeling force), the transferred pattern layer 15 formed on the exposed portion 14 is pressed toward the substrate P, and the transferred pattern layer 15 is bonded (transferred) to the substrate P.
  • the transferred pattern layer 15 arranged on the exposed portion 14 is transferred to the substrate P as shown in FIG.
  • the porous sheet Ts and the substrate P are conveyed.
  • the transferred pattern layer 15 formed on the porous sheet Ts is continuously transferred onto the substrate P.
  • the surface of the substrate P is modified in advance or a thin film that improves the adhesion is formed in order to improve the adhesion with the functional material constituting the transferred pattern layer 15. It is desirable to keep it.
  • an adjustment mechanism for changing the circumferential width of the opening portion 31b of the cylindrical shaft 31 through which the pressurized gas is jetted is provided, or the opening portion 31b.
  • the opening shape itself may be changed.
  • FIG. 8A shows a case where a blade plate 31 w that makes the width in the circumferential direction of the opening variable is provided in the vicinity of the outer periphery of the opening 31 b of the cylindrical shaft 31.
  • the blade plate 31w is configured to be movable in the circumferential direction of the cylindrical shaft 31, and can adjust the circumferential width of the region on the inner circumferential surface of the porous tube 33 to which the pressurized gas is sprayed.
  • FIG. 8B shows an example in which the outlets of the pressurized gas formed on the outer peripheral surface of the cylindrical shaft 31 are made into small openings 31h that are discretely arranged in the axial direction instead of being made into a continuous slot shape in the axial direction.
  • Each of the small openings 31 h communicates with a groove 31 g that extends in the axial direction on the inner peripheral surface of the cylindrical shaft 31.
  • the jet outlet is constituted by a plurality of small openings 31h
  • the area of the magnetic fluid 34 surrounding these small openings 31h can be reduced, and there is also an advantage that the magnet generator Mg such as a permanent magnet can be reduced.
  • the opening through which the pressurized gas is ejected is narrowed down, and the flow velocity of the gas ejected toward the inner peripheral surface of the porous tube 33 is increased. It is also possible to increase the force for peeling the film from the exposed portion 14.
  • a minute gap for example, several ⁇ m to 10 ⁇ m
  • the porous sheet Ts and the substrate P are relatively positioned on the micron order immediately before the transfer.
  • the transfer device 100 includes the porous layer 11 formed of a porous material having a predetermined thickness, and the transferred pattern layer 15 formed on the first surface 11a side of the porous layer 11.
  • the outer peripheral surface of the porous sheet Ts is a sheet holding portion 10 that holds the porous sheet Ts having the substrate P and the substrate P to which the transferred pattern layer 15 of the porous sheet Ts can be transferred (scheduled to be transferred). Since the substrate holding unit 20 that is held in close contact with or close to Ta and the gas supply unit 30 that supplies a gas of a predetermined pressure from the second surface 11b of the porous layer 11 toward the first surface 11a, the porous layer 11 is porous.
  • the transferred pattern layer 15 disposed on the outer peripheral surface Ta of the porous sheet Ts is pushed out to the substrate P by the pressure of the gas supplied through the sheet Ts. Thereby, it can suppress that the pattern layer 15 remains in the porous sheet Ts at the time of transcription
  • FIG. 9 shows an overall configuration of a device manufacturing system (substrate processing apparatus) 1 to which the transfer apparatus 100 of the first embodiment is applied.
  • a pretreatment device U1 that performs a predetermined pretreatment (surface modification or the like) on the long substrate P wound around the supply roller FR1, was pretreated.
  • a transfer device U2 that performs pattern transfer on the substrate P and a post-processing device U3 that performs subsequent processing on the substrate P on which the pattern has been transferred are provided.
  • the transfer device U2 As the transfer device U2, the transfer device 100 of the first embodiment is used.
  • the transfer device U2 forms a pattern for forming a pattern on the surface of the endless belt-like porous sheet Ts in addition to the sheet holding unit 10, the substrate holding unit 20, and the gas supply unit 30 described in the first embodiment.
  • Device 40, cleaning device 50 (maintenance unit) for cleaning porous sheet Ts after the pattern on porous sheet Ts is transferred to substrate P by transfer device U2, and drying device for drying porous sheet Ts after cleaning 60 (maintenance unit), and a substrate processing device 70 (maintenance unit) that performs predetermined substrate processing on the surface of the porous sheet Ts after drying.
  • the surface of the porous sheet Ts2 subjected to the base treatment is patterned with various electrode parts and wiring parts for TFT and organic EL by a printing method or an ink jet method.
  • a plurality of print head parts (print head part PH1, print head part PH2 and print head part PH3) to be applied and formed, and the back surface of porous sheet Ts2 corresponding to each print head part (PH1, PH2, PH3)
  • a support mechanism PLT such as a flat air pad holder to support or a rotating drum around which the porous sheet Ts2 is partially wound is provided.
  • the substrate P wound around the supply roller FR1 is sent to the pretreatment device U1 at a predetermined speed in the X direction by the nipped drive roller DR1.
  • the pretreatment device U1 forms a base layer on the surface of the substrate P, that is, a downward surface Pa in the figure, such that pattern transfer (fixing) is strong.
  • the underlayer is formed by irradiating the surface of the substrate P with an energy beam such as an electron beam to form a modified surface layer (an activated surface), and the pattern material to be transferred is firmly attached to the substrate P. It is formed by a method of depositing a thin binder layer to arrive.
  • the pre-processed substrate P changes its conveying direction in a non-contact manner by the air turn bar ATB, and in the order of the roller R1, the air turn bar ATB, the impression drum DR, the air turn bar ATB, the roller R2, and the air turn bar ATB in the transfer device U2. It is passed over and transported to the next post-processing device U3.
  • the rotation speed and torque of the roller R1 and the roller R2 are controlled so that the substrate P is wound around the impression drum DR while maintaining a predetermined tension in the transport direction.
  • the outer peripheral portion of the impression drum DR is made of metal or hard rubber, and the outer peripheral surface is formed in a cylindrical shape with high roundness.
  • a gas ejection roller ABR a tension roller TR1, the tension roller TR2, and the gas ejection roller ABR can all be adjusted in position in the Z direction by an actuator Act.
  • the gas ejection roller ABR is disposed on the back side of the porous sheet Ts1 when the porous sheet Ts1 and the substrate P are in close contact (pressure contact) at the lower portion of the impression drum DR. Squeezed gas is ejected from the surface, and the transferred pattern layer 15 formed on the upper surface of the porous sheet Ts1 is neatly peeled off.
  • the porous sheet Ts from which the transferred pattern layer 15 has been peeled off by the transfer device U2 is folded back through the rollers R10 and R11, sent to the wet cleaning tank in the cleaning device 50, and sprayed from a high-pressure cleaning nozzle or the like.
  • the cleaning liquid is then cleaned, and then rinsed with pure water.
  • the porous sheet Ts is sent into the drying device 60 and dried by warm air or infrared irradiation so that moisture taken into the porous material is sufficiently removed.
  • the dried porous sheet Ts (with the base metal layer 12 and the plating layer 13) is sent to the base processing apparatus 70, and the base preparation necessary for pattern formation is performed again.
  • the pattern material has a certain property of having a certain level of liquid repellency.
  • the SAM material exemplified above may be selectively applied to the exposed portion 14 of the porous sheet.
  • the porous sheet Ts2 subjected to the base treatment is folded back by the roller R12 and the roller R13 and is sent to the pattern forming apparatus 40 again.
  • a tension adjusting mechanism using an air turn bar ATB is provided between the rollers R12 and R13, and the tension of the entire endless belt-like porous sheet Ts is adjusted by moving the air turn bar ATB in the X direction by an actuator Act. Is done.
  • the device manufacturing system 1 has the substrate holding unit 20 (substrate transfer unit) that transfers the substrate P formed in a band shape and the substrate P transferred by the substrate holding unit 20.
  • a plurality of substrate processing units (a pre-processing device U1, a transfer device U2, and a post-processing device U3) that perform processing, and the transfer device U2 according to the first embodiment of the present invention is used as the transfer device U2.
  • the transferred pattern layer 15 can be prevented from remaining on the porous sheet Ts. Thereby, the device manufacturing system 1 with high processing accuracy and high yield can be obtained.
  • the present invention is not limited to the above-described embodiment, and appropriate modifications can be made without departing from the spirit of the present invention.
  • the base metal layer 12 is formed on the first surface 11a of the porous layer 11 by the vapor deposition method, and the plating layer 13 is formed thereon.
  • the present invention is not limited to this.
  • the vapor deposition film 16 may be formed on the first surface 11 a of the porous layer 11, and then the vapor deposition film 16 may be etched to form a pattern by the exposed portion 14.
  • the surface 16a of the vapor deposition film 16 corresponds to the outer peripheral surface Ta of the porous sheet Ts.
  • the gas supplied to the porous sheet Ts is described as an example, but the present invention is not limited to this.
  • a functional material in the exposed portion 14 of the porous sheet Ts as the transferred pattern layer 15, a liquid such as pure water may be used as the fluid. good.
  • the configuration using the porous sheet Ts as the porous plate has been described as an example.
  • the present invention is not limited to this.
  • a pattern layer (a partition layer formed by the base metal layer 12 and the plating layer 13 and the transferred pattern layer 15) is directly formed on the surface of the porous tube 33 of the gas ejection roller ABR shown in FIG. 3, and the porous tube 33 is patterned.
  • a configuration may be adopted in which the layers are brought into direct contact with the substrate P.
  • the porous tube 33 is formed of a flexible thin plate-like porous plate that can be bent with a predetermined curvature, and the other surface of the thin plate-like porous plate is on the inner surface of the cylindrical shaft 31. It is provided in a rolled state.
  • the gas ejection roller ABR can attract
  • a configuration in which a vacuum pump or the like is connected to the hollow portion 31a of the cylindrical shaft 31 may be mentioned.
  • the case where the one-step pattern layer 15 is transferred onto the substrate P is exemplified, but as shown in FIG. 11, two or more steps of the pattern layer 15A can be formed.
  • a layer 16M is formed, and a second pattern layer 16N is stacked thereon.
  • a pattern layer 15A having a multistage structure can be formed. it can.
  • the multi-layer pattern layers 16N and 16M formed in close contact with the porous layer 11 of the porous sheet Ts are formed by depositing the same material layer thickly and uniformly, and then depositing the deposited layer as the first layer of the porous layer 11.
  • the first etching is performed by applying the first mask for removing the surface 11a, and then the second etching is performed by applying the second mask for removing as the second step. May be.
  • a pixel circuit portion of an active matrix type organic EL (AMOLED) display is a manufacturing object, and a formation method thereof will be described.
  • the pixel circuit portion of the AMOLED display has a circuit configuration as shown in FIG. 12A, for example, and a video signal bus line Sy to which a signal corresponding to the luminance of the video signal is supplied, and a scanning signal for selecting a horizontal scanning line (synchronization).
  • Each pixel (RGB sub-pixel) is supplied with a first thin film transistor TR1 (hereinafter referred to as TFT-TR1) that switches On / Off of the light emitting layer OLED, and a current corresponding to the luminance of the video signal to the light emitting layer OLED.
  • TFT-TR1 first thin film transistor TR1
  • TFT-TR2 second thin film transistors TR2
  • the source electrode S of the TFT-TR1 is connected to the video signal bus line Sy
  • the gate electrode G of the TFT-TR1 is connected to the scanning bus line Sh.
  • the gate electrode G of the TFT-TR2 is connected to the drain electrode D of the TFT-TR1
  • the drain electrode D of the TFT-TR2 is connected to the power supply bus line Vdd
  • the source electrode S of the TFT-TR2 is the anode of the light emitting layer OLED.
  • the cathode side of the light emitting layer OLED is connected to the power supply bus line Vss, and the light emission time of the light emitting layer OLED is held between the gate electrode G of the TFT-TR2 (drain electrode D of TFT-TR1) and the power supply bus line Vss.
  • a capacitor CP is connected.
  • FIG. 12B shows an example of a planar arrangement in the case where the circuit configuration as shown in FIG. 12A is formed on the substrate P described in the previous embodiments.
  • a round insulating layer Iso is sandwiched between intersections of the video signal bus line Sy, the scanning bus line Sh, and the power supply bus line Vdd (Vss).
  • the semiconductor layer Sc constituting the TFT-TR1 and TFT-TR2 is formed on the lowermost side (substrate P side) in this embodiment, and the drain electrode D and the source electrode S are formed thereon, and the gate insulation is formed thereon.
  • An insulating layer Iso that becomes a film is formed, and a gate electrode G is further formed thereon.
  • FIG. 12C shows a cross-sectional structure taken along line C-C ′ in FIG. 12B across the drain electrode D and the source electrode S of the TFT-TR1 and across the drain electrode D of the TFT-TR2.
  • an insulating support layer MR that integrally supports the semiconductor layer Sc, the drain electrode D, and the source electrode S of each TFT is formed on the surface of the substrate P, and on the support layer MR.
  • the insulating layer Iso as the gate insulating film, the gate electrode G, or some bus lines are stacked.
  • the transfer method using the porous sheet Ts described in the second embodiment and the like can be applied by interposing such a support layer MR.
  • FIG. 13A shows a state in which the support layer MR is formed on the porous sheet Ts as shown in FIG. 5 or 10 and transferred (bonded) to the substrate P.
  • the support layer MR has an appropriate planar dimension (for example, 50 ⁇ m ⁇ 25 ⁇ m) including the source electrode S, the drain electrode D, and the semiconductor layer Sc, which are the main parts of the TFT-TR1 and TFT-TR2, and the porous sheet Ts.
  • the porous layer 11 is formed in the exposed portion 14 (see FIG. 5 or 10) where the porous layer 11 is exposed.
  • the thickness of the support layer MR including the source electrode S, the drain electrode D, and the semiconductor layer Sc is about the total thickness of the base metal layer 12 and the plating layer 13 laminated on the upper surface (11a) of the porous layer 11 ( Several hundred nm to several ⁇ m).
  • the support layer MR as shown in FIG. 13A is first formed on the first surface 11a of the porous layer 11 in the exposed portion 14 of the porous sheet Ts as a first step.
  • a source electrode S and a drain electrode D of each TFT are formed of a resistance material (metal film, carbon nanotube, etc.).
  • FIG. 13B is a partial cross-sectional view of the porous sheet Ts including the exposed portion 14, and
  • FIG. 13C is a plan view of the exposed portion 14.
  • the width of the gap Gp opposed to the source electrode S and the drain electrode D is also called a channel length, and is precisely processed in order to keep various characteristics of the TFT within a desired range.
  • a photoresist As a method of precisely positioning and forming the source electrode S and the drain electrode D on the surface 11a of the porous layer 11 in the exposed portion 14 (a window-shaped region surrounded by the partition wall by the plating layer 13), a photoresist is used.
  • Lithography method including exposure process using energy rays, development process, etching process
  • photo using photosensitive functional material that changes surface lyophilicity and liquid repellency by UV irradiation instead of photoresist
  • An assist method such as electroless plating that does not require development and etching
  • a printing method in which each electrode is directly drawn with ink containing conductive nanoparticles using an ink jet printer can be used.
  • a lithography method or a photo assist method is suitable.
  • the electrode is formed as one linear (rectangular) pattern in which the source electrode S and the drain electrode D are connected on the surface 11 a of the porous layer 11, a portion corresponding to the gap Gp is applied to the laser beam. If a process of cutting (cutting) with a spot can be used, the gap Gp can be formed with sufficient accuracy even by a printing method.
  • the adhesion between the electrodes S and D and the surface 11a of the porous layer 11 is neither excessively increased nor excessively decreased.
  • the material of the porous layer 11 and the average porous size of the surface 11a are selected, and the surface 11a is pretreated (activated by UV irradiation or the like) as necessary.
  • FIGS. 14A and 14B a solution-like semiconductor material (organic semiconductor, oxide semiconductor) is formed so as to cover the gap Gp between the source electrode S and the drain electrode D of each TFT. , Carbon nanotubes, etc.) are applied, and the semiconductor layer Sc is formed by an appropriate crystal orientation treatment.
  • FIG. 14A is a plan view of the exposed portion 14
  • FIG. 14B is a partial cross-sectional view of the porous sheet Ts including the exposed portion 14.
  • the semiconductor layer Sc may be formed in a range that reliably covers the gap Gp, and it is preferable to use a printing method using an inkjet printer or the like in terms of accuracy.
  • a certain high temperature is required for crystallization.
  • a flexible substrate made of a PET resin is used as the substrate P
  • its glass transition temperature is about 100 °
  • extreme deformation (shrinkage) occurs when a temperature higher than that is applied.
  • a porous film made of polyimide as the porous layer 11
  • a high temperature treatment of about 200 ° to 250 ° is possible.
  • the porous sheet Ts has a metal layer 12, a plating layer (metal) 13, and metal-based electrodes S and D.
  • the droplets of the semiconductor layer Sc can be crystallized (orientated) at a high temperature of about 200 ° to 250 °, and an improvement in TFT performance can be expected.
  • the choice of the material which can be utilized as the semiconductor layer Sc also spreads. If the material of the porous layer 11 is ceramic instead of polyimide, a higher temperature treatment is possible.
  • an insulating solution material that becomes the support layer MR is formed on the entire exposed portion 14 (concave portion) where the source electrode S, the drain electrode D, and the semiconductor layer Sc are formed as shown in FIGS. 14A and 14B.
  • an ultraviolet curable resin or the like is applied with a uniform thickness.
  • An ink jet printer can also be used for this application. If only the surface of the plating layer 13 around the exposed portion 14 can be set in a highly liquid repellent state, an insulating solution material is filled in the exposed portion 14 by a mist deposition method or a dip method. May be.
  • the porous sheet Ts is irradiated with ultraviolet rays and cured to an appropriate hardness.
  • the solvent component in the solution material is removed and cured appropriately by irradiation with infrared rays or microwaves or heating with a heater.
  • the support layer MR is formed in the state as shown in FIG. 13A on the porous sheet Ts by the above first to third steps, and as described in the previous embodiments, the porous sheet Ts.
  • a pressurized gas may be supplied to the back surface 11b side of the substrate, and the support layer MR may be transferred (pressed) to a predetermined position on the substrate P.
  • the source electrode S and the drain electrode D are exposed on the upper surface of the support layer MR, as is apparent from the cross-sectional structure of FIG. 12C. Therefore, when various bus lines Sy, Sh, Vdd, and gate electrodes G are laminated on the source electrode S and the drain electrode D by a conductive ink by a printing method such as inkjet, electrical continuity is ensured. Will be.
  • the support layer MR on the substrate P is covered with the semiconductor layer Sc and has dimensions (area) that do not cover the ends of the source electrode S and the drain electrode D. Then, an insulating layer Iso that becomes a gate insulating film is formed.
  • This insulating layer Iso is applied with a liquid-repellent photosensitive functional material on the support layer MR, and the portion corresponding to the insulating layer Iso is modified to be lyophilic with a photo assist method in which the portion corresponding to the insulating layer Iso is modified to be lyophilic. It is formed by a combination of a printing method such as an ink jet method, a mist deposition method, or a dip (immersion) method in which a solution material to be the insulating layer Iso is applied to the finished portion.
  • a printing method such as an ink jet method, a mist deposition method, or a dip (immersion) method in which a solution material to be the insulating layer Iso is applied
  • the gate electrode G and various bus lines Sy, Sh, Vdd, and Vss are printed on the upper surface of the insulating layer Iso, the support layer MR, or the surface of the substrate P by a printing method such as inkjet. It is formed by an electroless plating method using a photo assist method.
  • a liquid-repellent photosensitive functional material is applied to the surface of the support layer MR in the step of forming the insulating layer Iso, the conductive ink that becomes the gate electrode G of the TFT-TR2 as shown in FIG. 12C.
  • the surface of the end portion of the drain electrode D of the TFT-TR1 to be stacked has high liquid repellency (due to fluorine molecules). Therefore, the surface of the support layer MR and the substrate P is irradiated with ultraviolet rays corresponding to the pattern shapes of the gate electrode G and various bus lines Sy, Sh, Vdd, and Vss to change the liquid repellency of the portion to lyophilic. Keep it quality.
  • the bus line Vdd is positioned at the lowest layer, the bus line Sy is positioned above it, and the bus line Sh is positioned above it. ing. Therefore, after the formation of the insulating layer Iso that becomes the gate insulating film, the conducting wire portion that is first formed by the conductive ink becomes the gate electrode G and the bus line Vdd of the TFT-TR2. Therefore, the surfaces of the support layer MR and the substrate P are modified to be lyophilic by irradiating ultraviolet rays in a shape corresponding to the gate electrode G and the bus line Vdd of the TFT-TR2.
  • the substrate P When the amine group having plating reducing ability is exposed only on the surface portion modified (excluded by fluorine molecules) by the ultraviolet irradiation, the substrate P is immersed in the electroless plating solution after the ultraviolet irradiation, so that the TFT A wiring corresponding to the gate electrode G of -TR2 and the bus line Vdd is formed.
  • the drain electrode D of the TFT-TR1 is electrically connected to the gate electrode G of the TFT-TR2
  • the drain electrode D of the TFT-TR2 is electrically connected to the bus line Vdd.
  • an insulating layer Iso is formed on the bus line Vdd at the intersection of the bus line Sy and the bus line Sh. This can also be performed by a wet process using only a printing method such as inkjet or a combination of a photo assist method and a printing method. Thereafter, the bus line Sy is formed by an electroless plating method or the like by a printing method or photo assist. As a result, the source electrode S of the TFT-TR1 is electrically connected to the bus line Sy. Next, an insulating layer Iso is formed at the intersection of the bus line Sy with the bus line Sh, and then the bus line Sh and the gate electrode G of the TFT-TR1 are electrolessly plated by a printing method or photo assist. Etc. are formed.
  • the stacked structure of the source electrode S, the drain electrode D, and the semiconductor layer Sc constituting the TFT is integrally formed on the porous sheet Ts.
  • the temperature conditions for crystallization can be relaxed and the temperature can be increased, and the performance (electron mobility, On / Off ratio, etc.) of the TFT can be improved while being a wet process.
  • the source electrode S and the drain electrode D exposed on the surface of the support layer MR have a level difference corresponding to the thickness of the support layer MR with respect to the surface of the substrate P. Therefore, the various bus lines Sy, Sh, Vdd (Vss) located on both the surface of the substrate P and the surface of the support layer MR are formed so as to straddle the stepped portion around the support layer MR. When the stepped portion around the support layer MR is nearly vertical, various bus lines Sy, Sh, Vdd (Vss) straddling the stepped portion are not formed well and are easily disconnected.
  • the edge (side surface of the partition wall) of the exposed portion 14 formed on the porous sheet Ts spreads outward when viewed from the inside of the exposed portion 14 (window shape).
  • the tapered portion SL is used.
  • the edge portion SL ′ around the support layer MR transferred onto the substrate P is inclined toward the inside of the support layer MR, and the inclined edge portion SL is inclined. Disconnection of various bus lines Sy, Sh, and Vdd (Vss) straddling 'is suppressed.
  • the TFT is configured as a top gate type.
  • the electrodes (source and drain) constituting the TFT are similarly formed in the exposed portion 14 of the porous sheet Ts.
  • D) and a laminated structure of a semiconductor layer, a laminated structure of a semiconductor layer and an insulating layer, or a laminated structure of an electrode (gate G) and an insulating layer can be integrally formed and transferred to the substrate P side.
  • a TFT is a stack of a first electrode layer serving as a source and a drain facing each other with a gap Gp (channel length), a semiconductor layer, a gate insulating layer, and a second electrode layer serving as a gate covering the gap Gp.
  • Consists of structures In this embodiment, among these layers, two layers of the first electrode layer (the source electrode S and the drain electrode D) and the semiconductor layer (Sc) are used as a laminated structure together with the support layer MR, and the porous sheet Ts. Although formed in the exposed portion 14, a three-layer structure including the first electrode layer, the semiconductor layer, and the gate insulating layer (Iso) may be formed together with the support layer MR. In that case, a gate insulating layer (Iso) is first formed only in a part of the exposed portion 14 of the porous sheet Ts, and over the first surface 11 a of the porous layer 11 in the exposed portion 14.
  • the first electrode layer (source electrode S and drain electrode D) is formed, and further the semiconductor layer (Sc) is formed on the inner side of the gate insulating layer (Iso).
  • a semiconductor layer (Sc) is first formed on the first surface 11a in the exposed portion 14 of the porous sheet Ts, and after crystallization by heating or the like, A two-layer structure in which the gate insulating layer (Iso) is formed thereover so as to cover the semiconductor layer can be obtained.
  • the gate electrode G is formed in advance at a predetermined position on the substrate P, and the stacked structure of the gate insulating layer and the semiconductor layer is transferred onto the gate electrode G together with the support layer MR.
  • the support layer MR at least two of the electrode layer, the semiconductor layer, and the insulating layer constituting the thin film transistor (TFT) are formed in advance on the porous sheet Ts as a laminated structure, Good transfer to the substrate P is possible.
  • TFT thin film transistor
  • the porous sheet Ts used in each of the above embodiments may have a structure in which two types of porous films having different average pore diameters, film thicknesses, or porosity are laminated.
  • a first porous layer having an average pore diameter of 5 ⁇ m or less and a thin film thickness (for example, 20 ⁇ m) is provided on the surface side of the porous sheet Ts on which structures such as TFTs and wiring layers are formed, and the porous sheet Ts

