WO2014024602A1 - Packaging material to be thermally welded to package - Google Patents

Packaging material to be thermally welded to package Download PDF

Info

Publication number
WO2014024602A1
WO2014024602A1 PCT/JP2013/068026 JP2013068026W WO2014024602A1 WO 2014024602 A1 WO2014024602 A1 WO 2014024602A1 JP 2013068026 W JP2013068026 W JP 2013068026W WO 2014024602 A1 WO2014024602 A1 WO 2014024602A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
packaging material
barrier film
inorganic
Prior art date
Application number
PCT/JP2013/068026
Other languages
French (fr)
Japanese (ja)
Inventor
英二郎 岩瀬
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2014529384A priority Critical patent/JP5923609B2/en
Priority to CN201380032226.3A priority patent/CN104379464B/en
Publication of WO2014024602A1 publication Critical patent/WO2014024602A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/10Bag-type containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging

Definitions

  • the present invention relates to a packaging material that is thermally welded to a packaging material such as a medical infusion bag or a tube for food, and more specifically, imparts a high gas barrier property to the packaging material by being thermally welded to the packaging material. It relates to packaging materials.
  • Infusion bags that contain drugs that are altered by moisture and oxygen, and tubes and packaging bags that contain foods that are also deteriorated by moisture and oxygen are required to have high gas barrier properties.
  • an infusion bag in which water is stored in one of two chambers separated by a partition wall, a drug is stored in the other, and the partition wall is opened immediately before use to mix water and the drug.
  • it in order to perform an appropriate treatment, it is important that water and a medicine are reliably mixed, and it is preferable that it can be visually confirmed.
  • a packaging container that requires confirmation of the contents it is also required to ensure the internal visibility.
  • Patent Document 1 a gas barrier film (gas barrier film) comprising two films having a predetermined adhesive region on the periphery and having an oxygen-blocking metal layer is bonded to the adhesive region of at least one film.
  • a package is described. When the package is not used, oxygen is blocked by the gas barrier film to prevent the contents from being deteriorated. When the package is used, the gas barrier film is peeled off from the periphery to ensure visibility inside the package.
  • Patent Document 2 in a container having a plurality of two chambers communicated with each other by breakage of a partition wall, a product which is easily deteriorated by oxygen is accommodated in one chamber, and this chamber is used as a gas barrier film (gas barrier exterior film). And a container in which an oxygen-absorbing resin layer is provided inside the exterior film.
  • Patent Document 3 discloses a gas barrier film (a cover sheet impermeable to moisture and oxygen) that can be peeled to a powder storage chamber in a container having a powder storage chamber and a liquid storage chamber communicated by breakage of a partition wall. It is described that the powder is adhered and the powder is protected with a gas barrier film.
  • Patent Document 4 discloses an inner layer composed of a first resin layer and a second resin layer formed of a polyethylene resin satisfying a predetermined relationship between a melting point, a density, and a melt flow rate, a nylon layer, and PET (In laminated film for laminated tube to which an ultrasonic seal having an intermediate layer and an outer layer formed of a polyethylene-based resin is applied from a polyethylene terephthalate) layer, if necessary, a gas barrier film (between the outer layer and the intermediate layer) It is described that a gas barrier property is imparted to the laminated film by providing a barrier substrate layer).
  • an organic / inorganic laminated type (hereinafter also simply referred to as “laminated type”) gas barrier film in which an organic layer and an inorganic layer are laminated is known.
  • the laminated gas barrier film is a PET film or the like as a support, an organic layer serving as a base layer is formed on the surface of the support, and an inorganic layer such as silicon nitride that exhibits gas barrier properties is formed on the organic layer. It has the structure which formed into a film.
  • an organic layer for protecting the inorganic layer may be provided on the inorganic layer.
  • an appropriate inorganic layer free from cracks and cracks can be formed on the entire surface of the film by having an underlying organic layer.
  • the gas barrier film which fully exhibited the high gas barrier property which an inorganic layer has, and has high gas barrier property can be obtained.
  • an organic layer as the uppermost layer it is possible to prevent cracks and cracks from occurring in the hard and brittle inorganic layer, and to stably obtain high gas barrier properties.
  • Patent Document 5 describes an infusion bag in which a barrier layer having a first organic layer, an inorganic layer, and a second organic layer is provided on a resin bag containing polyethylene and / or polypropylene.
  • the barrier layer is basically configured by using a plastic film as a support and laminating a first organic layer, an inorganic layer, and a second organic layer on the support.
  • JP-A-10-277135 Japanese Patent Laid-Open No. 10-201818 Japanese Patent Laid-Open No. 2003-230618 International Publication No. 2003-099557 JP 2012-75716 A
  • the laminated gas barrier film has excellent gas barrier properties. Therefore, by using a laminated gas barrier film as shown in Patent Document 5 for medical infusion bags and food tubes as shown in Patent Documents 1 to 4, gas barrier properties can be further improved. It can be expected that an excellent packaging container will be obtained.
  • Patent Document 5 when a laminated gas barrier film is used for a packaging container, the surface of the gas barrier film (opposite to the plastic film serving as a support) is coated with an adhesive from the plastic film. It is conceivable that a heat-welding layer is attached and the heat-welding layer and the packaging container are heat-welded (heat sealing (heat sealing)).
  • heat sealing heat sealing
  • An object of the present invention is to solve the above-mentioned problems of the prior art, such as organic / inorganic laminated gas barrier films having excellent gas barrier performance, medical infusion bags, food tubes, packaging bags, etc.
  • the packaging material of the present invention is a packaging material thermally welded to a packaging material, A gas barrier film, an intermediate layer bonded to the gas barrier film by the first adhesive layer, and a heat welding layer bonded to the intermediate layer by the second adhesive layer;
  • the gas barrier film has a laminated structure in which one or more combinations of an inorganic layer having gas barrier properties and an organic layer serving as a base layer of the inorganic layer are formed on a support, and the uppermost layer is an organic layer.
  • a packaging material characterized in that the glass transition temperature of the organic layer is higher than that of the support of the intermediate layer and the gas barrier film, and the glass transition temperature of the support of the intermediate layer and the gas barrier film is higher than that of the heat-welded layer.
  • the thickness from the first adhesive layer to the heat-welded layer is preferably 100 ⁇ m or less.
  • middle layer and the support body of a gas barrier film are formed with the same material.
  • all the organic layers are formed with the same material.
  • the thickness of a heat welding layer is 60 micrometers or less.
  • middle layer is 20 micrometers or less.
  • an organic layer is a layer which consists of at least one of an acrylic resin and a methacryl resin.
  • the inorganic layer is preferably a layer made of silicon nitride.
  • a heat welding layer is a layer which consists of polyethylene or a polypropylene.
  • the intermediate layer is preferably a layer made of polyethylene terephthalate.
  • the packaging material of the present invention having the above-described structure has excellent gas barrier properties possessed by an organic / inorganic laminate type gas barrier film by heat-welding to packaging materials such as medical infusion bags, food tubes and packaging bags. , And can be applied to these packaging material bags.
  • FIG. 1 conceptually shows an example of the packaging material of the present invention.
  • the packaging material 10 shown in FIG. 1 basically includes a gas barrier film 12, a first adhesive layer 14, an intermediate layer 16, a second adhesive layer 18, and a heat welding layer 20.
  • the gas barrier film 12 has a combination of an inorganic layer 28 that exhibits gas barrier properties on the support 24 and an organic layer 26 that serves as a base layer (undercoat layer) of the inorganic layer 28.
  • This is an organic / inorganic laminated type (hereinafter also simply referred to as “laminated type”) gas barrier film having one or more layers formed, and an organic layer 26 as a protective layer formed on the uppermost layer (surface).
  • laminated type organic / inorganic laminated type
  • the gas barrier film 12 has an organic layer 26 on a support 24, an inorganic layer 28 on the organic layer 26, and an organic layer 26 on the organic layer 26.
  • Such a packaging material 10 of the present invention is thermally welded to a medical infusion bag, a food tube, a packaging bag, or the like, so that, for example, a water vapor permeability of 1 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)], such as high gas barrier properties.
  • the packaging material to be thermally welded is not limited to the above-mentioned infusion bag, food tube or packaging bag.
  • the packaging material of the present invention is a bag that contains non-medical liquids such as drugs, tubes and packaging bags (housing bags) that contain articles other than food, and sheet materials for packaging such as packaging films,
  • non-medical liquids such as drugs, tubes and packaging bags (housing bags) that contain articles other than food, and sheet materials for packaging such as packaging films
  • sheet materials for packaging such as packaging films
  • packaging materials that wrap or contain various articles, especially articles that deteriorate due to moisture, oxygen, etc., such as casings (cases) and packages that contain articles (hereinafter collectively referred to as “packaging materials”) Is available.
  • the gas barrier film is not limited to a three-layer structure as shown in FIG. That is, in order to obtain a higher gas barrier property, a plurality of combinations of the inorganic layer 28 and the organic layer 26 serving as a base layer of the inorganic layer 28 may be provided.
  • an organic layer 26 as an underlayer is provided on a support 24, an inorganic layer 28 is provided thereon, and an organic layer 26 as an underlayer is provided thereon.
  • it may be a gas barrier film having a five-layer structure in which an inorganic layer 28 is provided thereon and an organic layer 26 is provided as a protective layer on the uppermost layer. That is, the gas barrier film shown in FIG. 2 has two combinations of the inorganic layer 28 and the underlying organic layer 26.
  • a gas barrier film having three or more combinations of the inorganic layer 28 and the underlying organic layer 26 may be used.
  • the gas barrier film 12 is formed by alternately laminating organic layers 26 and inorganic layers 28 on a support 24.
  • the support 24 is not limited, and is not limited to a laminated gas barrier film.
  • Various known sheet-like materials that are used as supports for various gas barrier films can be used. Is possible.
  • the support 24 (substrate (base material)
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyethylene polypropylene
  • polystyrene polyamide
  • polyvinyl chloride polycarbonate
  • polyacrylonitrile polyimide
  • plastic films made of various plastics (polymer materials) such as polyacrylate and polymethacrylate.
  • various functions such as a protective layer, an adhesive layer, a light reflection layer, an antireflection layer, a light shielding layer, a planarization layer, a buffer layer, and a stress relaxation layer are provided on the surface of such a plastic film. What is formed with a layer (film) for obtaining may be used as the support 24.
  • the support 24 has a glass transition temperature (glass transition point Tg) lower than that of the organic layer 26 and higher than that of the heat welding layer 20.
  • the glass transition temperature of the intermediate layer 16 described later is also lower than the organic layer 26 and higher than the heat-welded layer 20.
  • the glass transition temperature of the support 24 is preferably the same as or substantially the same as that of the intermediate layer 16.
  • the support 24 and the intermediate layer 16 are preferably formed of the same material.
  • the organic layer 26 as the base layer of the inorganic layer 28 is provided on the support 24. Furthermore, the uppermost layer of the gas barrier film 12 has an organic layer 26 as a protective layer.
  • the organic layer 26 is a layer made of an organic compound (a layer (film) containing an organic compound as a main component) and is basically a crosslinked (polymerized) monomer and / or oligomer.
  • the organic layer 26 on the support 24 functions as a base layer for properly forming the inorganic layer 28 exhibiting gas barrier properties.
  • the surface of the support 24 is embedded, the foreign matter adhering to the surface of the support 24 is embedded, and the film-forming surface of the inorganic layer 28 is made inorganic.
  • a state suitable for forming the layer 28 can be obtained. This eliminates regions where the inorganic compound that becomes the inorganic layer 28 is difficult to deposit, such as irregularities on the surface of the support 24 and shadows of foreign matter, and forms an appropriate inorganic layer 28 on the entire surface of the substrate without any gaps. It becomes possible to film.
  • the uppermost organic layer 26 is a protective layer that protects the inorganic layer 28.
  • the inorganic layer 28 is a layer made of an inorganic compound such as silicon nitride, and is hard and brittle. For this reason, damage such as cracks and cracks can easily occur due to contact with other members or receiving some kind of impact.
  • the inorganic layer 28 exhibits mainly gas barrier properties in the gas barrier film 12. Therefore, when the inorganic layer 28 is damaged, moisture, oxygen, and the like can be transmitted from the damaged portion, and the gas barrier property is greatly lowered.
  • the organic layer 26 acting as a protective layer as the uppermost layer, damage to the inorganic layer 28 due to contact or impact can be prevented.
  • the organic layer 26 serving as a base layer of the inorganic layer 28 and the organic layer 26 serving as a protective layer of the inorganic layer 28 are provided.
  • an appropriate inorganic layer 28 can be formed on the entire surface without any gap, and damage to the inorganic layer 28 can be prevented. Therefore, the laminated gas barrier film 12 exhibits the excellent gas barrier properties of the inorganic layer 28, for example, high gas barrier properties such that the water vapor permeability is less than 1 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)].
  • a high-performance gas barrier film having the above can be obtained stably.
  • the material for forming the organic layer 26 is not limited, and various known organic compounds (resins / polymer compounds) can be used. Specifically, polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, poly Ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acryloyl compound, thermoplastic resin, or polysiloxane, etc.
  • An organic silicon compound film is preferably exemplified. A plurality of these may be used in combination.
  • the organic layer 26 composed of a polymer of a radical polymerizable compound and / or a cationic polymerizable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
  • acrylic resins mainly composed of acrylate and / or methacrylate monomers and oligomers in terms of low refractive index, high transparency and excellent optical properties, etc.
  • the methacrylic resin is preferably exemplified as the organic layer 26.
  • DPGDA dipropylene glycol di (meth) acrylate
  • TMPTA trimethylolpropane tri (meth) acrylate
  • DPHA dipentaerythritol hexa (meth) acrylate
  • Acrylic resins and methacrylic resins mainly composed of a polymer of acrylate and / or methacrylate monomers or oligomers are preferably exemplified. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
  • the glass transition temperature of the organic layer 26 is higher than that of the support 24 and the intermediate layer 16.
  • the glass transition temperature of the organic layer 26 is preferably 70 ° C. or more higher than the glass transition temperatures of the support 24 and the intermediate layer 16.
  • the glass transition temperature of the support 24 and the intermediate layer 16 is higher than that of the heat welding layer 20.
  • the glass transition temperature of the support 24 and the intermediate layer 16 is preferably 70 ° C. or more higher than the glass transition temperature of the heat welding layer 20.
  • the glass transition temperature of each layer excluding the adhesive layer is Thermal weld layer 20 ⁇ support 24 and intermediate layer 16 ⁇ organic layer 26 It becomes. That is, in the packaging material 10 of the present invention, with the inorganic layer 28 as the center (from the outermost organic layer 26 when there are a plurality of organic layer / inorganic layer repetitions), as each layer goes outward, The glass transition temperature is lowered. In addition, naturally the glass transition temperature of the organic layer 26 is lower than the inorganic layer 28 which is a layer which consists of an inorganic compound.
  • the packaging material 10 of the present invention is thermally welded (thermally fused) to a packaging material such as an infusion bag or a food packaging bag by the heat welding layer 20.
  • the packaging material 10 of the present invention has a configuration in which the glass transition temperature of each layer decreases as it goes outward with the inorganic layer 28 as the center. It is possible to prevent the inorganic layer 28 from being damaged by being softened and deformed by heat, and to stably exhibit the target gas barrier property. The above points will be described in detail later.
  • the thickness of the organic layer 26 is not limited, but is preferably 0.5 to 5 ⁇ m.
  • the thickness of the organic layer 26 is more preferably 1 to 3 ⁇ m.
  • each organic layer 26 may be the same, or may mutually differ.
  • the material for forming each organic layer 26 may be the same or different.
  • Such an organic layer 26 may be formed (formed) by a known method. For example, a coating material containing an organic solvent, an organic compound that becomes the organic layer 26, a surfactant, and the like is prepared, and this coating material is applied, dried, and then crosslinked to form a film by a so-called coating method.
  • the inorganic layer 28 is a layer made of an inorganic compound (a layer (film) containing an inorganic compound as a main component).
  • the inorganic layer 28 mainly exhibits the target gas barrier property.
  • the material for forming the inorganic layer 28 is not limited, and various layers made of an inorganic compound that exhibits gas barrier properties can be used. Specifically, metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carbides such as aluminum carbide; silicon oxide, Silicon oxides such as silicon oxynitride, silicon oxycarbide, silicon oxynitride carbide; silicon nitrides such as silicon nitride and silicon nitride carbide; silicon carbides such as silicon carbide; hydrides thereof; mixtures of two or more of these; and Films made of inorganic compounds such as these hydrogen-containing materials are preferably exemplified.
  • metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitrid
  • silicon nitride, silicon oxide, silicon oxynitride, and aluminum oxide are suitably used for the gas barrier film because they are highly transparent and can exhibit excellent gas barrier properties.
  • silicon nitride is particularly suitable for its excellent gas barrier properties and high transparency.
  • the thickness of the inorganic layer 28 is not limited. That is, the thickness of the inorganic layer 28 may be determined as appropriate according to the forming material so that the target gas barrier property can be exhibited. According to the study of the present inventor, the thickness of the inorganic layer 28 is preferably 10 to 200 nm. By setting the thickness of the inorganic layer 28 to 10 nm or more, the inorganic layer 28 that stably exhibits sufficient gas barrier performance can be formed. In addition, the inorganic layer 28 is generally fragile, and if it is too thick, there is a possibility of causing cracks, cracks, peeling, etc. However, if the thickness of the inorganic layer 28 is 200 nm or less, cracks will occur. Can be prevented.
  • the thickness of the inorganic layer 28 is preferably 15 to 100 nm, and particularly preferably 20 to 75 nm. Moreover, when the gas barrier film has a plurality of inorganic layers 28 as in the example shown in FIG. 2, the thickness of each inorganic layer 28 may be the same or different.
  • each inorganic layer 28 when the gas barrier film 12 has a plurality of inorganic layers 28, the thickness of each inorganic layer 28 may be the same or different from each other. Moreover, when the gas barrier film 12 has the some inorganic layer 28, the formation material of each inorganic layer 28 may be the same, or may differ.
  • the method for forming the inorganic layer 28 is not limited, and depending on the inorganic layer 28 to be formed, a known method for forming an inorganic layer (inorganic film) is used.
  • a known method for forming an inorganic layer is used.
  • Various types are available. Specifically, plasma CVD such as CCP-CVD and ICP-CVD, sputtering such as magnetron sputtering and reactive sputtering, and vapor phase film forming methods such as vacuum deposition are preferably exemplified.
  • the intermediate layer 16 is bonded onto the gas barrier film 12 by the first adhesive layer 14.
  • the intermediate layer 16 is a layer for preventing the inorganic layer 28 from being damaged when the packaging material 10 of the present invention is thermally welded to a packaging material such as an infusion bag.
  • the intermediate layer 16 has a glass transition temperature lower than that of the organic layer 26 and higher than that of the heat-welded layer 20, similarly to the support 24.
  • the glass transition temperature of the intermediate layer 16 is preferably the same as or substantially the same as that of the support 24, and it is more preferable that the intermediate layer 16 and the support 24 are formed of the same material.
  • the intermediate layer 16 will be described later in detail.
  • the heat welding layer 20 is bonded onto the intermediate layer 16 by the second adhesive layer 18.
  • the packaging material 10 of the present invention is heat-welded (heat sealed / heat sealed) to the surface of the packaging material.
  • the heat welding layer 20 is a layer (sealant layer) for performing this heat welding. Therefore, the heat welding layer 20 is basically formed of the same material as a forming material (forming material on the surface of the packaging material) of a packaging material such as an infusion bag to which the packaging material 10 of the present invention is thermally welded.
  • the packaging material is made of polyethylene (PE)
  • a PE sheet-like material film-like material
  • PP polypropylene
  • a PP sheet-like material may be used as the heat welding layer 20.
  • the gas barrier film 12 has an organic layer 26 as a base layer of the inorganic layer 28 exhibiting gas barrier properties, and has an organic layer 26 as a protective layer of the inorganic layer 28 in the uppermost layer. It is a laminated gas barrier film.
  • the laminated gas barrier film 12 has a very high gas barrier property, for example, a high gas barrier property such that the water vapor permeability is less than 1 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)]. Therefore, by using this laminated gas barrier film 12 for packaging materials such as infusion bags and food packaging bags, it is possible to obtain packaging materials with high gas barrier properties, and to prevent deterioration of drugs and foods due to moisture and oxygen. It can be prevented greatly.
  • Patent Document 5 when the laminated gas barrier film 12 is used as a packaging material, a sheet-like material (film) made of the same material as the packaging material is formed on the surface of the uppermost organic layer 26.
  • the gas barrier film 12 and the packaging material are laminated in a state where they are bonded with an adhesive as a heat welding layer and in contact with the heat welding layer, and heated while pressing from the support 24 side of the gas barrier film 12.
  • a method of thermally welding the surface and the heat welding layer is conceivable.
  • the laminated gas barrier film 12 is simply thermally welded to the packaging material by such a method, there are many cases where the excellent gas barrier property of the gas barrier film 12 cannot be obtained. Arise.
  • the present inventor has found that the cause of the decrease in gas barrier properties is due to deformation (contraction / expansion) of the heat-welded layer by heating. Specifically, when the packaging material and the gas barrier film 12 are thermally welded, the heat-welded layer is deformed, so that the inorganic layer 28 of the gas barrier film 12 is damaged due to the deformation force. It has been found that the gas barrier properties of the film 12 are greatly reduced.
  • the gas barrier film 12 has an organic layer 26 as the uppermost layer.
  • the gas barrier film 12 has the uppermost organic layer 26, so that the gas barrier film 12 has a high gas barrier performance such that the water vapor transmission rate is less than 1 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)].
  • damage such as cracks and cracks occurs in the inorganic layer 28 during use and the like, and moisture and gas pass through the damaged portion, greatly improving gas barrier properties. It will drop to. That is, it is difficult to secure the high gas barrier property as described above with a gas barrier film that does not have the uppermost organic layer 26.
