WO2014022989A1 - 掺杂二次电池正极材料及其制备方法 - Google Patents

掺杂二次电池正极材料及其制备方法 Download PDF

Info

Publication number
WO2014022989A1
WO2014022989A1 PCT/CN2012/079827 CN2012079827W WO2014022989A1 WO 2014022989 A1 WO2014022989 A1 WO 2014022989A1 CN 2012079827 W CN2012079827 W CN 2012079827W WO 2014022989 A1 WO2014022989 A1 WO 2014022989A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
dopant
doped
powder
preparation
Prior art date
Application number
PCT/CN2012/079827
Other languages
English (en)
French (fr)
Inventor
徐瑞松
Original Assignee
北京科瑞沅科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科瑞沅科技有限公司 filed Critical 北京科瑞沅科技有限公司
Priority to PCT/CN2012/079827 priority Critical patent/WO2014022989A1/zh
Priority to CN201280037192.2A priority patent/CN103733396B/zh
Publication of WO2014022989A1 publication Critical patent/WO2014022989A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery cathode materials, and in particular to a doped secondary battery cathode material and a preparation method thereof.
  • positive electrode materials commonly used in secondary batteries are: lead, nickel hydrogen, lithium cobaltate, lithium nickel cobaltate, lithium manganate, ternary and lithium iron phosphate, and the like.
  • Lithium cobaltate and lithium nickel cobaltate are oxides of a hexagonal layered rock salt structure. The electrons in lithium ions move in the octahedral gap formed by 0-Co-0, which has high conductivity and lithium ion deintercalation. / Embedding reversibility.
  • Lithium manganate is an oxide of the three-dimensional structure of spinel.
  • the electrons in lithium ions move in the octahedral cubic channel composed of 0-Mn-0, and also have high conductivity and lithium ion deintercalation/embedded reversibility. They are all positive materials for a large number of applications in the current lithium battery industry.
  • metallic cobalt is one of the scarcest elements on the earth and is radioactive. Its oxide reacts violently with the electrolyte when the battery is overcharged and overdischarged, releasing a large amount of heat and causing the battery to ignite until it explodes. Therefore, lithium cobaltate and lithium nickel cobaltate are expensive to manufacture and have poor safety.
  • lithium manganate is cheaper and safer, it has a small capacitance and a poor cycle life under high temperature conditions (above 55 °C). Even after doping and surface chemical treatment, the cycle life of lithium manganate batteries cannot meet the actual requirements. Therefore, the lithium battery industry, especially high-power lithium batteries, urgently needs a cathode material that is low in cost, environmentally friendly, large in capacity, and safe.
  • Lithium iron phosphate polycrystalline LiFeP0 4 Lithium iron phosphate polycrystalline LiFeP0 4 .
  • the lithium ion electrons in the crystal are free to move in the Fe0 6 octahedron and P0 4 tetrahedral structures, and have deintercalation/embedded reversibility of lithium ions.
  • the theoretical discharge capacity of the lithium iron phosphate polycrystal can reach 170 mAh/g.
  • lithium iron phosphate Due to the abundant reserves of lithium and iron, the production cost of lithium iron phosphate is low. The article predicts that lithium iron phosphate materials are cheap and environmentally friendly. Features such as high performance and safety, which may have broad application prospects in the battery industry.
  • lithium iron phosphate has a very low electrical conductivity (10 - 9 S/cm) at room temperature, and the actual discharge capacity of lithium iron phosphate is only a theoretical value under normal discharge current (lC ⁇ mA/cm 2 ). 10% of 170mAh/g). Therefore, its application in the battery is limited.
  • a recent article Suag-Yoon Chang, Jason T.
  • the present invention provides a doped secondary battery positive electrode material, which is doped with a secondary metal salt as a base material, doped with conductive doping ions and pressurized doping ions,
  • the chemical formula is:
  • A is Li + , Na + or K .
  • the lanthanum is Fe 2+ , Mn 2+ , Cu 2+ , Zn 2+ , V 2+ , Sn 2+ , W 2+ , Mo 2+ , Ni 2+ , Co 2+ , Cr 2+ , Ti One of 2+ or Pb 2+ or any combination of two or more thereof. More preferably, B is Fe 2+ .
  • F is Si0 4 4 -, Ti0 4 4 - or Ge0 4 4 -.
  • the doped secondary battery positive electrode material has a particle diameter of 40 to 80 nm.