Abstract

A transfer device is provided with: a plate holding part for holding a transfer plate having a porous plate formed from a porous material with a predetermined thickness and a transfer pattern layer formed on one surface side of the porous plate; an object holding part for holding an object to which the pattern layer of the transfer plate can be transferred in close contact with or in proximity to one surface of the transfer plate; and a fluid supply part for supplying a fluid with a predetermined pressure from the other surface side to the one surface side of the porous plate.

Description

転写装置及び基板処理装置Transfer apparatus and substrate processing apparatus
 本発明は、転写装置及び基板処理装置に関する。
 本願は、2012年8月6日に出願された日本国特願2012-173983号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a transfer apparatus and a substrate processing apparatus.
This application claims priority based on Japanese Patent Application No. 2012-173983 for which it applied on August 6, 2012, and uses the content here.
 ディスプレイ装置などの表示装置を構成する表示素子として、例えば液晶表示素子、有機エレクトロルミネッセンス(有機EL)素子、電子ペーパに用いられる電気泳動素子などが知られている。これらの素子を作製する手法の1つとして、例えばロール・トゥ・ロール方式(以下、単に「ロール方式」と表記する)と呼ばれる手法が知られている(例えば、特許文献1参照)。 As display elements constituting display devices such as display devices, for example, liquid crystal display elements, organic electroluminescence (organic EL) elements, electrophoretic elements used in electronic paper, and the like are known. As one of methods for manufacturing these elements, for example, a method called a roll-to-roll method (hereinafter simply referred to as “roll method”) is known (for example, refer to Patent Document 1).
 ロール方式は、基板供給側のローラーに巻かれた1枚のシート状の基板を送り出すと共に送り出された基板を基板回収側のローラーで巻き取りながら基板を搬送し、基板が送り出されてから巻き取られるまでの間に、表示回路やドライバ回路などのパターンを基板上に順次形成する手法である。近年では例えば大型のディスプレイ装置などの需要が多く、基板上の広範囲にパターンを効率的に形成する技術が求められている。このような技術の一つとして、例えば、予め転写版に形成されたパターン層を基板に転写する転写法(転着法)が知られている。 In the roll method, a single sheet-like substrate wound around a substrate supply side roller is sent out, the substrate is transported while being wound up by a substrate recovery side roller, and the substrate is sent out after being sent out. In this manner, a pattern such as a display circuit or a driver circuit is sequentially formed on a substrate until it is formed. In recent years, for example, there is a large demand for large display devices, and a technique for efficiently forming a pattern over a wide area on a substrate is required. As one of such techniques, for example, a transfer method (transfer method) in which a pattern layer previously formed on a transfer plate is transferred to a substrate is known.
国際公開第2006/100868号International Publication No. 2006/100868
 しかしながら、転写法においては、パターン層を基板に転写する際に、転写版にパターンの一部が残ってしまう可能性がある。 However, in the transfer method, when the pattern layer is transferred to the substrate, a part of the pattern may remain on the transfer plate.
 本発明に係る態様は、転写時にパターン層が転写版に残留するのを抑えることができる転写装置及び基板処理装置を提供することを目的とする。 An object of the present invention is to provide a transfer apparatus and a substrate processing apparatus that can suppress a pattern layer from remaining on a transfer plate during transfer.
 本発明に係る一態様の転写装置は、所定の厚みの多孔質材料で形成された多孔質板と該多孔質板の一方の面側に形成された転写用のパターン層とを有する転写版を保持する版保持部と、転写版のパターン層が転着され得る対象物を、転写版の一方の面に密着または近接させて保持する対象物保持部と、多孔質板の他方の面側から一方の面側に向けて所定圧力の流体を供給する流体供給部とを備える。 A transfer apparatus according to an aspect of the present invention includes a transfer plate having a porous plate formed of a porous material having a predetermined thickness and a pattern layer for transfer formed on one surface side of the porous plate. From the plate holding part to hold, the object to which the pattern layer of the transfer plate can be transferred, in close contact with or close to one side of the transfer plate, and the other side of the porous plate A fluid supply unit that supplies a fluid of a predetermined pressure toward one surface side.
 本発明に係る一態様の基板処理装置は、帯状に形成された基板を搬送する基板搬送部と、当該基板搬送部によって搬送される基板に対して処理を行う複数の基板処理部とを備え、基板処理部として、上記転写装置が用いられる。 A substrate processing apparatus according to one aspect of the present invention includes a substrate transport unit that transports a substrate formed in a belt shape, and a plurality of substrate processing units that perform processing on the substrate transported by the substrate transport unit, The transfer device is used as the substrate processing unit.
 本発明に係る一態様のデバイス製造方法は、フレキシブルな基板上に薄膜トランジスタを含む電子デバイスを製造する方法であって、前記薄膜トランジスタを構成する電極層、半導体層、絶縁層のうち、いずれか2つの層による積層構造体を、所定の厚みの多孔質材料で形成された多孔質板の一方の面側に形成する第1の工程と、前記積層構造体が形成された前記多孔質板の一方の面側と、前記基板の表面とを密着または近接させた状態で、前記多孔質板の他方の面側から前記一方の面側に向けて所定圧力の流体を供給して、前記多孔質板上の前記積層構造体を前記基板の表面に転写する第2の工程と、前記基板の表面に転写された前記積層構造体の表面、又は前記基板の表面に、前記薄膜トランジスタを構成する残りの層、又は前記電極と接続される配線層を形成する第3の工程と、を含む。 A device manufacturing method according to an aspect of the present invention is a method of manufacturing an electronic device including a thin film transistor on a flexible substrate, and any two of an electrode layer, a semiconductor layer, and an insulating layer constituting the thin film transistor. A first step of forming a laminated structure of layers on one surface side of a porous plate made of a porous material having a predetermined thickness; and one of the porous plates on which the laminated structure is formed A fluid having a predetermined pressure is supplied from the other surface side of the porous plate toward the one surface side in a state where the surface side and the surface of the substrate are in close contact with each other; A second step of transferring the laminated structure to the surface of the substrate, the surface of the laminated structure transferred to the surface of the substrate, or the remaining layers constituting the thin film transistor on the surface of the substrate, Or the electrode And a third step of forming a wiring layer connected, the.
 本発明に係る態様によれば、転写時にパターン層が転写版に残留するのを抑えること転写装置及び基板処理装置を提供することができる。 According to the aspect of the present invention, it is possible to provide a transfer apparatus and a substrate processing apparatus that suppress the pattern layer from remaining on the transfer plate during transfer.
本発明に係る第一実施形態の転写装置の全体構成を示す斜視図。1 is a perspective view showing an overall configuration of a transfer apparatus according to a first embodiment of the present invention. 本実施形態の多孔質シートの構成を示す断面図。Sectional drawing which shows the structure of the porous sheet of this embodiment. 本実施形態の気体噴出ローラーの構成を示す斜視図。The perspective view which shows the structure of the gas ejection roller of this embodiment. 本実施形態の気体噴出ローラーの内部構成を示す斜視図。The perspective view which shows the internal structure of the gas ejection roller of this embodiment. 本実施形態の転写動作の一例を示す部分断面図。FIG. 6 is a partial cross-sectional view illustrating an example of a transfer operation according to the present embodiment. 本実施形態の転写動作の一例を示す部分断面図。FIG. 6 is a partial cross-sectional view illustrating an example of a transfer operation according to the present embodiment. 本実施形態の転写動作の一例を示す部分断面図。FIG. 6 is a partial cross-sectional view illustrating an example of a transfer operation according to the present embodiment. 本実施形態における気体噴出ローラーの変形例を示す断面図。Sectional drawing which shows the modification of the gas ejection roller in this embodiment. 本実施形態における気体噴出ローラーの変形例を示す断面図。Sectional drawing which shows the modification of the gas ejection roller in this embodiment. 本発明に係る第二実施形態のデバイス製造システムの全体構成を示す図。The figure which shows the whole structure of the device manufacturing system of 2nd embodiment which concerns on this invention. 本発明に係る多孔質シートの他の構成を示す断面図。Sectional drawing which shows the other structure of the porous sheet which concerns on this invention. 本発明に係る多孔質シートによる多段パターン層の転写を説明する断面図。Sectional drawing explaining transfer of the multistage pattern layer by the porous sheet which concerns on this invention. 本発明に係る第三実施形態のデバイス製造方法によって形成される回路の一例を示す図。The figure which shows an example of the circuit formed by the device manufacturing method of 3rd embodiment which concerns on this invention. 本発明に係る第三実施形態のデバイス製造方法によって形成される回路の一例を示す図。The figure which shows an example of the circuit formed by the device manufacturing method of 3rd embodiment which concerns on this invention. 本発明に係る第三実施形態のデバイス製造方法によって形成される回路の一例を示す図。The figure which shows an example of the circuit formed by the device manufacturing method of 3rd embodiment which concerns on this invention. 本発明に係る第三実施形態のデバイス製造方法による回路形成工程の一例を示す図。The figure which shows an example of the circuit formation process by the device manufacturing method of 3rd embodiment which concerns on this invention. 本発明に係る第三実施形態のデバイス製造方法による回路形成工程の一例を示す図。The figure which shows an example of the circuit formation process by the device manufacturing method of 3rd embodiment which concerns on this invention. 本発明に係る第三実施形態のデバイス製造方法による回路形成工程の一例を示す図。The figure which shows an example of the circuit formation process by the device manufacturing method of 3rd embodiment which concerns on this invention. 本発明に係る第三実施形態のデバイス製造方法による回路形成工程の一例を示す図。The figure which shows an example of the circuit formation process by the device manufacturing method of 3rd embodiment which concerns on this invention. 本発明に係る第三実施形態のデバイス製造方法による回路形成工程の一例を示す図。The figure which shows an example of the circuit formation process by the device manufacturing method of 3rd embodiment which concerns on this invention. 本発明に係る第三実施形態のデバイス製造方法による回路形成工程の一例を示す図。The figure which shows an example of the circuit formation process by the device manufacturing method of 3rd embodiment which concerns on this invention.
 [第一実施形態] 
 本発明に係る第一実施形態を説明する。 
 図1は、本実施形態の転写装置100の構成を示す斜視図である。 
 図1に示すように、転写装置100は、可撓性を有し多孔質材料によって無端ベルト状に形成された転写版としての多孔質シートTsを用いて、当該多孔質シートTsの外周面Taに形成されるパターン層を、転写対象物としてのフィルム状の基板Pに対して転写する装置である。転写装置100は、多孔質シートTsを保持するシート保持部(版保持部)10と、基板Pを保持する基板保持部(対象物保持部)20と、多孔質シートTsの内周面Tb側から外周面Ta側へ向けて気体を供給する気体供給部(流体供給部)30を有する。なお、基板Pとしては、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)等の樹脂製フィルム、プラスチックシート、極薄の湾曲可能なガラス板、ステンレスを箔状に圧延したフォイルシート、或いは、液体の吸収を抑えるように加工された紙や布等の可撓性を有する基板、所謂フレキシブル基板を用いることができる。
 本実施形態においては、特に、材料費が安価である点に着目して、樹脂製フィルムやプラスチックシートを基板Pとして用いるものとする。
[First embodiment]
A first embodiment according to the present invention will be described.
FIG. 1 is a perspective view illustrating a configuration of a transfer apparatus 100 according to the present embodiment.
As shown in FIG. 1, the transfer apparatus 100 uses a porous sheet Ts as a transfer plate formed in an endless belt shape with flexibility and a porous material, and uses an outer peripheral surface Ta of the porous sheet Ts. Is a device for transferring the pattern layer formed on the film-like substrate P as an object to be transferred. The transfer apparatus 100 includes a sheet holding unit (plate holding unit) 10 that holds the porous sheet Ts, a substrate holding unit (target holding unit) 20 that holds the substrate P, and the inner peripheral surface Tb side of the porous sheet Ts. The gas supply part (fluid supply part) 30 which supplies gas toward the outer peripheral surface Ta side is provided. As the substrate P, a resin film such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate), a plastic sheet, an ultrathin bendable glass plate, a foil sheet obtained by rolling stainless steel into a foil, or a liquid It is possible to use a flexible substrate such as paper or cloth processed so as to suppress the absorption of so-called flexible substrate.
In the present embodiment, a resin film or a plastic sheet is used as the substrate P, particularly paying attention to the low material cost.
 ここで、転写装置100の各構成の説明に先立ち、本実施形態に用いられる多孔質シートTsの構成を説明する。図2は、多孔質シートTsの構成を示す断面図である。 
 図2に示すように、多孔質シートTsは、多孔質層11と、下地金属層12(被覆部)と、メッキ層13(被覆部)とを有している。
Here, prior to the description of each configuration of the transfer apparatus 100, the configuration of the porous sheet Ts used in the present embodiment will be described. FIG. 2 is a cross-sectional view showing the configuration of the porous sheet Ts.
As shown in FIG. 2, the porous sheet Ts has a porous layer 11, a base metal layer 12 (covering portion), and a plating layer 13 (covering portion).
 多孔質層11は、例えばポリイミドなどの多孔質材料を用いて、例えば20μm~50μm程度の膜厚となるように形成されている。多孔質層11は、内部に気体を通過させることが可能である。多孔質層11の第二面11bが多孔質シートTsの内周面Tbに相当する。
 そのような多孔質ポリイミド膜は、例えば、国際公開番号WO2010/038873号に開示されている。
The porous layer 11 is formed using a porous material such as polyimide so as to have a film thickness of, for example, about 20 μm to 50 μm. The porous layer 11 can allow gas to pass through. The second surface 11b of the porous layer 11 corresponds to the inner peripheral surface Tb of the porous sheet Ts.
Such a porous polyimide membrane is disclosed, for example, in International Publication No. WO2010 / 038873.
 下地金属層12は、多孔質層11の第一面11aに所定のパターン形状となるように形成されている。下地金属層12によるパターン形状は、基板Pに転写すべきパターン層に対して相補的な形状になっている。下地金属層12によるパターンは、例えば蒸着法等によって形成され、多孔質層11の第一面11aの一部を塞いでいる。 The base metal layer 12 is formed on the first surface 11a of the porous layer 11 so as to have a predetermined pattern shape. The pattern shape by the base metal layer 12 is complementary to the pattern layer to be transferred to the substrate P. The pattern by the base metal layer 12 is formed, for example, by vapor deposition or the like, and closes a part of the first surface 11a of the porous layer 11.
 メッキ層13は、下地金属層12にメッキ法によって積層されている。メッキ層13の表面13aが多孔質シートTsの外周面(表層)Taに相当する。メッキ層13は、下地金属層12と同一のパターンを有する。メッキ層13は、例えば、パターニングされた下地金属層12を有する多孔質シートTsを、メッキ液に所定時間浸漬させて、無電解又は電解メッキすることによって、所望の厚みで形成される。 The plating layer 13 is laminated on the base metal layer 12 by a plating method. The surface 13a of the plating layer 13 corresponds to the outer peripheral surface (surface layer) Ta of the porous sheet Ts. The plating layer 13 has the same pattern as the base metal layer 12. The plated layer 13 is formed with a desired thickness by, for example, immersing a porous sheet Ts having a patterned base metal layer 12 in a plating solution for a predetermined time and performing electroless or electrolytic plating.
 このように、多孔質層11の第一面11aは、下地金属層12及びメッキ層13によるパターンによって一部が塞がれている。一方、多孔質層11の第一面11aのうち、下地金属層12及びメッキ層13が設けられていない領域には、結果的に露出部14によるパターンが形成される。その露出部14には、詳しくは後述するが、基板Pに転写すべきパターン層となる被転写材料が充填される。 Thus, the first surface 11 a of the porous layer 11 is partially blocked by the pattern of the base metal layer 12 and the plating layer 13. On the other hand, in the first surface 11 a of the porous layer 11, a pattern by the exposed portion 14 is formed in a region where the base metal layer 12 and the plating layer 13 are not provided. As will be described in detail later, the exposed portion 14 is filled with a material to be transferred that becomes a pattern layer to be transferred to the substrate P.
 従って、多孔質シートTsは、下地金属層12及びメッキ層13に対して凹んだ露出部14によって転写を行なうことから、印刷における凹版と同様に機能する。 Therefore, the porous sheet Ts functions in the same manner as the intaglio plate in printing because the porous sheet Ts is transferred by the exposed portion 14 that is recessed with respect to the base metal layer 12 and the plating layer 13.
 多孔質層11の第二面11bから第一面11aに気体を通過させる場合、当該気体は下地金属層12及びメッキ層13によって遮断され、第一面11aの露出部14から噴出する。 When passing a gas from the second surface 11b of the porous layer 11 to the first surface 11a, the gas is blocked by the base metal layer 12 and the plating layer 13 and is ejected from the exposed portion 14 of the first surface 11a.
 この種の多孔質シート(樹脂膜、フィルム等)としては、耐熱性や寸法安定性などが高いアラミド樹脂ベースの多孔質フィルム、超高分子量ポリエチレン粉末の焼結多孔質成形体を切削して作られる超高分子量ポリエチレン多孔質フィルム、撥液性・耐熱性・耐薬品性等などの特性に優れた四フッ化エチレン樹脂多孔質膜、などが利用可能であるが、多孔質層11の第一面11aは、下地金属層12の微細パターンの最小寸法に比べて小さな気孔サイズを有し、平坦性が良いものが望ましい。 This type of porous sheet (resin film, film, etc.) is made by cutting an aramid resin-based porous film with high heat resistance and dimensional stability, and a sintered porous molded body of ultrahigh molecular weight polyethylene powder. An ultra-high molecular weight polyethylene porous film, a tetrafluoroethylene resin porous film excellent in properties such as liquid repellency, heat resistance, and chemical resistance can be used. The surface 11a preferably has a pore size smaller than the minimum dimension of the fine pattern of the base metal layer 12 and good flatness.
 また、多孔質シートとして、合成樹脂からなる多孔質膜の表面をフッ素ガスで処理してフッ素化した表面フッ素化多孔質膜を利用しても良い。 Further, as the porous sheet, a surface fluorinated porous film in which the surface of the porous film made of a synthetic resin is fluorinated by treatment with fluorine gas may be used.
