WO2014024564A1 - Continuous unloader - Google Patents

Continuous unloader Download PDF

Info

Publication number
WO2014024564A1
WO2014024564A1 PCT/JP2013/066252 JP2013066252W WO2014024564A1 WO 2014024564 A1 WO2014024564 A1 WO 2014024564A1 JP 2013066252 W JP2013066252 W JP 2013066252W WO 2014024564 A1 WO2014024564 A1 WO 2014024564A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
load
moving speed
continuous unloader
speed
Prior art date
Application number
PCT/JP2013/066252
Other languages
French (fr)
Japanese (ja)
Inventor
政樹 河原林
Original Assignee
住友重機械搬送システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械搬送システム株式会社 filed Critical 住友重機械搬送システム株式会社
Priority to CN201380036338.6A priority Critical patent/CN104520216A/en
Priority to KR1020157000489A priority patent/KR20150021998A/en
Publication of WO2014024564A1 publication Critical patent/WO2014024564A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/005Control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/12Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface comprising a series of individual load-carriers fixed, or normally fixed, relative to traction element
    • B65G17/126Bucket elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/02Control devices, e.g. for safety, warning or fault-correcting detecting dangerous physical condition of load carriers, e.g. for interrupting the drive in the event of overheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/02Loading or unloading machines comprising essentially a conveyor for moving the loads associated with a device for picking-up the loads
    • B65G65/06Loading or unloading machines comprising essentially a conveyor for moving the loads associated with a device for picking-up the loads with endless scraping or elevating pick-up conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G67/00Loading or unloading vehicles
    • B65G67/60Loading or unloading ships
    • B65G67/606Loading or unloading ships using devices specially adapted for bulk material

