WO2014024690A1 - Industrial robot - Google Patents

Industrial robot Download PDF

Info

Publication number
WO2014024690A1
WO2014024690A1 PCT/JP2013/070160 JP2013070160W WO2014024690A1 WO 2014024690 A1 WO2014024690 A1 WO 2014024690A1 JP 2013070160 W JP2013070160 W JP 2013070160W WO 2014024690 A1 WO2014024690 A1 WO 2014024690A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
hand
motor
arm portion
industrial robot
Prior art date
Application number
PCT/JP2013/070160
Other languages
French (fr)
Japanese (ja)
Inventor
矢澤 隆之
佳久 増澤
智樹 田辺
洋和 渡邊
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012247112A external-priority patent/JP6173677B2/en
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to KR1020147024129A priority Critical patent/KR101687463B1/en
Priority to KR1020167007911A priority patent/KR101691776B1/en
Priority to KR1020167007912A priority patent/KR101691777B1/en
Priority to CN201380011432.6A priority patent/CN104136174B/en
Priority to KR1020167007910A priority patent/KR101691775B1/en
Priority to US14/386,579 priority patent/US9764461B2/en
Priority to TW105114811A priority patent/TWI635939B/en
Priority to TW102128540A priority patent/TWI581927B/en
Priority to TW105114810A priority patent/TWI669200B/en
Priority to TW105114809A priority patent/TWI635938B/en
Publication of WO2014024690A1 publication Critical patent/WO2014024690A1/en
Priority to US15/185,974 priority patent/US10265845B2/en
Priority to US15/185,962 priority patent/US10350750B2/en
Priority to US15/185,950 priority patent/US10226863B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0054Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices

Definitions

  • the first invention relates to an industrial robot used in a vacuum.
  • the second invention relates to an origin position return method for an industrial robot that returns the industrial robot to the origin position.
  • the present invention also relates to an industrial robot including a hand and an arm.
  • 3rd invention is related with the industrial robot which has an arm which consists of a plurality of arm parts connected so that relative rotation is possible.
  • the fourth invention relates to an industrial robot having an arm composed of a plurality of arm portions that are connected to each other so as to be relatively rotatable, and a method for controlling the industrial robot.
  • the vacuum robot described in Patent Document 1 includes a hand on which a substrate is mounted, an arm to which the hand is coupled to the distal end side, and a main body unit to which the proximal end side of the arm is coupled.
  • the arm includes an arm base that is pivotably connected to the main body, a first arm whose base end is rotatably connected to the arm base, and a base end that is pivotable to the distal end side of the first arm.
  • a second arm connected to the second arm.
  • the arm base and the first arm are formed in a hollow shape.
  • An arm drive motor that drives the arm and a first speed reducer that decelerates the rotation of the arm drive motor and transmits it to the first arm are disposed inside the arm base.
  • the base end side of the first arm is fixed to the output shaft of the first speed reducer.
  • a second speed reducer that decelerates the rotation of the arm driving motor and transmits it to the second arm is disposed on the distal end side of the first arm.
  • the proximal end side of the second arm is fixed to the output shaft of the second reduction gear.
  • an origin position return method for returning an industrial robot that performs a series of operations according to a control program from an emergency stop position to an origin position is known (for example, see Patent Document 2).
  • the origin position return method described in Patent Document 2 the emergency stop acquired based on the coordinates (current state) of the current position of the industrial robot at the time of emergency stop recorded in the robot controller and the detection result by the encoder Based on the coordinates of the actual current position of the industrial robot at the time, the industrial robot is caused to perform a predetermined operation to return the industrial robot to the origin position.
  • an articulated industrial robot having an arm composed of a plurality of arm portions is known (for example, see Patent Document 3).
  • the industrial robot described in Patent Document 3 is rotatable to a first arm part that is rotatably attached to the main body part, a second arm part that is rotatably attached to the first arm part, and a second arm part.
  • the industrial robot also includes a first drive motor that rotates the first arm portion and the second arm portion, a second drive motor that rotates the third arm portion, and each of the two hands.
  • two hand drive motors to be rotated for example, this industrial robot is arranged at the entrance of a semiconductor manufacturing system, takes out a semiconductor wafer contained in a cassette from the cassette, and accommodates the semiconductor wafer in a predetermined processing apparatus.
  • a semiconductor transfer robot for transferring a semiconductor wafer is known (for example, see Patent Document 4).
  • the transfer robot described in Patent Document 4 is a horizontal articulated three-axis robot, an elevating shaft provided on a base, an arm whose base end side is rotatably connected to the elevating shaft, And a hand rotatably connected to the distal end side.
  • the arm includes a first arm portion whose base end side is rotatably connected to the lifting shaft, a base end side rotatably connected to the front end side of the first arm portion, and a hand is rotated to the front end side. It is comprised from the 2nd arm part connected so that a movement is possible.
  • the transfer robot includes three motors that rotate the first arm unit, the second arm unit, and the hand.
  • the position of the hand is controlled based on a cylindrical coordinate system having the origin at the rotation center of the first arm portion with respect to the lifting axis. Further, in Patent Document 1, the hand moves on a straight line passing through the center of rotation of the first arm portion when viewed from above and below (that is, the hand moves in the radial direction of the cylindrical coordinate system).
  • Patent Document 4 describes that the position of the hand may be controlled based on the XY coordinate system.
  • the transfer robot described in Patent Document 4 is used in a semiconductor manufacturing system for manufacturing a semiconductor.
  • semiconductor wafer processing devices are arranged radially about the rotation center of the first arm unit, and the transfer robot is configured to rotate the first arm unit.
  • the semiconductor wafer is transferred by moving the hand radially around the moving center (that is, by moving the hand on a straight line passing through the rotation center of the first arm portion).
  • an object of the first invention is to drive a hand or an arm disposed in the atmosphere inside the arm in an industrial robot in which at least a part of the arm disposed in a vacuum has an atmospheric pressure.
  • An object of the present invention is to provide an industrial robot capable of efficiently cooling a motor.
  • the first drive motor that rotates the first arm part and the second arm part the second drive motor that rotates the third arm part
  • an industrial robot provided with two hand drive motors for rotating each of the two hands, the first arm unit, the second arm unit, the third arm unit, and the hand are operating.
  • the one arm part, the second arm part, the third arm part, or the hand may collide with, for example, a cassette in which a semiconductor wafer is accommodated or a processing apparatus for processing the semiconductor wafer to cause an unexpected accident.
  • an object of the present invention is to provide an industrial robot capable of making an emergency stop so that the posture of the arm is in a predetermined state, and a control method for the industrial robot.
  • the semiconductor wafer is processed radially around the rotation center of the first arm portion.
  • the device is arranged.
  • the installation area of the semiconductor manufacturing system tends to increase, and there is a need to change the layout of the processing apparatus to reduce the installation area of the semiconductor manufacturing system.
  • the semiconductor wafer is transferred by moving the hand linearly at a position that does not follow the straight line passing through the center of rotation of the first arm portion when viewed from above and below. There may be cases where it must be done.
  • the transfer robot described in Patent Document 4 includes three motors that rotate the first arm unit, the second arm unit, and the hand, when viewed from above and below, It is possible to move the hand linearly at a position that does not follow the straight line passing through the center of rotation. However, when the hand is moved linearly at a position that does not follow the straight line passing through the rotation center of the first arm portion when viewed from the vertical direction, teaching of the moving position of the hand may be complicated. is there.
  • the subject of the 4th invention is an arm which consists of a plurality of arm parts connected so that relative rotation is possible, a plurality of motors for rotating a plurality of arm parts, and a base end side of the arm is rotatable
  • an industrial robot comprising a main body connected to the arm, when viewed from the axial direction of the arm rotation, the tip end side of the arm is linear at a position that does not follow the imaginary line passing through the rotation center of the arm relative to the main body. It is an object of the present invention to provide an industrial robot capable of easily teaching the movement position on the tip side of an arm even when moving to a position.
  • the subject of 4th invention is the arm which consists of several arm parts connected so that relative rotation is possible, the several motor for rotating several arm parts, and the base end side of an arm is rotatable.
  • a control method for an industrial robot comprising a main body connected to the arm, the tip of the arm at a position not along a virtual line passing through the center of rotation of the arm relative to the main body when viewed from the axial direction of the arm rotation
  • An object of the present invention is to provide an industrial robot control method that can easily teach the movement position of the tip end side of an arm even when the side moves linearly.
  • the first invention is described in claims 1 to 6, but the industrial robot of the first invention is connected to the main body portion and the main body portion so that the base end side thereof is rotatable.
  • An arm having a first arm portion and a second arm portion whose base end side is rotatably connected to a distal end side of the first arm portion, and a pivotally connected to a distal end side of the second arm portion.
  • a hand a first motor for rotating the second arm relative to the first arm, a second motor for rotating the hand relative to the second arm, and rotation of the first motor And a second reducer for reducing the rotation of the second motor and transmitting it to the hand, and the hand and the arm are arranged in a vacuum
  • the first reducer and the second reducer are hollow reducers in which a through hole is formed at the center in the radial direction.
  • the first speed reducer and the second speed reducer are the center of rotation of the second arm part relative to the first arm part or the center of rotation of the hand relative to the second arm part, the axis center of the first speed reducer, and the second speed reducer.
  • the first joint portion that connects the first arm portion and the second arm portion, or the second joint portion that connects the second arm portion and the hand, is arranged so as to be coaxially overlapped with each other so as to coincide with the axial center of the first arm portion
  • the first motor, the second motor, the first speed reducer, and the second speed reducer are disposed in the internal space of the first arm portion or the second arm portion that is at least partly formed and formed in a hollow shape,
  • the internal space is characterized by atmospheric pressure.
  • the internal space of the first arm portion or the second arm portion formed in a hollow shape is atmospheric pressure, and the first motor, the second motor, and the second motor space are in the internal space.
  • a first reduction gear and a second reduction gear are arranged.
  • the first speed reducer and the second speed reducer arranged in the internal space overlap on the same axis so that the axial centers thereof coincide. Therefore, in the first invention, the internal space can be increased in the axial direction of the first reduction gear and the second reduction gear. That is, in the first invention, it is possible to increase the volume of air in the internal space by increasing the volume of the internal space that is at atmospheric pressure.
  • the first invention it is possible to efficiently cool the first motor and the second motor disposed in the internal space that is at atmospheric pressure.
  • the two reduction gears are arranged on the rotation center of the second arm portion with respect to the first arm portion or on the rotation center of the hand with respect to the second arm portion, It becomes possible to increase the rigidity of the joint part or the second joint part.
  • the first arm unit and the hand include a main body unit at the time of unloading the transfer object from the storage unit in which the transfer object mounted on the hand is stored and at the time of loading the transfer object into the storage unit.
  • the rotation angle of the first arm portion relative to the second arm portion is equal to the rotation angle of the hand relative to the second arm portion, the rotation direction of the first arm portion relative to the main body portion, and the rotation direction of the hand relative to the second arm portion. It is preferable to rotate so that is in the opposite direction. If comprised in this way, it will become possible to maintain the direction of the hand at the time of carrying out and carrying in of a conveyance target object. That is, with a relatively simple control, it is possible to keep the direction of the hand constant when the object to be conveyed is unloaded and loaded.
  • the first arm portion is attached to the main body portion so as to extend from the main body portion to one side in the horizontal direction, and the first arm portion has a counter extending from the main body portion to the other side in the horizontal direction.
  • a weight is attached. In this case, it is possible to reduce the load acting on the bearing that rotatably supports the first arm portion.
  • the industrial robot of 1st invention is the front end side of the main body part, the 1st arm part to which the base end side is rotatably connected with a main body part, and a 1st arm part
  • An arm having a second arm portion whose base end side is rotatably connected to the first arm portion and a third arm portion whose base end side is rotatably connected to the distal end side of the second arm portion;
  • a hand rotatably connected to the distal end of the first arm, a first motor for rotating the second arm relative to the first arm, and a third arm rotating relative to the second arm
  • a second reducer that decelerates the rotation of the two motors and transmits it to the third arm, and decelerates the rotation of the third motor
  • a hand and an arm are arranged in
  • the first arm portion is arranged so as to be coaxially overlapped so that the moving center, the rotation center of the third arm portion with respect to the second arm portion, or the rotation center of the hand with respect to the third arm portion coincides with each other.
  • At least two speed reducers arranged so as to overlap on the same axis, and among the first motor, the second motor, and the third motor connected to the at least two speed reducers At least two motors are arranged, and the internal space is at atmospheric pressure.
  • the internal space of the first arm portion, the second arm portion, or the third arm portion formed in a hollow shape is at atmospheric pressure, and the first reduction gear is provided in the internal space.
  • a motor Moreover, in 1st invention, the at least 2 reduction gear arrange
  • the present invention it is possible to increase the volume of air in the internal space by increasing the volume of the internal space that is at atmospheric pressure. Therefore, in the first invention, it is possible to efficiently cool at least two motors arranged in the internal space that is at atmospheric pressure.
  • the center of rotation of the second arm portion relative to the first arm portion the center of rotation of the third arm portion relative to the second arm portion, or the center of rotation of the hand relative to the third arm portion. Since at least two speed reducers are arranged on the top, it is possible to increase the rigidity of the first joint portion, the second joint portion, or the third joint portion.
  • an industrial robot includes a main body portion, a first arm portion whose base end side is rotatably connected to the main body portion, and a distal end side of the first arm portion.
  • An arm having a second arm portion whose base end side is rotatably connected to the first arm portion and a third arm portion whose base end side is rotatably connected to the distal end side of the second arm portion;
  • a hand rotatably connected to the distal end side of the first arm, a first motor for expanding and contracting the arm, a second motor for rotating the hand relative to the third arm portion, and rotation of the first motor.
  • the hand and the arm are disposed in a vacuum, and the first speed reducer And the second speed reducer is a hollow speed reducer in which a through hole is formed at the center in the radial direction.
  • the first speed reducer and the second speed reducer have an axial center thereof, a rotation center of the second arm part with respect to the first arm part, a rotation center of the third arm part with respect to the second arm part, or a third
  • the first joint part, the second arm part, and the third arm that are arranged so as to overlap on the same axis so that the center of rotation of the hand with respect to the arm part coincides, and that connects the first arm part and the second arm part
  • a first motor, a second motor, a first speed reducer, and a second speed reducer are arranged in the internal space of the arm portion, and the internal space is at atmospheric pressure.
  • the internal space of the first arm portion, the second arm portion or the third arm portion formed in a hollow shape is at atmospheric pressure, and the first motor and A second motor, a first speed reducer, and a second speed reducer are arranged.
  • the first speed reducer and the second speed reducer arranged in the internal space overlap on the same axis so that the axial centers thereof coincide. Therefore, in the first invention, the internal space can be increased in the axial direction of the first reduction gear and the second reduction gear. That is, in the first invention, it is possible to increase the volume of air in the internal space by increasing the volume of the internal space that is at atmospheric pressure.
  • the first invention it is possible to efficiently cool the first motor and the second motor disposed in the internal space that is at atmospheric pressure.
  • the center of rotation of the second arm portion relative to the first arm portion the center of rotation of the third arm portion relative to the second arm portion, or the center of rotation of the hand relative to the third arm portion. Since the two speed reducers are arranged on the top, the rigidity of the first joint portion, the second joint portion, or the third joint portion can be increased.
  • an industrial robot includes a main body, a first arm part whose base end side is rotatably connected to the main body part, and a distal end of the first arm part.
  • the base end side of which is pivotably connected to the side, and to the distal end side of the third arm portion and the third arm portion of which the proximal end side is pivotally connected.
  • An arm having a fourth arm portion whose base end side is rotatably connected, a hand rotatably connected to a distal end side of the fourth arm portion, and a second arm portion with respect to the first arm portion
  • a first motor for rotating the second arm a second motor for rotating the third arm with respect to the second arm, and a fourth arm for rotating with respect to the third arm.
  • a third motor, a fourth motor for rotating the hand relative to the fourth arm, and a first motor A first speed reducer that decelerates and transmits the rotation of the second motor, a second speed reducer that decelerates and transmits the rotation of the second motor to the third arm, and decelerates the rotation of the third motor.
  • the hand and the arm are disposed in a vacuum, and the first speed reducer
  • the second reducer, the third reducer, and the fourth reducer are hollow reducers in which a through hole is formed at the center in the radial direction, and the first reducer, the second reducer, the third reducer, and At least two of the fourth reduction gears have an axial center, a rotation center of the second arm portion with respect to the first arm portion, a rotation center of the third arm portion with respect to the second arm portion, a third The center of rotation of the fourth arm portion relative to the arm portion or the center of rotation of the hand relative to the fourth arm portion is the same.
  • at least two speed reducers arranged so as to overlap on the same axis, and a first motor connected to the at least two speed reducers
  • at least two of the second motor, the third motor, and the fourth motor are arranged, and the internal space is at atmospheric pressure.
  • the internal space of the first arm part, the second arm part, the third arm part, or the fourth arm part formed in a hollow shape is at atmospheric pressure.
  • At least two of the first reducer, the second reducer, the third reducer, and the fourth reducer, and a first motor, a second motor coupled to the at least two reducers, At least two motors of the third motor and the fourth motor are arranged.
  • positioned in interior space has overlapped on the same axis
  • the present invention it is possible to increase the volume of air in the internal space by increasing the volume of the internal space that is at atmospheric pressure. Therefore, in the first invention, it is possible to efficiently cool at least two motors arranged in the internal space that is at atmospheric pressure.
  • the rotation of the fourth arm on the rotation center of the second arm with respect to the first arm, the rotation of the third arm with respect to the second arm, and the rotation of the fourth arm with respect to the third arm Since at least two speed reducers are arranged on the center or on the center of rotation of the hand with respect to the fourth arm, the rigidity of the first joint, the second joint, the third joint, or the fourth joint Can be increased.
  • the industrial robot origin position return method of the second invention is a method of returning the industrial robot to the origin position.
  • This is a method for returning the home position of an industrial robot to be set, and the temporary current position coordinates of an industrial robot that is stopped in a state where the current position coordinates are unknown are set based on the state of the industrial robot.
  • the temporary current position coordinates of the industrial robot that is stopped in a state where the current position coordinates are lost are set. Therefore, it is possible to cause the industrial robot to perform an appropriate operation in the operation process based on the set temporary current position coordinates.
  • the industrial robot since the industrial robot is operated to a predetermined position in the operation process, for example, in the operation process, the industrial robot is returned to a position where the origin can be safely returned to the origin. In the operation process, the industrial robot can be safely and automatically returned to the origin position.
  • the origin position return method of the second invention when the industrial robot that is stopped in a state where the coordinates of the current position are lost is returned to the origin position by a complicated method such as manual operation by the operator. Compared to the above, it becomes possible to return the industrial robot to the origin position easily and safely.
  • the industrial robot has a hand on which the object to be transported is mounted and a plurality of arms that are rotatably connected, and the hand is rotatably connected to the tip side thereof.
  • a temporary center of rotation of the hand with respect to the arm is provided.
  • the industrial robot since the industrial robot is provided with a plurality of arm motors and hand motors, the industrial robot that has stopped in a state where the coordinates of the current position are not known can be manually operated by the operator.
  • the second invention it is possible to easily return the industrial robot to the origin position.
  • the coordinates of the temporary current position at the rotation center of the hand are set in the temporary current position setting step, the hand, the object to be transported, and the accommodating portion are prevented from interfering in the operation step. It becomes possible to operate industrial robots.
  • the industrial robot is operated in the operation process up to a position where the housing unit, the hand, and the conveyance object do not interfere with each other during the return operation of the industrial robot in the return operation process. Therefore, the industrial robot can be safely and automatically returned to the origin position in the return operation process.
  • the industrial robot is connected with a portable teaching operation terminal for teaching the operation position to the industrial robot. It is preferable that the coordinates of the temporary current position at the center of rotation of the hand are input to the teaching operation terminal to set the coordinates of the temporary current position at the center of rotation of the hand. If comprised in this way, it will become possible to set the coordinate of the temporary present position of the rotation center of a hand easily.
  • the hand moves linearly when viewed from the vertical direction that is the axial direction of rotation of the hand, and the transport object is carried into the storage part and the transport object from the storage part.
  • the industrial robot performs a linear interpolation operation so that the hand moves in the moving direction of the hand at the time of loading and unloading the object to be transported when viewed from above and below in the operation process. . If comprised in this way, in an operation
  • the cylindrical coordinate system coordinate and the orthogonal coordinate system coordinate defined in a plane orthogonal to the vertical direction that is the axial direction of the hand rotation are the vertical direction.
  • the coordinates of the temporary current position of the center of rotation of the hand when viewed from above can be set, and the hand when viewed from the top and bottom by either the coordinates of the cylindrical coordinate system or the coordinates of the orthogonal coordinate system It is preferable that the coordinates of the temporary current position at the center of rotation be set. If comprised in this way, the coordinate of the temporary present position of the rotation center of a hand when it sees from an up-down direction can be set with the coordinate of a coordinate system which is easy to operate an industrial robot in an operation
  • the industrial robot includes an operation member for operating the industrial robot in the operation process.
  • the industrial robot In the operation process, the industrial robot is operated while the operator of the industrial robot operates the operation member. It is preferable that the industrial robot is operated by a jog operation in which the industrial robot stops when the operator stops operating the operation member.
  • the amount of deviation between the temporary current position coordinates of the industrial robot set in the temporary current position setting step and the actual current position coordinates of the stopped industrial robot is large, and the operation If the operation of the industrial robot is continued as it is in the process, for example, even if the housing part and the hand interfere, by resetting the coordinates of the temporary current position while performing the jog operation, It becomes possible to prevent interference between the housing part and the hand in the operation process.
  • the industrial robot of the second invention has a hand on which the object to be transported is mounted and a plurality of arm portions that are rotatably connected, and the hand is on the tip side.
  • a rotation of the hand relative to the arm is provided.
  • the industrial robot according to the second aspect of the present invention uses the temporary current position coordinates of the hand rotation center of the industrial robot that has stopped in a state where the coordinates of the current position of the hand rotation center with respect to the arm are lost.
  • Temporary current position setting means for setting is provided. Therefore, in the second invention, by setting the temporary current position coordinates of the hand rotation center by the temporary current position setting means, the industrial robot obtains the coordinates of the temporary current position of the hand rotation center. I can grasp it. Therefore, in the second invention, it is possible to cause the industrial robot to perform an appropriate operation and return the industrial robot to the origin position.
  • the third invention is described in claims 14 to 18, but the industrial robot of the third invention comprises a plurality of arm portions connected so as to be relatively rotatable.
  • an industrial robot having an arm, a plurality of motors for rotating a plurality of arm units, a plurality of motor drivers for driving and controlling each of the plurality of motors, and a power source for supplying power to the plurality of motor drivers,
  • a charging / discharging unit that is connected to multiple motor drivers and can be charged by regenerative current generated by multiple motors, and a control execution unit that controls the multiple motor drivers.
  • the control execution unit stops the plurality of motors while controlling the plurality of motor drivers using the power supplied from the charging / discharging unit.
  • the power supply for supplying power to a plurality of motor drivers is turned off during the emergency stop. Therefore, in the third invention, it is possible to stop a plurality of motors in a relatively short time when the industrial robot is in an emergency stop, and it is possible to ensure safety in a relatively short time.
  • the control execution unit controls the motor driver using the power supplied from the charge / discharge unit that can be charged by the regenerative current generated by the plurality of motors at the time of emergency stop of the industrial robot. Multiple motors are stopped. That is, in the third invention, at the time of an emergency stop of the industrial robot, the plurality of motors are stopped while being controlled using the electric power supplied from the charge / discharge unit.
  • the industrial robot is arranged so that the posture of the arm is in a predetermined state. It becomes possible to make an emergency stop.
  • the industrial robot includes a hand rotatably connected to the distal end side of the arm, a hand motor for rotating the hand relative to the arm, and a hand for driving and controlling the hand motor.
  • the control execution unit stops the hand motor while controlling the hand motor driver using the power supplied from the charging / discharging unit during an emergency stop.
  • the industrial robot includes, for example, a main body portion in which the base end side of the arm is rotatably connected, and the base end side of the arm portion is rotatably connected to the main body portion.
  • a first motor for rotating the first arm part and a second motor for rotating the second arm part with respect to the first arm part are provided, and the first motor is driven and controlled as a motor driver.
  • a first motor driver and a second motor driver that drives and controls the second motor are provided.
  • the industrial robot includes an elevating motor for elevating the arm, an elevating motor driver for driving and controlling the elevating motor, a first brake for stopping the elevating motor, A second brake for stopping the lifting motor with a braking force larger than that of the brake, and the control execution unit controls the lifting motor driver, the first brake and the second brake, and at the time of emergency stop, After operating the brake, it is preferable to operate the second brake to stop the lifting motor. If comprised in this way, it will become possible to stop the raising / lowering motor by a 1st brake and a 2nd brake in a comparatively short time. Therefore, for example, even when an industrial robot in which the elevating motor is uncontrollable is emergency stopped, it is possible to prevent the arm from dropping.
  • the control execution unit controls the elevating motor driver so as to rotate.
  • the power charged in the charging / discharging unit may be consumed in a short time by the lifting motor driver during an emergency stop. If the power charged in the charging / discharging unit is consumed in a short time by the lifting / lowering motor driver during an emergency stop, the control execution unit may control the motor driver using the power supplied from the charging / discharging unit. There is a possibility that each of the plurality of arm portions may rotate freely and cause an unexpected accident.
  • the control execution unit operates the first brake having a small braking force to lower the rotation speed of the lifting motor, and then operates the second brake having a large braking force to operate the lifting motor. Is stopped, it becomes difficult for the elevating motor to stop suddenly, and as a result, it is possible to reduce the power of the charge / discharge unit consumed by the elevating motor driver during an emergency stop. Therefore, with this configuration, at the time of an emergency stop, the industrial robot is emergency stopped so that the posture of the arm is in a predetermined state by controlling a plurality of motors using the power supplied from the charge / discharge unit. It becomes possible.
  • a control method for an industrial robot includes an arm composed of a plurality of arm portions connected so as to be relatively rotatable and a plurality of arm portions for rotating the arm portion.
  • a plurality of motors By a plurality of motors, a plurality of motor drivers that drive and control each of the plurality of motors, a power source that supplies power to the plurality of motor drivers, and a regenerative current that is connected to the plurality of motor drivers and that is generated by the plurality of motors
  • a control method for an industrial robot comprising a chargeable / dischargeable part, wherein when the industrial robot is in an emergency stop, the power is turned off and a plurality of motor drivers are controlled by using electric power supplied from the charge / discharge part. However, a plurality of motors are stopped.
  • the power supply for supplying power to the plurality of motor drivers is turned off when the industrial robot is in an emergency stop. Therefore, in the third invention, it is possible to stop a plurality of motors in a relatively short time when the industrial robot is in an emergency stop, and it is possible to ensure safety in a relatively short time.
  • the plurality of motors are controlled while controlling the motor driver using the power supplied from the charging / discharging unit that can be charged by the regenerative current generated by the plurality of motors. Stopped.
  • the plurality of motors are stopped while being controlled using the electric power supplied from the charge / discharge unit. Therefore, according to the industrial robot control method of the third invention, even when the industrial robot includes a plurality of motors for rotating the plurality of arm portions, the posture of the arm is predetermined.
  • the industrial robot can be brought to an emergency stop so as to be in a state.
  • the fourth invention is described in claims 19 to 23, but the industrial robot of the fourth invention is provided with an arm composed of a plurality of arm portions connected so as to be relatively rotatable.
  • the control unit for controlling the industrial robot includes: Whether the industrial robot is controlled by a cylindrical coordinate system with the origin of the arm rotation center relative to the main body based on the posture and the movement direction of the arm, or with an orthogonal coordinate system with the arm rotation center as the origin It is characterized by switching whether to control an industrial robot.
  • a control method for an industrial robot includes an arm composed of a plurality of arm portions connected so as to be relatively rotatable, and a plurality of arm portions for rotating the arm portion.
  • an industrial robot control method comprising a plurality of motors and a main body portion rotatably connected to a base end side of the arm, the arm is rotated with respect to the main body portion based on the posture of the arm and the operation direction of the arm. It is characterized by switching between controlling the industrial robot in a cylindrical coordinate system with the center as the origin or controlling the industrial robot in an orthogonal coordinate system with the center of rotation of the arm as the origin.
  • the control unit controlling the industrial robot in a cylindrical coordinate system based on the arm rotation center with respect to the main body based on the arm posture and the arm movement direction? Or, it is switched whether to control the industrial robot in an orthogonal coordinate system with the rotation center of the arm as the origin.
  • the industrial robot control method according to the fourth aspect of the present invention, the industrial robot is controlled in a cylindrical coordinate system with the center of rotation of the arm relative to the main body as the origin based on the posture of the arm and the operating direction of the arm. Or whether to control the industrial robot in an orthogonal coordinate system with the rotation center of the arm as the origin.
  • the cylindrical coordinate system is used.
  • the front end side of the arm moves linearly at a position that does not follow the imaginary line passing through the center of rotation of the arm relative to the main body when viewed from the axial direction of arm rotation.
  • the coordinates of the cylindrical coordinate system are used. It is possible to teach the moving position of the arm tip side, and the arm tip side is linear at a position that does not follow the imaginary line passing through the arm rotation center when viewed from the axial direction of the arm rotation. When moving to the position, it is possible to teach the movement position on the tip side of the arm using the coordinates of the orthogonal coordinate system.
  • the cylindrical coordinate system is used when the tip end side of the arm linearly moves at a position not along the imaginary line passing through the center of rotation of the arm when viewed from the axial direction of the rotation of the arm. It is possible to teach the movement position on the distal end side of the arm using the coordinates of the orthogonal coordinate system instead of using the coordinates. As a result, in the fourth invention, even when the tip end side of the arm moves linearly at a position that does not follow the imaginary line passing through the center of rotation of the arm when viewed from the axial direction of the rotation of the arm. Thus, it is possible to easily teach the moving position on the tip side of the arm.
  • the industrial robot includes, for example, a hand rotatably connected to the distal end side of the arm and a hand motor for rotating the hand, and the base end thereof as the arm portion
  • a first arm portion whose side is rotatably connected to the main body portion, a base end side thereof is rotatably connected to a distal end side of the first arm portion, and a hand is rotatably connected to the distal end side thereof.
  • a second arm unit, and the control unit is configured to perform a first operation on an imaginary line passing through the center of rotation of the arm when viewed from the vertical direction that is the axial direction of rotation of the hand, the first arm unit, and the second arm unit.
  • the industrial robot When the center of rotation of the hand relative to the two arms moves linearly, the industrial robot is controlled by a cylindrical coordinate system, and the center of rotation of the hand is straight at a position that does not follow the virtual line when viewed from above and below.
  • the center of rotation of the hand When moving To control the industrial robot in the system.
  • the control part is in the state where the 1st arm part is not rotating with respect to a main-body part, and the 2nd arm part is not rotating with respect to a 1st arm part.
  • the industrial robot is controlled in the cylindrical coordinate system.
  • the control unit is in a state in which the second arm unit is not rotated with respect to the first arm unit and the hand is not rotated with respect to the second arm unit.
  • the industrial robot is controlled in the cylindrical coordinate system.
  • an industrial robot that has stopped in a state where the coordinates of the current position are lost cannot be easily returned to the origin position. It becomes possible to return. Further, in the industrial robot of the second invention, even if the industrial robot is stopped when the coordinates of the current position are not known, the industrial robot can be returned to the origin position by a simple method. .
  • the posture of the arm is in a predetermined state.
  • the industrial robot can be brought to an emergency stop.
  • the tip of the arm at a position that does not follow the imaginary line passing through the center of rotation of the arm relative to the main body when viewed from the axial direction of the rotation of the arm. Even when the side moves linearly, it is possible to easily teach the moving position on the tip side of the arm.
  • the tip of the arm at a position that does not follow the imaginary line passing through the center of rotation of the arm relative to the main body when viewed from the axial direction of rotation of the arm. Even when the side moves linearly, it is possible to easily teach the moving position on the tip side of the arm.
  • FIG. 1 It is a top view which shows the state in which the industrial robot concerning embodiment of this invention was integrated in the manufacturing system of the organic EL display.
  • FIG. 1 (A) is a top view
  • FIG. 2 It is a front view of the teaching operation terminal of the industrial robot shown in FIG. It is a figure for demonstrating the return process to an origin position when the industrial robot shown in FIG. 2 makes an emergency stop in the state where the coordinate of the present position is lost. It is a block diagram for demonstrating the structure of the control part relevant to the motor control of the industrial robot shown in FIG. It is a block diagram for demonstrating the structure of the control part relevant to the motor control of the industrial robot shown in FIG.
  • FIG. 1 is a plan view showing a state in which an industrial robot 1 according to an embodiment of the present invention is incorporated in an organic EL display manufacturing system 3.
  • 2A and 2B are views of the industrial robot 1 shown in FIG. 1, wherein FIG. 2A is a plan view and FIG. 2B is a side view.
  • FIG. 3 is a cross-sectional view for explaining the internal structure of the industrial robot 1 shown in FIG. 2 from the side.
  • FIG. 14 is a front view of the teaching operation terminal 19 of the industrial robot 1 shown in FIG. 2 according to the embodiment of the second invention.
  • FIG. 1 is a plan view showing a state in which an industrial robot 1 according to an embodiment of the present invention is incorporated in an organic EL display manufacturing system 3.
  • 2A and 2B are views of the industrial robot 1 shown in FIG. 1, wherein FIG. 2A is a plan view and FIG. 2B is a side view.
  • FIG. 3 is a cross-sectional view for explaining the internal structure of the industrial robot 1 shown in FIG.
  • FIG. 16 is a block diagram for illustrating a configuration of a control unit related to motor control of the industrial robot 1 shown in FIG. 2 according to an embodiment of the third invention.
  • FIG. 17 is a block diagram for explaining the configuration of the control unit 70 relating to the motor control of the industrial robot 1 shown in FIG. 2, which is an embodiment of the fourth invention.
  • the industrial robot 1 (hereinafter referred to as “robot 1”) of this embodiment uses a glass substrate 2 (hereinafter referred to as “substrate 2”) for an organic EL (organic electroluminescence) display, which is an object to be transported. It is a robot for transporting (horizontally articulated robot).
  • the robot 1 is a robot suitable for transporting a relatively large substrate 2. As shown in FIG. 1, the robot 1 is used by being incorporated in an organic EL display manufacturing system 3.
  • the manufacturing system 3 includes a transfer chamber 4 (hereinafter referred to as “chamber 4”) disposed in the center, and a plurality of process chambers 5 to 10 (hereinafter referred to as “chambers 5 to 10” disposed so as to surround the chamber 4). ")").
  • the inside of the chamber 4 and the chambers 5 to 10 are in a vacuum.
  • a part of the robot 1 is disposed inside the chamber 4.
  • a fork unit 21 (described later) constituting the robot 1 enters the chambers 5 to 10 enters the chambers 5 to 10, the robot 1 transports the substrate 2 between the chambers 5 to 10. That is, the robot 1 transports the substrate 2 in a vacuum.
  • Various devices and the like are arranged in the chambers 5 to 10, and the substrate 2 transferred by the robot 1 is accommodated.
  • various processes are performed on the substrate 2.
  • the chambers 5 to 10 in the present embodiment are storage units that store the substrate 2 that is a transfer object. A more specific configuration of the manufacturing system 3 will be described later.
  • the robot 1 includes a hand 13 on which the substrate 2 is mounted, an arm 14 to which the hand 13 is pivotally connected to a distal end side thereof, and a proximal end side of the arm 14 is rotated.
  • the main body part 15 connected so that it is possible and the raising / lowering mechanism 16 which raises / lowers the main body part 15 are provided.
  • the main body 15 and the lifting mechanism 16 are accommodated in a substantially bottomed cylindrical case body 17.
  • a flange 18 formed in a disk shape is fixed to the upper end of the case body 17.
  • a through hole in which the upper end side portion of the main body portion 15 is disposed is formed in the flange 18.
  • the robot 1 is connected to a portable teaching operation terminal (teaching pendant) 19 (see FIG. 14) for teaching the operation position to the robot 1 via a robot controller (not shown).
  • a portable teaching operation terminal such as a robot controller
  • the hand 13 and the arm 14 are arranged on the upper side of the main body 15. Further, the hand 13 and the arm 14 are disposed on the upper side of the flange 18.
  • a part of the robot 1 is disposed inside the chamber 4. Specifically, a portion of the robot 1 above the lower end surface of the flange 18 is disposed inside the chamber 4. That is, the part above the lower end surface of the flange 18 of the robot 1 is disposed in the vacuum region VR, and the hand 13 and the arm 14 are disposed in a vacuum.
  • a portion of the robot 1 below the lower end surface of the flange 18 is disposed in the atmospheric region AR (in the atmosphere).
  • the hand 13 includes a base 20 connected to the arm 14 and four forks 21 on which the substrate 2 is mounted.
  • the fork portion 21 is formed in a straight line. Of the four fork portions 21, two fork portions 21 are arranged in parallel with a predetermined distance therebetween.
  • the two fork portions 21 are fixed to the base portion 20 so as to protrude from the base portion 20 to one side in the horizontal direction.
  • the remaining two fork portions 21 are fixed to the base portion 20 so as to protrude from the base portion 20 toward the opposite side of the two fork portions 21 protruding from the base portion 20 to one side in the horizontal direction.
  • the arm 14 is composed of two arm parts, a first arm part 23 and a second arm part 24.
  • the first arm part 23 and the second arm part 24 are formed in a hollow shape.
  • the base end side of the first arm portion 23 is rotatably connected to the main body portion 15.
  • the proximal end side of the second arm portion 24 is rotatably connected to the distal end side of the first arm portion 23.
  • the hand 13 is rotatably connected to the distal end side of the second arm portion 24.
  • a connecting portion between the arm 14 and the main body portion 15 (that is, a connecting portion between the first arm portion 23 and the main body portion 15) is a joint portion 25.
  • a connecting portion between the first arm portion 23 and the second arm portion 24 is a joint portion 26.
  • a connecting portion between the arm 14 and the hand 13 (that is, a connecting portion between the second arm portion 24 and the hand 13) is a joint portion 27.
  • the distance between the rotation center of the second arm portion 24 relative to the first arm portion 23 and the rotation center of the first arm portion 23 relative to the main body portion 15 is the rotation center of the second arm portion 24 relative to the first arm portion 23.
  • the distance from the center of rotation of the hand 13 with respect to the second arm portion 24 is equal.
  • the joint part 26 is a first joint part that connects the first arm part 23 and the second arm part 24, and the joint part 27 is a second joint part that connects the second arm part 24 and the hand 13. It is.
  • the first arm portion 23 is attached to the main body portion 15 so as to extend from the main body portion 15 to one side in the horizontal direction.
  • a counterweight 28 is attached to the first arm portion 23 so as to extend from the main body portion 15 on the side opposite to the direction in which the first arm portion 23 extends (that is, the other side in the horizontal direction).
  • the second arm part 24 is disposed above the first arm part 23. Further, the hand 13 is disposed above the second arm portion 24.
  • a motor 31 for rotating the first arm portion 23 with respect to the main body portion 15 is attached to the main body portion 15.
  • the main body 15 includes a hollow rotary shaft 32 to which the proximal end side of the first arm portion 23 is fixed, a speed reducer 33 that decelerates rotation of the motor 31 and transmits it to the first arm portion 23, and a speed reducer 33.
  • a substantially cylindrical holding member 34 that holds the case body and rotatably holds the hollow rotary shaft 32 is provided.
  • a motor 31 as an arm motor for rotating the first arm portion 23 with respect to the main body portion 15 is attached to the main body portion 15.
  • the main body 15 is provided with a motor 31 as a first motor for rotating the first arm 23 with respect to the main body 15.
  • the reduction gear 33 is a hollow reduction gear in which a through hole is formed at the center in the radial direction.
  • the speed reducer 33 is arranged so that the axial center of the through hole coincides with the axial center of the hollow rotary shaft 32.
  • a motor 31 is connected to the input side of the speed reducer 33 via a pulley and a belt.
  • the lower end of the hollow rotary shaft 32 is fixed to the output side of the speed reducer 33.
  • a lower surface on the proximal end side of the first arm portion 23 is fixed to the upper end of the hollow rotary shaft 32.
  • the hollow rotary shaft 32 is disposed on the inner peripheral side of the holding member 34, and a bearing is disposed between the outer peripheral surface of the hollow rotary shaft 32 and the inner peripheral surface of the holding member 34.
  • a magnetic fluid seal 35 for preventing air from flowing into the vacuum region VR is disposed at the joint portion 25.
  • the magnetic fluid seal 35 is disposed between the outer peripheral surface of the hollow rotary shaft 32 and the inner peripheral surface of the holding member 34.
  • the joint portion 25 is provided with a bellows 36 for preventing air from flowing into the vacuum region VR.
  • a bellows 36 is disposed on the outer peripheral side of the magnetic fluid seal 35 and on the outer peripheral side of the holding member 34.
  • the lower end of the bellows 36 is fixed to the holding member 34, and the upper end of the bellows 36 is fixed to the flange 18.
  • the elevating mechanism 16 includes a screw member 38 that is arranged with the vertical direction as an axial direction, a nut member 39 that engages with the screw member 38, and a motor 40 that rotates the screw member 38.
  • the screw member 38 is rotatably attached to the bottom surface side of the case body 17.
  • the motor 40 is attached to the bottom surface side of the case body 17.
  • the screw member 38 is connected to the motor 40 via a pulley and a belt.
  • the nut member 39 is attached to the main body 15 via a predetermined bracket. In this embodiment, when the motor 40 rotates, the screw member 38 rotates, and the main body 15 moves up and down together with the nut member 39.
  • the lifting mechanism 16 includes a guide shaft for guiding the main body portion 15 in the vertical direction and a guide block that engages with the guide shaft and slides in the vertical direction.
  • the elevating mechanism 16 includes a screw member 38 arranged with the vertical direction as an axial direction, a nut member 39 engaged with the screw member 38, a motor 40 for rotating the screw member 38, and a first for stopping the motor 40.
  • a brake 41 as a brake and a brake 42 (see FIG. 16) as a second brake for stopping the motor 40 are provided.
  • the screw member 38 is rotatably attached to the bottom surface side of the case body 17.
  • the motor 40 is attached to the bottom surface side of the case body 17.
  • the screw member 38 is connected to the motor 40 via a pulley and a belt.
  • the nut member 39 is attached to the main body 15 via a predetermined bracket.
  • the motor 40 of this embodiment is a lifting motor for moving the arm 14 up and down.
  • the lifting mechanism 16 includes a guide shaft for guiding the main body portion 15 in the vertical direction and a guide block that engages with the guide shaft and slides in the vertical direction.
  • the brake 41 is attached to the lower end side of the screw member 38.
  • the brake 42 is built in the motor 40.
  • the brakes 41 and 42 are so-called non-excitation operation type brakes, and are a case body in which a coil is housed, a side plate fixed to the case body, and an armature that is arranged to be movable in the axial direction with respect to the case body. And a brake disc disposed between the side plate and the armature, and a compression coil spring that biases the armature toward the brake disc.
  • the brake disc is attached to the screw member 38, and in the brake 42, the brake disc is attached to the rotation shaft of the motor 40.
  • the brakes 41 and 42 when the coil is energized, the armature is sucked into the case body and the brake disc is released.
  • the brake disk In the brakes 41 and 42, when energization to the coil is stopped, the brake disk is sandwiched between the armature and the side plate by the biasing force of the compression coil spring, and the motor 40 is braked.
  • the braking force of the brake 42 is larger than the braking force of the brake 41.
  • the control unit of the robot 1 includes a motor driver 71 as a first motor driver for driving and controlling the motor 31, a motor driver 72 as a second motor driver for driving and controlling the motor 46, and a motor 47.
  • a motor driver 73 as a hand motor driver for driving and controlling the motor 40 and a motor driver 74 as a lifting motor driver for driving and controlling the motor 40 are provided.
  • the control unit of the robot 1 includes a delay circuit 75 for adjusting the operation timing of the brake 41 and a delay circuit 76 for adjusting the operation timing of the brake 42.
  • control unit of the robot 1 includes a power source 81 that supplies power to the motor drivers 71 to 74, a CPU (Central Processing Unit) 79 that controls the motor drivers 71 to 74, motors 31, 40, And a charge / discharge unit 80 connected to 46 and 47.
  • the CPU 79 also controls the brakes 41 and 42 via the delay circuits 75 and 76.
  • the charging / discharging unit 80 includes a relay, a diode, and a capacitor not shown.
  • the charging / discharging unit 80 can be charged by a regenerative current generated by the motors 31, 40, 46, 47. Specifically, the regenerative current generated by the motors 31, 40, 46, and 47 flows through the capacitor of the charge / discharge unit 80, so that the capacitor can be charged.
  • the teaching operation terminal 19 includes a display 70 on which various information and the like are displayed, and operation buttons 76 for performing various operations.
  • the robot 1 operates while the operator presses the operation button 76, and when the operator stops pressing the operation button 71 (that is, when the operation of the operation button 76 is stopped), the robot. Jog operation that stops 1 is possible.
  • the controller 70 for controlling the robot 1 includes a motor driver 71 for driving and controlling the motor 31 and a motor driver 72 for driving and controlling the motor 46, as shown in FIG.
  • the motor driver 73 that controls the motor 47 and the motor driver 74 that controls the motor 40 are provided.
  • the control unit 70 also includes a power source 81 that supplies power to the motor drivers 71 to 74 and a CPU (Central Processing Unit) 79 that controls the motor drivers 71 to 74.
  • a CPU Central Processing Unit
  • FIG. 4 is an enlarged view of the first arm portion 23 and the joint portion 26 shown in FIG.
  • the first arm portion 23 and the second arm portion 24 are formed in a hollow shape.
  • a motor 46 as a first motor for rotating the second arm portion 24 with respect to the first arm portion 23, and a second arm portion
  • a motor 47 as a second motor for rotating the hand 13 with respect to 24 is arranged.
  • the joint portion 26 serves as a first speed reducer 48 that decelerates the rotation of the motor 46 and transmits it to the second arm portion 24, and a second speed reducer that decelerates the rotation of the motor 47 and transmits it to the hand 13.
  • the reduction gear 49 is provided.
  • the speed reducers 48 and 49 are hollow speed reducers in which a through hole is formed at the center in the radial direction.
  • the joint portion 26 includes a hollow rotary shaft 50 and a hollow rotary shaft 51 disposed on the outer peripheral side of the hollow rotary shaft 50 and coaxially with the hollow rotary shaft 50.
  • an arm for rotating the second arm portion 24 with respect to the first arm portion 23 is provided in the internal space 45 of the first arm portion 23 formed in a hollow shape.
  • a motor 46 as a motor for use and a motor 47 as a hand motor for rotating the hand 13 with respect to the second arm portion 24 are disposed.
  • the inner space 45 of the first arm portion 23 formed in a hollow shape is provided with a second arm 24 for rotating the second arm portion 24 with respect to the first arm portion 23.
  • a motor 46 as two motors and a motor 47 as a hand motor for rotating the hand 13 with respect to the second arm portion 24 are arranged.
  • a motor for rotating the second arm portion 24 with respect to the first arm portion 23 is provided in the inner space 45 of the first arm portion 23 formed in a hollow shape. 46 and a motor 47 as a hand motor for rotating the hand 13 with respect to the second arm portion 24 are disposed.
  • a motor 46 is connected to the input side of the speed reducer 48 via pulleys 52 and 53 and a belt 54.
  • the lower end of the hollow rotary shaft 51 is fixed to the output side of the speed reducer 48.
  • the upper end of the hollow rotary shaft 51 is fixed to the lower surface on the proximal end side of the second arm portion 24.
  • the case body of the speed reducer 48 is fixed to a holding member 55 formed in a substantially cylindrical shape.
  • the holding member 55 is fixed to the first arm portion 23.
  • the holding member 55 is disposed on the outer peripheral side of the hollow rotary shaft 51.
  • a motor 47 is connected to the input side of the speed reducer 49 via pulleys 57 and 58 and a belt 59.
  • the lower end of the hollow rotary shaft 50 is fixed to the output side of the speed reducer 49.
  • a pulley 60 is fixed to the upper end of the hollow rotary shaft 50.
  • the pulley 60 is disposed inside the proximal end of the second arm portion 24 formed in a hollow shape.
  • a pulley 61 is disposed inside the distal end side of the second arm portion 24.
  • the pulley 61 is rotatably held on the distal end side of the second arm portion 24.
  • the lower surface of the base 20 of the hand 13 is fixed to the upper end surface of the pulley 61.
  • a belt 62 is bridged between the pulley 60 and the pulley 61.
  • the case body of the speed reducer 49 is fixed to a holding member 63 formed in a substantially cylindrical shape.
  • the holding member 63 is fixed to the first arm portion 23.
  • the speed reducer 48 and the speed reducer 49 are arranged so as to overlap on the same axis so that the axial center of the through hole coincides with the axial center of the hollow rotary shaft 51. That is, the speed reducer 48 and the speed reducer 49 are disposed so as to be coaxially overlapped so that the axial center thereof coincides with the rotation center of the second arm portion 24 with respect to the first arm portion 23. In this embodiment, the speed reducer 48 is disposed above the speed reducer 49.
  • the internal space 45 of the first arm portion 23 is sealed, and the pressure in the internal space 45 is atmospheric pressure.
  • the motors 46 and 47 are disposed in the internal space 45.
  • the speed reducers 48 and 49 are disposed in the internal space 45 on the distal end side of the first arm portion 23. That is, the motors 46 and 47 and the speed reducers 48 and 49 are disposed in the atmosphere.
  • a cooling pipe 64 for cooling the motor 46 is wound around the motor 46. Compressed air can be supplied to the cooling pipe 64, and the motor 46 is cooled by the compressed air passing through the inside of the cooling pipe 64. In this embodiment, since the amount of heat generated by the motor 47 is smaller than the amount of heat generated by the motor 46, no cooling pipe is wound around the motor 47.
  • the joint portion 26 is provided with magnetic fluid seals 65 and 66 for securing a sealed state of the internal space 45.
  • the magnetic fluid seals 65 and 66 that prevent the inflow of air from the internal space 45 to the vacuum region VR are disposed in the joint portion 26.
  • the magnetic fluid seal 65 is disposed between the outer peripheral surface of the hollow rotary shaft 50 and the inner peripheral surface of the hollow rotary shaft 51. It is arranged between.
  • a bearing is disposed between the outer peripheral surface of the hollow rotary shaft 50 and the inner peripheral surface of the hollow rotary shaft 51.
  • the internal space of the second arm portion 24 is in a vacuum.
  • the manufacturing system 3 includes the plurality of chambers 5 to 10 arranged so as to surround the chamber 4.
  • the manufacturing system 3 of this embodiment six chambers 5 to 10 are arranged so as to surround the chamber 4.
  • each of three directions orthogonal to each other is defined as an X direction, a Y direction, and a Z direction.
  • the robot 1 is arranged such that its vertical direction coincides with the Z direction. Therefore, in the following, the Z direction is the vertical direction.
  • the X1 direction side is the “right” side
  • the X2 direction side is the “left” side
  • the Y1 direction side is the “front” side
  • the Y2 direction side is the “rear (rear)” side.
  • the chamber 4 is formed so that the shape when viewed from above and below is a substantially octagonal shape.
  • the chambers 5 to 10 are formed so as to have a substantially rectangular shape when viewed from above and below, and the side surfaces of the chambers 5 to 10 are composed of the Y direction and the Z direction, or the Z direction and the X direction. Are arranged so as to be parallel to the ZX plane.
  • the chamber 5 is arranged so as to be connected to the left end of the chamber 4, and the chamber 6 is arranged so as to be connected to the right end of the chamber 4.
  • the chamber 7 and the chamber 8 are arranged so as to be connected to the rear end of the chamber 4.
  • the chamber 7 and the chamber 8 are adjacent in the left-right direction.
  • the chamber 7 is disposed on the left side, and the chamber 8 is disposed on the right side. Further, the chamber 9 and the chamber 10 are arranged so as to be connected to the front end of the chamber 4. The chamber 9 and the chamber 10 are adjacent in the left-right direction. In this embodiment, the chamber 9 is disposed on the left side, and the chamber 10 is disposed on the right side.
  • a virtual line parallel to the left and right direction passing through the rotation center C1 of the first arm portion 23 with respect to the main body 15 indicates the center position of the chambers 5 and 6 in the front and rear direction. It is arranged to pass.
  • the chambers 7 and 8 are arranged so that a virtual line parallel to the front-rear direction passing through the rotation center C ⁇ b> 1 passes through the center position in the left-right direction between the chambers 7 and 8. That is, the center positions of the chambers 7 and 8 in the left-right direction are offset with respect to the rotation center C1.
  • the chambers 9 and 10 are arranged such that a virtual line passing through the rotation center C1 and parallel to the front-rear direction passes through the center position in the left-right direction between the chambers 9 and 10. That is, the center positions of the chambers 9 and 10 in the left-right direction are offset with respect to the rotation center C1. Further, in the left-right direction, the chamber 7 and the chamber 9 are disposed at the same position, and the chamber 8 and the chamber 10 are disposed at the same position.
  • FIG. 5 is a diagram for explaining the movement of the industrial robot 1 when unloading the substrate 2 from the process chamber 5 shown in FIG. 1 and loading the substrate 2 into the process chamber 6.
  • FIG. 6 is a diagram for explaining the movement of the industrial robot 1 when the substrate 2 is carried into the process chamber 7 shown in FIG.
  • FIG. 7 is a diagram for explaining the movement of the industrial robot 1 when the substrate 2 is carried into the process chamber 9 shown in FIG.
  • FIG. 8 is a view for explaining the movement of the industrial robot 1 when the substrate 2 is carried into the process chamber 8 shown in FIG.
  • FIG. 9 is a view for explaining the movement of the industrial robot 1 when the substrate 2 is carried into the process chamber 10 shown in FIG.
  • the robot 1 drives the motors 31, 40, 46, 47 to transfer the substrate 2 between the chambers 5 to 10.
  • the robot 1 unloads the substrate 2 from the chamber 5 and loads the substrate 2 into the chamber 6. That is, as shown in FIG. 5A, the robot 1 extends the arm 14 and mounts the substrate 2 in the chamber 5 in a state where the fork portion 21 is parallel to the left-right direction, As shown in B), the arm 14 is contracted until the first arm portion 23 and the second arm portion 24 overlap in the vertical direction, and the substrate 2 is carried out of the chamber 5. Thereafter, the robot 1 rotates the hand 13 by 180 °, then extends the arm 14 and carries the substrate 2 into the chamber 6 as shown in FIG.
  • the robot 1 loads the substrate 2 unloaded from the chamber 5 into the chamber 7 (see FIG. 6).
  • the robot 1 first drives the motors 31, 46, 47 from the state where the arm 14 is contracted as shown in FIG. 6 (A), and the fork section as shown in FIG. 6 (B).
  • the rotation center C2 of the hand 13 with respect to the second arm portion 24 in the left-right direction and the chamber 7 in the left-right direction so that 21 is parallel to the front-rear direction and the substrate 2 is disposed on the rear end side of the hand 13
  • the hand 13, the first arm part 23, and the second arm part 24 are rotated so that their centers substantially coincide with each other.
  • the rotation center C2 linearly moves on an imaginary line parallel to the left-right direction passing through the rotation center C1.
  • the robot 1 extends the arm 14 and carries the substrate 2 into the chamber 7 as shown in FIG.
  • the rotation center C2 linearly moves on an imaginary line parallel to the front-rear direction passing through the center of the chamber 7 in the left-right direction. That is, at this time, when viewed from above and below, the rotation center C2 moves linearly at a position that does not follow the imaginary line that passes through the rotation center C1 (a position that deviates from the imaginary line that passes through the rotation center C1). To do.
  • the robot 1 carries, for example, the substrate 2 carried out of the chamber 5 into the chamber 9 (see FIG. 7).
  • the robot 1 first drives the motors 31, 46 and 47 from the contracted state of the arm 14 as shown in FIG. 7 (A), and as shown in FIG. 21 is parallel to the front-rear direction, the substrate 2 is arranged on the front end side of the hand 13, and in the left-right direction, the rotation center C2 and the center of the chamber 9 in the left-right direction substantially coincide with each other.
  • the hand 13, the first arm part 23, and the second arm part 24 are rotated.
  • the rotation center C2 linearly moves on an imaginary line parallel to the left-right direction passing through the rotation center C1.
  • the robot 1 extends the arm 14 and carries the substrate 2 into the chamber 9 as shown in FIG.
  • the rotation center C2 linearly moves on an imaginary line parallel to the front-rear direction passing through the center of the chamber 9 in the left-right direction. That is, at this time, when viewed from above and below, the rotation center C2 moves linearly at a position not along the imaginary line passing through the rotation center C1.
  • the robot 1 loads the substrate 2 unloaded from the chamber 5 into the chamber 8 (see FIG. 8).
  • the robot 1 first drives the motors 31, 46 and 47 from the contracted state of the arm 14 as shown in FIG. 8 (A), and as shown in FIG. 21 is parallel to the front-rear direction, the substrate 2 is disposed on the rear end side of the hand 13, and the center of rotation C2 and the center of the chamber 8 in the left-right direction substantially coincide with each other in the left-right direction.
  • the hand 13, the first arm part 23, and the second arm part 24 are rotated.
  • the rotation center C2 linearly moves on an imaginary line parallel to the left-right direction passing through the rotation center C1.
  • the robot 1 extends the arm 14 and carries the substrate 2 into the chamber 8 as shown in FIG.
  • the rotation center C2 moves linearly on an imaginary line parallel to the front-rear direction passing through the center of the chamber 8 in the left-right direction. That is, at this time, when viewed from above and below, the rotation center C2 moves linearly at a position not along the imaginary line passing through the rotation center C1.
  • the robot 1 loads the substrate 2 unloaded from the chamber 5 into the chamber 10 (see FIG. 9).
  • the robot 1 first drives the motors 31, 46 and 47 from the contracted state of the arm 14 as shown in FIG. 9 (A), so that the fork section as shown in FIG. 9 (B). 21 is parallel to the front-rear direction, the substrate 2 is disposed on the front end side of the hand 13, and in the left-right direction, the rotation center C2 and the center of the chamber 10 in the left-right direction substantially coincide with each other.
  • the hand 13, the first arm part 23, and the second arm part 24 are rotated.
  • the rotation center C2 linearly moves on an imaginary line parallel to the left-right direction passing through the rotation center C1.
  • the robot 1 extends the arm 14 and carries the substrate 2 into the chamber 10 as shown in FIG.
  • the rotation center C2 linearly moves on an imaginary line parallel to the front-rear direction passing through the center of the chamber 10 in the left-right direction. That is, at this time, when viewed from above and below, the rotation center C2 moves linearly at a position not along the imaginary line passing through the rotation center C1.
  • the hand 13 and the first arm part 23 have the same turning angle of the first arm part 23 with respect to the main body part 15 and the turning angle of the hand 13 with respect to the second arm part 24, and
  • the rotation direction of the first arm portion 23 with respect to the main body portion 15 and the rotation direction of the hand 13 with respect to the second arm portion 24 are reversed. That is, the motors 31 and 47 have the same rotation angle of the first arm portion 23 with respect to the main body portion 15 and the rotation angle of the hand 13 with respect to the second arm portion 24, and the first arm portion 23 with respect to the main body portion 15.
  • the rotation direction and the rotation direction of the hand 13 with respect to the second arm portion 24 rotate in the opposite direction.
  • the direction of the hand 13 is kept constant when the substrate 2 is unloaded and loaded. That is, when the substrate 2 is unloaded and loaded into the chambers 5 and 6, the direction of the hand 13 is maintained so that the fork portion 21 is parallel to the left-right direction, and when the substrate 2 is unloaded and loaded into the chambers 7 to 10, The orientation of the hand 13 is maintained so that the fork portion 21 is parallel to the front-rear direction.
  • FIG. 15 is a diagram for explaining the process of returning to the origin position when the industrial robot 1 shown in FIG. 2 is in an emergency stop with the coordinates of the current position being lost.
  • the robot 1 is in an emergency stop and the robot 1 is stopped in a state where the coordinates of the current position (current state) of the robot 1 are lost, the robot 1 is 1 is returned to the home position (reference state).
  • the robot 1 is brought to an emergency stop when the substrate 2 is unloaded or loaded into the chambers 5 and 6, when the fork portion 21 is parallel to the left and right direction and viewed from the up and down direction.
  • the motors 31, 46 and 47 are controlled so that the robot 1 stops in a state where the rotation center C2 is disposed on a virtual line parallel to the left-right direction passing through the rotation center C1.
  • the fork portion 21 is parallel to the front-rear direction and when viewed from the vertical direction
  • the motors 31, 46 and 47 are controlled so that the robot 1 stops in a state where the rotation center C2 is arranged on a virtual line parallel to the front-rear direction passing through the centers of the chambers 7 and 9.
  • the fork portion 21 is parallel to the front-rear direction and is viewed in the left-right direction when viewed from the up-down direction.
  • the motors 31, 46, 47 are controlled so that the robot 1 stops in a state where the rotation center C2 is disposed on a virtual line parallel to the front-rear direction passing through the centers of the chambers 8, 10.
  • the coordinates of the temporary current position of the robot 1 are set to the state of the robot 1.
  • Temporal current position setting step the coordinates of the temporary current position of the rotation center C2 are set. Specifically, the coordinate of the temporary current position of the rotation center C2 determined by visual confirmation by the operator who returns the robot 1 to the origin position is input to the teaching operation terminal 19, and the temporary position of the rotation center C2 is determined. Set the coordinates of the current position. That is, in the temporary current position setting step, the teaching operation terminal 19 is used to set the coordinates of the temporary current position of the rotation center C2.
  • the teaching operation terminal 19 of this embodiment is temporary current position setting means for setting the coordinates of the temporary current position of the rotation center C2.
  • the vertical direction is determined by either the coordinates of the cylindrical coordinate system defined on the plane orthogonal to the vertical direction or the coordinates of the orthogonal coordinate system defined on the plane orthogonal to the vertical direction.
  • the coordinates of the provisional current position of the rotation center C2 when viewed from above can be set, and the coordinates of the provisional current position of the rotation center C2 when viewed from the vertical direction can be set by any coordinate. Is done.
  • a cylindrical coordinate system is defined with the rotation center C1 as the origin, the distance from the rotation center C1 to the rotation center C2, the line connecting the rotation center C1 and the rotation center C2, and the rotation center C1.
  • the coordinates of the provisional current position of the rotation center C2 when viewed from above and below are set based on the angle formed with a predetermined reference line passing through.
  • the orthogonal coordinate system is defined so that the rotation center C1 is the origin, and one coordinate axis constituting the orthogonal coordinate system is parallel to the left-right direction, and the other coordinate axis is parallel to the front-rear direction.
  • the rotation center C2 Based on the distance between the rotation center C1 and the rotation center C2 in the left-right direction and the distance between the rotation center C1 and the rotation center C2 in the front-rear direction, the rotation center C2 when viewed from the up-down direction.
  • the coordinates of the tentative current position are set.
  • the robot 1 moves when the substrate 2 is unloaded or loaded into the chambers 5 and 6 arranged so that a virtual line parallel to the left-right direction passing through the rotation center C1 passes through the center position in the front-rear direction.
  • the coordinates of the provisional current position of the rotation center C2 when viewed from the vertical direction in the coordinates of the cylindrical coordinate system are set.
  • the coordinates of the Cartesian coordinate system are viewed from above and below. The coordinates of the temporary current position of the rotation center C2 at that time are set.
  • the coordinates of the temporary current position of the rotation center C2 when viewed from the vertical direction in addition to the coordinates of the temporary current position of the rotation center C2 when viewed from the vertical direction, the coordinates of the temporary current position of the rotation angle of the hand 13 with respect to the second arm portion 24 and The coordinates of the temporary current position at the height of the rotation center C2 may be set. These settings are also performed by inputting the coordinates of the temporary current position determined by visual confirmation by the operator to the teaching operation terminal 19.
  • a predetermined mark is provided on the hand 13 and the chambers 5 to 10, and when the mark on the hand 13 and the mark on the chambers 5 to 10 coincide when viewed from above and below,
  • the coordinates of the rotation center C2 are defined in advance, and when the operator visually determines the coordinates of the temporary current position of the rotation center C2, the positional relationship between the mark of the hand 13 and the marks of the chambers 5 to 10 is determined. To determine the coordinates of the temporary current position of the rotation center C2.
  • the coordinates of the rotation center C2 when the rotation center C2 is located at the end of the movable range of the rotation center C2 in the front, rear, left, and right directions are defined in advance, and the temporary current position of the rotation center C2 is visually confirmed by the operator. Is determined based on the movable range end of the rotation center C2 as a reference.
  • the robot 1 When the coordinates of the temporary current position of the rotation center C2 are set in the temporary current position setting process, the robot 1 is moved to a predetermined position (operation process). In the operation process, the robot 1 is moved to a position where the hand 13 or the substrate 2 and the chambers 5 to 10 do not interfere during the return operation of the robot 1 in the return operation process described later. For example, as shown in FIG. 10 (A), when the robot 1 is in an emergency stop state with the left end side of the hand 13 being inside the chamber 5, as shown in FIG. Then, the arm 14 is contracted so that the entire hand 13 moves to the outside of the chamber 5. Further, for example, as shown in FIGS.
  • the rear end side or the front end side of the hand 13 enters the inside of the chambers 7 to 10.
  • the robot 1 is in an emergency stop in the state of being in the state, as shown in FIG. 6B, FIG. 7B, FIG. 8B, and FIG.
  • the arm 14 is contracted so that it moves to the outside of the chambers 7 to 10.
  • the robot 1 is caused to perform a linear interpolation operation so that the hand 13 moves in the moving direction of the hand 13 when the substrate 2 is carried into and out of the chambers 5 to 10. That is, at this time, the robot 1 is caused to perform a linear interpolation operation so that the rotation center C2 moves in the moving direction of the rotation center C2 when the substrate 2 is carried into and out of the chambers 5 to 10.
  • the robot 1 is operated by a jog operation using the operation button 71 of the teaching operation terminal 19.
  • the operation button 71 of this embodiment is an operation member for operating the robot 1 in the operation process.
  • the robot 1 After operating the robot 1 in the operation process, the robot 1 is automatically returned to the origin position (return operation process). In this return operation step, the robot 1 is automatically returned to the origin position by a known method.
  • the CPU 79 When the robot 1 is in an emergency stop, the CPU 79 first operates the brake 41 (that is, stops energization of the coil of the brake 41), and after a predetermined time has elapsed since the brake 41 was operated, Is operated (that is, energization of the coil of the brake 42 is stopped), and the motor 40 is stopped. That is, the CPU 79 operates the brake 41 and then operates the brake 42 to stop the motor 40 when the robot 1 is in an emergency stop. For example, the CPU 79 operates the brake 42 after several hundred milliseconds have elapsed since the operation of the brake 41 so that the main body 15 does not fall.
  • the CPU 79 stops the motors 31, 46 and 47 while controlling the motor drivers 71 to 73 using the power supplied from the charging / discharging unit 80 when the robot 1 is in an emergency stop. That is, the CPU 79 rotates the motors 31, 46, 47 using the power stored in the charge / discharge unit 80 in advance and the power stored in the charge / discharge unit 80 by the regenerative current generated in the motors 31, 46, 47. While managing the position, the motors 31, 46, 47 are stopped.
  • the hand 13 moves linearly in the moving direction of the hand 13 when the emergency stop is applied while maintaining the orientation of the hand 13 when the emergency stop is applied (more specifically,
  • the CPU 79 stops the motors 31, 46 and 47 while controlling the motor drivers 71 to 73 so that the rotation center C2 moves linearly.
  • the CPU 79 controls the motor driver 74 so that the motor 40 does not stop more suddenly than necessary when the brakes 41 and 42 are operated during an emergency stop of the robot 1. Specifically, when the motor 40 is likely to stop more suddenly than necessary when the brakes 41 and 42 are operated, the CPU 79 causes the motor driver to rotate further in the direction of rotation of the motor 40 when an emergency stop is applied. 74 is controlled. At this time, power is supplied from the charging / discharging unit 80 to the motor driver 74.
  • the control unit 70 of the present embodiment is based on the posture of the arm 14 and the operation direction of the arm 14, and the center of rotation of the first arm unit 23 relative to the main body 15 (that is, the center of rotation of the arm 14 relative to the main body 15). It is switched whether the robot 1 is controlled in a cylindrical coordinate system having C1 as an origin or whether the robot 1 is controlled in an orthogonal coordinate system having a rotation center C1 as an origin. That is, the control unit 70 controls the motor drivers 71 to 74 in the cylindrical coordinate system based on the posture of the arm 14 and the operation direction of the arm 14, or controls the motor drivers 71 to 74 in the orthogonal coordinate system. Switch between.
  • control unit 70 moves the robot 1 in a cylindrical coordinate system when the rotation center C2 of the hand 13 moves linearly on an imaginary line passing through the rotation center C1 when viewed from above and below. Control. That is, when the rotation center C2 of the hand 13 moves linearly on an imaginary line passing through the rotation center C1 when viewed from the vertical direction, the control unit 70 moves from the rotation center C1 to the rotation center C2.
  • the robot 1 is controlled by a cylindrical coordinate system based on a distance between the rotation center C1 and the rotation center C2 and an angle formed by a predetermined reference line passing through the rotation center C1.
  • the control unit 70 controls the robot 1 in a cylindrical coordinate system.
  • the arm 14 is contracted until the first arm portion 23 and the second arm portion 24 overlap in the vertical direction (FIG. 6A, 7A, FIG. 8A, and FIG. 9A), the fork portion 21 is parallel to the front-rear direction, and the substrate 2 is disposed on the front end side or the rear end side of the hand 13.
  • the position where the rotation center C2 and the centers of the chambers 7 to 10 in the left-right direction substantially coincide FIGGS. 6B, 7B, 8B, 9).
  • the control unit 70 controls the robot 1 in the cylindrical coordinate system.
  • the control unit 70 controls the robot 1 using an orthogonal coordinate system.
  • the orthogonal coordinate system is defined so that one coordinate axis constituting the orthogonal coordinate system is parallel to the left-right direction and the other coordinate axis is parallel to the front-rear direction.
  • the control unit 70 determines the distance between the rotation center C1 and the rotation center C2 in the left-right direction and the front-rear direction.
  • the robot 1 is controlled by an orthogonal coordinate system based on the distance between the rotation center C1 and the rotation center C2.
  • the fork portion 21 is parallel to the front-rear direction and the substrate 2 is disposed on the front end side or the rear end side of the hand 13, and In the left-right direction, the position where the rotation center C2 and the centers of the chambers 7 to 10 in the left-right direction substantially coincide (FIGS. 6B, 7B, 8B, and 9B). And the position where the arm 14 extends until the fork 21 enters the chambers 7 to 10 (see FIGS. 6C, 7C, 8C, and 9C).
  • the control unit 70 controls the robot 1 in the orthogonal coordinate system.
  • control unit 70 is in a state where the first arm unit 23 is not rotated with respect to the main body unit 15 and the second arm unit 24 is not rotated with respect to the first arm unit 23.
  • the robot is controlled in a cylindrical coordinate system.
  • control unit 70 is configured so that the second arm unit 24 is not rotated with respect to the first arm unit 23 and the hand 13 is not rotated with respect to the second arm unit 24. Even when the first arm unit 23 rotates with respect to the unit 15, the robot 1 is controlled by the cylindrical coordinate system.
  • the moving position of the rotation center C2 when controlled by the cylindrical coordinate system is taught using the coordinates of the cylindrical coordinate system.
  • the movement position of the rotation center C2 when controlled in the orthogonal coordinate system is taught using the coordinates of the orthogonal coordinate system.
  • the position of the rotation center C2 when viewed from the vertical direction is the case where the robot 1 is controlled in the cylindrical coordinate system and the case where the robot 1 is controlled in the orthogonal coordinate system.
  • the height of the hand 13 and the rotation angle of the hand 13 with respect to the second arm portion 24 are controlled.
  • the internal space 45 of the first arm portion 23 formed in a hollow shape is atmospheric pressure, and the motors 46 and 47 and the speed reducers 48 and 49 are contained in the internal space 45. Is arranged. Further, in this embodiment, the speed reducer 48 and the speed reducer 49 arranged in the internal space 45 overlap on the same axis so that the axial centers thereof coincide. Therefore, in the present embodiment, it is possible to increase the thickness of the first arm portion 23 in the vertical direction that is the axial direction of the speed reducers 48 and 49.
  • the internal space 45 can be enlarged in the vertical direction, the volume of the internal space 45 in which the internal pressure is atmospheric pressure is increased, and the amount of air in the internal space 45 is increased. It becomes possible to increase. Therefore, in this embodiment, the motors 46 and 47 disposed in the internal space 45 can be efficiently cooled. As a result, in this embodiment, it is possible to prevent the motors 46 and 47 from being damaged due to heat.
  • the distance between the rotation center of the second arm portion 24 relative to the first arm portion 23 and the rotation center of the first arm portion 23 relative to the main body portion 15 is relative to the first arm portion 23.
  • the distance between the rotation center of the second arm portion 24 and the rotation center of the hand 13 with respect to the second arm portion 24 is equal, and the length of the first arm portion 23 is relatively long. Therefore, in this embodiment, it is possible to increase the volume of the internal space 45 and increase the amount of air in the internal space 45.
  • the motors 46 and 47 disposed in the internal space 45 are more It becomes possible to cool efficiently. In this embodiment, since the cooling pipe 64 is wound around the motor 46, the motor 46 can be cooled more efficiently.
  • the motors 46 and 47 and the speed reducers 48 and 49 are arranged in the internal space 45 where the internal pressure is atmospheric pressure, the hand 13 and the arm 14 are vacuumed. It is not necessary to use an expensive lubricant such as vacuum grease as a lubricant for the motors 46 and 47 and the speed reducers 48 and 49, but a lubricant such as grease used at atmospheric pressure. Should be used. Therefore, in this embodiment, the initial cost and running cost of the robot 1 can be reduced.
  • a part of the joint portion 26 is constituted by the speed reducers 48 and 49. Therefore, in this embodiment, it is possible to increase the rigidity of the joint portion 26.
  • the speed reducers 48 and 49 are hollow speed reducers, and are arranged coaxially so that the axial center thereof coincides with the rotation center of the second arm part 24 with respect to the first arm part 23. . That is, in this embodiment, two speed reducers 48 and 49 are arranged on the center of rotation of the second arm portion 24 relative to the first arm portion 23. For this reason, in this embodiment, the rigidity of the joint portion 26 can be further increased. Therefore, in this embodiment, even if the robot 1 transports a relatively large substrate 2, it is possible to prevent the joint portion 26 from being damaged.
  • the substrate 2 When the substrate 2 is transported between the chambers 5 to 10 with the direction of the hand 13 being kept constant when the substrate 2 is unloaded and loaded, as in the present embodiment of the first invention, it is relatively large. When the substrate 2 is conveyed, a large load is applied to the joint portion 26, but a large load is not applied to the joint portion 27. Therefore, in this embodiment, even if the joint portion 27 is configured by the pulley 61 or the like, the joint portion 27 is unlikely to be damaged.
  • the hand 13 and the first arm portion 23 are rotated with respect to the main body portion 15 and the hand with respect to the second arm portion 24 when the substrate 2 is unloaded and loaded.
  • the rotation angles of the first arm portion 23 with respect to the main body portion 15 and the rotation direction of the hand 13 with respect to the second arm portion 24 are opposite to each other.
  • the orientation of the hand 13 at the time of unloading and loading of the substrate 2 is kept constant. That is, in this embodiment, it is possible to keep the orientation of the hand 13 constant when the substrate 2 is unloaded and loaded with relatively simple control.
  • a counterweight 28 extending from the main body portion 15 is attached to the first arm portion 23 extending from the main body portion 15 to one side in the horizontal direction opposite to the direction in which the first arm portion 23 extends. ing. Therefore, in this embodiment, it is possible to reduce the load acting on the bearing disposed between the outer peripheral surface of the hollow rotary shaft 32 to which the first arm portion 23 is fixed and the inner peripheral surface of the holding member 34. .
  • the temporary current position coordinates of the rotation center C2 of the robot 1 that is in an emergency stop with the current position coordinates being unknown are set.
  • the robot 1 can grasp the coordinates of the temporary current position of the rotation center C2. Therefore, in the present embodiment, the robot 1 is suitable for the robot 1 while interlocking the first arm portion 23, the second arm portion 24, and the hand 13 in the operation process based on the set coordinates of the temporary current position of the rotation center C2. Can be performed.
  • the robot 1 in the operation process, can be caused to perform a linear interpolation operation so that the hand 13 moves in the moving direction of the hand 13 when the substrate 2 is carried into and out of the chambers 5 to 10. 13 and the substrate 2 and the chambers 5 to 10 can be prevented from interfering with each other.
  • the robot 1 since the robot 1 is moved to a position where the hand 13 and the substrate 2 and the chambers 5 to 10 do not interfere with each other during the return operation of the robot 1 in the operation process, the robot is moved to the origin position in the return operation process. 1 can be safely restored.
  • the coordinates of the temporary current position of the rotation center C2 determined by visual confirmation by the operator are input to the teaching operation terminal 19, and the rotation center C2 is input.
  • the coordinates of the tentative current position are set. Therefore, in this embodiment, it is possible to easily set the coordinates of the temporary current position of the rotation center C2.
  • the temporary current position coordinates of the rotation center C2 can be set by any of the coordinates of the cylindrical coordinate system or the coordinates of the orthogonal coordinate system.
  • the coordinates of the temporary current position of the rotation center C2 are set by any of the coordinates. Therefore, in this embodiment, the coordinates of the provisional current position of the rotation center C2 can be set with the coordinates of the coordinate system in which the robot 1 can be easily operated in the operation process. That is, as described above, when the substrate 2 is unloaded or loaded into the chambers 5 and 6 arranged so that the imaginary line parallel to the left-right direction passing through the rotation center C1 passes through the center position in the front-rear direction.
  • the coordinates of the temporary current position of the rotation center C2 can be set in the coordinates of the cylindrical coordinate system, and the chamber is offset from the rotation center C1 in the left-right direction.
  • the coordinates of the temporary current position of the rotation center C2 can be set by the coordinates of the orthogonal coordinate system.
  • the robot 1 is operated by a jog operation using the operation button 71 of the teaching operation terminal 19 in the operation process. For this reason, in this embodiment, the amount of deviation between the coordinates of the temporary current position of the rotation center C2 set in the temporary current position setting step and the coordinates of the actual current position of the rotation center C2 of the robot 1 that is stopped. Even if the hand 13 or the substrate 2 and the chambers 5 to 10 interfere with each other if the robot 1 continues to operate as it is in the operation process, the coordinates of the temporary current position can be obtained while performing the jog operation. By resetting, it is possible to prevent interference between the hand 13 and the substrate 2 and the chambers 5 to 10 in the operation process.
  • the power supply 81 is turned off when the robot 1 is in an emergency stop. Therefore, in this embodiment, when the robot 1 is in an emergency stop, the motors 31, 40, 46, 47 can be stopped in a relatively short time, and as a result, safety can be ensured in a relatively short time. become.
  • the CPU 79 stops the motors 31, 46 and 47 while controlling the motor drivers 71 to 73 using the power supplied from the charging / discharging unit 80. Yes. That is, in this embodiment, when the robot 1 is in an emergency stop, the motors 31, 46, and 47 are stopped while being controlled using the power supplied from the charging / discharging unit 80. Therefore, in this embodiment, a motor 46 that rotates the first arm portion 23, a motor 47 that rotates the second arm portion 24, and a motor 31 that rotates the hand 13 are provided separately.
  • the CPU 79 keeps the direction of the hand 13 when the emergency stop is applied, and moves the hand 13 linearly in the moving direction of the hand 13 when the emergency stop is applied.
  • the motors 31, 46 and 47 can be stopped while controlling the motor drivers 71 to 73. Therefore, in the present embodiment, it is possible to prevent contact between the hand 13 and the chambers 5 to 10 and contact between the arm 14 and the chambers 5 to 10 at the time of an emergency stop. Occurrence can be prevented.
  • the CPU 79 when the robot 1 is in an emergency stop, the CPU 79 operates the brake 41 and then operates the brake 42 having a braking force larger than that of the brake 41 to stop the motor 40. Therefore, in this embodiment, the motor 40 can be stopped in a relatively short time by the brakes 41 and 42. Therefore, in this embodiment, it is possible to prevent the main body portion 15 from falling even when the robot 1 in which the motor 40 is uncontrollable is emergency-stopped.
  • the brake 42 having a large braking force in order to stop the motor 40 in a shorter time, it is preferable to immediately operate the brake 42 having a large braking force at the time of emergency stop.
  • the CPU 79 moves the motor 40 in the rotation direction of the motor 40 when the emergency stop is applied so that the motor 40 does not stop more suddenly than necessary.
  • the motor driver 74 is controlled so as to further rotate, and electric power is supplied from the charging / discharging unit 80 to the motor driver 74. If the brake 42 having a large braking force is actuated immediately at the time of emergency stop, the motor 40 is likely to stop suddenly more than necessary.
  • the electric power supplied from the charging / discharging unit 80 to the motor driver 74 increases, and the electric power charged in the charging / discharging unit 80 may be consumed by the motor driver 74 in a short time.
  • the CPU 79 uses the electric power supplied from the charging / discharging unit 80 to drive the motor drivers 71-73. It becomes impossible to control, and each of the first arm part 23, the second arm part 24, and the hand 13 may rotate freely, causing an unexpected accident.
  • the CPU 79 operates the brake 41 to reduce the rotational speed of the motor 40 and then the brake 42 having a braking force larger than that of the brake 41. Since the motor 40 is stopped by operating the motor 40, it is difficult for the motor 40 to stop suddenly. As a result, it is possible to reduce the power of the charging / discharging unit 80 consumed by the motor driver 74 at the time of emergency stop. .
  • the motors 31, 46, 47 are controlled using the electric power supplied from 80 to maintain the direction of the hand 13 when an emergency stop is applied, while moving the hand 13 in the moving direction of the hand 13 when the emergency stop is applied. , The motors 31, 46, 47 can be stopped while moving linearly.
  • the orthogonal coordinate system is defined so that one coordinate axis constituting the orthogonal coordinate system is parallel to the left-right direction and the other coordinate axis is parallel to the front-rear direction, and the vertical direction
  • the rotation center C2 moves linearly at a position that does not follow the imaginary line passing through the rotation center C1 when viewed from above, the rotation center C2 passes through the centers of the chambers 7 to 10 in the left-right direction. Move linearly on an imaginary line parallel to the front-rear direction.
  • the robot 1 is controlled by the cylindrical coordinate system when the rotation center C2 moves linearly on an imaginary line passing through the rotation center C1 when viewed from above and below.
  • the robot 1 is controlled by the orthogonal coordinate system. It becomes easy to control.
  • FIG. 10 is a view for explaining a schematic configuration of an industrial robot 1 according to another embodiment of the first invention from the side.
  • the motors 46 and 47 and the speed reducers 48 and 49 are arranged in the internal space 45 of the first arm portion 23. Specifically, motors 46 and 47 and speed reducers 48 and 49 are arranged in the internal space 45 on the distal end side of the first arm portion 23, and the speed reducers 48 and 49 constitute a part of the joint portion 26. ing. In addition to this, for example, motors 46 and 47 and speed reducers 48 and 49 may be arranged in the internal space of the second arm portion 24 in which the internal pressure is atmospheric pressure. For example, motors 46 and 47 and speed reducers 48 and 49 may be disposed in the internal space on the proximal end side of the second arm portion 24.
  • the speed reducers 48 and 49 are arranged so as to be coaxially overlapped so that the axial center thereof coincides with the rotation center of the second arm portion 24 with respect to the first arm portion 23, and the joint portion 26. Part of it.
  • the internal space 45 of the first arm portion 23 may be in a vacuum.
  • motors 46 and 47 and speed reducers 48 and 49 may be arranged in the internal space on the distal end side of the second arm portion 24.
  • the speed reducer 48 and the speed reducer 49 are arranged so as to overlap on the same axis so that the center of the shaft and the center of rotation of the hand 13 with respect to the second arm portion 24 coincide with each other. Part of it.
  • the internal space of the second arm portion 24 can be increased in the vertical direction, which is the axial direction of the speed reducers 48 and 49, and therefore the internal pressure is the atmospheric pressure. It becomes possible to increase the volume of the air in the internal space of the second arm portion 24 by increasing the volume of the internal space of the two arm portion 24.
  • the motors 46 and 47 disposed in the internal space of the second arm portion 24 can be efficiently cooled.
  • the two speed reducers 48 and 49 are arranged on the center of rotation of the hand 13 with respect to the second arm portion 24, the rigidity of the joint portion 27 can be increased.
  • FIG. 11 is a plan view of an industrial robot 1 according to another embodiment of the first invention.
  • the arm 14 is composed of one first arm portion 23 and one second arm portion 24.
  • the arm 14 may be composed of one first arm portion 23 and two second arm portions 24.
  • the 1st arm part 23 is formed in the substantially V shape or linear form, and the center part becomes a base end part connected with the main-body part 15 so that rotation is possible.
  • the second arm portion 24 is rotatably connected to each of the two distal ends of the first arm portion 23, and the two distal ends of the first arm portion 23 are connected to each other.
  • a joint portion 26 is formed in each.
  • a part of the joint portion 26 is configured by the speed reducers 48 and 49 in the same manner as described above, and the first arm is provided at each of the two distal ends of the first arm portion 23.
  • Motors 46 and 47 and speed reducers 48 and 49 are arranged in the internal space 45 of the section 23.
  • the internal space 45 is at atmospheric pressure.
  • only two fork portions 21 protruding to one side in the horizontal direction are attached to the base portion 20 of the hand 13.
  • the same reference numerals are given to the same configurations as the configurations of the above-described embodiments or configurations corresponding to the configurations of the above-described embodiments.
  • FIG. 12 is a plan view of an industrial robot 1 according to another embodiment of the first invention.
  • the robot 1 includes one arm 14.
  • the robot 1 may include two arms 14 whose base end side is rotatably connected to the main body 15.
  • a part of the joint portion 26 is configured by the speed reducers 48 and 49, and the internal space of the first arm portion 23 is formed on the distal end side of the first arm portion 23.
  • motors 46 and 47 and speed reducers 48 and 49 are arranged.
  • the internal space 45 is at atmospheric pressure.
  • only two fork portions 21 protruding to one side in the horizontal direction are attached to the base portion 20 of the hand 13.
  • symbol is attached
  • FIG. 13 is a view for explaining a schematic configuration of an industrial robot 1 according to another embodiment of the first invention from the side.
  • the arm 14 is composed of two arm parts, the first arm part 23 and the second arm part 24.
  • the arm 14 may be configured by three arm portions of a first arm portion 23, a second arm portion 24, and a third arm portion 75.
  • the base end side of the first arm portion 23 is rotatably connected to the main body portion 15, and the base end side of the second arm portion 24 is connected to the distal end side of the first arm portion 23. It is connected so that it can rotate.
  • the proximal end side of the third arm portion 75 is rotatably connected to the distal end side of the second arm portion 24, and the hand 13 is rotatably connected to the distal end side of the third arm portion 75.
  • the connecting portion between the first arm portion 23 and the second arm portion 24 is a joint portion 26, and the robot 1 is connected to the first arm portion 23.
  • a motor 46 as a first motor for rotating the second arm portion 24 and a speed reducer 48 as a first speed reducer that reduces the rotation of the motor 46 and transmits it to the second arm portion 24.
  • the connecting portion between the second arm portion 24 and the third arm portion 75 is a joint portion 77, and the connecting portion between the third arm portion 75 and the hand 13 is a joint portion 78.
  • the robot 1 has a motor 87 as a second motor for rotating the third arm unit 75 with respect to the second arm unit 24 and a third for rotating the hand 13 with respect to the third arm unit 75.
  • a reduction gear 90 as a machine.
  • the speed reducers 89 and 90 are hollow speed reducers in which a through hole is formed at the center in the radial direction.
  • the joint part 26 is a first joint part
  • the joint part 77 is a second joint part
  • the joint part 78 is a third joint part.
  • the speed reducers 48, 89, 90 overlap on the same axis so that the axis center thereof coincides with the rotation center of the second arm portion 24 relative to the first arm portion 23. And a part of the joint portion 26.
  • the motors 46, 87, 88 and the speed reducers 48, 89, 90 are arranged in the internal space 45 of the first arm portion 23.
  • the internal space 45 is at atmospheric pressure.
  • the motors 46, 87, 88 and the speed reducers 48, 89, 90 may be disposed in the internal space of the second arm portion 24 that is hollow and has an internal pressure of atmospheric pressure. good.
  • the speed reducers 48, 89, 90 are arranged so as to be coaxially overlapped so that the axis center thereof and the rotation center of the third arm part 75 with respect to the second arm part 24 coincide with each other, and A part of the portion 77 may be configured.
  • the motors 46, 87, 88 and the speed reducers 48, 89, 90 are hollow and the internal space of the second arm part 24 or the third arm part 75 in which the internal pressure is atmospheric pressure. Arranged in the interior space.
  • the speed reducers 48, 89, and 90 are arranged so as to overlap on the same axis so that the center of the shaft and the center of rotation of the hand 13 with respect to the third arm portion 75 coincide with each other.
  • a part may be constituted.
  • the motors 46, 87, 88 and the speed reducers 48, 89, 90 are disposed in the internal space of the third arm portion 75 that is hollow and has an internal pressure of atmospheric pressure.
  • the speed reducer 48 is disposed so that the axis center thereof coincides with the rotation center of the second arm portion 24 with respect to the first arm portion 23 and the joint portion. 26, and the speed reducers 89 and 90 are arranged so as to overlap on the same axis so that the axial center thereof coincides with the rotation center of the third arm portion 75 with respect to the second arm portion 24.
  • a part of the joint portion 77 may be configured.
  • the motor 46 and the speed reducer 48 are disposed in the internal space 45 in which the internal pressure is atmospheric pressure, and the motors 87 and 88 and the speed reducers 89 and 90 are formed in a hollow shape and have an internal pressure.
  • the motor 46 and the speed reducer 48 have the internal space of the second arm portion 24 in which the internal pressure is atmospheric pressure (specifically, the internal space on the base end side of the second arm portion 24). ) May be arranged.
  • the motors 87 and 88 and the speed reducers 89 and 90 may be disposed in the internal space of the third arm portion 75 that is formed in a hollow shape and has an internal pressure of atmospheric pressure.
  • any two speed reducers selected from the speed reducers 48, 89, and 90 include the axis center, the rotation center of the second arm portion 24 with respect to the first arm portion 23, and the second arm portion.
  • 24, the rotation center of the third arm part 75 with respect to 24, or the rotation center of the hand 13 with respect to the third arm part 75 is arranged so as to overlap on the same axis, and the joint part 26 and the joint part 77
  • a part of the joint portion 78 may be configured.
  • two reduction gears arranged so as to be coaxially overlapped with the internal space of the first arm part 23, the second arm part 24 or the third arm part 75 in which the internal pressure is atmospheric pressure.
  • the robot 1 causes the first motor (that is, the second arm portion 24 and the third arm portion 75) to extend and contract the arm 14 in an interlocked manner.
  • a first motor for rotating the first hand a second motor for rotating the hand 13 with respect to the third arm portion 75, and a first speed reducing the rotation of the first motor and transmitting it to the arm 14.
  • a second speed reducer that decelerates the rotation of the second motor and transmits it to the hand 13.
  • the first reducer and the second reducer are hollow reducers in which a through hole is formed in the center in the radial direction, and the first reducer and the second reducer
  • the rotation center of the second arm portion 24 with respect to the first arm portion 23, the rotation center of the third arm portion 75 with respect to the second arm portion 24, or the rotation center of the hand 13 with respect to the third arm portion 75 coincides.
  • the joint portion 26, the joint portion 77, or a part of the joint portion 78 is configured so as to overlap on the same axis.
  • the first motor and the second motor are formed in the internal space of the first arm part 23, the second arm part 24 or the third arm part 75 which is formed in a hollow shape and has an internal pressure of atmospheric pressure.
  • a motor, a first speed reducer, and a second speed reducer are arranged. Even in this case, the same effect as that of the above-described embodiment can be obtained.
  • the arm 14 is composed of two arm portions, the first arm portion 23 and the second arm portion 24, but the arm is composed of four arm portions. May be.
  • the arm has a first arm portion whose base end side is rotatably connected to the main body portion 15 and a second arm portion whose base end side is rotatably connected to the distal end side of the first arm portion. And a third arm portion whose base end side is rotatably connected to the tip end side of the second arm portion, and a fourth arm portion whose base end side is rotatably connected to the tip end side of the third arm portion. It consists of and.
  • the hand 13 is rotatably connected to the distal end side of the fourth arm portion.
  • the robot 1 includes a first motor for rotating the second arm portion relative to the first arm portion, a second motor for rotating the third arm portion relative to the second arm portion, and a third A third motor for rotating the fourth arm relative to the arm, a fourth motor for rotating the hand relative to the fourth arm, and a second motor that decelerates the rotation of the first motor.
  • a first speed reducer that transmits to the arm part a second speed reducer that reduces the rotation of the second motor and transmits it to the third arm part, and a second speed reducer that transmits the rotation of the third motor to the fourth arm part.
  • 3 reduction gears, and the 4th reduction gear which decelerates rotation of the 4th motor and transmits to a hand.
  • the first reducer, the second reducer, the third reducer, and the fourth reducer are hollow reducers in which a through hole is formed at the center in the radial direction. It is. At least two of the first reducer, the second reducer, the third reducer, and the fourth reducer have an axis center, a rotation center of the second arm portion with respect to the first arm portion, The rotation center of the third arm portion with respect to the second arm portion, the rotation center of the fourth arm portion with respect to the third arm portion, or the rotation center of the hand with respect to the fourth arm portion so as to coincide with each other.
  • the object to be transported by the robot 1 is the substrate 2 for organic EL display, but the object to be transported by the robot 1 is a glass substrate for liquid crystal display. It may be a semiconductor wafer or the like.
  • the robot 1 is a robot for conveying a conveyance target object, the robot 1 may be a robot used for other uses, such as a welding robot.
  • the coordinates of the temporary current position of the rotation center C2 are input to the teaching operation terminal 19, and the coordinates of the temporary current position of the rotation center C2 are input. It is set.
  • the coordinates of the temporary current position of the rotation center C2 may be set by inputting the coordinates of the temporary current position of the rotation center C2 to the operation panel for operating the robot 1.
  • the operation panel in this case is installed, for example, in the operation room of the robot 1 where the operator is arranged.
  • the robot 1 is operated by a jog operation using the operation button 71 of the teaching operation terminal 19 in the operation process.
  • the robot 1 may be operated by a jog operation using an operation button or the like provided on the operation panel of the robot 1.
  • the robot 1 is operated by a jog operation in the operation process.
  • the robot 1 may be operated by an automatic operation that continuously operates the robot 1 in the operation process.
  • the teaching operation terminal 19 includes the operation button 71.
  • the teaching operation terminal 19 may include an operation lever instead of the operation button 71.
  • the robot 1 is operated by a jog operation using the operation lever of the teaching operation terminal 19.
  • the operation lever in this case is an operation member for operating the robot 1 in the operation process.
  • the arm 14 is composed of two arm parts, a first arm part 23 and a second arm part 24.
  • the arm 14 may be configured by three or more arm portions.
  • the same number of motors as the arm portions for rotating each of the three or more arm portions are provided.
  • the number of motors for rotating the plurality of arm portions may be smaller than the number of arm portions.
  • one hand 13 is connected to the tip side of the arm 14.
  • two hands may be connected to the distal end side of the arm 14.
  • two motors for rotating each of the two hands may be provided, or one motor for rotating the two hands together may be provided.
  • three or more hands may be connected to the distal end side of the arm 14.
  • a part of the robot 1 is disposed in a vacuum.
  • the entire robot 1 may be disposed in a vacuum, or the entire robot 1 may be disposed in the atmosphere.
  • the transport object to be transported by the robot 1 is the organic EL display substrate 2, but the transport object to be transported by the robot 1 may be a glass substrate for a liquid crystal display. However, it may be a semiconductor wafer or the like.
  • the robot 1 is a horizontal articulated robot.
  • an industrial robot to which the configuration of the present invention is applied is a vertical articulated robot such as a welding robot having an arm composed of a plurality of arm portions. There may be.
  • the hand 13 is rotatably connected to the distal end side of the arm 14, but a configuration other than the hand 13 such as an end effector may be connected to the distal end side of the arm 14.
  • the elevating mechanism 16 includes two brakes 41 and 42.
  • the brake 41 is operated and then the brake 42 is operated.
  • the motor 40 is stopped.
  • the elevating mechanism 16 may include only the brake 42 having a large braking force. In this case, when the robot 1 is in an emergency stop, the brake 42 may be immediately operated to stop the motor 40.
  • the arm 14 is composed of two arm parts, a first arm part 23 and a second arm part 24.
  • the arm 14 may be constituted by three or more arm portions.
  • the number of motors for rotating three or more arm portions is the same as the number of arm portions. That is, in this case, for example, the same number of motors as the arm portions for rotating each of the three or more arm portions are provided.
  • the number of motors may be smaller than the number of arm portions as long as two or more motors for rotating three or more arm portions are provided. That is, if two or more motors for rotating three or more arm portions are provided, a motor for rotating two or three arm portions together may be provided. good.
  • the robot 1 includes the elevating mechanism 16, but the robot 1 may not include the elevating mechanism 16. Even in this case, when the robot 1 is in an emergency stop, the CPU 79 stops the motors 31, 46 and 47 while controlling the motor drivers 71 to 73 using the power supplied from the charging / discharging unit 80.