 次に、転写装置100の各構成の説明に移る。 
 図1に示すように、シート保持部10は、多孔質シートTsに対して所定のテンションを与えつつ当該多孔質シートTsを搬送するローラーR1及びローラーR2を有する。ローラーR1及びローラーR2のうち少なくとも一方のローラーは、不図示の駆動部によって回転可能に設けられている。当該ローラーが回転することにより、無端状の多孔質シートTsが一方向に回転可能となる。
Next, the description of each component of the transfer apparatus 100 will be given.
As illustrated in FIG. 1, the sheet holding unit 10 includes a roller R1 and a roller R2 that convey the porous sheet Ts while applying a predetermined tension to the porous sheet Ts. At least one of the roller R1 and the roller R2 is rotatably provided by a driving unit (not shown). By rotating the roller, the endless porous sheet Ts can be rotated in one direction.
 図1に示すように、基板保持部20は、基板Pを搬送する圧胴ドラムDRを有する。圧胴ドラムDRは、例えば円筒状や円柱状など、外周面DRaが円筒面となる形状に形成され、その外周は適当な厚みのゴム材や樹脂材で被覆されている。基板Pは、圧胴ドラムDRの外周面DRaに巻かれた状態で搬送される。圧胴ドラムDRは、不図示の回転駆動部によって外周面DRaの周方向に回転可能に設けられている。圧胴ドラムDRは、外周面DRaに巻かれた基板Pが多孔質シートTsの外周面Taに密着(又は近接)する位置に設けられている。 As shown in FIG. 1, the substrate holding unit 20 has an impression drum DR that conveys the substrate P. The impression drum DR is formed in a shape in which the outer peripheral surface DRa is a cylindrical surface, such as a cylindrical shape or a columnar shape, and the outer periphery is covered with a rubber material or a resin material having an appropriate thickness. The board | substrate P is conveyed in the state wound by outer peripheral surface DRa of the impression drum DR. The impression drum DR is provided so as to be rotatable in the circumferential direction of the outer peripheral surface DRa by a rotation driving unit (not shown). The impression drum DR is provided at a position where the substrate P wound around the outer peripheral surface DRa is in close contact with (or close to) the outer peripheral surface Ta of the porous sheet Ts.
 また、多孔質シートTsの長尺方向(送り方向)に関して、一定の長さ分が圧胴ドラムDRの外周面DRaに巻き付いた基板Pと安定的に密着するように、テンションローラーTR1、TR2が設けられる。 Further, the tension rollers TR1 and TR2 are arranged so that a certain length of the porous sheet Ts is in close contact with the substrate P wound around the outer peripheral surface DRa of the impression drum DR with respect to the longitudinal direction (feeding direction) of the porous sheet Ts. Provided.
 気体供給部30は、無端ベルト状の多孔質シートTsの内側に配置されている。気体供給部30は、多孔質シートTsを基板Pに押圧し当該多孔質シートTsに対して気体を供給する気体噴出ローラーABRと、当該気体噴出ローラーABRに対して気体を供給可能な気体供給部35とを有する。 The gas supply unit 30 is disposed inside the endless belt-like porous sheet Ts. The gas supply unit 30 includes a gas ejection roller ABR that presses the porous sheet Ts against the substrate P and supplies gas to the porous sheet Ts, and a gas supply unit that can supply gas to the gas ejection roller ABR. 35.
 図3は、気体供給部30の構成を示す斜視図である。 
 図3に示すように、気体噴出ローラーABRは、円筒状に形成された円筒軸(管状の金属性シャフト)31と、当該円筒軸31のうち軸線方向の両端部に1つずつ配置されたベアリング部32と、多孔質材料を用いて円筒状に形成されると共に、ベアリング部32によって円筒軸31の外側に回転自在に支持される円筒状の多孔質管33と、円筒軸31の外周面と多孔質管33の内周面との間に設けられた磁性流体34とを有する。
FIG. 3 is a perspective view illustrating a configuration of the gas supply unit 30.
As shown in FIG. 3, the gas ejection roller ABR includes a cylindrical shaft (tubular metallic shaft) 31 formed in a cylindrical shape, and bearings arranged one by one at both ends in the axial direction of the cylindrical shaft 31. A cylindrical porous tube 33 that is formed in a cylindrical shape using a porous material and is rotatably supported by the bearing portion 32 outside the cylindrical shaft 31; and an outer peripheral surface of the cylindrical shaft 31; And a magnetic fluid 34 provided between the inner peripheral surface of the porous tube 33.
 多孔質管33は、例えば、多孔質セラミックス材を、数ミリ程度の肉厚で所定の内外径の筒状に成形して焼成したものである。多孔質管33は、その内周面から外周面に向けて、無数の微小なポーラス(気孔)を介して加圧気体が通り抜けることができる。ポーラスの平均寸法や密度は、多孔質シートTsの第一面11aに形成される露出部14によるパターン形状の最少寸法(線幅等)に応じて設定される。 The porous tube 33 is formed by, for example, molding a porous ceramic material into a cylindrical shape having a predetermined inner and outer diameter with a thickness of several millimeters. The porous tube 33 can allow pressurized gas to pass through an infinite number of minute porous (pores) from the inner peripheral surface toward the outer peripheral surface. The average dimension and density of the porous are set according to the minimum dimension (line width or the like) of the pattern shape by the exposed portion 14 formed on the first surface 11a of the porous sheet Ts.
 図4は、図3中に示した円筒状の多孔質管33を取り除いた様子を示す斜視図であり、円筒軸31は、中空部31aを有している。当該中空部31aは、例えば配管などの気体供給経路35aを介して気体供給部35に接続されている。円筒軸31は、中空部31aと外部とを貫通する開口部31b(噴出部)を有している。開口部31bは、円筒軸31の軸線(或いは多孔質管33の回転中心線)が延びる方向に、多孔質シートTsの幅に対応した長さでスロット状に形成され、気体供給経路35aを介して気体供給部35から供給される気体を噴出する噴出口となる。 FIG. 4 is a perspective view showing a state in which the cylindrical porous tube 33 shown in FIG. 3 is removed, and the cylindrical shaft 31 has a hollow portion 31a. The said hollow part 31a is connected to the gas supply part 35 via gas supply paths 35a, such as piping, for example. The cylindrical shaft 31 has an opening 31b (a jet part) penetrating the hollow part 31a and the outside. The opening 31b is formed in a slot shape with a length corresponding to the width of the porous sheet Ts in the direction in which the axis of the cylindrical shaft 31 (or the rotation center line of the porous tube 33) extends, and via the gas supply path 35a. Thus, it becomes a jet outlet for jetting the gas supplied from the gas supply section 35.
 円筒軸31の開口部31bから加圧した気体が噴出されると、その気体は多孔質管33の内周面のうち開口部31bと対向した部分から多孔質管33の外周面に向けて通り抜ける。その際、多孔質管33の肉厚、ポーラスの径や密度によって程度は異なるものの、多孔質管33の外周面からはほぼ一様な圧力分布で気体が噴出される。 When pressurized gas is ejected from the opening 31 b of the cylindrical shaft 31, the gas passes from the portion of the inner peripheral surface of the porous tube 33 facing the opening 31 b toward the outer peripheral surface of the porous tube 33. . At that time, although the degree varies depending on the thickness of the porous tube 33 and the diameter and density of the porous material, gas is ejected from the outer peripheral surface of the porous tube 33 with a substantially uniform pressure distribution.
 その噴出気体の圧力は、多孔質シートTsの第二面11bに印加されると共に、多孔質シートTsの多孔質層11を通った加圧気体は、第一面11a側の露出部14に充填される被転写材料によるパターン層に対して、第一面11aから剥離する力を与える。 The pressure of the ejected gas is applied to the second surface 11b of the porous sheet Ts, and the pressurized gas that has passed through the porous layer 11 of the porous sheet Ts fills the exposed portion 14 on the first surface 11a side. A force for peeling from the first surface 11a is applied to the pattern layer made of the material to be transferred.
 先の図1において、図3、図4に示した円筒軸31の開口部31bは、圧胴ドラムDRの方に向けられている。その為、多孔質シートTsの第一面11a側の露出部14に充填された被転写材料によるパターン層は、第一面11aから剥がれて、基板Pの表面に強く押し付けられて、転写される。 In FIG. 1, the opening 31b of the cylindrical shaft 31 shown in FIGS. 3 and 4 is directed toward the impression drum DR. Therefore, the pattern layer made of the material to be transferred filled in the exposed portion 14 on the first surface 11a side of the porous sheet Ts is peeled off from the first surface 11a and strongly pressed against the surface of the substrate P to be transferred. .
 この際、多孔質シートTs側の被転写材料によるパターン層を基板Pに押し付ける転写力(圧着力)は、圧胴ドラムDRと多孔質管33による基板Pと多孔質シートTsとの狭持力、噴出気体が多孔質シートTsの第二面11b側を押圧する背圧、そして、噴出気体による被転写材料の露出部14からの剥離力、によって決まってくる。 At this time, the transfer force (crimping force) for pressing the pattern layer made of the material to be transferred on the porous sheet Ts side against the substrate P is the holding force between the substrate P and the porous sheet Ts by the impression drum DR and the porous tube 33. The back pressure that the ejected gas presses against the second surface 11b side of the porous sheet Ts and the peeling force from the exposed portion 14 of the material to be transferred by the ejected gas are determined.
 以上の構成において、ベアリング部32は、円筒軸31の周方向に回転可能となるように多孔質管33を支持する。多孔質管33は、周方向の一周に亘って多孔質材料で形成されているため、周方向の一周に亘って、円筒軸31の開口部31bからの加圧気体が通過可能である。多孔質管33の外周面33aには、多孔質シートTsの第二面11bが密着される。多孔質管33は、ベアリング部32により、円筒軸31の周りに回転可能である。このため、例えば多孔質管33を多孔質シートTsの移動に応じて従動的に回転させたり、回転駆動部(モータ等)によって駆動される圧胴ドラムDRの回転に応じて従動的に回転させたりすることが可能である。 In the above configuration, the bearing portion 32 supports the porous tube 33 so as to be rotatable in the circumferential direction of the cylindrical shaft 31. Since the porous tube 33 is formed of a porous material over a circumference of the circumferential direction, the pressurized gas from the opening 31b of the cylindrical shaft 31 can pass over the circumference of the circumference. The second surface 11 b of the porous sheet Ts is in close contact with the outer peripheral surface 33 a of the porous tube 33. The porous tube 33 can be rotated around the cylindrical shaft 31 by the bearing portion 32. For this reason, for example, the porous tube 33 is rotated in accordance with the movement of the porous sheet Ts, or is rotated in accordance with the rotation of the impression drum DR driven by a rotation drive unit (motor or the like). It is possible to
 ところで、図3、図4に示した磁性流体34は、円筒軸31の外周面と多孔質管33の内周面との間に形成される僅かな間隙(例えば1~数ミリ)に満たされるが、その主な作用は、開口部31bから噴出する加圧気体が、円筒軸31の外周面と多孔質管33の内周面との間隙部に回り込むことを防止することにある。よって磁性流体34は、開口部31bと多孔質管33の内周面との間の気密性を高めるシールとして機能する。 Incidentally, the magnetic fluid 34 shown in FIGS. 3 and 4 is filled in a slight gap (for example, 1 to several millimeters) formed between the outer peripheral surface of the cylindrical shaft 31 and the inner peripheral surface of the porous tube 33. However, the main action is to prevent the pressurized gas ejected from the opening 31 b from entering the gap between the outer peripheral surface of the cylindrical shaft 31 and the inner peripheral surface of the porous tube 33. Therefore, the magnetic fluid 34 functions as a seal that enhances the airtightness between the opening 31 b and the inner peripheral surface of the porous tube 33.
 磁性流体34は、円筒軸31の外周面に埋め込まれた発磁体(永久磁石、電磁石等)によって捕捉される。特に、円筒軸31の外周面で開口部31bの周辺には、開口部31b内に磁性流体がこぼれ落ちないように、開口部31bを取り囲むように配列された強い発磁体(希土類の永久磁石)が設けられている。 The magnetic fluid 34 is captured by a magnetomotive member (permanent magnet, electromagnet, etc.) embedded in the outer peripheral surface of the cylindrical shaft 31. In particular, around the opening 31b on the outer peripheral surface of the cylindrical shaft 31, there is a strong magnetism generator (rare earth permanent magnet) arranged so as to surround the opening 31b so that the magnetic fluid does not fall into the opening 31b. Is provided.
 上記構成の他、図1に示すように、転写装置100は、例えば多孔質シートTsの外周面Taに形成されている露出部14にパターン層を形成するパターン層形成部PHを有する。パターン層形成部PHとしては、パターン層を構成する機能性材料、例えば、ナノ金属粒子を含む導電性インク、カーボンナノワイヤーを含む紫外線硬化樹脂、乾燥時に結晶化して半導体となる有機物や酸化物の溶剤、等の液状やゲル状の機能性材料を多孔質シートTsの露出部14に印刷(充填)する印刷ヘッドなどが用いられている。本実施形態の場合、印刷ヘッドとして好適なのは、露出部14を狙って機能性材料を滴下できるインクジェット方式のヘッドであるが、スクリーン印刷、グラビア印刷、凸版印刷、オフセット印刷等で使われている版(平版或いは胴版)もヘッドとして用いることができる。 In addition to the above configuration, as shown in FIG. 1, the transfer device 100 has a pattern layer forming portion PH that forms a pattern layer on the exposed portion 14 formed on the outer peripheral surface Ta of the porous sheet Ts, for example. As the pattern layer forming part PH, functional materials constituting the pattern layer, for example, conductive ink containing nano metal particles, ultraviolet curable resin containing carbon nanowires, organic substances and oxides that crystallize when dried and become semiconductors A print head that prints (fills) a liquid or gel-like functional material such as a solvent on the exposed portion 14 of the porous sheet Ts is used. In the case of the present embodiment, an ink jet head that can drop the functional material with the exposed portion 14 being aimed at is suitable as the print head, but is used in screen printing, gravure printing, letterpress printing, offset printing, and the like. (Lithographic plate or cylinder) can also be used as the head.
 また本実施形態では、図2に示すように、多孔質シートTsの外周面Taに形成されている下地金属層12及びメッキ層13が隔壁層(凸部)となり、その周囲の露出部14が凹部となる。そこで、パターン層形成部PHとして、多孔質シートTs上の露出部14が形成されている領域に機能性材料を一様に、或いは選択的に塗布したのち、下地金属層12及びメッキ層13による隔壁層上に残留した機能性材料を除去して、露出部14内に機能性材料を残すような塗工機構を持つものでも良い。 In the present embodiment, as shown in FIG. 2, the base metal layer 12 and the plating layer 13 formed on the outer peripheral surface Ta of the porous sheet Ts serve as a partition layer (convex portion), and the surrounding exposed portion 14 is formed. It becomes a recess. Therefore, after the functional material is uniformly or selectively applied to the region where the exposed portion 14 on the porous sheet Ts is formed as the pattern layer forming portion PH, the base metal layer 12 and the plating layer 13 are used. It may have a coating mechanism that removes the functional material remaining on the partition wall layer and leaves the functional material in the exposed portion 14.
 尚、パターン層形成部PHは、多孔質シートTsの搬送方向に並ぶように複数設けられていても良い。 In addition, the pattern layer formation part PH may be provided with two or more so that it may rank with the conveyance direction of the porous sheet Ts.
 また、転写装置100は、多孔質シートTsのうちパターン層形成部PHによってパターン層(露出部14に充填される層)が形成される部分の内周面Tbを支持する支持機構PLTを有する。支持機構PLTとしては、例えば平面状に形成された支持面によって内周面Tbを非接触で支持するエア・パッド式ホルダや、多孔質シートTsの一部を巻き付ける回転ドラム等を用いることができる。 Also, the transfer device 100 has a support mechanism PLT that supports the inner peripheral surface Tb of the portion of the porous sheet Ts where the pattern layer (layer filled in the exposed portion 14) is formed by the pattern layer forming portion PH. As the support mechanism PLT, for example, an air pad type holder that supports the inner peripheral surface Tb in a non-contact manner by a flat support surface, a rotating drum around which a part of the porous sheet Ts is wound, or the like can be used. .
 次に、上記構成を有する転写装置100の動作を説明する。 
 まず、転写装置100は、パターン層形成部PHにおいて、図5に示すように、多孔質シートTsを支持機構PLTに支持させた状態で、当該多孔質シートTsの露出部14に対して所定の被転写材料(液状又はゲル状の機能性材料)を充填して、被転写パターン層15を形成する。
Next, the operation of the transfer apparatus 100 having the above configuration will be described.
First, in the pattern layer forming portion PH, the transfer device 100 has a predetermined relationship with respect to the exposed portion 14 of the porous sheet Ts in a state where the porous sheet Ts is supported by the support mechanism PLT as shown in FIG. A transferred material (liquid or gel functional material) is filled to form the transferred pattern layer 15.
 その際、被転写パターン層15となる機能性材料が充填される露出部14の底部(多孔質層11の第一面11a)は、機能性材料に対して撥液性を持つような分子構造、即ち多孔質層11のポーラス内に機能性材料が入り込み難く、密着性が乏しい状態であることが望ましい。その為には、露出部14の底部(多孔質層11の第一面11a)の表面をフッ素基で修飾するような化学処理、例えば撥液性を有するSAM(Self Assemble Monolayer)材の溶液を、多孔質層11のポーラスを埋めないように、ミスト・デポジション法等により塗布したりすれば良い。 At that time, the bottom portion of the exposed portion 14 (the first surface 11a of the porous layer 11) filled with the functional material to be the transferred pattern layer 15 has a molecular structure that has liquid repellency with respect to the functional material. That is, it is desirable that the functional material is difficult to enter the porous layer 11 and has poor adhesion. For this purpose, a chemical treatment that modifies the surface of the bottom of the exposed portion 14 (the first surface 11a of the porous layer 11) with a fluorine group, for example, a solution of a SAM (Self-Assemble-Monolayer) material having liquid repellency. Application may be performed by a mist deposition method or the like so as not to fill the porous layer 11.
 次に、転写装置100は、ローラーR1及びローラーR2を回転させて多孔質シートTsを移動させると共に、圧胴ドラムDRを回転させて基板Pを移動させることにより、多孔質シートTsの第一面11a(Ta)に形成された被転写パターン層15と基板P上の転写対象領域とを接触(圧着)させる。併せて、気体噴出ローラーABRを構成する円筒軸31の開口部31bから多孔質シートTsの第二面11b(Tb)に向けて、加圧気体を噴出させる。 Next, the transfer device 100 rotates the roller R1 and the roller R2 to move the porous sheet Ts, and also rotates the impression drum DR to move the substrate P, thereby moving the first surface of the porous sheet Ts. The transferred pattern layer 15 formed on 11a (Ta) and the transfer target region on the substrate P are brought into contact (pressure bonding). In addition, the pressurized gas is ejected from the opening 31b of the cylindrical shaft 31 constituting the gas ejection roller ABR toward the second surface 11b (Tb) of the porous sheet Ts.