  • the uppermost organic layer 26 when the (organic / inorganic) laminated gas barrier film 12 is thermally welded to the packaging material, the uppermost organic layer 26 has a high glass transition temperature to some extent. It is preferable to have. In particular, the uppermost organic layer 26 preferably has a glass transition temperature of 120 ° C. or higher.
  • the heat-welded layer for heat-welding with the packaging material is bonded to the uppermost organic layer 26 by the adhesive layer.
  • the adhesive layer is softened by heat at the time of drying the solvent of the adhesive layer, and the function as a protective layer for the inorganic layer 28 is not achieved.
  • heat-welding a heat welding layer and a packaging material it is necessary to heat and pressurize to high temperature. In particular, in consideration of productivity, in order to perform heat welding in a short time, it is preferable to perform heating at a temperature much higher than the melting temperature of the heat welding layer.
  • the inorganic layer 28 is usually formed by plasma CVD, sputtering, or the like.
  • the organic layer 26 that is the underlayer of the inorganic layer 28 is required to have plasma resistance, and preferably has a glass transition temperature that is somewhat high.
  • the gas barrier film 12 has a plurality of organic layers 26. In consideration of productivity, it is preferable to form all the organic layers 26 with the same material. Therefore, it is preferable that the uppermost organic layer 26 also has a high glass transition temperature to some extent.
  • the heat-welding layer is adhered to the organic layer 26 having a somewhat high glass transition temperature.
  • the thermal welding layer is preferably melted at a low temperature.
  • the heat welding layer is deformed.
  • the organic layer 26 having a high glass transition temperature is strong against heat, but is hard and thus weak against stress.
  • the heat-welded layer and the organic layer 26 are strongly bonded with an adhesive. For this reason, the organic layer 26 is also deformed and further damaged by the deformation of the heat-welded layer.
  • the inorganic layer 28 is made of an inorganic compound such as silicon nitride, has a glass transition temperature higher than that of the organic layer 26, and is harder and more brittle. As a result, the inorganic layer 28 to which the deformation and destruction of the organic layer 26 are transmitted is subjected to an excessive force to be deformed, and the inorganic layer 28 is damaged such as cracks and cracks. If the inorganic layer 28 is damaged, moisture and oxygen can permeate from here, so that the gas barrier property is lowered.
  • the laminated gas barrier film 12 has a high gas barrier property such that the water vapor transmission rate is less than 1 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)], so even if the inorganic layer 28 is slightly damaged. , Will be a very big performance degradation.
  • the packaging material 10 of the present invention has an intermediate layer 16 between the heat welding layer 20 and the gas barrier film 12. Further, the glass transition temperature of the intermediate layer 16 and the support 24 of the gas barrier film 12 is lower than that of the organic layer 26 and higher than that of the heat welding layer 20. Therefore, the glass transition temperature of each layer (each layer excluding the adhesive layer) constituting the packaging material 10 is: Thermal weld layer 20 ⁇ support 24 and intermediate layer 16 ⁇ organic layer 26 It becomes. That is, in the packaging material 10 of the present invention, the glass transition temperature of each layer decreases as it goes outward with the inorganic layer 28 as the center.
  • the packaging material 10 of the present invention the softening property due to heating of each layer increases as it goes outward with the inorganic layer 28 as the center. Since the packaging material 10 of the present invention has such a configuration, it is possible to appropriately perform the thermal welding with the packaging material, and the thermal welding layer 20 (the uppermost organic layer 26) at the time of the thermal welding. Even if deformed, damage to the inorganic layer 28 can be prevented.
  • the intermediate layer 16 has a glass transition temperature higher than that of the heat welding layer 20 and lower than that of the organic layer 26 between the heat welding layer 20 and the organic layer 26. Therefore, when the packaging material 10 is heat-welded with the packaging material, even if the heat-welded layer 20 is largely deformed by heating, the intermediate layer 16 functions as a buffer layer that buffers deformation of the heat-welded layer 20. As a result, the deformation and force of the heat welding layer 20 transmitted from the heat welding layer 20 to the organic layer 26 can be greatly reduced. Moreover, since the organic layer 26 has a glass transition temperature higher than that of the intermediate layer 16, the deformation and force of the heat-welded layer 20 transmitted from the organic layer 26 to the inorganic layer 28 can be greatly reduced.
  • the heat welding layer 20 has the lowest glass transition temperature, layers other than the heat welding layer 20 can be prevented from being damaged by heat when the packaging material 10 is heat welded to the packaging material.
  • the intermediate layer 16 not only the intermediate layer 16 but also the support 24 of the gas barrier film 12 has a glass transition temperature lower than that of the organic layer 26 and higher than that of the heat-welded layer 20. That is, the intermediate layer 16 and the support 24 have the same glass transition temperature in each layer constituting the packaging material 10.
  • the thermal welding of the packaging material 10 is usually performed by closely contacting the thermal welding layer 20 to the packaging material and heating the support 24. At this time, if the glass transition temperature of the intermediate layer 16 is significantly higher than that of the support 24, the intermediate layer 16 is in a direction to suppress the deformation with respect to the deformation of the gas barrier film 12 during the thermal welding. work. That is, the intermediate layer 16 holds the uppermost organic layer 26 and inorganic layer 28.
  • the underlying organic layer 26 and the inorganic layer 28 cannot follow the deformation of the support 24, and the inorganic layer 28 is still damaged.
  • the intermediate layer 16 and the support 24 have the same glass transition temperature, the intermediate layer 16 is also deformed in the same manner as the support. Damage can be prevented.
  • the glass transition temperatures of the intermediate layer 16 and the support 24 are preferably the same or substantially the same.
  • the support 24 is PET, it is more preferable to form the intermediate layer 16 and the support 24 with the same material, such as forming the intermediate layer 16 with the same PET.
  • the support 24 and the organic layer 26 serving as a base are both formed of a material having an equally high glass transition temperature to prevent deformation of the support 24 at the time of heat welding.
  • the glass transition temperature that can sufficiently exhibit the plasma resistance required for the organic layer 26 as a base and that can completely suppress expansion during welding is about 200 ° C.
  • a plastic film having such a high glass transition temperature and transparency is limited to transparent polyimide or the like and becomes very expensive. Therefore, this selection is not realistic.
  • the problem of damage to the inorganic layer 28 due to the deformation of the heat-welded layer 20 during this heat-welding is that the uppermost layer is the organic layer 26 and the water vapor transmission rate is 1 ⁇ 10 ⁇ 4 [g / (m). This is a problem peculiar to the laminated gas barrier film 12 having a high gas barrier property such as less than 2 ⁇ day).
  • a gas barrier film formed by directly forming an inorganic layer 28 on a support as shown in Patent Document 4 is basically a high gas barrier such as a laminated gas barrier film 12 whose surface is an organic layer 26. Does not have sex.
  • a high gas barrier such as a laminated gas barrier film 12 whose surface is an organic layer 26. Does not have sex.
  • the surface of the laminated gas barrier film having the organic layer 26 as the base layer but not having the organic layer 26 as the protective layer is the inorganic layer 28, When performing various treatments, it is difficult to avoid damage to the inorganic layer 28. Therefore, as a result, this gas barrier film also does not have a high gas barrier property like the laminated gas barrier film 12 whose surface is the organic layer 26 fundamentally.
  • the gas barrier property is hardly lowered and does not cause a problem in performance. That is, in a packaging material in which a heat-welding layer is provided on the surface of these gas barrier films, performance degradation due to deformation of the heat-welding layer hardly occurs and does not cause a problem. Therefore, in these gas barrier films, even if the intermediate layer 16 as in the present invention is provided in the lower layer of the heat welding layer 20, it is meaningless, one extra layer is added, and the cost is increased. Only the heat weldability to the packaging material is reduced.
  • the uppermost layer is the organic layer 26 and the water vapor permeability is high such as less than 1 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)].
  • the inorganic layer 28 causes a large gas barrier property, that is, a reduction in performance. Therefore, the effect of having the intermediate layer 16 is very large.
  • the material for forming the intermediate layer 16 is not limited, and is a material having a glass transition temperature higher than that of the heat welding layer 20 and higher than that of the organic layer 26 (sheet-like material (film)).
  • the support 24 of the gas barrier film 12 is PET or PEN (polyethylene naphthalate)
  • the organic layer 26 is a (meth) acrylic resin
  • the inorganic layer 28 is a silicon compound such as silicon nitride.
  • a PET film, a PEN film, a nylon film, or the like is suitably used as the intermediate layer 16.
  • the intermediate layer 16 is preferably formed of the same material as the support 24 as described above. Therefore, in this example, it is preferable to use a PET film as the intermediate layer 16 when the support 24 is PET, and to use a PEN film as the intermediate layer 16 when the support 24 is PEN.
  • the glass transition temperature satisfies the relationship of “thermal welding layer 20 ⁇ support 24 and intermediate layer 16 ⁇ organic layer 26”.
  • the glass transition temperature may not be present (the glass transition temperature may not be defined).
  • the softening temperature is changed to the glass transition temperature. (Softening point Ts) or melting point (Tm) is used. If both the softening temperature and the melting point can be defined, the softening temperature is used.
  • the thickness of the intermediate layer 16 is not limited, and a thickness capable of exerting an action of relaxing the shrinkage and movement of the above-described heat-welded layer 20 is appropriately selected according to the forming material of the intermediate layer 16. Good.
  • the thickness of the intermediate layer 16 is preferably 20 ⁇ m or less, particularly preferably 15 to 8 ⁇ m.
  • the first adhesive layer 14 for bonding the intermediate layer 16 to the gas barrier film 12 is a layer made of a known adhesive, and all the adhesives that can bond the intermediate layer 16 to the gas barrier film 12 (organic layer 26) are used. Is possible. In consideration of the optical characteristics of the packaging material 10, an adhesive having excellent transparency is preferably used. Moreover, there is no limitation in the thickness of the 1st adhesive bond layer 14, What is necessary is just to select suitably the thickness which can adhere
  • the material for forming the heat welding layer 20 is basically the same material as the material for forming a packaging material such as an infusion bag to which the packaging material 10 of the present invention is thermally welded. That is, if the packaging material to which the packaging material 10 is thermally welded is made of PE, the thermal welding layer 20 may be formed of a PE film, and if the packaging material to which the packaging material 10 is thermally welded is made of PP. The heat welding layer 20 may be formed of a PP film.
  • the thickness of the heat welding layer 20 is preferably 60 ⁇ m or less, and particularly preferably 50 to 10 ⁇ m.
  • the second adhesive layer 18 for adhering the heat welding layer 20 to the intermediate layer 16 all the adhesives capable of adhering the heat welding layer 20 to the intermediate layer 16 can be used. Similarly, an adhesive having excellent transparency is preferably used.
  • the thickness of the second adhesive layer 18 is not limited, and a thickness capable of reliably bonding the heat welding layer 20 to the intermediate layer 16 may be appropriately selected. Further, as described above, when the thickness from the first adhesive layer 14 to the heat welding layer 20 is too thick, the gas barrier property of the packaging material of the present invention is deteriorated. Therefore, the second adhesive layer 18 is preferably thin, and particularly preferably 10 ⁇ m or less.
  • each layer from the first adhesive layer 14 to the heat welding layer 20 basically has no gas barrier property. Accordingly, moisture and oxygen penetrate from the end faces of these layers, and the penetrated moisture and the like enter the inside of the packaging material to which the packaging material 10 of the present invention is thermally welded. Therefore, if the thickness from the first adhesive layer 14 to the heat welding layer 20 is too thick, the amount of moisture and oxygen entering from this end face increases, and the gas barrier property of the packaging material 10 is greatly lowered.
  • the gas barrier properties such as the gas barrier film described in Patent Document 4 and the like are usually excellent, and the gas barrier property is excellent until the intermediate layer 16 is increased by one layer. The meaning of using the laminated gas barrier film 12 is lost.
  • the thickness from the first adhesive layer 14 to the heat welding layer 20 is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and particularly preferably 60 ⁇ m or less.
  • a long PET film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) having a width of 1000 mm and a thickness of 100 ⁇ m was used. It was 69 degreeC when the glass transition temperature of this support body 24 was measured by DSC (differential scanning calorimetry).
  • MEK methyl ethyl ketone
  • TMPTA manufactured by Daicel-Cytec
  • modified bisphenol A diacrylate EBECRYL150, manufactured by Daicel-Cytech
  • surfactant BYK378, manufactured by BYK Chemie Japan
  • photopolymerization initiator Ciba Chemicals
  • a paint for forming the organic layer 26 was prepared by adding Irg184).
  • the addition amount of the surfactant was 1% by mass in the concentration excluding the organic solvent (solid content concentration), and the addition amount of the photopolymerization initiator was 2% by mass in the concentration excluding the organic solvent (that is, in the solid content). 97% by mass of organic compound).
  • the amount of the modified bisphenol A diacrylate added was 10% of TMPTA, and the solid content concentration of the coating was 15% by mass.
  • the prepared paint was applied to the surface of the support 24 with a die coater, dried with warm air, and then irradiated with ultraviolet rays to form an organic layer 26 having a thickness of 2 ⁇ m. It was 250 degreeC when the glass transition temperature of the organic layer 26 was measured by the method similar to the support body 24.
  • FIG. 1 The prepared paint was applied to the surface of the support 24 with a die coater, dried with warm air, and then irradiated with ultraviolet rays to form an organic layer 26 having a thickness of 2 ⁇ m. It was 250 degreeC when the glass transition temperature of the organic layer 26 was measured by the method similar to the support body 24.
  • a silicon nitride layer as an inorganic layer 28 was formed to a thickness of 50 nm by CCP-CVD.
  • Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as source gases.
  • the supply amounts were 100 sccm for silane gas, 200 sccm for ammonia gas, 500 sccm for nitrogen gas, and 500 sccm for hydrogen gas.
  • the film forming pressure was 50 Pa.
  • the plasma excitation power was 3000 W at a frequency of 13.5 MHz.
  • a bias power of 500 W was supplied from the back side of the support 24, and the temperature of the support 24 was adjusted to ⁇ 20 ° C.
  • an organic layer 26 having a thickness of 2 ⁇ m is formed in the same manner as described above, and the underlying organic layer 26, the inorganic layer 28, and the uppermost layer are formed on the support 24.
  • a gas barrier film 12 having an organic layer 26 was produced.
  • the water vapor permeability [g / (m 2 ⁇ day)] of the produced gas barrier film 12 was measured by a calcium corrosion method (a method described in JP-A-2005-283561). As a result, the water vapor transmission rate was 8 ⁇ 10 ⁇ 5 [g / (m 2 ⁇ day)].
  • An adhesive was applied to the surface of the intermediate layer 16 in the same manner as the first adhesive layer 14 to form a second adhesive layer 18 having a thickness of 4 ⁇ m.
  • a 40 ⁇ m thick PE film FC-S40 manufactured by Tosero Co., Ltd.
  • FC-S40 manufactured by Tosero Co., Ltd.
  • the glass transition temperature of the heat-welded layer 20 was measured by the same method as that for the support 24 and found to be ⁇ 25 ° C.
  • the produced packaging material 10 was cut into 100 ⁇ 100 mm and laminated on a PE film having the same size and a thickness of 40 ⁇ m. Next, the entire peripheral edge 10 mm of the packaging material 10 was heated and pressed from the support 24 side, and the packaging material 10 was thermally welded to the PE film. When the water vapor transmission rate of the laminate of the heat-welded packaging material 10 and the PE film was measured in the same manner as described above, it was 1.0 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)].
  • Example 2 The same as in Example 1 except that the amount of the modified bisphenol A diacrylate was changed to 20% of TMPTA in the coating material for forming the organic layer 26 without changing the solid content concentration (15% by mass) of the coating material.
  • a gas barrier film 12 was produced, and a packaging material 10 was further produced. It was 140 degreeC when the glass transition temperature of the organic layer 26 was measured similarly to Example 1.
  • the produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1 and the water vapor permeability of the laminate was measured to find 1.9 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)]. there were.
  • Example 3 A packaging material 10 was produced in the same manner as in Example 1 except that the heat welding layer 20 was changed to a PE film (FC-S100 manufactured by Tosero Co., Ltd.) having a thickness of 100 ⁇ m.
  • a PE film FC-S100 manufactured by Tosero Co., Ltd.
  • the produced packaging material 10 was thermally welded to a PE film in the same manner as in Example 1, and the water vapor transmission rate of the laminate was measured to be 1.7 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)]. there were.
  • Example 4 A packaging material 10 was produced in the same manner as in Example 1 except that the intermediate layer 16 was changed to a PET film having a thickness of 100 ⁇ m (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.). It was 69 degreeC when the glass transition temperature of the intermediate
  • FIG. The produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1, and the water vapor permeability of the laminate was measured to find 4.9 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)]. there were.
  • Example 5 A packaging material 10 was produced in the same manner as in Example 1 except that the heat-welded layer 20 was replaced with a 25 ⁇ m thick PE film (FC-S25 manufactured by Tosero). When the glass transition temperature of the heat-welded layer 20 was measured in the same manner as in Example 1, it was ⁇ 25 ° C. The produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1 and the water vapor permeability of the laminate was measured. As a result, it was 9.8 ⁇ 10 ⁇ 5 [g / (m 2 ⁇ day)]. there were.
  • FC-S25 manufactured by Tosero
  • a packaging material 10 was produced in the same manner as in Example 1 except that the intermediate layer 16 was changed to a PE film having a thickness of 12 ⁇ m (Idemitsu New IP Stretch, manufactured by Idemitsu Unitech Co., Ltd.). When the glass transition temperature of the intermediate layer 16 was measured in the same manner as in Example 1, it was ⁇ 25 ° C. The produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1, and the water vapor transmission rate of the laminate was measured to be 1.5 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)]. there were.
  • a packaging material 10 was produced in the same manner as in Example 1 except that the intermediate layer 16 was changed to a 12 ⁇ m-thick polyimide film (Kapton 50H manufactured by Toray DuPont).
  • the measurement limit about 260 ° C.
  • the glass transition temperature of this polyimide film is considered to be much higher than 250 ° C.
  • the produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1, and the water vapor transmission rate of the laminate was measured to find 1.2 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)]. there were.
  • a coating material for forming the organic layer 26 is prepared using fatty acid-modified epoxy acrylate (EBECRYL 3702, manufactured by Daicel-Cytec), and the gas barrier film 12 is produced in the same manner as in Example 1, and further packaging Material 10 was made. It was 56 degreeC when the glass transition temperature of the organic layer 26 was measured similarly to Example 1.
  • FIG. Further, in the same manner as in Example 1, the water vapor permeability of the produced gas barrier film 12 was measured and found to be 5 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)].
  • the produced packaging material 10 was thermally welded to a PE film in the same manner as in Example 1, and the water vapor transmission rate of the laminate was measured to be 6.5 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)]. there were.
  • Example 4 A gas barrier film was prepared in the same manner as in Example 1 except that the gas barrier film had a two-layer structure of the base organic layer 26 and the inorganic layer 28 (without the uppermost organic layer 26). Produced. Similarly to Example 1, the water vapor permeability of the produced gas barrier film was measured and found to be 1.8 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)]. The produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1, and the water vapor transmission rate of the laminate was measured to be 8.5 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)]. there were.
  • Example 5 A gas barrier film was prepared in the same manner as in Example 1 except that the gas barrier film had a two-layer structure of the underlying organic layer 26 and inorganic layer 28 (without the uppermost organic layer 26) (that is, the gas barrier film was compared). Same as Example 4). A packaging material was produced in the same manner as in Example 1 except that this gas barrier film was used and the intermediate layer 16 was not provided. The produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1 and the water vapor transmission rate of the laminate was measured to be 9.0 ⁇ 10 ⁇ 2 [g / (m 2 ⁇ day)]. there were.
  • Example 6 A packaging material was produced in the same manner as in Example 1 except that the intermediate layer 16 was not provided.
  • the produced packaging material 10 was thermally welded to a PE film in the same manner as in Example 1, and the water vapor transmission rate of the laminate was measured. As a result, it was 7.0 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)]. there were.
  • the water vapor transmission rate is “Excellent” if less than 1 ⁇ 10 -4 [g / (m 2 ⁇ day)]; 1 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)] or more and less than 2 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)] “good”; Anything over 2 ⁇ 10 -4 [g / (m 2 ⁇ day)] and less than 1 ⁇ 10 -3 [g / (m 2 ⁇ day)] is acceptable. 1 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)] or more was evaluated as “impossible”;
  • the packaging material 10 of the present invention in which the glass transition temperature of each layer satisfies “thermal welding layer 20 ⁇ support 24 and intermediate layer 16 ⁇ organic layer 26” is heat-sealed with the PE film. However, it exhibits a high gas barrier property of less than 2.0 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)].
  • Example 5 in which the thickness of the heat-welded layer 20 is thinner than others has a very high gas barrier performance of less than 1 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)].
  • Example 2 since the glass transition temperature of the organic layer 26 is low, Example 3 is thicker in the intermediate layer 16 than in Example 4, because the heat-welded layer 20 is thicker.
  • the glass transition temperature of the intermediate layer 16 is the same as that of the heat welding layer 20 in the comparative example 1, the glass transition temperature of the intermediate layer 16 is higher than that of the organic layer 26 in the comparative example 2. Since the glass transition temperature of the intermediate layer 16 is higher than that of the organic layer 26 and the glass transition temperature of the organic layer 26 is low, both of the support layer 24 and the thermal welding are used in Comparative Example 3. The deformation of the layer 20 and the like is transmitted to the inorganic layer 28 and the inorganic layer 28 is damaged, and the gas barrier property is low as compared with the packaging material of the present invention.
  • middle layer 16 also has low gas barrier property compared with the packaging material of this invention for the same reason.
  • Examples 1, 3, 4, and 5 and Comparative Examples 1, 2, and 6 all use the same gas barrier film 12. That is, in the comparative example, it is considered that the inorganic layer 28 is damaged during the thermal welding with the PE film, and the gas barrier property is lowered.
  • the packaging material 10 of the present invention it is possible to prevent the inorganic layer 28 from being damaged during the thermal welding with the packaging material.
  • the gas barrier film has a two-layer structure of organic layer / inorganic layer
  • the gas barrier film itself has low gas barrier performance due to damage to the inorganic layer during handling and the like. Performance cannot be obtained. From the above results, the effects of the present invention are clear.