  • the invention provides a preparation method of the above-mentioned doped secondary battery positive electrode material, comprising the following steps:
  • step 2) After the powder obtained in the step 1) is granulated, it is sintered at 200 to 300 ° C for 2 to 3 hours under an inert gas atmosphere;
  • step 2) cooling the product obtained in step 2) to room temperature, adding a carbon source, crushing into a powder, and mixing uniformly;
  • step 4) After the powder obtained in the step 3) is granulated, the temperature is raised to 500 to 800 ° C in an inert gas atmosphere, and the temperature is sintered for 8 to 15 hours;
  • step 5 is cooled to room temperature and pulverized.
  • the alkali metal salt is A(Ac), A 2 C0 3 or A 2 C 2 0 4 .
  • the salt of the positive divalent metal is B(Ac) 2 , BC0 3 or BC 2 0 4 .
  • the conductive dopant is a compound of Mg 2+ , Ca 2+ , Sr 2+ , Nd 2+ , Sm 2+ or Eu 2+ or a mixture of two or more thereof.
  • the pressurized dopant is a compound of Ni 2+ , Mn 2+ , Co 2+ , Cu 2+ or Zn 2+ or a mixture of two or more thereof.
  • the anionic starting compound is Si(OC 2 3 ⁇ 4 ) 4 , Ti(OC 2 3 ⁇ 4 ) 4 , Ge(OC 2 3 ⁇ 4 ) 4 , silicic acid, titanic acid, citric acid, SiO 2 , Ti 0 2 , or Ge 0 2 .
  • the carbon source is glucose or graphene.
  • the mixing method of the raw materials in the step 1) is:
  • the mixing method of the raw materials in step 1) is:
  • alkali metal salt A (Ac) or A 2 C0 3 or A 2 C 2 0 4
  • salt of divalent metal B (Ac) 2 or BC0 3 or BC 2 0 4
  • conductive dopant increase
  • the pressure dopant and the anion starting compound are placed in a reflux system equipped with water and ethanol, stirred at 80 ° C for 20 to 24 hours, and dried for use.
  • the doped nano-scale secondary battery cathode material provided by the invention adds a positive ion having a small atomic weight and a high polarizability as a conductive doping ion, and the conductivity of the positive electrode material is from 3 ⁇ 10- 9 to 10- 15
  • the S/cm is increased to 1 X 10- 2 S/cm, which is increased by 10 7 ⁇ 10 13 times.
  • the pressurized doping ions with wide oxidation-reduction potential window are added to change the chemical potential energy of the crystal structure of the positive electrode material, and the discharge voltage is increased.
  • the invention also provides a preparation method of the above-mentioned doped secondary battery positive electrode material, which has the characteristics of low production cost, simple operation method, no pollution in production and high yield (> 98%).
  • FIG. 1 A positive electrode material of a nano-sized doped secondary battery prepared in Example 1 ( ⁇ 6. 5 ⁇ 11..45 ⁇ 0 4 /0 ) . 5 ) Scanning electron micrograph, magnification: 80,000 times; scale bar: 1.0 ⁇ .
  • FIG 1 B Example 1 Preparation of nano-doped secondary battery positive electrode material (Li 2 (Fe .. 55 Mn .. 45) Si0 4 / C ... 5)
  • FIG TEM (b) dimensions: 100nm.
  • the material has a particle diameter of 40 to 80 nm.
  • Fig. 2 Charging and discharging characteristics of a lithium-ion battery made of a nano-sized doped secondary battery prepared in Example 1 (Li 2 (Fe Q . 55 Mn Q .4 5 ) Si04/C Q . Q5 ) Graph.
  • Figure 3 Nanoscale doped secondary battery cathode material prepared in Example 1
  • the invention provides a doped secondary battery cathode material with an alkali metal salt as a base material, a conductive dopant and a pressurized doping ion, and the chemical formula is:
  • a 2 [B m (D x E 1-x ) 1-m ]F crystal belongs to orthorhombic olivine-type structure, and electrons are 0-Si— 0 (or 0—Ti—0, 0—Ge— 0 )
  • the movement of the formed tetrahedral layer gap has a high reversibility of alkali metal ion deintercalation/embedding.