 この状態で、転写装置100は、図6に示すように、気体噴出ローラーABRから多孔質シートTsの内周面Tbに所定の圧力で気体を供給する。内周面Tbから多孔質層11の内部に供給された気体の流れは、下地金属層12及びメッキ層13が形成された領域においては遮断されるため、露出部14に対して圧力が加えられる。この圧力(剥離力)により、露出部14に形成された被転写パターン層15が基板P側へ押圧され、被転写パターン層15が基板Pに接着(転着)される。 In this state, as shown in FIG. 6, the transfer device 100 supplies gas at a predetermined pressure from the gas ejection roller ABR to the inner peripheral surface Tb of the porous sheet Ts. Since the gas flow supplied from the inner peripheral surface Tb to the inside of the porous layer 11 is blocked in the region where the base metal layer 12 and the plating layer 13 are formed, pressure is applied to the exposed portion 14. . By this pressure (peeling force), the transferred pattern layer 15 formed on the exposed portion 14 is pressed toward the substrate P, and the transferred pattern layer 15 is bonded (transferred) to the substrate P.
 引き続き、ローラーR1及びローラーR2を回転させると共に、圧胴ドラムDRを回転させることで、図7に示すように、露出部14に配置されていた被転写パターン層15が基板Pに転写された状態で、多孔質シートTs及び基板Pが搬送される。この動作を繰り返すことにより、多孔質シートTs上に形成された被転写パターン層15が、基板P上に連続的に転写されることになる。 Subsequently, by rotating the roller R1 and the roller R2 and rotating the impression drum DR, the transferred pattern layer 15 arranged on the exposed portion 14 is transferred to the substrate P as shown in FIG. Thus, the porous sheet Ts and the substrate P are conveyed. By repeating this operation, the transferred pattern layer 15 formed on the porous sheet Ts is continuously transferred onto the substrate P.
 以上の実施形態において、基板Pの表面は、被転写パターン層15を構成する機能性材料との密着性を高めるため、予め表面を改質したり、密着性を向上させる薄膜を形成したりしておくことが望ましい。 In the above embodiment, the surface of the substrate P is modified in advance or a thin film that improves the adhesion is formed in order to improve the adhesion with the functional material constituting the transferred pattern layer 15. It is desirable to keep it.
 さらに、被転写パターン層15を露出部14から良好に剥離させる為に、加圧気体を噴出する円筒軸31の開口部31bの周方向の幅を可変にする調整機構を設けたり、開口部31bの開口形状自体を変えても良い。 Further, in order to satisfactorily peel off the transferred pattern layer 15 from the exposed portion 14, an adjustment mechanism for changing the circumferential width of the opening portion 31b of the cylindrical shaft 31 through which the pressurized gas is jetted is provided, or the opening portion 31b. The opening shape itself may be changed.
 図8Aおよび8Bは、上記のような変形例を示すものである。図8Aは、円筒軸31の開口部31bの外周部付近に、開口の周方向の幅を可変にするブレード板31wを対向して設けた場合を示す。ブレード板31wは、円筒軸31の周方向に可動に構成され、加圧気体が噴き付けられる多孔質管33の内周面上の領域の周方向の幅を調整できる。 8A and 8B show a modification example as described above. FIG. 8A shows a case where a blade plate 31 w that makes the width in the circumferential direction of the opening variable is provided in the vicinity of the outer periphery of the opening 31 b of the cylindrical shaft 31. The blade plate 31w is configured to be movable in the circumferential direction of the cylindrical shaft 31, and can adjust the circumferential width of the region on the inner circumferential surface of the porous tube 33 to which the pressurized gas is sprayed.
 図8Bは、円筒軸31の外周面に形成される加圧気体の噴出口を、軸線方向に連続したスロット状にする代わりに、軸線方向に離散的に配列した小開口31hにした例を示す。小開口31hの各々は、円筒軸31の内周面に軸線方向に延設された溝31gと連通している。この図8Bのように、噴出口を複数の小開口31hで構成すると、これらの小開口31hを取り囲む磁性流体34の領域が小さくでき、永久磁石等の発磁体Mgも少なくて済むといった利点もある。 FIG. 8B shows an example in which the outlets of the pressurized gas formed on the outer peripheral surface of the cylindrical shaft 31 are made into small openings 31h that are discretely arranged in the axial direction instead of being made into a continuous slot shape in the axial direction. . Each of the small openings 31 h communicates with a groove 31 g that extends in the axial direction on the inner peripheral surface of the cylindrical shaft 31. As shown in FIG. 8B, when the jet outlet is constituted by a plurality of small openings 31h, the area of the magnetic fluid 34 surrounding these small openings 31h can be reduced, and there is also an advantage that the magnet generator Mg such as a permanent magnet can be reduced. .
 これら図8Aおよび8Bのように、加圧気体が噴出する開口を小さく絞ることになって、多孔質管33の内周面に向けて噴出される気体の流速が大きくなり、被転写パターン層15を露出部14から剥離させる力も大きくすることができる。 As shown in FIGS. 8A and 8B, the opening through which the pressurized gas is ejected is narrowed down, and the flow velocity of the gas ejected toward the inner peripheral surface of the porous tube 33 is increased. It is also possible to increase the force for peeling the film from the exposed portion 14.
 そのため、多孔質シートTsの被転写パターン層15を基板P側に転写する際、多孔質シートTsの外周面Taと基板Pの表面とを密着させることなく、微小なギャップ(例えば数μm~十数μm)を伴って離間させておいても良い。このように多孔質シートTsと基板Pとを密着させずに近接させた状態で転着が行なえると、転着の直前で多孔質シートTsと基板Pとをミクロンオーダーで相対的に位置決めすることが容易になり、基板P上に既に形成されたパターン層に対して、新たなパターン層を位置合せして重ねることも可能となる。 Therefore, when transferring the transferred pattern layer 15 of the porous sheet Ts to the substrate P side, a minute gap (for example, several μm to 10 μm) is obtained without bringing the outer peripheral surface Ta of the porous sheet Ts and the surface of the substrate P into close contact. It may be separated with a few μm). Thus, if transfer can be performed in a state where the porous sheet Ts and the substrate P are close to each other without being in close contact, the porous sheet Ts and the substrate P are relatively positioned on the micron order immediately before the transfer. Thus, it becomes possible to align and superimpose a new pattern layer on the pattern layer already formed on the substrate P.
 以上のように、本実施形態の転写装置100は、所定の厚みの多孔質材料で形成された多孔質層11と多孔質層11の第一面11a側に形成された被転写パターン層15とを有する多孔質シートTsを保持するシート保持部10と、該多孔質シートTsの被転写パターン層15が転着され得る(転着される予定の)基板Pを、多孔質シートTsの外周面Taに密着または近接させて保持する基板保持部20と、多孔質層11の第二面11bから第一面11aに向けて所定圧力の気体を供給する気体供給部30とを備えるので、多孔質シートTsを介して供給される気体の圧力により、多孔質シートTsの外周面Taに配置された被転写パターン層15が基板Pに押し出されることになる。これにより、転写時にパターン層15が多孔質シートTsに残留するのを抑えることできる。 As described above, the transfer device 100 according to this embodiment includes the porous layer 11 formed of a porous material having a predetermined thickness, and the transferred pattern layer 15 formed on the first surface 11a side of the porous layer 11. The outer peripheral surface of the porous sheet Ts is a sheet holding portion 10 that holds the porous sheet Ts having the substrate P and the substrate P to which the transferred pattern layer 15 of the porous sheet Ts can be transferred (scheduled to be transferred). Since the substrate holding unit 20 that is held in close contact with or close to Ta and the gas supply unit 30 that supplies a gas of a predetermined pressure from the second surface 11b of the porous layer 11 toward the first surface 11a, the porous layer 11 is porous. The transferred pattern layer 15 disposed on the outer peripheral surface Ta of the porous sheet Ts is pushed out to the substrate P by the pressure of the gas supplied through the sheet Ts. Thereby, it can suppress that the pattern layer 15 remains in the porous sheet Ts at the time of transcription | transfer.
 [第二実施形態] 
 本発明に係る第二実施形態を説明する。 
 図9は、上記第一実施形態の転写装置100を適用したデバイス製造システム(基板処理装置)1の全体構成を示す。 
 図9に示すように、本実施形態の製造ラインには、供給ローラーFR1に巻かれた長尺の基板Pに所定の前処理(表面改質等)を施す前処理装置U1、前処理された基板Pにパターン転写を行なう転写装置U2、パターン転写された基板Pに後続の処理を施す後処理装置U3が設けられている。
[Second Embodiment]
A second embodiment according to the present invention will be described.
FIG. 9 shows an overall configuration of a device manufacturing system (substrate processing apparatus) 1 to which the transfer apparatus 100 of the first embodiment is applied.
As shown in FIG. 9, in the production line of the present embodiment, a pretreatment device U1 that performs a predetermined pretreatment (surface modification or the like) on the long substrate P wound around the supply roller FR1, was pretreated. A transfer device U2 that performs pattern transfer on the substrate P and a post-processing device U3 that performs subsequent processing on the substrate P on which the pattern has been transferred are provided.
 転写装置U2は、上記第一実施形態の転写装置100が用いられている。転写装置U2は、上記第一実施形態で説明したシート保持部10、基板保持部20、気体供給部30に加えて、無端ベルト状の多孔質シートTsの表面にパターンを形成する為のパターン形成装置40、多孔質シートTs上のパターンが転写装置U2で基板Pに転写された後の多孔質シートTsを洗浄する洗浄装置50(メンテナンス部)、洗浄後の多孔質シートTsを乾燥させる乾燥装置60(メンテナンス部)、乾燥後の多孔質シートTsの表面に所定の下地処理を施す下地処理装置70(メンテナンス部)を有している。 As the transfer device U2, the transfer device 100 of the first embodiment is used. The transfer device U2 forms a pattern for forming a pattern on the surface of the endless belt-like porous sheet Ts in addition to the sheet holding unit 10, the substrate holding unit 20, and the gas supply unit 30 described in the first embodiment. Device 40, cleaning device 50 (maintenance unit) for cleaning porous sheet Ts after the pattern on porous sheet Ts is transferred to substrate P by transfer device U2, and drying device for drying porous sheet Ts after cleaning 60 (maintenance unit), and a substrate processing device 70 (maintenance unit) that performs predetermined substrate processing on the surface of the porous sheet Ts after drying.
 パターン形成装置40内には、下地処理された多孔質シートTs2の表面(露出部14)に印刷方式やインクジェット方式等によって、TFTや有機EL用の各種電極部や配線部などのパターンをインク材料で塗布形成する複数のプリントヘッド部(プリントヘッド部PH1、プリントヘッド部PH2及びプリントヘッド部PH3)と、各プリントヘッド部(PH1、PH2、PH3)に対応して、多孔質シートTs2の裏面を支持する平面状のエアパッド式ホルダ、或いは多孔質シートTs2を部分的に巻き付ける回転ドラム等の支持機構PLTが設けられている。 In the pattern forming apparatus 40, the surface of the porous sheet Ts2 subjected to the base treatment (exposed part 14) is patterned with various electrode parts and wiring parts for TFT and organic EL by a printing method or an ink jet method. A plurality of print head parts (print head part PH1, print head part PH2 and print head part PH3) to be applied and formed, and the back surface of porous sheet Ts2 corresponding to each print head part (PH1, PH2, PH3) A support mechanism PLT such as a flat air pad holder to support or a rotating drum around which the porous sheet Ts2 is partially wound is provided.
 供給ローラーFR1に巻かれた基板Pは、ニップされた駆動ローラーDR1によってX方向に所定速度で前処理装置U1に送り込まれる。前処理装置U1は、基板Pの表面、図では下向きの面Paに対して、パターンの転写(定着)が強固となるような下地層を形成する。その下地層は、基板Pの表面に電子ビーム等のエネルギー線を照射して改質した表層面にする(活性化した面にする)方法、転写すべきパターンの材料が基板Pに強固に貼り着くようなバインダー層を薄く堆積する方法等により形成される。 The substrate P wound around the supply roller FR1 is sent to the pretreatment device U1 at a predetermined speed in the X direction by the nipped drive roller DR1. The pretreatment device U1 forms a base layer on the surface of the substrate P, that is, a downward surface Pa in the figure, such that pattern transfer (fixing) is strong. The underlayer is formed by irradiating the surface of the substrate P with an energy beam such as an electron beam to form a modified surface layer (an activated surface), and the pattern material to be transferred is firmly attached to the substrate P. It is formed by a method of depositing a thin binder layer to arrive.
 前処理された基板Pは、エアターンバーATBにより非接触で搬送方向を転換し、転写装置U2内のローラーR1、エアターンバーATB、圧胴ドラムDR、エアターンバーATB、ローラーR2、エアターンバーATBの順に掛け渡されて、次の後処理装置U3に向かうように搬送される。 The pre-processed substrate P changes its conveying direction in a non-contact manner by the air turn bar ATB, and in the order of the roller R1, the air turn bar ATB, the impression drum DR, the air turn bar ATB, the roller R2, and the air turn bar ATB in the transfer device U2. It is passed over and transported to the next post-processing device U3.
 ローラーR1及びローラーR2は、基板Pが搬送方向に所定のテンションを保って圧胴ドラムDRに巻付くように回転速度やトルクが制御される。圧胴ドラムDRの外周部は金属または硬質ゴム等で構成され、その外周面は真円度の高い円筒状に形成されている。 The rotation speed and torque of the roller R1 and the roller R2 are controlled so that the substrate P is wound around the impression drum DR while maintaining a predetermined tension in the transport direction. The outer peripheral portion of the impression drum DR is made of metal or hard rubber, and the outer peripheral surface is formed in a cylindrical shape with high roundness.
 さらに転写装置U2内には、パターン形成装置40から送られてくるパターン付の多孔質シートTs1を、圧胴ドラムDRの下側に巻き付いた基板Pと密着させる為のテンションローラーTR1及びテンションローラーTR2と、気体噴出ローラーABRとが設けられている。テンションローラーTR1、テンションローラーTR2及び気体噴出ローラーABRは、何れもアクチュエータActによって、Z方向の位置が調整可能となっている。 Further, in the transfer device U2, a tension roller TR1 and a tension roller TR2 for bringing the patterned porous sheet Ts1 sent from the pattern forming device 40 into close contact with the substrate P wound around the lower side of the impression drum DR. And a gas ejection roller ABR. The tension roller TR1, the tension roller TR2, and the gas ejection roller ABR can all be adjusted in position in the Z direction by an actuator Act.
 気体噴出ローラーABRは、上記第一実施形態において説明したように、圧胴ドラムDRの下側部分で多孔質シートTs1と基板Pとが密着(圧接)したときに、多孔質シートTs1の裏面側から圧搾気体を噴出して、多孔質シートTs1の上面に形成された被転写パターン層15を綺麗に剥離させる機能を備えている。 As described in the first embodiment, the gas ejection roller ABR is disposed on the back side of the porous sheet Ts1 when the porous sheet Ts1 and the substrate P are in close contact (pressure contact) at the lower portion of the impression drum DR. Squeezed gas is ejected from the surface, and the transferred pattern layer 15 formed on the upper surface of the porous sheet Ts1 is neatly peeled off.
 転写装置U2にて被転写パターン層15が剥離された多孔質シートTsは、ローラーR10、ローラーR11を通って折り返され、洗浄装置50内のウェット洗浄槽に送られ、高圧の洗浄ノズル等から噴射される洗浄液で清掃され、続いて純水によるすすぎ処理を施される。その後、多孔質シートTsは、乾燥装置60内に送られ、多孔質内に取り込まれた水分が充分に除去されるように、温風や赤外線照射により乾燥させられる。 The porous sheet Ts from which the transferred pattern layer 15 has been peeled off by the transfer device U2 is folded back through the rollers R10 and R11, sent to the wet cleaning tank in the cleaning device 50, and sprayed from a high-pressure cleaning nozzle or the like. The cleaning liquid is then cleaned, and then rinsed with pure water. Thereafter, the porous sheet Ts is sent into the drying device 60 and dried by warm air or infrared irradiation so that moisture taken into the porous material is sufficiently removed.
 乾燥処理された多孔質シートTs(下地金属層12とメッキ層13付き)は、下地処理装置70に送られ、再び、パターン形成の為に必要な下地作りが行なわれる。その下地処理では、多孔質シートの露出部14を目詰まりさせることなく(通気性は保ちつつ)、露出部14に形成される被転写パターン層15の材料が剥離し易いような性質、例えば、パターン材料に対してある程度の撥液性を持つような性質が付与される。その一例として、先に例示したSAM材等を多孔質シートの露出部14に選択的に塗布しても良い。
 下地処理された多孔質シートTs2は、ローラーR12及びローラーR13によって折り返され、再びパターン形成装置40に送られる。
The dried porous sheet Ts (with the base metal layer 12 and the plating layer 13) is sent to the base processing apparatus 70, and the base preparation necessary for pattern formation is performed again. In the base treatment, a property that the material of the transferred pattern layer 15 formed on the exposed portion 14 is easy to peel without clogging the exposed portion 14 of the porous sheet (while maintaining air permeability), for example, The pattern material has a certain property of having a certain level of liquid repellency. As an example thereof, the SAM material exemplified above may be selectively applied to the exposed portion 14 of the porous sheet.
The porous sheet Ts2 subjected to the base treatment is folded back by the roller R12 and the roller R13 and is sent to the pattern forming apparatus 40 again.
 ローラーR12とローラーR13との間には、エアターンバーATBによるテンション調整機構が設けられ、アクチュエータActによってエアターンバーATBをX方向に移動させることで、無端ベルト状の多孔質シートTs全体のテンションが調整される。 A tension adjusting mechanism using an air turn bar ATB is provided between the rollers R12 and R13, and the tension of the entire endless belt-like porous sheet Ts is adjusted by moving the air turn bar ATB in the X direction by an actuator Act. Is done.
 以上のように、本実施形態のデバイス製造システム1は、帯状に形成された基板Pを搬送する基板保持部20(基板搬送部)と、当該基板保持部20によって搬送される基板Pに対して処理を行う複数の基板処理部(前処理装置U1、転写装置U2及び後処理装置U3)とを備え、転写装置U2として、本発明に係る第一実施形態に従う転写装置100が用いられるので、転写時に被転写パターン層15が多孔質シートTsに残留するのを抑えることできる。これにより、処理精度が高く、歩留まりの高いデバイス製造システム1を得ることができる。 As described above, the device manufacturing system 1 according to the present embodiment has the substrate holding unit 20 (substrate transfer unit) that transfers the substrate P formed in a band shape and the substrate P transferred by the substrate holding unit 20. A plurality of substrate processing units (a pre-processing device U1, a transfer device U2, and a post-processing device U3) that perform processing, and the transfer device U2 according to the first embodiment of the present invention is used as the transfer device U2. Sometimes, the transferred pattern layer 15 can be prevented from remaining on the porous sheet Ts. Thereby, the device manufacturing system 1 with high processing accuracy and high yield can be obtained.
 本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。 
 例えば、上記第一実施形態においては、多孔質シートTsの構成として、多孔質層11の第一面11aに下地金属層12が蒸着法によって形成され、その上にメッキ層13が形成された構成を例に挙げて説明したが、これに限られることは無い。例えば図10に示すように、多孔質層11の第一面11aに蒸着膜16を形成し、その後蒸着膜16をエッチングすることで、露出部14によるパターンを形成する構成としても良い。この場合、蒸着膜16の表面16aが多孔質シートTsの外周面Taに相当する。
The technical scope of the present invention is not limited to the above-described embodiment, and appropriate modifications can be made without departing from the spirit of the present invention.