Definitions

  • the present invention relates to a bucket elevator type continuous unloader.
  • an unloader disclosed in Patent Document 1 below is known as a technology in such a field.
  • the unloader includes a drive device for rotating the bucket, a torque detector for detecting the torque of the drive device, and a control device for controlling the drive of the drive device.
  • This control device is configured to execute one of a plurality of control modes in accordance with the detection value of the torque detector.
  • the bucket moving speed is the same when the bucket is loaded with an object and when the bucket is not loaded.
  • the moving speed of the bucket is the same regardless of whether or not the object is loaded, energy loss occurs in a state where the bucket does not load the object. Therefore, there is room for improvement in power consumption when the bucket moves.
  • an object of the present invention is to provide a continuous unloader with reduced power consumption and improved energy efficiency.
  • the continuous unloader of the present invention is a bucket elevator type continuous unloader including a bucket elevator that continuously conveys an object, and the bucket elevator holds a plurality of buckets for scraping and loading the object and the bucket.
  • An endless chain a drive unit that drives and circulates the endless chain, a detector that detects a load of the drive unit, and a value based on the load detected by the detector is less than or equal to a predetermined value, the drive unit is And a control unit that controls to lower the moving speed of the bucket than when the value based on the load is larger than a predetermined value.
  • control unit reduces the moving speed of the bucket when the load detected by the detector is equal to or lower than a predetermined value, and the predetermined value is a driving unit in a state where a plurality of buckets are not loaded with an object. It may be a load. In this case, since the speed of the bucket is reduced when the bucket is not loaded with an object, power consumption can be suppressed in an idling state where excavation is not performed, and energy efficiency can be improved. .
  • control unit may increase the bucket moving speed when the value based on the load detected by the detector exceeds a predetermined value in a state where the bucket moving speed is reduced. In this case, since the moving speed of the bucket is increased when excavation is performed, the conveyance can be efficiently performed when the object is loaded.
  • FIG. 1 It is a figure which shows the continuous unloader which concerns on embodiment of this invention. It is a partially broken perspective view of the bucket elevator upper part in the continuous unloader of FIG. It is a block diagram which shows the structure of the electric system in the continuous unloader of FIG. It is a flowchart which shows the control process of the moving speed of the bucket in the continuous unloader of FIG.
  • a bucket elevator type continuous unloader (CSU) 1 for ships shown in FIGS. 1 and 2 is a device that continuously unloads bulk loads M (for example, coke and ore) from a ship hold 103.
  • the continuous unloader 1 includes a girder 2 that can travel along the quay 101 by two rails 3 a laid in parallel to the quay 101.
  • the girder 2 is a main body that can be installed on the upper surface of the quay 101.
  • a swivel frame 5 is supported on the girder 2 so that the swivel frame 5 can swivel, and a bucket elevator 9 is supported at a tip end portion of a boom 7 projecting laterally from the swivel frame 5.
  • the bucket elevator 9 is configured to maintain the vertical position by the balancing lever 12 and the counterweight 13 regardless of the undulation angle of the boom 7.
  • the continuous unloader 1 includes a cylinder 15 for adjusting the hoisting angle of the boom 7.
  • a cylinder 15 for adjusting the hoisting angle of the boom 7.
  • the bucket elevator 9 is configured to continuously excavate and scrape the bulk load M in the hold 103 by the side surface excavation type scraper 11 provided at the lower portion thereof, and to transport the scraped bulk load M upward. It is.
  • the bucket elevator 9 includes an elevator main body 23 that constitutes the elevator shaft 21 and a chain bucket 29 that rotates around the elevator main body 23.
  • the chain bucket 29 includes a pair of roller chains (endless chain) 25 connected in an endless manner, and a plurality of buckets 27 supported at both ends by the pair of chains 25.
  • the two chains 25 are juxtaposed in a direction perpendicular to the paper surface of FIG. 1, and each bucket 27 is suspended between the two chains 25 as shown in FIG. In this manner, the chain 25 is attached to the chain 25 via a predetermined fixture.
  • the bucket elevator 9 includes drive rollers 31a, 31b, and 31c around which the chain 25 is bridged, and a turning roller 33 that guides the chain 25.
  • the driving roller 31 a is provided at the uppermost part 9 a of the bucket elevator 9, the driving roller 31 b is provided at the front part of the scraping part 11, and the driving roller 31 c is provided at the rear part of the scraping part 11.
  • the turning roller 33 is a driven roller located slightly below the driving roller 31a, and guides the chain 25 and changes the traveling direction of the chain 25. Further, a cylinder 35 is interposed between the driving roller 31b and the driving roller 31c.
  • the chain 25 rotates around the elevator main body 23 in a direction indicated by an arrow W (positive direction) with respect to the elevator body 23. It circulates between the uppermost part 9a and the scraping part 11 while moving around.
  • the bucket 27 of the chain bucket 29 ascends with its opening 27a facing upward. And in the uppermost part 9a of the bucket elevator 9, when passing the drive roller 31a, the chain 25 changes direction from upward to downward, and the opening 27a of the bucket 27 turns downward.
  • a discharge chute 36 is formed below the opening 27a of the bucket 27 that faces downward as described above. The lower end of the discharge chute 36 is connected to a rotary feeder 37 disposed on the outer periphery of the bucket elevator 9.
  • the rotary feeder 37 conveys the loose load M carried out from the discharge chute 36 to the boom 7 side.
  • a boom conveyor 39 is arranged on the boom 7, and the boom conveyor 39 supplies the bulk load M transferred from the rotary feeder 37 to the hopper 41.
  • an in-machine belt feeder 43 and an in-machine conveyor 45 are arranged below the hopper 41.
  • the landing of the loose load (object) M using the continuous unloader 1 is performed as follows.
  • the scraping part 11 at the lower end of the bucket elevator 9 is inserted into the hold 103, and the chain 25 is rotated in the direction of the arrow W in the figure. If it does so, the bucket 27 located in the scraping part 11 will excavate and scrape the bulk load M, such as a coke and an ore, continuously. Then, the loose load M scraped and loaded in these buckets 27 is conveyed vertically upward to the uppermost portion 9 a of the bucket elevator 9 as the chain 25 rises.
  • the bucket 27 passes through the position of the driving roller 31 a and the bucket 27 rotates, so that the loose load M falls from the bucket 27.
  • the bulk M dropped from the bucket 27 falls into the discharge chute 36 and is carried out to the rotary feeder 37 side, and is further transferred to the boom conveyor 39 and conveyed to the hopper 41. Further, the loose load M is carried out to the ground side equipment 49 via the belt feeder 43 and the in-machine conveyor 45.
  • the above operations are repeatedly performed using the plurality of buckets 27, whereby the loose load M in the hold 103 is continuously landed.
  • the continuous unloader 1 includes a load motor 75 for driving the drive rollers 31a, 31b, and 31c.
  • the load motor 75 operates by obtaining power from a power supply 71 of the power supply system 70.
  • the power supply system 70 includes the power supply 71, a load motor 75, a converter 72, an inverter 73, and a PLC (Programmable Logic Controller) 80.
  • the power source 71 is a commercial power source and supplies AC power to the converter 72.
  • Converter 72 converts AC power supplied from power supply 71 into DC power.
  • the converter 72 and the inverter 73 are connected via a DC bus L, and the DC power converted by the converter 72 is supplied to the inverter 73 via the DC bus L.
  • Inverter 73 converts the DC power from converter 72 into AC power having a predetermined frequency, and supplies this AC power to load motor 75.
  • the load motor 75 is operated by AC power from the inverter 73, and the drive rollers 31a, 31b, 31c are driven by the operation of the load motor 75. In this manner, the drive rollers 31a, 31b, 31c and the load motor 75 function as a drive unit that drives the chain 25 to rotate.
  • the inverter 73 is connected to a PLC 80 that is a control unit that controls the continuous unloader 1 in an integrated manner.
  • the inverter 73 functions as a detector that detects the torque of the load motor 75 and outputs the detected value to the PLC 80 as a torque signal that is an electric signal.
  • the PLC 80 performs a predetermined calculation based on the detected value to calculate the moving speed of the bucket 27, and outputs the calculated moving speed to the inverter 73 as a speed signal.
  • the inverter 73 supplies power corresponding to the speed signal to the load motor 75 to control the moving speed of the bucket 27 in the arrow W direction.
  • the control processing of the moving speed of the bucket 27 by the PLC 80 is performed based on, for example, the flowchart shown in FIG.
  • the process shown in FIG. 4 is executed, for example, every predetermined time. Below, the control process of the moving speed of this bucket 27 is demonstrated.
  • the inverter 73 detects the torque of the load motor 75 and outputs a torque signal to the PLC 80 in step S1 (hereinafter referred to as “S1”. The same applies to other steps).
  • the PLC 80 determines whether or not the torque detected in S1 is larger than a preset value A which is a preset predetermined value (S2). For example, when the bucket 27 is unloading the loose load M and when it is determined that the torque is larger than the set value A, the process proceeds to S3. On the other hand, for example, when the bucket 27 is in an idling state where the loose load M is not being unloaded and when it is determined that the torque is not greater than the set value A, the process proceeds to S4.
  • an idling state for example, a state in which the bulldozer moves the bulk load M to a position where the loose load M is easily unloaded in the hold 103 and the bucket 27 is idled.
  • the PLC 80 outputs a speed signal to the inverter 73 so as to move the bucket 27 at a preset specified speed. Then, the inverter 73 supplies electric power corresponding to the speed signal to the load motor 75, and the bucket 27 moves at a specified speed, and the series of processes ends.
  • the PLC 80 outputs a speed signal to the inverter 73 so as to move the bucket 27 at a lower speed slower than the specified speed. And the inverter 73 supplies the electric power according to the said speed signal to the load motor 75, the bucket 27 comes to move at a decreasing speed, and complete
  • the load motor 75 when the value based on the load detected by the inverter 73 is larger than the set value A, the load motor 75 is controlled to set the moving speed of the bucket 27 as the specified speed, and the value based on the load. Is less than or equal to the set value A, the load motor 75 is controlled to reduce the moving speed of the bucket 27. Therefore, since the speed of the bucket 27 is reduced when the load of the load motor 75 is small, it is possible to suppress power consumption when the load of the loose load M is small, and to improve energy efficiency. Can do. Furthermore, the basic unit, which is the amount of energy required for lifting a certain amount of loose load M, can be improved, and the load applied to the chain 25 is reduced by reducing the moving speed of the bucket 27. Therefore, it is possible to extend the life of the chain 25.
  • the PLC 80 reduces the moving speed of the bucket 27 when the load detected by the inverter 73 becomes equal to or less than the set value A.
  • This set value A is in the state where the bucket 27 is not loaded with the loose load M.
  • the load of the load motor 75 may be sufficient. In this case, the speed of the bucket 27 is reduced when there is no bulk load M, so that power consumption is suppressed in the idling state, and energy efficiency can be further improved.
  • the PLC 80 increases the moving speed of the bucket 27 to a specified speed when the value based on the load exceeds the set value A in a state where the moving speed of the bucket 27 is set to a reduced speed. Therefore, since the moving speed of the bucket 27 is increased when the bulk load M is loaded and the torque is increased, the conveyance can be efficiently performed when the bulk load M is loaded. Instead of automatically setting the moving speed of the bucket 27 to the specified speed as described above, the moving speed of the bucket 27 may be manually returned to the specified speed based on the judgment of the driver or the like.
  • the example in which the moving speed of the bucket 27 is changed based on whether or not the detected torque is larger than the set value A has been described.
  • the determination may be made based on whether the detected differential value of the torque has become a predetermined value or more, or may be determined based on whether the average value of the torque has become a predetermined value or more.
  • a switch that allows the operator to select between a specified speed and a reduced speed may be provided, and it may be determined whether to set the specified speed or the reduced speed according to the selection status of the switch.
  • the present invention can be used as a continuous unloader with reduced energy consumption and improved energy efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Ship Loading And Unloading (AREA)