  • Carbon is only filled in the gap of A ⁇ B DxE ⁇ JF crystal, and coated on the surface of A 2 [B m (D x E 1 ⁇ cm ]F crystal body to improve its electrical conductivity. It has an excellent performance and can be exchanged. Two electrons, so its theoretical capacitance is up to 333mAh/g 0
  • the first step is to take 2 moles of lithium acetate (LiAc); 0.55 moles of ferrous oxalate; pressurized dopant: 0.45 moles of manganese carbonate, and 1 mole of silicon ethoxide (Si(OC 2 3 ⁇ 4 ) 4 Mixing with water and ethanol in a reflux system for 20 hours, the temperature in the system is controlled at 80 °C; and then drying at 120 ° C;
  • the powder prepared in the first step is granulated and placed in an alumina ceramic crucible for nitrogen.
  • a gas (or argon) furnace the temperature is raised to 200 to 300 ° C, and the temperature is sintered for 2 hours. (At this temperature, C, H, and 0 are emitted as CO, C0 2 , 3 ⁇ 40, etc., the same below.);
  • the mixture is taken out, and 0.05 mole of graphene is added; the powder is ground into a powder and mixed uniformly;
  • the temperature is raised to 500-650 ° C in a nitrogen (or argon) furnace, and the temperature is sintered for 8 to 15 hours, and naturally falls to room temperature;
  • the crystal agglomerate is crushed into a powder form
  • the powder prepared in the fifth step is crushed and classified on a superfine jet mill to prepare a nano-scale doped secondary battery cathode material, and the particle diameter is 40 to 80 nm by SEM and TEM (see FIG. 1A and Figure 1B).
  • the positive electrode material of the doped secondary battery prepared in this embodiment was detected and analyzed by XRD (as shown in FIG. 3), and its structural formula is: Li 2 (Fe.. 55 Mn.. 45 ) SiO 4 /C 0 . 05 .
  • the ordinary lithium iron manganese silicate positive electrode material has a conductivity of 3 x 10 _ 15 S/cm, and the room temperature discharge average voltage is 3.8 V; and as shown in FIG. 2, the nano-sized doped secondary battery provided in this embodiment
  • the room temperature conductivity and room temperature discharge voltage of the positive electrode material were 1.30 x 10_ 2 S/cm and 4.2 V, respectively, which were increased by 10 13 times and 10.53%, respectively.
  • the actual discharge capacity is > 260 mAh/g (the theoretical discharge capacity is 333 mAh/g).
  • LiAc lithium acetate
  • ferrous oxalate 0.05 moles of ferrous oxalate
  • conductive dopant 0.095 moles of magnesium oxide
  • pressurized dopant 0.38 moles of manganese carbonate, 0.475 moles of cobalt carbonate, and 1 mole Ethylene silicon Si(OC 2 3 ⁇ 4 ) 4 was placed in a reflux system equipped with water and ethanol for 20 hours, and the temperature in the system was controlled at 80 °C; then dried at 120 ° C;
  • the powder prepared in the first step is granulated, placed in an alumina ceramic crucible, heated to 200 to 300 ° C in a nitrogen (or argon) furnace, and sintered at a constant temperature for 2 hours;
  • the third step is taken out after cooling to room temperature, and 0.01 mol of glucose is added; the ball is ground into a powder and mixed uniformly;
  • the temperature is raised to 500-650 ° C in a nitrogen (or argon) furnace, and the temperature is sintered for 8 to 15 hours, and naturally falls to room temperature;
  • the crystal agglomerate is crushed into a powder form;
  • the powder prepared in the fifth step is crushed and classified on a superfine jet mill to prepare a nano-scale doped secondary battery positive electrode material, and the particle diameter is 40 to 80 nm.
  • the positive electrode material of the doped secondary battery prepared in this embodiment is detected and analyzed by XRD, and its structural formula is: Li Feo.o ⁇ Mgo.iMno ⁇ Coo. ⁇ o. ⁇ SiC Co.o ⁇
  • the ordinary lithium iron manganese silicate positive electrode material has a conductivity of 3 x 10 _ 15 S/cm, and the room temperature discharge average voltage is 3.8 V; and the room temperature conductivity of the nano-sized doped secondary battery positive electrode material provided in this embodiment
  • the discharge voltages at room temperature were 1.30 x lO_ 2 S/cm and 4.0 V, respectively, which were increased by 10 13 times and 5.3%, respectively.
  • the actual discharge capacity is > 260 mAh/g (the theoretical discharge capacity is 333 mAh/g).