Abstract

The present invention provides an industrial robot that is disposed and used in a vacuum state, wherein driving motors that are disposed in the atmosphere of the inside of an arm and are for driving a hand and the arm can be efficiently cooled. An industrial robot (1) is provided with the following: a motor (46) for pivoting a second arm unit (24) with respect to a first arm unit (23); a motor (47) for pivoting a hand (13) with respect to the second arm unit (24); a deceleration mechanism (48) for decelerating the rotation of the motor (46) and performing transmission to the second arm unit (24); and a deceleration mechanism (49) for decelerating the rotation of the motor (47) and performing transmission to the hand (13). The hand (13) and an arm (14) are disposed in a vacuum state. The deceleration mechanisms (48, 49) are disposed on the same axis so that the pivotal center of the second arm unit (24) with respect to the first arm unit (23) and the axial center of the deceleration mechanisms (48, 49) coincide. An internal space (45) of the first arm unit (23) that is formed hollow is at atmospheric pressure. Provided in the internal space (45) are the motors (46, 47) and the deceleration mechanisms (48, 49).

Description

産業用ロボットIndustrial robot
 第一の発明は、真空中で使用される産業用ロボットに関する。
 第二の発明は、産業用ロボットを原点位置へ復帰させる産業用ロボットの原点位置復帰方法に関する。また、本発明では、ハンドとアームとを備える産業用ロボットに関する。
 第三の発明は、相対回動可能に連結される複数のアーム部からなるアームを有する産業用ロボットに関する。
 第四の発明は、相対回動可能に連結される複数のアーム部からなるアームを有する産業用ロボット、および、かかる産業用ロボットの制御方法に関する。
The first invention relates to an industrial robot used in a vacuum.
The second invention relates to an origin position return method for an industrial robot that returns the industrial robot to the origin position. The present invention also relates to an industrial robot including a hand and an arm.
3rd invention is related with the industrial robot which has an arm which consists of a plurality of arm parts connected so that relative rotation is possible.
The fourth invention relates to an industrial robot having an arm composed of a plurality of arm portions that are connected to each other so as to be relatively rotatable, and a method for controlling the industrial robot.
 従来、真空中で基板を搬送する真空ロボットが知られている(たとえば、特許文献1参照)。特許文献1に記載の真空ロボットは、基板が搭載されるハンドと、ハンドが先端側に連結されるアームと、アームの基端側が連結される本体部とを備えている。アームは、本体部に回動可能に連結されるアームベースと、その基端側がアームベースに回動可能に連結される第1アームと、その基端側が第1アームの先端側に回動可能に連結される第2アームとを備えている。アームベースおよび第1アームは、中空状に形成されている。アームベースの内部には、アームを駆動するアーム駆動用モータと、アーム駆動用モータの回転を減速して第1アームへ伝達する第1減速機が配置されている。第1減速機の出力軸には、第1アームの基端側が固定されている。第1アームの先端側には、アーム駆動用モータの回転を減速して第2アームへ伝達する第2減速機が配置されている。第2減速機の出力軸には、第2アームの基端側が固定されている。 Conventionally, a vacuum robot that transports a substrate in a vacuum is known (for example, see Patent Document 1). The vacuum robot described in Patent Document 1 includes a hand on which a substrate is mounted, an arm to which the hand is coupled to the distal end side, and a main body unit to which the proximal end side of the arm is coupled. The arm includes an arm base that is pivotably connected to the main body, a first arm whose base end is rotatably connected to the arm base, and a base end that is pivotable to the distal end side of the first arm. And a second arm connected to the second arm. The arm base and the first arm are formed in a hollow shape. An arm drive motor that drives the arm and a first speed reducer that decelerates the rotation of the arm drive motor and transmits it to the first arm are disposed inside the arm base. The base end side of the first arm is fixed to the output shaft of the first speed reducer. A second speed reducer that decelerates the rotation of the arm driving motor and transmits it to the second arm is disposed on the distal end side of the first arm. The proximal end side of the second arm is fixed to the output shaft of the second reduction gear.
 特許文献1に記載の真空ロボットでは、本体部の一部は、真空容器の底面に固定されており、アームおよびハンドは、真空中に配置されている。一方で、中空状に形成されるアームベースおよび第1アームの内部空間では、気密性が確保されており、アームベースおよび第1アームの内部空間は、大気圧となっている。そのため、この真空ロボットでは、アームが真空中に配置されていても、第1減速機および第2減速機の潤滑剤として、真空グリース等の高価な潤滑剤を使用する必要がなく、大気圧中で使用されるグリース等の潤滑剤を使用すれば良い。したがって、真空ロボットの初期コストおよびランニングコストを低減することが可能になる。また、この真空ロボットでは、アームが真空中に配置されていても、アームベースおよび第1アームの内部空間が大気圧となっているため、アームベースの内部に配置されるアーム駆動用モータを冷却することが可能になる。 In the vacuum robot described in Patent Document 1, a part of the main body is fixed to the bottom surface of the vacuum vessel, and the arm and the hand are arranged in a vacuum. On the other hand, airtightness is ensured in the internal space of the arm base and the first arm formed in a hollow shape, and the internal space of the arm base and the first arm is at atmospheric pressure. Therefore, in this vacuum robot, even if the arm is disposed in a vacuum, it is not necessary to use an expensive lubricant such as vacuum grease as the lubricant for the first reduction gear and the second reduction gear. Lubricants such as grease used in the above may be used. Therefore, the initial cost and running cost of the vacuum robot can be reduced. In this vacuum robot, even if the arm is placed in a vacuum, the internal space of the arm base and the first arm is at atmospheric pressure, so the arm driving motor placed inside the arm base is cooled. It becomes possible to do.
 つぎに、従来、制御プログラムによって一連の動作を行う産業用ロボットを非常停止位置から原点位置へ復帰させる原点位置復帰方法が知られている(たとえば、特許文献2参照)。特許文献2に記載の原点位置復帰方法では、ロボットコントローラに記録された非常停止時の産業用ロボットの現在位置の座標(現在の状態)と、エンコーダでの検出結果に基づいて取得される非常停止時の産業用ロボットの実際の現在位置の座標とに基づいて、産業用ロボットに所定の動作を行わせて、産業用ロボットを原点位置へ復帰させている。 Next, an origin position return method for returning an industrial robot that performs a series of operations according to a control program from an emergency stop position to an origin position is known (for example, see Patent Document 2). In the origin position return method described in Patent Document 2, the emergency stop acquired based on the coordinates (current state) of the current position of the industrial robot at the time of emergency stop recorded in the robot controller and the detection result by the encoder Based on the coordinates of the actual current position of the industrial robot at the time, the industrial robot is caused to perform a predetermined operation to return the industrial robot to the origin position.
 また、従来、複数のアーム部からなるアームを有する多関節型の産業用ロボットが知られている(たとえば、特許文献3参照)。特許文献3に記載の産業用ロボットは、本体部に回動可能に取り付けられる第1アーム部と第1アーム部に回動可能に取り付けられる第2アーム部と第2アーム部に回動可能に取り付けられる第3アーム部とから構成されるアームと、第3アーム部に回動可能に取り付けられる2個のハンドとを備えている。また、この産業用ロボットは、第1アーム部および第2アーム部を回動させる第1駆動用モータと、第3アーム部を回動させる第2駆動用モータと、2個のハンドのそれぞれを回動させる2個のハンド駆動用モータとを備えている。この産業用ロボットは、たとえば、半導体製造システムの入り口に配置されており、カセットに収容されている半導体ウエハをカセットから取り出して、所定の処理装置の中に半導体ウエハを収容する。 Further, conventionally, an articulated industrial robot having an arm composed of a plurality of arm portions is known (for example, see Patent Document 3). The industrial robot described in Patent Document 3 is rotatable to a first arm part that is rotatably attached to the main body part, a second arm part that is rotatably attached to the first arm part, and a second arm part. And an arm composed of a third arm part to be attached and two hands rotatably attached to the third arm part. The industrial robot also includes a first drive motor that rotates the first arm portion and the second arm portion, a second drive motor that rotates the third arm portion, and each of the two hands. And two hand drive motors to be rotated. For example, this industrial robot is arranged at the entrance of a semiconductor manufacturing system, takes out a semiconductor wafer contained in a cassette from the cassette, and accommodates the semiconductor wafer in a predetermined processing apparatus.
 さらに、従来、半導体ウエハを搬送する半導体の搬送ロボットが知られている(たとえば、特許文献4参照)。特許文献4に記載の搬送用ロボットは、水平多関節型の3軸ロボットであり、基台に設けられた昇降軸と、昇降軸にその基端側が回動可能に連結されるアームと、アームの先端側に回動可能に連結されるハンドとを備えている。アームは、昇降軸にその基端側が回動可能に連結される第1アーム部と、第1アーム部の先端側にその基端側が回動可能に連結されるとともにその先端側にハンドが回動可能に連結される第2アーム部とから構成されている。また、この搬送用ロボットは、第1アーム部、第2アーム部およびハンドのそれぞれを回動させる3個のモータを備えている。 Furthermore, conventionally, a semiconductor transfer robot for transferring a semiconductor wafer is known (for example, see Patent Document 4). The transfer robot described in Patent Document 4 is a horizontal articulated three-axis robot, an elevating shaft provided on a base, an arm whose base end side is rotatably connected to the elevating shaft, And a hand rotatably connected to the distal end side. The arm includes a first arm portion whose base end side is rotatably connected to the lifting shaft, a base end side rotatably connected to the front end side of the first arm portion, and a hand is rotated to the front end side. It is comprised from the 2nd arm part connected so that a movement is possible. In addition, the transfer robot includes three motors that rotate the first arm unit, the second arm unit, and the hand.
 特許文献4に記載の搬送ロボットでは、昇降軸に対する第1アーム部の回動中心を原点とする円筒座標系に基づいてハンドの位置が制御されている。また、特許文献1には、上下方向から見たときに第1アーム部の回動中心を通過する直線上をハンドが移動するように(すなわち、円筒座標系の径方向へハンドが移動するように)アームを伸縮させるためのハンドの移動位置を自動で教示する自動教示方法が開示されている。なお、特許文献4には、XY座標系に基づいてハンドの位置が制御されても良い旨が記載されている。 In the transport robot described in Patent Document 4, the position of the hand is controlled based on a cylindrical coordinate system having the origin at the rotation center of the first arm portion with respect to the lifting axis. Further, in Patent Document 1, the hand moves on a straight line passing through the center of rotation of the first arm portion when viewed from above and below (that is, the hand moves in the radial direction of the cylindrical coordinate system). (Ii) An automatic teaching method for automatically teaching a moving position of a hand for extending and contracting an arm is disclosed. Patent Document 4 describes that the position of the hand may be controlled based on the XY coordinate system.
 また、特許文献4に記載の搬送ロボットは、半導体を製造するための半導体製造システムで使用される。半導体製造システムでは、従来、上下方向から見たときに、第1アーム部の回動中心を中心とする放射状に半導体ウエハの処理装置が配置されており、搬送ロボットは、第1アーム部の回動中心を中心とする放射状にハンドを移動させて(すなわち、第1アーム部の回動中心を通過する直線上でハンドを移動させて)半導体ウエハを搬送している。 Further, the transfer robot described in Patent Document 4 is used in a semiconductor manufacturing system for manufacturing a semiconductor. Conventionally, in a semiconductor manufacturing system, when viewed from above and below, semiconductor wafer processing devices are arranged radially about the rotation center of the first arm unit, and the transfer robot is configured to rotate the first arm unit. The semiconductor wafer is transferred by moving the hand radially around the moving center (that is, by moving the hand on a straight line passing through the rotation center of the first arm portion).
特開2011-101912号公報JP 2011-101912 A 特開2009-90383号公報JP 2009-90383 A 特開2011-230256号公報JP 2011-230256 A 特開2010-284728号公報JP 2010-284728 A
 近年、真空中で搬送される基板等の搬送対象物は大型化している。たとえば、特許文献1に記載の真空ロボットで搬送される基板が大型化すると、アーム駆動用モータにかかる負荷が大きくなるため、アーム駆動用モータの発熱量が大きくなる。したがって、特許文献1に記載の真空ロボットでは、アーム駆動用モータを効率的に冷却しないと、熱の影響でアーム駆動用モータが損傷するおそれがある。 In recent years, objects to be transported such as substrates transported in a vacuum have become larger. For example, when the substrate transported by the vacuum robot described in Patent Document 1 is increased in size, the load applied to the arm driving motor increases, so that the amount of heat generated by the arm driving motor increases. Therefore, in the vacuum robot described in Patent Document 1, if the arm driving motor is not efficiently cooled, the arm driving motor may be damaged by heat.
 そこで、第一の発明の課題は、真空中に配置されるアームの少なくとも一部の内部が大気圧となっている産業用ロボットにおいて、アーム内部の大気中に配置されるハンドやアームの駆動用モータを効率的に冷却することが可能な産業用ロボットを提供することにある。 Accordingly, an object of the first invention is to drive a hand or an arm disposed in the atmosphere inside the arm in an industrial robot in which at least a part of the arm disposed in a vacuum has an atmospheric pressure. An object of the present invention is to provide an industrial robot capable of efficiently cooling a motor.
 上述のように、特許文献2に記載の原点位置復帰方法では、自身の現在位置の座標(現在の状態)を把握している産業用ロボットを非常停止位置から原点位置へ復帰させることが可能である。しかしながら、特許文献2に記載の原点位置復帰方法では、何らかの原因で現在位置の座標がわからなくなった状態で非常停止している産業用ロボットを原点位置へ復帰させることはできない。 As described above, in the origin position return method described in Patent Document 2, it is possible to return the industrial robot that knows the coordinates (current state) of its current position from the emergency stop position to the origin position. is there. However, with the origin position return method described in Patent Document 2, it is not possible to return an industrial robot that has stopped in an emergency state to the origin position when the coordinates of the current position are unknown for some reason.
 そこで、第二の発明の課題は、現在位置の座標がわからなくなった状態で停止している産業用ロボットを簡易な方法で原点位置へ復帰させることが可能な産業用ロボットの原点位置復帰方法を提供することにある。また、本発明の課題は、現在位置の座標がわからなくなった状態で停止していても簡易な方法で原点位置へ復帰させることが可能な産業用ロボットを提供することにある。 Therefore, an object of the second invention is an origin return method for an industrial robot that can return an industrial robot that has stopped in a state where the coordinates of the current position are lost to a home position by a simple method. It is to provide. Another object of the present invention is to provide an industrial robot that can be returned to the origin position by a simple method even when stopped in a state where the coordinates of the current position are lost.
 つぎに、半導体製造システム等の産業用ロボットが使用されるシステムにおいては、何らかの原因で、産業用ロボットを非常停止させて、安全を確保しなければならない状況が生じうる。この場合には、産業用ロボットの電源をすぐに切って、産業用ロボットを停止させるのが一般的である。 Next, in a system in which an industrial robot such as a semiconductor manufacturing system is used, for some reason, a situation may arise in which the industrial robot must be emergency stopped to ensure safety. In this case, the industrial robot is generally turned off immediately to stop the industrial robot.
 しかしながら、特許文献3に記載の産業用ロボットのように、第1アーム部および第2アーム部を回動させる第1駆動用モータと、第3アーム部を回動させる第2駆動用モータと、2個のハンドのそれぞれを回動させる2個のハンド駆動用モータとが設けられている産業用ロボットにおいて、第1アーム部および第2アーム部と第3アーム部とハンドとが動作しているときに、第1駆動用モータ、第2駆動用モータおよびハンド駆動用モータに電力を供給する電源を切って産業用ロボットを非常停止させると、第1アーム部および第2アーム部と第3アーム部とハンドとが停止するまでに、動作している第1アーム部および第2アーム部の慣性と第3アーム部の慣性とハンドの慣性とによって、第1アーム部および第2アーム部と第3アーム部とハンドとのそれぞれが勝手に回動するおそれがある。第1アーム部および第2アーム部と第3アーム部とハンドとが停止するまでに、第1アーム部および第2アーム部と第3アーム部とハンドとのそれぞれが勝手に回動すると、第1アーム部、第2アーム部、第3アーム部またはハンドが、たとえば、半導体ウエハが収容されているカセットや半導体ウエハを処理する処理装置に衝突して、予期せぬ事故を引き起こすおそれがある。 However, like the industrial robot described in Patent Document 3, the first drive motor that rotates the first arm part and the second arm part, the second drive motor that rotates the third arm part, In an industrial robot provided with two hand drive motors for rotating each of the two hands, the first arm unit, the second arm unit, the third arm unit, and the hand are operating. When the industrial robot is emergency stopped by turning off the power supply for supplying power to the first drive motor, the second drive motor, and the hand drive motor, the first arm unit, the second arm unit, and the third arm The first arm portion, the second arm portion, and the first arm portion according to the inertia of the operating first arm portion and the second arm portion, the inertia of the third arm portion, and the inertia of the hand before the head and the hand are stopped. 3 er Each of the parts and the hand is likely to freely rotate. If each of the first arm part, the second arm part, the third arm part, and the hand freely rotates before the first arm part, the second arm part, the third arm part, and the hand stop, There is a possibility that the one arm part, the second arm part, the third arm part, or the hand may collide with, for example, a cassette in which a semiconductor wafer is accommodated or a processing apparatus for processing the semiconductor wafer to cause an unexpected accident.
 そこで、第三の発明の課題は、相対回動可能に連結される複数のアーム部からなるアームを有する産業用ロボットにおいて、複数のアーム部を回動させるための複数のモータを備えている場合であっても、アームの姿勢が所定の状態となるように、非常停止させることが可能な産業用ロボット、および、産業用ロボットの制御方法を提供することにある。 Then, the subject of 3rd invention is the case where the industrial robot which has the arm which consists of several arm parts connected so that relative rotation is possible, and when the several motor for rotating several arm parts is provided Even so, an object of the present invention is to provide an industrial robot capable of making an emergency stop so that the posture of the arm is in a predetermined state, and a control method for the industrial robot.
 上述のように、特許文献4に記載の搬送ロボットが使用される半導体製造システムでは、従来、上下方向から見たときに、第1アーム部の回動中心を中心とする放射状に半導体ウエハの処理装置が配置されている。しかしながら、半導体ウエハの処理装置が放射状に配置されると、半導体製造システムの設置面積が大きくなりやすいため、処理装置のレイアウトを変更して半導体製造システムの設置面積を小さくしたいとのニーズがある。一方、処理装置のレイアウトが変更されると、上下方向から見たときに、第1アーム部の回動中心を通過する直線に沿わない位置でハンドを直線的に移動させて半導体ウエハを搬送しなければならない場合が生じうる。 As described above, in the semiconductor manufacturing system in which the transfer robot described in Patent Document 4 is used, conventionally, when viewed from above and below, the semiconductor wafer is processed radially around the rotation center of the first arm portion. The device is arranged. However, when semiconductor wafer processing apparatuses are arranged radially, the installation area of the semiconductor manufacturing system tends to increase, and there is a need to change the layout of the processing apparatus to reduce the installation area of the semiconductor manufacturing system. On the other hand, when the layout of the processing apparatus is changed, the semiconductor wafer is transferred by moving the hand linearly at a position that does not follow the straight line passing through the center of rotation of the first arm portion when viewed from above and below. There may be cases where it must be done.
 特許文献4に記載の搬送ロボットは、第1アーム部、第2アーム部およびハンドのそれぞれを回動させる3個のモータを備えているため、上下方向から見たときに、第1アーム部の回動中心を通過する直線に沿わない位置でハンドを直線的に移動させることが可能である。しかしながら、上下方向から見たときに、第1アーム部の回動中心を通過する直線に沿わない位置でハンドを直線的に移動させる場合には、ハンドの移動位置の教示が煩雑になるおそれがある。 Since the transfer robot described in Patent Document 4 includes three motors that rotate the first arm unit, the second arm unit, and the hand, when viewed from above and below, It is possible to move the hand linearly at a position that does not follow the straight line passing through the center of rotation. However, when the hand is moved linearly at a position that does not follow the straight line passing through the rotation center of the first arm portion when viewed from the vertical direction, teaching of the moving position of the hand may be complicated. is there.
 そこで、第四の発明の課題は、相対回動可能に連結される複数のアーム部からなるアームと、複数のアーム部を回動させるための複数のモータと、アームの基端側が回動可能に連結される本体部とを備える産業用ロボットにおいて、アームの回動の軸方向から見たときに本体部に対するアームの回動中心を通過する仮想線に沿わない位置でアームの先端側が直線的に移動する場合であっても、アームの先端側の移動位置を容易に教示することが可能な産業用ロボットを提供することにある。 Then, the subject of the 4th invention is an arm which consists of a plurality of arm parts connected so that relative rotation is possible, a plurality of motors for rotating a plurality of arm parts, and a base end side of the arm is rotatable In an industrial robot comprising a main body connected to the arm, when viewed from the axial direction of the arm rotation, the tip end side of the arm is linear at a position that does not follow the imaginary line passing through the rotation center of the arm relative to the main body. It is an object of the present invention to provide an industrial robot capable of easily teaching the movement position on the tip side of an arm even when moving to a position.
 また、第四の発明の課題は、相対回動可能に連結される複数のアーム部からなるアームと、複数のアーム部を回動させるための複数のモータと、アームの基端側が回動可能に連結される本体部とを備える産業用ロボットの制御方法において、アームの回動の軸方向から見たときに本体部に対するアームの回動中心を通過する仮想線に沿わない位置でアームの先端側が直線的に移動する場合であっても、アームの先端側の移動位置を容易に教示することが可能となる産業用ロボットの制御方法を提供することにある。 Moreover, the subject of 4th invention is the arm which consists of several arm parts connected so that relative rotation is possible, the several motor for rotating several arm parts, and the base end side of an arm is rotatable. In a control method for an industrial robot comprising a main body connected to the arm, the tip of the arm at a position not along a virtual line passing through the center of rotation of the arm relative to the main body when viewed from the axial direction of the arm rotation An object of the present invention is to provide an industrial robot control method that can easily teach the movement position of the tip end side of an arm even when the side moves linearly.
 上記の課題を解決するため、第一の発明は請求項1から6に述べているが、第一の発明の産業用ロボットは、本体部と、本体部にその基端側が回動可能に連結される第1アーム部と第1アーム部の先端側にその基端側が回動可能に連結される第2アーム部とを有するアームと、第2アーム部の先端側に回動可能に連結されるハンドと、第1アーム部に対して第2アーム部を回動させるための第1モータと、第2アーム部に対してハンドを回動させるための第2モータと、第1モータの回転を減速して第2アーム部に伝達する第1減速機と、第2モータの回転を減速してハンドに伝達する第2減速機とを備え、ハンドとアームとは、真空中に配置され、第1減速機と第2減速機とは、その径方向の中心に貫通孔が形成される中空減速機であり、第1減速機と第2減速機とは、第1アーム部に対する第2アーム部の回動中心または第2アーム部に対するハンドの回動中心と、第1減速機の軸中心および第2減速機の軸中心とが一致するように同軸上で重なるように配置されるとともに、第1アーム部と第2アーム部とを繋ぐ第1関節部または第2アーム部とハンドとを繋ぐ第2関節部の少なくとも一部を構成し、中空状に形成される第1アーム部または第2アーム部の内部空間に、第1モータと第2モータと第1減速機と第2減速機とが配置され、内部空間は、大気圧となっていることを特徴とする。 In order to solve the above-mentioned problems, the first invention is described in claims 1 to 6, but the industrial robot of the first invention is connected to the main body portion and the main body portion so that the base end side thereof is rotatable. An arm having a first arm portion and a second arm portion whose base end side is rotatably connected to a distal end side of the first arm portion, and a pivotally connected to a distal end side of the second arm portion. A hand, a first motor for rotating the second arm relative to the first arm, a second motor for rotating the hand relative to the second arm, and rotation of the first motor And a second reducer for reducing the rotation of the second motor and transmitting it to the hand, and the hand and the arm are arranged in a vacuum, The first reducer and the second reducer are hollow reducers in which a through hole is formed at the center in the radial direction. The first speed reducer and the second speed reducer are the center of rotation of the second arm part relative to the first arm part or the center of rotation of the hand relative to the second arm part, the axis center of the first speed reducer, and the second speed reducer. The first joint portion that connects the first arm portion and the second arm portion, or the second joint portion that connects the second arm portion and the hand, is arranged so as to be coaxially overlapped with each other so as to coincide with the axial center of the first arm portion The first motor, the second motor, the first speed reducer, and the second speed reducer are disposed in the internal space of the first arm portion or the second arm portion that is at least partly formed and formed in a hollow shape, The internal space is characterized by atmospheric pressure.
 第一の発明の産業用ロボットでは、中空状に形成される第1アーム部または第2アーム部の内部空間は大気圧となっており、この内部空間に、第1モータと第2モータと第1減速機と第2減速機とが配置されている。また、第一の発明では、内部空間に配置される第1減速機と第2減速機とは、その軸中心が一致するように同軸上で重なっている。そのため、第一の発明では、第1減速機および第2減速機の軸方向において内部空間を大きくすることが可能になる。すなわち、第一の発明では、大気圧となっている内部空間の容積を大きくして、内部空間内の空気の量を増やすことが可能になる。したがって、第一の発明では、大気圧となっている内部空間に配置される第1モータと第2モータとを効率的に冷却することが可能になる。また、第一の発明では、第1アーム部に対する第2アーム部の回動中心上、または、第2アーム部に対するハンドの回動中心上に2台の減速機が配置されるため、第1関節部または第2関節部の剛性を高めることが可能になる。 In the industrial robot according to the first aspect of the invention, the internal space of the first arm portion or the second arm portion formed in a hollow shape is atmospheric pressure, and the first motor, the second motor, and the second motor space are in the internal space. A first reduction gear and a second reduction gear are arranged. In the first invention, the first speed reducer and the second speed reducer arranged in the internal space overlap on the same axis so that the axial centers thereof coincide. Therefore, in the first invention, the internal space can be increased in the axial direction of the first reduction gear and the second reduction gear. That is, in the first invention, it is possible to increase the volume of air in the internal space by increasing the volume of the internal space that is at atmospheric pressure. Therefore, in the first invention, it is possible to efficiently cool the first motor and the second motor disposed in the internal space that is at atmospheric pressure. In the first invention, since the two reduction gears are arranged on the rotation center of the second arm portion with respect to the first arm portion or on the rotation center of the hand with respect to the second arm portion, It becomes possible to increase the rigidity of the joint part or the second joint part.
 第一の発明において、第1アーム部およびハンドは、ハンドに搭載される搬送対象物が収容される収容部からの搬送対象物の搬出時および収容部への搬送対象物の搬入時に、本体部に対する第1アーム部の回動角度と、第2アーム部に対するハンドの回動角度が等しく、かつ、本体部に対する第1アーム部の回動方向と、第2アーム部に対するハンドの回動方向とが逆方向となるように回動することが好ましい。このように構成すると、搬送対象物の搬出時および搬入時におけるハンドの向きを一定に保つことが可能になる。すなわち、比較的簡単な制御で、搬送対象物の搬出時および搬入時におけるハンドの向きを一定に保つことが可能になる。 In the first invention, the first arm unit and the hand include a main body unit at the time of unloading the transfer object from the storage unit in which the transfer object mounted on the hand is stored and at the time of loading the transfer object into the storage unit. The rotation angle of the first arm portion relative to the second arm portion is equal to the rotation angle of the hand relative to the second arm portion, the rotation direction of the first arm portion relative to the main body portion, and the rotation direction of the hand relative to the second arm portion. It is preferable to rotate so that is in the opposite direction. If comprised in this way, it will become possible to maintain the direction of the hand at the time of carrying out and carrying in of a conveyance target object. That is, with a relatively simple control, it is possible to keep the direction of the hand constant when the object to be conveyed is unloaded and loaded.
 第一の発明において、たとえば、第1アーム部は、本体部から水平方向の一方側へ伸びるように本体部に取り付けられ、第1アーム部には、本体部から水平方向の他方側へ伸びるカウンターウエイトが取り付けられている。この場合には、第1アーム部を回動可能に支持する軸受に作用する負荷を低減することが可能になる。 In the first invention, for example, the first arm portion is attached to the main body portion so as to extend from the main body portion to one side in the horizontal direction, and the first arm portion has a counter extending from the main body portion to the other side in the horizontal direction. A weight is attached. In this case, it is possible to reduce the load acting on the bearing that rotatably supports the first arm portion.
 また、上記の課題を解決するため、第一の発明の産業用ロボットは、本体部と、本体部にその基端側が回動可能に連結される第1アーム部と第1アーム部の先端側にその基端側が回動可能に連結される第2アーム部と第2アーム部の先端側にその基端側が回動可能に連結される第3アーム部とを有するアームと、第3アーム部の先端側に回動可能に連結されるハンドと、第1アーム部に対して第2アーム部を回動させるための第1モータと、第2アーム部に対して第3アーム部を回動させるための第2モータと、第3アーム部に対してハンドを回動させるための第3モータと、第1モータの回転を減速して第2アーム部に伝達する第1減速機と、第2モータの回転を減速して第3アーム部に伝達する第2減速機と、第3モータの回転を減速してハンドに伝達する第3減速機とを備え、ハンドとアームとは、真空中に配置され、第1減速機、第2減速機および第3減速機は、その径方向の中心に貫通孔が形成される中空減速機であり、第1減速機、第2減速機および第3減速機のうちの少なくとも2個の減速機は、その軸中心と、第1アーム部に対する第2アーム部の回動中心、第2アーム部に対する第3アーム部の回動中心、または、第3アーム部に対するハンドの回動中心とが一致するように同軸上で重なるように配置されるとともに、第1アーム部と第2アーム部とを繋ぐ第1関節部、第2アーム部と第3アーム部とを繋ぐ第2関節部、または、第3アーム部とハンドとを繋ぐ第3関節部の少なくとも一部を構成し、中空状に形成される第1アーム部、第2アーム部または第3アーム部の内部空間には、同軸上で重なるように配置される少なくとも2個の減速機と、この少なくとも2個の減速機に連結される第1モータ、第2モータおよび第3モータのうちの少なくとも2個のモータとが配置され、内部空間は、大気圧となっていることを特徴とする。 Moreover, in order to solve said subject, the industrial robot of 1st invention is the front end side of the main body part, the 1st arm part to which the base end side is rotatably connected with a main body part, and a 1st arm part An arm having a second arm portion whose base end side is rotatably connected to the first arm portion and a third arm portion whose base end side is rotatably connected to the distal end side of the second arm portion; A hand rotatably connected to the distal end of the first arm, a first motor for rotating the second arm relative to the first arm, and a third arm rotating relative to the second arm A second motor for rotating the hand, a third motor for rotating the hand with respect to the third arm portion, a first speed reducer for reducing the rotation of the first motor and transmitting it to the second arm portion, A second reducer that decelerates the rotation of the two motors and transmits it to the third arm, and decelerates the rotation of the third motor And a hand and an arm are arranged in a vacuum, and the first reducer, the second reducer, and the third reducer have a through hole at the center in the radial direction. It is a formed hollow speed reducer, and at least two of the first speed reducer, the second speed reducer, and the third speed reducer have a shaft center and a rotation of the second arm portion with respect to the first arm portion. The first arm portion is arranged so as to be coaxially overlapped so that the moving center, the rotation center of the third arm portion with respect to the second arm portion, or the rotation center of the hand with respect to the third arm portion coincides with each other. At least part of the first joint part connecting the second arm part and the second joint part connecting the second arm part and the third arm part or the third joint part connecting the third arm part and the hand. 1st arm part, 2nd arm part or 1st formed and formed in a hollow shape In the internal space of the arm portion, at least two speed reducers arranged so as to overlap on the same axis, and among the first motor, the second motor, and the third motor connected to the at least two speed reducers At least two motors are arranged, and the internal space is at atmospheric pressure.
 第一の発明の産業用ロボットでは、中空状に形成される第1アーム部、第2アーム部または第3アーム部の内部空間は大気圧となっており、この内部空間に、第1減速機、第2減速機および第3減速機のうちの少なくとも2個の減速機と、この少なくとも2個の減速機に連結される第1モータ、第2モータおよび第3モータのうちの少なくとも2個のモータとが配置されている。また、第一の発明では、内部空間に配置される少なくとも2個の減速機は、その軸中心が一致するように同軸上で重なっている。そのため、第一の発明では、減速機の軸方向において内部空間を大きくすることが可能になる。すなわち、本発明では、大気圧となっている内部空間の容積を大きくして、内部空間内の空気の量を増やすことが可能になる。したがって、第一の発明では、大気圧となっている内部空間に配置される少なくとも2個のモータを効率的に冷却することが可能になる。また、第一の発明では、第1アーム部に対する第2アーム部の回動中心上、第2アーム部に対する第3アーム部の回動中心上、または、第3アーム部に対するハンドの回動中心上に少なくとも2台の減速機が配置されるため、第1関節部、第2関節部または第3関節部の剛性を高めることが可能になる。 In the industrial robot according to the first aspect of the invention, the internal space of the first arm portion, the second arm portion, or the third arm portion formed in a hollow shape is at atmospheric pressure, and the first reduction gear is provided in the internal space. , At least two of the second reducer and the third reducer, and at least two of the first, second, and third motors coupled to the at least two reducers. And a motor. Moreover, in 1st invention, the at least 2 reduction gear arrange | positioned in interior space has overlapped on the same axis | shaft so that the axial center may correspond. Therefore, in the first invention, the internal space can be increased in the axial direction of the reduction gear. That is, in the present invention, it is possible to increase the volume of air in the internal space by increasing the volume of the internal space that is at atmospheric pressure. Therefore, in the first invention, it is possible to efficiently cool at least two motors arranged in the internal space that is at atmospheric pressure. In the first invention, the center of rotation of the second arm portion relative to the first arm portion, the center of rotation of the third arm portion relative to the second arm portion, or the center of rotation of the hand relative to the third arm portion. Since at least two speed reducers are arranged on the top, it is possible to increase the rigidity of the first joint portion, the second joint portion, or the third joint portion.
 さらに、上記の課題を解決するため、第一の発明の産業用ロボットは、本体部と、本体部にその基端側が回動可能に連結される第1アーム部と第1アーム部の先端側にその基端側が回動可能に連結される第2アーム部と第2アーム部の先端側にその基端側が回動可能に連結される第3アーム部とを有するアームと、第3アーム部の先端側に回動可能に連結されるハンドと、アームを伸縮させるための第1モータと、第3アーム部に対してハンドを回動させるための第2モータと、第1モータの回転を減速してアームに伝達する第1減速機と、第2モータの回転を減速してハンドに伝達する第2減速機とを備え、ハンドとアームとは、真空中に配置され、第1減速機および第2減速機は、その径方向の中心に貫通孔が形成される中空減速機であり、第1減速機および第2減速機は、その軸中心と、第1アーム部に対する第2アーム部の回動中心、第2アーム部に対する第3アーム部の回動中心、または、第3アーム部に対するハンドの回動中心とが一致するように同軸上で重なるように配置されるとともに、第1アーム部と第2アーム部とを繋ぐ第1関節部、第2アーム部と第3アーム部とを繋ぐ第2関節部、または、第3アーム部とハンドとを繋ぐ第3関節部の少なくとも一部を構成し、中空状に形成される第1アーム部、第2アーム部または第3アーム部の内部空間に、第1モータと第2モータと第1減速機と第2減速機とが配置され、内部空間は、大気圧となっていることを特徴とする。 Furthermore, in order to solve the above-described problems, an industrial robot according to a first aspect of the present invention includes a main body portion, a first arm portion whose base end side is rotatably connected to the main body portion, and a distal end side of the first arm portion. An arm having a second arm portion whose base end side is rotatably connected to the first arm portion and a third arm portion whose base end side is rotatably connected to the distal end side of the second arm portion; A hand rotatably connected to the distal end side of the first arm, a first motor for expanding and contracting the arm, a second motor for rotating the hand relative to the third arm portion, and rotation of the first motor. A first speed reducer that decelerates and transmits to the arm; and a second speed reducer that decelerates and transmits the rotation of the second motor to the hand. The hand and the arm are disposed in a vacuum, and the first speed reducer And the second speed reducer is a hollow speed reducer in which a through hole is formed at the center in the radial direction. The first speed reducer and the second speed reducer have an axial center thereof, a rotation center of the second arm part with respect to the first arm part, a rotation center of the third arm part with respect to the second arm part, or a third The first joint part, the second arm part, and the third arm that are arranged so as to overlap on the same axis so that the center of rotation of the hand with respect to the arm part coincides, and that connects the first arm part and the second arm part A first arm part, a second arm part, or a third part that form at least a part of the second joint part that connects the parts, or at least a part of the third joint part that connects the third arm part and the hand. A first motor, a second motor, a first speed reducer, and a second speed reducer are arranged in the internal space of the arm portion, and the internal space is at atmospheric pressure.
 第一の発明の産業用ロボットでは、中空状に形成される第1アーム部、第2アーム部または第3アーム部の内部空間は大気圧となっており、この内部空間に、第1モータと第2モータと第1減速機と第2減速機とが配置されている。また、第一の発明では、内部空間に配置される第1減速機と第2減速機とは、その軸中心が一致するように同軸上で重なっている。そのため、第一の発明では、第1減速機および第2減速機の軸方向において内部空間を大きくすることが可能になる。すなわち、第一の発明では、大気圧となっている内部空間の容積を大きくして、内部空間内の空気の量を増やすことが可能になる。したがって、第一の発明では、大気圧となっている内部空間に配置される第1モータと第2モータとを効率的に冷却することが可能になる。また、第一の発明では、第1アーム部に対する第2アーム部の回動中心上、第2アーム部に対する第3アーム部の回動中心上、または、第3アーム部に対するハンドの回動中心上に2台の減速機が配置されるため、第1関節部、第2関節部または第3関節部の剛性を高めることが可能になる。 In the industrial robot of the first invention, the internal space of the first arm portion, the second arm portion or the third arm portion formed in a hollow shape is at atmospheric pressure, and the first motor and A second motor, a first speed reducer, and a second speed reducer are arranged. In the first invention, the first speed reducer and the second speed reducer arranged in the internal space overlap on the same axis so that the axial centers thereof coincide. Therefore, in the first invention, the internal space can be increased in the axial direction of the first reduction gear and the second reduction gear. That is, in the first invention, it is possible to increase the volume of air in the internal space by increasing the volume of the internal space that is at atmospheric pressure. Therefore, in the first invention, it is possible to efficiently cool the first motor and the second motor disposed in the internal space that is at atmospheric pressure. In the first invention, the center of rotation of the second arm portion relative to the first arm portion, the center of rotation of the third arm portion relative to the second arm portion, or the center of rotation of the hand relative to the third arm portion. Since the two speed reducers are arranged on the top, the rigidity of the first joint portion, the second joint portion, or the third joint portion can be increased.
 さらにまた、上記の課題を解決するため、第一の発明の産業用ロボットは、本体部と、本体部にその基端側が回動可能に連結される第1アーム部と第1アーム部の先端側にその基端側が回動可能に連結される第2アーム部と第2アーム部の先端側にその基端側が回動可能に連結される第3アーム部と第3アーム部の先端側にその基端側が回動可能に連結される第4アーム部とを有するアームと、第4アーム部の先端側に回動可能に連結されるハンドと、第1アーム部に対して第2アーム部を回動させるための第1モータと、第2アーム部に対して第3アーム部を回動させるための第2モータと、第3アーム部に対して第4アーム部を回動させるための第3モータと、第4アーム部に対してハンドを回動させるための第4モータと、第1モータの回転を減速して第2アーム部に伝達する第1減速機と、第2モータの回転を減速して第3アーム部に伝達する第2減速機と、第3モータの回転を減速して第4アーム部に伝達する第3減速機と、第4モータの回転を減速してハンドに伝達する第4減速機とを備え、ハンドとアームとは、真空中に配置され、第1減速機、第2減速機、第3減速機および第4減速機は、その径方向の中心に貫通孔が形成される中空減速機であり、第1減速機、第2減速機、第3減速機および第4減速機のうちの少なくとも2個の減速機は、その軸中心と、第1アーム部に対する第2アーム部の回動中心、第2アーム部に対する第3アーム部の回動中心、第3アーム部に対する第4アーム部の回動中心、または、第4アーム部に対するハンドの回動中心とが一致するように同軸上で重なるように配置されるとともに、第1アーム部と第2アーム部とを繋ぐ第1関節部、第2アーム部と第3アーム部とを繋ぐ第2関節部、第3アーム部と第4アーム部とを繋ぐ第3関節部、または、第4アーム部とハンドとを繋ぐ第4関節部の少なくとも一部を構成し、中空状に形成される第1アーム部、第2アーム部、第3アーム部または第4アーム部の内部空間には、同軸上で重なるように配置される少なくとも2個の減速機と、この少なくとも2個の減速機に連結される第1モータ、第2モータ、第3モータおよび第4モータのうちの少なくとも2個のモータとが配置され、内部空間は、大気圧となっていることを特徴とする。 Furthermore, in order to solve the above-described problem, an industrial robot according to a first aspect of the present invention includes a main body, a first arm part whose base end side is rotatably connected to the main body part, and a distal end of the first arm part. To the distal end side of the second arm portion and the second arm portion, the base end side of which is pivotably connected to the side, and to the distal end side of the third arm portion and the third arm portion of which the proximal end side is pivotally connected. An arm having a fourth arm portion whose base end side is rotatably connected, a hand rotatably connected to a distal end side of the fourth arm portion, and a second arm portion with respect to the first arm portion A first motor for rotating the second arm, a second motor for rotating the third arm with respect to the second arm, and a fourth arm for rotating with respect to the third arm. A third motor, a fourth motor for rotating the hand relative to the fourth arm, and a first motor A first speed reducer that decelerates and transmits the rotation of the second motor, a second speed reducer that decelerates and transmits the rotation of the second motor to the third arm, and decelerates the rotation of the third motor. A third speed reducer that transmits to the fourth arm part, and a fourth speed reducer that reduces the rotation of the fourth motor and transmits it to the hand. The hand and the arm are disposed in a vacuum, and the first speed reducer The second reducer, the third reducer, and the fourth reducer are hollow reducers in which a through hole is formed at the center in the radial direction, and the first reducer, the second reducer, the third reducer, and At least two of the fourth reduction gears have an axial center, a rotation center of the second arm portion with respect to the first arm portion, a rotation center of the third arm portion with respect to the second arm portion, a third The center of rotation of the fourth arm portion relative to the arm portion or the center of rotation of the hand relative to the fourth arm portion is the same. The first joint part connecting the first arm part and the second arm part, the second joint part connecting the second arm part and the third arm part, and the third joint part. A first arm portion that forms at least a part of a third joint portion that connects the arm portion and the fourth arm portion, or a fourth joint portion that connects the fourth arm portion and the hand, and is formed in a hollow shape, In the internal space of the two arm part, the third arm part, or the fourth arm part, at least two speed reducers arranged so as to overlap on the same axis, and a first motor connected to the at least two speed reducers In addition, at least two of the second motor, the third motor, and the fourth motor are arranged, and the internal space is at atmospheric pressure.
 第一の発明の産業用ロボットでは、中空状に形成される第1アーム部、第2アーム部、第3アーム部または第4アーム部の内部空間は大気圧となっており、この内部空間に、第1減速機、第2減速機、第3減速機および第4減速機のうちの少なくとも2個の減速機と、この少なくとも2個の減速機に連結される第1モータ、第2モータ、第3モータおよび第4モータのうちの少なくとも2個のモータとが配置されている。また、第一の発明では、内部空間に配置される少なくとも2個の減速機は、その軸中心が一致するように同軸上で重なっている。そのため、第一の発明では、減速機の軸方向において内部空間を大きくすることが可能になる。すなわち、本発明では、大気圧となっている内部空間の容積を大きくして、内部空間内の空気の量を増やすことが可能になる。したがって、第一の発明では、大気圧となっている内部空間に配置される少なくとも2個のモータを効率的に冷却することが可能になる。また、第一の発明では、第1アーム部に対する第2アーム部の回動中心上、第2アーム部に対する第3アーム部の回動中心上、第3アーム部に対する第4アーム部の回動中心上、または、第4アーム部に対するハンドの回動中心上に少なくとも2台の減速機が配置されるため、第1関節部、第2関節部、第3関節部または第4関節部の剛性を高めることが可能になる。 In the industrial robot of the first invention, the internal space of the first arm part, the second arm part, the third arm part, or the fourth arm part formed in a hollow shape is at atmospheric pressure. , At least two of the first reducer, the second reducer, the third reducer, and the fourth reducer, and a first motor, a second motor coupled to the at least two reducers, At least two motors of the third motor and the fourth motor are arranged. Moreover, in 1st invention, the at least 2 reduction gear arrange | positioned in interior space has overlapped on the same axis | shaft so that the axial center may correspond. Therefore, in the first invention, the internal space can be increased in the axial direction of the reduction gear. That is, in the present invention, it is possible to increase the volume of air in the internal space by increasing the volume of the internal space that is at atmospheric pressure. Therefore, in the first invention, it is possible to efficiently cool at least two motors arranged in the internal space that is at atmospheric pressure. In the first aspect of the invention, the rotation of the fourth arm on the rotation center of the second arm with respect to the first arm, the rotation of the third arm with respect to the second arm, and the rotation of the fourth arm with respect to the third arm. Since at least two speed reducers are arranged on the center or on the center of rotation of the hand with respect to the fourth arm, the rigidity of the first joint, the second joint, the third joint, or the fourth joint Can be increased.
 つぎに、上記の課題を解決するため、第二の発明は請求項7から13に述べているが、第二の発明の産業用ロボットの原点位置復帰方法は、産業用ロボットを原点位置へ復帰させる産業用ロボットの原点位置復帰方法であって、現在位置の座標がわからなくなった状態で停止している産業用ロボットの仮の現在位置の座標を、産業用ロボットの状態に基づいて設定する仮現在位置設定工程と、仮現在位置設定工程後に、産業用ロボットを所定位置まで動作させる動作工程と、動作工程後に、原点位置へ産業用ロボットを自動で復帰させる復帰動作工程とを備えることを特徴とする。 Next, in order to solve the above-mentioned problems, the second invention is described in claims 7 to 13, but the industrial robot origin position return method of the second invention is a method of returning the industrial robot to the origin position. This is a method for returning the home position of an industrial robot to be set, and the temporary current position coordinates of an industrial robot that is stopped in a state where the current position coordinates are unknown are set based on the state of the industrial robot. A current position setting step; an operation step of operating the industrial robot to a predetermined position after the provisional current position setting step; and a return operation step of automatically returning the industrial robot to the home position after the operation step. And
 第二の発明の産業用ロボットの原点位置復帰方法では、仮現在位置設定工程において、現在位置の座標がわからなくなった状態で停止している産業用ロボットの仮の現在位置の座標を設定しているため、設定された仮の現在位置の座標に基づいて、動作工程で、産業用ロボットに適切な動作を行わせることが可能になる。また、第二の発明では、動作工程で所定位置まで産業用ロボットを動作させているため、たとえば、動作工程において、産業用ロボットを安全に原点復帰させることができる位置まで動作させることで、復帰動作工程において、原点位置へ産業用ロボットを安全に自動復帰させることが可能になる。このように、第二の発明の原点位置復帰方法によれば、現在位置の座標がわからなくなった状態で停止している産業用ロボットをオペレータの手動操作といった煩雑な方法で原点位置へ復帰させる場合と比較して、簡易かつ安全に産業用ロボットを原点位置へ復帰させることが可能になる。 In the industrial robot origin position return method of the second invention, in the temporary current position setting step, the temporary current position coordinates of the industrial robot that is stopped in a state where the current position coordinates are lost are set. Therefore, it is possible to cause the industrial robot to perform an appropriate operation in the operation process based on the set temporary current position coordinates. In the second invention, since the industrial robot is operated to a predetermined position in the operation process, for example, in the operation process, the industrial robot is returned to a position where the origin can be safely returned to the origin. In the operation process, the industrial robot can be safely and automatically returned to the origin position. As described above, according to the origin position return method of the second invention, when the industrial robot that is stopped in a state where the coordinates of the current position are lost is returned to the origin position by a complicated method such as manual operation by the operator. Compared to the above, it becomes possible to return the industrial robot to the origin position easily and safely.
 第二の発明において、たとえば、産業用ロボットは、搬送対象物が搭載されるハンドと、回動可能に連結される複数のアーム部を有しその先端側にハンドが回動可能に連結されるアームと、複数のアーム部を回動させるための複数のアーム用モータと、ハンドを回動させるためのハンド用モータとを備え、仮現在位置設定工程では、アームに対するハンドの回動中心の仮の現在位置の座標を設定し、動作工程では、復帰動作工程における産業用ロボットの復帰動作時に搬送対象物が収容される収容部とハンドおよび搬送対象物とが干渉しない位置まで産業用ロボットを動作させる。 In the second invention, for example, the industrial robot has a hand on which the object to be transported is mounted and a plurality of arms that are rotatably connected, and the hand is rotatably connected to the tip side thereof. An arm, a plurality of arm motors for rotating the plurality of arm portions, and a hand motor for rotating the hand. In the temporary current position setting step, a temporary center of rotation of the hand with respect to the arm is provided. Set the coordinates of the current position of the robot, and in the operation process, move the industrial robot to the position where the container and the hand and the object to be conveyed do not interfere with each other during the return operation of the industrial robot. Let me.
 この場合には、産業用ロボットが複数のアーム用モータとハンド用モータとを備えているため、現在位置の座標がわからなくなった状態で停止している産業用ロボットをオペレータの手動操作で原点位置へ復帰させると、その操作が非常に煩雑になるが、第二の発明では、容易に産業用ロボットを原点位置に復帰させることが可能になる。また、この場合には、仮現在位置設定工程でハンドの回動中心の仮の現在位置の座標を設定しているため、動作工程において、ハンドおよび搬送対象物と収容部とが干渉しないように、産業用ロボットを動作させることが可能になる。さらに、この場合には、復帰動作工程における産業用ロボットの復帰動作時に搬送対象物が収容される収容部とハンドおよび搬送対象物とが干渉しない位置まで動作工程で産業用ロボットを動作させているため、復帰動作工程で、産業用ロボットを安全に原点位置へ自動で復帰させることが可能になる。 In this case, since the industrial robot is provided with a plurality of arm motors and hand motors, the industrial robot that has stopped in a state where the coordinates of the current position are not known can be manually operated by the operator. However, in the second invention, it is possible to easily return the industrial robot to the origin position. In this case, since the coordinates of the temporary current position at the rotation center of the hand are set in the temporary current position setting step, the hand, the object to be transported, and the accommodating portion are prevented from interfering in the operation step. It becomes possible to operate industrial robots. Furthermore, in this case, the industrial robot is operated in the operation process up to a position where the housing unit, the hand, and the conveyance object do not interfere with each other during the return operation of the industrial robot in the return operation process. Therefore, the industrial robot can be safely and automatically returned to the origin position in the return operation process.
 第二の発明において、産業用ロボットには、産業用ロボットに動作位置を教示するための可搬式の教示操作端末が接続され、仮現在位置設定工程では、オペレータが目視で確認して決めたハンドの回動中心の仮の現在位置の座標を教示操作端末に入力して、ハンドの回動中心の仮の現在位置の座標を設定することが好ましい。このように構成すると、ハンドの回動中心の仮の現在位置の座標を容易に設定することが可能になる。 In the second invention, the industrial robot is connected with a portable teaching operation terminal for teaching the operation position to the industrial robot. It is preferable that the coordinates of the temporary current position at the center of rotation of the hand are input to the teaching operation terminal to set the coordinates of the temporary current position at the center of rotation of the hand. If comprised in this way, it will become possible to set the coordinate of the temporary present position of the rotation center of a hand easily.
 第二の発明において、ハンドは、ハンドの回動の軸方向となる上下方向から見たときに、直線的に移動して収容部への搬送対象物の搬入および収容部からの搬送対象物の搬出を行い、動作工程では、上下方向から見たときに、搬送対象物の搬入時および搬出時のハンドの移動方向にハンドが移動するように、産業用ロボットに直線補間動作をさせることが好ましい。このように構成すると、動作工程において、ハンドおよび搬送対象物と収容部とが干渉しないように、産業用ロボットを動作させることが可能になる。 In the second invention, the hand moves linearly when viewed from the vertical direction that is the axial direction of rotation of the hand, and the transport object is carried into the storage part and the transport object from the storage part. It is preferable that the industrial robot performs a linear interpolation operation so that the hand moves in the moving direction of the hand at the time of loading and unloading the object to be transported when viewed from above and below in the operation process. . If comprised in this way, in an operation | movement process, it will become possible to operate an industrial robot so that a hand, a conveyance target object, and an accommodating part may not interfere.
 第二の発明において、仮現在位置設定工程では、ハンドの回動の軸方向となる上下方向に直交する平面において規定される円筒座標系の座標および直交座標系の座標のいずれの座標でも上下方向から見たときのハンドの回動中心の仮の現在位置の座標を設定可能となっており、円筒座標系の座標または直交座標系の座標のいずれかの座標によって上下方向から見たときのハンドの回動中心の仮の現在位置の座標が設定されることが好ましい。このように構成すると、動作工程において産業用ロボットを動作させやすい座標系の座標で、上下方向から見たときのハンドの回動中心の仮の現在位置の座標を設定することができる。 In the second invention, in the provisional current position setting step, the cylindrical coordinate system coordinate and the orthogonal coordinate system coordinate defined in a plane orthogonal to the vertical direction that is the axial direction of the hand rotation are the vertical direction. The coordinates of the temporary current position of the center of rotation of the hand when viewed from above can be set, and the hand when viewed from the top and bottom by either the coordinates of the cylindrical coordinate system or the coordinates of the orthogonal coordinate system It is preferable that the coordinates of the temporary current position at the center of rotation be set. If comprised in this way, the coordinate of the temporary present position of the rotation center of a hand when it sees from an up-down direction can be set with the coordinate of a coordinate system which is easy to operate an industrial robot in an operation | movement process.
 第二の発明において、産業用ロボットは、動作工程で産業用ロボットを動作させるための操作部材を備え、動作工程では、産業用ロボットのオペレータが操作部材を操作している間は産業用ロボットが動作するとともに、オペレータが操作部材の操作を停止すると産業用ロボットが停止するジョグ操作によって産業用ロボットを動作させることが好ましい。このように構成すると、仮現在位置設定工程で設定された産業用ロボットの仮の現在位置の座標と、停止している産業用ロボットの実際の現在位置の座標とのずれ量が大きくて、動作工程でそのまま産業用ロボットの動作を継続すると、たとえば、収容部とハンドとが干渉するような場合であっても、ジョグ操作を行いながら、仮の現在位置の座標を再設定し直すことで、動作工程における収容部とハンドとの干渉を防止することが可能になる。 In the second invention, the industrial robot includes an operation member for operating the industrial robot in the operation process. In the operation process, the industrial robot is operated while the operator of the industrial robot operates the operation member. It is preferable that the industrial robot is operated by a jog operation in which the industrial robot stops when the operator stops operating the operation member. With this configuration, the amount of deviation between the temporary current position coordinates of the industrial robot set in the temporary current position setting step and the actual current position coordinates of the stopped industrial robot is large, and the operation If the operation of the industrial robot is continued as it is in the process, for example, even if the housing part and the hand interfere, by resetting the coordinates of the temporary current position while performing the jog operation, It becomes possible to prevent interference between the housing part and the hand in the operation process.
 また、上記の課題を解決するため、第二の発明の産業用ロボットは、搬送対象物が搭載されるハンドと、回動可能に連結される複数のアーム部を有しその先端側にハンドが回動可能に連結されるアームと、複数のアーム部を回動させるための複数のアーム用モータと、ハンドを回動させるためのハンド用モータとを備える産業用ロボットにおいて、アームに対するハンドの回動中心の現在位置の座標がわからなくなった状態で停止している産業用ロボットの、ハンドの回動中心の仮の現在位置の座標を設定するための仮現在位置設定手段を備えることを特徴とする。 In order to solve the above-mentioned problem, the industrial robot of the second invention has a hand on which the object to be transported is mounted and a plurality of arm portions that are rotatably connected, and the hand is on the tip side. In an industrial robot comprising an arm that is rotatably connected, a plurality of arm motors for rotating a plurality of arm portions, and a hand motor for rotating a hand, a rotation of the hand relative to the arm is provided. Characterized in that it comprises provisional current position setting means for setting the coordinates of the temporary current position of the rotation center of the hand of an industrial robot that has stopped in a state where the coordinates of the current position of the movement center are unknown. To do.