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

A packaging material to be thermally welded to a package, which is characterized by comprising a gas barrier film (12), an intermediate layer (16) that is bonded to the gas barrier film by means of a first adhesive layer (14), and a thermal welding layer (20) that is bonded to the intermediate layer by means of a second adhesive layer (18). This packaging material is also characterized in that: the gas barrier film has a laminated structure wherein one or more combinations of one inorganic layer (28) that has gas barrier properties and one organic layer (26) that serves as a base layer for the inorganic layer are formed on a supporting body (24) so that an organic layer (26) forms the outermost layer; the glass transition temperature of the organic layer is higher than the glass transition temperatures of the intermediate layer and the supporting body of the gas barrier film; and the glass transition temperatures of the intermediate layer and the supporting body of the gas barrier film are higher than the glass transition temperature of the thermal welding layer.

Description

[規則37.2に基づきISAが決定した発明の名称] 包装材に熱溶着される包装材料[Name of invention determined by ISA based on Rule 37.2] Packaging material thermally welded to packaging material
 本発明は、医療用の輸液バッグや食品用のチューブなどの包装材に熱溶着される包装材料に関し、詳しくは、これらの包装材に熱溶着されることにより、包装材に高いガスバリア性を付与する包装材料に関する。 The present invention relates to a packaging material that is thermally welded to a packaging material such as a medical infusion bag or a tube for food, and more specifically, imparts a high gas barrier property to the packaging material by being thermally welded to the packaging material. It relates to packaging materials.
 水分や酸素によって変質する薬剤を収容する輸液バッグや、同じく水分や酸素によって劣化する食品を収容するチューブや包装袋では、ガスバリア性が高いことが要求される。
 また、隔壁によって分離された2室の一方に水を、他方に薬剤を収容し、使用直前に隔壁を開放して水と薬剤とを混合する輸液バッグが知られている。このような輸液バッグでは、適正な処置を行うために、水と薬剤とが確実に混合されていることが重要であり、目視によって確認できるのが好ましい。このように、内容物の確認が必要な包装容器では、内部の視認性を確保することも要求される。
Infusion bags that contain drugs that are altered by moisture and oxygen, and tubes and packaging bags that contain foods that are also deteriorated by moisture and oxygen are required to have high gas barrier properties.
There is also known an infusion bag in which water is stored in one of two chambers separated by a partition wall, a drug is stored in the other, and the partition wall is opened immediately before use to mix water and the drug. In such an infusion bag, in order to perform an appropriate treatment, it is important that water and a medicine are reliably mixed, and it is preferable that it can be visually confirmed. Thus, in a packaging container that requires confirmation of the contents, it is also required to ensure the internal visibility.
 このような要求に答えるために、各種の提案がされている。
 例えば、特許文献1には、周縁に所定の接着領域を有する2枚のフィルムからなり、少なくとも一方のフィルムの接着領域に、酸素遮断性の金属層を有するガスバリアフィルム(ガス遮断フィルム)を接着する包装体が記載されている。
 この包装体は、未使用時にはガスバリアフィルムによって酸素を遮断して、内容物の変質を防止し、使用時には、周縁からガスバリアフィルムを剥離することにより、包装体内部の視認性を確保している。
Various proposals have been made to meet such demands.
For example, in Patent Document 1, a gas barrier film (gas barrier film) comprising two films having a predetermined adhesive region on the periphery and having an oxygen-blocking metal layer is bonded to the adhesive region of at least one film. A package is described.
When the package is not used, oxygen is blocked by the gas barrier film to prevent the contents from being deteriorated. When the package is used, the gas barrier film is peeled off from the periphery to ensure visibility inside the package.
 また、特許文献2には、隔壁の破断によって連通される複数の2室を有する容器において、その一室に酸素によって変質しやすい製品を収容して、この室をガスバリアフィルム(ガスバリア性外装フィルム)によって密着包装し、外装フィルムの内側に酸素吸収樹脂層を設けた容器が記載されている。
 特許文献3には、隔壁の破断によって連通される粉体収容室と液体収容室とを有する容器において、粉体収容室に剥離可能なガスバリアフィルム(水分と酸素が不透過性のカバーシート)を接着して、ガスバリアフィルムで粉体を保護することが記載されている。
Further, in Patent Document 2, in a container having a plurality of two chambers communicated with each other by breakage of a partition wall, a product which is easily deteriorated by oxygen is accommodated in one chamber, and this chamber is used as a gas barrier film (gas barrier exterior film). And a container in which an oxygen-absorbing resin layer is provided inside the exterior film.
Patent Document 3 discloses a gas barrier film (a cover sheet impermeable to moisture and oxygen) that can be peeled to a powder storage chamber in a container having a powder storage chamber and a liquid storage chamber communicated by breakage of a partition wall. It is described that the powder is adhered and the powder is protected with a gas barrier film.
 さらに、特許文献4には、融点、密度およびメルトフローレートが所定の関係を満たすポリエチレン系樹脂で形成される第1の樹脂層と第2の樹脂層とからなる内層と、ナイロン層とPET(ポリエチレンテレフタレート)層とから中間層と、ポリエチレン系樹脂で形成される外層を有する超音波シールが適用されるラミネートチューブ用積層フィルムにおいて、必要に応じて、外層と中間層との間にガスバリアフィルム(バリヤー性基材層)を設けることで、この積層フィルムにガスバリア性を付与することが記載されている。 Furthermore, Patent Document 4 discloses an inner layer composed of a first resin layer and a second resin layer formed of a polyethylene resin satisfying a predetermined relationship between a melting point, a density, and a melt flow rate, a nylon layer, and PET ( In laminated film for laminated tube to which an ultrasonic seal having an intermediate layer and an outer layer formed of a polyethylene-based resin is applied from a polyethylene terephthalate) layer, if necessary, a gas barrier film (between the outer layer and the intermediate layer) It is described that a gas barrier property is imparted to the laminated film by providing a barrier substrate layer).
 ところで、非常に高いガスバリア性を有するガスバリアフィルムとして、有機層および無機層を積層した有機/無機積層型(以下、単に『積層型』とも言う)のガスバリアフィルムが知られている。
 積層型のガスバリアフィルムとは、PETフィルム等を支持体として、支持体の表面に下地層となる有機層を成膜し、この有機層の上にガスバリア性を発揮する窒化珪素などの無機層を成膜した構成を有するものである。また、無機層の上に、無機層を保護するための有機層を有する場合も有る。
By the way, as a gas barrier film having very high gas barrier properties, an organic / inorganic laminated type (hereinafter also simply referred to as “laminated type”) gas barrier film in which an organic layer and an inorganic layer are laminated is known.
The laminated gas barrier film is a PET film or the like as a support, an organic layer serving as a base layer is formed on the surface of the support, and an inorganic layer such as silicon nitride that exhibits gas barrier properties is formed on the organic layer. It has the structure which formed into a film. In addition, an organic layer for protecting the inorganic layer may be provided on the inorganic layer.
 積層型のガスバリアフィルムでは、下地の有機層を有することにより、フィルムの全面に割れやヒビ等の無い適正な無機層を成膜することができる。これにより、無機層が有する高いガスバリア性を十分に発揮した、高いガスバリア性を有するガスバリアフィルムを得られる。
 また、最上層に有機層を有することにより、硬く、脆い無機層に割れやヒビ等が生じることを防止して、高いガスバリア性を安定して得ることができる。
In a laminated gas barrier film, an appropriate inorganic layer free from cracks and cracks can be formed on the entire surface of the film by having an underlying organic layer. Thereby, the gas barrier film which fully exhibited the high gas barrier property which an inorganic layer has, and has high gas barrier property can be obtained.
In addition, by having an organic layer as the uppermost layer, it is possible to prevent cracks and cracks from occurring in the hard and brittle inorganic layer, and to stably obtain high gas barrier properties.
 このような積層型のガスバリアフィルムを包装容器に利用することも知られている。
 例えば、特許文献5には、ポリエチレンおよび/またはポリプロピレンを含む樹脂バックに、第1の有機層、無機層および第2の有機層を有するバリア層を設けた輸液バッグが記載されている。
 また、このバリア層は、基本的に、プラスチックフィルムを支持体として、この支持体の上に、第1の有機層、無機層および第2の有機層を積層して構成される。
It is also known to use such a laminated gas barrier film for a packaging container.
For example, Patent Document 5 describes an infusion bag in which a barrier layer having a first organic layer, an inorganic layer, and a second organic layer is provided on a resin bag containing polyethylene and / or polypropylene.
The barrier layer is basically configured by using a plastic film as a support and laminating a first organic layer, an inorganic layer, and a second organic layer on the support.
特開平10-277135号公報JP-A-10-277135 特開平10-201818号公報Japanese Patent Laid-Open No. 10-201818 特開2003-230618号公報Japanese Patent Laid-Open No. 2003-230618 国際公開2003-099557号公報International Publication No. 2003-099557 特開2012-75716号公報JP 2012-75716 A
 前述のように、積層型のガスバリアフィルムは、優れたガスバリア性を有する。
 そのため、特許文献1~4に示されるような、医療用の輸液バッグや、食品用のチューブなどに、特許文献5に示されるような積層型のガスバリアフィルムを利用することにより、よりガスバリア性に優れる包装容器が得られることが期待できる。
As described above, the laminated gas barrier film has excellent gas barrier properties.
Therefore, by using a laminated gas barrier film as shown in Patent Document 5 for medical infusion bags and food tubes as shown in Patent Documents 1 to 4, gas barrier properties can be further improved. It can be expected that an excellent packaging container will be obtained.
 ここで、特許文献5に示されるように、積層型のガスバリアフィルムを包装容器に利用する際には、ガスバリアフィルムの表面(支持体となるプラスチックフィルムと逆面)に、接着剤によってプラスチックフィルムからなる熱溶着層を貼着し、この熱溶着層と包装容器とを熱溶着(ヒートシール(熱シール))ことが考えられる。
 しかしながら、本発明者の検討によれば、積層型のガスバリアフィルムを包装容器に熱溶着すると、積層型のガスバリアフィルムが有する優れたガスバリア性が得られない場合が、多々、生じる。
Here, as shown in Patent Document 5, when a laminated gas barrier film is used for a packaging container, the surface of the gas barrier film (opposite to the plastic film serving as a support) is coated with an adhesive from the plastic film. It is conceivable that a heat-welding layer is attached and the heat-welding layer and the packaging container are heat-welded (heat sealing (heat sealing)).
However, according to the study of the present inventor, when a laminated gas barrier film is thermally welded to a packaging container, there are many cases where the excellent gas barrier property of the laminated gas barrier film cannot be obtained.
 本発明の目的は、前記従来技術の問題点を解決することにあり、優れたガスバリア性能を有する有機/無機積層型のガスバリアフィルムを、医療用の輸液バッグや、食品用のチューブや包装袋などの包装材に熱溶着することにより、有機/無機積層型のガスバリアフィルムが有する優れたガスバリア性を発揮して、これらの包装材に優れたガスバリア性を付与することができる包装材料を提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, such as organic / inorganic laminated gas barrier films having excellent gas barrier performance, medical infusion bags, food tubes, packaging bags, etc. To provide a packaging material capable of exerting excellent gas barrier properties of an organic / inorganic laminated gas barrier film by being thermally welded to the packaging materials, and imparting excellent gas barrier properties to these packaging materials. It is in.
 上記課題を解決するために、本発明の包装材料は、包装材に熱溶着される包装材料であって、
 ガスバリアフィルムと、第1接着剤層によってガスバリアフィルムに接着される中間層と、第2接着剤層によって中間層に接着される熱溶着層とを有し、
 ガスバリアフィルムは、支持体の上に、ガスバリア性を有する無機層と、この無機層の下地層となる有機層との組み合わせを1以上形成し、かつ、最上層が有機層である積層構造を有し、
 さらに、有機層のガラス転移温度が、中間層およびガスバリアフィルムの支持体よりも高く、中間層およびガスバリアフィルムの支持体のガラス転移温度が、熱溶着層よりも高いことを特徴とする包装材料を提供する。
In order to solve the above problems, the packaging material of the present invention is a packaging material thermally welded to a packaging material,
A gas barrier film, an intermediate layer bonded to the gas barrier film by the first adhesive layer, and a heat welding layer bonded to the intermediate layer by the second adhesive layer;
The gas barrier film has a laminated structure in which one or more combinations of an inorganic layer having gas barrier properties and an organic layer serving as a base layer of the inorganic layer are formed on a support, and the uppermost layer is an organic layer. And
Further, a packaging material characterized in that the glass transition temperature of the organic layer is higher than that of the support of the intermediate layer and the gas barrier film, and the glass transition temperature of the support of the intermediate layer and the gas barrier film is higher than that of the heat-welded layer. provide.
 このような本発明の包装材料において、第1接着剤層から熱溶着層までの厚さが、100μm以下であるのが好ましい。
 また、中間層と、ガスバリアフィルムの支持体とが、同じ材料で形成されるのが好ましい。
 また、全ての有機層が同じ材料で形成されるのが好ましい。
 また、熱溶着層の厚さが60μm以下であるのが好ましい。
 また、中間層の厚さが20μm以下であるのが好ましい。
 また、有機層が、アクリル樹脂およびメタクリル樹脂の少なくとも一方からなる層であるのが好ましい。
 また、無機層が、窒化珪素からなる層であるのが好ましい。
 また、熱溶着層が、ポリエチレンもしくはポリプロピレンからなる層であるのが好ましい。
 さらに、中間層が、ポリエチレンテレフタレートからなる層であるのが好ましい。
In such a packaging material of the present invention, the thickness from the first adhesive layer to the heat-welded layer is preferably 100 μm or less.
Moreover, it is preferable that an intermediate | middle layer and the support body of a gas barrier film are formed with the same material.
Moreover, it is preferable that all the organic layers are formed with the same material.
Moreover, it is preferable that the thickness of a heat welding layer is 60 micrometers or less.
Moreover, it is preferable that the thickness of an intermediate | middle layer is 20 micrometers or less.
Moreover, it is preferable that an organic layer is a layer which consists of at least one of an acrylic resin and a methacryl resin.
The inorganic layer is preferably a layer made of silicon nitride.
Moreover, it is preferable that a heat welding layer is a layer which consists of polyethylene or a polypropylene.
Further, the intermediate layer is preferably a layer made of polyethylene terephthalate.
 上記構成を有する本発明の包装材料は、医療用の輸液バッグ、食品用のチューブや包装袋等の包装材に熱溶着することにより、有機/無機積層型のガスバリアフィルムが有する優れたガスバリア性を、これらの包装材バック等に付与することができる。 The packaging material of the present invention having the above-described structure has excellent gas barrier properties possessed by an organic / inorganic laminate type gas barrier film by heat-welding to packaging materials such as medical infusion bags, food tubes and packaging bags. , And can be applied to these packaging material bags.
本発明の包装材料の一例を概念的に示す図である。It is a figure which shows notionally an example of the packaging material of this invention. 本発明の包装材料に利用されるガスバリアフィルムの一例を概念的に示す図である。It is a figure which shows notionally an example of the gas barrier film utilized for the packaging material of this invention.
 以下、本発明の包装材料について、添付の図面に示される好適実施例を基に、詳細に説明する。 Hereinafter, the packaging material of the present invention will be described in detail based on a preferred embodiment shown in the accompanying drawings.
 図1に、本発明の包装材料の一例を概念的に示す。
 図1に示す包装材料10は、基本的に、ガスバリアフィルム12と、第1接着剤層14と、中間層16と、第2接着剤層18と、熱溶着層20とを有して構成される。
 また、本発明において、ガスバリアフィルム12は、支持体24の上に、ガスバリア性を発揮する無機層28と、この無機層28の下地層(アンダーコート層)となる有機層26との組み合わせを、1以上、形成し、かつ、最上層(表面)に保護層としての有機層26を形成した、前述の有機/無機積層型(以下、単に『積層型』とも言う)のガスバリアフィルムである。
FIG. 1 conceptually shows an example of the packaging material of the present invention.
The packaging material 10 shown in FIG. 1 basically includes a gas barrier film 12, a first adhesive layer 14, an intermediate layer 16, a second adhesive layer 18, and a heat welding layer 20. The
In the present invention, the gas barrier film 12 has a combination of an inorganic layer 28 that exhibits gas barrier properties on the support 24 and an organic layer 26 that serves as a base layer (undercoat layer) of the inorganic layer 28. This is an organic / inorganic laminated type (hereinafter also simply referred to as “laminated type”) gas barrier film having one or more layers formed, and an organic layer 26 as a protective layer formed on the uppermost layer (surface).
 図示例の包装材料10においては、ガスバリアフィルム12は、支持体24の上に有機層26を有し、その上に無機層28を有し、その上に有機層26を有する、有機層と無機層とを3層有する、3層の積層構成である。
 すなわち、ガスバリアフィルム12において、支持体24の上の有機層26は無機層28の下地層で、無機層28の上の有機層26は、無機層28を保護する保護層である。
In the illustrated packaging material 10, the gas barrier film 12 has an organic layer 26 on a support 24, an inorganic layer 28 on the organic layer 26, and an organic layer 26 on the organic layer 26. A three-layer structure having three layers.
That is, in the gas barrier film 12, the organic layer 26 on the support 24 is a base layer for the inorganic layer 28, and the organic layer 26 on the inorganic layer 28 is a protective layer for protecting the inorganic layer 28.
 このような本発明の包装材料10は、医療用の輸液バッグ、食品用のチューブや包装袋などに熱溶着されることにより、包装容器に、例えば、水蒸気透過率が1×10-4[g/(m2・day)]未満のような高いガスバリア性を付与するものである。
 なお、本発明の包装材料において、熱溶着される包装材は、前述の輸液バッグや食品用のチューブや包装袋に限定はされない。すなわち、本発明の包装材料は、薬剤等の医療用以外の液体を収容するバック、食品以外の物品を収容するチューブや包装袋(収容袋)、包装用フィルムなどの包装用のシート状物、物品を収容する筐体(ケース)やパッケージなど、各種の物品、特に水分や酸素等によって劣化する物品を包装あるいは収容する、各種の包装材(以下、これらをまとめて『包装材』とも言う)に利用可能である。
Such a packaging material 10 of the present invention is thermally welded to a medical infusion bag, a food tube, a packaging bag, or the like, so that, for example, a water vapor permeability of 1 × 10 −4 [g / (m 2 · day)], such as high gas barrier properties.
In the packaging material of the present invention, the packaging material to be thermally welded is not limited to the above-mentioned infusion bag, food tube or packaging bag. That is, the packaging material of the present invention is a bag that contains non-medical liquids such as drugs, tubes and packaging bags (housing bags) that contain articles other than food, and sheet materials for packaging such as packaging films, Various packaging materials that wrap or contain various articles, especially articles that deteriorate due to moisture, oxygen, etc., such as casings (cases) and packages that contain articles (hereinafter collectively referred to as “packaging materials”) Is available.
 また、本発明の包装材料において、ガスバリアフィルムは、図1に示されるような3層構成に限定はされない。すなわち、より高いガスバリア性を得るために、無機層28と、この無機層28の下地層となる有機層26との組み合わせを、複数有してもよい。
 一例として、図2に示すように、支持体24の上に、下地層としての有機層26を有し、その上に無機層28を有し、その上に下地層としての有機層26を有し、その上に無機層28を有し、その上の最上層に保護層としての有機層26を有する、5層の積層構成を有するガスバリアフィルムであってもよい。すなわち、図2に示すガスバリアフィルムは、無機層28と、下地の有機層26との組み合わせを、2つ有する。
 また、さらに高いガスバリア性を得るために、無機層28と、下地の有機層26との組み合わせを、3以上、有するガスバリアフィルムであってもよい。
In the packaging material of the present invention, the gas barrier film is not limited to a three-layer structure as shown in FIG. That is, in order to obtain a higher gas barrier property, a plurality of combinations of the inorganic layer 28 and the organic layer 26 serving as a base layer of the inorganic layer 28 may be provided.
As an example, as shown in FIG. 2, an organic layer 26 as an underlayer is provided on a support 24, an inorganic layer 28 is provided thereon, and an organic layer 26 as an underlayer is provided thereon. Further, it may be a gas barrier film having a five-layer structure in which an inorganic layer 28 is provided thereon and an organic layer 26 is provided as a protective layer on the uppermost layer. That is, the gas barrier film shown in FIG. 2 has two combinations of the inorganic layer 28 and the underlying organic layer 26.
Further, in order to obtain a higher gas barrier property, a gas barrier film having three or more combinations of the inorganic layer 28 and the underlying organic layer 26 may be used.
 本発明の包装材料10において、ガスバリアフィルム12は、支持体24の上に、有機層26と無機層28とを、交互に積層してなるものである。
 このようなガスバリアフィルム12において、支持体24には、限定はなく、積層型のガスバリアフィルムに限らず、各種のガスバリアフィルムの支持体として利用されている、公知のシート状物が、各種、利用可能である。
In the packaging material 10 of the present invention, the gas barrier film 12 is formed by alternately laminating organic layers 26 and inorganic layers 28 on a support 24.
In such a gas barrier film 12, the support 24 is not limited, and is not limited to a laminated gas barrier film. Various known sheet-like materials that are used as supports for various gas barrier films can be used. Is possible.
 支持体24(基板(基材))としては、具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアミド、ポリ塩化ビニル、ポリカーボネート、ポリアクリロニトリル、ポリイミド、ポリアクリレート、ポリメタクリレートなどの、各種のプラスチック(高分子材料)からなるプラスチックフィルムが、好適に例示される。
 また、本発明においては、このようなプラスチックフィルムの表面に、保護層、接着層、光反射層、反射防止層、遮光層、平坦化層、緩衝層、応力緩和層等の、各種の機能を得るための層(膜)が形成されているものを、支持体24として用いてもよい。
Specifically, as the support 24 (substrate (base material)), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene, polypropylene, polystyrene, polyamide, polyvinyl chloride, polycarbonate, polyacrylonitrile, polyimide, Preferable examples include plastic films made of various plastics (polymer materials) such as polyacrylate and polymethacrylate.
In the present invention, various functions such as a protective layer, an adhesive layer, a light reflection layer, an antireflection layer, a light shielding layer, a planarization layer, a buffer layer, and a stress relaxation layer are provided on the surface of such a plastic film. What is formed with a layer (film) for obtaining may be used as the support 24.
 なお、後に詳述するが、本発明の包装材料においては、この支持体24は、ガラス転移温度(ガラス転移点 Tg)が、有機層26よりも低く、熱溶着層20よりも高い。
 ここで、後述する中間層16のガラス転移温度も、有機層26よりも低く、熱溶着層20よりも高い。さらに、支持体24のガラス転移温度は、中間層16と同じ、もしくは、ほぼ同じであるのが好ましい。中でも特に、支持体24と中間層16とが、同じ材料で形成されるのが好ましい。
As will be described in detail later, in the packaging material of the present invention, the support 24 has a glass transition temperature (glass transition point Tg) lower than that of the organic layer 26 and higher than that of the heat welding layer 20.
Here, the glass transition temperature of the intermediate layer 16 described later is also lower than the organic layer 26 and higher than the heat-welded layer 20. Further, the glass transition temperature of the support 24 is preferably the same as or substantially the same as that of the intermediate layer 16. In particular, the support 24 and the intermediate layer 16 are preferably formed of the same material.
 ガスバリアフィルム12において、前述のように、支持体24の上には、無機層28の下地層としての有機層26を有する。さらに、ガスバリアフィルム12の最上層には、保護層としての有機層26を有する。
 有機層26は、有機化合物からなる層(有機化合物を主成分とする層(膜))で、基本的に、モノマーおよび/またはオリゴマーを、架橋(重合)したものである。
In the gas barrier film 12, as described above, the organic layer 26 as the base layer of the inorganic layer 28 is provided on the support 24. Furthermore, the uppermost layer of the gas barrier film 12 has an organic layer 26 as a protective layer.
The organic layer 26 is a layer made of an organic compound (a layer (film) containing an organic compound as a main component) and is basically a crosslinked (polymerized) monomer and / or oligomer.
 支持体24の上の有機層26は、ガスバリア性を発揮する無機層28を適正に形成するための、下地層として機能する。
 このような下地の有機層26を有することにより、支持体24の表面の凹凸や、支持体24の表面に付着している異物等を包埋して、無機層28の成膜面を、無機層28の成膜に適した状態にできる。これにより、支持体24の表面の凹凸や異物の影のような、無機層28となる無機化合物が着膜し難い領域を無くし、基板の表面全面に、隙間無く、適正な無機層28を成膜することが可能になる。
The organic layer 26 on the support 24 functions as a base layer for properly forming the inorganic layer 28 exhibiting gas barrier properties.