For example, in the first embodiment, as the configuration of the porous sheet Ts, the base metal layer 12 is formed on the first surface 11a of the porous layer 11 by the vapor deposition method, and the plating layer 13 is formed thereon. However, the present invention is not limited to this. For example, as shown in FIG. 10, the vapor deposition film 16 may be formed on the first surface 11 a of the porous layer 11, and then the vapor deposition film 16 may be etched to form a pattern by the exposed portion 14. In this case, the surface 16a of the vapor deposition film 16 corresponds to the outer peripheral surface Ta of the porous sheet Ts.
 また、上記実施形態においては、多孔質シートTsに供給する流体として、気体を例に挙げて説明したが、これに限られることは無い。例えば撥水性を有する機能性材料(インク等)を被転写パターン層15として多孔質シートTsの露出部14内に充填する場合などには、純水などの液体を流体として用いる構成であっても良い。 In the above embodiment, the gas supplied to the porous sheet Ts is described as an example, but the present invention is not limited to this. For example, when a functional material (ink or the like) having water repellency is filled in the exposed portion 14 of the porous sheet Ts as the transferred pattern layer 15, a liquid such as pure water may be used as the fluid. good.
 また、上記実施形態においては、多孔質板として、多孔質シートTsを用いる構成を例に挙げて説明したが、これに限られることは無い。例えば図3に示す気体噴出ローラーABRの多孔質管33の表面に直接パターン層(下地金属層12とメッキ層13による隔壁層と被転写パターン層15)を形成し、当該多孔質管33をパターン層ごと直接基板Pに当接させる構成としても良い。この場合、多孔質管33は所定の曲率で湾曲可能な可撓性の薄板状多孔質板で構成し、当該薄板状多孔質板の他方の面を内側にして、円筒軸31の外周面に巻かれた状態で設けられる。 In the above-described embodiment, the configuration using the porous sheet Ts as the porous plate has been described as an example. However, the present invention is not limited to this. For example, a pattern layer (a partition layer formed by the base metal layer 12 and the plating layer 13 and the transferred pattern layer 15) is directly formed on the surface of the porous tube 33 of the gas ejection roller ABR shown in FIG. 3, and the porous tube 33 is patterned. A configuration may be adopted in which the layers are brought into direct contact with the substrate P. In this case, the porous tube 33 is formed of a flexible thin plate-like porous plate that can be bent with a predetermined curvature, and the other surface of the thin plate-like porous plate is on the inner surface of the cylindrical shaft 31. It is provided in a rolled state.
 また、上記実施形態においては、多孔質シートTsの全面に多孔質材料が設けられた構成を例に挙げて説明したが、これに限られることは無く、パターン層が形成される領域にのみ多孔質材料が配置される構成としても良い。 Moreover, in the said embodiment, although demonstrated taking the example of the structure by which the porous material was provided in the whole surface of the porous sheet Ts, it is not restricted to this, It is porous only in the area | region in which a pattern layer is formed. It is good also as a structure by which a quality material is arrange | positioned.
 また、上記実施形態においては、気体噴出ローラーABRから多孔質シートTsへ気体を供給する構成を例に挙げて説明したが、これに加えて、気体噴出ローラーABRが多孔質シートTsを吸引可能な吸引部を更に備える構成としても良い。具体的には、図3に示す構成を例に挙げて説明すると、円筒軸31の中空部31aに真空ポンプなどを接続する構成などが挙げられる。 Moreover, in the said embodiment, although demonstrated taking the example of the structure which supplies gas from the gas ejection roller ABR to the porous sheet Ts, in addition to this, the gas ejection roller ABR can attract | suck the porous sheet Ts. It is good also as a structure further provided with a suction part. Specifically, when the configuration shown in FIG. 3 is described as an example, a configuration in which a vacuum pump or the like is connected to the hollow portion 31a of the cylindrical shaft 31 may be mentioned.
 ところで、以上の実施形態では、基板P上に一段のパターン層15を転写する場合を例示したが、図11に示すように、2段以上のパターン層15Aを形成することもできる。 By the way, in the above embodiment, the case where the one-step pattern layer 15 is transferred onto the substrate P is exemplified, but as shown in FIG. 11, two or more steps of the pattern layer 15A can be formed.
 図11では、多孔質シートTsの多孔質層11の上に、例えばフォトリソグラフィ等の重ね合せ露光技術とフォトエッチング技術を利用して、金属、酸化物、窒化物等の膜による第1のパターン層16Mを形成し、その上に第2のパターン層16Nを積層する。 In FIG. 11, on the porous layer 11 of the porous sheet Ts, for example, a first pattern made of a film of metal, oxide, nitride, or the like using an overlay exposure technique such as photolithography and a photoetching technique. A layer 16M is formed, and a second pattern layer 16N is stacked thereon.
 このような多孔質シートTsの露出部14に、被転写パターン層15となる機能性材料を塗布又は蒸着させて、基板P側に転着させると、多段構造のパターン層15Aを形成することができる。 When a functional material that becomes the transferred pattern layer 15 is applied or vapor-deposited on the exposed portion 14 of the porous sheet Ts and transferred to the substrate P side, a pattern layer 15A having a multistage structure can be formed. it can.
 尚、多孔質シートTsの多孔質層11上に密着形成する多段構造のパターン層16N、16Mは同じ材料の層を厚く一様に堆積させた後に、その堆積層を多孔質層11の第一面11aまで除去する為の第一のマスキングをかけて第一のエッチングを行い、その後、2段目として除去する為の第二のマスキングをかけて第二のエッチングを行う二段階エッチングによって形成しても良い。 The multi-layer pattern layers 16N and 16M formed in close contact with the porous layer 11 of the porous sheet Ts are formed by depositing the same material layer thickly and uniformly, and then depositing the deposited layer as the first layer of the porous layer 11. The first etching is performed by applying the first mask for removing the surface 11a, and then the second etching is performed by applying the second mask for removing as the second step. May be.
[第三実施形態] 
 次に、本発明に係る第三実施形態を、図12A~14Cを参照して説明する。本実施形態では、一例として、アクティブマトリックス方式の有機EL(AMOLED)ディスプレイの画素回路部を製造対象とし、その形成方法を説明する。AMOLEDディスプレイの画素回路部は、例えば、図12Aのような回路構成となっており、映像信号の輝度に対応した信号が供給される映像信号バスラインSy、水平走査線を選択する走査信号(同期クロック)が供給される走査バスラインSh、画素回路部に正の電源電圧を与える電源バスラインVdd、負の電源電圧(又はアース電位)を与える電源バスラインVssを有する。
[Third embodiment]
Next, a third embodiment according to the present invention will be described with reference to FIGS. 12A to 14C. In the present embodiment, as an example, a pixel circuit portion of an active matrix type organic EL (AMOLED) display is a manufacturing object, and a formation method thereof will be described. The pixel circuit portion of the AMOLED display has a circuit configuration as shown in FIG. 12A, for example, and a video signal bus line Sy to which a signal corresponding to the luminance of the video signal is supplied, and a scanning signal for selecting a horizontal scanning line (synchronization). A scanning bus line Sh supplied with a clock), a power supply bus line Vdd that supplies a positive power supply voltage to the pixel circuit portion, and a power supply bus line Vss that supplies a negative power supply voltage (or ground potential).
 各画素(RGBのサブピクセル)には、発光層OLEDのOn/Offをスイッチングする第1の薄膜トランジスタTR1(以下、TFT-TR1とする)と、発光層OLEDに映像信号の輝度に応じた電流を供給する第2の薄膜トランジスタTR2(以下、TFT-TR2とする)の少なくとも2つが設けられる。TFT-TR1のソース電極Sは映像信号バスラインSyに接続され、TFT-TR1のゲート電極Gは走査バスラインShに接続される。さらに、TFT-TR2のゲート電極GはTFT-TR1のドレイン電極Dに接続され、TFT-TR2のドレイン電極Dは電源バスラインVddに接続され、TFT-TR2のソース電極Sは発光層OLEDのアノード側に接続される。発光層OLEDのカソード側は電源バスラインVssに接続され、TFT-TR2のゲート電極G(TFT-TR1のドレイン電極D)と電源バスラインVssの間には、発光層OLEDの発光時間を保持する為のコンデンサCPが接続される。 Each pixel (RGB sub-pixel) is supplied with a first thin film transistor TR1 (hereinafter referred to as TFT-TR1) that switches On / Off of the light emitting layer OLED, and a current corresponding to the luminance of the video signal to the light emitting layer OLED. At least two second thin film transistors TR2 (hereinafter referred to as TFT-TR2) to be supplied are provided. The source electrode S of the TFT-TR1 is connected to the video signal bus line Sy, and the gate electrode G of the TFT-TR1 is connected to the scanning bus line Sh. Further, the gate electrode G of the TFT-TR2 is connected to the drain electrode D of the TFT-TR1, the drain electrode D of the TFT-TR2 is connected to the power supply bus line Vdd, and the source electrode S of the TFT-TR2 is the anode of the light emitting layer OLED. Connected to the side. The cathode side of the light emitting layer OLED is connected to the power supply bus line Vss, and the light emission time of the light emitting layer OLED is held between the gate electrode G of the TFT-TR2 (drain electrode D of TFT-TR1) and the power supply bus line Vss. For this purpose, a capacitor CP is connected.
 この図12Aのような回路構成を、先の各実施形態で説明した基板P上に形成する場合の平面配置の一例を、図12Bに示す。映像信号バスラインSy、走査バスラインSh、電源バスラインVdd(Vss)の交差部分には、丸く示した絶縁層Isoが挟み込まれる。TFT-TR1、TFT-TR2を構成する半導体層Scは、本実施形態では最も下側(基板P側)に形成され、その上にドレイン電極Dとソース電極Sが形成され、その上にゲート絶縁膜となる絶縁層Isoが形成され、さらにその上にゲート電極Gが形成される。図12Cは、図12Bにおいて、TFT-TR1のドレイン電極Dとソース電極Sとを横切り、TFT-TR2のドレイン電極Dを横切る矢視C-C’についての断面構造を示したものである。 FIG. 12B shows an example of a planar arrangement in the case where the circuit configuration as shown in FIG. 12A is formed on the substrate P described in the previous embodiments. A round insulating layer Iso is sandwiched between intersections of the video signal bus line Sy, the scanning bus line Sh, and the power supply bus line Vdd (Vss). The semiconductor layer Sc constituting the TFT-TR1 and TFT-TR2 is formed on the lowermost side (substrate P side) in this embodiment, and the drain electrode D and the source electrode S are formed thereon, and the gate insulation is formed thereon. An insulating layer Iso that becomes a film is formed, and a gate electrode G is further formed thereon. FIG. 12C shows a cross-sectional structure taken along line C-C ′ in FIG. 12B across the drain electrode D and the source electrode S of the TFT-TR1 and across the drain electrode D of the TFT-TR2.
 図12Cのように、基板Pの表面には、各TFTの半導体層Sc、ドレイン電極D、ソース電極Sを一体的に支持する絶縁性の支持層MRが形成され、この支持層MRの上に、ゲート絶縁膜としての絶縁層Iso、ゲート電極G、或いは一部のバスラインが積層される。本実施形態では、このような支持層MRを介在させることにより、先の第二実施形態等で説明した多孔質シートTsを用いた転写法を適用することができる。 As shown in FIG. 12C, an insulating support layer MR that integrally supports the semiconductor layer Sc, the drain electrode D, and the source electrode S of each TFT is formed on the surface of the substrate P, and on the support layer MR. The insulating layer Iso as the gate insulating film, the gate electrode G, or some bus lines are stacked. In this embodiment, the transfer method using the porous sheet Ts described in the second embodiment and the like can be applied by interposing such a support layer MR.
 図13Aは、支持層MRを、先の図5又は図10のような多孔質シートTs上に形成し、それを基板Pに転写(圧着)する様子を示す。支持層MRは、TFT-TR1とTFT-TR2の主要部であるソース電極S、ドレイン電極D、半導体層Scを含む適当な平面寸法(例えば、50μm×25μm)となるように、多孔質シートTsの多孔質層11が露出する露出部14(図5又は図10参照)内に形成される。また、ソース電極S、ドレイン電極D、半導体層Scを含む支持層MRの厚みは、多孔質層11の上面(11a)に積層される下地金属層12とメッキ層13との合計の厚み程度(数百nm~数μm)にされる。 FIG. 13A shows a state in which the support layer MR is formed on the porous sheet Ts as shown in FIG. 5 or 10 and transferred (bonded) to the substrate P. The support layer MR has an appropriate planar dimension (for example, 50 μm × 25 μm) including the source electrode S, the drain electrode D, and the semiconductor layer Sc, which are the main parts of the TFT-TR1 and TFT-TR2, and the porous sheet Ts. The porous layer 11 is formed in the exposed portion 14 (see FIG. 5 or 10) where the porous layer 11 is exposed. Further, the thickness of the support layer MR including the source electrode S, the drain electrode D, and the semiconductor layer Sc is about the total thickness of the base metal layer 12 and the plating layer 13 laminated on the upper surface (11a) of the porous layer 11 ( Several hundred nm to several μm).
 図13Aのような支持層MRは、図13B、図13Cに示すように、まず、第一段階として、多孔質シートTsの露出部14内の多孔質層11の第一面11a上に、低抵抗材料(金属膜、カーボンナノチューブ等)による各TFTのソース電極Sとドレイン電極Dを形成する。図13Bは、露出部14を含む多孔質シートTsの部分的な断面図であり、図13Cは、露出部14の平面図である。ソース電極Sとドレイン電極Dが対抗するギャップGpの幅はチャネル長とも呼ばれ、TFTの各種特性を所望の範囲に収める為に、精密に加工される。 As shown in FIGS. 13B and 13C, the support layer MR as shown in FIG. 13A is first formed on the first surface 11a of the porous layer 11 in the exposed portion 14 of the porous sheet Ts as a first step. A source electrode S and a drain electrode D of each TFT are formed of a resistance material (metal film, carbon nanotube, etc.). FIG. 13B is a partial cross-sectional view of the porous sheet Ts including the exposed portion 14, and FIG. 13C is a plan view of the exposed portion 14. The width of the gap Gp opposed to the source electrode S and the drain electrode D is also called a channel length, and is precisely processed in order to keep various characteristics of the TFT within a desired range.
 露出部14(メッキ層13による隔壁で囲まれた窓状の領域)内の多孔質層11の表面11aに、ソース電極Sとドレイン電極Dを精密に位置決めして形成する方法としては、フォトレジストを使ったリソグラフィ法(エネルギー線による露光工程、現像工程、エッチング工程を含む)、フォトレジストの代わりに、紫外線照射によって表面の親液性や撥液性が変化する感光性機能材を使ったフォトアシスト法(現像とエッチングが不要な無電解メッキ等)、或いはインクジェットプリンタを用いて導電性ナノ粒子を含むインクで直接各電極を描画する印刷法等が利用できる。ギャップGpの幅をパターニング段階から正確に管理する場合は、リソグラフィ法やフォトアシスト法が適している。しかしながら、例えば、多孔質層11の表面11a上に、ソース電極Sとドレイン電極Dとをつなげた1つの線状(長方形)パターンとして電極を形成した後、ギャップGpに相当する部分をレーザビームのスポットでカット(切断)するような工程が使える場合は、印刷法でも十分な精度でギャップGpを形成できる。 As a method of precisely positioning and forming the source electrode S and the drain electrode D on the surface 11a of the porous layer 11 in the exposed portion 14 (a window-shaped region surrounded by the partition wall by the plating layer 13), a photoresist is used. Lithography method (including exposure process using energy rays, development process, etching process), photo using photosensitive functional material that changes surface lyophilicity and liquid repellency by UV irradiation instead of photoresist An assist method (such as electroless plating that does not require development and etching) or a printing method in which each electrode is directly drawn with ink containing conductive nanoparticles using an ink jet printer can be used. In order to accurately manage the width of the gap Gp from the patterning stage, a lithography method or a photo assist method is suitable. However, for example, after forming the electrode as one linear (rectangular) pattern in which the source electrode S and the drain electrode D are connected on the surface 11 a of the porous layer 11, a portion corresponding to the gap Gp is applied to the laser beam. If a process of cutting (cutting) with a spot can be used, the gap Gp can be formed with sufficient accuracy even by a printing method.
 ソース電極Sとドレイン電極Dとを、図13B、13Cのように形成する際、電極S、Dと多孔質層11の表面11aとの密着性が過度に高くなったり、過度に低くなったりしないように、多孔質層11の材質や表面11aのポーラスの平均サイズが選定され、必要に応じて表面11aの事前処理(UV照射による活性化等)が施される。 When the source electrode S and the drain electrode D are formed as shown in FIGS. 13B and 13C, the adhesion between the electrodes S and D and the surface 11a of the porous layer 11 is neither excessively increased nor excessively decreased. As described above, the material of the porous layer 11 and the average porous size of the surface 11a are selected, and the surface 11a is pretreated (activated by UV irradiation or the like) as necessary.
 次に、第二段階として、図14A、14Bに示すように、各TFTのソース電極Sとドレイン電極Dとの間のギャップGpを覆うように、溶液状の半導体材料(有機半導体、酸化物半導体、カーボンナノチューブ等)が塗布され、適当な結晶配向処理によって半導体層Scが形成される。図14Aは、露出部14の平面図であり、図14Bは、露出部14を含む多孔質シートTsの部分的な断面図である。半導体層Scの形成範囲は、ギャップGpを確実に覆う状態であれば良く、精度的にはインクジェットプリンタ等による印刷法の利用が好適である。 Next, as a second stage, as shown in FIGS. 14A and 14B, a solution-like semiconductor material (organic semiconductor, oxide semiconductor) is formed so as to cover the gap Gp between the source electrode S and the drain electrode D of each TFT. , Carbon nanotubes, etc.) are applied, and the semiconductor layer Sc is formed by an appropriate crystal orientation treatment. FIG. 14A is a plan view of the exposed portion 14, and FIG. 14B is a partial cross-sectional view of the porous sheet Ts including the exposed portion 14. The semiconductor layer Sc may be formed in a range that reliably covers the gap Gp, and it is preferable to use a printing method using an inkjet printer or the like in terms of accuracy.