  • the first step 2 moles of lithium acetate (LiAc. 23 ⁇ 40); 0.1 moles of ferrous oxalate; conductive dopant: 0.27 moles of magnesium oxide; pressurized dopant: 0.18 moles of manganese carbonate, 0.45 moles of cobalt carbonate, and 1 mole of solid ethanol silicon Si(OC 2 3 ⁇ 4 ) 4 is placed in a ZrO ball mill, ball milled, stirred and mixed for the second step, and the powder prepared in the first step is granulated, and then placed in an alumina ceramic crucible, under nitrogen. (or argon) furnace to raise the temperature to 200 ⁇ 300 ° C, constant temperature sintering 1.5 ⁇ 2.5 hours;
  • the third step after cooling to room temperature, take out, ball mill into powder, add 0.01 mole of graphene; ball mill and stir evenly;
  • the temperature is further raised to 500 to 650 ° C in a nitrogen (or argon) furnace, and the temperature is sintered for 8 to 15 hours, and the temperature is naturally lowered to room temperature;
  • the crystal agglomerate is crushed into a powder form
  • the powder prepared in the fifth step is crushed and classified on a superfine jet mill to prepare a nano-scale doped secondary battery positive electrode material, and the powder particles have a diameter of 40 to 80 nm.
  • the positive electrode material of the doped secondary battery prepared in this embodiment is detected and analyzed by XRD, and its structural formula is:
  • the conductivity of the common lithium iron manganese silicate cathode material is 3 X 10 _ 15 S/cm, and the room temperature discharge average voltage is 3.8 V; and the room temperature conductivity of the nano-scale doped secondary battery cathode material provided in this embodiment
  • the discharge voltages at room temperature were 1.30 x lO_ 2 S/cm and 4.1 V, respectively, which were increased by 10 13 times and 7.9%, respectively.
  • the actual discharge capacity is > 260 mA / g (the theoretical discharge capacity is 333 mAh / g).
  • the first step 1 mole of lithium carbonate (Li 2 C0 3 ); 0.4 mole of ferrous oxalate; conductive dopant: 0.12 moles of magnesium oxide; pressurized dopant: 0.24 moles of manganese carbonate, 0.24 moles of basic carbonic acid Nickel, and 1 mole of nano Ti0 2 , placed in a ZrO ball mill, ball milled, stirred and mixed for 2 to 3 hours, crushed the second step, the first step of the powder is granulated, and then placed in an alumina ceramic crucible, Heating in a nitrogen (or argon) furnace to 200 ⁇ 300 ° C, and sintering at a constant temperature for 2 to 3 hours;
  • the temperature is further raised to 500 to 650 ° C in a nitrogen (or argon) furnace, and the temperature is sintered for 8 to 15 hours, and the temperature is naturally lowered to room temperature;
  • the crystal agglomerate is crushed into a powder form
  • the powder prepared in the fifth step is crushed and classified on a superfine jet mill to prepare a nano-scale doped secondary battery positive electrode material, and the particle diameter is 40 to 80 nm.
  • the positive electrode material of the doped secondary battery prepared in this embodiment was detected and analyzed by XRD, and its structural formula was: Li 2 [Fe. .4 (Mg.. 2 Mn.. 4Ni..4). . 6 ]TiO 4 /C 0 . 0 4
  • the ordinary lithium iron manganese titanate positive electrode material has a conductivity of 3 X 10 _ 13 S/cm, and the room temperature discharge average voltage is 3.7 V; and the room temperature conductivity of the nano-sized doped secondary battery cathode material provided in this embodiment
  • the discharge voltages at room temperature were 1.30 x 10_ 2 S/cm and 4.2 V, respectively, which were increased by 10 11 times and 13.51%, respectively.
  • the actual discharge capacity is > 260 mAh/g (the theoretical discharge capacity is 328 mAh/g).