By having such an organic layer 26 as a base, the surface of the support 24 is embedded, the foreign matter adhering to the surface of the support 24 is embedded, and the film-forming surface of the inorganic layer 28 is made inorganic. A state suitable for forming the layer 28 can be obtained. This eliminates regions where the inorganic compound that becomes the inorganic layer 28 is difficult to deposit, such as irregularities on the surface of the support 24 and shadows of foreign matter, and forms an appropriate inorganic layer 28 on the entire surface of the substrate without any gaps. It becomes possible to film.
 また、最上層の有機層26は、無機層28を保護する保護層である。
 無機層28は、窒化珪素等の無機化合物からなる層であり、硬く、脆い。そのため、他の部材と接触したり、何らかの衝撃等を受けることにより、容易に割れやヒビ等の損傷が生じてしまう。
 無機層28は、ガスバリアフィルム12において、主にガスバリア性を発揮するものである。従って、無機層28が損傷すると、損傷箇所から水分や酸素等が透過可能になってしまい、ガスバリア性が大幅に低下してしまう。
 これに対し、最上層に保護層として作用する有機層26を有することにより、接触や衝撃に起因する無機層28の損傷を防止できる。
The uppermost organic layer 26 is a protective layer that protects the inorganic layer 28.
The inorganic layer 28 is a layer made of an inorganic compound such as silicon nitride, and is hard and brittle. For this reason, damage such as cracks and cracks can easily occur due to contact with other members or receiving some kind of impact.
The inorganic layer 28 exhibits mainly gas barrier properties in the gas barrier film 12. Therefore, when the inorganic layer 28 is damaged, moisture, oxygen, and the like can be transmitted from the damaged portion, and the gas barrier property is greatly lowered.
On the other hand, by having the organic layer 26 acting as a protective layer as the uppermost layer, damage to the inorganic layer 28 due to contact or impact can be prevented.
 すなわち、本発明の包装材料10で用いる(有機/無機)積層型のガスバリアフィルム12においては、無機層28の下地層となる有機層26と、無機層28の保護層となる有機層26とを有することにより、隙間無く全面に適正な無機層28を成膜して、かつ、この無機層28の損傷を防止することができる。
 そのため、積層型のガスバリアフィルム12は、無機層28が有する優れたガスバリア性を発揮する、例えば水蒸気透過率が1×10-4[g/(m2・day)]未満のような高いガスバリア性を有する高性能なガスバリアフィルムを、安定して得ることができる。
That is, in the (organic / inorganic) laminated gas barrier film 12 used in the packaging material 10 of the present invention, the organic layer 26 serving as a base layer of the inorganic layer 28 and the organic layer 26 serving as a protective layer of the inorganic layer 28 are provided. By having it, an appropriate inorganic layer 28 can be formed on the entire surface without any gap, and damage to the inorganic layer 28 can be prevented.
Therefore, the laminated gas barrier film 12 exhibits the excellent gas barrier properties of the inorganic layer 28, for example, high gas barrier properties such that the water vapor permeability is less than 1 × 10 −4 [g / (m 2 · day)]. A high-performance gas barrier film having the above can be obtained stably.
 本発明の包装材料10に用いられるガスバリアフィルム12において、有機層26の形成材料には、限定はなく、公知の有機化合物(樹脂/高分子化合物)が、各種、利用可能である。
 具体的には、ポリエステル、アクリル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、アクリロイル化合物、などの熱可塑性樹脂、あるいはポリシロキサン、その他の有機珪素化合物の膜が好適に例示される。これらは、複数を併用してもよい。
In the gas barrier film 12 used for the packaging material 10 of the present invention, the material for forming the organic layer 26 is not limited, and various known organic compounds (resins / polymer compounds) can be used.
Specifically, polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, poly Ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acryloyl compound, thermoplastic resin, or polysiloxane, etc. An organic silicon compound film is preferably exemplified. A plurality of these may be used in combination.
 中でも、ガラス転移温度や強度に優れる等の点で、ラジカル重合性化合物および/またはエーテル基を官能基に有するカチオン重合性化合物の重合物から構成された有機層26は、好適である。
 中でも特に、上記ガラス転移温度や強度に加え、屈折率が低い、透明性が高く光学特性に優れる等の点で、アクリレートおよび/またはメタクリレートのモノマーやオリゴマーの重合体を主成分とするアクリル樹脂やメタクリル樹脂は、有機層26として好適に例示される。
 その中でも特に、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)などの、2官能以上、特に3官能以上のアクリレートおよび/またはメタクリレートのモノマーやオリゴマーの重合体を主成分とするアクリル樹脂やメタクリル樹脂は、好適に例示される。また、これらのアクリル樹脂やメタクリル樹脂を、複数、用いるのも好ましい。
Among these, the organic layer 26 composed of a polymer of a radical polymerizable compound and / or a cationic polymerizable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
In particular, in addition to the above glass transition temperature and strength, acrylic resins mainly composed of acrylate and / or methacrylate monomers and oligomers in terms of low refractive index, high transparency and excellent optical properties, etc. The methacrylic resin is preferably exemplified as the organic layer 26.
Among them, in particular, dipropylene glycol di (meth) acrylate (DPGDA), trimethylolpropane tri (meth) acrylate (TMPTA), dipentaerythritol hexa (meth) acrylate (DPHA), etc. Acrylic resins and methacrylic resins mainly composed of a polymer of acrylate and / or methacrylate monomers or oligomers are preferably exemplified. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
 ここで、後に詳述するが、本発明の包装材料10においては、有機層26のガラス転移温度は、支持体24および中間層16よりも高い。具体的には、有機層26のガラス転移温度は、支持体24および中間層16のガラス転移温度よりも70℃以上高いのが好ましい。また、前述のように、支持体24および中間層16のガラス転移温度は、熱溶着層20よりも高い。具体的には、支持体24および中間層16のガラス転移温度は、熱溶着層20のガラス転移温度よりも70℃以上高いのが好ましい。従って、包装材料10において、接着剤層を除く各層のガラス転移温度(各層の形成材料のガラス転移温度)は、
      熱溶着層20<支持体24および中間層16<有機層26
となる。すなわち、本発明の包装材料10においては、無機層28を中心として(有機層/無機層の繰り返しを複数有する場合には、最外の有機層26から)、外方向に向かうにしたがって、各層のガラス転移温度が低くなる。
 なお、有機層26のガラス転移温度は、当然、無機化合物からなる層である無機層28よりも低い。
Here, as will be described in detail later, in the packaging material 10 of the present invention, the glass transition temperature of the organic layer 26 is higher than that of the support 24 and the intermediate layer 16. Specifically, the glass transition temperature of the organic layer 26 is preferably 70 ° C. or more higher than the glass transition temperatures of the support 24 and the intermediate layer 16. Further, as described above, the glass transition temperature of the support 24 and the intermediate layer 16 is higher than that of the heat welding layer 20. Specifically, the glass transition temperature of the support 24 and the intermediate layer 16 is preferably 70 ° C. or more higher than the glass transition temperature of the heat welding layer 20. Therefore, in the packaging material 10, the glass transition temperature of each layer excluding the adhesive layer (the glass transition temperature of the material forming each layer) is
Thermal weld layer 20 <support 24 and intermediate layer 16 <organic layer 26
It becomes. That is, in the packaging material 10 of the present invention, with the inorganic layer 28 as the center (from the outermost organic layer 26 when there are a plurality of organic layer / inorganic layer repetitions), as each layer goes outward, The glass transition temperature is lowered.
In addition, naturally the glass transition temperature of the organic layer 26 is lower than the inorganic layer 28 which is a layer which consists of an inorganic compound.
 本発明の包装材料10は、熱溶着層20によって、輸液バッグや食品用の包装袋などの包装材に熱溶着(熱融着)される。
 本発明の包装材料10は、このように、無機層28を中心として、外方向に向かうにしたがって、各層のガラス転移温度が低くなる構成を有することにより、熱溶着を行う際に、熱溶着層20が熱で軟化して変形することに起因する無機層28の損傷を防止して、安定して目的とするガスバリア性を発揮することができる。
 以上の点に関しては、後に詳述する。
The packaging material 10 of the present invention is thermally welded (thermally fused) to a packaging material such as an infusion bag or a food packaging bag by the heat welding layer 20.
As described above, the packaging material 10 of the present invention has a configuration in which the glass transition temperature of each layer decreases as it goes outward with the inorganic layer 28 as the center. It is possible to prevent the inorganic layer 28 from being damaged by being softened and deformed by heat, and to stably exhibit the target gas barrier property.
The above points will be described in detail later.
 有機層26の厚さには限定は無いが、0.5~5μmとするのが好ましい。
 有機層26の厚さを0.5μm以上とすることにより、支持体24の表面の凹凸や、支持体24の表面に付着した異物を好適に包埋して、有機層26の表面すなわち無機層28の成膜面を平坦化できる。
 また、有機層26の厚さを5μm以下とすることにより、有機層26が厚すぎることに起因する、有機層26のクラックや、ガスバリアフィルム12のカール等の問題の発生を、好適に抑制することができる。
 以上の点を考慮すると、有機層26の厚さは、1~3μmとするのが、より好ましい。
The thickness of the organic layer 26 is not limited, but is preferably 0.5 to 5 μm.
By setting the thickness of the organic layer 26 to 0.5 μm or more, irregularities on the surface of the support 24 and foreign matters attached to the surface of the support 24 are suitably embedded, so that the surface of the organic layer 26, that is, the inorganic layer The film-forming surface 28 can be flattened.
Further, by setting the thickness of the organic layer 26 to 5 μm or less, it is possible to suitably suppress the occurrence of problems such as cracks in the organic layer 26 and curling of the gas barrier film 12 caused by the organic layer 26 being too thick. be able to.
Considering the above points, the thickness of the organic layer 26 is more preferably 1 to 3 μm.
 なお、本発明において、ガスバリアフィルム12は、複数の有機層26を有するが、各有機層26の厚さは、同じでも、互いに異なってもよい。
 また、各有機層26の形成材料は、同じでも異なってもよい。しかしながら、本発明の包装材料10においては、後述する無機層28の損傷防止や、生産性等の観点から、全ての有機層26を、同じ材料で形成するのが好ましい。
In addition, in this invention, although the gas barrier film 12 has the some organic layer 26, the thickness of each organic layer 26 may be the same, or may mutually differ.
The material for forming each organic layer 26 may be the same or different. However, in the packaging material 10 of the present invention, it is preferable that all the organic layers 26 are formed of the same material from the viewpoint of preventing damage to the inorganic layer 28 described later and productivity.
 このような有機層26は、公知の方法で成膜(形成)すればよい。
 例えば、有機溶剤、有機層26となる有機化合物、界面活性剤などを含む塗料を調製して、この塗料を塗布、乾燥した後、架橋する、いわゆる塗布法によって成膜する。
Such an organic layer 26 may be formed (formed) by a known method.
For example, a coating material containing an organic solvent, an organic compound that becomes the organic layer 26, a surfactant, and the like is prepared, and this coating material is applied, dried, and then crosslinked to form a film by a so-called coating method.
 無機層28は、無機化合物からなる層(無機化合物を主成分とする層(膜))である。
 本発明の包装材料10に用いられるガスバリアフィルム12において、無機層28は、目的とするガスバリア性を、主に発揮するものである。
The inorganic layer 28 is a layer made of an inorganic compound (a layer (film) containing an inorganic compound as a main component).
In the gas barrier film 12 used for the packaging material 10 of the present invention, the inorganic layer 28 mainly exhibits the target gas barrier property.
 無機層28の形成材料には、限定はなく、ガスバリア性を発揮する無機化合物からなる層が、各種、利用可能である。
 具体的には、酸化アルミニウム、酸化マグネシウム、酸化タンタル、酸化ジルコニウム、酸化チタン、酸化インジウムスズ(ITO)などの金属酸化物; 窒化アルミニウムなどの金属窒化物; 炭化アルミニウムなどの金属炭化物; 酸化珪素、酸化窒化珪素、酸炭化珪素、酸化窒化炭化珪素などの珪素酸化物; 窒化珪素、窒化炭化珪素などの珪素窒化物; 炭化珪素等の珪素炭化物; これらの水素化物; これら2種以上の混合物; および、これらの水素含有物等の、無機化合物からなる膜が、好適に例示される。
 特に、窒化珪素、酸化珪素、酸窒化珪素、酸化アルミニウムは、透明性が高く、かつ、優れたガスバリア性を発揮できる点で、ガスバリアフィルムには、好適に利用される。中でも特に、窒化珪素は、優れたガスバリア性に加え、透明性も高く、好適に利用される。
The material for forming the inorganic layer 28 is not limited, and various layers made of an inorganic compound that exhibits gas barrier properties can be used.
Specifically, metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carbides such as aluminum carbide; silicon oxide, Silicon oxides such as silicon oxynitride, silicon oxycarbide, silicon oxynitride carbide; silicon nitrides such as silicon nitride and silicon nitride carbide; silicon carbides such as silicon carbide; hydrides thereof; mixtures of two or more of these; and Films made of inorganic compounds such as these hydrogen-containing materials are preferably exemplified.
In particular, silicon nitride, silicon oxide, silicon oxynitride, and aluminum oxide are suitably used for the gas barrier film because they are highly transparent and can exhibit excellent gas barrier properties. Of these, silicon nitride is particularly suitable for its excellent gas barrier properties and high transparency.
 本発明において、無機層28の厚さには、限定はない。すなわち、無機層28の膜厚は、形成材料に応じて、目的とするガスバリア性を発揮できる厚さを、適宜、決定すればよい。なお、本発明者の検討によれば、無機層28の厚さは、10~200nmとするのが好ましい。
 無機層28の厚さを10nm以上とすることにより、十分なガスバリア性能を安定して発揮する無機層28が形成できる。また、無機層28は、一般的に脆く、厚過ぎると、割れやヒビ、剥がれ等を生じる可能性が有るが、無機層28の厚さを200nm以下とすることにより、割れが発生することを防止できる。
 また、このような点を考慮すると、無機層28の厚さは、15~100nmにするのが好ましく、特に、20~75nmとするのが好ましい。
 また、図2に示す例のように、ガスバリアフィルムが複数の無機層28を有する場合には、各無機層28の厚さは、同じでも異なってもよい。
In the present invention, the thickness of the inorganic layer 28 is not limited. That is, the thickness of the inorganic layer 28 may be determined as appropriate according to the forming material so that the target gas barrier property can be exhibited. According to the study of the present inventor, the thickness of the inorganic layer 28 is preferably 10 to 200 nm.
By setting the thickness of the inorganic layer 28 to 10 nm or more, the inorganic layer 28 that stably exhibits sufficient gas barrier performance can be formed. In addition, the inorganic layer 28 is generally fragile, and if it is too thick, there is a possibility of causing cracks, cracks, peeling, etc. However, if the thickness of the inorganic layer 28 is 200 nm or less, cracks will occur. Can be prevented.
In consideration of such points, the thickness of the inorganic layer 28 is preferably 15 to 100 nm, and particularly preferably 20 to 75 nm.
Moreover, when the gas barrier film has a plurality of inorganic layers 28 as in the example shown in FIG. 2, the thickness of each inorganic layer 28 may be the same or different.
 なお、本発明において、ガスバリアフィルム12が複数の無機層28を有する場合には、各無機層28の厚さは、同じでも、互いに異なってもよい。
 また、ガスバリアフィルム12が複数の無機層28を有する場合には、各無機層28の形成材料も、同じでも異なってもよい。
In the present invention, when the gas barrier film 12 has a plurality of inorganic layers 28, the thickness of each inorganic layer 28 may be the same or different from each other.
Moreover, when the gas barrier film 12 has the some inorganic layer 28, the formation material of each inorganic layer 28 may be the same, or may differ.
 本発明の包装材料10(ガスバリアフィルム12)において、無機層28の成膜方法には、限定はなく、形成する無機層28に応じて、公知の無機層(無機膜)の成膜方法が、各種、利用可能である。
 具体的には、CCP-CVDやICP-CVD等のプラズマCVD、マグネトロンスパッタリングや反応性スパッタリング等のスパッタリング、真空蒸着などの気相成膜法が、好適に例示される。
In the packaging material 10 (gas barrier film 12) of the present invention, the method for forming the inorganic layer 28 is not limited, and depending on the inorganic layer 28 to be formed, a known method for forming an inorganic layer (inorganic film) is used. Various types are available.
Specifically, plasma CVD such as CCP-CVD and ICP-CVD, sputtering such as magnetron sputtering and reactive sputtering, and vapor phase film forming methods such as vacuum deposition are preferably exemplified.
 本発明の包装材料10において、ガスバリアフィルム12の上には、第1接着剤層14によって、中間層16が接着される。
 中間層16は、本発明の包装材料10を、輸液バッグなどの包装材に熱溶着する際に、無機層28が損傷するのを防止するための層である。
 前述のように、本発明の包装材料10においては、中間層16は、前記支持体24と同様に、ガラス転移温度が、有機層26よりも低く、かつ、熱溶着層20よりも高い。さらに、中間層16のガラス転移温度は、支持体24と、同じ、もしくは、ほぼ同じであるのが好ましく、中間層16と支持体24とが、同じ材料で形成されるのが、より好ましい。
 この中間層16に関しては、後に詳述する。
In the packaging material 10 of the present invention, the intermediate layer 16 is bonded onto the gas barrier film 12 by the first adhesive layer 14.
The intermediate layer 16 is a layer for preventing the inorganic layer 28 from being damaged when the packaging material 10 of the present invention is thermally welded to a packaging material such as an infusion bag.
As described above, in the packaging material 10 of the present invention, the intermediate layer 16 has a glass transition temperature lower than that of the organic layer 26 and higher than that of the heat-welded layer 20, similarly to the support 24. Furthermore, the glass transition temperature of the intermediate layer 16 is preferably the same as or substantially the same as that of the support 24, and it is more preferable that the intermediate layer 16 and the support 24 are formed of the same material.
The intermediate layer 16 will be described later in detail.
 また、本発明の包装材料10において、中間層16の上には、第2接着剤層18によって、熱溶着層20が接着される。
 前述のように、本発明の包装材料10は、包装材の表面に熱溶着(ヒートシール/熱シール)される。熱溶着層20は、この熱溶着を行うための層(シーラント層)である。
 従って、熱溶着層20は、基本的に、本発明の包装材料10が熱溶着される輸液バッグ等の包装材の形成材料(包装材の表面の形成材料)と同じ材料で形成される。すなわち、包装材がポリエチレン(PE)製である場合には、熱溶着層20としてはPE製のシート状物(フィルム状物)を用いればよく、包装材がポリプロピレン(PP)製である場合には、熱溶着層20としてはPP製のシート状物を用いればよい。
Further, in the packaging material 10 of the present invention, the heat welding layer 20 is bonded onto the intermediate layer 16 by the second adhesive layer 18.
As described above, the packaging material 10 of the present invention is heat-welded (heat sealed / heat sealed) to the surface of the packaging material. The heat welding layer 20 is a layer (sealant layer) for performing this heat welding.
Therefore, the heat welding layer 20 is basically formed of the same material as a forming material (forming material on the surface of the packaging material) of a packaging material such as an infusion bag to which the packaging material 10 of the present invention is thermally welded. That is, when the packaging material is made of polyethylene (PE), a PE sheet-like material (film-like material) may be used as the heat welding layer 20, and when the packaging material is made of polypropylene (PP). In this case, a PP sheet-like material may be used as the heat welding layer 20.
 本発明の包装材料10において、ガスバリアフィルム12は、ガスバリア性を発揮する無機層28の下地層として有機層26を有し、かつ、最上層に無機層28の保護層としての有機層26を有する、積層型のガスバリアフィルムである。この積層型のガスバリアフィルム12は、非常に高いガスバリア性、例えば水蒸気透過率が1×10-4[g/(m2・day)]未満のような、高いガスバリア性を有する。
 そのため、この積層型のガスバリアフィルム12を輸液バッグや食品用の包装袋などの包装材に利用することにより、ガスバリア性の高い包装材を得ることができ、水分や酸素による薬剤や食品の劣化を大幅に防止できることが考えられる。
In the packaging material 10 of the present invention, the gas barrier film 12 has an organic layer 26 as a base layer of the inorganic layer 28 exhibiting gas barrier properties, and has an organic layer 26 as a protective layer of the inorganic layer 28 in the uppermost layer. It is a laminated gas barrier film. The laminated gas barrier film 12 has a very high gas barrier property, for example, a high gas barrier property such that the water vapor permeability is less than 1 × 10 −4 [g / (m 2 · day)].
Therefore, by using this laminated gas barrier film 12 for packaging materials such as infusion bags and food packaging bags, it is possible to obtain packaging materials with high gas barrier properties, and to prevent deterioration of drugs and foods due to moisture and oxygen. It can be prevented greatly.
 ここで、特許文献5にも示されるように、積層型のガスバリアフィルム12を包装材に用いる場合には、最上層の有機層26の表面に、包装材と同じ材料のシート状物(フィルム)を熱溶着層として接着剤で接着し、熱溶着層とを接触した状態でガスバリアフィルム12と包装材とを積層して、ガスバリアフィルム12の支持体24側から押圧しつつ加熱し、包装材の表面と熱溶着層とを熱溶着する方法が考えられる。
 ところが、本発明者の検討によれば、このような方法で、単純に積層型のガスバリアフィルム12を包装材に熱溶着すると、ガスバリアフィルム12が有する優れたガスバリア性が得られない場合が、多々、生じる。
Here, as shown in Patent Document 5, when the laminated gas barrier film 12 is used as a packaging material, a sheet-like material (film) made of the same material as the packaging material is formed on the surface of the uppermost organic layer 26. The gas barrier film 12 and the packaging material are laminated in a state where they are bonded with an adhesive as a heat welding layer and in contact with the heat welding layer, and heated while pressing from the support 24 side of the gas barrier film 12. A method of thermally welding the surface and the heat welding layer is conceivable.
However, according to the study of the present inventor, when the laminated gas barrier film 12 is simply thermally welded to the packaging material by such a method, there are many cases where the excellent gas barrier property of the gas barrier film 12 cannot be obtained. Arise.
 本発明者は、鋭意検討の結果、このガスバリア性の低下の原因が、加熱による熱溶着層の変形(収縮/膨張)に起因することを見出した。
 具体的には、包装材とガスバリアフィルム12との熱溶着の際に、熱溶着層が変形するために、この変形の力を受けてガスバリアフィルム12の無機層28が損傷し、これにより、ガスバリアフィルム12のガスバリア性が大きく低下することを見出した。
As a result of intensive studies, the present inventor has found that the cause of the decrease in gas barrier properties is due to deformation (contraction / expansion) of the heat-welded layer by heating.
Specifically, when the packaging material and the gas barrier film 12 are thermally welded, the heat-welded layer is deformed, so that the inorganic layer 28 of the gas barrier film 12 is damaged due to the deformation force. It has been found that the gas barrier properties of the film 12 are greatly reduced.
 ガスバリアフィルム12は、最上層に有機層26を有する。
 この最上層の有機層26を有することにより、ガスバリアフィルム12のハンドリングや、ガスバリアフィルム12を使用する過程などで、主にガスバリア性を発揮する無機層28が損傷することを防止できる。
 すなわち、ガスバリアフィルム12は、この最上層の有機層26を有することにより、前述の水蒸気透過率が1×10-4[g/(m2・day)]未満のような高いガスバリア性能を、安定して発揮することが可能になる。
 言い換えれば、最上層の有機層26を有さないガスバリアフィルムでは、使用時等に無機層28にヒビや割れ等の損傷が生じ、水分やガスが損傷部から通過してしまい、ガスバリア性が大幅に低下してしまう。すなわち、最上層の有機層26を有さないガスバリアフィルムでは、前述のような高いガスバリア性を確保することは、困難である。
The gas barrier film 12 has an organic layer 26 as the uppermost layer.
By having the uppermost organic layer 26, it is possible to prevent the inorganic layer 28 mainly exhibiting the gas barrier property from being damaged during the handling of the gas barrier film 12 and the process of using the gas barrier film 12.
That is, the gas barrier film 12 has the uppermost organic layer 26, so that the gas barrier film 12 has a high gas barrier performance such that the water vapor transmission rate is less than 1 × 10 −4 [g / (m 2 · day)]. Can be demonstrated.
In other words, in a gas barrier film that does not have the uppermost organic layer 26, damage such as cracks and cracks occurs in the inorganic layer 28 during use and the like, and moisture and gas pass through the damaged portion, greatly improving gas barrier properties. It will drop to. That is, it is difficult to secure the high gas barrier property as described above with a gas barrier film that does not have the uppermost organic layer 26.
 ここで、本発明者の検討によれば、(有機/無機)積層型のガスバリアフィルム12を、包装材との熱溶着する場合には、最上層の有機層26は、ある程度、高いガラス転移温度を有するのが好ましい。
 特に、最上層の有機層26は、120℃以上のガラス転移温度を有するのが好ましい。
Here, according to the study of the present inventor, when the (organic / inorganic) laminated gas barrier film 12 is thermally welded to the packaging material, the uppermost organic layer 26 has a high glass transition temperature to some extent. It is preferable to have.
In particular, the uppermost organic layer 26 preferably has a glass transition temperature of 120 ° C. or higher.
 すなわち、前述のように、包装材と熱溶着するための熱溶着層は、接着剤層によって最上層の有機層26に接着される。ここで、最上層の有機層26のガラス転移温度が低いと、接着剤層の溶剤を乾燥する際の熱で軟化してしまい、無機層28の保護層として十分な機能を果たさなくなってしまう。
 また、熱溶着層と包装材とを熱溶着する際には、高温に加熱して、かつ、加圧を行う必要が有る。特に、生産性を考慮して、短時間での熱溶着を行うためには、熱溶着層の溶融温度よりも、遥かに高い温度で加熱を行うのが好ましい。この際に、最上層の有機層26のガラス転移温度が低いと、熱溶着層と無機層28との間で、熱によって有機層26が膨張して、両層を押圧してしまい、無機層28の損傷の原因となってしまう。