 一般に、溶液状の半導体材料を滴下又は塗布して半導体層を作る場合、結晶化の為に、ある程度の高温が必要となる。例えば、基板Pとして、PET樹脂によるフレキシブルな基板を用いる場合、そのガラス転移温度は、概ね100°前後であり、それ以上の温度を与えると、極端な変形(収縮)が起こる。本実施形態では、一例として、ポリイミド製の多孔質膜を多孔質層11として利用することで、200°~250°程度の高温処理が可能となる。図14A、14Bに示すように、半導体層Scをインクジェットの液滴で塗布した段階で、多孔質シートTsには、金属層12、メッキ層(金属)13、及び、金属系の電極S、Dが形成されているだけなので、半導体層Scの液滴を200°~250°程度の高温で結晶化(配向)することができ、TFTの性能向上が期待できる。また、半導体層Scとして利用できる材料の選択肢も広がる。尚、多孔質層11の材料を、ポリイミドに替えてセラミックスとすると、さらに高温処理が可能となる。 Generally, when a semiconductor layer is formed by dropping or coating a solution-like semiconductor material, a certain high temperature is required for crystallization. For example, when a flexible substrate made of a PET resin is used as the substrate P, its glass transition temperature is about 100 °, and extreme deformation (shrinkage) occurs when a temperature higher than that is applied. In the present embodiment, as an example, by using a porous film made of polyimide as the porous layer 11, a high temperature treatment of about 200 ° to 250 ° is possible. As shown in FIGS. 14A and 14B, at the stage where the semiconductor layer Sc is applied with inkjet droplets, the porous sheet Ts has a metal layer 12, a plating layer (metal) 13, and metal-based electrodes S and D. Therefore, the droplets of the semiconductor layer Sc can be crystallized (orientated) at a high temperature of about 200 ° to 250 °, and an improvement in TFT performance can be expected. Moreover, the choice of the material which can be utilized as the semiconductor layer Sc also spreads. If the material of the porous layer 11 is ceramic instead of polyimide, a higher temperature treatment is possible.
 次に、第三段階として、図14A、14Bのようにソース電極S、ドレイン電極D、半導体層Scが形成された露出部14(凹部)の全体に、支持層MRとなる絶縁性の溶液材料、例えば紫外線硬化樹脂等を一様な厚さで塗布する。この塗布に際しても、インクジェットプリンタが利用できる。また、露出部14の周囲のメッキ層13の表面のみを高撥液状態に設定できる場合は、ミスト・デポジション法、ディップ法によって、絶縁性の溶液材料を露出部14内に充填するようにしても良い。支持層MRの材料が紫外線硬化樹脂の場合は、その後に、多孔質シートTsに紫外線を照射して、適当な硬度まで硬化させる。その他の溶液材料の場合は、赤外線やマイクロウェーブの照射、或いはヒータによる加熱によって、溶液材料中の溶剤成分を除去して適度に硬化させる。 Next, as a third step, an insulating solution material that becomes the support layer MR is formed on the entire exposed portion 14 (concave portion) where the source electrode S, the drain electrode D, and the semiconductor layer Sc are formed as shown in FIGS. 14A and 14B. For example, an ultraviolet curable resin or the like is applied with a uniform thickness. An ink jet printer can also be used for this application. If only the surface of the plating layer 13 around the exposed portion 14 can be set in a highly liquid repellent state, an insulating solution material is filled in the exposed portion 14 by a mist deposition method or a dip method. May be. When the material of the support layer MR is an ultraviolet curable resin, thereafter, the porous sheet Ts is irradiated with ultraviolet rays and cured to an appropriate hardness. In the case of other solution materials, the solvent component in the solution material is removed and cured appropriately by irradiation with infrared rays or microwaves or heating with a heater.
 以上の第一段階~第三段階によって、多孔質シートTs上に、図13Aのような状態で、支持層MRが形成されるので、先の各実施形態で説明したように、多孔質シートTsの裏面11b側に加圧気体を供給して、支持層MRを基板P上の所定位置に転写(圧着)させれば良い。 The support layer MR is formed in the state as shown in FIG. 13A on the porous sheet Ts by the above first to third steps, and as described in the previous embodiments, the porous sheet Ts. A pressurized gas may be supplied to the back surface 11b side of the substrate, and the support layer MR may be transferred (pressed) to a predetermined position on the substrate P.
 基板P上に支持層MRが転写されると、先の図12Cの断面構造から明らかなように、ソース電極Sとドレイン電極Dは支持層MRの上面に露出した状態となる。その為、それらのソース電極Sとドレイン電極Dの上に、インクジェット等の印刷法により、導電性インクによって各種バスラインSy、Sh、Vddやゲート電極Gを積層形成すると、電気的な導通が確保されることになる。 When the support layer MR is transferred onto the substrate P, the source electrode S and the drain electrode D are exposed on the upper surface of the support layer MR, as is apparent from the cross-sectional structure of FIG. 12C. Therefore, when various bus lines Sy, Sh, Vdd, and gate electrodes G are laminated on the source electrode S and the drain electrode D by a conductive ink by a printing method such as inkjet, electrical continuity is ensured. Will be.
 図12B、12Cのような画素回路の場合、基板P上の支持層MR上には、半導体層Scを覆うと共に、ソース電極Sとドレイン電極Dの端部は覆わないような寸法(面積)で、ゲート絶縁膜となる絶縁層Isoが形成される。この絶縁層Isoは、支持層MR上に撥液性の感光性機能材を塗布し、絶縁層Isoに対応する部分を紫外線で親液性に改質するフォトアシスト法と、親液性に改質された部分に絶縁層Isoとなる溶液材料を塗布するインクジェット等の印刷法、ミスト・デポジション法、又はディップ(浸漬)法との組合せによって形成される。 In the case of the pixel circuit as shown in FIGS. 12B and 12C, the support layer MR on the substrate P is covered with the semiconductor layer Sc and has dimensions (area) that do not cover the ends of the source electrode S and the drain electrode D. Then, an insulating layer Iso that becomes a gate insulating film is formed. This insulating layer Iso is applied with a liquid-repellent photosensitive functional material on the support layer MR, and the portion corresponding to the insulating layer Iso is modified to be lyophilic with a photo assist method in which the portion corresponding to the insulating layer Iso is modified to be lyophilic. It is formed by a combination of a printing method such as an ink jet method, a mist deposition method, or a dip (immersion) method in which a solution material to be the insulating layer Iso is applied to the finished portion.
 ゲート絶縁膜となる絶縁層Isoの形成後、絶縁層Isoや支持層MRの上面、或いは基板Pの表面に、ゲート電極Gや各種バスラインSy、Sh、Vdd、Vssが、インクジェット等の印刷法、フォトアシスト法を利用した無電解メッキ法等で形成される。先の絶縁層Isoを形成する段階において、支持層MRの表面に撥液性の感光性機能材料が塗布されていると、図12Cのように、TFT-TR2のゲート電極Gとなる導電性インクを積層すべきTFT-TR1のドレイン電極Dの端部表面は、高い撥液性(フッ素分子による)のままである。そこで、ゲート電極G、各種バスラインSy、Sh、Vdd、Vssのパターン形状に応じた紫外線を、支持層MRや基板Pの表面に照射して、その部分の撥液性を親液性に改質しておく。 After the formation of the insulating layer Iso that becomes the gate insulating film, the gate electrode G and various bus lines Sy, Sh, Vdd, and Vss are printed on the upper surface of the insulating layer Iso, the support layer MR, or the surface of the substrate P by a printing method such as inkjet. It is formed by an electroless plating method using a photo assist method. When a liquid-repellent photosensitive functional material is applied to the surface of the support layer MR in the step of forming the insulating layer Iso, the conductive ink that becomes the gate electrode G of the TFT-TR2 as shown in FIG. 12C. The surface of the end portion of the drain electrode D of the TFT-TR1 to be stacked has high liquid repellency (due to fluorine molecules). Therefore, the surface of the support layer MR and the substrate P is irradiated with ultraviolet rays corresponding to the pattern shapes of the gate electrode G and various bus lines Sy, Sh, Vdd, and Vss to change the liquid repellency of the portion to lyophilic. Keep it quality.
 本実施形態の場合、図12Bに示すように、最も下層に位置するのがバスラインVddであり、その上に位置するのがバスラインSy、さらにその上に位置するのがバスラインShとなっている。そのため、ゲート絶縁膜となる絶縁層Isoの形成後に、導電性インクによって最初に形成される導線部は、TFT-TR2のゲート電極GとバスラインVddとなる。従って、TFT-TR2のゲート電極GとバスラインVddに対応した形状で紫外線を照射して、支持層MRと基板Pの各表面を親液性に改質する。その紫外線照射によって改質(フッ素分子が除去)された表面部分のみに、メッキ還元能を有するアミン基等が露呈する場合は、紫外線照射後に基板Pを無電解メッキ液に浸漬することで、TFT-TR2のゲート電極GとバスラインVddに対応した配線が形成される。これによって、TFT-TR1のドレイン電極DはTFT-TR2のゲート電極Gと電気的に接続され、TFT-TR2のドレイン電極DはバスラインVddと電気的に接続される。 In the case of this embodiment, as shown in FIG. 12B, the bus line Vdd is positioned at the lowest layer, the bus line Sy is positioned above it, and the bus line Sh is positioned above it. ing. Therefore, after the formation of the insulating layer Iso that becomes the gate insulating film, the conducting wire portion that is first formed by the conductive ink becomes the gate electrode G and the bus line Vdd of the TFT-TR2. Therefore, the surfaces of the support layer MR and the substrate P are modified to be lyophilic by irradiating ultraviolet rays in a shape corresponding to the gate electrode G and the bus line Vdd of the TFT-TR2. When the amine group having plating reducing ability is exposed only on the surface portion modified (excluded by fluorine molecules) by the ultraviolet irradiation, the substrate P is immersed in the electroless plating solution after the ultraviolet irradiation, so that the TFT A wiring corresponding to the gate electrode G of -TR2 and the bus line Vdd is formed. As a result, the drain electrode D of the TFT-TR1 is electrically connected to the gate electrode G of the TFT-TR2, and the drain electrode D of the TFT-TR2 is electrically connected to the bus line Vdd.
 次に、バスラインVdd上で、バスラインSyとバスラインShとの交差部分に、絶縁層Isoが形成される。これも、インクジェット等の印刷法のみ、またはフォトアシスト法と印刷法の併用による湿式工程で実施可能である。その後、バスラインSyが印刷法、或いはフォトアシストにより無電解メッキ法等により形成される。これによって、TFT-TR1のソース電極SがバスラインSyと電気的に接続される。次に、バスラインSy上のバスラインShとの交差部分に絶縁層Isoが形成され、その後、バスラインShとTFT-TR1のゲート電極Gとが、印刷法、或いはフォトアシストにより無電解メッキ法等により形成される。 Next, an insulating layer Iso is formed on the bus line Vdd at the intersection of the bus line Sy and the bus line Sh. This can also be performed by a wet process using only a printing method such as inkjet or a combination of a photo assist method and a printing method. Thereafter, the bus line Sy is formed by an electroless plating method or the like by a printing method or photo assist. As a result, the source electrode S of the TFT-TR1 is electrically connected to the bus line Sy. Next, an insulating layer Iso is formed at the intersection of the bus line Sy with the bus line Sh, and then the bus line Sh and the gate electrode G of the TFT-TR1 are electrolessly plated by a printing method or photo assist. Etc. are formed.
 以上、本実施形態では、TFTを構成するソース電極Sとドレイン電極D、及び半導体層Scの積層構造体を、一体的に多孔質シートTsに形成するようにしたので、TFTの半導体層Scの結晶化の為の温度条件を緩和して、高温化することが可能となり、湿式プロセスでありながら、TFTの性能(電子移動度、On/Off比等)を向上させることができる。 As described above, in the present embodiment, the stacked structure of the source electrode S, the drain electrode D, and the semiconductor layer Sc constituting the TFT is integrally formed on the porous sheet Ts. The temperature conditions for crystallization can be relaxed and the temperature can be increased, and the performance (electron mobility, On / Off ratio, etc.) of the TFT can be improved while being a wet process.
 尚、図12Cのように、支持層MRの表面に露呈するソース電極Sやドレイン電極Dは、基板Pの表面に対して支持層MRの厚み分の段差を持つ。そのため、基板Pの表面と支持層MRの表面との両方に位置する各種バスラインSy、Sh、Vdd(Vss)は、支持層MRの周辺の段差部をまたぐように形成される。支持層MRの周辺の段差部が垂直に近い状態だと、そこをまたぐ各種バスラインSy、Sh、Vdd(Vss)が上手く形成されずに断線し易くなる。 As shown in FIG. 12C, the source electrode S and the drain electrode D exposed on the surface of the support layer MR have a level difference corresponding to the thickness of the support layer MR with respect to the surface of the substrate P. Therefore, the various bus lines Sy, Sh, Vdd (Vss) located on both the surface of the substrate P and the surface of the support layer MR are formed so as to straddle the stepped portion around the support layer MR. When the stepped portion around the support layer MR is nearly vertical, various bus lines Sy, Sh, Vdd (Vss) straddling the stepped portion are not formed well and are easily disconnected.
 そこで、図14Bのように、多孔質シートTsに形成される露出部14のメッキ層13のエッジ(隔壁の側面)を、露出部14(窓状)の内側からみたときに外側に広がるようなテーパ部SLにしておく。このようにすると、図14Cに示すように、基板P上に転写された支持層MRの周辺のエッジ部SL’は、支持層MRの内側に向けて傾斜したものとなり、この傾斜したエッジ部SL’をまたぐ各種バスラインSy、Sh、Vdd(Vss)の断線が抑制される。 Therefore, as shown in FIG. 14B, the edge (side surface of the partition wall) of the exposed portion 14 formed on the porous sheet Ts spreads outward when viewed from the inside of the exposed portion 14 (window shape). The tapered portion SL is used. Thus, as shown in FIG. 14C, the edge portion SL ′ around the support layer MR transferred onto the substrate P is inclined toward the inside of the support layer MR, and the inclined edge portion SL is inclined. Disconnection of various bus lines Sy, Sh, and Vdd (Vss) straddling 'is suppressed.
 また、本実施形態では、TFTをトップゲート型で構成したが、ボトムゲート型のTFTであっても、同様にして多孔質シートTsの露出部14内に、TFTを構成する電極(ソースとドレインD)と半導体層の積層構造、半導体層と絶縁層の積層構造、或いは電極(ゲートG)と絶縁層の積層構造を一体に形成し、それを基板P側に転写することができる。
 一般に、TFTは、ギャップGp(チャネル長)で対向するソースとドレインとなる第1電極層と、半導体層と、ゲート絶縁層と、ギャップGpを覆うようなゲートとなる第2電極層との積層構造体で構成される。本実施形態では、これらの層のうち、第1電極層(ソース電極Sとドレイン電極D)と半導体層(Sc)との2層を、支持層MRと共に積層構造体として、多孔質シートTsの露出部14内に形成したが、第1電極層、半導体層、ゲート絶縁層(Iso)の3層を支持層MRと共に積層構造体にしても良い。その場合は、最初に多孔質シートTsの露出部14内の一部分だけに、ゲート絶縁層(Iso)が形成され、その上と露出部14内の多孔質層11の第一面11aに渡って、第1電極層(ソース電極Sとドレイン電極D)が形成され、さらにその上に半導体層(Sc)がゲート絶縁層(Iso)の内側に収まる範囲で形成される。また、ボトムゲート型のTFTの場合は、多孔質シートTsの露出部14内の第一面11a上に、最初に半導体層(Sc)を形成し、加熱等によって結晶化を行った後、その半導体層を覆うような大きさで、その上にゲート絶縁層(Iso)を形成した2層の積層構造体とすることができる。この場合、ゲート電極Gは、基板P上の所定位置に予め形成しておき、そのゲート電極Gの上に、ゲート絶縁層と半導体層の積層構造体が支持層MRと共に転写される。このように、支持層MRを設けることで、薄膜トランジスタ(TFT)を構成する電極層、半導体層、絶縁層のうちの少なくとも2層を積層構造体として予め多孔質シートTs上に作成し、それを基板Pへ良好に転写することができる。
In this embodiment, the TFT is configured as a top gate type. However, even in the case of a bottom gate type TFT, the electrodes (source and drain) constituting the TFT are similarly formed in the exposed portion 14 of the porous sheet Ts. D) and a laminated structure of a semiconductor layer, a laminated structure of a semiconductor layer and an insulating layer, or a laminated structure of an electrode (gate G) and an insulating layer can be integrally formed and transferred to the substrate P side.
In general, a TFT is a stack of a first electrode layer serving as a source and a drain facing each other with a gap Gp (channel length), a semiconductor layer, a gate insulating layer, and a second electrode layer serving as a gate covering the gap Gp. Consists of structures. In this embodiment, among these layers, two layers of the first electrode layer (the source electrode S and the drain electrode D) and the semiconductor layer (Sc) are used as a laminated structure together with the support layer MR, and the porous sheet Ts. Although formed in the exposed portion 14, a three-layer structure including the first electrode layer, the semiconductor layer, and the gate insulating layer (Iso) may be formed together with the support layer MR. In that case, a gate insulating layer (Iso) is first formed only in a part of the exposed portion 14 of the porous sheet Ts, and over the first surface 11 a of the porous layer 11 in the exposed portion 14. The first electrode layer (source electrode S and drain electrode D) is formed, and further the semiconductor layer (Sc) is formed on the inner side of the gate insulating layer (Iso). In the case of a bottom gate type TFT, a semiconductor layer (Sc) is first formed on the first surface 11a in the exposed portion 14 of the porous sheet Ts, and after crystallization by heating or the like, A two-layer structure in which the gate insulating layer (Iso) is formed thereover so as to cover the semiconductor layer can be obtained. In this case, the gate electrode G is formed in advance at a predetermined position on the substrate P, and the stacked structure of the gate insulating layer and the semiconductor layer is transferred onto the gate electrode G together with the support layer MR. Thus, by providing the support layer MR, at least two of the electrode layer, the semiconductor layer, and the insulating layer constituting the thin film transistor (TFT) are formed in advance on the porous sheet Ts as a laminated structure, Good transfer to the substrate P is possible.
 以上の各実施形態で使われる多孔質シートTsは、平均孔径や膜厚、或いは空孔率が異なる2種の多孔質フィルムを積層した構造でも良い。例えば、TFTや配線層等の構造体が形成される多孔質シートTsの表面側には、平均孔径が5μm以下で薄い膜厚(例えば20μm)の第1多孔質層を設け、多孔質シートTsの裏面側には、平均孔径が10μm以上で比較的に厚い膜厚(例えば100μm)の第2多孔質層を設けた多層構造としても良い。 The porous sheet Ts used in each of the above embodiments may have a structure in which two types of porous films having different average pore diameters, film thicknesses, or porosity are laminated. For example, a first porous layer having an average pore diameter of 5 μm or less and a thin film thickness (for example, 20 μm) is provided on the surface side of the porous sheet Ts on which structures such as TFTs and wiring layers are formed, and the porous sheet Ts A multilayer structure in which a second porous layer having an average pore diameter of 10 μm or more and a relatively thick film thickness (for example, 100 μm) is provided on the back surface side of the substrate.
 U2、100…転写装置 1…デバイス製造システム Ts…多孔質シート Ta…外周面 Tb…内周面 P…基板 DR…圧胴ドラム ABR…気体噴出ローラー PH…パターン層形成部 PLT…支持機構 10…シート保持部 11…多孔質層 11a…第一面 11b…第二面 12…下地金属層 13…メッキ層 13a…表面 14…露出部 15…被転写パターン層 16…蒸着膜 16a…表面 20…基板保持部 30…気体供給部 31…円筒軸 31a…中空部 31b…開口部 33…多孔質管 35…気体供給部 40…パターン形成装置 50…洗浄装置 60…乾燥装置 U2, 100 ... Transfer device 1 ... Device manufacturing system Ts ... Porous sheet Ta ... Outer peripheral surface Tb ... Inner peripheral surface P ... Substrate DR ... Impression drum ABR ... Gas ejection roller PH ... Pattern layer forming part PLT ... Support mechanism 10 ... Sheet holding part 11 ... Porous layer 11a ... First side 11b ... Second side 12 ... Underlying metal layer 13 ... Plating layer 13a ... Surface 14 ... Exposed part 15 ... Transfer pattern layer 16 ... Deposition film 16a ... Surface 20 ... Substrate Holding part 30 ... Gas supply part 31 ... Cylindrical shaft 31a ... Hollow part 31b ... Opening part 33 ... Porous pipe 35 ... Gas supply part 40 ... Pattern forming device 50 ... Cleaning device 60 ... Drying device