 第二の発明の産業用ロボットは、アームに対するハンドの回動中心の現在位置の座標がわからなくなった状態で停止している産業用ロボットの、ハンドの回動中心の仮の現在位置の座標を設定するための仮現在位置設定手段を備えている。そのため、第二の発明では、仮現在位置設定手段によってハンドの回動中心の仮の現在位置の座標を設定することで、産業用ロボットは、ハンドの回動中心の仮の現在位置の座標を把握することができる。したがって、第二の発明では、産業用ロボットに適切な動作を行わせて、産業用ロボットを原点位置へ復帰させることが可能になる。その結果、第二の発明では、現在位置の座標がわからなくなった状態で停止している産業用ロボットをオペレータの手動操作といった煩雑な方法で原点位置へ復帰させる場合と比較して、簡易な方法で産業用ロボットを原点位置へ復帰させることが可能になる。 The industrial robot according to the second aspect of the present invention uses the temporary current position coordinates of the hand rotation center of the industrial robot that has stopped in a state where the coordinates of the current position of the hand rotation center with respect to the arm are lost. Temporary current position setting means for setting is provided. Therefore, in the second invention, by setting the temporary current position coordinates of the hand rotation center by the temporary current position setting means, the industrial robot obtains the coordinates of the temporary current position of the hand rotation center. I can grasp it. Therefore, in the second invention, it is possible to cause the industrial robot to perform an appropriate operation and return the industrial robot to the origin position. As a result, in the second invention, compared to a case where the industrial robot stopped in a state where the coordinates of the current position are not known is returned to the origin position by a complicated method such as manual operation by the operator, a simple method This makes it possible to return the industrial robot to the origin position.
 また、上記の課題を解決するため、第三の発明は請求項14から18に述べているが、第三の発明の産業用ロボットは、相対回動可能に連結される複数のアーム部からなるアームを有する産業用ロボットにおいて、複数のアーム部を回動させるための複数のモータと、複数のモータのそれぞれを駆動制御する複数のモータドライバと、複数のモータドライバに電力を供給する電源と、複数のモータドライバに接続されるとともに複数のモータで発生する回生電流によって充電可能な充放電部と、複数のモータドライバを制御する制御実行部とを備え、産業用ロボットの非常停止時に、電源を切るとともに、制御実行部が充放電部から供給される電力を用いて複数のモータドライバを制御しながら複数のモータを停止させることを特徴とする。 In order to solve the above-mentioned problem, the third invention is described in claims 14 to 18, but the industrial robot of the third invention comprises a plurality of arm portions connected so as to be relatively rotatable. In an industrial robot having an arm, a plurality of motors for rotating a plurality of arm units, a plurality of motor drivers for driving and controlling each of the plurality of motors, and a power source for supplying power to the plurality of motor drivers, A charging / discharging unit that is connected to multiple motor drivers and can be charged by regenerative current generated by multiple motors, and a control execution unit that controls the multiple motor drivers. And the control execution unit stops the plurality of motors while controlling the plurality of motor drivers using the power supplied from the charging / discharging unit.
 第三の発明の産業用ロボットでは、その非常停止時に、複数のモータドライバに電力を供給する電源を切っている。そのため、第三の発明では、産業用ロボットの非常停止時に、比較的短時間で複数のモータを停止させることが可能になり、比較的短時間で安全を確保することが可能になる。また、第三の発明では、産業用ロボットの非常停止時に、複数のモータで発生する回生電流によって充電可能な充放電部から供給される電力を用いて、制御実行部がモータドライバを制御しながら複数のモータを停止させている。すなわち、第三の発明では、産業用ロボットの非常停止時に、充放電部から供給される電力を用いて複数のモータを制御しながら停止させている。そのため、第三の発明では、複数のアーム部を回動させるための複数のモータを産業用ロボットが備えている場合であっても、アームの姿勢が所定の状態となるように、産業用ロボットを非常停止させることが可能になる。 In the industrial robot of the third invention, the power supply for supplying power to a plurality of motor drivers is turned off during the emergency stop. Therefore, in the third invention, it is possible to stop a plurality of motors in a relatively short time when the industrial robot is in an emergency stop, and it is possible to ensure safety in a relatively short time. In the third invention, the control execution unit controls the motor driver using the power supplied from the charge / discharge unit that can be charged by the regenerative current generated by the plurality of motors at the time of emergency stop of the industrial robot. Multiple motors are stopped. That is, in the third invention, at the time of an emergency stop of the industrial robot, the plurality of motors are stopped while being controlled using the electric power supplied from the charge / discharge unit. Therefore, in the third aspect of the invention, even when the industrial robot is provided with a plurality of motors for rotating the plurality of arm portions, the industrial robot is arranged so that the posture of the arm is in a predetermined state. It becomes possible to make an emergency stop.
 第三の発明において、産業用ロボットは、アームの先端側に回動可能に連結されるハンドと、アームに対してハンドを回動させるためのハンド用モータと、ハンド用モータを駆動制御するハンド用モータドライバとを備え、制御実行部は、非常停止時に充放電部から供給される電力を用いてハンド用モータドライバを制御しながらハンド用モータを停止させることが好ましい。このように構成すると、ハンドを回動させるためのハンド用モータを産業用ロボットが備えている場合であっても、アームに対するハンドの姿勢を所定の状態に保ったままで、産業用ロボットを非常停止させることが可能になる。 In the third invention, the industrial robot includes a hand rotatably connected to the distal end side of the arm, a hand motor for rotating the hand relative to the arm, and a hand for driving and controlling the hand motor. Preferably, the control execution unit stops the hand motor while controlling the hand motor driver using the power supplied from the charging / discharging unit during an emergency stop. With this configuration, even if the industrial robot is equipped with a hand motor for rotating the hand, the industrial robot is emergency-stopped while maintaining the posture of the hand with respect to the arm. It becomes possible to make it.
 第三の発明において、産業用ロボットは、たとえば、アームの基端側が回動可能に連結される本体部を備えるとともに、アーム部として、本体部にその基端側が回動可能に連結される第1アーム部と、第1アーム部の先端側にその基端側が回動可能に連結されるとともにハンドがその先端側に連結される第2アーム部とを備え、モータとして、本体部に対して第1アーム部を回動させるための第1モータと、第1アーム部に対して第2アーム部を回動させるための第2モータとを備え、モータドライバとして、第1モータを駆動制御する第1モータドライバと、第2モータを駆動制御する第2モータドライバとを備えている。 In the third invention, the industrial robot includes, for example, a main body portion in which the base end side of the arm is rotatably connected, and the base end side of the arm portion is rotatably connected to the main body portion. 1 arm part and the 2nd arm part to which the base end side is connected with the front end side of the 1st arm part so that rotation is possible, and a hand is connected with the front end side as a motor. A first motor for rotating the first arm part and a second motor for rotating the second arm part with respect to the first arm part are provided, and the first motor is driven and controlled as a motor driver. A first motor driver and a second motor driver that drives and controls the second motor are provided.
 第三の発明において、産業用ロボットは、アームを昇降させるための昇降用モータと、昇降用モータを駆動制御する昇降用モータドライバと、昇降用モータを停止させるための第1ブレーキと、第1ブレーキよりも大きな制動力で昇降用モータを停止させるための第2ブレーキとを備え、制御実行部は、昇降用モータドライバ、第1ブレーキおよび第2ブレーキを制御するとともに、非常停止時に、第1ブレーキを作動させた後、第2ブレーキを作動させて昇降用モータを停止させることが好ましい。このように構成すると、第1ブレーキと第2ブレーキとによって昇降用モータを比較的短時間で停止させることが可能になる。したがって、たとえば、昇降用モータが制御不能となっている産業用ロボットを非常停止させる場合であっても、アームの落下を防止することが可能になる。 In the third invention, the industrial robot includes an elevating motor for elevating the arm, an elevating motor driver for driving and controlling the elevating motor, a first brake for stopping the elevating motor, A second brake for stopping the lifting motor with a braking force larger than that of the brake, and the control execution unit controls the lifting motor driver, the first brake and the second brake, and at the time of emergency stop, After operating the brake, it is preferable to operate the second brake to stop the lifting motor. If comprised in this way, it will become possible to stop the raising / lowering motor by a 1st brake and a 2nd brake in a comparatively short time. Therefore, for example, even when an industrial robot in which the elevating motor is uncontrollable is emergency stopped, it is possible to prevent the arm from dropping.
 ここで、昇降用モータをより短時間で停止させるためには、非常停止時に、制動力の大きな第2ブレーキをすぐに作動させることが好ましい。一方で、非常停止時に、制動力の大きな第2ブレーキをすぐに作動させると、昇降用モータが必要以上に急停止しようとして、逆に危険な場合がある。そのため、非常停止時に、制動力の大きな第2ブレーキをすぐに作動させたい場合には、昇降用モータが必要以上に急停止しないように、昇降用モータが回転を継続する方向へ昇降用モータを回転させるように制御実行部が昇降用モータドライバを制御することが好ましい。しかしながら、この場合には、非常停止時に、充放電部に充電された電力が昇降用モータドライバによって短時間で消費されてしまうおそれがある。非常停止時に、充放電部に充電された電力が昇降用モータドライバによって短時間で消費されてしまうと、制御実行部が、充放電部から供給される電力を用いてモータドライバを制御することができなくなり、複数のアーム部のそれぞれが勝手に回動して、予期せぬ事故を引き起こすおそれがある。 Here, in order to stop the elevating motor in a shorter time, it is preferable to immediately operate the second brake having a large braking force at the time of emergency stop. On the other hand, if the second brake having a large braking force is actuated immediately during an emergency stop, the lifting motor may try to stop more suddenly than necessary, which may be dangerous. Therefore, if you want to immediately activate the second brake with a large braking force during an emergency stop, move the elevating motor in the direction in which the elevating motor continues to rotate so that the elevating motor does not stop more suddenly than necessary. It is preferable that the control execution unit controls the elevating motor driver so as to rotate. However, in this case, the power charged in the charging / discharging unit may be consumed in a short time by the lifting motor driver during an emergency stop. If the power charged in the charging / discharging unit is consumed in a short time by the lifting / lowering motor driver during an emergency stop, the control execution unit may control the motor driver using the power supplied from the charging / discharging unit. There is a possibility that each of the plurality of arm portions may rotate freely and cause an unexpected accident.
 これに対して、非常停止時に、制御実行部が、制動力の小さな第1ブレーキを作動させて昇降用モータの回転速度を落とした後に、制動力の大きな第2ブレーキを作動させて昇降用モータを停止させれば、昇降用モータが急停止しにくくなり、その結果、非常停止時に昇降用モータドライバで消費される充放電部の電力を低減することが可能になる。したがって、このように構成すると、非常停止時に、充放電部から供給される電力を用いて複数のモータを制御して、アームの姿勢が所定の状態となるように、産業用ロボットを非常停止させることが可能になる。 On the other hand, at the time of an emergency stop, the control execution unit operates the first brake having a small braking force to lower the rotation speed of the lifting motor, and then operates the second brake having a large braking force to operate the lifting motor. Is stopped, it becomes difficult for the elevating motor to stop suddenly, and as a result, it is possible to reduce the power of the charge / discharge unit consumed by the elevating motor driver during an emergency stop. Therefore, with this configuration, at the time of an emergency stop, the industrial robot is emergency stopped so that the posture of the arm is in a predetermined state by controlling a plurality of motors using the power supplied from the charge / discharge unit. It becomes possible.
 また、上記の課題を解決するため、第三の発明の産業用ロボットの制御方法は、相対回動可能に連結される複数のアーム部からなるアームと、複数のアーム部を回動させるための複数のモータと、複数のモータのそれぞれを駆動制御する複数のモータドライバと、複数のモータドライバに電力を供給する電源と、複数のモータドライバに接続されるとともに複数のモータで発生する回生電流によって充電可能な充放電部とを備える産業用ロボットの制御方法であって、産業用ロボットの非常停止時に、電源を切るとともに、充放電部から供給される電力を用いて複数のモータドライバを制御しながら複数のモータを停止させることを特徴とする。 In order to solve the above-mentioned problem, a control method for an industrial robot according to a third aspect of the present invention includes an arm composed of a plurality of arm portions connected so as to be relatively rotatable and a plurality of arm portions for rotating the arm portion. By a plurality of motors, a plurality of motor drivers that drive and control each of the plurality of motors, a power source that supplies power to the plurality of motor drivers, and a regenerative current that is connected to the plurality of motor drivers and that is generated by the plurality of motors A control method for an industrial robot comprising a chargeable / dischargeable part, wherein when the industrial robot is in an emergency stop, the power is turned off and a plurality of motor drivers are controlled by using electric power supplied from the charge / discharge part. However, a plurality of motors are stopped.
 第三の発明の産業用ロボットの制御方法では、産業用ロボットの非常停止時に、複数のモータドライバに電力を供給する電源を切っている。そのため、第三の発明では、産業用ロボットの非常停止時に、比較的短時間で複数のモータを停止させることが可能になり、比較的短時間で安全を確保することが可能になる。また、第三の発明では、産業用ロボットの非常停止時に、複数のモータで発生する回生電流によって充電可能な充放電部から供給される電力を用いて、モータドライバを制御しながら複数のモータを停止させている。すなわち、第三の発明では、産業用ロボットの非常停止時に、充放電部から供給される電力を用いて複数のモータを制御しながら停止させている。そのため、第三の発明の産業用ロボットの制御方法によれば、複数のアーム部を回動させるための複数のモータを産業用ロボットが備えている場合であっても、アームの姿勢が所定の状態となるように、産業用ロボットを非常停止させることが可能になる。 In the industrial robot control method according to the third aspect of the invention, the power supply for supplying power to the plurality of motor drivers is turned off when the industrial robot is in an emergency stop. Therefore, in the third invention, it is possible to stop a plurality of motors in a relatively short time when the industrial robot is in an emergency stop, and it is possible to ensure safety in a relatively short time. In the third invention, when the industrial robot is in an emergency stop, the plurality of motors are controlled while controlling the motor driver using the power supplied from the charging / discharging unit that can be charged by the regenerative current generated by the plurality of motors. Stopped. That is, in the third invention, at the time of an emergency stop of the industrial robot, the plurality of motors are stopped while being controlled using the electric power supplied from the charge / discharge unit. Therefore, according to the industrial robot control method of the third invention, even when the industrial robot includes a plurality of motors for rotating the plurality of arm portions, the posture of the arm is predetermined. The industrial robot can be brought to an emergency stop so as to be in a state.
 上記の課題を解決するため、第四の発明は請求項19から23に述べているが、第四の発明の産業用ロボットは、相対回動可能に連結される複数のアーム部からなるアームと、複数のアーム部を回動させるための複数のモータと、アームの基端側が回動可能に連結される本体部とを備える産業用ロボットにおいて、産業用ロボットを制御する制御部は、アームの姿勢とアームの動作方向とに基づいて、本体部に対するアームの回動中心を原点とする円筒座標系で産業用ロボットを制御するのか、それとも、アームの回動中心を原点とする直交座標系で産業用ロボットを制御するのかを切り替えることを特徴とする。 In order to solve the above-mentioned problems, the fourth invention is described in claims 19 to 23, but the industrial robot of the fourth invention is provided with an arm composed of a plurality of arm portions connected so as to be relatively rotatable. In the industrial robot including a plurality of motors for rotating the plurality of arm units and a main body unit rotatably connected to the base end side of the arm, the control unit for controlling the industrial robot includes: Whether the industrial robot is controlled by a cylindrical coordinate system with the origin of the arm rotation center relative to the main body based on the posture and the movement direction of the arm, or with an orthogonal coordinate system with the arm rotation center as the origin It is characterized by switching whether to control an industrial robot.
 また、上記の課題を解決するため、第四の発明の産業用ロボットの制御方法は、相対回動可能に連結される複数のアーム部からなるアームと、複数のアーム部を回動させるための複数のモータと、アームの基端側が回動可能に連結される本体部とを備える産業用ロボットの制御方法において、アームの姿勢とアームの動作方向とに基づいて、本体部に対するアームの回動中心を原点とする円筒座標系で産業用ロボットを制御するのか、それとも、アームの回動中心を原点とする直交座標系で産業用ロボットを制御するのかを切り替えることを特徴とする。 In addition, in order to solve the above-described problem, a control method for an industrial robot according to a fourth aspect of the present invention includes an arm composed of a plurality of arm portions connected so as to be relatively rotatable, and a plurality of arm portions for rotating the arm portion. In an industrial robot control method comprising a plurality of motors and a main body portion rotatably connected to a base end side of the arm, the arm is rotated with respect to the main body portion based on the posture of the arm and the operation direction of the arm. It is characterized by switching between controlling the industrial robot in a cylindrical coordinate system with the center as the origin or controlling the industrial robot in an orthogonal coordinate system with the center of rotation of the arm as the origin.
 第四の発明の産業用ロボットでは、制御部は、アームの姿勢とアームの動作方向とに基づいて、本体部に対するアームの回動中心を原点とする円筒座標系で産業用ロボットを制御するのか、それとも、アームの回動中心を原点とする直交座標系で産業用ロボットを制御するのかを切り替えている。また、第四の発明の産業用ロボットの制御方法では、アームの姿勢とアームの動作方向とに基づいて、本体部に対するアームの回動中心を原点とする円筒座標系で産業用ロボットを制御するのか、それとも、アームの回動中心を原点とする直交座標系で産業用ロボットを制御するのかを切り替えている。そのため、第四の発明では、アームの回動の軸方向から見たときに本体部に対するアームの回動中心を通過する仮想線上をアームの先端側が直線的に移動するときには、円筒座標系で産業用ロボットを制御し、アームの回動の軸方向から見たときに本体部に対するアームの回動中心を通過する仮想線に沿わない位置でアームの先端側が直線的に移動するときには、直交座標系で産業用ロボットを制御することが可能になる。 In the industrial robot of the fourth invention, is the control unit controlling the industrial robot in a cylindrical coordinate system based on the arm rotation center with respect to the main body based on the arm posture and the arm movement direction? Or, it is switched whether to control the industrial robot in an orthogonal coordinate system with the rotation center of the arm as the origin. In the industrial robot control method according to the fourth aspect of the present invention, the industrial robot is controlled in a cylindrical coordinate system with the center of rotation of the arm relative to the main body as the origin based on the posture of the arm and the operating direction of the arm. Or whether to control the industrial robot in an orthogonal coordinate system with the rotation center of the arm as the origin. Therefore, in the fourth aspect of the invention, when the tip end side of the arm moves linearly on an imaginary line passing through the center of rotation of the arm with respect to the main body when viewed from the axial direction of the arm rotation, the cylindrical coordinate system is used. When the front end side of the arm moves linearly at a position that does not follow the imaginary line passing through the center of rotation of the arm relative to the main body when viewed from the axial direction of arm rotation, This makes it possible to control industrial robots.
 したがって、第四の発明では、アームの回動の軸方向から見たときにアームの回動中心を通過する仮想線上をアームの先端側が直線的に移動するときには、円筒座標系の座標を用いて、アームの先端側の移動位置を教示することが可能になり、アームの回動の軸方向から見たときにアームの回動中心を通過する仮想線に沿わない位置でアームの先端側が直線的に移動するときには、直交座標系の座標を用いて、アームの先端側の移動位置を教示することが可能になる。すなわち、第四の発明では、アームの回動の軸方向から見たときにアームの回動中心を通過する仮想線に沿わない位置でアームの先端側が直線的に移動する場合に、円筒座標系の座標を用いるのではなく、直交座標系の座標を用いて、アームの先端側の移動位置を教示することが可能になる。その結果、第四の発明では、アームの回動の軸方向から見たときにアームの回動中心を通過する仮想線に沿わない位置でアームの先端側が直線的に移動する場合であっても、アームの先端側の移動位置を容易に教示することが可能になる。 Therefore, in the fourth invention, when the tip end side of the arm moves linearly on an imaginary line passing through the center of rotation of the arm when viewed from the axial direction of the arm rotation, the coordinates of the cylindrical coordinate system are used. It is possible to teach the moving position of the arm tip side, and the arm tip side is linear at a position that does not follow the imaginary line passing through the arm rotation center when viewed from the axial direction of the arm rotation. When moving to the position, it is possible to teach the movement position on the tip side of the arm using the coordinates of the orthogonal coordinate system. That is, in the fourth invention, the cylindrical coordinate system is used when the tip end side of the arm linearly moves at a position not along the imaginary line passing through the center of rotation of the arm when viewed from the axial direction of the rotation of the arm. It is possible to teach the movement position on the distal end side of the arm using the coordinates of the orthogonal coordinate system instead of using the coordinates. As a result, in the fourth invention, even when the tip end side of the arm moves linearly at a position that does not follow the imaginary line passing through the center of rotation of the arm when viewed from the axial direction of the rotation of the arm. Thus, it is possible to easily teach the moving position on the tip side of the arm.
 第四の発明において、産業用ロボットは、たとえば、アームの先端側に回動可能に連結されるハンドと、ハンドを回動させるためのハンド用モータとを備えるとともに、アーム部として、その基端側が本体部に回動可能に連結される第1アーム部と、第1アーム部の先端側にその基端側が回動可能に連結されるとともにその先端側にハンドが回動可能に連結される第2アーム部とを備え、制御部は、ハンド、第1アーム部および第2アーム部の回動の軸方向となる上下方向から見たときにアームの回動中心を通過する仮想線上を第2アーム部に対するハンドの回動中心が直線的に移動するときに、円筒座標系で産業用ロボットを制御し、上下方向から見たときに仮想線に沿わない位置でハンドの回動中心が直線的に移動するときに、直交座標系で産業用ロボットを制御する。 In the fourth invention, the industrial robot includes, for example, a hand rotatably connected to the distal end side of the arm and a hand motor for rotating the hand, and the base end thereof as the arm portion A first arm portion whose side is rotatably connected to the main body portion, a base end side thereof is rotatably connected to a distal end side of the first arm portion, and a hand is rotatably connected to the distal end side thereof. A second arm unit, and the control unit is configured to perform a first operation on an imaginary line passing through the center of rotation of the arm when viewed from the vertical direction that is the axial direction of rotation of the hand, the first arm unit, and the second arm unit. When the center of rotation of the hand relative to the two arms moves linearly, the industrial robot is controlled by a cylindrical coordinate system, and the center of rotation of the hand is straight at a position that does not follow the virtual line when viewed from above and below. When moving To control the industrial robot in the system.
 この場合には、上下方向から見たときにアームの回動中心を通過する仮想線上をハンドの回動中心が直線的に移動するときには、円筒座標系の座標を用いて、ハンドの回動中心の移動位置を教示することが可能になり、上下方向から見たときにアームの回動中心を通過する仮想線に沿わない位置でハンドの回動中心が直線的に移動するときには、直交座標系の座標を用いて、ハンドの回動中心の移動位置を教示することが可能になる。したがって、上下方向から見たときにアームの回動中心を通過する仮想線に沿わない位置でハンドの回動中心が直線的に移動する場合であっても、ハンドの回動中心の移動位置を容易に教示することが可能になる。 In this case, when the hand rotation center moves linearly on an imaginary line passing through the arm rotation center when viewed from above and below, using the coordinates of the cylindrical coordinate system, When the hand rotation center moves linearly at a position that does not follow the imaginary line passing through the arm rotation center when viewed from above and below, the Cartesian coordinate system is used. It is possible to teach the movement position of the rotation center of the hand using the coordinates. Therefore, even when the hand rotation center moves linearly at a position that does not follow the imaginary line passing through the arm rotation center when viewed from the vertical direction, the movement position of the hand rotation center is determined. It becomes possible to teach easily.
 第四の発明において、制御部は、たとえば、本体部に対して第1アーム部が回動しておらず、かつ、第1アーム部に対して第2アーム部が回動していない状態で、第2アーム部に対してハンドが回動するときに、円筒座標系で産業用ロボットを制御する。また、第四の発明において、制御部は、たとえば、第1アーム部に対して第2アーム部が回動しておらず、かつ、第2アーム部に対してハンドが回動していない状態で、本体部に対して第1アーム部が回動するときに、円筒座標系で産業用ロボットを制御する。 4th invention WHEREIN: For example, the control part is in the state where the 1st arm part is not rotating with respect to a main-body part, and the 2nd arm part is not rotating with respect to a 1st arm part. When the hand rotates with respect to the second arm unit, the industrial robot is controlled in the cylindrical coordinate system. In the fourth invention, for example, the control unit is in a state in which the second arm unit is not rotated with respect to the first arm unit and the hand is not rotated with respect to the second arm unit. Thus, when the first arm portion rotates with respect to the main body portion, the industrial robot is controlled in the cylindrical coordinate system.
 以上のように、第一の発明では、真空中に配置されるアームの少なくとも一部の内部が大気圧となっている産業用ロボットにおいて、アーム内部の大気中に配置されるハンドやアームの駆動用モータを効率的に冷却することが可能になる。 As described above, according to the first aspect of the present invention, in an industrial robot in which at least a part of an arm arranged in a vacuum is at atmospheric pressure, driving of a hand and an arm arranged in the atmosphere inside the arm It is possible to efficiently cool the motor.
 つぎに、以上のように、第二の発明の産業用ロボットの原点位置復帰方法によれば、現在位置の座標がわからなくなった状態で停止している産業用ロボットを簡易な方法で原点位置へ復帰させることが可能になる。また、第二の発明の産業用ロボットでは、現在位置の座標がわからなくなった状態で産業用ロボットが停止していても、簡易な方法で産業用ロボットを原点位置へ復帰させることが可能になる。 Next, as described above, according to the industrial robot origin position return method of the second aspect of the present invention, an industrial robot that has stopped in a state where the coordinates of the current position are lost cannot be easily returned to the origin position. It becomes possible to return. Further, in the industrial robot of the second invention, even if the industrial robot is stopped when the coordinates of the current position are not known, the industrial robot can be returned to the origin position by a simple method. .
 また、以上のように、第三の発明では、複数のアーム部を回動させるための複数のモータを産業用ロボットが備えている場合であっても、アームの姿勢が所定の状態となるように、産業用ロボットを非常停止させることが可能になる。 As described above, in the third aspect of the invention, even when the industrial robot includes a plurality of motors for rotating the plurality of arm portions, the posture of the arm is in a predetermined state. In addition, the industrial robot can be brought to an emergency stop.
 さらに、以上のように、第四の発明の産業用ロボットでは、アームの回動の軸方向から見たときに本体部に対するアームの回動中心を通過する仮想線に沿わない位置でアームの先端側が直線的に移動する場合であっても、アームの先端側の移動位置を容易に教示することが可能になる。また、第四の発明の産業用ロボットの制御方法によれば、アームの回動の軸方向から見たときに本体部に対するアームの回動中心を通過する仮想線に沿わない位置でアームの先端側が直線的に移動する場合であっても、アームの先端側の移動位置を容易に教示することが可能になる。 Further, as described above, in the industrial robot according to the fourth aspect of the invention, the tip of the arm at a position that does not follow the imaginary line passing through the center of rotation of the arm relative to the main body when viewed from the axial direction of the rotation of the arm. Even when the side moves linearly, it is possible to easily teach the moving position on the tip side of the arm. According to the industrial robot control method of the fourth invention, the tip of the arm at a position that does not follow the imaginary line passing through the center of rotation of the arm relative to the main body when viewed from the axial direction of rotation of the arm. Even when the side moves linearly, it is possible to easily teach the moving position on the tip side of the arm.
本発明の実施の形態にかかる産業用ロボットが有機ELディスプレイの製造システムに組み込まれた状態を示す平面図である。It is a top view which shows the state in which the industrial robot concerning embodiment of this invention was integrated in the manufacturing system of the organic EL display. 図1に示す産業用ロボットの図であり、(A)は平面図、(B)は側面図である。It is a figure of the industrial robot shown in FIG. 1, (A) is a top view, (B) is a side view. 図2に示す産業用ロボットの内部構造を側面から説明するための断面図である。It is sectional drawing for demonstrating the internal structure of the industrial robot shown in FIG. 2 from a side surface. 図3に示す第1アーム部および関節部の拡大図である。It is an enlarged view of the 1st arm part and joint part which are shown in FIG. 図1に示すプロセスチャンバーから基板を搬出して他のプロセスチャンバーへ搬入する際の産業用ロボットの動きを説明するための図である。It is a figure for demonstrating a motion of the industrial robot at the time of carrying out a board | substrate from the process chamber shown in FIG. 1, and carrying in into another process chamber. 図1に示すプロセスチャンバーへ基板を搬入する際の産業用ロボットの動きを説明するための図である。It is a figure for demonstrating a motion of the industrial robot at the time of carrying in a board | substrate to the process chamber shown in FIG. 図1に示すプロセスチャンバーへ基板を搬入する際の産業用ロボットの動きを説明するための図である。It is a figure for demonstrating a motion of the industrial robot at the time of carrying in a board | substrate to the process chamber shown in FIG. 図1に示すプロセスチャンバーへ基板を搬入する際の産業用ロボットの動きを説明するための図である。It is a figure for demonstrating a motion of the industrial robot at the time of carrying in a board | substrate to the process chamber shown in FIG. 図1に示すプロセスチャンバーへ基板を搬入する際の産業用ロボットの動きを説明するための図である。It is a figure for demonstrating a motion of the industrial robot at the time of carrying in a board | substrate to the process chamber shown in FIG. 本発明の他の実施の形態にかかる産業用ロボットの概略構成を側面から説明するための図である。It is a figure for demonstrating schematic structure of the industrial robot concerning other embodiment of this invention from a side surface. 本発明の他の実施の形態にかかる産業用ロボットの平面図である。It is a top view of the industrial robot concerning other embodiment of this invention. 本発明の他の実施の形態にかかる産業用ロボットの平面図である。It is a top view of the industrial robot concerning other embodiment of this invention. 本発明の他の実施の形態にかかる産業用ロボットの概略構成を側面から説明するための図である。It is a figure for demonstrating schematic structure of the industrial robot concerning other embodiment of this invention from a side surface. 図2に示す産業用ロボットの教示操作端末の正面図である。It is a front view of the teaching operation terminal of the industrial robot shown in FIG. 図2に示す産業用ロボットが現在位置の座標がわからなくなった状態で非常停止したときの原点位置への復帰過程を説明するための図である。It is a figure for demonstrating the return process to an origin position when the industrial robot shown in FIG. 2 makes an emergency stop in the state where the coordinate of the present position is lost. 図2に示す産業用ロボットのモータ制御に関連する制御部の構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of the control part relevant to the motor control of the industrial robot shown in FIG. 図2に示す産業用ロボットのモータ制御に関連する制御部の構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of the control part relevant to the motor control of the industrial robot shown in FIG.
 以下、図面を参照しながら、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (産業用ロボットの概略構成)
 ここでは、第一の発明から第四の発明にかかる本形態として説明する。
 図1は、本発明の実施の形態にかかる産業用ロボット1が有機ELディスプレイの製造システム3に組み込まれた状態を示す平面図である。図2は、図1に示す産業用ロボット1の図であり、(A)は平面図、(B)は側面図である。図3は、図2に示す産業用ロボット1の内部構造を側面から説明するための断面図である。図14は、第二の発明の実施の形態であり、図2に示す産業用ロボット1の教示操作端末19の正面図である。図16は、第三の発明の実施の形態であり、図2に示す産業用ロボット1のモータ制御に関連する制御部の構成を説明するためのブロック図である。図17は、第四の発明の実施の形態であり、図2に示す産業用ロボット1のモータ制御に関連する制御部70の構成を説明するためのブロック図である。
(Schematic configuration of industrial robot)
Here, it demonstrates as this form concerning the 1st invention to the 4th invention.
FIG. 1 is a plan view showing a state in which an industrial robot 1 according to an embodiment of the present invention is incorporated in an organic EL display manufacturing system 3. 2A and 2B are views of the industrial robot 1 shown in FIG. 1, wherein FIG. 2A is a plan view and FIG. 2B is a side view. FIG. 3 is a cross-sectional view for explaining the internal structure of the industrial robot 1 shown in FIG. 2 from the side. FIG. 14 is a front view of the teaching operation terminal 19 of the industrial robot 1 shown in FIG. 2 according to the embodiment of the second invention. FIG. 16 is a block diagram for illustrating a configuration of a control unit related to motor control of the industrial robot 1 shown in FIG. 2 according to an embodiment of the third invention. FIG. 17 is a block diagram for explaining the configuration of the control unit 70 relating to the motor control of the industrial robot 1 shown in FIG. 2, which is an embodiment of the fourth invention.
 本形態の産業用ロボット1(以下、「ロボット1」とする。)は、搬送対象物である有機EL(有機エレクトロルミネッセンス)ディスプレイ用のガラス基板2(以下、「基板2」とする。)を搬送するためのロボット(水平多関節ロボット)である。このロボット1は、比較的大型の基板2の搬送に適したロボットである。ロボット1は、図1に示すように、有機ELディスプレイの製造システム3に組み込まれて使用される。 The industrial robot 1 (hereinafter referred to as “robot 1”) of this embodiment uses a glass substrate 2 (hereinafter referred to as “substrate 2”) for an organic EL (organic electroluminescence) display, which is an object to be transported. It is a robot for transporting (horizontally articulated robot). The robot 1 is a robot suitable for transporting a relatively large substrate 2. As shown in FIG. 1, the robot 1 is used by being incorporated in an organic EL display manufacturing system 3.
 製造システム3は、中心に配置されるトランスファーチャンバー4(以下、「チャンバー4」とする。)と、チャンバー4を囲むように配置される複数のプロセスチャンバー5~10(以下、「チャンバー5~10」とする。)とを備えている。チャンバー4およびチャンバー5~10の内部は、真空になっている。チャンバー4の内部には、ロボット1の一部が配置されている。ロボット1を構成する後述のフォーク部21がチャンバー5~10内に入り込むことで、ロボット1は、チャンバー5~10間で基板2を搬送する。すなわち、ロボット1は、真空中で基板2を搬送する。チャンバー5~10には、各種の装置等が配置されており、ロボット1で搬送された基板2が収容される。また、チャンバー5~10では、基板2に対して各種の処理が行われる。本形態のチャンバー5~10は、搬送対象物である基板2が収容される収容部である。製造システム3のより具体的な構成については後述する。 The manufacturing system 3 includes a transfer chamber 4 (hereinafter referred to as “chamber 4”) disposed in the center, and a plurality of process chambers 5 to 10 (hereinafter referred to as “chambers 5 to 10” disposed so as to surround the chamber 4). ")"). The inside of the chamber 4 and the chambers 5 to 10 are in a vacuum. A part of the robot 1 is disposed inside the chamber 4. When a fork unit 21 (described later) constituting the robot 1 enters the chambers 5 to 10, the robot 1 transports the substrate 2 between the chambers 5 to 10. That is, the robot 1 transports the substrate 2 in a vacuum. Various devices and the like are arranged in the chambers 5 to 10, and the substrate 2 transferred by the robot 1 is accommodated. In the chambers 5 to 10, various processes are performed on the substrate 2. The chambers 5 to 10 in the present embodiment are storage units that store the substrate 2 that is a transfer object. A more specific configuration of the manufacturing system 3 will be described later.
 図2、図3に示すように、ロボット1は、基板2が搭載されるハンド13と、ハンド13がその先端側に回動可能に連結されるアーム14と、アーム14の基端側が回動可能に連結される本体部15と、本体部15を昇降させる昇降機構16とを備えている。本体部15および昇降機構16は、略有底円筒状のケース体17の中に収容されている。ケース体17の上端には、円板状に形成されたフランジ18が固定されている。フランジ18に、本体部15の上端側部分が配置される貫通孔が形成されている。また、ロボット1には、図示を省略するロボットコントローラを介して、ロボット1に動作位置を教示するための可搬式の教示操作端末(ティーチングペンダント)19(図14参照)が接続されている。なお、図1、図2(A)等では、本体部15、昇降機構16およびケース体17等の図示を省略している。 As shown in FIGS. 2 and 3, the robot 1 includes a hand 13 on which the substrate 2 is mounted, an arm 14 to which the hand 13 is pivotally connected to a distal end side thereof, and a proximal end side of the arm 14 is rotated. The main body part 15 connected so that it is possible and the raising / lowering mechanism 16 which raises / lowers the main body part 15 are provided. The main body 15 and the lifting mechanism 16 are accommodated in a substantially bottomed cylindrical case body 17. A flange 18 formed in a disk shape is fixed to the upper end of the case body 17. A through hole in which the upper end side portion of the main body portion 15 is disposed is formed in the flange 18. The robot 1 is connected to a portable teaching operation terminal (teaching pendant) 19 (see FIG. 14) for teaching the operation position to the robot 1 via a robot controller (not shown). In addition, in FIG. 1, FIG. 2 (A) etc., illustration of the main-body part 15, the raising / lowering mechanism 16, the case body 17, etc. is abbreviate | omitted.
 ハンド13およびアーム14は、本体部15の上側に配置されている。また、ハンド13およびアーム14は、フランジ18の上側に配置されている。上述のように、ロボット1の一部は、チャンバー4の内部に配置されている。具体的には、ロボット1の、フランジ18の下端面よりも上側の部分がチャンバー4の内部に配置されている。すなわち、ロボット1の、フランジ18の下端面よりも上側の部分は、真空領域VRの中に配置されており、ハンド13およびアーム14は、真空中に配置されている。一方、ロボット1の、フランジ18の下端面よりも下側の部分は、大気領域ARの中(大気中)に配置されている。 The hand 13 and the arm 14 are arranged on the upper side of the main body 15. Further, the hand 13 and the arm 14 are disposed on the upper side of the flange 18. As described above, a part of the robot 1 is disposed inside the chamber 4. Specifically, a portion of the robot 1 above the lower end surface of the flange 18 is disposed inside the chamber 4. That is, the part above the lower end surface of the flange 18 of the robot 1 is disposed in the vacuum region VR, and the hand 13 and the arm 14 are disposed in a vacuum. On the other hand, a portion of the robot 1 below the lower end surface of the flange 18 is disposed in the atmospheric region AR (in the atmosphere).
 ハンド13は、アーム14に連結される基部20と、基板2が搭載される4本のフォーク部21とを備えている。フォーク部21は、直線状に形成されている。4本のフォーク部21のうちの2本のフォーク部21は、互いに所定の間隔をあけた状態で平行に配置されている。この2本のフォーク部21は、基部20から水平方向の一方側へ突出するように基部20に固定されている。残りの2本のフォーク部21は、基部20から水平方向の一方側へ突出する2本のフォーク部21と反対側に向かって基部20から突出するように基部20に固定されている。 The hand 13 includes a base 20 connected to the arm 14 and four forks 21 on which the substrate 2 is mounted. The fork portion 21 is formed in a straight line. Of the four fork portions 21, two fork portions 21 are arranged in parallel with a predetermined distance therebetween. The two fork portions 21 are fixed to the base portion 20 so as to protrude from the base portion 20 to one side in the horizontal direction. The remaining two fork portions 21 are fixed to the base portion 20 so as to protrude from the base portion 20 toward the opposite side of the two fork portions 21 protruding from the base portion 20 to one side in the horizontal direction.
 アーム14は、第1アーム部23と第2アーム部24との2つのアーム部によって構成されている。第1アーム部23および第2アーム部24は、中空状に形成されている。第1アーム部23の基端側は、本体部15に回動可能に連結されている。第1アーム部23の先端側には、第2アーム部24の基端側が回動可能に連結されている。第2アーム部24の先端側には、ハンド13が回動可能に連結されている。アーム14と本体部15との連結部(すなわち、第1アーム部23と本体部15との連結部)は、関節部25となっている。第1アーム部23と第2アーム部24との連結部は、関節部26となっている。アーム14とハンド13との連結部(すなわち、第2アーム部24とハンド13との連結部)は、関節部27となっている。第1アーム部23に対する第2アーム部24の回動中心と本体部15に対する第1アーム部23の回動中心との距離は、第1アーム部23に対する第2アーム部24の回動中心と第2アーム部24に対するハンド13の回動中心との距離と等しくなっている。本形態では、関節部26は、第1アーム部23と第2アーム部24とを繋ぐ第1関節部であり、関節部27は、第2アーム部24とハンド13とを繋ぐ第2関節部である。 The arm 14 is composed of two arm parts, a first arm part 23 and a second arm part 24. The first arm part 23 and the second arm part 24 are formed in a hollow shape. The base end side of the first arm portion 23 is rotatably connected to the main body portion 15. The proximal end side of the second arm portion 24 is rotatably connected to the distal end side of the first arm portion 23. The hand 13 is rotatably connected to the distal end side of the second arm portion 24. A connecting portion between the arm 14 and the main body portion 15 (that is, a connecting portion between the first arm portion 23 and the main body portion 15) is a joint portion 25. A connecting portion between the first arm portion 23 and the second arm portion 24 is a joint portion 26. A connecting portion between the arm 14 and the hand 13 (that is, a connecting portion between the second arm portion 24 and the hand 13) is a joint portion 27. The distance between the rotation center of the second arm portion 24 relative to the first arm portion 23 and the rotation center of the first arm portion 23 relative to the main body portion 15 is the rotation center of the second arm portion 24 relative to the first arm portion 23. The distance from the center of rotation of the hand 13 with respect to the second arm portion 24 is equal. In this embodiment, the joint part 26 is a first joint part that connects the first arm part 23 and the second arm part 24, and the joint part 27 is a second joint part that connects the second arm part 24 and the hand 13. It is.
 第1アーム部23は、本体部15から水平方向の一方側へ伸びるように、本体部15に取り付けられている。第1アーム部23には、第1アーム部23が伸びる方向と反対側(すなわち、水平方向の他方側)へ本体部15から伸びるカウンターウエイト28が取り付けられている。第2アーム部24は、第1アーム部23よりも上側に配置されている。また、ハンド13は、第2アーム部24よりも上側に配置されている。 The first arm portion 23 is attached to the main body portion 15 so as to extend from the main body portion 15 to one side in the horizontal direction. A counterweight 28 is attached to the first arm portion 23 so as to extend from the main body portion 15 on the side opposite to the direction in which the first arm portion 23 extends (that is, the other side in the horizontal direction). The second arm part 24 is disposed above the first arm part 23. Further, the hand 13 is disposed above the second arm portion 24.
 本体部15には、本体部15に対して第1アーム部23を回動させるためのモータ31が取り付けられている。また、本体部15は、第1アーム部23の基端側が固定される中空回転軸32と、モータ31の回転を減速して第1アーム部23に伝達する減速機33と、減速機33のケース体を保持するとともに中空回転軸32を回動可能に保持する略円筒状の保持部材34とを備えている。 A motor 31 for rotating the first arm portion 23 with respect to the main body portion 15 is attached to the main body portion 15. The main body 15 includes a hollow rotary shaft 32 to which the proximal end side of the first arm portion 23 is fixed, a speed reducer 33 that decelerates rotation of the motor 31 and transmits it to the first arm portion 23, and a speed reducer 33. A substantially cylindrical holding member 34 that holds the case body and rotatably holds the hollow rotary shaft 32 is provided.
 なお、第二の発明にかかる本形態では、本体部15には、本体部15に対して第1アーム部23を回動させるためのアーム用モータとしてのモータ31が取り付けられている。 In the present embodiment according to the second invention, a motor 31 as an arm motor for rotating the first arm portion 23 with respect to the main body portion 15 is attached to the main body portion 15.
 また、第三の発明にかかる本形態では、本体部15には、本体部15に対して第1アーム部23を回動させるための第1モータとしてのモータ31が取り付けられている。 In the present embodiment according to the third invention, the main body 15 is provided with a motor 31 as a first motor for rotating the first arm 23 with respect to the main body 15.
 減速機33は、その径方向の中心に貫通孔が形成された中空減速機である。この減速機33は、その貫通孔の軸中心と中空回転軸32の軸中心とが一致するように配置されている。減速機33の入力側には、プーリおよびベルトを介してモータ31が連結されている。減速機33の出力側には、中空回転軸32の下端が固定されている。中空回転軸32の上端には、第1アーム部23の基端側の下面が固定されている。中空回転軸32は、保持部材34の内周側に配置されており、中空回転軸32の外周面と保持部材34の内周面との間には軸受が配置されている。モータ31が回転すると、モータ31の動力が第1アーム部23の基端側に伝達されて、第1アーム部23が回動する。 The reduction gear 33 is a hollow reduction gear in which a through hole is formed at the center in the radial direction. The speed reducer 33 is arranged so that the axial center of the through hole coincides with the axial center of the hollow rotary shaft 32. A motor 31 is connected to the input side of the speed reducer 33 via a pulley and a belt. The lower end of the hollow rotary shaft 32 is fixed to the output side of the speed reducer 33. A lower surface on the proximal end side of the first arm portion 23 is fixed to the upper end of the hollow rotary shaft 32. The hollow rotary shaft 32 is disposed on the inner peripheral side of the holding member 34, and a bearing is disposed between the outer peripheral surface of the hollow rotary shaft 32 and the inner peripheral surface of the holding member 34. When the motor 31 rotates, the power of the motor 31 is transmitted to the proximal end side of the first arm portion 23, and the first arm portion 23 rotates.
 関節部25には、真空領域VRへの空気の流入を防ぐ磁性流体シール35が配置されている。磁性流体シール35は、中空回転軸32の外周面と保持部材34の内周面との間に配置されている。また、関節部25は、真空領域VRへの空気の流入を防ぐためのベローズ36が配置されている。具体的には、磁性流体シール35の外周側であって、かつ、保持部材34の外周側にベローズ36が配置されている。ベローズ36の下端は、保持部材34に固定され、ベローズ36の上端は、フランジ18に固定されている。昇降機構16を構成する後述のモータ40が回転して本体部15が昇降すると、ベローズ36が伸縮する。 A magnetic fluid seal 35 for preventing air from flowing into the vacuum region VR is disposed at the joint portion 25. The magnetic fluid seal 35 is disposed between the outer peripheral surface of the hollow rotary shaft 32 and the inner peripheral surface of the holding member 34. In addition, the joint portion 25 is provided with a bellows 36 for preventing air from flowing into the vacuum region VR. Specifically, a bellows 36 is disposed on the outer peripheral side of the magnetic fluid seal 35 and on the outer peripheral side of the holding member 34. The lower end of the bellows 36 is fixed to the holding member 34, and the upper end of the bellows 36 is fixed to the flange 18. When the below-described motor 40 constituting the elevating mechanism 16 rotates and the main body 15 moves up and down, the bellows 36 expands and contracts.
 昇降機構16は、上下方向を軸方向として配置されるネジ部材38と、ネジ部材38に係合するナット部材39と、ネジ部材38を回転させるモータ40とを備えている。ネジ部材38は、ケース体17の底面側に回転可能に取り付けられている。モータ40は、ケース体17の底面側に取り付けられている。ネジ部材38は、プーリおよびベルトを介してモータ40に連結されている。ナット部材39は、所定のブラケットを介して本体部15に取り付けられている。本形態では、モータ40が回転すると、ネジ部材38が回転して、本体部15がナット部材39と一緒に昇降する。なお、昇降機構16は、本体部15を上下方向へ案内するためのガイド軸と、このガイド軸に係合して上下方向へスライドするガイドブロックとを備えている。 The elevating mechanism 16 includes a screw member 38 that is arranged with the vertical direction as an axial direction, a nut member 39 that engages with the screw member 38, and a motor 40 that rotates the screw member 38. The screw member 38 is rotatably attached to the bottom surface side of the case body 17. The motor 40 is attached to the bottom surface side of the case body 17. The screw member 38 is connected to the motor 40 via a pulley and a belt. The nut member 39 is attached to the main body 15 via a predetermined bracket. In this embodiment, when the motor 40 rotates, the screw member 38 rotates, and the main body 15 moves up and down together with the nut member 39. The lifting mechanism 16 includes a guide shaft for guiding the main body portion 15 in the vertical direction and a guide block that engages with the guide shaft and slides in the vertical direction.
 ここでは、第三の発明にかかる本形態として説明する。
 昇降機構16は、上下方向を軸方向として配置されるネジ部材38と、ネジ部材38に係合するナット部材39と、ネジ部材38を回転させるモータ40と、モータ40を停止させるための第1ブレーキとしてのブレーキ41と、モータ40を停止させるための第2ブレーキとしてのブレーキ42(図16参照)とを備えている。
Here, it demonstrates as this form concerning 3rd invention.
The elevating mechanism 16 includes a screw member 38 arranged with the vertical direction as an axial direction, a nut member 39 engaged with the screw member 38, a motor 40 for rotating the screw member 38, and a first for stopping the motor 40. A brake 41 as a brake and a brake 42 (see FIG. 16) as a second brake for stopping the motor 40 are provided.
 ネジ部材38は、ケース体17の底面側に回転可能に取り付けられている。モータ40は、ケース体17の底面側に取り付けられている。ネジ部材38は、プーリおよびベルトを介してモータ40に連結されている。ナット部材39は、所定のブラケットを介して本体部15に取り付けられている。本形態では、モータ40が回転すると、ネジ部材38が回転して、本体部15がナット部材39と一緒に昇降する。すなわち、モータ40が回転すると、本体部15とともに、ハンド13およびアーム14が昇降する。本形態のモータ40は、アーム14を昇降させるための昇降用モータである。なお、昇降機構16は、本体部15を上下方向へ案内するためのガイド軸と、このガイド軸に係合して上下方向へスライドするガイドブロックとを備えている。 The screw member 38 is rotatably attached to the bottom surface side of the case body 17. The motor 40 is attached to the bottom surface side of the case body 17. The screw member 38 is connected to the motor 40 via a pulley and a belt. The nut member 39 is attached to the main body 15 via a predetermined bracket. In this embodiment, when the motor 40 rotates, the screw member 38 rotates, and the main body 15 moves up and down together with the nut member 39. That is, when the motor 40 rotates, the hand 13 and the arm 14 move up and down together with the main body 15. The motor 40 of this embodiment is a lifting motor for moving the arm 14 up and down. The lifting mechanism 16 includes a guide shaft for guiding the main body portion 15 in the vertical direction and a guide block that engages with the guide shaft and slides in the vertical direction.
 ブレーキ41は、ネジ部材38の下端側に取り付けられている。ブレーキ42は、モータ40に内蔵されている。ブレーキ41、42は、いわゆる無励磁作動型のブレーキであり、コイルが収納されるケース体と、ケース体に固定されるサイドプレートと、ケース体に対して軸方向に移動可能に配置されるアマーチュアと、サイドプレートとアマーチュアとの間に配置されるブレーキディスクと、アマーチュアをブレーキディスクに向かって付勢する圧縮コイルバネとを備えている。ブレーキ41では、ブレーキディスクがネジ部材38に取り付けられ、ブレーキ42では、ブレーキディスクがモータ40の回転軸に取り付けられている。 The brake 41 is attached to the lower end side of the screw member 38. The brake 42 is built in the motor 40. The brakes 41 and 42 are so-called non-excitation operation type brakes, and are a case body in which a coil is housed, a side plate fixed to the case body, and an armature that is arranged to be movable in the axial direction with respect to the case body. And a brake disc disposed between the side plate and the armature, and a compression coil spring that biases the armature toward the brake disc. In the brake 41, the brake disc is attached to the screw member 38, and in the brake 42, the brake disc is attached to the rotation shaft of the motor 40.
 ブレーキ41、42では、コイルが通電状態となると、アマーチュアがケース体に吸引されて、ブレーキディスクが解放される。また、ブレーキ41、42では、コイルへの通電が停止されると、圧縮コイルバネの付勢力でアマーチュアとサイドプレートとの間にブレーキディスクが挟まれて、モータ40にブレーキがかかる。本形態では、ブレーキ42の制動力は、ブレーキ41の制動力よりも大きくなっている。 In the brakes 41 and 42, when the coil is energized, the armature is sucked into the case body and the brake disc is released. In the brakes 41 and 42, when energization to the coil is stopped, the brake disk is sandwiched between the armature and the side plate by the biasing force of the compression coil spring, and the motor 40 is braked. In this embodiment, the braking force of the brake 42 is larger than the braking force of the brake 41.
 ロボット1の制御部は、図16に示すように、モータ31を駆動制御する第1モータドライバとしてのモータドライバ71と、モータ46を駆動制御する第2モータドライバとしてのモータドライバ72と、モータ47を駆動制御するハンド用モータドライバとしてのモータドライバ73と、モータ40を駆動制御する昇降用モータドライバとしてのモータドライバ74とを備えている。また、ロボット1の制御部は、ブレーキ41の動作タイミングを調整するための遅延回路75と、ブレーキ42の動作タイミングを調整するための遅延回路76とを備えている。 As shown in FIG. 16, the control unit of the robot 1 includes a motor driver 71 as a first motor driver for driving and controlling the motor 31, a motor driver 72 as a second motor driver for driving and controlling the motor 46, and a motor 47. A motor driver 73 as a hand motor driver for driving and controlling the motor 40 and a motor driver 74 as a lifting motor driver for driving and controlling the motor 40 are provided. The control unit of the robot 1 includes a delay circuit 75 for adjusting the operation timing of the brake 41 and a delay circuit 76 for adjusting the operation timing of the brake 42.
 さらに、ロボット1の制御部は、モータドライバ71~74に電力を供給する電源81と、モータドライバ71~74を制御する制御実行部としてのCPU(Central Processing Unit)79と、モータ31、40、46、47に接続される充放電部80とを備えている。CPU79は、遅延回路75、76を介してブレーキ41、42も制御している。充放電部80は、図示を省略するリレーとダイオードとコンデンサとを備えている。この充放電部80は、モータ31、40、46、47で発生する回生電流によって充電可能となっている。具体的には、モータ31、40、46、47で発生する回生電流が充放電部80のコンデンサに流れることによって、このコンデンサに充電することが可能となっている。 Further, the control unit of the robot 1 includes a power source 81 that supplies power to the motor drivers 71 to 74, a CPU (Central Processing Unit) 79 that controls the motor drivers 71 to 74, motors 31, 40, And a charge / discharge unit 80 connected to 46 and 47. The CPU 79 also controls the brakes 41 and 42 via the delay circuits 75 and 76. The charging / discharging unit 80 includes a relay, a diode, and a capacitor not shown. The charging / discharging unit 80 can be charged by a regenerative current generated by the motors 31, 40, 46, 47. Specifically, the regenerative current generated by the motors 31, 40, 46, and 47 flows through the capacitor of the charge / discharge unit 80, so that the capacitor can be charged.
 なお、第二の発明にかかる本形態では、教示操作端末19は、各種の情報等が表示されるディスプレイ70と、各種の操作を行うための操作ボタン76とを備えている。本形態の教示操作端末19では、オペレータが操作ボタン76を押している間はロボット1が動作するとともに、オペレータが操作ボタン71を押すのをやめると(すなわち、操作ボタン76の操作を停止すると)ロボット1が停止するジョグ操作が可能となっている。 In the present embodiment according to the second invention, the teaching operation terminal 19 includes a display 70 on which various information and the like are displayed, and operation buttons 76 for performing various operations. In the teaching operation terminal 19 of this embodiment, the robot 1 operates while the operator presses the operation button 76, and when the operator stops pressing the operation button 71 (that is, when the operation of the operation button 76 is stopped), the robot. Jog operation that stops 1 is possible.
 なお、第四の発明にかかる本形態では、ロボット1を制御する制御部70は、図17に示すように、モータ31を駆動制御するモータドライバ71と、モータ46を駆動制御するモータドライバ72と、モータ47を駆動制御するモータドライバ73と、モータ40を駆動制御するモータドライバ74とを備えている。また、制御部70は、モータドライバ71~74に電力を供給する電源81と、モータドライバ71~74を制御するCPU(Central Processing Unit)79とを備えている。 In the present embodiment according to the fourth invention, the controller 70 for controlling the robot 1 includes a motor driver 71 for driving and controlling the motor 31 and a motor driver 72 for driving and controlling the motor 46, as shown in FIG. The motor driver 73 that controls the motor 47 and the motor driver 74 that controls the motor 40 are provided. The control unit 70 also includes a power source 81 that supplies power to the motor drivers 71 to 74 and a CPU (Central Processing Unit) 79 that controls the motor drivers 71 to 74.
 (第1アーム部の内部の構成および関節部の構成)
 ここでは、第一の発明から第四の発明にかかる本形態として説明する。
 図4は、図3に示す第1アーム部23および関節部26の拡大図である。
(Internal configuration of first arm and configuration of joint)
Here, it demonstrates as this form concerning the 1st invention to the 4th invention.
FIG. 4 is an enlarged view of the first arm portion 23 and the joint portion 26 shown in FIG.
 上述のように、第1アーム部23および第2アーム部24は、中空状に形成されている。中空状に形成される第1アーム部23の内部空間45には、第1アーム部23に対して第2アーム部24を回動させるための第1モータとしてのモータ46と、第2アーム部24に対してハンド13を回動させるための第2モータとしてのモータ47とが配置されている。関節部26は、モータ46の回転を減速して第2アーム部24に伝達する第1減速機としての減速機48と、モータ47の回転を減速してハンド13に伝達する第2減速機としての減速機49とを備えている。減速機48、49は、その径方向の中心に貫通孔が形成された中空減速機である。また、関節部26は、中空回転軸50と、中空回転軸50の外周側に、かつ、中空回転軸50と同軸上に配置される中空回転軸51とを備えている。 As described above, the first arm portion 23 and the second arm portion 24 are formed in a hollow shape. In the internal space 45 of the hollow first arm portion 23, a motor 46 as a first motor for rotating the second arm portion 24 with respect to the first arm portion 23, and a second arm portion A motor 47 as a second motor for rotating the hand 13 with respect to 24 is arranged. The joint portion 26 serves as a first speed reducer 48 that decelerates the rotation of the motor 46 and transmits it to the second arm portion 24, and a second speed reducer that decelerates the rotation of the motor 47 and transmits it to the hand 13. The reduction gear 49 is provided. The speed reducers 48 and 49 are hollow speed reducers in which a through hole is formed at the center in the radial direction. The joint portion 26 includes a hollow rotary shaft 50 and a hollow rotary shaft 51 disposed on the outer peripheral side of the hollow rotary shaft 50 and coaxially with the hollow rotary shaft 50.
 なお、第二の発明にかかる本形態では、中空状に形成される第1アーム部23の内部空間45には、第1アーム部23に対して第2アーム部24を回動させるためのアーム用モータとしてのモータ46と、第2アーム部24に対してハンド13を回動させるためのハンド用モータとしてのモータ47とが配置されている。 In the present embodiment according to the second invention, an arm for rotating the second arm portion 24 with respect to the first arm portion 23 is provided in the internal space 45 of the first arm portion 23 formed in a hollow shape. A motor 46 as a motor for use and a motor 47 as a hand motor for rotating the hand 13 with respect to the second arm portion 24 are disposed.
 なお、第三の発明にかかる本形態では、中空状に形成される第1アーム部23の内部空間45には、第1アーム部23に対して第2アーム部24を回動させるための第2モータとしてのモータ46と、第2アーム部24に対してハンド13を回動させるためのハンド用モータとしてのモータ47とが配置されている。 In the present embodiment according to the third aspect of the present invention, the inner space 45 of the first arm portion 23 formed in a hollow shape is provided with a second arm 24 for rotating the second arm portion 24 with respect to the first arm portion 23. A motor 46 as two motors and a motor 47 as a hand motor for rotating the hand 13 with respect to the second arm portion 24 are arranged.