 さらに、積層型のガスバリアフィルム12において、無機層28は、通常、プラズマCVDやスパッタリング等で形成される。そのため、無機層28の下地層となる有機層26には、プラズマ耐性が要求され、ある程度、高いガラス転移温度を有するのが好ましい。ここで、ガスバリアフィルム12は、複数の有機層26を有する。生産性を考慮すれば、全ての有機層26を同じ材料で形成するのが好ましいので、最上層の有機層26も、ある程度、高いガラス転移温度を有するのが好ましい。
That is, as described above, the heat-welded layer for heat-welding with the packaging material is bonded to the uppermost organic layer 26 by the adhesive layer. Here, if the glass transition temperature of the uppermost organic layer 26 is low, the adhesive layer is softened by heat at the time of drying the solvent of the adhesive layer, and the function as a protective layer for the inorganic layer 28 is not achieved.
Moreover, when heat-welding a heat welding layer and a packaging material, it is necessary to heat and pressurize to high temperature. In particular, in consideration of productivity, in order to perform heat welding in a short time, it is preferable to perform heating at a temperature much higher than the melting temperature of the heat welding layer. At this time, if the glass transition temperature of the uppermost organic layer 26 is low, the organic layer 26 expands due to heat between the heat-welded layer and the inorganic layer 28 and presses both layers, and thus the inorganic layer 28 will be damaged.
Furthermore, in the laminated gas barrier film 12, the inorganic layer 28 is usually formed by plasma CVD, sputtering, or the like. For this reason, the organic layer 26 that is the underlayer of the inorganic layer 28 is required to have plasma resistance, and preferably has a glass transition temperature that is somewhat high. Here, the gas barrier film 12 has a plurality of organic layers 26. In consideration of productivity, it is preferable to form all the organic layers 26 with the same material. Therefore, it is preferable that the uppermost organic layer 26 also has a high glass transition temperature to some extent.
 以上のように、積層型のガスバリアフィルム12を、包装材に熱溶着する場合には、ある程度、高いガラス転移温度を有する有機層26に、熱溶着層を接着するのが好ましい。
 ここで、生産性を考慮して、短時間での熱溶着を可能にするためには、熱溶着層は、低い温度で溶融するのが好ましい。
 熱溶着時に、熱溶着層は、変形する。ところが、高いガラス転移温度を有する有機層26は、熱には強いが、硬いので、応力には弱い。また、熱溶着層と有機層26とは、接着剤によって強く接着されている。そのため、熱溶着層の変形によって、有機層26も変形し、さらには損傷してしまう。
As described above, when the laminated gas barrier film 12 is heat-welded to the packaging material, it is preferable to adhere the heat-welding layer to the organic layer 26 having a somewhat high glass transition temperature.
Here, in consideration of productivity, in order to enable thermal welding in a short time, the thermal welding layer is preferably melted at a low temperature.
At the time of heat welding, the heat welding layer is deformed. However, the organic layer 26 having a high glass transition temperature is strong against heat, but is hard and thus weak against stress. Further, the heat-welded layer and the organic layer 26 are strongly bonded with an adhesive. For this reason, the organic layer 26 is also deformed and further damaged by the deformation of the heat-welded layer.
 この有機層26の変形および損傷は、隣接し、かつ、強く密着している無機層28にも伝達される。無機層28は、窒化珪素等の無機化合物からなるものであり、有機層26よりも高いガラス転移温度を有し、より、硬く脆い。
 その結果、有機層26の変形および破壊が伝達された無機層28にも、変形させようとする無理な力が掛かって、無機層28に割れやヒビ等の損傷が生じてしまう。
 無機層28が損傷すると、此処から水分や酸素が透過可能となってしまうので、ガスバリア性が低下してしまう。特に、積層型のガスバリアフィルム12では、水蒸気透過率が1×10-4[g/(m2・day)]未満のような高いガスバリア性を有するため、若干、無機層28が損傷しただけでも、非常に大きな性能の低下になる。
This deformation and damage of the organic layer 26 is also transmitted to the adjacent and strongly adhered inorganic layer 28. The inorganic layer 28 is made of an inorganic compound such as silicon nitride, has a glass transition temperature higher than that of the organic layer 26, and is harder and more brittle.
As a result, the inorganic layer 28 to which the deformation and destruction of the organic layer 26 are transmitted is subjected to an excessive force to be deformed, and the inorganic layer 28 is damaged such as cracks and cracks.
If the inorganic layer 28 is damaged, moisture and oxygen can permeate from here, so that the gas barrier property is lowered. In particular, the laminated gas barrier film 12 has a high gas barrier property such that the water vapor transmission rate is less than 1 × 10 −4 [g / (m 2 · day)], so even if the inorganic layer 28 is slightly damaged. , Will be a very big performance degradation.
 これに対し、本発明の包装材料10は、熱溶着層20とガスバリアフィルム12との間に、中間層16を有する。また、中間層16およびガスバリアフィルム12の支持体24のガラス転移温度が、有機層26よりも低く、かつ、熱溶着層20よりも高い。
 従って、包装材料10を構成する各層(接着剤層を除く各層)のガラス転移温度は、
     熱溶着層20<支持体24および中間層16<有機層26
となる。すなわち、本発明の包装材料10においては、無機層28を中心として、外方向に向かうにしたがって、各層のガラス転移温度が低くなる。言い換えれば、本発明の包装材料10においては、無機層28を中心として、外方向に向かうにしたがって、各層の加熱による軟化性が高くなる。
 本発明の包装材料10は、このような構成を有することにより、包装材との熱溶着を適正に行うことを可能とし、かつ、熱溶着の際に熱溶着層20(最上の有機層26)が変形しても、無機層28の損傷を防止できる。
On the other hand, the packaging material 10 of the present invention has an intermediate layer 16 between the heat welding layer 20 and the gas barrier film 12. Further, the glass transition temperature of the intermediate layer 16 and the support 24 of the gas barrier film 12 is lower than that of the organic layer 26 and higher than that of the heat welding layer 20.
Therefore, the glass transition temperature of each layer (each layer excluding the adhesive layer) constituting the packaging material 10 is:
Thermal weld layer 20 <support 24 and intermediate layer 16 <organic layer 26
It becomes. That is, in the packaging material 10 of the present invention, the glass transition temperature of each layer decreases as it goes outward with the inorganic layer 28 as the center. In other words, in the packaging material 10 of the present invention, the softening property due to heating of each layer increases as it goes outward with the inorganic layer 28 as the center.
Since the packaging material 10 of the present invention has such a configuration, it is possible to appropriately perform the thermal welding with the packaging material, and the thermal welding layer 20 (the uppermost organic layer 26) at the time of the thermal welding. Even if deformed, damage to the inorganic layer 28 can be prevented.
 すなわち、熱溶着層20と有機層26との間に、ガラス転移温度が、熱溶着層20より高く、かつ、有機層26よりも低い中間層16を有する。そのため、包装材料10を包装材と熱溶着する際に、加熱によって熱溶着層20が大きく変形しても、中間層16が、熱溶着層20の変形を緩衝する緩衝層として作用する。その結果、熱溶着層20から有機層26に伝わる、熱溶着層20の変形および力を、大幅に低減できる。しかも、有機層26は、中間層16よりも高いガラス転移温度を有するので、有機層26から無機層28に伝わる、熱溶着層20の変形および力も、大幅に低減できる。
 そのため、熱溶着層20の収縮が無機層28に伝わっても、伝わる変形量は小さく、かつ、その力は弱いので、無機層28にヒビや割れ等の損傷が生じることを防止できる。
 さらに、熱溶着層20が、最も低いガラス転移温度を有するので、包装材料10を包装材と熱溶着する際に、熱溶着層20以外の層が熱によって損傷することも防止できる。
That is, the intermediate layer 16 has a glass transition temperature higher than that of the heat welding layer 20 and lower than that of the organic layer 26 between the heat welding layer 20 and the organic layer 26. Therefore, when the packaging material 10 is heat-welded with the packaging material, even if the heat-welded layer 20 is largely deformed by heating, the intermediate layer 16 functions as a buffer layer that buffers deformation of the heat-welded layer 20. As a result, the deformation and force of the heat welding layer 20 transmitted from the heat welding layer 20 to the organic layer 26 can be greatly reduced. Moreover, since the organic layer 26 has a glass transition temperature higher than that of the intermediate layer 16, the deformation and force of the heat-welded layer 20 transmitted from the organic layer 26 to the inorganic layer 28 can be greatly reduced.
Therefore, even if the shrinkage of the heat-welded layer 20 is transmitted to the inorganic layer 28, the amount of deformation transmitted is small and the force is weak, so that the inorganic layer 28 can be prevented from being damaged such as cracks and cracks.
Furthermore, since the heat welding layer 20 has the lowest glass transition temperature, layers other than the heat welding layer 20 can be prevented from being damaged by heat when the packaging material 10 is heat welded to the packaging material.
 また、本発明の包装材料においては、中間層16のみならず、ガスバリアフィルム12の支持体24も、ガラス転移温度が、有機層26よりも低く、かつ、熱溶着層20よりも高い。すなわち、中間層16と支持体24とは、包装材料10を構成する各層の中で、同等のガラス転移温度を有する。
 包装材料10の熱溶着は、通常、熱溶着層20を包装材に密着して、支持体24を加熱することによって行う。この際において、中間層16のガラス転移温度が、支持体24よりも大幅に高いと、熱溶着を行う際に、ガスバリアフィルム12の変形に対して、中間層16が、変形を抑制する方向に働く。すなわち、中間層16が、最上層の有機層26と無機層28とを保持する形になってしまう。その結果、支持体24の変形に、下地の有機層26と無機層28が追従できなくなってしまい、やはり、無機層28を損傷してしまう結果になる。
 これに対し、中間層16と支持体24とが、同等のガラス転移温度を有することにより、中間層16も支持体と同様に変形するので、上記不都合も無くして、より好適に無機層28の損傷を防止できる。
In the packaging material of the present invention, not only the intermediate layer 16 but also the support 24 of the gas barrier film 12 has a glass transition temperature lower than that of the organic layer 26 and higher than that of the heat-welded layer 20. That is, the intermediate layer 16 and the support 24 have the same glass transition temperature in each layer constituting the packaging material 10.
The thermal welding of the packaging material 10 is usually performed by closely contacting the thermal welding layer 20 to the packaging material and heating the support 24. At this time, if the glass transition temperature of the intermediate layer 16 is significantly higher than that of the support 24, the intermediate layer 16 is in a direction to suppress the deformation with respect to the deformation of the gas barrier film 12 during the thermal welding. work. That is, the intermediate layer 16 holds the uppermost organic layer 26 and inorganic layer 28. As a result, the underlying organic layer 26 and the inorganic layer 28 cannot follow the deformation of the support 24, and the inorganic layer 28 is still damaged.
On the other hand, since the intermediate layer 16 and the support 24 have the same glass transition temperature, the intermediate layer 16 is also deformed in the same manner as the support. Damage can be prevented.
 以上の点を考慮すると、中間層16と支持体24とのガラス転移温度は、同じ、もしくは、ほぼ同じであるのが好ましい。
 特に、支持体24がPETである場合には、中間層16も同じPETで形成する等、中間層16と支持体24とを、同じ材料で形成するのが、より好ましい。
Considering the above points, the glass transition temperatures of the intermediate layer 16 and the support 24 are preferably the same or substantially the same.
In particular, when the support 24 is PET, it is more preferable to form the intermediate layer 16 and the support 24 with the same material, such as forming the intermediate layer 16 with the same PET.
 ここで、支持体24と、下地となる有機層26とを、共に、ガラス転移温度が同等に高い材料で形成することにより、熱溶着の際の支持体24の変形を防ぐという考え方も有る。
 しかしながら、下地となる有機層26に求められるプラズマ耐性を十分に発揮でき、また、溶着時の膨張を完全に抑制できるガラス転移温度は、200℃程度である。このような高いガラス転移温度を有し、かつ、透明性を有するプラスチックフィルムは、透明ポリイミド等に限定され、非常に高価になってしまう。そのため、この選択は、現実的では無い。
Here, there is also an idea that the support 24 and the organic layer 26 serving as a base are both formed of a material having an equally high glass transition temperature to prevent deformation of the support 24 at the time of heat welding.
However, the glass transition temperature that can sufficiently exhibit the plasma resistance required for the organic layer 26 as a base and that can completely suppress expansion during welding is about 200 ° C. A plastic film having such a high glass transition temperature and transparency is limited to transparent polyimide or the like and becomes very expensive. Therefore, this selection is not realistic.
 なお、この熱溶着の際の熱溶着層20の変形に起因する無機層28の損傷の問題は、最上層が有機層26で、かつ、水蒸気透過率が1×10-4[g/(m2・day)]未満のような高いガスバリア性を有する、積層型のガスバリアフィルム12に特有の問題である。 The problem of damage to the inorganic layer 28 due to the deformation of the heat-welded layer 20 during this heat-welding is that the uppermost layer is the organic layer 26 and the water vapor transmission rate is 1 × 10 −4 [g / (m This is a problem peculiar to the laminated gas barrier film 12 having a high gas barrier property such as less than 2 · day).
 特許文献4に示されるような、支持体に、直接、無機層28を成膜してなるガスバリアフィルムは、根本的に、表面が有機層26である積層型のガスバリアフィルム12のような高いガスバリア性を有さない。
 他方、前述のように、下地層の有機層26を有しても、保護層としての有機層26を有さない積層型のガスバリアフィルムは、表面が無機層28であるので、ハンドリングの際や、各種の処理を行う際に、無機層28の損傷を避けることが困難である。そのため、結果的に、このガスバリアフィルムも、根本的に、表面が有機層26である積層型のガスバリアフィルム12のような高いガスバリア性を有さない。
A gas barrier film formed by directly forming an inorganic layer 28 on a support as shown in Patent Document 4 is basically a high gas barrier such as a laminated gas barrier film 12 whose surface is an organic layer 26. Does not have sex.
On the other hand, as described above, since the surface of the laminated gas barrier film having the organic layer 26 as the base layer but not having the organic layer 26 as the protective layer is the inorganic layer 28, When performing various treatments, it is difficult to avoid damage to the inorganic layer 28. Therefore, as a result, this gas barrier film also does not have a high gas barrier property like the laminated gas barrier film 12 whose surface is the organic layer 26 fundamentally.
 そのため、これらのガスバリアフィルムでは、熱溶着層の変形によって、多少、無機層28が損傷しても、ガスバリア性の低下は少なく、性能上の問題にはならない。すなわち、これらのガスバリアフィルムの表面に熱溶着層を設けた包装材料では、熱溶着層の変形に起因する性能低下は、殆ど生じず、問題にはならない。従って、これらのガスバリアフィルムでは、熱溶着層20の下層に、本発明のような中間層16を設けても、無意味であり、余分な層が1層、増えて、コストが高くなり、さらに、包装材への熱溶着性が低下するだけである。
 これに対し、最上層が有機層26で、かつ、水蒸気透過率が1×10-4[g/(m2・day)]未満のような高いガスバリア性を有する、積層型のガスバリアフィルム12では、前述のように、少しの無機層28の損傷でも、大きなガスバリア性すなわち性能の低下になる。そのため、中間層16を有することの効果は、非常に大きい。
Therefore, in these gas barrier films, even if the inorganic layer 28 is somewhat damaged due to deformation of the heat-welded layer, the gas barrier property is hardly lowered and does not cause a problem in performance. That is, in a packaging material in which a heat-welding layer is provided on the surface of these gas barrier films, performance degradation due to deformation of the heat-welding layer hardly occurs and does not cause a problem. Therefore, in these gas barrier films, even if the intermediate layer 16 as in the present invention is provided in the lower layer of the heat welding layer 20, it is meaningless, one extra layer is added, and the cost is increased. Only the heat weldability to the packaging material is reduced.
On the other hand, in the laminated gas barrier film 12, the uppermost layer is the organic layer 26 and the water vapor permeability is high such as less than 1 × 10 −4 [g / (m 2 · day)]. As described above, even a slight damage to the inorganic layer 28 causes a large gas barrier property, that is, a reduction in performance. Therefore, the effect of having the intermediate layer 16 is very large.
 本発明の包装材料10において、中間層16の形成材料には、限定はなく、ガラス転移温度が、熱溶着層20よりも高く、かつ、有機層26よりも高い材料(シート状物(フィルム))が、各種、利用可能である。
 一例として、ガスバリアフィルム12の支持体24がPETあるいはPEN(ポリエチレンナフタレート)で、有機層26が(メタ)アクリル系の樹脂で、無機層28が窒化珪素等の珪素化合物で、包装材の形成材料がPEやPPである場合には、中間層16として、PETフィルム、PENフィルム、ナイロンフィルム等が好適に利用される。
 なお、中間層16は、支持体24と同じ材料で形成するのが好ましいのは、前述の通りである。従って、この例では、支持体24がPETである場合には、中間層16としてPETフィルムを用い、支持体24がPENである場合には、中間層16としてPENフィルムを用いるのが好ましい。
In the packaging material 10 of the present invention, the material for forming the intermediate layer 16 is not limited, and is a material having a glass transition temperature higher than that of the heat welding layer 20 and higher than that of the organic layer 26 (sheet-like material (film)). ) Can be used in various ways.
As an example, the support 24 of the gas barrier film 12 is PET or PEN (polyethylene naphthalate), the organic layer 26 is a (meth) acrylic resin, and the inorganic layer 28 is a silicon compound such as silicon nitride. When the material is PE or PP, a PET film, a PEN film, a nylon film, or the like is suitably used as the intermediate layer 16.
The intermediate layer 16 is preferably formed of the same material as the support 24 as described above. Therefore, in this example, it is preferable to use a PET film as the intermediate layer 16 when the support 24 is PET, and to use a PEN film as the intermediate layer 16 when the support 24 is PEN.
 前述のように、本発明の包装材料10は、ガラス転移温度が、『熱溶着層20<支持体24および中間層16<有機層26』の関係を満たす。
 ここで、層を構成する材料(層を構成する材料の組成)によっては、ガラス転移温度を有さない場合が有る(ガラス転移温度を定義できない場合が有る)。
 本発明の包装材料10においては、中間層16、熱溶着層20、支持体24、および有機層26の1以上で、このような材料を用いる場合には、ガラス転移温度に変えて、軟化温度(軟化点 Ts)もしくは融点(Tm)を用いる。なお、軟化温度および融点の両方が定義できる場合には、軟化温度を用いる。
As described above, in the packaging material 10 of the present invention, the glass transition temperature satisfies the relationship of “thermal welding layer 20 <support 24 and intermediate layer 16 <organic layer 26”.
Here, depending on the material constituting the layer (composition of the material constituting the layer), the glass transition temperature may not be present (the glass transition temperature may not be defined).
In the packaging material 10 of the present invention, when one or more of the intermediate layer 16, the heat welding layer 20, the support 24, and the organic layer 26 is used, the softening temperature is changed to the glass transition temperature. (Softening point Ts) or melting point (Tm) is used. If both the softening temperature and the melting point can be defined, the softening temperature is used.
 また、中間層16の厚さにも限定はなく、中間層16の形成材料に応じて、前述の熱溶着層20の収縮や動きを緩和する作用を発揮できる厚さを、適宜、選択すればよい。
 ここで、後に詳述するが、第1接着剤層14から熱溶着層20までの厚さが、厚すぎると、本発明の包装材料10のガスバリア性が低下してしまう。
 この点を考慮すると、中間層16の厚さは、20μm以下が好ましく、特に、15~8μmが好ましい。
Further, the thickness of the intermediate layer 16 is not limited, and a thickness capable of exerting an action of relaxing the shrinkage and movement of the above-described heat-welded layer 20 is appropriately selected according to the forming material of the intermediate layer 16. Good.
Here, as will be described in detail later, if the thickness from the first adhesive layer 14 to the heat-welding layer 20 is too thick, the gas barrier property of the packaging material 10 of the present invention is deteriorated.
Considering this point, the thickness of the intermediate layer 16 is preferably 20 μm or less, particularly preferably 15 to 8 μm.
 中間層16をガスバリアフィルム12に接着する第1接着剤層14は、公知の接着剤からなる層であり、ガスバリアフィルム12(有機層26)に中間層16を接着可能な接着剤が、全て利用可能である。なお、包装材料10の光学特性を考慮すると、透明性に優れた接着剤が好ましく利用される。
 また、第1接着剤層14の厚さには限定はなく、ガスバリアフィルム12に中間層16を確実に接着できる厚さを、適宜、選択すればよい。
 ここで、前述のように、第1接着剤層14から熱溶着層20までが厚すぎると、本発明の包装材料10のガスバリア性が低下してしまう。従って、第1接着剤層14は、薄い方が好ましく、特に、10μm以下とするのが好ましい。
The first adhesive layer 14 for bonding the intermediate layer 16 to the gas barrier film 12 is a layer made of a known adhesive, and all the adhesives that can bond the intermediate layer 16 to the gas barrier film 12 (organic layer 26) are used. Is possible. In consideration of the optical characteristics of the packaging material 10, an adhesive having excellent transparency is preferably used.
Moreover, there is no limitation in the thickness of the 1st adhesive bond layer 14, What is necessary is just to select suitably the thickness which can adhere | attach the intermediate | middle layer 16 on the gas barrier film 12 reliably.
Here, as described above, if the thickness from the first adhesive layer 14 to the heat welding layer 20 is too thick, the gas barrier property of the packaging material 10 of the present invention is deteriorated. Accordingly, the first adhesive layer 14 is preferably thin, and particularly preferably 10 μm or less.
 前述のように、熱溶着層20の形成材料は、基本的に、本発明の包装材料10が熱溶着される輸液バッグなどの包装材の形成材料と同じ材料が用いられる。
 すなわち、包装材料10が熱溶着される包装材がPE製であれば、熱溶着層20はPE性のフィルムで形成すればよく、包装材料10が熱溶着される包装材がPP製であれば、熱溶着層20はPP性のフィルムで形成すればよい。
As described above, the material for forming the heat welding layer 20 is basically the same material as the material for forming a packaging material such as an infusion bag to which the packaging material 10 of the present invention is thermally welded.
That is, if the packaging material to which the packaging material 10 is thermally welded is made of PE, the thermal welding layer 20 may be formed of a PE film, and if the packaging material to which the packaging material 10 is thermally welded is made of PP. The heat welding layer 20 may be formed of a PP film.
 また、熱溶着層20の厚さにも限定はなく、熱溶着層20の形成材料に応じて、本発明の包装材料10が熱溶着される包装材の形状や状態等に応じて、確実に熱溶着できる厚さを、適宜、選択すればよい。
 ここで、前述のように、第1接着剤層14から熱溶着層20までの厚さが厚すぎると、本発明の包装材料のガスバリア性が低下してしまう。この点を考慮すると、熱溶着層20の厚さは、60μm以下が好ましく、特に、50~10μmが好ましい。
Moreover, there is no limitation also on the thickness of the heat welding layer 20, and according to the forming material of the heat welding layer 20, according to the shape, state, etc. of the packaging material to which the packaging material 10 of this invention is heat welded reliably. What is necessary is just to select the thickness which can be heat-welded suitably.
Here, as mentioned above, when the thickness from the 1st adhesive bond layer 14 to the heat welding layer 20 is too thick, the gas barrier property of the packaging material of this invention will fall. Considering this point, the thickness of the heat welding layer 20 is preferably 60 μm or less, and particularly preferably 50 to 10 μm.
 熱溶着層20を中間層16に接着する第2接着剤層18は、熱溶着層20を中間層16を接着可能な接着剤が、全て利用可能であり、また、第1接着剤層14と同様に、透明性に優れた接着剤が好ましく利用される。
 また、第2接着剤層18の厚さには、限定はなく、中間層16に熱溶着層20を確実に接着できる厚さを、適宜、選択すればよい。
 また、前述のように、第1接着剤層14から熱溶着層20までが厚すぎると、本発明の包装材料のガスバリア性が低下してしまう。従って、第2接着剤層18は、薄い方が好ましく、特に、10μm以下とするのが好ましい。
As the second adhesive layer 18 for adhering the heat welding layer 20 to the intermediate layer 16, all the adhesives capable of adhering the heat welding layer 20 to the intermediate layer 16 can be used. Similarly, an adhesive having excellent transparency is preferably used.
In addition, the thickness of the second adhesive layer 18 is not limited, and a thickness capable of reliably bonding the heat welding layer 20 to the intermediate layer 16 may be appropriately selected.
Further, as described above, when the thickness from the first adhesive layer 14 to the heat welding layer 20 is too thick, the gas barrier property of the packaging material of the present invention is deteriorated. Therefore, the second adhesive layer 18 is preferably thin, and particularly preferably 10 μm or less.
 前述のように、第1接着剤層14から熱溶着層20までが厚すぎると、本発明の包装材料10のガスバリア性が低下してしまう。
 すなわち、第1接着剤層14から熱溶着層20までの各層は、基本的に、ガスバリア性を有さない。従って、これらの各層の端面からは、水分や酸素が侵入して、侵入した水分等が本発明の包装材料10が熱溶着される包装材の内部に侵入してしまう。そのため、第1接着剤層14から熱溶着層20までが厚すぎると、この端面から侵入する水分や酸素の量が増大してしまい、包装材料10のガスバリア性が、大幅に低下してしまう。