Claims (17)

  1.  所定の厚みの多孔質材料で形成された多孔質板と該多孔質板の一方の面側に形成された転写用のパターン層とを有する転写版を保持する版保持部と、
     前記転写版の前記パターン層が転着され得る対象物を、前記転写版の前記一方の面に密着または近接させて保持する対象物保持部と、
     前記多孔質板の他方の面側から前記一方の面側に向けて所定圧力の流体を供給する流体供給部と
     を備える転写装置。
    A plate holding section for holding a transfer plate having a porous plate formed of a porous material having a predetermined thickness and a pattern layer for transfer formed on one surface side of the porous plate;
    An object holding unit for holding an object to which the pattern layer of the transfer plate can be transferred, in close contact with or close to the one surface of the transfer plate;
    A fluid supply unit that supplies a fluid of a predetermined pressure from the other surface side of the porous plate toward the one surface side.
  2.  前記流体は、気体である
     請求項1に記載の転写装置。
    The transfer device according to claim 1, wherein the fluid is a gas.
  3.  前記多孔質板は、外周面と内周面とを有する筒状に形成されている
     請求項1又は請求項2に記載の転写装置。
    The transfer device according to claim 1, wherein the porous plate is formed in a cylindrical shape having an outer peripheral surface and an inner peripheral surface.
  4.  前記パターン層は、前記筒状の多孔質板の外周面に形成されている
     請求項3に記載の転写装置。
    The transfer device according to claim 3, wherein the pattern layer is formed on an outer peripheral surface of the cylindrical porous plate.
  5.  前記流体供給部は、前記筒状の多孔質板の内周面から前記多孔質板の内部を介して前記外周面に向けて前記流体を供給可能である
     請求項4に記載の転写装置。
    The transfer device according to claim 4, wherein the fluid supply unit is capable of supplying the fluid from an inner peripheral surface of the cylindrical porous plate toward the outer peripheral surface through the inside of the porous plate.
  6.  前記パターン層は、前記多孔質板の一方の面上の複数個所に設けられており、
     前記流体供給部は、該複数個所のパターン層の各々に対して個別に前記流体を供給可能である
     請求項1から請求項5のうちいずれか一項に記載の転写装置。
    The pattern layer is provided at a plurality of locations on one surface of the porous plate,
    The transfer device according to any one of claims 1 to 5, wherein the fluid supply unit can individually supply the fluid to each of the plurality of pattern layers.
  7.  前記流体供給部は、前記多孔質板の他方の面側に配置されて、前記流体を噴出する噴出部を有し、
     前記多孔質板の他方の面に沿って前記噴出部が相対的に移動するように、前記多孔質板及び前記噴出部のうち少なくとも一方を移動可能な駆動部を更に備える
     請求項1から請求項6のうちいずれか一項に記載の転写装置。
    The fluid supply part has an ejection part that is arranged on the other surface side of the porous plate and ejects the fluid,
    The drive part which can move at least one among the said porous board and the said ejection part is further provided so that the said ejection part may move relatively along the other surface of the said porous board. The transfer device according to claim 6.
  8.  前記多孔質板の内部から前記多孔質板の一方の面側に負圧を与える吸引部を更に備える
     請求項1から請求項7のうちいずれか一項に記載の転写装置。
    The transfer device according to any one of claims 1 to 7, further comprising a suction unit that applies a negative pressure from the inside of the porous plate to one surface side of the porous plate.
  9.  前記転写版は、前記多孔質板の一方の面上に形成される前記パターン層の形状に沿った部分を露出するように、前記多孔質板の一方の面を覆う被覆部を有する
     請求項1から請求項8のうちいずれか一項に記載の転写装置。
    2. The transfer plate has a covering portion that covers one surface of the porous plate so as to expose a portion along the shape of the pattern layer formed on one surface of the porous plate. The transfer device according to claim 8.
  10.  前記パターン層が前記対象物に転写された後の前記多孔質板の表面の状態を保全するメンテナンス部を更に備える
     請求項1から請求項9のうちいずれか一項に記載の転写装置。
    The transfer device according to any one of claims 1 to 9, further comprising a maintenance unit that maintains a surface state of the porous plate after the pattern layer is transferred to the object.
  11.  前記多孔質板は、所定の曲率で湾曲可能な可撓性の薄板であり、
     前記転写版は、前記多孔質板の他方の面を内側にして、ローラーの外周面に巻かれている
     請求項1から請求項10のうちいずれか一項に記載の転写装置。
    The porous plate is a flexible thin plate that can be bent with a predetermined curvature,
    The transfer device according to any one of claims 1 to 10, wherein the transfer plate is wound around an outer peripheral surface of a roller with the other surface of the porous plate being inward.
  12.  前記多孔質板は、可撓性の多孔質シートであり、前記転写版は無端ベルト状に構成される
     請求項1から請求項10のうちいずれか一項に記載の転写装置。
    The transfer device according to any one of claims 1 to 10, wherein the porous plate is a flexible porous sheet, and the transfer plate is configured in an endless belt shape.
  13.  帯状に形成された基板を搬送する基板搬送部と、
     前記基板搬送部によって搬送される前記基板に対して処理を行う複数の基板処理部とを備え、
     前記基板処理部として、請求項1から請求項12のいずれか一項に記載の転写装置が用いられる
     基板処理装置。
    A substrate transport unit for transporting a substrate formed in a strip shape;
    A plurality of substrate processing units for processing the substrate conveyed by the substrate conveyance unit;
    The transfer apparatus as described in any one of Claims 1-12 is used as said substrate processing part. Substrate processing apparatus.
  14.  フレキシブルな基板上に薄膜トランジスタを含む電子デバイスを製造する方法であって、
     前記薄膜トランジスタを構成する電極層、半導体層、絶縁層のうち、いずれか2つの層による積層構造体を、所定の厚みの多孔質材料で形成された多孔質板の一方の面側に形成する第1の工程と、
     前記積層構造体が形成された前記多孔質板の一方の面側と、前記基板の表面とを密着または近接させた状態で、前記多孔質板の他方の面側から前記一方の面側に向けて所定圧力の流体を供給して、前記多孔質板上の前記積層構造体を前記基板の表面に転写する第2の工程と、
     前記基板の表面に転写された前記積層構造体の表面、又は前記基板の表面に、前記薄膜トランジスタを構成する残りの層、又は前記電極と接続される配線層を形成する第3の工程と、
    を含むデバイス製造方法。
    A method of manufacturing an electronic device comprising a thin film transistor on a flexible substrate, comprising:
    A laminated structure of any two layers of an electrode layer, a semiconductor layer, and an insulating layer constituting the thin film transistor is formed on one surface side of a porous plate formed of a porous material having a predetermined thickness. 1 process,
    In a state where one surface side of the porous plate on which the laminated structure is formed and the surface of the substrate are in close contact with each other, the other surface side of the porous plate is directed to the one surface side. Supplying a fluid at a predetermined pressure to transfer the laminated structure on the porous plate to the surface of the substrate;
    A third step of forming a remaining layer constituting the thin film transistor or a wiring layer connected to the electrode on the surface of the multilayer structure transferred to the surface of the substrate or on the surface of the substrate;
    A device manufacturing method including:
  15.  前記積層構造体は、前記薄膜トランジスタのソースとドレインの電極層と半導体層とを含む、請求項14に記載のデバイス製造方法。 15. The device manufacturing method according to claim 14, wherein the stacked structure includes a source and drain electrode layer and a semiconductor layer of the thin film transistor.
  16.  前記第1の工程は、
     前記ソースとドレインの電極層を前記多孔質板の一方の面側に形成する第一段階と、
     前記ソースとドレインの間のギャップ部を覆うような範囲で、前記半導体層を積層する第二段階と、
     前記ソースとドレインの電極層と前記半導体層とを所定の大きさで囲むような支持層を、前記多孔質板の一方の面側に形成する第三段階と、
    を含む請求項15に記載のデバイス製造方法。
    The first step includes
    A first step of forming the source and drain electrode layers on one side of the porous plate;
    A second step of laminating the semiconductor layer in a range that covers the gap between the source and drain;
    Forming a support layer surrounding the source and drain electrode layers and the semiconductor layer with a predetermined size on one side of the porous plate;
    The device manufacturing method according to claim 15, comprising:
  17.  第2の工程では、前記多孔質板の一方の面側に形成された前記電極層と前記半導体層の積層構造体を、前記支持層と共に前記基板の表面に転写する、
    請求項16に記載のデバイス製造方法。
    In the second step, the laminated structure of the electrode layer and the semiconductor layer formed on one surface side of the porous plate is transferred to the surface of the substrate together with the support layer.
    The device manufacturing method according to claim 16.
PCT/JP2013/071006 2012-08-06 2013-08-02 Transfer device and substrate treatment apparatus WO2014024797A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380040811.8A CN104507685B (en) 2012-08-06 2013-08-02 Transfer device and substrate board treatment
JP2014529472A JP6287839B2 (en) 2012-08-06 2013-08-02 Substrate processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012173983 2012-08-06
JP2012-173983 2012-08-06