 なお、第四の発明にかかる本形態では、中空状に形成される第1アーム部23の内部空間45には、第1アーム部23に対して第2アーム部24を回動させるためのモータ46と、第2アーム部24に対してハンド13を回動させるためのハンド用モータとしてのモータ47とが配置されている。 In the present embodiment according to the fourth invention, a motor for rotating the second arm portion 24 with respect to the first arm portion 23 is provided in the inner space 45 of the first arm portion 23 formed in a hollow shape. 46 and a motor 47 as a hand motor for rotating the hand 13 with respect to the second arm portion 24 are disposed.
 減速機48の入力側には、プーリ52、53およびベルト54を介してモータ46が連結されている。減速機48の出力側には、中空回転軸51の下端が固定されている。中空回転軸51の上端は、第2アーム部24の基端側の下面に固定されている。減速機48のケース体は、略円筒状に形成される保持部材55に固定されている。保持部材55は、第1アーム部23に固定されている。また、保持部材55は、中空回転軸51の外周側に配置されている。モータ46が回転すると、プーリ52、53、ベルト54および減速機48等を介してモータ46の動力が第2アーム部24の基端側に伝達されて、第2アーム部24が回動する。 A motor 46 is connected to the input side of the speed reducer 48 via pulleys 52 and 53 and a belt 54. The lower end of the hollow rotary shaft 51 is fixed to the output side of the speed reducer 48. The upper end of the hollow rotary shaft 51 is fixed to the lower surface on the proximal end side of the second arm portion 24. The case body of the speed reducer 48 is fixed to a holding member 55 formed in a substantially cylindrical shape. The holding member 55 is fixed to the first arm portion 23. The holding member 55 is disposed on the outer peripheral side of the hollow rotary shaft 51. When the motor 46 rotates, the power of the motor 46 is transmitted to the base end side of the second arm portion 24 through the pulleys 52 and 53, the belt 54, the speed reducer 48, and the like, and the second arm portion 24 rotates.
 減速機49の入力側には、プーリ57、58およびベルト59を介してモータ47が連結されている。減速機49の出力側には、中空回転軸50の下端が固定されている。中空回転軸50の上端には、プーリ60が固定されている。プーリ60は、中空状に形成される第2アーム部24の基端側の内部に配置されている。第2アーム部24の先端側の内部には、図3に示すように、プーリ61が配置されている。プーリ61は、第2アーム部24の先端側に回動可能に保持されている。プーリ61の上端面には、ハンド13の基部20の下面が固定されている。プーリ60とプーリ61には、ベルト62が架け渡されている。減速機49のケース体は、略円筒状に形成される保持部材63に固定されている。保持部材63は、第1アーム部23に固定されている。モータ47が回転すると、プーリ57、58、ベルト59、減速機49、プーリ60、61およびベルト62等を介してモータ47の動力がハンド13の基部20に伝達されて、ハンド13が回動する。 A motor 47 is connected to the input side of the speed reducer 49 via pulleys 57 and 58 and a belt 59. The lower end of the hollow rotary shaft 50 is fixed to the output side of the speed reducer 49. A pulley 60 is fixed to the upper end of the hollow rotary shaft 50. The pulley 60 is disposed inside the proximal end of the second arm portion 24 formed in a hollow shape. As shown in FIG. 3, a pulley 61 is disposed inside the distal end side of the second arm portion 24. The pulley 61 is rotatably held on the distal end side of the second arm portion 24. The lower surface of the base 20 of the hand 13 is fixed to the upper end surface of the pulley 61. A belt 62 is bridged between the pulley 60 and the pulley 61. The case body of the speed reducer 49 is fixed to a holding member 63 formed in a substantially cylindrical shape. The holding member 63 is fixed to the first arm portion 23. When the motor 47 rotates, the power of the motor 47 is transmitted to the base portion 20 of the hand 13 through the pulleys 57 and 58, the belt 59, the speed reducer 49, the pulleys 60 and 61, the belt 62, and the like, and the hand 13 rotates. .
 減速機48と減速機49とは、その貫通孔の軸中心と中空回転軸51の軸中心とが一致するように同軸上で重なるように配置されている。すなわち、減速機48と減速機49とは、その軸中心と第1アーム部23に対する第2アーム部24の回動中心とが一致するように同軸上で重なるように配置されている。本形態では、減速機48が減速機49の上側に配置されている。 The speed reducer 48 and the speed reducer 49 are arranged so as to overlap on the same axis so that the axial center of the through hole coincides with the axial center of the hollow rotary shaft 51. That is, the speed reducer 48 and the speed reducer 49 are disposed so as to be coaxially overlapped so that the axial center thereof coincides with the rotation center of the second arm portion 24 with respect to the first arm portion 23. In this embodiment, the speed reducer 48 is disposed above the speed reducer 49.
 第1アーム部23の内部空間45は、密閉されており、内部空間45の圧力は、大気圧となっている。上述のように、モータ46、47は、内部空間45に配置されている。また、減速機48、49は、第1アーム部23の先端側において、内部空間45に配置されている。すなわち、モータ46、47および減速機48、49は、大気中に配置されている。モータ46には、モータ46を冷却するための冷却用パイプ64が巻回されている。この冷却用パイプ64には、圧縮空気が供給可能となっており、冷却用パイプ64の内部を通過する圧縮空気によって、モータ46が冷却される。なお、本形態では、モータ47の発熱量はモータ46の発熱量に比べて小さいため、モータ47には、冷却用パイプが巻回されていない。 The internal space 45 of the first arm portion 23 is sealed, and the pressure in the internal space 45 is atmospheric pressure. As described above, the motors 46 and 47 are disposed in the internal space 45. The speed reducers 48 and 49 are disposed in the internal space 45 on the distal end side of the first arm portion 23. That is, the motors 46 and 47 and the speed reducers 48 and 49 are disposed in the atmosphere. A cooling pipe 64 for cooling the motor 46 is wound around the motor 46. Compressed air can be supplied to the cooling pipe 64, and the motor 46 is cooled by the compressed air passing through the inside of the cooling pipe 64. In this embodiment, since the amount of heat generated by the motor 47 is smaller than the amount of heat generated by the motor 46, no cooling pipe is wound around the motor 47.
 関節部26には、内部空間45の密閉状態を確保するための磁性流体シール65、66が配置されている。すなわち、関節部26には、内部空間45から真空領域VRへの空気の流入を防ぐ磁性流体シール65、66が配置されている。磁性流体シール65は、中空回転軸50の外周面と中空回転軸51の内周面との間に配置され、磁性流体シール66は、中空回転軸51の外周面と保持部材55の内周面との間に配置されている。なお、中空回転軸50の外周面と中空回転軸51の内周面との間には軸受が配置されている。また、本形態では、第2アーム部24の内部空間は真空となっている。 The joint portion 26 is provided with magnetic fluid seals 65 and 66 for securing a sealed state of the internal space 45. In other words, the magnetic fluid seals 65 and 66 that prevent the inflow of air from the internal space 45 to the vacuum region VR are disposed in the joint portion 26. The magnetic fluid seal 65 is disposed between the outer peripheral surface of the hollow rotary shaft 50 and the inner peripheral surface of the hollow rotary shaft 51. It is arranged between. A bearing is disposed between the outer peripheral surface of the hollow rotary shaft 50 and the inner peripheral surface of the hollow rotary shaft 51. In this embodiment, the internal space of the second arm portion 24 is in a vacuum.
 (製造システムの構成)
 ここでは、第一の発明から第四の発明にかかる本形態として説明する。
 上述のように、製造システム3は、チャンバー4を囲むように配置される複数のチャンバー5~10を備えている。本形態の製造システム3では、チャンバー4を囲むように6個のチャンバー5~10が配置されている。以下では、図1において、互いに直交する3つの方向のそれぞれをX方向、Y方向およびZ方向とする。ロボット1は、その上下方向がZ方向と一致するように配置されている。したがって、以下では、Z方向を上下方向とする。また、以下では、X1方向側を「右」側、X2方向側を「左」側、Y1方向側を「前」側、Y2方向側を「後(後ろ)」側とする。
(Production system configuration)
Here, it demonstrates as this form concerning the 1st invention to the 4th invention.
As described above, the manufacturing system 3 includes the plurality of chambers 5 to 10 arranged so as to surround the chamber 4. In the manufacturing system 3 of this embodiment, six chambers 5 to 10 are arranged so as to surround the chamber 4. Hereinafter, in FIG. 1, each of three directions orthogonal to each other is defined as an X direction, a Y direction, and a Z direction. The robot 1 is arranged such that its vertical direction coincides with the Z direction. Therefore, in the following, the Z direction is the vertical direction. In the following description, the X1 direction side is the “right” side, the X2 direction side is the “left” side, the Y1 direction side is the “front” side, and the Y2 direction side is the “rear (rear)” side.
 チャンバー4は、上下方向から見たときの形状が略八角形状となるように形成されている。チャンバー5~10は、上下方向から見たときの形状が略長方形状となるように形成されており、その側面が、Y方向とZ方向とから構成されるYZ平面またはZ方向とX方向とから構成されるZX平面と平行になるように配置されている。チャンバー5は、チャンバー4の左端に繋がるように配置され、チャンバー6は、チャンバー4の右端に繋がるように配置されている。また、チャンバー7およびチャンバー8は、チャンバー4の後端に繋がるように配置されている。チャンバー7とチャンバー8とは、左右方向で隣接している。本形態では、チャンバー7が左側に配置され、チャンバー8が右側に配置されている。さらに、チャンバー9およびチャンバー10は、チャンバー4の前端に繋がるように配置されている。チャンバー9とチャンバー10とは、左右方向で隣接している。本形態では、チャンバー9が左側に配置され、チャンバー10が右側に配置されている。 The chamber 4 is formed so that the shape when viewed from above and below is a substantially octagonal shape. The chambers 5 to 10 are formed so as to have a substantially rectangular shape when viewed from above and below, and the side surfaces of the chambers 5 to 10 are composed of the Y direction and the Z direction, or the Z direction and the X direction. Are arranged so as to be parallel to the ZX plane. The chamber 5 is arranged so as to be connected to the left end of the chamber 4, and the chamber 6 is arranged so as to be connected to the right end of the chamber 4. The chamber 7 and the chamber 8 are arranged so as to be connected to the rear end of the chamber 4. The chamber 7 and the chamber 8 are adjacent in the left-right direction. In this embodiment, the chamber 7 is disposed on the left side, and the chamber 8 is disposed on the right side. Further, the chamber 9 and the chamber 10 are arranged so as to be connected to the front end of the chamber 4. The chamber 9 and the chamber 10 are adjacent in the left-right direction. In this embodiment, the chamber 9 is disposed on the left side, and the chamber 10 is disposed on the right side.
 チャンバー5、6は、上下方向から見たときに、本体部15に対する第1アーム部23の回動中心C1を通過する左右方向に平行な仮想線がチャンバー5、6の前後方向の中心位置を通過するように配置されている。チャンバー7、8は、回動中心C1を通過する前後方向に平行な仮想線がチャンバー7、8間の左右方向の中心位置を通過するように配置されている。すなわち、左右方向におけるチャンバー7、8の中心位置は、回動中心C1に対してオフセットしている。同様に、チャンバー9、10は、回動中心C1を通過する前後方向に平行な仮想線がチャンバー9、10間の左右方向の中心位置を通過するように配置されている。すなわち、左右方向におけるチャンバー9、10の中心位置は、回動中心C1に対してオフセットしている。また、左右方向において、チャンバー7とチャンバー9とが同じ位置に配置され、チャンバー8とチャンバー10とが同じ位置に配置されている。 When the chambers 5 and 6 are viewed from above and below, a virtual line parallel to the left and right direction passing through the rotation center C1 of the first arm portion 23 with respect to the main body 15 indicates the center position of the chambers 5 and 6 in the front and rear direction. It is arranged to pass. The chambers 7 and 8 are arranged so that a virtual line parallel to the front-rear direction passing through the rotation center C <b> 1 passes through the center position in the left-right direction between the chambers 7 and 8. That is, the center positions of the chambers 7 and 8 in the left-right direction are offset with respect to the rotation center C1. Similarly, the chambers 9 and 10 are arranged such that a virtual line passing through the rotation center C1 and parallel to the front-rear direction passes through the center position in the left-right direction between the chambers 9 and 10. That is, the center positions of the chambers 9 and 10 in the left-right direction are offset with respect to the rotation center C1. Further, in the left-right direction, the chamber 7 and the chamber 9 are disposed at the same position, and the chamber 8 and the chamber 10 are disposed at the same position.
 (産業用ロボットの概略動作)
 ここでは、第一の発明から第四の発明にかかる本形態として説明する。
 図5は、図1に示すプロセスチャンバー5から基板2を搬出してプロセスチャンバー6へ基板2を搬入する際の産業用ロボット1の動きを説明するための図である。図6は、図1に示すプロセスチャンバー7へ基板2を搬入する際の産業用ロボット1の動きを説明するための図である。図7は、図1に示すプロセスチャンバー9へ基板2を搬入する際の産業用ロボット1の動きを説明するための図である。図8は、図1に示すプロセスチャンバー8へ基板2を搬入する際の産業用ロボット1の動きを説明するための図である。図9は、図1に示すプロセスチャンバー10へ基板2を搬入する際の産業用ロボット1の動きを説明するための図である。
(Schematic operation of industrial robots)
Here, it demonstrates as this form concerning the 1st invention to the 4th invention.
FIG. 5 is a diagram for explaining the movement of the industrial robot 1 when unloading the substrate 2 from the process chamber 5 shown in FIG. 1 and loading the substrate 2 into the process chamber 6. FIG. 6 is a diagram for explaining the movement of the industrial robot 1 when the substrate 2 is carried into the process chamber 7 shown in FIG. FIG. 7 is a diagram for explaining the movement of the industrial robot 1 when the substrate 2 is carried into the process chamber 9 shown in FIG. FIG. 8 is a view for explaining the movement of the industrial robot 1 when the substrate 2 is carried into the process chamber 8 shown in FIG. FIG. 9 is a view for explaining the movement of the industrial robot 1 when the substrate 2 is carried into the process chamber 10 shown in FIG.
 ロボット1は、モータ31、40、46、47を駆動させて、チャンバー5~10間で基板2を搬送する。たとえば、図5に示すように、ロボット1は、チャンバー5から基板2を搬出してチャンバー6へ基板2を搬入する。すなわち、ロボット1は、図5(A)に示すように、フォーク部21が左右方向と平行になっている状態で、アーム14を伸ばしてチャンバー5内で基板2を搭載した後、図5(B)に示すように、第1アーム部23と第2アーム部24とが上下方向で重なるまでアーム14を縮めてチャンバー5から基板2を搬出する。その後、ロボット1は、ハンド13を180°回動させてから、アーム14を伸ばして、図5(C)に示すように、チャンバー6へ基板2を搬入する。チャンバー5から基板2を搬出してチャンバー6へ基板2を搬入するときには、上下方向から見ると、第2アーム部24に対するハンド13の回動中心C2は、回動中心C1を通過する左右方向に平行な仮想線上を直線的に移動する。すなわち、チャンバー5から基板2を搬出するとき、および、チャンバー6へ基板2を搬入するときには、上下方向から見ると、ハンド13は、右方向へ直線的に移動する。 The robot 1 drives the motors 31, 40, 46, 47 to transfer the substrate 2 between the chambers 5 to 10. For example, as shown in FIG. 5, the robot 1 unloads the substrate 2 from the chamber 5 and loads the substrate 2 into the chamber 6. That is, as shown in FIG. 5A, the robot 1 extends the arm 14 and mounts the substrate 2 in the chamber 5 in a state where the fork portion 21 is parallel to the left-right direction, As shown in B), the arm 14 is contracted until the first arm portion 23 and the second arm portion 24 overlap in the vertical direction, and the substrate 2 is carried out of the chamber 5. Thereafter, the robot 1 rotates the hand 13 by 180 °, then extends the arm 14 and carries the substrate 2 into the chamber 6 as shown in FIG. When unloading the substrate 2 from the chamber 5 and loading the substrate 2 into the chamber 6, the rotation center C <b> 2 of the hand 13 relative to the second arm portion 24 is in the left-right direction passing through the rotation center C <b> 1. Move linearly on parallel virtual lines. That is, when unloading the substrate 2 from the chamber 5 and unloading the substrate 2 into the chamber 6, the hand 13 moves linearly in the right direction when viewed from above and below.
 また、たとえば、ロボット1は、チャンバー5から搬出された基板2をチャンバー7へ搬入する(図6参照)。この場合、ロボット1は、まず、図6(A)に示すように、アーム14を縮めた状態から、モータ31、46、47を駆動させて、図6(B)に示すように、フォーク部21が前後方向と平行になるとともに基板2がハンド13の後端側に配置されるように、かつ、左右方向において、第2アーム部24に対するハンド13の
回動中心C2と左右方向におけるチャンバー7の中心とが略一致するように、ハンド13、第1アーム部23および第2アーム部24を回動させる。このときには、上下方向から見ると、回動中心C2は、回動中心C1を通過する左右方向に平行な仮想線上を直線的に移動する。その後、ロボット1は、アーム14を伸ばして、図6(C)に示すように、チャンバー7へ基板2を搬入する。このときには、上下方向から見ると、回動中心C2は、左右方向におけるチャンバー7の中心を通過する前後方向に平行な仮想線上を直線的に移動する。すなわち、このときには、上下方向から見ると、回動中心C2は、回動中心C1を通過する仮想線に沿わない位置(回動中心C1を通過する仮想線から外れた位置)で直線的に移動する。
Further, for example, the robot 1 loads the substrate 2 unloaded from the chamber 5 into the chamber 7 (see FIG. 6). In this case, the robot 1 first drives the motors 31, 46, 47 from the state where the arm 14 is contracted as shown in FIG. 6 (A), and the fork section as shown in FIG. 6 (B). The rotation center C2 of the hand 13 with respect to the second arm portion 24 in the left-right direction and the chamber 7 in the left-right direction so that 21 is parallel to the front-rear direction and the substrate 2 is disposed on the rear end side of the hand 13 The hand 13, the first arm part 23, and the second arm part 24 are rotated so that their centers substantially coincide with each other. At this time, when viewed from the vertical direction, the rotation center C2 linearly moves on an imaginary line parallel to the left-right direction passing through the rotation center C1. Thereafter, the robot 1 extends the arm 14 and carries the substrate 2 into the chamber 7 as shown in FIG. At this time, when viewed from the vertical direction, the rotation center C2 linearly moves on an imaginary line parallel to the front-rear direction passing through the center of the chamber 7 in the left-right direction. That is, at this time, when viewed from above and below, the rotation center C2 moves linearly at a position that does not follow the imaginary line that passes through the rotation center C1 (a position that deviates from the imaginary line that passes through the rotation center C1). To do.
 同様に、ロボット1は、たとえば、チャンバー5から搬出された基板2をチャンバー9へ搬入する(図7参照)。この場合、ロボット1は、まず、図7(A)に示すように、アーム14を縮めた状態から、モータ31、46、47を駆動させて、図7(B)に示すように、フォーク部21が前後方向と平行になるとともに基板2がハンド13の前端側に配置されるように、かつ、左右方向において、回動中心C2と左右方向におけるチャンバー9の中心とが略一致するように、ハンド13、第1アーム部23および第2アーム部24を回動させる。このときには、上下方向から見ると、回動中心C2は、回動中心C1を通過する左右方向に平行な仮想線上を直線的に移動する。その後、ロボット1は、アーム14を伸ばして、図7(C)に示すように、チャンバー9へ基板2を搬入する。このときには、上下方向から見ると、回動中心C2は、左右方向におけるチャンバー9の中心を通過する前後方向に平行な仮想線上を直線的に移動する。すなわち、このときには、上下方向から見ると、回動中心C2は、回動中心C1を通過する仮想線に沿わない位置で直線的に移動する。 Similarly, the robot 1 carries, for example, the substrate 2 carried out of the chamber 5 into the chamber 9 (see FIG. 7). In this case, the robot 1 first drives the motors 31, 46 and 47 from the contracted state of the arm 14 as shown in FIG. 7 (A), and as shown in FIG. 21 is parallel to the front-rear direction, the substrate 2 is arranged on the front end side of the hand 13, and in the left-right direction, the rotation center C2 and the center of the chamber 9 in the left-right direction substantially coincide with each other. The hand 13, the first arm part 23, and the second arm part 24 are rotated. At this time, when viewed from the vertical direction, the rotation center C2 linearly moves on an imaginary line parallel to the left-right direction passing through the rotation center C1. Thereafter, the robot 1 extends the arm 14 and carries the substrate 2 into the chamber 9 as shown in FIG. At this time, when viewed from the vertical direction, the rotation center C2 linearly moves on an imaginary line parallel to the front-rear direction passing through the center of the chamber 9 in the left-right direction. That is, at this time, when viewed from above and below, the rotation center C2 moves linearly at a position not along the imaginary line passing through the rotation center C1.
 また、ロボット1は、たとえば、チャンバー5から搬出された基板2をチャンバー8へ搬入する(図8参照)。この場合、ロボット1は、まず、図8(A)に示すように、アーム14を縮めた状態から、モータ31、46、47を駆動させて、図8(B)に示すように、フォーク部21が前後方向と平行になるとともに基板2がハンド13の後端側に配置されるように、かつ、左右方向において、回動中心C2と左右方向におけるチャンバー8の中心とが略一致するように、ハンド13、第1アーム部23および第2アーム部24を回動させる。このときには、上下方向から見ると、回動中心C2は、回動中心C1を通過する左右方向に平行な仮想線上を直線的に移動する。その後、ロボット1は、アーム14を伸ばして、図8(C)に示すように、チャンバー8へ基板2を搬入する。このときには、上下方向から見ると、回動中心C2は、左右方向におけるチャンバー8の中心を通過する前後方向に平行な仮想線上を直線的に移動する。すなわち、このときには、上下方向から見ると、回動中心C2は、回動中心C1を通過する仮想線に沿わない位置で直線的に移動する。 Further, for example, the robot 1 loads the substrate 2 unloaded from the chamber 5 into the chamber 8 (see FIG. 8). In this case, the robot 1 first drives the motors 31, 46 and 47 from the contracted state of the arm 14 as shown in FIG. 8 (A), and as shown in FIG. 21 is parallel to the front-rear direction, the substrate 2 is disposed on the rear end side of the hand 13, and the center of rotation C2 and the center of the chamber 8 in the left-right direction substantially coincide with each other in the left-right direction. The hand 13, the first arm part 23, and the second arm part 24 are rotated. At this time, when viewed from the vertical direction, the rotation center C2 linearly moves on an imaginary line parallel to the left-right direction passing through the rotation center C1. Thereafter, the robot 1 extends the arm 14 and carries the substrate 2 into the chamber 8 as shown in FIG. At this time, when viewed from the vertical direction, the rotation center C2 moves linearly on an imaginary line parallel to the front-rear direction passing through the center of the chamber 8 in the left-right direction. That is, at this time, when viewed from above and below, the rotation center C2 moves linearly at a position not along the imaginary line passing through the rotation center C1.
 さらに、ロボット1は、たとえば、チャンバー5から搬出された基板2をチャンバー10へ搬入する(図9参照)。この場合、ロボット1は、まず、図9(A)に示すように、アーム14を縮めた状態から、モータ31、46、47を駆動させて、図9(B)に示すように、フォーク部21が前後方向と平行になるとともに基板2がハンド13の前端側に配置されるように、かつ、左右方向において、回動中心C2と左右方向におけるチャンバー10の中心とが略一致するように、ハンド13、第1アーム部23および第2アーム部24を回動させる。このときには、上下方向から見ると、回動中心C2は、回動中心C1を通過する左右方向に平行な仮想線上を直線的に移動する。その後、ロボット1は、アーム14を伸ばして、図9(C)に示すように、チャンバー10へ基板2を搬入する。このときには、上下方向から見ると、回動中心C2は、左右方向におけるチャンバー10の中心を通過する前後方向に平行な仮想線上を直線的に移動する。すなわち、このときには、上下方向から見ると、回動中心C2は、回動中心C1を通過する仮想線に沿わない位置で直線的に移動する。 Furthermore, for example, the robot 1 loads the substrate 2 unloaded from the chamber 5 into the chamber 10 (see FIG. 9). In this case, the robot 1 first drives the motors 31, 46 and 47 from the contracted state of the arm 14 as shown in FIG. 9 (A), so that the fork section as shown in FIG. 9 (B). 21 is parallel to the front-rear direction, the substrate 2 is disposed on the front end side of the hand 13, and in the left-right direction, the rotation center C2 and the center of the chamber 10 in the left-right direction substantially coincide with each other. The hand 13, the first arm part 23, and the second arm part 24 are rotated. At this time, when viewed from the vertical direction, the rotation center C2 linearly moves on an imaginary line parallel to the left-right direction passing through the rotation center C1. Thereafter, the robot 1 extends the arm 14 and carries the substrate 2 into the chamber 10 as shown in FIG. At this time, when viewed from the vertical direction, the rotation center C2 linearly moves on an imaginary line parallel to the front-rear direction passing through the center of the chamber 10 in the left-right direction. That is, at this time, when viewed from above and below, the rotation center C2 moves linearly at a position not along the imaginary line passing through the rotation center C1.
 基板2の搬出時および搬入時には、ハンド13および第1アーム部23は、本体部15に対する第1アーム部23の回動角度と、第2アーム部24に対するハンド13の回動角度が等しく、かつ、本体部15に対する第1アーム部23の回動方向と、第2アーム部24に対するハンド13の回動方向とが逆方向となるように回動する。すなわち、モータ31、47は、本体部15に対する第1アーム部23の回動角度と、第2アーム部24に対するハンド13の回動角度が等しく、かつ、本体部15に対する第1アーム部23の回動方向と、第2アーム部24に対するハンド13の回動方向とが逆方向となるように回転する。そのため、基板2の搬出時および搬入時におけるハンド13の向きが一定に保たれる。すなわち、チャンバー5、6に対する基板2の搬出時および搬入時には、フォーク部21が左右方向と平行になるようにハンド13の向きが保たれ、チャンバー7~10に対する基板2の搬出時および搬入時には、フォーク部21が前後方向と平行になるようにハンド13の向きが保たれる。 At the time of unloading and loading of the substrate 2, the hand 13 and the first arm part 23 have the same turning angle of the first arm part 23 with respect to the main body part 15 and the turning angle of the hand 13 with respect to the second arm part 24, and The rotation direction of the first arm portion 23 with respect to the main body portion 15 and the rotation direction of the hand 13 with respect to the second arm portion 24 are reversed. That is, the motors 31 and 47 have the same rotation angle of the first arm portion 23 with respect to the main body portion 15 and the rotation angle of the hand 13 with respect to the second arm portion 24, and the first arm portion 23 with respect to the main body portion 15. The rotation direction and the rotation direction of the hand 13 with respect to the second arm portion 24 rotate in the opposite direction. Therefore, the direction of the hand 13 is kept constant when the substrate 2 is unloaded and loaded. That is, when the substrate 2 is unloaded and loaded into the chambers 5 and 6, the direction of the hand 13 is maintained so that the fork portion 21 is parallel to the left-right direction, and when the substrate 2 is unloaded and loaded into the chambers 7 to 10, The orientation of the hand 13 is maintained so that the fork portion 21 is parallel to the front-rear direction.
 ここでは、第二の発明にかかる本形態として説明する。
 (非常停止した産業用ロボットの原点位置復帰方法)
 図15は、図2に示す産業用ロボット1が現在位置の座標がわからなくなった状態で非常停止したときの原点位置への復帰過程を説明するための図である。
Here, it demonstrates as this form concerning 2nd invention.
(Home position return method for industrial robots with emergency stop)
FIG. 15 is a diagram for explaining the process of returning to the origin position when the industrial robot 1 shown in FIG. 2 is in an emergency stop with the coordinates of the current position being lost.
 何らかの原因で、ロボット1が非常停止した場合であって、ロボット1が自身の現在位置の座標(現在の状態)がわからなくなった状態で停止している場合には、以下のようにして、ロボット1を原点位置(基準状態)へ復帰させる。なお、本形態では、チャンバー5、6に対する基板2の搬出時あるいは搬入時にロボット1が非常停止するときには、フォーク部21が左右方向と平行になった状態で、かつ、上下方向から見たときに、回動中心C1を通過する左右方向に平行な仮想線上に回動中心C2が配置された状態でロボット1が停止するように、モータ31、46、47が制御される。また、チャンバー7、9に対する基板2の搬入時あるいは搬出時にロボット1が非常停止するときには、フォーク部21が前後方向と平行になった状態で、かつ、上下方向から見たときに、左右方向におけるチャンバー7、9の中心を通過する前後方向に平行な仮想線上に回動中心C2が配置された状態でロボット1が停止するように、モータ31、46、47が制御される。さらに、チャンバー8、10に対する基板2の搬入時あるいは搬出時にロボット1が非常停止するときには、フォーク部21が前後方向と平行になった状態で、かつ、上下方向から見たときに、左右方向におけるチャンバー8、10の中心を通過する前後方向に平行な仮想線上に回動中心C2が配置された状態でロボット1が停止するように、モータ31、46、47が制御される。 If for some reason the robot 1 is in an emergency stop and the robot 1 is stopped in a state where the coordinates of the current position (current state) of the robot 1 are lost, the robot 1 is 1 is returned to the home position (reference state). In this embodiment, when the robot 1 is brought to an emergency stop when the substrate 2 is unloaded or loaded into the chambers 5 and 6, when the fork portion 21 is parallel to the left and right direction and viewed from the up and down direction. The motors 31, 46 and 47 are controlled so that the robot 1 stops in a state where the rotation center C2 is disposed on a virtual line parallel to the left-right direction passing through the rotation center C1. Further, when the robot 1 is brought to an emergency stop when the substrate 2 is carried into or out of the chambers 7 and 9, the fork portion 21 is parallel to the front-rear direction and when viewed from the vertical direction, The motors 31, 46 and 47 are controlled so that the robot 1 stops in a state where the rotation center C2 is arranged on a virtual line parallel to the front-rear direction passing through the centers of the chambers 7 and 9. Further, when the robot 1 is brought to an emergency stop when the substrate 2 is carried into or out of the chambers 8 and 10, the fork portion 21 is parallel to the front-rear direction and is viewed in the left-right direction when viewed from the up-down direction. The motors 31, 46, 47 are controlled so that the robot 1 stops in a state where the rotation center C2 is disposed on a virtual line parallel to the front-rear direction passing through the centers of the chambers 8, 10.
 ロボット1が自身の現在位置の座標がわからなくなった状態で非常停止している場合に、ロボット1を原点位置へ復帰させるときには、まず、ロボット1の仮の現在位置の座標を、ロボット1の状態に基づいて設定する(仮現在位置設定工程)。仮現在位置設定工程では、回動中心C2の仮の現在位置の座標を設定する。具体的には、ロボット1を原点位置へ復帰させるオペレータが目視で確認して決めた回動中心C2の仮の現在位置の座標を教示操作端末19に入力して、回動中心C2の仮の現在位置の座標を設定する。すなわち、仮現在位置設定工程では、教示操作端末19を用いて回動中心C2の仮の現在位置の座標を設定する。本形態の教示操作端末19は、回動中心C2の仮の現在位置の座標を設定するための仮現在位置設定手段である。 When the robot 1 is in an emergency stop with the coordinates of its own current position being unknown, when returning the robot 1 to the origin position, first, the coordinates of the temporary current position of the robot 1 are set to the state of the robot 1. (Temporary current position setting step). In the temporary current position setting step, the coordinates of the temporary current position of the rotation center C2 are set. Specifically, the coordinate of the temporary current position of the rotation center C2 determined by visual confirmation by the operator who returns the robot 1 to the origin position is input to the teaching operation terminal 19, and the temporary position of the rotation center C2 is determined. Set the coordinates of the current position. That is, in the temporary current position setting step, the teaching operation terminal 19 is used to set the coordinates of the temporary current position of the rotation center C2. The teaching operation terminal 19 of this embodiment is temporary current position setting means for setting the coordinates of the temporary current position of the rotation center C2.
 また、仮現在位置設定工程では、上下方向に直交する平面において規定される円筒座標系の座標、あるいは、上下方向に直交する平面において規定される直交座標系の座標のいずれの座標によっても上下方向から見たときの回動中心C2の仮の現在位置の座標を設定可能となっており、いずれかの座標によって、上下方向から見たときの回動中心C2の仮の現在位置の座標が設定される。たとえば、回動中心C1を原点として円筒座標系が規定されており、回動中心C1から回動中心C2までの距離と、回動中心C1と回動中心C2とを結ぶ線と回動中心C1を通過する所定の基準線とのなす角度とに基づいて、上下方向から見たときの回動中心C2の仮の現在位置の座標が設定される。また、たとえば、回動中心C1を原点として、かつ、直交座標系を構成する一方の座標軸が左右方向と平行になり、他方の座標軸が前後方向と平行になるように直交座標系が規定されており、左右方向における回動中心C1と回動中心C2との距離と、前後方向における回動中心C1と回動中心C2との距離とに基づいて、上下方向から見たときの回動中心C2の仮の現在位置の座標が設定される。 In the provisional current position setting step, the vertical direction is determined by either the coordinates of the cylindrical coordinate system defined on the plane orthogonal to the vertical direction or the coordinates of the orthogonal coordinate system defined on the plane orthogonal to the vertical direction. The coordinates of the provisional current position of the rotation center C2 when viewed from above can be set, and the coordinates of the provisional current position of the rotation center C2 when viewed from the vertical direction can be set by any coordinate. Is done. For example, a cylindrical coordinate system is defined with the rotation center C1 as the origin, the distance from the rotation center C1 to the rotation center C2, the line connecting the rotation center C1 and the rotation center C2, and the rotation center C1. The coordinates of the provisional current position of the rotation center C2 when viewed from above and below are set based on the angle formed with a predetermined reference line passing through. Further, for example, the orthogonal coordinate system is defined so that the rotation center C1 is the origin, and one coordinate axis constituting the orthogonal coordinate system is parallel to the left-right direction, and the other coordinate axis is parallel to the front-rear direction. Based on the distance between the rotation center C1 and the rotation center C2 in the left-right direction and the distance between the rotation center C1 and the rotation center C2 in the front-rear direction, the rotation center C2 when viewed from the up-down direction. The coordinates of the tentative current position are set.
 本形態では、回動中心C1を通過する左右方向に平行な仮想線がその前後方向の中心位置を通過するように配置されているチャンバー5、6に対する基板2の搬出時あるいは搬入時にロボット1が非常停止した場合には、円筒座標系の座標で上下方向から見たときの回動中心C2の仮の現在位置の座標が設定される。一方、左右方向において、回動中心C1に対してオフセットしているチャンバー7~10に対する基板2の搬出時あるいは搬入時にロボット1が非常停止した場合には、直交座標系の座標で上下方向から見たときの回動中心C2の仮の現在位置の座標が設定される。 In this embodiment, the robot 1 moves when the substrate 2 is unloaded or loaded into the chambers 5 and 6 arranged so that a virtual line parallel to the left-right direction passing through the rotation center C1 passes through the center position in the front-rear direction. In the case of an emergency stop, the coordinates of the provisional current position of the rotation center C2 when viewed from the vertical direction in the coordinates of the cylindrical coordinate system are set. On the other hand, in the left-right direction, when the robot 1 is brought to an emergency stop when the substrate 2 is unloaded or loaded into the chambers 7 to 10 that are offset with respect to the rotation center C1, the coordinates of the Cartesian coordinate system are viewed from above and below. The coordinates of the temporary current position of the rotation center C2 at that time are set.
 なお、仮現在位置設定工程において、上下方向から見たときの回動中心C2の仮の現在位置の座標に加え、第2アーム部24に対するハンド13の回動角度の仮の現在位置の座標と、回動中心C2の高さの仮の現在位置の座標とが設定されても良い。これらの設定も、オペレータが目視で確認して決めた仮の現在位置の座標を教示操作端末19に入力することで行われる。また、本形態では、たとえば、ハンド13とチャンバー5~10とに所定のマークが設けられるとともに、上下方向から見たときに、ハンド13のマークとチャンバー5~10のマークとが一致するときの回動中心C2の座標が予め規定されており、オペレータが目視で回動中心C2の仮の現在位置の座標を決定する際には、ハンド13のマークとチャンバー5~10のマークとの位置関係から回動中心C2の仮の現在位置の座標を決定する。あるいは、たとえば、前後左右における回動中心C2の可動範囲端に回動中心C2があるときの回動中心C2の座標が予め規定されており、オペレータが目視で回動中心C2の仮の現在位置の座標を決定する際には、回動中心C2の可動範囲端を基準にして回動中心C2の仮の現在位置の座標を決定する。 In the temporary current position setting step, in addition to the coordinates of the temporary current position of the rotation center C2 when viewed from the vertical direction, the coordinates of the temporary current position of the rotation angle of the hand 13 with respect to the second arm portion 24 and The coordinates of the temporary current position at the height of the rotation center C2 may be set. These settings are also performed by inputting the coordinates of the temporary current position determined by visual confirmation by the operator to the teaching operation terminal 19. Further, in this embodiment, for example, a predetermined mark is provided on the hand 13 and the chambers 5 to 10, and when the mark on the hand 13 and the mark on the chambers 5 to 10 coincide when viewed from above and below, The coordinates of the rotation center C2 are defined in advance, and when the operator visually determines the coordinates of the temporary current position of the rotation center C2, the positional relationship between the mark of the hand 13 and the marks of the chambers 5 to 10 is determined. To determine the coordinates of the temporary current position of the rotation center C2. Alternatively, for example, the coordinates of the rotation center C2 when the rotation center C2 is located at the end of the movable range of the rotation center C2 in the front, rear, left, and right directions are defined in advance, and the temporary current position of the rotation center C2 is visually confirmed by the operator. Is determined based on the movable range end of the rotation center C2 as a reference.
 仮現在位置設定工程で回動中心C2の仮の現在位置の座標を設定すると、ロボット1を所定位置まで動作させる(動作工程)。動作工程では、後述の復帰動作工程におけるロボット1の復帰動作時にハンド13や基板2とチャンバー5~10とが干渉しない位置までロボット1を動作させる。たとえば、図10(A)に示すように、ハンド13の左端側がチャンバー5の内部に入っている状態で、ロボット1が非常停止した場合には、動作工程で、図10(B)に示すように、ハンド13の全体がチャンバー5の外側まで移動するように、アーム14を縮める。また、たとえば、図6(C)、図7(C)、図8(C)、図9(C)に示すように、ハンド13の後端側または前端側がチャンバー7~10の内部に入っている状態で、ロボット1が非常停止した場合には、動作工程で、図6(B)、図7(B)、図8(B)、図9(B)に示すように、ハンド13の全体がチャンバー7~10の外側まで移動するように、アーム14を縮める。 When the coordinates of the temporary current position of the rotation center C2 are set in the temporary current position setting process, the robot 1 is moved to a predetermined position (operation process). In the operation process, the robot 1 is moved to a position where the hand 13 or the substrate 2 and the chambers 5 to 10 do not interfere during the return operation of the robot 1 in the return operation process described later. For example, as shown in FIG. 10 (A), when the robot 1 is in an emergency stop state with the left end side of the hand 13 being inside the chamber 5, as shown in FIG. Then, the arm 14 is contracted so that the entire hand 13 moves to the outside of the chamber 5. Further, for example, as shown in FIGS. 6C, 7C, 8C, and 9C, the rear end side or the front end side of the hand 13 enters the inside of the chambers 7 to 10. When the robot 1 is in an emergency stop in the state of being in the state, as shown in FIG. 6B, FIG. 7B, FIG. 8B, and FIG. The arm 14 is contracted so that it moves to the outside of the chambers 7 to 10.
 このときには、チャンバー5~10に対する基板2の搬入時および搬出時のハンド13の移動方向にハンド13が移動するように、ロボット1に直線補間動作をさせる。すなわち、このときには、チャンバー5~10に対する基板2の搬入時および搬出時の回動中心C2の移動方向に回動中心C2が移動するように、ロボット1に直線補間動作をさせる。また、動作工程では、教示操作端末19の操作ボタン71を用いたジョグ操作によってロボット1を動作させる。本形態の操作ボタン71は、動作工程でロボット1を動作させるための操作部材である。 At this time, the robot 1 is caused to perform a linear interpolation operation so that the hand 13 moves in the moving direction of the hand 13 when the substrate 2 is carried into and out of the chambers 5 to 10. That is, at this time, the robot 1 is caused to perform a linear interpolation operation so that the rotation center C2 moves in the moving direction of the rotation center C2 when the substrate 2 is carried into and out of the chambers 5 to 10. In the operation process, the robot 1 is operated by a jog operation using the operation button 71 of the teaching operation terminal 19. The operation button 71 of this embodiment is an operation member for operating the robot 1 in the operation process.
 動作工程でロボット1を動作させた後には、原点位置へロボット1を自動で復帰させる(復帰動作工程)。この復帰動作工程では、公知の方法でロボット1の原点位置へ自動で復帰させる。 After operating the robot 1 in the operation process, the robot 1 is automatically returned to the origin position (return operation process). In this return operation step, the robot 1 is automatically returned to the origin position by a known method.
 (非常停止時の産業用ロボットの動作)
 ここでは、第三の発明にかかる本形態として説明する。
 ロボット1は、ハンド13、第1アーム部23および第2アーム部24が回動するとともに本体部15が昇降しているときに、何らかの原因で、ロボット1を非常停止させる場合には、まず、電源81を切る。一方で、ロボット1は、ロボット1を非常停止させる場合であっても、CPU79を駆動する制御電源(図示省略)を切る時間を延ばして、CPU79によって、ブレーキ41、42およびモータドライバ71~74を制御しながら、モータ31、40、46、47を停止させる。たとえば、ロボット1は、その非常停止時に、制御電源を切る時間を数秒程度延ばす。
(Operation of industrial robot during emergency stop)
Here, it demonstrates as this form concerning 3rd invention.
When the robot 1 makes an emergency stop for some reason when the hand 13, the first arm unit 23, and the second arm unit 24 are rotated and the main body unit 15 is moving up and down, Turn off the power 81. On the other hand, even when the robot 1 makes an emergency stop, the CPU 1 extends the time to turn off the control power source (not shown) for driving the CPU 79 and the CPU 79 causes the brakes 41 and 42 and the motor drivers 71 to 74 to be turned off. While controlling, the motors 31, 40, 46, 47 are stopped. For example, the robot 1 extends the time for turning off the control power by several seconds during the emergency stop.
 CPU79は、ロボット1の非常停止時に、まず、ブレーキ41を作動させ(すなわち、ブレーキ41のコイルへの通電を停止し)、ブレーキ41を作動させてから所定時間経過後に、制動力の大きなブレーキ42を作動させて(すなわち、ブレーキ42のコイルへの通電を停止して)、モータ40を停止させる。すなわち、CPU79は、ロボット1の非常停止時に、ブレーキ41を作動させた後、ブレーキ42を作動させてモータ40を停止させる。たとえば、CPU79は、本体部15が落下しないように、ブレーキ41を作動させてから数百ミリ秒経過後に、ブレーキ42を作動させる。 When the robot 1 is in an emergency stop, the CPU 79 first operates the brake 41 (that is, stops energization of the coil of the brake 41), and after a predetermined time has elapsed since the brake 41 was operated, Is operated (that is, energization of the coil of the brake 42 is stopped), and the motor 40 is stopped. That is, the CPU 79 operates the brake 41 and then operates the brake 42 to stop the motor 40 when the robot 1 is in an emergency stop. For example, the CPU 79 operates the brake 42 after several hundred milliseconds have elapsed since the operation of the brake 41 so that the main body 15 does not fall.
 また、CPU79は、ロボット1の非常停止時に、充放電部80から供給される電力を用いてモータドライバ71~73を制御しながら、モータ31、46、47を停止させる。すなわち、CPU79は、充放電部80に予め蓄えられた電力と、モータ31、46、47で発生する回生電流によって充放電部80に蓄えられる電力とを用いて、モータ31、46、47の回転位置を管理しながら、モータ31、46、47を停止させる。具体的には、非常停止がかかったときのハンド13の向きを保ちつつ、非常停止がかかったときのハンド13の移動方向へハンド13が直線的に移動するように(より具体的には、回動中心C2が直線的に移動するように)、CPU79は、モータドライバ71~73を制御しながら、モータ31、46、47を停止させる。 The CPU 79 stops the motors 31, 46 and 47 while controlling the motor drivers 71 to 73 using the power supplied from the charging / discharging unit 80 when the robot 1 is in an emergency stop. That is, the CPU 79 rotates the motors 31, 46, 47 using the power stored in the charge / discharge unit 80 in advance and the power stored in the charge / discharge unit 80 by the regenerative current generated in the motors 31, 46, 47. While managing the position, the motors 31, 46, 47 are stopped. Specifically, the hand 13 moves linearly in the moving direction of the hand 13 when the emergency stop is applied while maintaining the orientation of the hand 13 when the emergency stop is applied (more specifically, The CPU 79 stops the motors 31, 46 and 47 while controlling the motor drivers 71 to 73 so that the rotation center C2 moves linearly.
 なお、本形態では、ロボット1の非常停止時にブレーキ41、42を作動させた際、モータ40が必要以上に急停止しないように、CPU79は、モータドライバ74を制御している。具体的には、ブレーキ41、42の作動時にモータ40が必要以上に急停止しそうな場合、CPU79は、非常停止がかかったときのモータ40の回転方向へモータ40がさらに回転するようにモータドライバ74を制御する。このときには、充放電部80からモータドライバ74へ電力が供給される。 In this embodiment, the CPU 79 controls the motor driver 74 so that the motor 40 does not stop more suddenly than necessary when the brakes 41 and 42 are operated during an emergency stop of the robot 1. Specifically, when the motor 40 is likely to stop more suddenly than necessary when the brakes 41 and 42 are operated, the CPU 79 causes the motor driver to rotate further in the direction of rotation of the motor 40 when an emergency stop is applied. 74 is controlled. At this time, power is supplied from the charging / discharging unit 80 to the motor driver 74.
 (産業用ロボットの制御方法)
 ここでは、第四の発明にかかる本形態として説明する。
 本形態の制御部70は、アーム14の姿勢とアーム14の動作方向とに基づいて、本体部15に対する第1アーム部23の回動中心(すなわち、本体部15に対するアーム14の回動中心)C1を原点とする円筒座標系でロボット1を制御するのか、それとも、回動中心C1を原点とする直交座標系でロボット1を制御するのかを切り替える。すなわち、制御部70は、アーム14の姿勢とアーム14の動作方向とに基づいて、円筒座標系でモータドライバ71~74を制御するのか、それとも、直交座標系でモータドライバ71~74を制御するのかを切り替える。
(Control method for industrial robots)
Here, it demonstrates as this form concerning 4th invention.
The control unit 70 of the present embodiment is based on the posture of the arm 14 and the operation direction of the arm 14, and the center of rotation of the first arm unit 23 relative to the main body 15 (that is, the center of rotation of the arm 14 relative to the main body 15). It is switched whether the robot 1 is controlled in a cylindrical coordinate system having C1 as an origin or whether the robot 1 is controlled in an orthogonal coordinate system having a rotation center C1 as an origin. That is, the control unit 70 controls the motor drivers 71 to 74 in the cylindrical coordinate system based on the posture of the arm 14 and the operation direction of the arm 14, or controls the motor drivers 71 to 74 in the orthogonal coordinate system. Switch between.
 具体的には、制御部70は、上下方向から見たときに回動中心C1を通過する仮想線上をハンド13の回動中心C2が直線的に移動するときに、円筒座標系でロボット1を制御する。すなわち、上下方向から見たときに回動中心C1を通過する仮想線上をハンド13の回動中心C2が直線的に移動するときに、制御部70は、回動中心C1から回動中心C2までの距離と、回動中心C1と回動中心C2とを結ぶ線と回動中心C1を通過する所定の基準線とのなす角度とに基づく円筒座標系でロボット1を制御する。 Specifically, the control unit 70 moves the robot 1 in a cylindrical coordinate system when the rotation center C2 of the hand 13 moves linearly on an imaginary line passing through the rotation center C1 when viewed from above and below. Control. That is, when the rotation center C2 of the hand 13 moves linearly on an imaginary line passing through the rotation center C1 when viewed from the vertical direction, the control unit 70 moves from the rotation center C1 to the rotation center C2. The robot 1 is controlled by a cylindrical coordinate system based on a distance between the rotation center C1 and the rotation center C2 and an angle formed by a predetermined reference line passing through the rotation center C1.
 たとえば、チャンバー5、6に対する基板2の搬出や搬入を行うために、チャンバー5、6の中にフォーク部21が入り込むまでアーム14が伸びている位置(図5(A)、(C)参照)と、第1アーム部23と第2アーム部24とが上下方向で重なるまでアーム14が縮んでいる位置(図5(B)参照)との間で、回動中心C2が直線的に移動するときには、制御部70は、円筒座標系でロボット1を制御する。 For example, in order to carry out and carry in the substrate 2 to and from the chambers 5 and 6, a position where the arm 14 extends until the fork portion 21 enters the chambers 5 and 6 (see FIGS. 5A and 5C). The rotation center C2 moves linearly between the position where the arm 14 is contracted until the first arm portion 23 and the second arm portion 24 overlap in the vertical direction (see FIG. 5B). Sometimes, the control unit 70 controls the robot 1 in a cylindrical coordinate system.
 また、チャンバー7~10に対する基板2の搬出や搬入を行うために、第1アーム部23と第2アーム部24とが上下方向で重なるまでアーム14が縮んでいる位置(図6(A)、図7(A)、図8(A)、図9(A)参照)と、フォーク部21が前後方向と平行になるとともに基板2がハンド13の前端側または後端側に配置されるように、かつ、左右方向において、回動中心C2と左右方向におけるチャンバー7~10の中心とが略一致している位置(図6(B)、図7(B)、図8(B)、図9(B)参照)との間で、回動中心C2が直線的に移動するときには、制御部70は、円筒座標系でロボット1を制御する。 Further, in order to carry out and carry in the substrate 2 to and from the chambers 7 to 10, the arm 14 is contracted until the first arm portion 23 and the second arm portion 24 overlap in the vertical direction (FIG. 6A, 7A, FIG. 8A, and FIG. 9A), the fork portion 21 is parallel to the front-rear direction, and the substrate 2 is disposed on the front end side or the rear end side of the hand 13. In the left-right direction, the position where the rotation center C2 and the centers of the chambers 7 to 10 in the left-right direction substantially coincide (FIGS. 6B, 7B, 8B, 9). When the rotation center C2 moves linearly (see (B)), the control unit 70 controls the robot 1 in the cylindrical coordinate system.
 一方、制御部70は、上下方向から見たときに回動中心C1を通過する仮想線に沿わない位置で回動中心C2が直線的に移動するときには、直交座標系でロボット1を制御する。本形態では、直交座標系を構成する一方の座標軸が左右方向と平行になり、他方の座標軸が前後方向と平行になるように直交座標系が規定されており、上下方向から見たときに回動中心C1を通過する仮想線に沿わない位置で回動中心C2が直線的に移動するときには、制御部70は、左右方向における回動中心C1と回動中心C2との距離と、前後方向における回動中心C1と回動中心C2との距離とに基づく直交座標系でロボット1を制御する。 On the other hand, when the rotation center C2 moves linearly at a position not along the imaginary line passing through the rotation center C1 when viewed from the vertical direction, the control unit 70 controls the robot 1 using an orthogonal coordinate system. In this embodiment, the orthogonal coordinate system is defined so that one coordinate axis constituting the orthogonal coordinate system is parallel to the left-right direction and the other coordinate axis is parallel to the front-rear direction. When the rotation center C2 moves linearly at a position not along the imaginary line passing through the movement center C1, the control unit 70 determines the distance between the rotation center C1 and the rotation center C2 in the left-right direction and the front-rear direction. The robot 1 is controlled by an orthogonal coordinate system based on the distance between the rotation center C1 and the rotation center C2.
 すなわち、チャンバー7~10に対する基板2の搬出や搬入を行うために、フォーク部21が前後方向と平行になるとともに基板2がハンド13の前端側または後端側に配置されるように、かつ、左右方向において、回動中心C2と左右方向におけるチャンバー7~10の中心とが略一致している位置(図6(B)、図7(B)、図8(B)、図9(B)参照)と、チャンバー7~10の中にフォーク部21が入り込むまでアーム14が伸びている位置(図6(C)、図7(C)、図8(C)、図9(C)参照)との間で、回動中心C2が直線的に移動するときには、制御部70は、直交座標系でロボット1を制御する。 That is, in order to carry out and carry in the substrate 2 to and from the chambers 7 to 10, the fork portion 21 is parallel to the front-rear direction and the substrate 2 is disposed on the front end side or the rear end side of the hand 13, and In the left-right direction, the position where the rotation center C2 and the centers of the chambers 7 to 10 in the left-right direction substantially coincide (FIGS. 6B, 7B, 8B, and 9B). And the position where the arm 14 extends until the fork 21 enters the chambers 7 to 10 (see FIGS. 6C, 7C, 8C, and 9C). When the rotation center C2 moves linearly between the two, the control unit 70 controls the robot 1 in the orthogonal coordinate system.
 また、制御部70は、本体部15に対して第1アーム部23が回動しておらず、かつ、第1アーム部23に対して第2アーム部24が回動していない状態で、第2アーム部24に対してハンド13が回動するときには、円筒座標系でロボットを制御する。また、制御部70は、第1アーム部23に対して第2アーム部24が回動しておらず、かつ、第2アーム部24に対してハンド13が回動していない状態で、本体部15に対して第1アーム部23が回動するときにも、円筒座標系でロボット1を制御する。 In addition, the control unit 70 is in a state where the first arm unit 23 is not rotated with respect to the main body unit 15 and the second arm unit 24 is not rotated with respect to the first arm unit 23. When the hand 13 rotates with respect to the second arm unit 24, the robot is controlled in a cylindrical coordinate system. Further, the control unit 70 is configured so that the second arm unit 24 is not rotated with respect to the first arm unit 23 and the hand 13 is not rotated with respect to the second arm unit 24. Even when the first arm unit 23 rotates with respect to the unit 15, the robot 1 is controlled by the cylindrical coordinate system.
 本形態では、円筒座標系で制御される場合の回動中心C2の移動位置等は、円筒座標系の座標を用いて教示される。また、直交座標系で制御される場合の回動中心C2の移動位置は、直交座標系の座標を用いて教示される。なお、円筒座標系でロボット1が制御される場合、および、直交座標系でロボット1が制御される場合のいずれの場合であっても、上下方向から見たときの回動中心C2の位置と、ハンド13の高さと、第2アーム部24に対するハンド13の回動角度とが制御される。 In this embodiment, the moving position of the rotation center C2 when controlled by the cylindrical coordinate system is taught using the coordinates of the cylindrical coordinate system. Further, the movement position of the rotation center C2 when controlled in the orthogonal coordinate system is taught using the coordinates of the orthogonal coordinate system. It should be noted that the position of the rotation center C2 when viewed from the vertical direction is the case where the robot 1 is controlled in the cylindrical coordinate system and the case where the robot 1 is controlled in the orthogonal coordinate system. The height of the hand 13 and the rotation angle of the hand 13 with respect to the second arm portion 24 are controlled.
 (第一の発明の本形態の主な効果)
 以上説明したように、本形態では、中空状に形成される第1アーム部23の内部空間45が大気圧となっており、この内部空間45に、モータ46、47および減速機48、49が配置されている。また、本形態では、内部空間45に配置される減速機48と減速機49とは、その軸中心が一致するように同軸上で重なっている。そのため、本形態では、減速機48、49の軸方向である上下方向において、第1アーム部23の厚みを厚くすることが可能になる。すなわち、本形態では、上下方向において、内部空間45を大きくすることが可能になり、内部の圧力が大気圧となっている内部空間45の容積を大きくして、内部空間45内の空気の量を増やすことが可能になる。したがって、本形態では、内部空間45に配置されるモータ46、47を効率的に冷却することが可能になる。その結果、本形態では、熱に起因するモータ46、47の損傷を防止することが可能になる。
(Main effects of this embodiment of the first invention)
As described above, in this embodiment, the internal space 45 of the first arm portion 23 formed in a hollow shape is atmospheric pressure, and the motors 46 and 47 and the speed reducers 48 and 49 are contained in the internal space 45. Is arranged. Further, in this embodiment, the speed reducer 48 and the speed reducer 49 arranged in the internal space 45 overlap on the same axis so that the axial centers thereof coincide. Therefore, in the present embodiment, it is possible to increase the thickness of the first arm portion 23 in the vertical direction that is the axial direction of the speed reducers 48 and 49. That is, in this embodiment, the internal space 45 can be enlarged in the vertical direction, the volume of the internal space 45 in which the internal pressure is atmospheric pressure is increased, and the amount of air in the internal space 45 is increased. It becomes possible to increase. Therefore, in this embodiment, the motors 46 and 47 disposed in the internal space 45 can be efficiently cooled. As a result, in this embodiment, it is possible to prevent the motors 46 and 47 from being damaged due to heat.
 特に第一の発明の本形態では、第1アーム部23に対する第2アーム部24の回動中心と本体部15に対する第1アーム部23の回動中心との距離が、第1アーム部23に対する第2アーム部24の回動中心と第2アーム部24に対するハンド13の回動中心との距離と等しくなっており、第1アーム部23の長さが比較的長くなっている。そのため、本形態では、内部空間45の容積をより大きくして、内部空間45内の空気の量をより増やすことが可能になり、その結果、内部空間45に配置されるモータ46、47をより効率的に冷却することが可能になる。また、本形態では、モータ46に冷却用パイプ64が巻回されているため、モータ46をより効率的に冷却することが可能になる。 In particular, in the present embodiment of the first invention, the distance between the rotation center of the second arm portion 24 relative to the first arm portion 23 and the rotation center of the first arm portion 23 relative to the main body portion 15 is relative to the first arm portion 23. The distance between the rotation center of the second arm portion 24 and the rotation center of the hand 13 with respect to the second arm portion 24 is equal, and the length of the first arm portion 23 is relatively long. Therefore, in this embodiment, it is possible to increase the volume of the internal space 45 and increase the amount of air in the internal space 45. As a result, the motors 46 and 47 disposed in the internal space 45 are more It becomes possible to cool efficiently. In this embodiment, since the cooling pipe 64 is wound around the motor 46, the motor 46 can be cooled more efficiently.
 また、第一の発明の本形態では、内部の圧力が大気圧となっている内部空間45にモータ46、47および減速機48、49が配置されているため、ハンド13とアーム14とが真空中に配置されていても、モータ46、47や減速機48、49の潤滑剤として、真空グリース等の高価な潤滑剤を使用する必要がなく、大気圧中で使用されるグリース等の潤滑剤を使用すれば良い。したがって、本形態では、ロボット1の初期コストおよびランニングコストを低減することが可能になる。 In the present embodiment of the first invention, since the motors 46 and 47 and the speed reducers 48 and 49 are arranged in the internal space 45 where the internal pressure is atmospheric pressure, the hand 13 and the arm 14 are vacuumed. It is not necessary to use an expensive lubricant such as vacuum grease as a lubricant for the motors 46 and 47 and the speed reducers 48 and 49, but a lubricant such as grease used at atmospheric pressure. Should be used. Therefore, in this embodiment, the initial cost and running cost of the robot 1 can be reduced.
 第一の発明の本形態では、減速機48、49によって関節部26の一部が構成されている。そのため、本形態では、関節部26の剛性を高めることが可能になる。特に本形態では、減速機48、49は、中空減速機であり、その軸中心と第1アーム部23に対する第2アーム部24の回動中心とが一致するように同軸上に配置されている。すなわち、本形態では、第1アーム部23に対する第2アーム部24の回動中心上に2台の減速機48、49が配置されている。そのため、本形態では、関節部26の剛性をより高めることが可能になる。したがって、本形態では、ロボット1で比較的大きな基板2を搬送しても、関節部26の損傷を防止することが可能になる。 In the present embodiment of the first invention, a part of the joint portion 26 is constituted by the speed reducers 48 and 49. Therefore, in this embodiment, it is possible to increase the rigidity of the joint portion 26. In particular, in this embodiment, the speed reducers 48 and 49 are hollow speed reducers, and are arranged coaxially so that the axial center thereof coincides with the rotation center of the second arm part 24 with respect to the first arm part 23. . That is, in this embodiment, two speed reducers 48 and 49 are arranged on the center of rotation of the second arm portion 24 relative to the first arm portion 23. For this reason, in this embodiment, the rigidity of the joint portion 26 can be further increased. Therefore, in this embodiment, even if the robot 1 transports a relatively large substrate 2, it is possible to prevent the joint portion 26 from being damaged.
 なお、第一の発明の本形態のように、基板2の搬出時および搬入時におけるハンド13の向きを一定に保たった状態で、チャンバー5~10間で基板2を搬送する場合、比較的大きな基板2を搬送すると、関節部26には大きな負荷がかかるが、関節部27には大きな負荷はかからない。そのため、本形態では、関節部27がプーリ61等によって構成されていても、関節部27の損傷は発生しにくい。 When the substrate 2 is transported between the chambers 5 to 10 with the direction of the hand 13 being kept constant when the substrate 2 is unloaded and loaded, as in the present embodiment of the first invention, it is relatively large. When the substrate 2 is conveyed, a large load is applied to the joint portion 26, but a large load is not applied to the joint portion 27. Therefore, in this embodiment, even if the joint portion 27 is configured by the pulley 61 or the like, the joint portion 27 is unlikely to be damaged.