Abstract

A bucket elevator-type continuous unloader (1) is provided with a bucket elevator (9) for continuously conveying bulk material (M). The bucket elevator (9) is provided with: buckets (27) for scooping and loading the bulk material (M); a chain (25) for holding the buckets (27); a load motor (75) for driving and circulating the chain (25); an inverter (73) for detecting a load on the load motor (75); and a PLC (80) which, when a value based on the load detected by the inverter (73) is less than or equal to a set value (A), controls the load motor (75) and reduces the movement speed of the buckets (27) to a speed lower than the speed of a case where the value based on the load is greater than the set value (A).

Description

連続アンローダContinuous unloader
 本発明は、バケットエレベータ式の連続アンローダに関するものである。 The present invention relates to a bucket elevator type continuous unloader.
 従来、このような分野の技術として、下記特許文献1のアンローダが知られている。このアンローダは、バケットを周回させるための駆動装置と、駆動装置のトルクを検出するトルク検出器と、駆動装置の駆動を制御する制御装置とを備えている。この制御装置は、トルク検出器の検出値に応じて、複数の制御モードのうちのいずれかを実行するようになっている。 Conventionally, an unloader disclosed in Patent Document 1 below is known as a technology in such a field. The unloader includes a drive device for rotating the bucket, a torque detector for detecting the torque of the drive device, and a control device for controlling the drive of the drive device. This control device is configured to execute one of a plurality of control modes in accordance with the detection value of the torque detector.
特開2002-274657号公報JP 2002-274657 A
 しかしながら、上記のアンローダでは、バケットが対象物を積載している場合と積載していない場合とでバケットの移動速度は同じである。このように、対象物を積載しているか否かに拘らずバケットの移動速度が同じであるため、バケットが対象物を積載していない状態でエネルギーロスが生じている。よって、バケットの移動時における電力の消費について改善の余地がある。 However, in the above unloader, the bucket moving speed is the same when the bucket is loaded with an object and when the bucket is not loaded. Thus, since the moving speed of the bucket is the same regardless of whether or not the object is loaded, energy loss occurs in a state where the bucket does not load the object. Therefore, there is room for improvement in power consumption when the bucket moves.
 この問題に鑑み、本発明は、消費電力の削減を図り、エネルギー効率を向上させた連続アンローダを提供することを目的とする。 In view of this problem, an object of the present invention is to provide a continuous unloader with reduced power consumption and improved energy efficiency.
 本発明の連続アンローダは、対象物を連続的に搬送するバケットエレベータを備えたバケットエレベータ式の連続アンローダであって、バケットエレベータは、対象物を掻き取って積載する複数のバケットと、バケットを保持する無端チェーンと、無端チェーンを駆動し周回させる駆動部と、駆動部の負荷を検出する検出器と、検出器によって検出された負荷に基づく値が所定値以下となった場合に、駆動部を制御してバケットの移動速度を、負荷に基づく値が所定値より大きい場合よりも低下させる制御部と、を備えたことを特徴とする。 The continuous unloader of the present invention is a bucket elevator type continuous unloader including a bucket elevator that continuously conveys an object, and the bucket elevator holds a plurality of buckets for scraping and loading the object and the bucket. An endless chain, a drive unit that drives and circulates the endless chain, a detector that detects a load of the drive unit, and a value based on the load detected by the detector is less than or equal to a predetermined value, the drive unit is And a control unit that controls to lower the moving speed of the bucket than when the value based on the load is larger than a predetermined value.
 このような制御部を備えた構成によれば、駆動部の負荷に基づく値が所定値以下となった場合には、バケットの移動速度が低下される。よって、駆動部の負荷が小さい場合にバケットの速度が低下されることとなるため、バケットの対象物の積載量が少ない場合には消費電力を抑えることが可能となり、エネルギー効率を向上させることができる。 According to the configuration provided with such a control unit, when the value based on the load of the driving unit becomes a predetermined value or less, the moving speed of the bucket is reduced. Therefore, since the speed of the bucket is reduced when the load on the driving unit is small, it is possible to reduce power consumption when the load of the target object of the bucket is small, and to improve energy efficiency. it can.
 また、制御部は、検出器によって検出された負荷が所定値以下となった場合に、バケットの移動速度を低下させ、所定値は、複数のバケットが対象物を積載していない状態における駆動部の負荷であってもよい。この場合、バケットが対象物を積載していない場合にバケットの速度が低下されることとなるため、掘削を行っていないアイドリング状態において電力消費が抑えられることとなり、エネルギー効率を向上させることができる。 Further, the control unit reduces the moving speed of the bucket when the load detected by the detector is equal to or lower than a predetermined value, and the predetermined value is a driving unit in a state where a plurality of buckets are not loaded with an object. It may be a load. In this case, since the speed of the bucket is reduced when the bucket is not loaded with an object, power consumption can be suppressed in an idling state where excavation is not performed, and energy efficiency can be improved. .
 また、制御部は、バケットの移動速度を低下させた状態であって検出器によって検出された負荷に基づく値が所定値を超えた場合に、バケットの移動速度を高めるようにしてもよい。この場合、掘削を行うときにバケットの移動速度が高まるため、対象物の積載時には搬送を効率よく行うことができる。 Further, the control unit may increase the bucket moving speed when the value based on the load detected by the detector exceeds a predetermined value in a state where the bucket moving speed is reduced. In this case, since the moving speed of the bucket is increased when excavation is performed, the conveyance can be efficiently performed when the object is loaded.
 本発明によれば、消費電力の削減を図り、エネルギー効率を向上させた連続アンローダを提供することができる。 According to the present invention, it is possible to provide a continuous unloader with reduced power consumption and improved energy efficiency.
本発明の実施形態に係る連続アンローダを示す図である。It is a figure which shows the continuous unloader which concerns on embodiment of this invention. 図1の連続アンローダにおけるバケットエレベータ上部の一部破断斜視図である。It is a partially broken perspective view of the bucket elevator upper part in the continuous unloader of FIG. 図1の連続アンローダにおける電気系統の構成を示すブロック図である。It is a block diagram which shows the structure of the electric system in the continuous unloader of FIG. 図1の連続アンローダにおけるバケットの移動速度の制御処理を示すフローチャートである。It is a flowchart which shows the control process of the moving speed of the bucket in the continuous unloader of FIG.
 以下、図面を参照しつつ本発明に係る連続アンローダの実施形態について詳細に説明する。 Hereinafter, embodiments of a continuous unloader according to the present invention will be described in detail with reference to the drawings.