Publications (1)

Publication Number Publication Date
WO2014024797A1 true WO2014024797A1 (en) 2014-02-13

Family

ID=50068026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071006 WO2014024797A1 (en) 2012-08-06 2013-08-02 Transfer device and substrate treatment apparatus

Country Status (3)

Country Link
JP (4) JP6287839B2 (en)
CN (2) CN104507685B (en)
WO (1) WO2014024797A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501299B (en) * 2016-10-18 2019-07-26 北京印刷学院 A kind of self assembly printed electronic product continuous sintering experimental provision
CN106393972A (en) * 2016-11-25 2017-02-15 邹杨 Digital inkjet, blanket strip transfer and steam washing-free manufacturing method and device
CN107351554B (en) * 2017-08-14 2018-11-09 湖南嘉业达电子有限公司 The production method of ink printer and seal for printing mark
TWI661947B (en) * 2017-11-17 2019-06-11 財團法人工業技術研究院 Gravure offset printing apparatus
JP2021003806A (en) * 2018-01-29 2021-01-14 スリーエム イノベイティブ プロパティズ カンパニー Printing method on filamentous member, and filamentous saw
JP6564105B2 (en) * 2018-04-23 2019-08-21 株式会社三共 Game machine
CN108749294B (en) * 2018-08-24 2020-04-24 合肥鑫晟光电科技有限公司 Transfer printing device and transfer printing method
CN110676383A (en) * 2019-09-29 2020-01-10 合肥京东方显示技术有限公司 Curved substrate manufacturing device and manufacturing method using same
CN113211949B (en) 2020-02-06 2022-08-26 京东方科技集团股份有限公司 Pattern transfer apparatus and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043238A (en) * 1998-08-03 2000-02-15 Dainippon Printing Co Ltd Highly minute printer and printing method
JP2004209819A (en) * 2002-12-27 2004-07-29 Sharp Corp Transfer apparatus
JP2006302814A (en) * 2005-04-25 2006-11-02 Konica Minolta Holdings Inc Method for forming organic electroluminescent layer, and organic electroluminescent element

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045430B2 (en) * 1977-10-01 1985-10-09 キヤノン株式会社 Image forming method
JPS5793169U (en) * 1980-11-28 1982-06-08
JPS5968291A (en) * 1982-10-14 1984-04-18 Matsushita Electric Ind Co Ltd Screen printing method
JP2866730B2 (en) * 1990-11-14 1999-03-08 日本電信電話株式会社 Method of forming semiconductor circuit
JPH06234202A (en) * 1993-02-08 1994-08-23 Kyushu Hitachi Maxell Ltd Manufacture of mask for screen printing
JP3556102B2 (en) * 1998-09-17 2004-08-18 松下電器産業株式会社 Printing method and printing apparatus
US6433359B1 (en) * 2001-09-06 2002-08-13 3M Innovative Properties Company Surface modifying layers for organic thin film transistors
JP2003257654A (en) * 2001-12-25 2003-09-12 Hitachi Ltd Image display device and method of manufacturing the device
US6620657B2 (en) * 2002-01-15 2003-09-16 International Business Machines Corporation Method of forming a planar polymer transistor using substrate bonding techniques
CN1446039A (en) * 2002-03-14 2003-10-01 华通电脑股份有限公司 Solder paste print deice for remnant stannum easy to be shed-off
JP2004319538A (en) * 2003-04-10 2004-11-11 Seiko Epson Corp Process for manufacturing semiconductor device,integrated circuit, electrooptic device and electronic apparatus
US7401551B2 (en) * 2004-02-25 2008-07-22 Riso Kagaku Corporation Stencil printing machine
JP4700976B2 (en) * 2005-02-10 2011-06-15 キヤノン株式会社 Manufacturing method of field effect organic transistor
JP4951868B2 (en) * 2005-03-18 2012-06-13 凸版印刷株式会社 Thin film transistor manufacturing method
JP5234523B2 (en) * 2007-04-13 2013-07-10 株式会社ニコン Display element manufacturing method, display element manufacturing apparatus, and sheet substrate for display element manufacturing
JP2009073005A (en) * 2007-09-20 2009-04-09 Nec Corp Screen printing method and screen printing machine
JP2009078425A (en) * 2007-09-26 2009-04-16 Toppan Printing Co Ltd Printing plate, method for producing the same, and method for producing printed matter
JP5294141B2 (en) * 2008-03-25 2013-09-18 株式会社ニコン Display element manufacturing equipment
CN101587839B (en) * 2008-05-23 2011-12-21 清华大学 Method for producing thin film transistors
KR20110028473A (en) * 2008-06-30 2011-03-18 가부시키가이샤 니콘 Method and apparatus for manufacturing display element, method and apparatus for manufacturing thin film transistor, and circuit forming apparatus
JP4659925B2 (en) * 2008-08-04 2011-03-30 パナソニック株式会社 Flexible semiconductor device and manufacturing method thereof
JP2011201271A (en) * 2010-03-26 2011-10-13 Toppan Printing Co Ltd Screen printing apparatus for pushing coating material on mask surface, and printing method therefor
JP5576796B2 (en) * 2010-04-13 2014-08-20 パナソニック株式会社 Organic semiconductor device and method for manufacturing organic semiconductor device
JP2012000946A (en) * 2010-06-21 2012-01-05 Toppan Printing Co Ltd Printing surface plate and base material for back surface, and method for forming pattern on film substrate
KR101473124B1 (en) * 2010-08-29 2014-12-15 고쿠리츠 다이가쿠 호우징 신슈 다이가쿠 Organic semiconductor particulate material, organic semiconductor thin-film, dispersion liquid for forming organic semiconductor film, method for producing organic semiconductor thin-film, and organic thin-film transistor
JP2012060057A (en) * 2010-09-13 2012-03-22 Komuratekku:Kk Method of manufacturing organic thin film transistor
CN101973157B (en) * 2010-09-28 2012-01-04 深圳市凯力诚实业发展有限公司 High speed printer, method and production line
CN102452239A (en) * 2010-10-22 2012-05-16 韩国科学技术院 Pattern transfer method and apparatus therefor
JP2012119531A (en) * 2010-12-01 2012-06-21 Seiko Epson Corp Semiconductor device, manufacturing method of semiconductor device, electric apparatus
CN202186106U (en) * 2011-08-22 2012-04-11 安伦通讯设备(苏州)有限公司 Size sucking device of screen printer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043238A (en) * 1998-08-03 2000-02-15 Dainippon Printing Co Ltd Highly minute printer and printing method
JP2004209819A (en) * 2002-12-27 2004-07-29 Sharp Corp Transfer apparatus
JP2006302814A (en) * 2005-04-25 2006-11-02 Konica Minolta Holdings Inc Method for forming organic electroluminescent layer, and organic electroluminescent element

Also Published As

Publication number Publication date
JP2018082214A (en) 2018-05-24
CN104507685A (en) 2015-04-08
JP6481784B2 (en) 2019-03-13
CN104507685B (en) 2017-06-09
JP2019096890A (en) 2019-06-20
JP6950767B2 (en) 2021-10-13
JP2020145419A (en) 2020-09-10
CN107253394B (en) 2019-05-03
JP6665953B2 (en) 2020-03-13
JPWO2014024797A1 (en) 2016-07-25
JP6287839B2 (en) 2018-03-07
CN107253394A (en) 2017-10-17

Similar Documents

Publication Publication Date Title
JP6481784B2 (en) Device manufacturing method
US8193526B2 (en) Transistor having an organic semiconductor with a hollow space
US20100127271A1 (en) Electronic circuit structure and method for forming same
US9064778B2 (en) Method of manufacturing thin film transistor
WO2016031762A1 (en) Device manufacturing method and transfer substrate
KR20200105981A (en) Device manufacturing method
US8143617B2 (en) Semiconductor device, semiconductor device manufacturing method and image display device
US9227220B1 (en) Method for patterning materials on a substrate
JP5838692B2 (en) Manufacturing method of CMOS semiconductor device
US8969127B2 (en) Apparatus for and method of fabricating an electronic device by transfer of material onto a substrate
US9337245B2 (en) Method of manufacturing organic electroluminescence device
Cui et al. Coating and printing processes
JP5157582B2 (en) Method for producing organic thin film transistor
JP2006149156A (en) Electrostatic attractor, and transfer method of sheet type attracted material using its electrostatic attractor
JP2015005618A (en) Method for manufacturing organic semiconductor film, organic semiconductor film, thin film transistor, active matrix device, electro-optic device and electronic equipment
JP5261910B2 (en) Letterpress, printing machine, organic electronic device manufacturing method, and letterpress manufacturing method
JP6671335B2 (en) Functional film patterning method and electronic device manufacturing method
Cuia et al. aPrintable Electronics Research Center, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou, China; bSchool of Physics and Electronics, Hunan University, Changsha, China
US9343680B2 (en) Printed electronic device
JP2008091123A (en) Letterpress, printing machine, manufacturing method of organic electronic device, and manufacturing method of the letterpress
JP2009291755A (en) Manufacturing method and manufacturing apparatus of functional membrane
KR20140079668A (en) Vibration Assisted Contact-type printing machine
Kusaka et al. High resolution printing processes with high throughput, enhanced step coverage, and high design flexibility
TW201517066A (en) Functional film patterning method, electronic device manufacturing method and transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529472

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827816

Country of ref document: EP

Kind code of ref document: A1