 第一の発明の本形態では、基板2の搬出時および搬入時に、ハンド13および第1アーム部23は、本体部15に対する第1アーム部23の回動角度と、第2アーム部24に対するハンド13の回動角度が等しく、かつ、本体部15に対する第1アーム部23の回動方向と、第2アーム部24に対するハンド13の回動方向とが逆方向となるように回動する。そのため、本形態では、上述のように、基板2の搬出時および搬入時におけるハンド13の向きが一定に保たれる。すなわち、本形態では、比較的簡単な制御で、基板2の搬出時および搬入時におけるハンド13の向きを一定に保つことが可能になる。 In the present embodiment of the first invention, the hand 13 and the first arm portion 23 are rotated with respect to the main body portion 15 and the hand with respect to the second arm portion 24 when the substrate 2 is unloaded and loaded. The rotation angles of the first arm portion 23 with respect to the main body portion 15 and the rotation direction of the hand 13 with respect to the second arm portion 24 are opposite to each other. For this reason, in this embodiment, as described above, the orientation of the hand 13 at the time of unloading and loading of the substrate 2 is kept constant. That is, in this embodiment, it is possible to keep the orientation of the hand 13 constant when the substrate 2 is unloaded and loaded with relatively simple control.
 第一の発明の本形態では、本体部15から水平方向の一方側へ伸びる第1アーム部23に、第1アーム部23が伸びる方向と反対側へ本体部15から伸びるカウンターウエイト28が取り付けられている。そのため、本形態では、第1アーム部23が固定される中空回転軸32の外周面と保持部材34の内周面との間に配置される軸受に作用する負荷を低減することが可能になる。 In the present embodiment of the first invention, a counterweight 28 extending from the main body portion 15 is attached to the first arm portion 23 extending from the main body portion 15 to one side in the horizontal direction opposite to the direction in which the first arm portion 23 extends. ing. Therefore, in this embodiment, it is possible to reduce the load acting on the bearing disposed between the outer peripheral surface of the hollow rotary shaft 32 to which the first arm portion 23 is fixed and the inner peripheral surface of the holding member 34. .
 (第二の発明の本形態の主な効果)
 以上説明したように、本形態では、仮現在位置設定工程において、現在位置の座標がわからなくなった状態で非常停止しているロボット1の回動中心C2の仮の現在位置の座標を設定しており、ロボット1は、回動中心C2の仮の現在位置の座標を把握することができる。そのため、本形態では、設定された回動中心C2の仮の現在位置の座標に基づいて、動作工程で、第1アーム部23、第2アーム部24およびハンド13を連動させながらロボット1に適切な動作を行わせることができる。すなわち、動作工程において、チャンバー5~10に対する基板2の搬入時および搬出時のハンド13の移動方向にハンド13が移動するように、ロボット1に直線補間動作をさせることができ、動作工程におけるハンド13および基板2とチャンバー5~10との干渉を防止することが可能になる。また、本形態では、動作工程において、ロボット1の復帰動作時にハンド13や基板2とチャンバー5~10とが干渉しない位置までロボット1を動作させているため、復帰動作工程において、原点位置へロボット1を安全に復帰させることが可能になる。
(Main effects of this embodiment of the second invention)
As described above, in the present embodiment, in the temporary current position setting step, the temporary current position coordinates of the rotation center C2 of the robot 1 that is in an emergency stop with the current position coordinates being unknown are set. Thus, the robot 1 can grasp the coordinates of the temporary current position of the rotation center C2. Therefore, in the present embodiment, the robot 1 is suitable for the robot 1 while interlocking the first arm portion 23, the second arm portion 24, and the hand 13 in the operation process based on the set coordinates of the temporary current position of the rotation center C2. Can be performed. That is, in the operation process, the robot 1 can be caused to perform a linear interpolation operation so that the hand 13 moves in the moving direction of the hand 13 when the substrate 2 is carried into and out of the chambers 5 to 10. 13 and the substrate 2 and the chambers 5 to 10 can be prevented from interfering with each other. In this embodiment, since the robot 1 is moved to a position where the hand 13 and the substrate 2 and the chambers 5 to 10 do not interfere with each other during the return operation of the robot 1 in the operation process, the robot is moved to the origin position in the return operation process. 1 can be safely restored.
 このように、第二の発明の本形態では、現在位置の座標がわからなくなった状態で停止しているロボット1をオペレータの手動操作といった煩雑な方法で原点位置へ復帰させる場合と比較して、簡易かつ安全にロボット1を原点位置へ復帰させることが可能になる。特に本形態では、モータ31が第1アーム部23を回動させ、モータ46が第2アーム部24を回動させ、モータ47がハンド13を回動させているため、現在位置の座標がわからなくなった状態で停止しているロボット1をオペレータの手動操作で原点位置へ復帰させる場合には、その操作が非常に煩雑になるが、本形態では、容易にロボット1を原点位置に復帰させることが可能になる。なお、回動中心C2の仮の現在位置の座標を設定しなくても、教示操作端末19を使って、第1アーム部23、第2アーム部24およびハンド13を個別に少しずつ回動させながら、ロボット1を原点位置へ復帰させることも可能であるが、この場合であっても、その操作は煩雑になる。 Thus, in this embodiment of the second invention, compared to the case where the robot 1 stopped in a state where the coordinates of the current position are lost is returned to the origin position by a complicated method such as manual operation by the operator, It becomes possible to return the robot 1 to the origin position simply and safely. In particular, in this embodiment, since the motor 31 rotates the first arm portion 23, the motor 46 rotates the second arm portion 24, and the motor 47 rotates the hand 13, the coordinates of the current position are known. When returning the robot 1 that has stopped in the lost state to the origin position by the operator's manual operation, the operation becomes very complicated, but in this embodiment, the robot 1 can be easily returned to the origin position. Is possible. Even if the coordinates of the temporary current position of the rotation center C2 are not set, the first arm unit 23, the second arm unit 24, and the hand 13 are individually rotated little by little using the teaching operation terminal 19. However, although it is possible to return the robot 1 to the origin position, even in this case, the operation becomes complicated.
 第二の発明の本形態では、仮現在位置設定工程において、オペレータが目視で確認して決めた回動中心C2の仮の現在位置の座標を教示操作端末19に入力して、回動中心C2の仮の現在位置の座標を設定している。そのため、本形態では、回動中心C2の仮の現在位置の座標を容易に設定することが可能になる。 In this embodiment of the second invention, in the temporary current position setting step, the coordinates of the temporary current position of the rotation center C2 determined by visual confirmation by the operator are input to the teaching operation terminal 19, and the rotation center C2 is input. The coordinates of the tentative current position are set. Therefore, in this embodiment, it is possible to easily set the coordinates of the temporary current position of the rotation center C2.
 第二の発明の本形態では、仮現在位置設定工程において、円筒座標系の座標あるいは直交座標系の座標のいずれの座標によっても回動中心C2の仮の現在位置の座標を設定可能となっており、いずれかの座標によって、回動中心C2の仮の現在位置の座標が設定されている。そのため、本形態では、動作工程においてロボット1を動作させやすい座標系の座標で、回動中心C2の仮の現在位置の座標を設定することができる。すなわち、上述のように、回動中心C1を通過する左右方向に平行な仮想線がその前後方向の中心位置を通過するように配置されているチャンバー5、6に対する基板2の搬出時あるいは搬入時にロボット1が非常停止した場合には、円筒座標系の座標で回動中心C2の仮の現在位置の座標を設定することができ、左右方向において、回動中心C1に対してオフセットしているチャンバー7~10に対する基板2の搬出時あるいは搬入時にロボット1が非常停止した場合には、直交座標系の座標で回動中心C2の仮の現在位置の座標を設定することができる。 In this form of the second invention, in the temporary current position setting step, the temporary current position coordinates of the rotation center C2 can be set by any of the coordinates of the cylindrical coordinate system or the coordinates of the orthogonal coordinate system. The coordinates of the temporary current position of the rotation center C2 are set by any of the coordinates. Therefore, in this embodiment, the coordinates of the provisional current position of the rotation center C2 can be set with the coordinates of the coordinate system in which the robot 1 can be easily operated in the operation process. That is, as described above, when the substrate 2 is unloaded or loaded into the chambers 5 and 6 arranged so that the imaginary line parallel to the left-right direction passing through the rotation center C1 passes through the center position in the front-rear direction. When the robot 1 is in an emergency stop, the coordinates of the temporary current position of the rotation center C2 can be set in the coordinates of the cylindrical coordinate system, and the chamber is offset from the rotation center C1 in the left-right direction. When the robot 1 is brought to an emergency stop when unloading or loading the substrate 2 with respect to 7 to 10, the coordinates of the temporary current position of the rotation center C2 can be set by the coordinates of the orthogonal coordinate system.
 第二の発明の本形態では、動作工程において、教示操作端末19の操作ボタン71を用いたジョグ操作によってロボット1を動作させている。そのため、本形態では、仮現在位置設定工程において設定された回動中心C2の仮の現在位置の座標と、停止しているロボット1の回動中心C2の実際の現在位置の座標とのずれ量が大きくて、動作工程でそのままロボット1の動作を継続すると、ハンド13や基板2とチャンバー5~10とが干渉するような場合であっても、ジョグ操作を行いながら、仮の現在位置の座標を再設定し直すことで、動作工程におけるハンド13や基板2とチャンバー5~10との干渉を防止することが可能になる。 In this embodiment of the second invention, the robot 1 is operated by a jog operation using the operation button 71 of the teaching operation terminal 19 in the operation process. For this reason, in this embodiment, the amount of deviation between the coordinates of the temporary current position of the rotation center C2 set in the temporary current position setting step and the coordinates of the actual current position of the rotation center C2 of the robot 1 that is stopped. Even if the hand 13 or the substrate 2 and the chambers 5 to 10 interfere with each other if the robot 1 continues to operate as it is in the operation process, the coordinates of the temporary current position can be obtained while performing the jog operation. By resetting, it is possible to prevent interference between the hand 13 and the substrate 2 and the chambers 5 to 10 in the operation process.
 (第三の発明の本形態の主な効果)
 以上説明したように、本形態では、ロボット1の非常停止時に、電源81を切っている。そのため、本形態では、ロボット1の非常停止時に、比較的短時間でモータ31、40、46、47を停止させることが可能になり、その結果、比較的短時間で安全を確保することが可能になる。
(Main effects of this embodiment of the third invention)
As described above, in this embodiment, the power supply 81 is turned off when the robot 1 is in an emergency stop. Therefore, in this embodiment, when the robot 1 is in an emergency stop, the motors 31, 40, 46, 47 can be stopped in a relatively short time, and as a result, safety can be ensured in a relatively short time. become.
 第三の発明の本形態では、ロボット1の非常停止時に、充放電部80から供給される電力を用いて、CPU79がモータドライバ71~73を制御しながらモータ31、46、47を停止させている。すなわち、本形態では、ロボット1の非常停止時に、充放電部80から供給される電力を用いてモータ31、46、47を制御しながら停止させている。そのため、本形態では、第1アーム部23を回動させるモータ46と、第2アーム部24を回動させるモータ47と、ハンド13を回動させるモータ31とが個別に設けられている場合であっても、上述のように、非常停止がかかったときのハンド13の向きを保ちつつ、非常停止がかかったときのハンド13の移動方向へハンド13が直線的に移動するように、CPU79は、モータドライバ71~73を制御しながら、モータ31、46、47を停止させることができる。したがって、本形態では、非常停止時に、ハンド13とチャンバー5~10との接触、および、アーム14とチャンバー5~10との接触を防止することが可能になり、その結果、予期せぬ事故の発生を防止することが可能になる。 In this embodiment of the third invention, when the robot 1 is in an emergency stop, the CPU 79 stops the motors 31, 46 and 47 while controlling the motor drivers 71 to 73 using the power supplied from the charging / discharging unit 80. Yes. That is, in this embodiment, when the robot 1 is in an emergency stop, the motors 31, 46, and 47 are stopped while being controlled using the power supplied from the charging / discharging unit 80. Therefore, in this embodiment, a motor 46 that rotates the first arm portion 23, a motor 47 that rotates the second arm portion 24, and a motor 31 that rotates the hand 13 are provided separately. Even so, as described above, the CPU 79 keeps the direction of the hand 13 when the emergency stop is applied, and moves the hand 13 linearly in the moving direction of the hand 13 when the emergency stop is applied. The motors 31, 46 and 47 can be stopped while controlling the motor drivers 71 to 73. Therefore, in the present embodiment, it is possible to prevent contact between the hand 13 and the chambers 5 to 10 and contact between the arm 14 and the chambers 5 to 10 at the time of an emergency stop. Occurrence can be prevented.
 第三の発明の本形態では、ロボット1の非常停止時に、CPU79は、ブレーキ41を作動させた後に、ブレーキ41よりも制動力の大きなブレーキ42を作動させて、モータ40を停止させている。そのため、本形態では、ブレーキ41、42によってモータ40を比較的短時間で停止させることが可能になる。したがって、本形態では、モータ40が制御不能となっているロボット1を非常停止させる場合であっても、本体部15の落下を防止することが可能になる。 In this embodiment of the third invention, when the robot 1 is in an emergency stop, the CPU 79 operates the brake 41 and then operates the brake 42 having a braking force larger than that of the brake 41 to stop the motor 40. Therefore, in this embodiment, the motor 40 can be stopped in a relatively short time by the brakes 41 and 42. Therefore, in this embodiment, it is possible to prevent the main body portion 15 from falling even when the robot 1 in which the motor 40 is uncontrollable is emergency-stopped.
 ここで、モータ40をより短時間で停止させるためには、非常停止時に、制動力の大きなブレーキ42をすぐに作動させることが好ましい。一方で、本形態では、非常停止時にブレーキ41、42を作動させた際、モータ40が必要以上に急停止しないように、CPU79は、非常停止がかかったときのモータ40の回転方向へモータ40がさらに回転するようにモータドライバ74を制御しており、充放電部80からモータドライバ74に電力が供給されている。非常停止時に、制動力の大きなブレーキ42をすぐに作動させると、モータ40が必要以上に急停止しやすくなるため、非常停止がかかったときのモータ40の回転方向へモータ40を回転させるべく、充放電部80からモータドライバ74に供給される電力が大きくなり、充放電部80に充電された電力がモータドライバ74によって短時間で消費されてしまうおそれがある。また、非常停止時に、充放電部80に充電された電力がモータドライバ74によって短時間で消費されてしまうと、CPU79が、充放電部80から供給される電力を用いてモータドライバ71~73を制御することができなくなり、第1アーム部23、第2アーム部24およびハンド13のそれぞれが勝手に回動して、予期せぬ事故を引き起こすおそれがある。 Here, in order to stop the motor 40 in a shorter time, it is preferable to immediately operate the brake 42 having a large braking force at the time of emergency stop. On the other hand, in this embodiment, when the brakes 41 and 42 are operated during an emergency stop, the CPU 79 moves the motor 40 in the rotation direction of the motor 40 when the emergency stop is applied so that the motor 40 does not stop more suddenly than necessary. The motor driver 74 is controlled so as to further rotate, and electric power is supplied from the charging / discharging unit 80 to the motor driver 74. If the brake 42 having a large braking force is actuated immediately at the time of emergency stop, the motor 40 is likely to stop suddenly more than necessary. Therefore, in order to rotate the motor 40 in the rotation direction of the motor 40 when the emergency stop is applied, The electric power supplied from the charging / discharging unit 80 to the motor driver 74 increases, and the electric power charged in the charging / discharging unit 80 may be consumed by the motor driver 74 in a short time. In addition, when the electric power charged in the charging / discharging unit 80 is consumed in a short time by the motor driver 74 during an emergency stop, the CPU 79 uses the electric power supplied from the charging / discharging unit 80 to drive the motor drivers 71-73. It becomes impossible to control, and each of the first arm part 23, the second arm part 24, and the hand 13 may rotate freely, causing an unexpected accident.
 これに対して、第三の発明の本形態では、ロボット1の非常停止時に、CPU79が、ブレーキ41を作動させてモータ40の回転速度を落とした後に、ブレーキ41よりも制動力の大きなブレーキ42を作動させて、モータ40を停止させているため、モータ40が急停止しにくくなり、その結果、非常停止時にモータドライバ74で消費される充放電部80の電力を低減することが可能になる。したがって、本形態では、ロボット1の非常停止時にモータ40が必要以上に急停止しないように、CPU79がモータドライバ74を制御している場合であっても、非常停止時に、CPU79が、充放電部80から供給される電力を用いてモータ31、46、47を制御して、非常停止がかかったときのハンド13の向きを保ちつつ、非常停止がかかったときのハンド13の移動方向へハンド13が直線的に移動させながら、モータ31、46、47を停止させることができる。 On the other hand, in the present embodiment of the third invention, when the robot 1 is in an emergency stop, the CPU 79 operates the brake 41 to reduce the rotational speed of the motor 40 and then the brake 42 having a braking force larger than that of the brake 41. Since the motor 40 is stopped by operating the motor 40, it is difficult for the motor 40 to stop suddenly. As a result, it is possible to reduce the power of the charging / discharging unit 80 consumed by the motor driver 74 at the time of emergency stop. . Therefore, in this embodiment, even when the CPU 79 controls the motor driver 74 so that the motor 40 does not stop more suddenly than necessary when the robot 1 is emergency stopped, The motors 31, 46, 47 are controlled using the electric power supplied from 80 to maintain the direction of the hand 13 when an emergency stop is applied, while moving the hand 13 in the moving direction of the hand 13 when the emergency stop is applied. , The motors 31, 46, 47 can be stopped while moving linearly.
 (第四の発明の本形態の主な効果)
 以上説明したように、本形態では、上下方向から見たときに回動中心C1を通過する仮想線上をハンド13の回動中心C2が直線的に移動するときに、円筒座標系でロボット1を制御し、上下方向から見たときに回動中心C1を通過する仮想線に沿わない位置で回動中心C2が直線的に移動するときに、直交座標系でロボット1を制御している。そのため、本形態では、上述のように、円筒座標系で制御される場合の回動中心C2の移動位置を円筒座標系の座標を用いて教示し、直交座標系で制御される場合の回動中心C2の移動位置を直交座標系の座標を用いて教示することができる。すなわち、本形態では、上下方向から見たときに、回動中心C1を通過する仮想線に沿わない位置で回動中心C2が直線的に移動する場合に、円筒座標系の座標を用いるのではなく、直交座標系の座標を用いて、回動中心C2の移動位置を教示することができる。したがって、本形態では、上下方向から見たときに回動中心C1を通過する仮想線に沿わない位置で回動中心C2が直線的に移動する場合であっても、回動中心C2の移動位置を容易に教示することが可能になる。
(Main effects of this embodiment of the fourth invention)
As described above, in this embodiment, when the rotation center C2 of the hand 13 moves linearly on an imaginary line passing through the rotation center C1 when viewed from above and below, the robot 1 is moved in the cylindrical coordinate system. The robot 1 is controlled in an orthogonal coordinate system when the rotation center C2 moves linearly at a position that does not follow the virtual line passing through the rotation center C1 when viewed from above and below. Therefore, in this embodiment, as described above, the movement position of the rotation center C2 when controlled by the cylindrical coordinate system is taught using the coordinates of the cylindrical coordinate system, and the rotation when controlled by the orthogonal coordinate system is performed. The moving position of the center C2 can be taught using the coordinates of the orthogonal coordinate system. That is, in this embodiment, when the rotation center C2 moves linearly at a position not along the virtual line passing through the rotation center C1 when viewed from the vertical direction, the coordinates of the cylindrical coordinate system are not used. Instead, the moving position of the rotation center C2 can be taught using the coordinates of the orthogonal coordinate system. Therefore, in this embodiment, even when the rotation center C2 moves linearly at a position not along the imaginary line passing through the rotation center C1 when viewed from the vertical direction, the movement position of the rotation center C2 Can be easily taught.
 特に第四の発明の本形態では、直交座標系を構成する一方の座標軸が左右方向と平行になり、他方の座標軸が前後方向と平行になるように直交座標系が規定されるとともに、上下方向から見たときに回動中心C1を通過する仮想線に沿わない位置で回動中心C2が直線的に移動する際に、回動中心C2は、左右方向におけるチャンバー7~10の中心を通過する前後方向に平行な仮想線上を直線的に移動する。そのため、本形態では、上下方向から見たときに回動中心C1を通過する仮想線に沿わない位置で回動中心C2が直線的に移動するときの回動中心C2の移動位置の教示を、直交座標系の座標を用いて、より容易に行うことが可能になる。 In particular, in this embodiment of the fourth invention, the orthogonal coordinate system is defined so that one coordinate axis constituting the orthogonal coordinate system is parallel to the left-right direction and the other coordinate axis is parallel to the front-rear direction, and the vertical direction When the rotation center C2 moves linearly at a position that does not follow the imaginary line passing through the rotation center C1 when viewed from above, the rotation center C2 passes through the centers of the chambers 7 to 10 in the left-right direction. Move linearly on an imaginary line parallel to the front-rear direction. Therefore, in this embodiment, teaching of the movement position of the rotation center C2 when the rotation center C2 moves linearly at a position not along the imaginary line passing through the rotation center C1 when viewed from the vertical direction, This can be performed more easily using the coordinates of the orthogonal coordinate system.
 また、第四の発明の本形態では、上下方向から見たときに回動中心C1を通過する仮想線上を回動中心C2が直線的に移動するときに、円筒座標系でロボット1を制御し、上下方向から見たときに回動中心C1を通過する仮想線に沿わない位置で回動中心C2が直線的に移動するときに、直交座標系でロボット1を制御しているため、ロボット1の制御が容易になる。 In the fourth aspect of the present invention, the robot 1 is controlled by the cylindrical coordinate system when the rotation center C2 moves linearly on an imaginary line passing through the rotation center C1 when viewed from above and below. When the rotation center C2 moves linearly at a position not along the imaginary line passing through the rotation center C1 when viewed from the vertical direction, the robot 1 is controlled by the orthogonal coordinate system. It becomes easy to control.
 (産業用ロボットの変形例1)
 図10は、第一の発明の他の実施の形態にかかる産業用ロボット1の概略構成を側面から説明するための図である。
(Modification 1 of industrial robot)
FIG. 10 is a view for explaining a schematic configuration of an industrial robot 1 according to another embodiment of the first invention from the side.
 上述した第一の発明の形態では、第1アーム部23の内部空間45にモータ46、47および減速機48、49が配置されている。具体的には、第1アーム部23の先端側における内部空間45にモータ46、47および減速機48、49が配置されており、減速機48、49は、関節部26の一部を構成している。この他にもたとえば、内部の圧力が大気圧となっている第2アーム部24の内部空間にモータ46、47および減速機48、49が配置されても良い。たとえば、第2アーム部24の基端側における内部空間にモータ46、47および減速機48、49が配置されても良い。この場合には、減速機48、49は、その軸中心と第1アーム部23に対する第2アーム部24の回動中心とが一致するように同軸上で重なるように配置され、関節部26の一部を構成する。なお、この場合には、第1アーム部23の内部空間45は真空となっていても良い。 In the first aspect of the invention described above, the motors 46 and 47 and the speed reducers 48 and 49 are arranged in the internal space 45 of the first arm portion 23. Specifically, motors 46 and 47 and speed reducers 48 and 49 are arranged in the internal space 45 on the distal end side of the first arm portion 23, and the speed reducers 48 and 49 constitute a part of the joint portion 26. ing. In addition to this, for example, motors 46 and 47 and speed reducers 48 and 49 may be arranged in the internal space of the second arm portion 24 in which the internal pressure is atmospheric pressure. For example, motors 46 and 47 and speed reducers 48 and 49 may be disposed in the internal space on the proximal end side of the second arm portion 24. In this case, the speed reducers 48 and 49 are arranged so as to be coaxially overlapped so that the axial center thereof coincides with the rotation center of the second arm portion 24 with respect to the first arm portion 23, and the joint portion 26. Part of it. In this case, the internal space 45 of the first arm portion 23 may be in a vacuum.
 また、図10に示すように、第2アーム部24の先端側における内部空間にモータ46、47および減速機48、49が配置されても良い。この場合には、減速機48と減速機49とは、その軸中心と第2アーム部24に対するハンド13の回動中心とが一致するように同軸上で重なるように配置され、関節部27の一部を構成する。この場合であっても、減速機48、49の軸方向である上下方向において、第2アーム部24の内部空間を大きくすることが可能になるため、内部の圧力が大気圧となっている第2アーム部24の内部空間の容積を大きくして、第2アーム部24の内部空間内の空気の量を増やすことが可能になる。したがって、第2アーム部24の内部空間に配置されるモータ46、47を効率的に冷却することが可能になる。また、この場合には、第2アーム部24に対するハンド13の回動中心上に2台の減速機48、49が配置されるため、関節部27の剛性を高めることが可能になる。 Further, as shown in FIG. 10, motors 46 and 47 and speed reducers 48 and 49 may be arranged in the internal space on the distal end side of the second arm portion 24. In this case, the speed reducer 48 and the speed reducer 49 are arranged so as to overlap on the same axis so that the center of the shaft and the center of rotation of the hand 13 with respect to the second arm portion 24 coincide with each other. Part of it. Even in this case, the internal space of the second arm portion 24 can be increased in the vertical direction, which is the axial direction of the speed reducers 48 and 49, and therefore the internal pressure is the atmospheric pressure. It becomes possible to increase the volume of the air in the internal space of the second arm portion 24 by increasing the volume of the internal space of the two arm portion 24. Therefore, the motors 46 and 47 disposed in the internal space of the second arm portion 24 can be efficiently cooled. In this case, since the two speed reducers 48 and 49 are arranged on the center of rotation of the hand 13 with respect to the second arm portion 24, the rigidity of the joint portion 27 can be increased.
 (産業用ロボットの変形例2)
 図11は、第一の発明の他の実施の形態にかかる産業用ロボット1の平面図である。
(Modification 2 of industrial robot)
FIG. 11 is a plan view of an industrial robot 1 according to another embodiment of the first invention.
 上述した第一の発明の形態では、アーム14は、1個の第1アーム部23と1個の第2アーム部24とによって構成されている。この他にもたとえば、図11に示すように、アーム14は、1個の第1アーム部23と、2個の第2アーム部24とによって構成されても良い。この場合には、第1アーム部23は、略V形状あるいは直線状に形成されており、その中心部が本体部15に回動可能に連結される基端部となっている。また、図11に示すように、第1アーム部23の2個の先端側のそれぞれに第2アーム部24が回動可能に連結されており、第1アーム部23の2個の先端側のそれぞれに関節部26が形成されている。 In the first aspect of the invention described above, the arm 14 is composed of one first arm portion 23 and one second arm portion 24. In addition to this, for example, as shown in FIG. 11, the arm 14 may be composed of one first arm portion 23 and two second arm portions 24. In this case, the 1st arm part 23 is formed in the substantially V shape or linear form, and the center part becomes a base end part connected with the main-body part 15 so that rotation is possible. In addition, as shown in FIG. 11, the second arm portion 24 is rotatably connected to each of the two distal ends of the first arm portion 23, and the two distal ends of the first arm portion 23 are connected to each other. A joint portion 26 is formed in each.
 この場合であっても、上述した形態と同様に、減速機48、49によって関節部26の一部が構成されており、第1アーム部23の2個の先端側のそれぞれにおいて、第1アーム部23の内部空間45に、モータ46、47および減速機48、49が配置されている。また、内部空間45は、大気圧となっている。なお、この場合には、ハンド13の基部20には、水平方向の一方側へ突出する2本のフォーク部21のみが取り付けられる。また、図11では、上述した形態の構成と同一の構成、または、上述した形態の構成に対応する構成については、同一の符号を付している。 Even in this case, a part of the joint portion 26 is configured by the speed reducers 48 and 49 in the same manner as described above, and the first arm is provided at each of the two distal ends of the first arm portion 23. Motors 46 and 47 and speed reducers 48 and 49 are arranged in the internal space 45 of the section 23. The internal space 45 is at atmospheric pressure. In this case, only two fork portions 21 protruding to one side in the horizontal direction are attached to the base portion 20 of the hand 13. In FIG. 11, the same reference numerals are given to the same configurations as the configurations of the above-described embodiments or configurations corresponding to the configurations of the above-described embodiments.
 (産業用ロボットの変形例3)
 図12は、第一の本発明の他の実施の形態にかかる産業用ロボット1の平面図である。
(Modification 3 of industrial robot)
FIG. 12 is a plan view of an industrial robot 1 according to another embodiment of the first invention.
 上述した第一の発明の形態では、ロボット1は、1本のアーム14を備えている。この他にもたとえば、図12に示すように、ロボット1は、本体部15にその基端側が回動可能に連結される2本のアーム14を備えていても良い。この場合であっても、上述した形態と同様に、減速機48、49によって関節部26の一部が構成されており、第1アーム部23の先端側において、第1アーム部23の内部空間45に、モータ46、47および減速機48、49が配置されている。また、内部空間45は、大気圧となっている。なお、この場合には、ハンド13の基部20には、水平方向の一方側へ突出する2本のフォーク部21のみが取り付けられる。また、図12では、上述した形態の構成と同一の構成、または、上述した形態の構成に対応する構成については、同一の符号を付している。 In the form of the first invention described above, the robot 1 includes one arm 14. In addition to this, as shown in FIG. 12, for example, the robot 1 may include two arms 14 whose base end side is rotatably connected to the main body 15. Even in this case, as in the above-described embodiment, a part of the joint portion 26 is configured by the speed reducers 48 and 49, and the internal space of the first arm portion 23 is formed on the distal end side of the first arm portion 23. 45, motors 46 and 47 and speed reducers 48 and 49 are arranged. The internal space 45 is at atmospheric pressure. In this case, only two fork portions 21 protruding to one side in the horizontal direction are attached to the base portion 20 of the hand 13. Moreover, in FIG. 12, the same code | symbol is attached | subjected about the structure same as the structure of the form mentioned above, or the structure corresponding to the structure of the form mentioned above.
 (産業用ロボットの変形例4)
 図13は、第一の発明の他の実施の形態にかかる産業用ロボット1の概略構成を側面から説明するための図である。
(Modification 4 of industrial robot)
FIG. 13 is a view for explaining a schematic configuration of an industrial robot 1 according to another embodiment of the first invention from the side.
 上述した第一の発明の形態では、アーム14は、第1アーム部23と第2アーム部24との2個のアーム部によって構成されている。この他にもたとえば、図13に示すように、アーム14は、第1アーム部23、第2アーム部24および第3アーム部75の3個のアーム部によって構成されても良い。この場合には、上述した形態と同様に、本体部15に第1アーム部23の基端側が回動可能に連結され、第1アーム部23の先端側に第2アーム部24の基端側が回動可能に連結されている。また、第2アーム部24の先端側に第3アーム部75の基端側が回動可能に連結され、第3アーム部75の先端側にハンド13が回動可能に連結されている。 In the first aspect of the invention described above, the arm 14 is composed of two arm parts, the first arm part 23 and the second arm part 24. In addition to this, for example, as shown in FIG. 13, the arm 14 may be configured by three arm portions of a first arm portion 23, a second arm portion 24, and a third arm portion 75. In this case, similarly to the above-described embodiment, the base end side of the first arm portion 23 is rotatably connected to the main body portion 15, and the base end side of the second arm portion 24 is connected to the distal end side of the first arm portion 23. It is connected so that it can rotate. Further, the proximal end side of the third arm portion 75 is rotatably connected to the distal end side of the second arm portion 24, and the hand 13 is rotatably connected to the distal end side of the third arm portion 75.
 また、上述した第一の発明の形態と同様に、第1アーム部23と第2アーム部24との連結部は、関節部26となっており、ロボット1は、第1アーム部23に対して第2アーム部24を回動させるための第1モータとしてのモータ46と、モータ46の回転を減速して第2アーム部24に伝達する第1減速機としての減速機48とを備えている。また、第2アーム部24と第3アーム部75との連結部は、関節部77となっており、第3アーム部75とハンド13との連結部は、関節部78となっている。ロボット1は、第2アーム部24に対して第3アーム部75を回動させるための第2モータとしてのモータ87と、第3アーム部75に対してハンド13を回動させるための第3モータとしてのモータ88と、モータ87の回転を減速して第3アーム部75に伝達する第2減速機としての減速機89と、モータ88の回転を減速してハンド13に伝達する第3減速機としての減速機90とを備えている。減速機89、90は、減速機48と同様に、その径方向の中心に貫通孔が形成された中空減速機である。なお、この場合、関節部26は、第1関節部であり、関節部77は、第2関節部であり、関節部78は、第3関節部である。 Similarly to the first aspect described above, the connecting portion between the first arm portion 23 and the second arm portion 24 is a joint portion 26, and the robot 1 is connected to the first arm portion 23. A motor 46 as a first motor for rotating the second arm portion 24 and a speed reducer 48 as a first speed reducer that reduces the rotation of the motor 46 and transmits it to the second arm portion 24. Yes. The connecting portion between the second arm portion 24 and the third arm portion 75 is a joint portion 77, and the connecting portion between the third arm portion 75 and the hand 13 is a joint portion 78. The robot 1 has a motor 87 as a second motor for rotating the third arm unit 75 with respect to the second arm unit 24 and a third for rotating the hand 13 with respect to the third arm unit 75. A motor 88 as a motor, a speed reducer 89 as a second speed reducer that decelerates the rotation of the motor 87 and transmits it to the third arm portion 75, and a third speed reduction that decelerates the rotation of the motor 88 and transmits it to the hand 13. And a reduction gear 90 as a machine. Like the speed reducer 48, the speed reducers 89 and 90 are hollow speed reducers in which a through hole is formed at the center in the radial direction. In this case, the joint part 26 is a first joint part, the joint part 77 is a second joint part, and the joint part 78 is a third joint part.
 減速機48、89、90は、たとえば、図13(A)に示すように、その軸中心と第1アーム部23に対する第2アーム部24の回動中心とが一致するように同軸上で重なるように配置されるとともに、関節部26の一部を構成している。また、モータ46、87、88および減速機48、89、90は、第1アーム部23の内部空間45に配置されている。内部空間45は、大気圧となっている。なお、この場合において、モータ46、87、88および減速機48、89、90は、中空状に形成され内部の圧力が大気圧となっている第2アーム部24の内部空間に配置されても良い。 For example, as shown in FIG. 13A, the speed reducers 48, 89, 90 overlap on the same axis so that the axis center thereof coincides with the rotation center of the second arm portion 24 relative to the first arm portion 23. And a part of the joint portion 26. The motors 46, 87, 88 and the speed reducers 48, 89, 90 are arranged in the internal space 45 of the first arm portion 23. The internal space 45 is at atmospheric pressure. In this case, the motors 46, 87, 88 and the speed reducers 48, 89, 90 may be disposed in the internal space of the second arm portion 24 that is hollow and has an internal pressure of atmospheric pressure. good.
 また、減速機48、89、90は、たとえば、その軸中心と第2アーム部24に対する第3アーム部75の回動中心とが一致するように同軸上で重なるように配置されるとともに、関節部77の一部を構成しても良い。この場合には、モータ46、87、88および減速機48、89、90は、中空状に形成され内部の圧力が大気圧となっている第2アーム部24の内部空間あるいは第3アーム部75の内部空間に配置される。また、減速機48、89、90は、たとえば、その軸中心と第3アーム部75に対するハンド13の回動中心とが一致するように同軸上で重なるように配置されるとともに、関節部78の一部を構成しても良い。この場合には、モータ46、87、88および減速機48、89、90は、中空状に形成され内部の圧力が大気圧となっている第3アーム部75の内部空間に配置される。 Further, the speed reducers 48, 89, 90 are arranged so as to be coaxially overlapped so that the axis center thereof and the rotation center of the third arm part 75 with respect to the second arm part 24 coincide with each other, and A part of the portion 77 may be configured. In this case, the motors 46, 87, 88 and the speed reducers 48, 89, 90 are hollow and the internal space of the second arm part 24 or the third arm part 75 in which the internal pressure is atmospheric pressure. Arranged in the interior space. The speed reducers 48, 89, and 90 are arranged so as to overlap on the same axis so that the center of the shaft and the center of rotation of the hand 13 with respect to the third arm portion 75 coincide with each other. A part may be constituted. In this case, the motors 46, 87, 88 and the speed reducers 48, 89, 90 are disposed in the internal space of the third arm portion 75 that is hollow and has an internal pressure of atmospheric pressure.
 また、たとえば、図13(B)に示すように、減速機48が、その軸中心と第1アーム部23に対する第2アーム部24の回動中心とが一致するように配置されるとともに関節部26の一部を構成し、かつ、減速機89、90が、その軸中心と第2アーム部24に対する第3アーム部75の回動中心とが一致するように同軸上で重なるように配置されるとともに、関節部77の一部を構成しても良い。この場合には、モータ46および減速機48は、内部の圧力が大気圧となっている内部空間45に配置され、モータ87、88および減速機89、90は、中空状に形成され内部の圧力が大気圧となっている第2アーム部24の内部空間に配置される。なお、この場合において、モータ46および減速機48は、内部の圧力が大気圧となっている第2アーム部24の内部空間(具体的には、第2アーム部24の基端側の内部空間)に配置されても良い。また、この場合において、モータ87、88および減速機89、90は、中空状に形成され内部の圧力が大気圧となっている第3アーム部75の内部空間に配置されても良い。 Further, for example, as shown in FIG. 13B, the speed reducer 48 is disposed so that the axis center thereof coincides with the rotation center of the second arm portion 24 with respect to the first arm portion 23 and the joint portion. 26, and the speed reducers 89 and 90 are arranged so as to overlap on the same axis so that the axial center thereof coincides with the rotation center of the third arm portion 75 with respect to the second arm portion 24. In addition, a part of the joint portion 77 may be configured. In this case, the motor 46 and the speed reducer 48 are disposed in the internal space 45 in which the internal pressure is atmospheric pressure, and the motors 87 and 88 and the speed reducers 89 and 90 are formed in a hollow shape and have an internal pressure. Is disposed in the internal space of the second arm portion 24 that is at atmospheric pressure. In this case, the motor 46 and the speed reducer 48 have the internal space of the second arm portion 24 in which the internal pressure is atmospheric pressure (specifically, the internal space on the base end side of the second arm portion 24). ) May be arranged. In this case, the motors 87 and 88 and the speed reducers 89 and 90 may be disposed in the internal space of the third arm portion 75 that is formed in a hollow shape and has an internal pressure of atmospheric pressure.
 同様に、減速機48、89、90の中から選択される任意の2個の減速機が、その軸中心と、第1アーム部23に対する第2アーム部24の回動中心、第2アーム部24に対する第3アーム部75の回動中心、または、第3アーム部75に対するハンド13の回動中心とが一致するように同軸上で重なるように配置されるとともに、関節部26、関節部77または関節部78の一部を構成しても良い。この場合には、内部の圧力が大気圧となっている第1アーム部23、第2アーム部24または第3アーム部75の内部空間に、同軸上で重なるように配置される2個の減速機と、2個の減速機に連結されるモータ46、87、88のうちの2個のモータとが配置される。また、内部の圧力が大気圧となっている第1アーム部23、第2アーム部24または第3アーム部75の内部空間に、残りの1個の減速機と、この減速機に連結されるモータとが配置される。 Similarly, any two speed reducers selected from the speed reducers 48, 89, and 90 include the axis center, the rotation center of the second arm portion 24 with respect to the first arm portion 23, and the second arm portion. 24, the rotation center of the third arm part 75 with respect to 24, or the rotation center of the hand 13 with respect to the third arm part 75 is arranged so as to overlap on the same axis, and the joint part 26 and the joint part 77 Alternatively, a part of the joint portion 78 may be configured. In this case, two reduction gears arranged so as to be coaxially overlapped with the internal space of the first arm part 23, the second arm part 24 or the third arm part 75 in which the internal pressure is atmospheric pressure. And two of the motors 46, 87, 88 connected to the two speed reducers are arranged. In addition, the remaining one reduction gear and the reduction gear are connected to the internal space of the first arm portion 23, the second arm portion 24, or the third arm portion 75 where the internal pressure is atmospheric pressure. And a motor.
 このように構成される場合であっても、上述した形態と同様の効果を得ることができる。 Even in such a case, the same effect as the above-described embodiment can be obtained.
 また、アーム14が3個のアーム部によって構成される場合には、ロボット1は、アーム14を伸縮させるための第1モータ(すなわち、第2アーム部24と第3アーム部75とを連動させて回動させるための第1モータ)と、第3アーム部75に対してハンド13を回動させるための第2モータと、第1モータの回転を減速してアーム14に伝達する第1減速機と、第2モータの回転を減速してハンド13に伝達する第2減速機とを備えていても良い。 Further, when the arm 14 is configured by three arm portions, the robot 1 causes the first motor (that is, the second arm portion 24 and the third arm portion 75) to extend and contract the arm 14 in an interlocked manner. A first motor for rotating the first hand), a second motor for rotating the hand 13 with respect to the third arm portion 75, and a first speed reducing the rotation of the first motor and transmitting it to the arm 14. And a second speed reducer that decelerates the rotation of the second motor and transmits it to the hand 13.
 この場合には、第1減速機および第2減速機は、その径方向の中心に貫通孔が形成される中空減速機であり、第1減速機および第2減速機は、その軸中心と、第1アーム部23に対する第2アーム部24の回動中心、第2アーム部24に対する第3アーム部75の回動中心、または、第3アーム部75に対するハンド13の回動中心とが一致するように同軸上で重なるように配置されるとともに、関節部26、関節部77または関節部78の一部を構成している。また、この場合には、中空状に形成され内部の圧力が大気圧となっている第1アーム部23、第2アーム部24または第3アーム部75の内部空間に、第1モータと第2モータと第1減速機と第2減速機とが配置されている。この場合であっても、上述した形態と同様の効果を得ることができる。 In this case, the first reducer and the second reducer are hollow reducers in which a through hole is formed in the center in the radial direction, and the first reducer and the second reducer The rotation center of the second arm portion 24 with respect to the first arm portion 23, the rotation center of the third arm portion 75 with respect to the second arm portion 24, or the rotation center of the hand 13 with respect to the third arm portion 75 coincides. As described above, the joint portion 26, the joint portion 77, or a part of the joint portion 78 is configured so as to overlap on the same axis. Further, in this case, the first motor and the second motor are formed in the internal space of the first arm part 23, the second arm part 24 or the third arm part 75 which is formed in a hollow shape and has an internal pressure of atmospheric pressure. A motor, a first speed reducer, and a second speed reducer are arranged. Even in this case, the same effect as that of the above-described embodiment can be obtained.
 (産業用ロボットの変形例5)
 上述した第一の発明の形態では、アーム14は、第1アーム部23と第2アーム部24との2個のアーム部によって構成されているが、アームは、4個のアーム部によって構成されても良い。この場合のアームは、本体部15にその基端側が回動可能に連結される第1アーム部と、第1アーム部の先端側にその基端側が回動可能に連結される第2アーム部と、第2アーム部の先端側にその基端側が回動可能に連結される第3アーム部と、第3アーム部の先端側にその基端側が回動可能に連結される第4アーム部とから構成されている。ハンド13は、第4アーム部の先端側に回動可能に連結されている。ロボット1は、第1アーム部に対して第2アーム部を回動させるための第1モータと、第2アーム部に対して第3アーム部を回動させるための第2モータと、第3アーム部に対して第4アーム部を回動させるための第3モータと、第4アーム部に対してハンドを回動させるための第4モータと、第1モータの回転を減速して第2アーム部に伝達する第1減速機と、第2モータの回転を減速して第3アーム部に伝達する第2減速機と、第3モータの回転を減速して第4アーム部に伝達する第3減速機と、第4モータの回転を減速してハンドに伝達する第4減速機とを備えている。
(Variation 5 of industrial robot)
In the first aspect of the invention described above, the arm 14 is composed of two arm portions, the first arm portion 23 and the second arm portion 24, but the arm is composed of four arm portions. May be. In this case, the arm has a first arm portion whose base end side is rotatably connected to the main body portion 15 and a second arm portion whose base end side is rotatably connected to the distal end side of the first arm portion. And a third arm portion whose base end side is rotatably connected to the tip end side of the second arm portion, and a fourth arm portion whose base end side is rotatably connected to the tip end side of the third arm portion. It consists of and. The hand 13 is rotatably connected to the distal end side of the fourth arm portion. The robot 1 includes a first motor for rotating the second arm portion relative to the first arm portion, a second motor for rotating the third arm portion relative to the second arm portion, and a third A third motor for rotating the fourth arm relative to the arm, a fourth motor for rotating the hand relative to the fourth arm, and a second motor that decelerates the rotation of the first motor. A first speed reducer that transmits to the arm part, a second speed reducer that reduces the rotation of the second motor and transmits it to the third arm part, and a second speed reducer that transmits the rotation of the third motor to the fourth arm part. 3 reduction gears, and the 4th reduction gear which decelerates rotation of the 4th motor and transmits to a hand.
 また、この場合には、第1減速機、第2減速機、第3減速機および第4減速機は、減速機48と同様に、その径方向の中心に貫通孔が形成される中空減速機である。第1減速機、第2減速機、第3減速機および第4減速機のうちの少なくとも2個の減速機は、その軸中心と、第1アーム部に対する第2アーム部の回動中心、第2アーム部に対する第3アーム部の回動中心、第3アーム部に対する第4アーム部の回動中心、または、第4アーム部に対するハンドの回動中心とが一致するように同軸上で重なるように配置されるとともに、第1アーム部と第2アーム部とを繋ぐ第1関節部、第2アーム部と第3アーム部とを繋ぐ第2関節部、第3アーム部と第4アーム部とを繋ぐ第3関節部、または、第4アーム部とハンドとを繋ぐ第4関節部の少なくとも一部を構成している。また、中空状に形成され内部の圧力が大気圧となっている第1アーム部、第2アーム部、第3アーム部または第4アーム部の内部空間に、同軸上で重なるように配置される少なくとも2個の減速機と、この少なくとも2個の減速機に連結される第1モータ、第2モータ、第3モータおよび第4モータのうちの少なくとも2個のモータとが配置されている。 Further, in this case, the first reducer, the second reducer, the third reducer, and the fourth reducer, like the reducer 48, are hollow reducers in which a through hole is formed at the center in the radial direction. It is. At least two of the first reducer, the second reducer, the third reducer, and the fourth reducer have an axis center, a rotation center of the second arm portion with respect to the first arm portion, The rotation center of the third arm portion with respect to the second arm portion, the rotation center of the fourth arm portion with respect to the third arm portion, or the rotation center of the hand with respect to the fourth arm portion so as to coincide with each other. And a first joint part connecting the first arm part and the second arm part, a second joint part connecting the second arm part and the third arm part, a third arm part and a fourth arm part. At least a part of the third joint part connecting the four or the fourth joint part connecting the fourth arm part and the hand. Moreover, it arrange | positions so that it may overlap coaxially in the internal space of the 1st arm part, the 2nd arm part, the 3rd arm part, or the 4th arm part which is formed in hollow shape and the internal pressure is atmospheric pressure. At least two reduction gears and at least two of the first motor, the second motor, the third motor, and the fourth motor connected to the at least two reduction gears are arranged.
 この場合であっても、上述した形態と同様の効果を得ることができる。なお、5個以上のアーム部によってアームを構成することも可能である。 Even in this case, the same effect as the above-described embodiment can be obtained. It is also possible to configure an arm with five or more arm portions.
 (他の実施の形態)
 上述した形態は、本発明(第一の発明から第四の発明)の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形実施が可能である。
(Other embodiments)
The above-described embodiment is an example of a preferred embodiment of the present invention (the first to fourth inventions), but is not limited to this, and various modifications can be made without departing from the scope of the present invention. It is.
 上述した第一の発明の形態では、ロボット1によって搬送される搬送対象物は有機ELディスプレイ用の基板2であるが、ロボット1によって搬送される搬送対象物は、液晶ディスプレイ用のガラス基板であっても良いし、半導体ウエハ等であっても良い。また、上述した形態では、ロボット1は、搬送対象物を搬送するためのロボットであるが、ロボット1は、溶接ロボット等の他の用途で使用されるロボットであっても良い。 In the first aspect of the invention described above, the object to be transported by the robot 1 is the substrate 2 for organic EL display, but the object to be transported by the robot 1 is a glass substrate for liquid crystal display. It may be a semiconductor wafer or the like. Moreover, in the form mentioned above, although the robot 1 is a robot for conveying a conveyance target object, the robot 1 may be a robot used for other uses, such as a welding robot.
 上述した第二の発明の形態では、仮現在位置設定工程において、回動中心C2の仮の現在位置の座標を教示操作端末19に入力して、回動中心C2の仮の現在位置の座標を設定している。この他にもたとえば、ロボット1を操作するための操作盤に回動中心C2の仮の現在位置の座標を入力して、回動中心C2の仮の現在位置の座標を設定しても良い。この場合の操作盤は、たとえば、オペレータが配置されるロボット1の操作室内に設置されている。 In the second aspect of the invention described above, in the temporary current position setting step, the coordinates of the temporary current position of the rotation center C2 are input to the teaching operation terminal 19, and the coordinates of the temporary current position of the rotation center C2 are input. It is set. In addition, for example, the coordinates of the temporary current position of the rotation center C2 may be set by inputting the coordinates of the temporary current position of the rotation center C2 to the operation panel for operating the robot 1. The operation panel in this case is installed, for example, in the operation room of the robot 1 where the operator is arranged.
 上述した第二の発明の形態では、動作工程において、教示操作端末19の操作ボタン71を用いたジョグ操作によってロボット1を動作させている。この他にもたとえば、動作工程において、ロボット1の操作盤に設けられた操作ボタン等を用いたジョグ操作によってロボット1を動作させても良い。また、上述した形態では、動作工程において、ジョグ操作によってロボット1を動作させているが、動作工程において、ロボット1を連続で動作させる自動操作によってロボット1を動作させても良い。 In the second aspect of the invention described above, the robot 1 is operated by a jog operation using the operation button 71 of the teaching operation terminal 19 in the operation process. In addition, for example, in the operation process, the robot 1 may be operated by a jog operation using an operation button or the like provided on the operation panel of the robot 1. In the above-described embodiment, the robot 1 is operated by a jog operation in the operation process. However, the robot 1 may be operated by an automatic operation that continuously operates the robot 1 in the operation process.
 上述した第二の発明の形態では、教示操作端末19は、操作ボタン71を備えている。この他にもたとえば、教示操作端末19は、操作ボタン71に代えて操作レバーを備えていても良い。この場合には、たとえば、動作工程において、教示操作端末19の操作レバーを用いたジョグ操作によってロボット1を動作させる。この場合の操作レバーは、動作工程でロボット1を動作させるための操作部材である。 In the above-described form of the second invention, the teaching operation terminal 19 includes the operation button 71. In addition, for example, the teaching operation terminal 19 may include an operation lever instead of the operation button 71. In this case, for example, in the operation process, the robot 1 is operated by a jog operation using the operation lever of the teaching operation terminal 19. The operation lever in this case is an operation member for operating the robot 1 in the operation process.
 上述した第二の発明の形態では、アーム14は、第1アーム部23と第2アーム部24との2個のアーム部によって構成されている。この他にたとえば、アーム14は、3個以上のアーム部によって構成されても良い。この場合には、たとえば、3個以上のアーム部のそれぞれを回動させるためのアーム部と同数のモータが設けられる。また、この場合には、複数のアーム部を回動させるためのモータの数はアーム部の数より少なくても良い。 In the above-described form of the second invention, the arm 14 is composed of two arm parts, a first arm part 23 and a second arm part 24. In addition, for example, the arm 14 may be configured by three or more arm portions. In this case, for example, the same number of motors as the arm portions for rotating each of the three or more arm portions are provided. In this case, the number of motors for rotating the plurality of arm portions may be smaller than the number of arm portions.
 上述した形態(第一から第四の発明の形態)では、アーム14の先端側に1個のハンド13が連結されている。この他にもたとえば、アーム14の先端側に2個のハンドが連結されても良い。この場合には、2個のハンドのそれぞれを回動させるための2個のモータが設けられても良いし、2個のハンドを一緒に回動させる1個のモータが設けられても良い。また、アーム14の先端側に3個以上のハンドが連結されても良い。 In the above-described form (the form of the first to fourth inventions), one hand 13 is connected to the tip side of the arm 14. In addition, for example, two hands may be connected to the distal end side of the arm 14. In this case, two motors for rotating each of the two hands may be provided, or one motor for rotating the two hands together may be provided. Further, three or more hands may be connected to the distal end side of the arm 14.
 上述した形態(第一から第四の発明の形態)では、ロボット1の一部は、真空中に配置されている。この他にもたとえば、ロボット1の全体が真空中に配置されても良いし、ロボット1の全体が大気中に配置されても良い。また、上述した形態では、ロボット1によって搬送される搬送対象物は有機ELディスプレイ用の基板2であるが、ロボット1によって搬送される搬送対象物は、液晶ディスプレイ用のガラス基板であっても良いし、半導体ウエハ等であっても良い。また、上述した形態では、ロボット1は、水平多関節ロボットであるが、本発明の構成が適用される産業用ロボットは、複数のアーム部からなるアームを有する溶接ロボット等の垂直多関節ロボットであっても良い。また、上述した形態では、アーム14の先端側にハンド13が回動可能に連結されているが、アーム14の先端側にエンドエフェクタ等のハンド13以外の構成が連結されても良い。 In the above-described forms (first to fourth aspects of the invention), a part of the robot 1 is disposed in a vacuum. In addition, for example, the entire robot 1 may be disposed in a vacuum, or the entire robot 1 may be disposed in the atmosphere. Further, in the above-described embodiment, the transport object to be transported by the robot 1 is the organic EL display substrate 2, but the transport object to be transported by the robot 1 may be a glass substrate for a liquid crystal display. However, it may be a semiconductor wafer or the like. In the embodiment described above, the robot 1 is a horizontal articulated robot. However, an industrial robot to which the configuration of the present invention is applied is a vertical articulated robot such as a welding robot having an arm composed of a plurality of arm portions. There may be. In the above-described embodiment, the hand 13 is rotatably connected to the distal end side of the arm 14, but a configuration other than the hand 13 such as an end effector may be connected to the distal end side of the arm 14.
 上述した第三の発明の形態では、昇降機構16は、ブレーキ41、42の2個のブレーキを備えており、ロボット1の非常停止時に、ブレーキ41を作動させた後、ブレーキ42を作動させてモータ40を停止させている。この他にもたとえば、充放電部80に蓄えられる電荷量が多い場合には、昇降機構16は、制動力の大きなブレーキ42のみを備えていても良い。この場合には、ロボット1の非常停止時に、ブレーキ42をすぐに作動させてモータ40を停止させれば良い。 In the above-described third aspect of the invention, the elevating mechanism 16 includes two brakes 41 and 42. When the robot 1 is in an emergency stop, the brake 41 is operated and then the brake 42 is operated. The motor 40 is stopped. In addition to this, for example, when the charge amount stored in the charge / discharge unit 80 is large, the elevating mechanism 16 may include only the brake 42 having a large braking force. In this case, when the robot 1 is in an emergency stop, the brake 42 may be immediately operated to stop the motor 40.
 上述した第三の発明の形態(第四の発明の形態も同様)では、アーム14は、第1アーム部23と第2アーム部24との2個のアーム部によって構成されている。この他にもたとえば、アーム14は、3個以上のアーム部によって構成されても良い。この場合には、たとえば、3個以上のアーム部を回動させるためのモータの数は、アーム部の数と同じである。すなわち、この場合には、たとえば、3個以上のアーム部のそれぞれを回動させるためのアーム部と同数のモータが設けられる。また、この場合には、3個以上のアーム部を回動させるためのモータが2個以上設けられているのであれば、モータの数はアーム部の数より少なくても良い。すなわち、3個以上のアーム部を回動させるためのモータが2個以上設けられているのであれば、2個または3個のアーム部を一緒に回動させるためのモータが設けられていても良い。 In the above-described form of the third invention (the same applies to the form of the fourth invention), the arm 14 is composed of two arm parts, a first arm part 23 and a second arm part 24. In addition to this, for example, the arm 14 may be constituted by three or more arm portions. In this case, for example, the number of motors for rotating three or more arm portions is the same as the number of arm portions. That is, in this case, for example, the same number of motors as the arm portions for rotating each of the three or more arm portions are provided. In this case, the number of motors may be smaller than the number of arm portions as long as two or more motors for rotating three or more arm portions are provided. That is, if two or more motors for rotating three or more arm portions are provided, a motor for rotating two or three arm portions together may be provided. good.
 上述した第三の発明の形態では、ロボット1は、昇降機構16を備えているが、ロボット1は、昇降機構16を備えていなくても良い。この場合であっても、ロボット1の非常停止時に、CPU79は、充放電部80から供給される電力を用いてモータドライバ71~73を制御しながら、モータ31、46、47を停止させる。 In the third aspect of the invention described above, the robot 1 includes the elevating mechanism 16, but the robot 1 may not include the elevating mechanism 16. Even in this case, when the robot 1 is in an emergency stop, the CPU 79 stops the motors 31, 46 and 47 while controlling the motor drivers 71 to 73 using the power supplied from the charging / discharging unit 80.
 1 ロボット(産業用ロボット)
 2 基板(ガラス基板、搬送対象物)
 5~10 チャンバー(プロセスチャンバー、収容部)
 13 ハンド
 14 アーム
 15 本体部
 19 教示操作端末(仮現在位置設定手段)
 23 第1アーム部(アーム部)
 24 第2アーム部(アーム部)
 26 関節部(第1関節部)
 27 関節部(第2関節部)
 28 カウンターウエイト
 31 モータ(アーム用モータ、第1モータ)
 40 モータ(昇降用モータ)
 41 ブレーキ(第1ブレーキ)
 42 ブレーキ(第2ブレーキ)
 45 内部空間
 46 モータ(第1モータ、アーム用モータ、第2モータ)
 47 モータ(第2モータ、ハンド用モータ)
 48 減速機(第1減速機)
 49 減速機(第2減速機)
 70 制御部
 71 モータドライバ(第1モータドライバ)
 72 モータドライバ(第2モータドライバ)
 73 モータドライバ(ハンド用モータドライバ)
 74 モータドライバ(昇降用モータドライバ)
 75 第3アーム部
 76 操作ボタン(操作部材)
 77 関節部(第2関節部)
 78 関節部(第3関節部)
 79 CPU(制御実行部)
 80 充放電部
 81 電源
 87 モータ(第2モータ)
 88 モータ(第3モータ)
 89 減速機(第2減速機)
 90 減速機(第3減速機)
 C2 回動中心(アームに対するハンドの回動中心)
 Z 上下方向
 C1 回動中心(本体部に対するアームの回動中心)
 C2 回動中心(第2アーム部に対するハンドの回動中心)
 Z 上下方向
1 Robot (industrial robot)
2 Substrate (glass substrate, transport object)
5 ~ 10 chamber (process chamber, housing part)
13 Hand 14 Arm 15 Body 19 Teaching operation terminal (temporary current position setting means)
23 First arm part (arm part)
24 Second arm part (arm part)
26 Joint (first joint)
27 Joint (second joint)
28 Counterweight 31 Motor (Motor for motor, 1st motor)
40 Motor (lifting motor)
41 Brake (first brake)
42 Brake (second brake)
45 Internal space 46 Motor (first motor, arm motor, second motor)
47 Motor (second motor, hand motor)
48 Reducer (first reducer)
49 Reducer (second reducer)
70 Control unit 71 Motor driver (first motor driver)
72 Motor driver (second motor driver)
73 Motor driver (hand motor driver)
74 Motor driver (lifting motor driver)
75 Third arm portion 76 Operation button (operation member)
77 Joint (second joint)
78 Joint (third joint)
79 CPU (control execution unit)
80 Charging / Discharging Unit 81 Power Supply 87 Motor (Second Motor)
88 Motor (third motor)
89 Reducer (second reducer)
90 Reducer (third reducer)
C2 Center of rotation (Center of hand rotation relative to arm)
Z Vertical direction C1 Center of rotation (Center of arm rotation relative to main body)
C2 center of rotation (center of rotation of the hand relative to the second arm)
Z Vertical direction