  • the first step 1 mol of sodium carbonate (Na 2 CO 3 ); 0.95 mol of zinc oxalate; conductive dopant: 0.01 mol of calcium oxide; pressurized dopant: 0.02 mol of manganese carbonate, 0.02 mol of basic nickel carbonate , and 1 mol of nano-SiO 2 , put into a ZrO ball mill, ball mill, stir and mix for 2 to 3 hours, crush the second step, granule the powder prepared in the first step, and then put it into the alumina ceramic crucible, Heating in a nitrogen (or argon) furnace to 200 ⁇ 300 ° C, and sintering at a constant temperature for 2 to 3 hours;
  • the third step after cooling to room temperature, take out, add 0.03 mole of graphene; ball mill into powder, stir evenly;
  • the fourth step after the powder obtained in the third step is granulated, the temperature is further increased to 650 to 800 ° C in a nitrogen (or argon) furnace, and the temperature is sintered for 8 to 15 hours, and the temperature is naturally lowered to room temperature;
  • the crystal agglomerate is crushed into a powder form
  • the powder prepared in the fifth step is crushed and classified on a superfine jet mill to prepare a nano-scale doped secondary battery positive electrode material, and the particle diameter is 40 to 80 nm.
  • the positive electrode material of the doped secondary battery prepared in this embodiment is detected and analyzed by XRD, and its structural formula is: Na 2 [Zn 0 . 95 (Ca 0 . 2 Mn 0 .4Ni 0 .4) 0 . 05 ] SiO 4 / C 0 . 03 .
  • the conductivity of the ordinary sodium cadmium silicate positive electrode material is determined to be 3 x lO- u S/cm, and the average discharge voltage at room temperature is 2.7 V; and the room temperature conductivity of the positive electrode material of the nano-sized doped secondary battery provided in this embodiment
  • the discharge voltages at room temperature were 1.30 x 10_ 2 S/cm and 4.0 V, respectively, which were increased by 10 9 and 48%, respectively.
  • the actual discharge capacity is > 250 mAh/g.
  • the first step 1 mole of potassium carbonate (K 2 C0 3 ); 0.5 mole of ferrous oxalate; conductive dopant: 0.05 moles of calcium oxide, 0.05 moles of magnesium oxide; pressurized dopant: 0.2 moles of manganese carbonate, 0.2 mole of basic nickel carbonate, and 1 mole of nano-SiO 2 , put into a ZrO ball mill, ball mill, stir and mix 2 ⁇ 3.
  • the first step of the powder is granulated, and then placed in an alumina ceramic crucible. In the nitrogen (or argon) furnace, the temperature is raised to 200 ⁇ 300 ° C, and the temperature is sintered for 2 to 3 hours;
  • the temperature is further increased to 650 to 800 ° C in a nitrogen (or argon) furnace, and the temperature is sintered for 8 to 15 hours to form a doped nano sodium titanium manganese silicate. Salt crystals, naturally cooled to room temperature;
  • the crystal agglomerate is crushed into a powder form
  • the powder prepared in the fifth step is crushed and classified on a superfine jet mill to prepare a nano-scale doped secondary battery positive electrode material, and the particle diameter is 40 to 80 nm.
  • the positive electrode material of the doped secondary battery prepared in this embodiment is detected and analyzed by XRD, and its structural formula is: K ⁇ Feo.s Cao.iMgfuMn ⁇ Nio ⁇ o. ⁇ SiC Co.o
  • the conductivity of ordinary potassium manganese silicate cathode material is 3 X 10- u S/cm, room temperature discharge The average voltage is 2.7V; and the room temperature conductivity and the room temperature discharge voltage of the nano-sized doped secondary battery cathode material provided in this embodiment are 1.30 x 10_ 2 S/cm and 4.0 V, respectively, which are increased by 109 times and 48, respectively. %.
  • the actual discharge capacity is > 245 mAh/g.