 図1及び図2に示すバケットエレベータ式の船舶用連続アンローダ(CSU)1は、船舶の船倉103からバラ荷M(例えば、コークスや鉱石等)を連続的に陸揚げする装置である。連続アンローダ1は、岸壁101と平行に敷設された2本のレール3aにより、当該岸壁101に沿って走行可能なガーダ2を備えている。ガーダ2は、岸壁101の上面に設置可能な本体部である。ガーダ2の上には、旋回フレーム5が旋回可能に支持され、その旋回フレーム5から横方向に突設されたブーム7の先端部にバケットエレベータ9が支持されている。バケットエレベータ9は、バランシングレバー12及びカウンタウエイト13によって、ブーム7の起伏角度に関係なく鉛直を保持するようになっている。 A bucket elevator type continuous unloader (CSU) 1 for ships shown in FIGS. 1 and 2 is a device that continuously unloads bulk loads M (for example, coke and ore) from a ship hold 103. The continuous unloader 1 includes a girder 2 that can travel along the quay 101 by two rails 3 a laid in parallel to the quay 101. The girder 2 is a main body that can be installed on the upper surface of the quay 101. A swivel frame 5 is supported on the girder 2 so that the swivel frame 5 can swivel, and a bucket elevator 9 is supported at a tip end portion of a boom 7 projecting laterally from the swivel frame 5. The bucket elevator 9 is configured to maintain the vertical position by the balancing lever 12 and the counterweight 13 regardless of the undulation angle of the boom 7.
 連続アンローダ1は、ブーム7の起伏角度を調整するためのシリンダ15を備えている。このシリンダ15を伸ばすとブーム7は上向きとなってバケットエレベータ9が上昇し、シリンダ15を縮めるとブーム7は下向きとなってバケットエレベータ9が下降するようになっている。 The continuous unloader 1 includes a cylinder 15 for adjusting the hoisting angle of the boom 7. When the cylinder 15 is extended, the boom 7 is upward and the bucket elevator 9 is raised, and when the cylinder 15 is contracted, the boom 7 is downward and the bucket elevator 9 is lowered.
 バケットエレベータ9は、その下部に設けられた側面掘削方式の掻き取り部11により、船倉103内のバラ荷Mを連続的に掘削し掻き取ると共に、掻き取ったバラ荷Mを上方に搬送するものである。 The bucket elevator 9 is configured to continuously excavate and scrape the bulk load M in the hold 103 by the side surface excavation type scraper 11 provided at the lower portion thereof, and to transport the scraped bulk load M upward. It is.
 バケットエレベータ9は、エレベータシャフト21を構成するエレベータ本体23と、エレベータ本体23に対して周回運動するチェーンバケット29とを備えている。チェーンバケット29は、無端状に連結された一対のローラチェーン(無端チェーン)25と、当該一対のチェーン25に両持ち支持された複数のバケット27と、を備えている。具体的には、2本のチェーン25は、図1の紙面に直交する方向に並設されており、各バケット27は、図2に示されるように、2本のチェーン25の間に吊り下げられるようにして当該チェーン25,25に所定の取付具を介し取付けられている。 The bucket elevator 9 includes an elevator main body 23 that constitutes the elevator shaft 21 and a chain bucket 29 that rotates around the elevator main body 23. The chain bucket 29 includes a pair of roller chains (endless chain) 25 connected in an endless manner, and a plurality of buckets 27 supported at both ends by the pair of chains 25. Specifically, the two chains 25 are juxtaposed in a direction perpendicular to the paper surface of FIG. 1, and each bucket 27 is suspended between the two chains 25 as shown in FIG. In this manner, the chain 25 is attached to the chain 25 via a predetermined fixture.
 更に、バケットエレベータ9は、チェーン25が架け渡される駆動ローラ31a,31b,31cと、チェーン25をガイドする転向ローラ33と、を備えている。駆動ローラ31aはバケットエレベータ9の最上部9aに設けられ、駆動ローラ31bは掻き取り部11の前部に設けられ、駆動ローラ31cは掻き取り部11の後部に設けられている。転向ローラ33は、駆動ローラ31aのやや下方に位置する従動ローラであり、チェーン25をガイドすると共にチェーン25の進行方向を転換する。また、駆動ローラ31bと駆動ローラ31cとの間にはシリンダ35が介装され、このシリンダ35を伸縮することで両駆動ローラ31b,31cの配設軸間距離を変化させて、チェーンバケット29の移動周回軌跡を変えられるようになっている。なお、チェーン25が2本存在することに対応して、駆動ローラ31a,31b,31cと転向ローラ33も、各々2個ずつ存在し、図1の紙面に直交する方向に並設されている。 Furthermore, the bucket elevator 9 includes drive rollers 31a, 31b, and 31c around which the chain 25 is bridged, and a turning roller 33 that guides the chain 25. The driving roller 31 a is provided at the uppermost part 9 a of the bucket elevator 9, the driving roller 31 b is provided at the front part of the scraping part 11, and the driving roller 31 c is provided at the rear part of the scraping part 11. The turning roller 33 is a driven roller located slightly below the driving roller 31a, and guides the chain 25 and changes the traveling direction of the chain 25. Further, a cylinder 35 is interposed between the driving roller 31b and the driving roller 31c. By extending and contracting the cylinder 35, the distance between the axes of the both driving rollers 31b and 31c is changed, so that the chain bucket 29 The moving orbit can be changed. Corresponding to the presence of two chains 25, there are also two drive rollers 31a, 31b, 31c and two turning rollers 33, respectively, which are arranged in parallel in a direction perpendicular to the paper surface of FIG.
 駆動ローラ31a,31b,31cがチェーン25を駆動することで、チェーン25が、エレベータ本体23に対し所定の軌跡で矢印W方向(正方向)に周回運動し、チェーンバケット29は、バケットエレベータ9の最上部9aと掻き取り部11との間を移動周回しながら循環する。 When the driving rollers 31a, 31b, and 31c drive the chain 25, the chain 25 rotates around the elevator main body 23 in a direction indicated by an arrow W (positive direction) with respect to the elevator body 23. It circulates between the uppermost part 9a and the scraping part 11 while moving around.
 チェーンバケット29のバケット27は、図2に示すように、その開口部27aを上に向けた姿勢で上昇する。そして、バケットエレベータ9の最上部9aでは、駆動ローラ31aを通過するときにチェーン25が上向きから下向きに方向転換し、バケット27の開口部27aが下向きに転回する。このように下向きになったバケット27の開口部27aの下方に排出用シュート36が形成されている。この排出用シュート36の下端は、バケットエレベータ9の外周に配設された回転フィーダ37に接続されている。 As shown in FIG. 2, the bucket 27 of the chain bucket 29 ascends with its opening 27a facing upward. And in the uppermost part 9a of the bucket elevator 9, when passing the drive roller 31a, the chain 25 changes direction from upward to downward, and the opening 27a of the bucket 27 turns downward. A discharge chute 36 is formed below the opening 27a of the bucket 27 that faces downward as described above. The lower end of the discharge chute 36 is connected to a rotary feeder 37 disposed on the outer periphery of the bucket elevator 9.
 回転フィーダ37は、排出用シュート36から搬出されるバラ荷Mをブーム7側に搬送するものである。ブーム7には、図1に示すように、ブームコンベヤ39が配置され、このブームコンベヤ39は、回転フィーダ37から乗り換えたバラ荷Mをホッパ41に供給するようになっている。そのホッパ41の下方には機内のベルトフィーダ43や機内コンベヤ45が配置されている。 The rotary feeder 37 conveys the loose load M carried out from the discharge chute 36 to the boom 7 side. As shown in FIG. 1, a boom conveyor 39 is arranged on the boom 7, and the boom conveyor 39 supplies the bulk load M transferred from the rotary feeder 37 to the hopper 41. Below the hopper 41, an in-machine belt feeder 43 and an in-machine conveyor 45 are arranged.