Claims (23)

  1.  本体部と、前記本体部にその基端側が回動可能に連結される第1アーム部と前記第1アーム部の先端側にその基端側が回動可能に連結される第2アーム部とを有するアームと、
    前記第2アーム部の先端側に回動可能に連結されるハンドと、前記第1アーム部に対して前記第2アーム部を回動させるための第1モータと、前記第2アーム部に対して前記ハンドを回動させるための第2モータと、前記第1モータの回転を減速して前記第2アーム部に伝達する第1減速機と、前記第2モータの回転を減速して前記ハンドに伝達する第2減速機とを備え、
     前記ハンドと前記アームとは、真空中に配置され、
     前記第1減速機と前記第2減速機とは、その径方向の中心に貫通孔が形成される中空減速機であり、
     前記第1減速機と前記第2減速機とは、前記第1アーム部に対する前記第2アーム部の回動中心または前記第2アーム部に対する前記ハンドの回動中心と、前記第1減速機の軸中心および前記第2減速機の軸中心とが一致するように同軸上で重なるように配置されるとともに、前記第1アーム部と前記第2アーム部とを繋ぐ第1関節部または前記第2アーム部と前記ハンドとを繋ぐ第2関節部の少なくとも一部を構成し、
     中空状に形成される前記第1アーム部または前記第2アーム部の内部空間に、前記第1モータと前記第2モータと前記第1減速機と前記第2減速機とが配置され、
     前記内部空間は、大気圧となっていることを特徴とする産業用ロボット。
    A main body portion, a first arm portion whose base end side is rotatably connected to the main body portion, and a second arm portion whose base end side is rotatably connected to the distal end side of the first arm portion. An arm having,
    A hand rotatably connected to a distal end side of the second arm part, a first motor for rotating the second arm part relative to the first arm part, and a second arm part A second motor for rotating the hand, a first speed reducer that decelerates the rotation of the first motor and transmits it to the second arm portion, and a speed of the second motor that decelerates the rotation of the hand. A second reducer that transmits to
    The hand and the arm are arranged in a vacuum,
    The first reducer and the second reducer are hollow reducers in which a through hole is formed in the center in the radial direction,
    The first speed reducer and the second speed reducer are a rotation center of the second arm part with respect to the first arm part or a rotation center of the hand with respect to the second arm part, and The first joint portion or the second joint portion is disposed so as to overlap on the same axis so that the shaft center and the shaft center of the second reduction gear coincide with each other, and connects the first arm portion and the second arm portion. Constituting at least a part of the second joint part connecting the arm part and the hand;
    The first motor, the second motor, the first speed reducer, and the second speed reducer are arranged in an internal space of the first arm part or the second arm part formed in a hollow shape,
    The industrial robot according to claim 1, wherein the internal space is at atmospheric pressure.
  2.  前記第1アーム部および前記ハンドは、前記ハンドに搭載される搬送対象物が収容される収容部からの前記搬送対象物の搬出時および前記収容部への前記搬送対象物の搬入時に、前記本体部に対する前記第1アーム部の回動角度と、前記第2アーム部に対する前記ハンドの回動角度とが等しく、かつ、前記本体部に対する前記第1アーム部の回動方向と、
    前記第2アーム部に対する前記ハンドの回動方向とが逆方向となるように回動することを特徴とする請求項1記載の産業用ロボット。
    The first arm unit and the hand are configured to move the main body when unloading the transport target from a storage unit that stores a transport target mounted on the hand and when loading the transport target into the storage unit. The rotation angle of the first arm part with respect to the part is equal to the rotation angle of the hand with respect to the second arm part, and the rotation direction of the first arm part with respect to the main body part,
    The industrial robot according to claim 1, wherein the industrial robot is rotated so that a rotation direction of the hand with respect to the second arm portion is opposite.
  3.  前記第1アーム部は、前記本体部から水平方向の一方側へ伸びるように前記本体部に取り付けられ、
     前記第1アーム部には、前記本体部から水平方向の他方側へ伸びるカウンターウエイトが取り付けられていることを特徴とする請求項1または2記載の産業用ロボット。
    The first arm portion is attached to the main body portion so as to extend from the main body portion to one side in a horizontal direction,
    The industrial robot according to claim 1 or 2, wherein a counterweight extending from the main body portion to the other side in the horizontal direction is attached to the first arm portion.
  4.  本体部と、前記本体部にその基端側が回動可能に連結される第1アーム部と前記第1アーム部の先端側にその基端側が回動可能に連結される第2アーム部と前記第2アーム部の先端側にその基端側が回動可能に連結される第3アーム部とを有するアームと、前記第3アーム部の先端側に回動可能に連結されるハンドと、前記第1アーム部に対して前記第2アーム部を回動させるための第1モータと、前記第2アーム部に対して前記第3アーム部を回動させるための第2モータと、前記第3アーム部に対して前記ハンドを回動させるための第3モータと、前記第1モータの回転を減速して前記第2アーム部に伝達する第1減速機と、前記第2モータの回転を減速して前記第3アーム部に伝達する第2減速機と、前記第3モータの回転を減速して前記ハンドに伝達する第3減速機とを備え、
     前記ハンドと前記アームとは、真空中に配置され、
     前記第1減速機、前記第2減速機および前記第3減速機は、その径方向の中心に貫通孔が形成される中空減速機であり、
     前記第1減速機、前記第2減速機および前記第3減速機のうちの少なくとも2個の減速機は、その軸中心と、前記第1アーム部に対する前記第2アーム部の回動中心、前記第2アーム部に対する前記第3アーム部の回動中心、または、前記第3アーム部に対する前記ハンドの回動中心とが一致するように同軸上で重なるように配置されるとともに、前記第1アーム部と前記第2アーム部とを繋ぐ第1関節部、前記第2アーム部と前記第3アーム部とを繋ぐ第2関節部、または、前記第3アーム部と前記ハンドとを繋ぐ第3関節部の少なくとも一部を構成し、
     中空状に形成される前記第1アーム部、前記第2アーム部または前記第3アーム部の内部空間には、同軸上で重なるように配置される少なくとも2個の前記減速機と、この少なくとも2個の前記減速機に連結される前記第1モータ、前記第2モータおよび前記第3モータのうちの少なくとも2個のモータとが配置され、
     前記内部空間は、大気圧となっていることを特徴とする産業用ロボット。
    A main body portion, a first arm portion whose base end side is rotatably connected to the main body portion, a second arm portion whose base end side is rotatably connected to a distal end side of the first arm portion, and An arm having a third arm portion rotatably connected to a distal end side of the second arm portion, a hand rotatably connected to a distal end side of the third arm portion, A first motor for rotating the second arm portion relative to one arm portion; a second motor for rotating the third arm portion relative to the second arm portion; and the third arm. A third motor for rotating the hand relative to the part, a first speed reducer for reducing the rotation of the first motor and transmitting it to the second arm part, and for reducing the rotation of the second motor. The second speed reducer that transmits to the third arm and the third motor to decelerate the rotation. And a third reduction gear for transmitting the serial hand,
    The hand and the arm are arranged in a vacuum,
    The first speed reducer, the second speed reducer, and the third speed reducer are hollow speed reducers in which a through hole is formed at the center in the radial direction,
    At least two of the first speed reducer, the second speed reducer, and the third speed reducer have an axis center, a rotation center of the second arm portion with respect to the first arm portion, The first arm is arranged so as to overlap on the same axis so that the rotation center of the third arm portion with respect to the second arm portion or the rotation center of the hand with respect to the third arm portion coincides. A first joint that connects the second arm and the second arm, a second joint that connects the second arm and the third arm, or a third joint that connects the third arm and the hand. At least part of the part,
    At least two speed reducers arranged coaxially in the internal space of the first arm portion, the second arm portion, or the third arm portion formed in a hollow shape, and at least two of the speed reducers And at least two of the first motor, the second motor, and the third motor connected to the plurality of reduction gears,
    The industrial robot according to claim 1, wherein the internal space is at atmospheric pressure.
  5.  本体部と、前記本体部にその基端側が回動可能に連結される第1アーム部と前記第1アーム部の先端側にその基端側が回動可能に連結される第2アーム部と前記第2アーム部の先端側にその基端側が回動可能に連結される第3アーム部とを有するアームと、前記第3アーム部の先端側に回動可能に連結されるハンドと、前記アームを伸縮させるための第1モータと、前記第3アーム部に対して前記ハンドを回動させるための第2モータと、前記第1モータの回転を減速して前記アームに伝達する第1減速機と、前記第2モータの回転を減速して前記ハンドに伝達する第2減速機とを備え、
     前記ハンドと前記アームとは、真空中に配置され、
     前記第1減速機および前記第2減速機は、その径方向の中心に貫通孔が形成される中空減速機であり、
     前記第1減速機および前記第2減速機は、その軸中心と、前記第1アーム部に対する前記第2アーム部の回動中心、前記第2アーム部に対する前記第3アーム部の回動中心、または、前記第3アーム部に対する前記ハンドの回動中心とが一致するように同軸上で重なるように配置されるとともに、前記第1アーム部と前記第2アーム部とを繋ぐ第1関節部、前記第2アーム部と前記第3アーム部とを繋ぐ第2関節部、または、前記第3アーム部と前記ハンドとを繋ぐ第3関節部の少なくとも一部を構成し、
     中空状に形成される前記第1アーム部、前記第2アーム部または前記第3アーム部の内部空間に、前記第1モータと前記第2モータと前記第1減速機と前記第2減速機とが配置され、
     前記内部空間は、大気圧となっていることを特徴とする産業用ロボット。
    A main body portion, a first arm portion whose base end side is rotatably connected to the main body portion, a second arm portion whose base end side is rotatably connected to a distal end side of the first arm portion, and An arm having a third arm portion pivotally connected to the distal end side of the second arm portion; a hand pivotally connected to the distal end side of the third arm portion; and the arm A first motor for expanding and contracting, a second motor for rotating the hand with respect to the third arm portion, and a first speed reducer for reducing the rotation of the first motor and transmitting it to the arm And a second reducer that reduces the rotation of the second motor and transmits it to the hand,
    The hand and the arm are arranged in a vacuum,
    The first reducer and the second reducer are hollow reducers in which a through hole is formed at the center in the radial direction,
    The first speed reducer and the second speed reducer have an axis center thereof, a rotation center of the second arm portion with respect to the first arm portion, a rotation center of the third arm portion with respect to the second arm portion, Alternatively, a first joint portion that is arranged so as to overlap on the same axis so that a rotation center of the hand with respect to the third arm portion coincides, and connects the first arm portion and the second arm portion, Constituting at least a part of a second joint part connecting the second arm part and the third arm part or a third joint part connecting the third arm part and the hand;
    In the internal space of the first arm portion, the second arm portion, or the third arm portion formed in a hollow shape, the first motor, the second motor, the first speed reducer, and the second speed reducer Is placed,
    The industrial robot according to claim 1, wherein the internal space is at atmospheric pressure.
  6.  本体部と、前記本体部にその基端側が回動可能に連結される第1アーム部と前記第1アーム部の先端側にその基端側が回動可能に連結される第2アーム部と前記第2アーム部の先端側にその基端側が回動可能に連結される第3アーム部と前記第3アーム部の先端側にその基端側が回動可能に連結される第4アーム部とを有するアームと、前記第4アーム部の先端側に回動可能に連結されるハンドと、前記第1アーム部に対して前記第2アーム部を回動させるための第1モータと、前記第2アーム部に対して前記第3アーム部を回動させるための第2モータと、前記第3アーム部に対して前記第4アーム部を回動させるための第3モータと、前記第4アーム部に対して前記ハンドを回動させるための第4モータと、前記第1モータの回転を減速して前記第2アーム部に伝達する第1減速機と、前記第2モータの回転を減速して前記第3アーム部に伝達する第2減速機と、前記第3モータの回転を減速して前記第4アーム部に伝達する第3減速機と、前記第4モータの回転を減速して前記ハンドに伝達する第4減速機とを備え、
     前記ハンドと前記アームとは、真空中に配置され、
     前記第1減速機、前記第2減速機、前記第3減速機および前記第4減速機は、その径方向の中心に貫通孔が形成される中空減速機であり、
     前記第1減速機、前記第2減速機、前記第3減速機および前記第4減速機のうちの少なくとも2個の減速機は、その軸中心と、前記第1アーム部に対する前記第2アーム部の回動中心、前記第2アーム部に対する前記第3アーム部の回動中心、前記第3アーム部に対する前記第4アーム部の回動中心、または、前記第4アーム部に対する前記ハンドの回動中心とが一致するように同軸上で重なるように配置されるとともに、前記第1アーム部と前記第2アーム部とを繋ぐ第1関節部、前記第2アーム部と前記第3アーム部とを繋ぐ第2関節部、前記第3アーム部と前記第4アーム部とを繋ぐ第3関節部、または、前記第4アーム部と前記ハンドとを繋ぐ第4関節部の少なくとも一部を構成し、
     中空状に形成される前記第1アーム部、前記第2アーム部、前記第3アーム部または前記第4アーム部の内部空間には、同軸上で重なるように配置される少なくとも2個の前記減速機と、この少なくとも2個の前記減速機に連結される前記第1モータ、前記第2モータ、前記第3モータおよび前記第4モータのうちの少なくとも2個のモータとが配置され、
     前記内部空間は、大気圧となっていることを特徴とする産業用ロボット。
    A main body portion, a first arm portion whose base end side is rotatably connected to the main body portion, a second arm portion whose base end side is rotatably connected to a distal end side of the first arm portion, and A third arm portion whose base end side is rotatably connected to the tip end side of the second arm portion, and a fourth arm portion whose base end side is rotatably connected to the tip end side of the third arm portion. An arm having a hand, a hand rotatably connected to a distal end side of the fourth arm part, a first motor for rotating the second arm part with respect to the first arm part, and the second A second motor for rotating the third arm portion relative to the arm portion; a third motor for rotating the fourth arm portion relative to the third arm portion; and the fourth arm portion. A fourth motor for rotating the hand relative to the motor, and decelerating the rotation of the first motor A first speed reducer for transmitting to the second arm part, a second speed reducer for reducing the rotation of the second motor and transmitting it to the third arm part, and a speed of the third motor for reducing the rotation of the third motor. A third speed reducer that transmits to the fourth arm, and a fourth speed reducer that reduces the rotation of the fourth motor and transmits it to the hand,
    The hand and the arm are arranged in a vacuum,
    The first reducer, the second reducer, the third reducer, and the fourth reducer are hollow reducers in which a through hole is formed in the center in the radial direction,
    At least two of the first reducer, the second reducer, the third reducer, and the fourth reducer have an axis center and the second arm portion with respect to the first arm portion. The center of rotation of the third arm portion relative to the second arm portion, the center of rotation of the fourth arm portion relative to the third arm portion, or the rotation of the hand relative to the fourth arm portion. The first joint portion, the second arm portion, and the third arm portion, which are arranged so as to overlap on the same axis so as to coincide with the center, and connect the first arm portion and the second arm portion, Constituting at least a part of a second joint part to be connected, a third joint part to connect the third arm part and the fourth arm part, or a fourth joint part to connect the fourth arm part and the hand;
    At least two of the speed reducers arranged coaxially in an internal space of the first arm portion, the second arm portion, the third arm portion, or the fourth arm portion formed in a hollow shape And at least two motors of the first motor, the second motor, the third motor, and the fourth motor coupled to the at least two speed reducers,
    The industrial robot according to claim 1, wherein the internal space is at atmospheric pressure.
  7.  産業用ロボットを原点位置へ復帰させる産業用ロボットの原点位置復帰方法であって、
     現在位置の座標がわからなくなった状態で停止している前記産業用ロボットの仮の現在位置の座標を、前記産業用ロボットの状態に基づいて設定する仮現在位置設定工程と、
     前記仮現在位置設定工程後に、前記産業用ロボットを所定位置まで動作させる動作工程と、
     前記動作工程後に、前記原点位置へ前記産業用ロボットを自動で復帰させる復帰動作工程とを備えることを特徴とする産業用ロボットの原点位置復帰方法。
    An industrial robot home position return method for returning an industrial robot to the home position,
    A temporary current position setting step of setting the temporary current position coordinates of the industrial robot that is stopped in a state where the coordinates of the current position are unknown, based on the state of the industrial robot;
    After the temporary current position setting step, an operation step of operating the industrial robot to a predetermined position;
    An industrial robot origin position return method comprising: a return operation step of automatically returning the industrial robot to the origin position after the operation step.
  8.  前記産業用ロボットは、搬送対象物が搭載されるハンドと、回動可能に連結される複数のアーム部を有しその先端側に前記ハンドが回動可能に連結されるアームと、複数の前記アーム部を回動させるための複数のアーム用モータと、前記ハンドを回動させるためのハンド用モータとを備え、
     前記仮現在位置設定工程では、前記アームに対する前記ハンドの回動中心の仮の現在位置の座標を設定し、
     前記動作工程では、前記復帰動作工程における前記産業用ロボットの復帰動作時に前記搬送対象物が収容される収容部と前記ハンドおよび前記搬送対象物とが干渉しない位置まで前記産業用ロボットを動作させることを特徴とする請求項7記載の産業用ロボットの原点位置復帰方法。
    The industrial robot includes a hand on which an object to be transported is mounted, a plurality of arm portions that are rotatably connected, and an arm to which the hand is rotatably connected at a tip side thereof, A plurality of arm motors for rotating the arm part, and a hand motor for rotating the hand,
    In the temporary current position setting step, the coordinates of the temporary current position of the center of rotation of the hand with respect to the arm are set,
    In the operation step, the industrial robot is moved to a position where the accommodation unit, the hand, and the conveyance object do not interfere with each other during the return operation of the industrial robot in the return operation step. The method for returning the origin position of the industrial robot according to claim 7.
  9.  前記産業用ロボットには、前記産業用ロボットに動作位置を教示するための可搬式の教示操作端末が接続され、
     前記仮現在位置設定工程では、オペレータが目視で確認して決めた前記ハンドの前記回動中心の仮の現在位置の座標を前記教示操作端末に入力して、前記ハンドの前記回動中心の仮の現在位置の座標を設定することを特徴とする請求項8記載の産業用ロボットの原点位置復帰方法。
    The industrial robot is connected to a portable teaching operation terminal for teaching an operating position to the industrial robot,
    In the temporary current position setting step, the coordinate of the temporary current position of the rotation center of the hand determined by visual confirmation by an operator is input to the teaching operation terminal, and the temporary center of the rotation center of the hand is input. 9. The method for returning the origin position of an industrial robot according to claim 8, wherein the coordinates of the current position of the industrial robot are set.
  10.  前記ハンドは、前記ハンドの回動の軸方向となる上下方向から見たときに、直線的に移動して前記収容部への前記搬送対象物の搬入および前記収容部からの前記搬送対象物の搬出を行い、
     前記動作工程では、上下方向から見たときに、前記搬送対象物の搬入時および搬出時の前記ハンドの移動方向に前記ハンドが移動するように、前記産業用ロボットに直線補間動作をさせることを特徴とする請求項8または9記載の産業用ロボットの原点位置復帰方法。
    The hand moves linearly when viewed from the up-down direction that is the axial direction of rotation of the hand, and the transport object is carried into the housing part and the transport object from the housing part. Carry out,
    In the operation step, when viewed from above and below, the industrial robot is caused to perform a linear interpolation operation so that the hand moves in the moving direction of the hand at the time of loading and unloading of the conveyance object. 10. The method for returning the origin position of an industrial robot according to claim 8 or 9, characterized in that:
  11.  前記仮現在位置設定工程では、前記ハンドの回動の軸方向となる上下方向に直交する平面において規定される円筒座標系の座標および直交座標系の座標のいずれの座標でも上下方向から見たときの前記ハンドの前記回動中心の仮の現在位置の座標を設定可能となっており、前記円筒座標系の座標または前記直交座標系の座標のいずれかの座標によって上下方向から見たときの前記ハンドの前記回動中心の仮の現在位置の座標が設定されることを特徴とする請求項8から10のいずれかに記載の産業用ロボットの原点位置復帰方法。 In the provisional current position setting step, when any of the coordinates of the cylindrical coordinate system and the coordinates of the orthogonal coordinate system defined on a plane orthogonal to the vertical direction that is the axial direction of the rotation of the hand is viewed from the vertical direction It is possible to set the coordinates of the temporary current position of the center of rotation of the hand, and when viewed from the vertical direction by either the coordinate of the cylindrical coordinate system or the coordinate of the orthogonal coordinate system The method of returning to the origin position of an industrial robot according to any one of claims 8 to 10, wherein coordinates of a temporary current position of the rotation center of the hand are set.
  12.  前記産業用ロボットは、前記動作工程で前記産業用ロボットを動作させるための操作部材を備え、
     前記動作工程では、前記産業用ロボットのオペレータが前記操作部材を操作している間は前記産業用ロボットが動作するとともに、前記オペレータが前記操作部材の操作を停止すると前記産業用ロボットが停止するジョグ操作によって前記産業用ロボットを動作させることを特徴とする請求項8から11のいずれかに記載の産業用ロボットの原点位置復帰方法。
    The industrial robot includes an operation member for operating the industrial robot in the operation process,
    In the operation step, the industrial robot operates while the operator of the industrial robot is operating the operation member, and the industrial robot stops when the operator stops the operation of the operation member. 12. The method for returning the origin position of an industrial robot according to claim 8, wherein the industrial robot is operated by an operation.
  13.  搬送対象物が搭載されるハンドと、回動可能に連結される複数のアーム部を有しその先端側に前記ハンドが回動可能に連結されるアームと、複数の前記アーム部を回動させるための複数のアーム用モータと、前記ハンドを回動させるためのハンド用モータとを備える産業用ロボットにおいて、
     前記アームに対する前記ハンドの回動中心の現在位置の座標がわからなくなった状態で停止している前記産業用ロボットの、前記ハンドの前記回動中心の仮の現在位置の座標を設定するための仮現在位置設定手段を備えることを特徴とする産業用ロボット。
    A hand on which the object to be transported is mounted, a plurality of arm portions that are rotatably connected, and an arm to which the hand is rotatably connected at the tip side thereof, and the plurality of arm portions are rotated. In an industrial robot comprising a plurality of arm motors and a hand motor for rotating the hand,
    Temporary current position coordinates for the rotation center of the hand of the industrial robot that has stopped in a state where the coordinates of the current position of the rotation center of the hand relative to the arm are lost. An industrial robot comprising current position setting means.
  14.  相対回動可能に連結される複数のアーム部からなるアームを有する産業用ロボットにおいて、
     複数の前記アーム部を回動させるための複数のモータと、複数の前記モータのそれぞれを駆動制御する複数のモータドライバと、複数の前記モータドライバに電力を供給する電源と、複数の前記モータドライバに接続されるとともに複数の前記モータで発生する回生電流によって充電可能な充放電部と、複数の前記モータドライバを制御する制御実行部とを備え、
     前記産業用ロボットの非常停止時に、前記電源を切るとともに、前記制御実行部が前記充放電部から供給される電力を用いて複数の前記モータドライバを制御しながら複数の前記モータを停止させることを特徴とする産業用ロボット。
    In an industrial robot having an arm composed of a plurality of arm portions that are connected to be relatively rotatable,
    A plurality of motors for rotating the plurality of arm portions, a plurality of motor drivers for driving and controlling each of the plurality of motors, a power source for supplying power to the plurality of motor drivers, and the plurality of motor drivers And a charge / discharge unit that can be charged by regenerative current generated by the plurality of motors, and a control execution unit that controls the plurality of motor drivers,
    At the time of an emergency stop of the industrial robot, the power is turned off, and the control execution unit stops the plurality of motors while controlling the plurality of motor drivers using the power supplied from the charge / discharge unit. A featured industrial robot.
  15.  前記アームの先端側に回動可能に連結されるハンドと、前記アームに対して前記ハンドを回動させるためのハンド用モータと、前記ハンド用モータを駆動制御するハンド用モータドライバとを備え、
     前記制御実行部は、前記非常停止時に前記充放電部から供給される電力を用いて前記ハンド用モータドライバを制御しながら前記ハンド用モータを停止させることを特徴とする請求項14記載の産業用ロボット。
    A hand rotatably connected to the distal end side of the arm, a hand motor for rotating the hand relative to the arm, and a hand motor driver for driving and controlling the hand motor,
    15. The industrial use according to claim 14, wherein the control execution unit stops the hand motor while controlling the hand motor driver using electric power supplied from the charge / discharge unit during the emergency stop. robot.
  16.  前記アームの基端側が回動可能に連結される本体部を備えるとともに、
     前記アーム部として、前記本体部にその基端側が回動可能に連結される第1アーム部と、前記第1アーム部の先端側にその基端側が回動可能に連結されるとともに前記ハンドがその先端側に連結される第2アーム部とを備え、
     前記モータとして、前記本体部に対して前記第1アーム部を回動させるための第1モータと、前記第1アーム部に対して前記第2アーム部を回動させるための第2モータとを備え、
     前記モータドライバとして、前記第1モータを駆動制御する第1モータドライバと、前記第2モータを駆動制御する第2モータドライバとを備えることを特徴とする請求項15記載の産業用ロボット。
    A base end side of the arm is provided with a main body part rotatably connected,
    As the arm portion, a first arm portion whose base end side is rotatably connected to the main body portion, a base end side thereof is rotatably connected to a distal end side of the first arm portion, and the hand is A second arm portion connected to the tip side,
    As the motor, a first motor for rotating the first arm portion with respect to the main body portion, and a second motor for rotating the second arm portion with respect to the first arm portion. Prepared,
    The industrial robot according to claim 15, comprising: a first motor driver that drives and controls the first motor; and a second motor driver that drives and controls the second motor as the motor driver.
  17.  前記アームを昇降させるための昇降用モータと、前記昇降用モータを駆動制御する昇降用モータドライバと、前記昇降用モータを停止させるための第1ブレーキと、前記第1ブレーキよりも大きな制動力で前記昇降用モータを停止させるための第2ブレーキとを備え、
     前記制御実行部は、前記昇降用モータドライバ、前記第1ブレーキおよび前記第2ブレーキを制御するとともに、前記非常停止時に、前記第1ブレーキを作動させた後、前記第2ブレーキを作動させて前記昇降用モータを停止させることを特徴とする請求項14から16のいずれかに記載の産業用ロボット。
    A lifting motor for raising and lowering the arm, a lifting motor driver for driving and controlling the lifting motor, a first brake for stopping the lifting motor, and a braking force larger than that of the first brake A second brake for stopping the lifting motor,
    The control execution unit controls the elevating motor driver, the first brake, and the second brake, and, at the time of the emergency stop, activates the first brake, and then activates the second brake. The industrial robot according to any one of claims 14 to 16, wherein the elevating motor is stopped.
  18.  相対回動可能に連結される複数のアーム部からなるアームと、複数の前記アーム部を回動させるための複数のモータと、複数の前記モータのそれぞれを駆動制御する複数のモータドライバと、複数の前記モータドライバに電力を供給する電源と、複数の前記モータドライバに接続されるとともに複数の前記モータで発生する回生電流によって充電可能な充放電部とを備える産業用ロボットの制御方法であって、
     前記産業用ロボットの非常停止時に、前記電源を切るとともに、前記充放電部から供給される電力を用いて複数の前記モータドライバを制御しながら複数の前記モータを停止させることを特徴とする産業用ロボットの制御方法。
    An arm composed of a plurality of arm portions coupled so as to be rotatable relative to each other; a plurality of motors for rotating the plurality of arm portions; a plurality of motor drivers for driving and controlling each of the plurality of motors; A control method for an industrial robot comprising: a power source that supplies power to the motor driver; and a charge / discharge unit that is connected to the plurality of motor drivers and that can be charged by regenerative current generated by the plurality of motors. ,
    When the industrial robot is in an emergency stop, the power is turned off, and the plurality of motors are stopped while controlling the plurality of motor drivers using the power supplied from the charge / discharge unit. Robot control method.
  19.  相対回動可能に連結される複数のアーム部からなるアームと、複数の前記アーム部を回動させるための複数のモータと、前記アームの基端側が回動可能に連結される本体部とを備える産業用ロボットにおいて、
     前記産業用ロボットを制御する制御部は、前記アームの姿勢と前記アームの動作方向とに基づいて、前記本体部に対する前記アームの回動中心を原点とする円筒座標系で前記産業用ロボットを制御するのか、それとも、前記アームの前記回動中心を原点とする直交座標系で前記産業用ロボットを制御するのかを切り替えることを特徴とする産業用ロボット。
    An arm composed of a plurality of arm portions connected to each other, a plurality of motors for rotating the plurality of arm portions, and a main body portion to which a base end side of the arm is rotatably connected. In the industrial robot provided,
    The control unit for controlling the industrial robot controls the industrial robot in a cylindrical coordinate system based on the rotation center of the arm with respect to the main body based on the posture of the arm and the operation direction of the arm. An industrial robot characterized by switching whether to control the industrial robot in an orthogonal coordinate system with the rotation center of the arm as the origin.
  20.  前記アームの先端側に回動可能に連結されるハンドと、前記ハンドを回動させるためのハンド用モータとを備えるとともに、前記アーム部として、その基端側が前記本体部に回動可能に連結される第1アーム部と、前記第1アーム部の先端側にその基端側が回動可能に連結されるとともにその先端側に前記ハンドが回動可能に連結される第2アーム部とを備え、
     前記制御部は、前記ハンド、前記第1アーム部および前記第2アーム部の回動の軸方向となる上下方向から見たときに前記アームの前記回動中心を通過する仮想線上を前記第2アーム部に対する前記ハンドの回動中心が直線的に移動するときに、前記円筒座標系で前記産業用ロボットを制御し、上下方向から見たときに前記仮想線に沿わない位置で前記ハンドの前記回動中心が直線的に移動するときに、前記直交座標系で前記産業用ロボットを制御することを特徴とする請求項19記載の産業用ロボット。
    The arm includes a hand rotatably connected to the distal end side of the arm and a hand motor for rotating the hand, and the base end side of the arm part is rotatably connected to the main body part. A first arm portion that is pivotally connected to the distal end side of the first arm portion, and a second arm portion that is pivotally coupled to the distal end side of the hand. ,
    The control unit is arranged on an imaginary line passing through the rotation center of the arm when viewed from the vertical direction that is the axial direction of rotation of the hand, the first arm unit, and the second arm unit. When the center of rotation of the hand relative to the arm portion moves linearly, the industrial robot is controlled in the cylindrical coordinate system, and the hand of the hand is not positioned along the imaginary line when viewed from above and below. 20. The industrial robot according to claim 19, wherein the industrial robot is controlled by the orthogonal coordinate system when the rotation center moves linearly.
  21.  前記制御部は、前記本体部に対して前記第1アーム部が回動しておらず、かつ、前記第1アーム部に対して前記第2アーム部が回動していない状態で、前記第2アーム部に対して前記ハンドが回動するときに、前記円筒座標系で前記産業用ロボットを制御することを特徴とする請求項20記載の産業用ロボット。 The control unit is configured such that the first arm unit is not rotated with respect to the main body unit, and the second arm unit is not rotated with respect to the first arm unit. 21. The industrial robot according to claim 20, wherein the industrial robot is controlled by the cylindrical coordinate system when the hand rotates with respect to the two arm portions.
  22.  前記制御部は、前記第1アーム部に対して前記第2アーム部が回動しておらず、かつ、前記第2アーム部に対して前記ハンドが回動していない状態で、前記本体部に対して前記第1アーム部が回動するときに、前記円筒座標系で前記産業用ロボットを制御することを特徴とする請求項20または21記載の産業用ロボット。 The control unit is configured so that the second arm unit is not rotated with respect to the first arm unit, and the hand unit is not rotated with respect to the second arm unit. The industrial robot according to claim 20 or 21, wherein the industrial robot is controlled in the cylindrical coordinate system when the first arm portion is rotated with respect to the first robot arm.
  23.  相対回動可能に連結される複数のアーム部からなるアームと、複数の前記アーム部を回動させるための複数のモータと、前記アームの基端側が回動可能に連結される本体部とを備える産業用ロボットの制御方法において、
     前記アームの姿勢と前記アームの動作方向とに基づいて、前記本体部に対する前記アームの回動中心を原点とする円筒座標系で前記産業用ロボットを制御するのか、それとも、前記アームの前記回動中心を原点とする直交座標系で前記産業用ロボットを制御するのかを切り替えることを特徴とする産業用ロボットの制御方法。
    An arm composed of a plurality of arm portions connected to each other, a plurality of motors for rotating the plurality of arm portions, and a main body portion to which a base end side of the arm is rotatably connected. In an industrial robot control method comprising:
    Whether the industrial robot is controlled in a cylindrical coordinate system based on the rotation center of the arm relative to the main body based on the posture of the arm and the movement direction of the arm, or the rotation of the arm A method for controlling an industrial robot, characterized by switching whether to control the industrial robot in an orthogonal coordinate system having a center as an origin.
PCT/JP2013/070160 2012-08-09 2013-07-25 Industrial robot WO2014024690A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
KR1020147024129A KR101687463B1 (en) 2012-08-09 2013-07-25 Industrial robot
KR1020167007911A KR101691776B1 (en) 2012-08-09 2013-07-25 Industrial robot
KR1020167007912A KR101691777B1 (en) 2012-08-09 2013-07-25 Industrial robot
CN201380011432.6A CN104136174B (en) 2012-08-09 2013-07-25 Industrial robot
KR1020167007910A KR101691775B1 (en) 2012-08-09 2013-07-25 Industrial robot
US14/386,579 US9764461B2 (en) 2012-08-09 2013-07-25 Industrial robot
TW105114809A TWI635938B (en) 2012-08-09 2013-08-08 Industrial robot and control method thereof
TW105114811A TWI635939B (en) 2012-08-09 2013-08-08 Industrial robot and its origin position return method
TW102128540A TWI581927B (en) 2012-08-09 2013-08-08 Industrial robots
TW105114810A TWI669200B (en) 2012-08-09 2013-08-08 Industrial robot and control method thereof
US15/185,974 US10265845B2 (en) 2012-08-09 2016-06-17 Industrial robot
US15/185,962 US10350750B2 (en) 2012-08-09 2016-06-17 Industrial robot
US15/185,950 US10226863B2 (en) 2012-08-09 2016-06-17 Industrial robot