 言い換えれば、第1接着剤層14から熱溶着層20までが厚すぎると、特許文献4等に示されるガスバリアフィルムなど通常では不要な中間層16を、1層、増やしてまで、ガスバリア性に優れる積層型のガスバリアフィルム12を用いる意味が無くなってしまう。
As described above, if the thickness from the first adhesive layer 14 to the heat welding layer 20 is too thick, the gas barrier property of the packaging material 10 of the present invention is deteriorated.
That is, each layer from the first adhesive layer 14 to the heat welding layer 20 basically has no gas barrier property. Accordingly, moisture and oxygen penetrate from the end faces of these layers, and the penetrated moisture and the like enter the inside of the packaging material to which the packaging material 10 of the present invention is thermally welded. Therefore, if the thickness from the first adhesive layer 14 to the heat welding layer 20 is too thick, the amount of moisture and oxygen entering from this end face increases, and the gas barrier property of the packaging material 10 is greatly lowered.
In other words, if the thickness from the first adhesive layer 14 to the heat-welded layer 20 is too thick, the gas barrier properties such as the gas barrier film described in Patent Document 4 and the like are usually excellent, and the gas barrier property is excellent until the intermediate layer 16 is increased by one layer. The meaning of using the laminated gas barrier film 12 is lost.
 ここで、第1接着剤層14から熱溶着層20までの厚さが100μmを超えると、端面から侵入する水分等によるガスバリア性の低下は、非常に大きくなる。
 そのため、本発明の包装材料10においては、第1接着剤層14から熱溶着層20までの厚さは、100μm以下であるのが好ましく、80μm以下がより好ましく、特に、60μm以下が好ましい。
Here, when the thickness from the 1st adhesive bond layer 14 to the heat welding layer 20 exceeds 100 micrometers, the fall of the gas barrier property by the water | moisture content which penetrate | invades from an end surface will become very large.
Therefore, in the packaging material 10 of the present invention, the thickness from the first adhesive layer 14 to the heat welding layer 20 is preferably 100 μm or less, more preferably 80 μm or less, and particularly preferably 60 μm or less.
 以上、本発明の包装材料について詳細に説明したが、本発明は、上記実施例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。 The packaging material of the present invention has been described in detail above, but the present invention is not limited to the above-described embodiments, and various improvements and modifications may be made without departing from the scope of the present invention. Of course.
 以下、本発明の具体的実施例を挙げ、本発明を、より詳細に説明する。
 [実施例1]
 支持体24の上に、下地層としての有機層26、無機層28、および、最上層の保護層としての有機層26を有するガスバリアフィルム12を作製した。
Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention.
[Example 1]
On the support 24, the gas barrier film 12 which has the organic layer 26 as an underlayer, the inorganic layer 28, and the organic layer 26 as an uppermost protective layer was produced.
 支持体24は、幅1000mmで厚さ100μmの、長尺なPETフィルム(東洋紡社製 コスモシャインA4300)を用いた。
 この支持体24のガラス転移温度をDSC(示差走査熱量測定)によって測定したところ、69℃であった。
As the support 24, a long PET film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) having a width of 1000 mm and a thickness of 100 μm was used.
It was 69 degreeC when the glass transition temperature of this support body 24 was measured by DSC (differential scanning calorimetry).
 MEK(メチルエチルケトン)に、TMPTA(ダイセル・サイテック社製)、変性ビスフェノールAジアクリレート(ダイセル・サイテック社製 EBECRYL150)、界面活性剤(ビックケミージャパン社製 BYK378)、および、光重合開始剤(チバケミカルズ社製 Irg184)を添加して、有機層26を形成する塗料を調製した。
 界面活性剤の添加量は、有機溶剤を除いた濃度(固形分濃度)で1質量%、光重合開始剤の添加量は、有機溶剤を除いた濃度で2質量%とした(すなわち固形分における有機化合物は97質量%)。また、変性ビスフェノールAジアクリレートの添加量は、TMPTAの10%とし、塗料の固形分濃度は、15質量%とした。
MEK (methyl ethyl ketone), TMPTA (manufactured by Daicel-Cytec), modified bisphenol A diacrylate (EBECRYL150, manufactured by Daicel-Cytech), surfactant (BYK378, manufactured by BYK Chemie Japan), and photopolymerization initiator (Ciba Chemicals) A paint for forming the organic layer 26 was prepared by adding Irg184).
The addition amount of the surfactant was 1% by mass in the concentration excluding the organic solvent (solid content concentration), and the addition amount of the photopolymerization initiator was 2% by mass in the concentration excluding the organic solvent (that is, in the solid content). 97% by mass of organic compound). The amount of the modified bisphenol A diacrylate added was 10% of TMPTA, and the solid content concentration of the coating was 15% by mass.
 支持体24の表面に、調製した塗料をダイコータで塗布し、温風乾燥した後、紫外線を照射して、膜厚が2μmの有機層26を成膜した。
 支持体24と同様の方法で、有機層26のガラス転移温度を測定したところ、250℃であった。
The prepared paint was applied to the surface of the support 24 with a die coater, dried with warm air, and then irradiated with ultraviolet rays to form an organic layer 26 having a thickness of 2 μm.
It was 250 degreeC when the glass transition temperature of the organic layer 26 was measured by the method similar to the support body 24. FIG.
 この有機層26の上に、無機層28としての窒化珪素層を、CCP-CVDによって50nm成膜した。
 原料ガスは、シランガス(SiH4)、アンモニアガス(NH3)、窒素ガス(N2)および水素ガス(H2)を用いた。供給量は、シランガスが100sccm、アンモニアガスが200sccm、窒素ガスが500sccm、水素ガスが500sccmとした。また、成膜圧力は50Paとした。
 プラズマ励起電力は、周波数13.5MHzで3000Wとした。また、無機層28の成膜中は、支持体24の裏面側から、500Wのバイアス電力を供給し、支持体24を-20℃に温度調節した。
On this organic layer 26, a silicon nitride layer as an inorganic layer 28 was formed to a thickness of 50 nm by CCP-CVD.
Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as source gases. The supply amounts were 100 sccm for silane gas, 200 sccm for ammonia gas, 500 sccm for nitrogen gas, and 500 sccm for hydrogen gas. The film forming pressure was 50 Pa.
The plasma excitation power was 3000 W at a frequency of 13.5 MHz. During the formation of the inorganic layer 28, a bias power of 500 W was supplied from the back side of the support 24, and the temperature of the support 24 was adjusted to −20 ° C.
 この無機層28の上に、先と同様にして、膜厚が2μmの有機層26を成膜して、支持体24の上に、下地の有機層26、無機層28、および、最上層の有機層26を有するガスバリアフィルム12を作製した。 On the inorganic layer 28, an organic layer 26 having a thickness of 2 μm is formed in the same manner as described above, and the underlying organic layer 26, the inorganic layer 28, and the uppermost layer are formed on the support 24. A gas barrier film 12 having an organic layer 26 was produced.
 作製したガスバリアフィルム12の水蒸気透過率[g/(m2・day)]を、カルシウム腐食法
(特開2005-283561号公報に記載される方法)によって、測定した。その結果、水蒸気透過率は、8×10-5[g/(m2・day)]であった。
The water vapor permeability [g / (m 2 · day)] of the produced gas barrier film 12 was measured by a calcium corrosion method (a method described in JP-A-2005-283561). As a result, the water vapor transmission rate was 8 × 10 −5 [g / (m 2 · day)].
 ガスバリアフィルム12の表面(表面の有機層26)に、酢酸エチルに溶解した接着剤(三井化学社製 タケラックおよびタケネート)をバーコータによって塗布し、80℃で乾燥して、厚さ4μmの第1接着剤層14を形成した。
 第1接着剤層14の上に、中間層16として、厚さ12μmのPETフィルム(東レ社製 ルミラー)を積層し、ニップロールで加圧/加熱しながら搬送して、接着した。
 支持体24と同様の方法で、中間層16のガラス転移温度を測定したところ、69℃であった。
An adhesive (taken by Mitsui Chemicals, Takelac and Takenate) dissolved in ethyl acetate was applied to the surface of the gas barrier film 12 (surface organic layer 26) with a bar coater, dried at 80 ° C., and a first adhesive having a thickness of 4 μm. The agent layer 14 was formed.
A 12 μm-thick PET film (Lumirror manufactured by Toray Industries, Inc.) was laminated as the intermediate layer 16 on the first adhesive layer 14, and conveyed and bonded while being pressed / heated by a nip roll.
It was 69 degreeC when the glass transition temperature of the intermediate | middle layer 16 was measured by the method similar to the support body 24. FIG.
 中間層16の表面に、第1接着剤層14と同様にして接着剤を塗布し、厚さ4μmの第2接着剤層18を形成した。
 その上に、熱溶着層20として厚さ40μmのPEフィルム(東セロ社製 FC-S40)を積層し、ニップロールで加圧/加熱しながら搬送して、接着して、図1に示すような包装材料10を作製した。
 支持体24と同様の方法で、熱溶着層20のガラス転移温度を測定したところ、-25℃であった。
An adhesive was applied to the surface of the intermediate layer 16 in the same manner as the first adhesive layer 14 to form a second adhesive layer 18 having a thickness of 4 μm.
On top of that, a 40 μm thick PE film (FC-S40 manufactured by Tosero Co., Ltd.) is laminated as the heat-welded layer 20, transported while being pressed / heated with a nip roll, and bonded to form a package as shown in FIG. Material 10 was made.
The glass transition temperature of the heat-welded layer 20 was measured by the same method as that for the support 24 and found to be −25 ° C.
 作製した包装材料10を、100×100mmに切断して、同サイズの厚さ40μmのPEフィルムに積層した。次いで、包装材料10の全周端部10mmを、支持体24側から加熱、押圧して、PEフィルムに包装材料10を熱溶着した。
 熱溶着した包装材料10とPEフィルムとの積層体の水蒸気透過率を、先と同様に測定したところ、1.0×10-4[g/(m2・day)]であった。
The produced packaging material 10 was cut into 100 × 100 mm and laminated on a PE film having the same size and a thickness of 40 μm. Next, the entire peripheral edge 10 mm of the packaging material 10 was heated and pressed from the support 24 side, and the packaging material 10 was thermally welded to the PE film.
When the water vapor transmission rate of the laminate of the heat-welded packaging material 10 and the PE film was measured in the same manner as described above, it was 1.0 × 10 −4 [g / (m 2 · day)].
 [実施例2]
 塗料の固形分濃度(15質量%)を変更することなく、有機層26を形成するための塗料において、変性ビスフェノールAジアクリレートの添加量をTMPTAの20%とした以外は、実施例1と同様にガスバリアフィルム12を作製し、さらに、包装材料10を作製した。
 実施例1と同様に有機層26のガラス転移温度を測定したところ、140℃であった。また、実施例1と同様に、作製したガスバリアフィルム12の水蒸気透過率を測定したところ、1.8×10-4[g/(m2・day)]であった。
 作製した包装材料10を、実施例1と同様にPEフィルムに熱溶着して、積層体の水蒸気透過率を測定したところ、1.9×10-4[g/(m2・day)]であった。
[Example 2]
The same as in Example 1 except that the amount of the modified bisphenol A diacrylate was changed to 20% of TMPTA in the coating material for forming the organic layer 26 without changing the solid content concentration (15% by mass) of the coating material. A gas barrier film 12 was produced, and a packaging material 10 was further produced.
It was 140 degreeC when the glass transition temperature of the organic layer 26 was measured similarly to Example 1. FIG. Moreover, when the water vapor transmission rate of the produced gas barrier film 12 was measured in the same manner as in Example 1, it was 1.8 × 10 −4 [g / (m 2 · day)].
The produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1 and the water vapor permeability of the laminate was measured to find 1.9 × 10 −4 [g / (m 2 · day)]. there were.
 [実施例3]
 熱溶着層20を厚さ100μmのPEフィルム(東セロ社製 FC-S100)に変えた以外は、実施例1と同様にして、包装材料10を作製した。
 実施例1と同様に熱溶着層20のガラス転移温度を測定したところ、-25℃であった。
 作製した包装材料10を、実施例1と同様にPEフィルムに熱溶着して、積層体の水蒸気透過率を測定したところ、1.7×10-4[g/(m2・day)]であった。
[Example 3]
A packaging material 10 was produced in the same manner as in Example 1 except that the heat welding layer 20 was changed to a PE film (FC-S100 manufactured by Tosero Co., Ltd.) having a thickness of 100 μm.
When the glass transition temperature of the heat-welded layer 20 was measured in the same manner as in Example 1, it was −25 ° C.
The produced packaging material 10 was thermally welded to a PE film in the same manner as in Example 1, and the water vapor transmission rate of the laminate was measured to be 1.7 × 10 −4 [g / (m 2 · day)]. there were.
 [実施例4]
 中間層16を厚さ100μmのPETフィルム(東洋紡社製 コスモシャインA4300)に変えた以外は、実施例1と同様にして、包装材料10を作製した。
 実施例1と同様に中間層16のガラス転移温度を測定したところ、69℃であった。
 作製した包装材料10を、実施例1と同様にPEフィルムに熱溶着して、積層体の水蒸気透過率を測定したところ、4.9×10-4[g/(m2・day)]であった。
[Example 4]
A packaging material 10 was produced in the same manner as in Example 1 except that the intermediate layer 16 was changed to a PET film having a thickness of 100 μm (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.).
It was 69 degreeC when the glass transition temperature of the intermediate | middle layer 16 was measured similarly to Example 1. FIG.
The produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1, and the water vapor permeability of the laminate was measured to find 4.9 × 10 −4 [g / (m 2 · day)]. there were.
 [実施例5]
 熱溶着層20を厚さ25μmのPEフィルム(東セロ社製 FC-S25)に変えた以外は、実施例1と同様にして、包装材料10を作製した。
 実施例1と同様に熱溶着層20のガラス転移温度を測定したところ、-25℃であった。
 作製した包装材料10を、実施例1と同様にPEフィルムに熱溶着して、積層体の水蒸気透過率を測定したところ、9.8×10-5[g/(m2・day)]であった。
[Example 5]
A packaging material 10 was produced in the same manner as in Example 1 except that the heat-welded layer 20 was replaced with a 25 μm thick PE film (FC-S25 manufactured by Tosero).
When the glass transition temperature of the heat-welded layer 20 was measured in the same manner as in Example 1, it was −25 ° C.
The produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1 and the water vapor permeability of the laminate was measured. As a result, it was 9.8 × 10 −5 [g / (m 2 · day)]. there were.
 [比較例1]
 中間層16を厚さ12μmのPEフィルム(出光ユニテック社製 出光ニューIPストレッチ)に変えた以外は、実施例1と同様にして、包装材料10を作製した。
 実施例1と同様に中間層16のガラス転移温度を測定したところ、-25℃であった。
 作製した包装材料10を、実施例1と同様にPEフィルムに熱溶着して、積層体の水蒸気透過率を測定したところ、1.5×10-3[g/(m2・day)]であった。
[Comparative Example 1]
A packaging material 10 was produced in the same manner as in Example 1 except that the intermediate layer 16 was changed to a PE film having a thickness of 12 μm (Idemitsu New IP Stretch, manufactured by Idemitsu Unitech Co., Ltd.).
When the glass transition temperature of the intermediate layer 16 was measured in the same manner as in Example 1, it was −25 ° C.
The produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1, and the water vapor transmission rate of the laminate was measured to be 1.5 × 10 −3 [g / (m 2 · day)]. there were.
 [比較例2]
 中間層16を厚さ12μmのポリイミドフィルム(東レ・デュポン社製 カプトン50H)に変えた以外は、実施例1と同様にして、包装材料10を作製した。
 実施例1と同様に中間層16のガラス転移温度を測定したところ、測定限界(約260℃)を超えていた。すなわち、このポリイミドフィルムのガラス転移温度は、250℃よりも遥かに高いと考えられる。
 作製した包装材料10を、実施例1と同様にPEフィルムに熱溶着して、積層体の水蒸気透過率を測定したところ、1.2×10-3[g/(m2・day)]であった。
[Comparative Example 2]
A packaging material 10 was produced in the same manner as in Example 1 except that the intermediate layer 16 was changed to a 12 μm-thick polyimide film (Kapton 50H manufactured by Toray DuPont).
When the glass transition temperature of the intermediate layer 16 was measured in the same manner as in Example 1, the measurement limit (about 260 ° C.) was exceeded. That is, the glass transition temperature of this polyimide film is considered to be much higher than 250 ° C.
The produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1, and the water vapor transmission rate of the laminate was measured to find 1.2 × 10 −3 [g / (m 2 · day)]. there were.
 [比較例3]
 TMPTAに変えて、脂肪酸変性エポキシアクリレート(ダイセル・サイテック社製 EBECRYL3702)を用いて有機層26を形成するための塗料を調製して、実施例1と同様にガスバリアフィルム12を作製し、さらに、包装材料10を作製した。
 実施例1と同様に有機層26のガラス転移温度を測定したところ、56℃であった。また、実施例1と同様に、作製したガスバリアフィルム12の水蒸気透過率を測定したところ5×10-3[g/(m2・day)]であった。
 作製した包装材料10を、実施例1と同様にPEフィルムに熱溶着して、積層体の水蒸気透過率を測定したところ、6.5×10-3[g/(m2・day)]であった。
[Comparative Example 3]
Instead of TMPTA, a coating material for forming the organic layer 26 is prepared using fatty acid-modified epoxy acrylate (EBECRYL 3702, manufactured by Daicel-Cytec), and the gas barrier film 12 is produced in the same manner as in Example 1, and further packaging Material 10 was made.
It was 56 degreeC when the glass transition temperature of the organic layer 26 was measured similarly to Example 1. FIG. Further, in the same manner as in Example 1, the water vapor permeability of the produced gas barrier film 12 was measured and found to be 5 × 10 −3 [g / (m 2 · day)].
The produced packaging material 10 was thermally welded to a PE film in the same manner as in Example 1, and the water vapor transmission rate of the laminate was measured to be 6.5 × 10 −3 [g / (m 2 · day)]. there were.
 [比較例4]
 ガスバリアフィルムを、下地の有機層26と無機層28との2層構成(最上層の有機層26無し)にした以外は、実施例1と同様にガスバリアフィルムを作製し、さらに、包装材料10を作製した。
 実施例1と同様に、作製したガスバリアフィルムの水蒸気透過率を測定したところ1.8×10-3[g/(m2・day)]であった。
 作製した包装材料10を、実施例1と同様にPEフィルムに熱溶着して、積層体の水蒸気透過率を測定したところ、8.5×10-3[g/(m2・day)]であった。
[Comparative Example 4]
A gas barrier film was prepared in the same manner as in Example 1 except that the gas barrier film had a two-layer structure of the base organic layer 26 and the inorganic layer 28 (without the uppermost organic layer 26). Produced.
Similarly to Example 1, the water vapor permeability of the produced gas barrier film was measured and found to be 1.8 × 10 −3 [g / (m 2 · day)].
The produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1, and the water vapor transmission rate of the laminate was measured to be 8.5 × 10 −3 [g / (m 2 · day)]. there were.
 [比較例5]
 ガスバリアフィルムを、下地の有機層26と無機層28との2層構成(最上層の有機層26無し)にした以外は、実施例1と同様にガスバリアフィルムを作製した(すなわち、ガスバリアフィルムは比較例4と同じ)。
 このガスバリアフィルムを用い、中間層16を有さない以外は、実施例1と同様にして包装材料を作製した。
 作製した包装材料10を、実施例1と同様にPEフィルムに熱溶着して、積層体の水蒸気透過率を測定したところ、9.0×10-2[g/(m2・day)]であった。
[Comparative Example 5]
A gas barrier film was prepared in the same manner as in Example 1 except that the gas barrier film had a two-layer structure of the underlying organic layer 26 and inorganic layer 28 (without the uppermost organic layer 26) (that is, the gas barrier film was compared). Same as Example 4).
A packaging material was produced in the same manner as in Example 1 except that this gas barrier film was used and the intermediate layer 16 was not provided.
The produced packaging material 10 was heat-welded to a PE film in the same manner as in Example 1 and the water vapor transmission rate of the laminate was measured to be 9.0 × 10 −2 [g / (m 2 · day)]. there were.
 [比較例6]
 中間層16を有さない以外は、実施例1と同様にして包装材料を作製した。
 作製した包装材料10を、実施例1と同様にPEフィルムに熱溶着して、積層体の水蒸気透過率を測定したところ、7.0×10-4[g/(m2・day)]であった。
[Comparative Example 6]
A packaging material was produced in the same manner as in Example 1 except that the intermediate layer 16 was not provided.
The produced packaging material 10 was thermally welded to a PE film in the same manner as in Example 1, and the water vapor transmission rate of the laminate was measured. As a result, it was 7.0 × 10 −4 [g / (m 2 · day)]. there were.
 以上の結果を、下記の表にまとめて示す。
 なお、下記の表では、水蒸気透過率(バリア性)が、
 1×10-4[g/(m2・day)]未満のものを『優秀』;
 1×10-4[g/(m2・day)]以上、2×10-4[g/(m2・day)]未満のものを『良好』;
 2×10-4[g/(m2・day)]以上、1×10-3[g/(m2・day)]未満のものを『可』;
 1×10-3[g/(m2・day)]以上のものを『不可』; と、評価した。
The above results are summarized in the following table.
In the table below, the water vapor transmission rate (barrier property) is
“Excellent” if less than 1 × 10 -4 [g / (m 2・ day)];
1 × 10 −4 [g / (m 2 · day)] or more and less than 2 × 10 −4 [g / (m 2 · day)] “good”;
Anything over 2 × 10 -4 [g / (m 2 · day)] and less than 1 × 10 -3 [g / (m 2 · day)] is acceptable.
1 × 10 −3 [g / (m 2 · day)] or more was evaluated as “impossible”;
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表にも示されるように、各層のガラス転移温度が『熱溶着層20<支持体24および中間層16<有機層26』を満たす本発明の包装材料10は、PEフィルムと熱溶着した後も、2.0×10-4[g/(m2・day)]未満という、高いガスバリア性を発揮している。
中でも、熱溶着層20の厚さが、他に比して薄い実施例5は、1×10-4[g/(m2・day)]未満という、非常に高いガスバリア性能を有している。
 なお、実施例2は、有機層26のガラス転移温度が低いため、実施例3は、熱溶着層20が厚いため、実施例4は、中間層16が厚いため、実施例1に比して、若干、ガスバリア性能が低下したと考えられる。
 これに対して、比較例1は、中間層16のガラス転移温度が熱溶着層20と同じため、比較例2は、中間層16のガラス転移温度が有機層26よりも高く、かつ、支持体24よりも大幅に高いため、比較例3は、中間層16のガラス転移温度が有機層26よりも高く、かつ、有機層26のガラス転移温度が低いため、いずれも、支持体24や熱溶着層20等の変形が無機層28に伝わって、無機層28が損傷してしまい、本発明の包装材料に比して、ガスバリア性が低い。さらに、中間層16を有さない比較例6も、同様の理由で本発明の包装材料に比して、ガスバリア性が低い。
 実施例1、3、4および5、ならびに、比較例1、2および6は、何れも、全く同じガスバリアフィルム12を用いている。すなわち、比較例では、PEフィルムとの熱溶着の際に無機層28が損傷して、ガスバリア性が低下していると考えられる。これに対して、本発明の包装材料10によれば、包装材との熱溶着の際における無機層28の損傷を防止できる。
 また、ガスバリアフィルムが有機層/無機層の2層構成である比較例4および5は、ハンドリング等の際における無機層の損傷に起因して、ガスバリアフィルム自体のガスバリア性能が低いため、十分なガスバリア性能が得られない。
 以上の結果より、本発明の効果は明らかである。
As shown in the above table, the packaging material 10 of the present invention in which the glass transition temperature of each layer satisfies “thermal welding layer 20 <support 24 and intermediate layer 16 <organic layer 26” is heat-sealed with the PE film. However, it exhibits a high gas barrier property of less than 2.0 × 10 −4 [g / (m 2 · day)].
In particular, Example 5 in which the thickness of the heat-welded layer 20 is thinner than others has a very high gas barrier performance of less than 1 × 10 −4 [g / (m 2 · day)]. .
In Example 2, since the glass transition temperature of the organic layer 26 is low, Example 3 is thicker in the intermediate layer 16 than in Example 4, because the heat-welded layer 20 is thicker. It is considered that the gas barrier performance slightly decreased.
On the other hand, since the glass transition temperature of the intermediate layer 16 is the same as that of the heat welding layer 20 in the comparative example 1, the glass transition temperature of the intermediate layer 16 is higher than that of the organic layer 26 in the comparative example 2. Since the glass transition temperature of the intermediate layer 16 is higher than that of the organic layer 26 and the glass transition temperature of the organic layer 26 is low, both of the support layer 24 and the thermal welding are used in Comparative Example 3. The deformation of the layer 20 and the like is transmitted to the inorganic layer 28 and the inorganic layer 28 is damaged, and the gas barrier property is low as compared with the packaging material of the present invention. Furthermore, the comparative example 6 which does not have the intermediate | middle layer 16 also has low gas barrier property compared with the packaging material of this invention for the same reason.
Examples 1, 3, 4, and 5 and Comparative Examples 1, 2, and 6 all use the same gas barrier film 12. That is, in the comparative example, it is considered that the inorganic layer 28 is damaged during the thermal welding with the PE film, and the gas barrier property is lowered. On the other hand, according to the packaging material 10 of the present invention, it is possible to prevent the inorganic layer 28 from being damaged during the thermal welding with the packaging material.
In Comparative Examples 4 and 5 in which the gas barrier film has a two-layer structure of organic layer / inorganic layer, the gas barrier film itself has low gas barrier performance due to damage to the inorganic layer during handling and the like. Performance cannot be obtained.
From the above results, the effects of the present invention are clear.
 医療用の輸液バッグや食品用のチューブや包装袋等に、好適に利用可能である。 It can be suitably used for medical infusion bags, food tubes and packaging bags.
 10 包装材料
 12 ガスバリアフィルム
 14 第1接着剤層
 16 中間層
 18 第2接着剤層
 20 熱溶着層
 24 支持体
 26 有機層
 28 無機層
DESCRIPTION OF SYMBOLS 10 Packaging material 12 Gas barrier film 14 1st adhesive bond layer 16 Intermediate | middle layer 18 2nd adhesive bond layer 20 Thermal welding layer 24 Support body 26 Organic layer 28 Inorganic layer