 この連続アンローダ1を用いたバラ荷(対象物)Mの陸揚げは、以下のように行われる。バケットエレベータ9の下端部の掻き取り部11を船倉103内に挿し入れて、チェーン25を図中矢印Wの方向に周回させる。そうすると、掻き取り部11に位置するバケット27が、連続的にコークスや鉱石等のバラ荷Mの掘削及び掻き取りを行う。そして、これらのバケット27に掻き取られ積載されたバラ荷Mは、チェーン25の上昇に伴ってバケットエレベータ9の最上部9aまで鉛直上方に搬送される。 The landing of the loose load (object) M using the continuous unloader 1 is performed as follows. The scraping part 11 at the lower end of the bucket elevator 9 is inserted into the hold 103, and the chain 25 is rotated in the direction of the arrow W in the figure. If it does so, the bucket 27 located in the scraping part 11 will excavate and scrape the bulk load M, such as a coke and an ore, continuously. Then, the loose load M scraped and loaded in these buckets 27 is conveyed vertically upward to the uppermost portion 9 a of the bucket elevator 9 as the chain 25 rises.
 その後、バケット27が駆動ローラ31aの位置を通過し、当該バケット27が転回することで、バラ荷Mがバケット27から落下する。バケット27から落下したバラ荷Mは、排出用シュート36内に落ち込んで回転フィーダ37側に搬出され、更にブームコンベヤ39に乗り継いでホッパ41に搬送される。更に、バラ荷Mは、ベルトフィーダ43及び機内コンベヤ45を介して地上側設備49に搬出される。以上のような動作が、複数のバケット27を用いて繰り返し行われることで、船倉103内のバラ荷Mは連続的に陸揚げされる。 After that, the bucket 27 passes through the position of the driving roller 31 a and the bucket 27 rotates, so that the loose load M falls from the bucket 27. The bulk M dropped from the bucket 27 falls into the discharge chute 36 and is carried out to the rotary feeder 37 side, and is further transferred to the boom conveyor 39 and conveyed to the hopper 41. Further, the loose load M is carried out to the ground side equipment 49 via the belt feeder 43 and the in-machine conveyor 45. The above operations are repeatedly performed using the plurality of buckets 27, whereby the loose load M in the hold 103 is continuously landed.
 ところで、連続アンローダ1は、駆動ローラ31a,31b,31cを駆動する負荷モータ75を備えている。負荷モータ75は、図3に示すように、電源システム70の電源71から電力を得て動作する。電源システム70は、この電源71及び負荷モータ75と、コンバータ72と、インバータ73と、PLC(Programmable Logic Controller)80とを備えている。電源71は、商用電源であり、交流電力をコンバータ72に供給する。コンバータ72は、電源71から供給された交流電力を直流電力に変換する。コンバータ72とインバータ73とは直流母線Lを介して接続されており、コンバータ72が変換した直流電力は直流母線Lを介してインバータ73に供給される。インバータ73は、コンバータ72からの直流電力を所定の周波数の交流電力に変換し、この交流電力を負荷モータ75に供給する。負荷モータ75はインバータ73からの交流電力によって作動し、負荷モータ75の作動によって駆動ローラ31a,31b,31cの駆動が行われる。このように、駆動ローラ31a,31b,31cと負荷モータ75がチェーン25を駆動し周回させる駆動部として機能する。 By the way, the continuous unloader 1 includes a load motor 75 for driving the drive rollers 31a, 31b, and 31c. As shown in FIG. 3, the load motor 75 operates by obtaining power from a power supply 71 of the power supply system 70. The power supply system 70 includes the power supply 71, a load motor 75, a converter 72, an inverter 73, and a PLC (Programmable Logic Controller) 80. The power source 71 is a commercial power source and supplies AC power to the converter 72. Converter 72 converts AC power supplied from power supply 71 into DC power. The converter 72 and the inverter 73 are connected via a DC bus L, and the DC power converted by the converter 72 is supplied to the inverter 73 via the DC bus L. Inverter 73 converts the DC power from converter 72 into AC power having a predetermined frequency, and supplies this AC power to load motor 75. The load motor 75 is operated by AC power from the inverter 73, and the drive rollers 31a, 31b, 31c are driven by the operation of the load motor 75. In this manner, the drive rollers 31a, 31b, 31c and the load motor 75 function as a drive unit that drives the chain 25 to rotate.
 また、インバータ73には、連続アンローダ1を統括制御する制御部であるPLC80が接続されている。インバータ73は、負荷モータ75のトルクを検出する検出器として機能し、その検出値を電気信号であるトルク信号としてPLC80に出力する。PLC80は、インバータ73からトルク信号を受けると、上記検出値に基づき所定の演算を行ってバケット27の移動速度を算出し、算出した移動速度を速度信号としてインバータ73に出力する。そして、インバータ73が速度信号に応じた電力を負荷モータ75に供給することにより、バケット27の矢印W方向への移動速度を制御する。 The inverter 73 is connected to a PLC 80 that is a control unit that controls the continuous unloader 1 in an integrated manner. The inverter 73 functions as a detector that detects the torque of the load motor 75 and outputs the detected value to the PLC 80 as a torque signal that is an electric signal. When receiving a torque signal from the inverter 73, the PLC 80 performs a predetermined calculation based on the detected value to calculate the moving speed of the bucket 27, and outputs the calculated moving speed to the inverter 73 as a speed signal. The inverter 73 supplies power corresponding to the speed signal to the load motor 75 to control the moving speed of the bucket 27 in the arrow W direction.
 PLC80によるバケット27の移動速度の制御処理は、例えば図4に示すフローチャートに基づいて行われる。図4に示す処理は、例えば所定時間毎に実行される。以下では、このバケット27の移動速度の制御処理について説明する。 The control processing of the moving speed of the bucket 27 by the PLC 80 is performed based on, for example, the flowchart shown in FIG. The process shown in FIG. 4 is executed, for example, every predetermined time. Below, the control process of the moving speed of this bucket 27 is demonstrated.
 まず、インバータ73は、ステップS1(以下、「S1」とする。他のステップにおいても同様とする。)において、負荷モータ75のトルクを検出し、トルク信号をPLC80に出力する。次に、PLC80は、S1で検出されたトルクが予め設定された所定値である設定値Aより大きいか否かを判定する(S2)。そして、例えばバケット27がバラ荷Mの荷揚げを行っているときであって、トルクが設定値Aより大きいと判定した場合はS3に移行する。一方、例えばバケット27がバラ荷Mの荷揚げを行っていないアイドリング状態のときであって、トルクが設定値Aより大きくないと判定した場合は、S4に移行する。なお、アイドリング状態としては、例えば、船倉103内でブルドーザーがバラ荷Mを荷揚げしやすい位置に移動させており、バケット27を空回りさせている状態が挙げられる。 First, the inverter 73 detects the torque of the load motor 75 and outputs a torque signal to the PLC 80 in step S1 (hereinafter referred to as “S1”. The same applies to other steps). Next, the PLC 80 determines whether or not the torque detected in S1 is larger than a preset value A which is a preset predetermined value (S2). For example, when the bucket 27 is unloading the loose load M and when it is determined that the torque is larger than the set value A, the process proceeds to S3. On the other hand, for example, when the bucket 27 is in an idling state where the loose load M is not being unloaded and when it is determined that the torque is not greater than the set value A, the process proceeds to S4. As an idling state, for example, a state in which the bulldozer moves the bulk load M to a position where the loose load M is easily unloaded in the hold 103 and the bucket 27 is idled.