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201261681261P 2012-08-09 2012-08-09
US61/681,261 2012-08-09
JP2012247112A JP6173677B2 (en) 2012-08-09 2012-11-09 Home position return method for industrial robots
JP2012-247113 2012-11-09
JP2012247114A JP6051021B2 (en) 2012-08-09 2012-11-09 Industrial robot and control method for industrial robot
JP2012247111A JP6110636B2 (en) 2012-08-09 2012-11-09 Industrial robot
JP2012-247112 2012-11-09
JP2012-247114 2012-11-09
JP2012247113A JP6173678B2 (en) 2012-08-09 2012-11-09 Industrial robot and control method for industrial robot
JP2012-247111 2012-11-09

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US14/386,579 A-371-Of-International US9764461B2 (en) 2012-08-09 2013-07-25 Industrial robot
US15/185,974 Division US10265845B2 (en) 2012-08-09 2016-06-17 Industrial robot
US15/185,962 Division US10350750B2 (en) 2012-08-09 2016-06-17 Industrial robot
US15/185,950 Division US10226863B2 (en) 2012-08-09 2016-06-17 Industrial robot

Publications (1)

Publication Number Publication Date
WO2014024690A1 true WO2014024690A1 (en) 2014-02-13

Family

ID=50067923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070160 WO2014024690A1 (en) 2012-08-09 2013-07-25 Industrial robot

Country Status (1)

Country Link
WO (1) WO2014024690A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107030677A (en) * 2017-04-26 2017-08-11 常州永盛新材料装备股份有限公司 A kind of the axle tow-armed robot of space four and its Scroll handler
US20180056506A1 (en) * 2016-08-31 2018-03-01 Seiko Epson Corporation Robot
CN112757314A (en) * 2020-12-28 2021-05-07 河南大学 Deep layer mine hole surveys two rounds of robots based on 5G communication technology

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282303A (en) * 1986-05-31 1987-12-08 Shinko Electric Co Ltd Controller for industrial robot
JPH0336787U (en) * 1989-08-14 1991-04-10
JPH0585584U (en) * 1992-04-21 1993-11-19 新明和工業株式会社 Robot device for vacuum chamber
JPH07686U (en) * 1993-05-10 1995-01-06 株式会社明電舎 Industrial manipulator
JPH07246579A (en) * 1994-03-09 1995-09-26 Sony Corp Articulated robot
JPH07299777A (en) * 1994-05-09 1995-11-14 Hitachi Ltd Transport robot controlling method
JPH08172121A (en) * 1994-12-20 1996-07-02 Hitachi Ltd Substrate carrier device
JPH08216072A (en) * 1995-02-20 1996-08-27 Tokico Ltd Industrial robot
JPH09150388A (en) * 1995-07-10 1997-06-10 Smart Machines Inc Directly driven robot
JP2000237988A (en) * 1999-02-17 2000-09-05 Mitsubishi Electric Corp Arm driving mechanism of robot device
JP2002218676A (en) * 2001-01-16 2002-08-02 Yaskawa Electric Corp Motor drive unit
JP2005039047A (en) * 2003-07-14 2005-02-10 Kawasaki Heavy Ind Ltd Articulated robot
JP2006012074A (en) * 2004-06-29 2006-01-12 Fanuc Ltd Device for creating standby position return program for robot
JP2010052055A (en) * 2008-08-26 2010-03-11 Nidec Sankyo Corp Industrial robot
WO2012008321A1 (en) * 2010-07-14 2012-01-19 日本電産サンキョー株式会社 Industrial robot, method for controlling industrial robot, and method for teaching industrial robot

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282303A (en) * 1986-05-31 1987-12-08 Shinko Electric Co Ltd Controller for industrial robot
JPH0336787U (en) * 1989-08-14 1991-04-10
JPH0585584U (en) * 1992-04-21 1993-11-19 新明和工業株式会社 Robot device for vacuum chamber
JPH07686U (en) * 1993-05-10 1995-01-06 株式会社明電舎 Industrial manipulator
JPH07246579A (en) * 1994-03-09 1995-09-26 Sony Corp Articulated robot
JPH07299777A (en) * 1994-05-09 1995-11-14 Hitachi Ltd Transport robot controlling method
JPH08172121A (en) * 1994-12-20 1996-07-02 Hitachi Ltd Substrate carrier device
JPH08216072A (en) * 1995-02-20 1996-08-27 Tokico Ltd Industrial robot
JPH09150388A (en) * 1995-07-10 1997-06-10 Smart Machines Inc Directly driven robot
JP2000237988A (en) * 1999-02-17 2000-09-05 Mitsubishi Electric Corp Arm driving mechanism of robot device
JP2002218676A (en) * 2001-01-16 2002-08-02 Yaskawa Electric Corp Motor drive unit
JP2005039047A (en) * 2003-07-14 2005-02-10 Kawasaki Heavy Ind Ltd Articulated robot
JP2006012074A (en) * 2004-06-29 2006-01-12 Fanuc Ltd Device for creating standby position return program for robot
JP2010052055A (en) * 2008-08-26 2010-03-11 Nidec Sankyo Corp Industrial robot
WO2012008321A1 (en) * 2010-07-14 2012-01-19 日本電産サンキョー株式会社 Industrial robot, method for controlling industrial robot, and method for teaching industrial robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180056506A1 (en) * 2016-08-31 2018-03-01 Seiko Epson Corporation Robot
US10814477B2 (en) * 2016-08-31 2020-10-27 Seiko Epson Corporation Robot
CN107030677A (en) * 2017-04-26 2017-08-11 常州永盛新材料装备股份有限公司 A kind of the axle tow-armed robot of space four and its Scroll handler
CN112757314A (en) * 2020-12-28 2021-05-07 河南大学 Deep layer mine hole surveys two rounds of robots based on 5G communication technology

Similar Documents

Publication Publication Date Title
US10350750B2 (en) Industrial robot
US7383751B2 (en) Articulated robot
JP5044138B2 (en) Transport system and processing equipment
KR101583110B1 (en) Robot and robot system
WO2014024690A1 (en) Industrial robot
JP4840599B2 (en) Work transfer device
KR200290991Y1 (en) Single axis robot whose linear motion and rotation motion are possible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147024129

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14386579

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828148

Country of ref document: EP

Kind code of ref document: A1