Claims (10)

  1.  包装材に熱溶着される包装材料であって、
     ガスバリアフィルムと、第1接着剤層によって前記ガスバリアフィルムに接着される中間層と、第2接着剤層によって前記中間層に接着される熱溶着層とを有し、
     前記ガスバリアフィルムは、支持体の上に、ガスバリア性を有する無機層と、この無機層の下地層となる有機層との組み合わせを1以上形成し、かつ、最上層が有機層である積層構造を有し、
     さらに、前記有機層のガラス転移温度が、前記中間層およびガスバリアフィルムの支持体よりも高く、前記中間層およびガスバリアフィルムの支持体のガラス転移温度が、前記熱溶着層よりも高いことを特徴とする包装材料。
    A packaging material thermally welded to the packaging material,
    A gas barrier film, an intermediate layer bonded to the gas barrier film by a first adhesive layer, and a heat welding layer bonded to the intermediate layer by a second adhesive layer;
    The gas barrier film has a laminated structure in which one or more combinations of an inorganic layer having gas barrier properties and an organic layer serving as a base layer of the inorganic layer are formed on a support, and the uppermost layer is an organic layer. Have
    Further, the glass transition temperature of the organic layer is higher than the support of the intermediate layer and the gas barrier film, and the glass transition temperature of the support of the intermediate layer and the gas barrier film is higher than the heat welding layer. Packaging material to do.
  2.  前記第1接着剤層から熱溶着層までの厚さが、100μm以下である請求項1に記載の包装材料。 The packaging material according to claim 1, wherein the thickness from the first adhesive layer to the heat-welded layer is 100 µm or less.
  3.  前記中間層と、前記ガスバリアフィルムの支持体とが、同じ材料で形成される請求項1または2に記載の包装材料。 The packaging material according to claim 1 or 2, wherein the intermediate layer and the support for the gas barrier film are formed of the same material.
  4.  全ての前記有機層が同じ材料で形成される請求項1~3のいずれかに記載の包装材料。 The packaging material according to any one of claims 1 to 3, wherein all the organic layers are formed of the same material.
  5.  前記熱溶着層の厚さが60μm以下である請求項1~4のいずれかに記載の包装材料。 The packaging material according to any one of claims 1 to 4, wherein the thickness of the heat welding layer is 60 µm or less.
  6.  前記中間層の厚さが20μm以下である請求項1~5のいずれかに記載の包装材料。 The packaging material according to any one of claims 1 to 5, wherein the intermediate layer has a thickness of 20 µm or less.
  7.  前記有機層が、アクリル樹脂およびメタクリル樹脂の少なくとも一方からなる層である請求項1~6のいずれかに記載の包装材料。 The packaging material according to any one of claims 1 to 6, wherein the organic layer is a layer made of at least one of an acrylic resin and a methacrylic resin.
  8.  前記無機層が、窒化珪素からなる層である請求項1~7のいずれかに記載の包装材料。 The packaging material according to any one of claims 1 to 7, wherein the inorganic layer is a layer made of silicon nitride.
  9.  前記熱溶着層が、ポリエチレンもしくはポリプロピレンからなる層である請求項1~8のいずれかに記載の包装材料。 The packaging material according to any one of claims 1 to 8, wherein the heat welding layer is a layer made of polyethylene or polypropylene.
  10.  前記中間層が、ポリエチレンテレフタレートからなる層である請求項1~9のいずれかに記載の包装材料。 The packaging material according to any one of claims 1 to 9, wherein the intermediate layer is a layer made of polyethylene terephthalate.
PCT/JP2013/068026 2012-08-10 2013-07-01 Packaging material to be thermally welded to package WO2014024602A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014529384A JP5923609B2 (en) 2012-08-10 2013-07-01 Packaging material heat-sealed to packaging material
CN201380032226.3A CN104379464B (en) 2012-08-10 2013-07-01 It is thermally fused to the packaging material of package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-178115 2012-08-10
JP2012178115 2012-08-10