 S3において、PLC80は、バケット27を予め設定された規定速度で移動させるように、インバータ73に速度信号を出力する。そして、インバータ73が当該速度信号に応じた電力を負荷モータ75に供給して、バケット27は規定速度で移動するようになり、一連の処理を終了する。一方、S4において、PLC80は、バケット27を上記規定速度より遅い低下速度で移動させるように、インバータ73に速度信号を出力する。そして、インバータ73が当該速度信号に応じた電力を負荷モータ75に供給して、バケット27は低下速度で移動するようになり、一連の処理を終了する。 In S3, the PLC 80 outputs a speed signal to the inverter 73 so as to move the bucket 27 at a preset specified speed. Then, the inverter 73 supplies electric power corresponding to the speed signal to the load motor 75, and the bucket 27 moves at a specified speed, and the series of processes ends. On the other hand, in S4, the PLC 80 outputs a speed signal to the inverter 73 so as to move the bucket 27 at a lower speed slower than the specified speed. And the inverter 73 supplies the electric power according to the said speed signal to the load motor 75, the bucket 27 comes to move at a decreasing speed, and complete | finishes a series of processes.
 本実施形態に係る連続アンローダ1では、インバータ73によって検出された負荷に基づく値が設定値Aより大きい場合に、負荷モータ75を制御してバケット27の移動速度を規定速度とし、負荷に基づく値が設定値A以下となった場合に、負荷モータ75を制御して、バケット27の移動速度を低下させる。よって、負荷モータ75の負荷が小さい場合にはバケット27の速度が低下されることとなるため、バラ荷Mの積載量が少ない場合の消費電力を抑えることが可能となり、エネルギー効率を向上させることができる。さらに、一定量のバラ荷Mを揚げる際に必要なエネルギー量である原単位の向上を図ることもでき、バケット27の移動速度を低下速度とすることにより、チェーン25にかかる負荷が低減されるため、チェーン25の寿命を延ばすことも可能となる。 In the continuous unloader 1 according to the present embodiment, when the value based on the load detected by the inverter 73 is larger than the set value A, the load motor 75 is controlled to set the moving speed of the bucket 27 as the specified speed, and the value based on the load. Is less than or equal to the set value A, the load motor 75 is controlled to reduce the moving speed of the bucket 27. Therefore, since the speed of the bucket 27 is reduced when the load of the load motor 75 is small, it is possible to suppress power consumption when the load of the loose load M is small, and to improve energy efficiency. Can do. Furthermore, the basic unit, which is the amount of energy required for lifting a certain amount of loose load M, can be improved, and the load applied to the chain 25 is reduced by reducing the moving speed of the bucket 27. Therefore, it is possible to extend the life of the chain 25.
 また、PLC80はインバータ73によって検出された負荷が設定値A以下となった場合にバケット27の移動速度を低下させるが、この設定値Aは、バケット27がバラ荷Mを積載していない状態における負荷モータ75の負荷であってもよい。この場合、バラ荷Mの積載がない場合にバケット27の速度が低下されることとなるため、アイドリング状態において電力消費が抑えられることとなり、エネルギー効率をより向上させることができる。 Further, the PLC 80 reduces the moving speed of the bucket 27 when the load detected by the inverter 73 becomes equal to or less than the set value A. This set value A is in the state where the bucket 27 is not loaded with the loose load M. The load of the load motor 75 may be sufficient. In this case, the speed of the bucket 27 is reduced when there is no bulk load M, so that power consumption is suppressed in the idling state, and energy efficiency can be further improved.
 また、PLC80は、バケット27の移動速度を低下速度にした状態であって負荷に基づく値が設定値Aを超えた場合に、バケット27の移動速度を高めて規定速度にする。よって、バラ荷Mの積載が行われてトルクが増大したときにバケット27の移動速度が高まるため、バラ荷Mの積載時には搬送を効率よく行うことができる。なお、上記のようにバケット27の移動速度を自動的に規定速度にする代わりに、運転者等の判断でバケット27の移動速度を手動で規定速度に戻すようにしてもよい。 In addition, the PLC 80 increases the moving speed of the bucket 27 to a specified speed when the value based on the load exceeds the set value A in a state where the moving speed of the bucket 27 is set to a reduced speed. Therefore, since the moving speed of the bucket 27 is increased when the bulk load M is loaded and the torque is increased, the conveyance can be efficiently performed when the bulk load M is loaded. Instead of automatically setting the moving speed of the bucket 27 to the specified speed as described above, the moving speed of the bucket 27 may be manually returned to the specified speed based on the judgment of the driver or the like.
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形したものであってもよい。例えば、上記実施形態では、図4に示すフローチャートの処理を所定時間毎に行う例について説明したが、所定時間毎ではなく必要な場合にのみ処理を行うようにしてもよい。 As mentioned above, although embodiment of this invention was described, this invention is not restricted to the said embodiment, You may deform | transform within the range which does not change the summary described in each claim. For example, in the above-described embodiment, an example in which the process of the flowchart illustrated in FIG. 4 is performed at predetermined time intervals has been described, but the process may be performed only when necessary instead of at predetermined time intervals.
 また、上記実施形態では、検出したトルクが設定値Aより大きいか否かに基づいて、バケット27の移動速度を変化させる例について説明したが、バケット27の移動速度を変えるか否かの判断基準はこの例に限られない。すなわち、例えば、検出したトルクの微分値が所定値以上になったか否かに基づいて判断してもよいし、トルクの平均値が所定値以上になったか否かに基づいて判断してもよい。さらに、操作者が規定速度か低下速度かを選択可能なスイッチを設けて、このスイッチの選択状況に応じて規定速度にするか低下速度にするかを判断してもよい。 In the above embodiment, the example in which the moving speed of the bucket 27 is changed based on whether or not the detected torque is larger than the set value A has been described. Is not limited to this example. That is, for example, the determination may be made based on whether the detected differential value of the torque has become a predetermined value or more, or may be determined based on whether the average value of the torque has become a predetermined value or more. . Furthermore, a switch that allows the operator to select between a specified speed and a reduced speed may be provided, and it may be determined whether to set the specified speed or the reduced speed according to the selection status of the switch.
 本発明は、消費電力の削減を図り、エネルギー効率を向上させた連続アンローダとして利用可能である。 The present invention can be used as a continuous unloader with reduced energy consumption and improved energy efficiency.
 1…連続アンローダ、9…バケットエレベータ、25…チェーン(無端チェーン)、27…バケット、31a,31b,31c…駆動ローラ(駆動部)、73…インバータ(検出器)、75…負荷モータ(駆動部)、80…PLC(制御部)、M…バラ荷(対象物)。 DESCRIPTION OF SYMBOLS 1 ... Continuous unloader, 9 ... Bucket elevator, 25 ... Chain (endless chain), 27 ... Bucket, 31a, 31b, 31c ... Drive roller (drive part), 73 ... Inverter (detector), 75 ... Load motor (drive part) ), 80... PLC (control unit), M .. bulk load (object).

Claims (3)

  1.  対象物を連続的に搬送するバケットエレベータを備えたバケットエレベータ式の連続アンローダであって、
     前記バケットエレベータは、
     前記対象物を掻き取って積載する複数のバケットと、
     前記バケットを保持する無端チェーンと、
     前記無端チェーンを駆動し周回させる駆動部と、
     前記駆動部の負荷を検出する検出器と、
     前記検出器によって検出された負荷に基づく値が所定値以下となった場合に、前記駆動部を制御して前記バケットの移動速度を、前記負荷に基づく値が所定値より大きい場合よりも低下させる制御部と、を備えたことを特徴とする連続アンローダ。
    A bucket elevator type continuous unloader having a bucket elevator for continuously conveying an object,
    The bucket elevator is
    A plurality of buckets for scraping and loading the object;
    An endless chain holding the bucket;
    A drive unit for driving and circulating the endless chain;
    A detector for detecting a load of the driving unit;
    When the value based on the load detected by the detector becomes a predetermined value or less, the drive unit is controlled to lower the moving speed of the bucket than when the value based on the load is larger than the predetermined value. A continuous unloader.
  2.  前記制御部は、前記検出器によって検出された負荷が前記所定値以下となった場合に、前記バケットの移動速度を低下させ、
     前記所定値は、前記複数のバケットが前記対象物を積載していない状態における前記駆動部の負荷であることを特徴とする請求項1に記載の連続アンローダ。
    The control unit reduces the moving speed of the bucket when the load detected by the detector is equal to or less than the predetermined value,
    2. The continuous unloader according to claim 1, wherein the predetermined value is a load of the drive unit in a state where the plurality of buckets are not loaded with the object.
  3.  前記制御部は、前記バケットの移動速度を低下させた状態であって前記検出器によって検出された負荷に基づく値が前記所定値を超えた場合に、前記バケットの移動速度を高めることを特徴とする請求項1又は2に記載の連続アンローダ。
     