Publications (1)

Publication Number Publication Date
WO2014024602A1 true WO2014024602A1 (en) 2014-02-13

Family

ID=50067842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068026 WO2014024602A1 (en) 2012-08-10 2013-07-01 Packaging material to be thermally welded to package

Country Status (3)

Country Link
JP (1) JP5923609B2 (en)
CN (1) CN104379464B (en)
WO (1) WO2014024602A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071170A (en) * 2015-10-09 2017-04-13 富士フイルム株式会社 Gas barrier film, organic electronic device, substrate for organic electroluminescent device, and organic electroluminescent device
JP2020175538A (en) * 2019-04-16 2020-10-29 クラレプラスチックス株式会社 Laminate sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307536A (en) * 2001-04-11 2002-10-23 Toyo Seikan Kaisha Ltd Method for producing oxygen absorptive multi-layer film
JP2009172993A (en) * 2007-12-27 2009-08-06 Fujifilm Corp Gas barrier film, device and optical component using the same, and method for producing gas barrier film
JP2011102042A (en) * 2011-01-31 2011-05-26 Fujifilm Corp Gas barrier film and organic device using the same
JP2012025099A (en) * 2010-07-27 2012-02-09 Fujifilm Corp Gas barrier film and electronic device
JP2012075716A (en) * 2010-10-01 2012-04-19 Fujifilm Corp Infusion bag and exterior film
JP2012218377A (en) * 2011-04-13 2012-11-12 Fujifilm Corp Laminate film, and infusion bag

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200108A (en) * 2000-12-28 2002-07-16 Maikooru Kk Moistureproof packaging material, moistureproof outer bag for heating element using the same moistureproof packaging container such as moistureproof collective packaging bag for heating element or the like and heating element housed in them
JP2002361776A (en) * 2001-06-13 2002-12-18 Dainippon Printing Co Ltd Laminated tube container
US7297414B2 (en) * 2003-09-30 2007-11-20 Fujifilm Corporation Gas barrier film and method for producing the same
US20050214556A1 (en) * 2004-02-20 2005-09-29 Fuji Photo Film Co., Ltd Organic-inorganic composite composition, plastic substrate, gas barrier laminate film, and image display device
JP4429804B2 (en) * 2004-05-25 2010-03-10 株式会社大塚製薬工場 Multilayer film, method for producing the same, and container using the same
JP5319373B2 (en) * 2009-04-10 2013-10-16 富士フイルム株式会社 Gas barrier film and method for producing gas barrier film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307536A (en) * 2001-04-11 2002-10-23 Toyo Seikan Kaisha Ltd Method for producing oxygen absorptive multi-layer film
JP2009172993A (en) * 2007-12-27 2009-08-06 Fujifilm Corp Gas barrier film, device and optical component using the same, and method for producing gas barrier film
JP2012025099A (en) * 2010-07-27 2012-02-09 Fujifilm Corp Gas barrier film and electronic device
JP2012075716A (en) * 2010-10-01 2012-04-19 Fujifilm Corp Infusion bag and exterior film
JP2011102042A (en) * 2011-01-31 2011-05-26 Fujifilm Corp Gas barrier film and organic device using the same
JP2012218377A (en) * 2011-04-13 2012-11-12 Fujifilm Corp Laminate film, and infusion bag

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071170A (en) * 2015-10-09 2017-04-13 富士フイルム株式会社 Gas barrier film, organic electronic device, substrate for organic electroluminescent device, and organic electroluminescent device
WO2017061355A1 (en) * 2015-10-09 2017-04-13 富士フイルム株式会社 Gas barrier film, organic electronic device, substrate for organic electroluminescence device, and organic electroluminescence device
CN108025530A (en) * 2015-10-09 2018-05-11 富士胶片株式会社 Gas barrier film, organic electronic device, organic electroluminescence device substrate and Organnic electroluminescent device
JP2020175538A (en) * 2019-04-16 2020-10-29 クラレプラスチックス株式会社 Laminate sheet
JP7251022B2 (en) 2019-04-16 2023-04-04 クラレプラスチックス株式会社 laminated sheet

Also Published As

Publication number Publication date
JP5923609B2 (en) 2016-05-24
JPWO2014024602A1 (en) 2016-07-25
CN104379464B (en) 2016-10-19
CN104379464A (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP6351259B2 (en) Retort food packaging materials
JP5761950B2 (en) Infusion bag and exterior film
EP2982505B1 (en) Functional film with optical properties
JP5977776B2 (en) Barrier laminate, gas barrier film, laminate film, and infusion bag
WO2019189490A1 (en) Packaging material and retort pouch or microwavable pouch provided with packaging material
US20150325810A1 (en) Organic el laminate
JP6427459B2 (en) Functional film and method for producing functional film
JP5923609B2 (en) Packaging material heat-sealed to packaging material
JP6042840B2 (en) Functional film and method for producing functional film
JP6331166B2 (en) Barrier laminated film
JP5752981B2 (en) Laminated film and infusion bag
JP5777382B2 (en) Laminated film and infusion bag
WO2007060086A1 (en) High-barrier multilayer laminated film
JP6928924B2 (en) Release film for process, its application, and manufacturing method of resin-sealed semiconductor using it
JP5823277B2 (en) Barrier laminate, gas barrier film and device using the same
JP7371616B2 (en) Packaging materials and retort pouches or microwave pouches containing packaging materials
WO2019171826A1 (en) Gas barrier film, optical element, and method for producing gas barrier film
JP5389794B2 (en) Packaging method for thin and brittle parts
JP6096020B2 (en) Method for producing packaging material including laminated film
JP4631181B2 (en) Inorganic vapor-deposited film laminate and package
JP6790679B2 (en) Packaging material and its manufacturing method
JP6296951B2 (en) Laminated film, infusion bag and method for producing laminated film
JP2016112832A (en) Laminate film, infusion bag using the same and manufacturing method thereof
JP6170478B2 (en) Functional laminated film, infusion bag and method for producing functional laminated film
KR20170042368A (en) Gas barrier film, electronic device, and gas barrier film manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828523

Country of ref document: EP

Kind code of ref document: A1