    The control unit increases the moving speed of the bucket when a value based on a load detected by the detector exceeds the predetermined value in a state in which the moving speed of the bucket is reduced. The continuous unloader according to claim 1 or 2.
PCT/JP2013/066252 2012-08-09 2013-06-12 Continuous unloader WO2014024564A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380036338.6A CN104520216A (en) 2012-08-09 2013-06-12 Continuous unloader
KR1020157000489A KR20150021998A (en) 2012-08-09 2013-06-12 Continuous unloader

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012177210A JP2014034458A (en) 2012-08-09 2012-08-09 Continuous unloader
JP2012-177210 2012-08-09

Publications (1)

Publication Number Publication Date
WO2014024564A1 true WO2014024564A1 (en) 2014-02-13

Family

ID=50067806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066252 WO2014024564A1 (en) 2012-08-09 2013-06-12 Continuous unloader

Country Status (5)

Country Link
JP (1) JP2014034458A (en)
KR (1) KR20150021998A (en)
CN (1) CN104520216A (en)
TW (1) TW201408571A (en)
WO (1) WO2014024564A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011203A (en) * 2014-06-30 2016-01-21 株式会社日立プラントメカニクス Unloader energy saving control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111328318B (en) * 2018-02-02 2022-01-07 株式会社Ihi Unloading device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143190A (en) * 1986-12-04 1988-06-15 株式会社日立製作所 Speed control system of passenger conveyor
JPH0248325A (en) * 1988-08-05 1990-02-19 Sanyo Mach Works Ltd Conveying device
JP2001253547A (en) * 2000-03-14 2001-09-18 Ishikawajima Harima Heavy Ind Co Ltd Overload protecting method and device for electric bucket elevator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167417A (en) * 1983-03-15 1984-09-20 Ishikawajima Harima Heavy Ind Co Ltd Unloader operation method
JPH0522423U (en) * 1991-04-25 1993-03-23 石川島播磨重工業株式会社 Continuous unloader
JP3546080B2 (en) * 1994-08-31 2004-07-21 三菱重工業株式会社 Bucket elevator drilling rig
JPH08119461A (en) * 1994-10-28 1996-05-14 Mitsubishi Heavy Ind Ltd Continuous unloader cargo handling control method
JPH11147615A (en) * 1997-11-18 1999-06-02 Ishikawajima Harima Heavy Ind Co Ltd Drive speed control method of bucket elevator in continuous unloader and device thereof
JP2002274657A (en) * 2001-03-15 2002-09-25 Sumitomo Heavy Ind Ltd Bucket type continuous unloader
CN2491407Y (en) * 2001-06-22 2002-05-15 三门峡高新机械有限公司 High speed plate chain bucket elevator
CN201424124Y (en) * 2009-06-08 2010-03-17 东莞市现代船舶制造有限公司 Frequency-changing adjustable type sand conveying device of sand excavating ship

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143190A (en) * 1986-12-04 1988-06-15 株式会社日立製作所 Speed control system of passenger conveyor
JPH0248325A (en) * 1988-08-05 1990-02-19 Sanyo Mach Works Ltd Conveying device
JP2001253547A (en) * 2000-03-14 2001-09-18 Ishikawajima Harima Heavy Ind Co Ltd Overload protecting method and device for electric bucket elevator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011203A (en) * 2014-06-30 2016-01-21 株式会社日立プラントメカニクス Unloader energy saving control method

Also Published As

Publication number Publication date
TW201408571A (en) 2014-03-01
KR20150021998A (en) 2015-03-03
JP2014034458A (en) 2014-02-24
CN104520216A (en) 2015-04-15

Similar Documents

Publication Publication Date Title
CN109455625B (en) Intelligent slag grabbing system
WO2014024563A1 (en) Unloader
WO2014024564A1 (en) Continuous unloader
JP2011213461A (en) Crane
KR101159671B1 (en) Apparatus for removing load in continuous ship unloader
CN202046692U (en) Grain bucket elevator with belt slipping detection structure
JP5940412B2 (en) Unloader
CN102745479A (en) Grain bucket elevator with belt slippage detection structure
CN106081951A (en) A kind of window sluice gate machine
JP6607799B2 (en) Anti-collision device for continuous unloader
CN207375177U (en) Hopper and scrapper conveyor
CN205739513U (en) A kind of crawler type rehandling facilities
JP5859400B2 (en) Continuous unloader and control method of continuous unloader
JP5936964B2 (en) Continuous unloader
JP3329420B2 (en) Excavation depth control method for continuous unloader
CN105800326A (en) Crawler-type transfer device
KR101368263B1 (en) Continuous ship unloader
JP6502831B2 (en) Unloader and unloader control method
JPH09315588A (en) Continuous unloader
JP2019214468A (en) Carrier device and method of controlling balance
CN202832550U (en) Energy-saving sand mining device
KR101399859B1 (en) Continuous ship unloader
JP2018177495A (en) Automatic-operation monitor for harbor cargo handling machine
JP3546280B2 (en) Quantitative excavation control method for continuous unloader
CN112047242A (en) Remote control dumping hopper discharging device for hoisting equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157000489

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201501353

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13828594

Country of ref document: EP

Kind code of ref document: A1