  • the nano-doped secondary battery positive electrode materials provided in Embodiments 1 to 6 of the present invention can be rapidly charged at a rate of 0.1 C 10 C, rapidly discharged at a rate of 30 C, and have a charging life of more than 4000 times, wherein the actual discharge capacities of Examples 1 to 4 More than 260mAh / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

提供一种掺杂二次电池正极材料及其制备方法。该掺杂二次电池正极材料以碱金属盐为基材,掺有导电掺杂离子和增压掺杂离子,其化学通式为:A2[Bm(DxE1-x)1-m]F/Cy,其中A为碱金属离子中的一种;B为正二价金属离子中的一种或其两种以上任意组合;C为碳;D为导电掺杂离子,其为Mg2+、Ca2+、Sr2+、Nd2+、Sm2+或Eu2+中的一种或其两种以上任意组合;E为增压掺杂离子,其为Mn2+、Ni2+、Co2+、Cu2+、Zn2+中的一种或其两种以上任意组合;F为负4价阴离子;x=0~0.3,m=0.05~0.95,y=0.01~0.06。该掺杂二次电池正极材料通过液相或固相反应制得:所有原料用液相或固相混合均匀——碎成粉末——压粒——隋性氛围200~300°C恒温烧结2~3小时——冷却——加碳源并碎成粉体——压粒——隋性氛围500-700°C恒温烧结8~15小时——冷却——碎成粉体——气流粉碎、分级。本方法生产成本低、操作简单、环保、成品率高。该掺杂二次电池正极材料导电率优于10-2S/cm,实际放电容量>260mAh/g(其理论放电容量为333mAh/g),可快速大功率充放电,具有低价、高能、安全、环保等特征,适用于小型固体、聚合物、胶体和液体二次电池,尤其适用于大功率动力电池。

Description

掺杂二次电池正极材料及其制备方法
技术领域 本发明属于电池正极材料领域, 具体涉及一种掺杂二次电池正极材料 及其制备方法。 背景技术 目前, 二次电池中常用的正极材料有: 铅、 镍氢、 钴酸锂、 镍钴酸锂、 锰酸锂、 三元和磷酸铁锂等。 钴酸锂和镍钴酸锂是六方晶系层状岩盐结构 的氧化物, 锂离子中的电子在 0— Co— 0构成的八面体层间隙中移动, 具 有较高的导电性能和锂离子脱嵌 /嵌入的可逆性。 锰酸锂是尖晶石三维结构 的氧化物, 锂离子中的电子在 0— Mn— 0构成的八面体立方通道中移动, 也具有较高的导电性能和锂离子脱嵌 /嵌入可逆性。 它们都是当前锂电池工 业中大量应用的正极材料。 但金属钴是地球上稀缺的元素之一, 且具有放 射性, 其氧化物在电池过充和过放时会与电解液发生剧烈反应, 放出大量 热量而致使电池起火直至爆炸。 因此, 钴酸锂和镍钴酸锂的制造成本高, 安全性差。 铅、 镍、 钴又是严重的污染和致癌物质。 锰酸锂虽然较便宜和 安全, 可是电容量小, 而且在高温条件下 (55 °C以上) 的循环使用寿命差。 即使经过掺杂和表面化学处理, 锰酸锂电池的循环使用寿命仍然无法满足 实际要求。 因此, 锂电池工业, 特别是大功率锂电池急需一种成本低廉、 环保、 容量大和安全的正极材料。
为此, 美国德州大学教授 J. B .Goodenough 等 (A. K. Padhi, K. S.
Najundaswamy , C .Masgueslier , S. Okada and J. B. Goodenough , J. Eletrochem. Soc. 144, 1609—1613 ( 1997 ) )于 1997年在美国电化学杂志 上发表文章, 公开了一种新的嵌锂化合物: 锂铁磷酸盐多晶体 LiFeP04。 该 晶体中的锂离子电子在 Fe06八面体和 P04四面体结构中自由移动, 具有锂 离子的脱嵌 /嵌入可逆性。 当 1摩尔的锂离子从结构中脱嵌出来时, 锂铁磷 酸盐多晶体的理论放电容量可达 170mAh/g。 由于锂、 铁储量丰富, 锂铁磷 酸盐的生产成本低廉。 该文预测, 由于锂铁磷酸盐材料具有价廉、 环保、 高性能和安全等特征, 其在电池工业中可能具有广阔的应用前景。 但是, 锂铁磷酸盐在室温下电导率极低( 10-9S/cm ),在正常放电电流( lC^mA/cm2 ) 条件下, 锂铁磷酸盐的实际放电容量仅为理论值(170mAh/g ) 的 10%。 因 此, 限制了其在电池中的应用。 为了提高锂铁磷酸盐的电导率, 近期有文 章报道 ( Suag-Yoon Chang, Jason T. Bloking and Yetming Chiang, Nature, October 123-128(2002) ), 在其结构中加入微量添加剂, 如 Mg、 Ti、 Nb和 Zr等, 室温下的电导率有了较大提高。 但是, 该文中提到的添加剂的加入 方法复杂, 微量元素的价格高, 不适合大规模工业生产。 此外, 锂铁磷酸 盐的室温导电空间较大, 但其放电电压较低, 从而影响了该材料的能量密 度。
如何制备出更经济, 更环保, 更安全的动力电池, 满足人类幸福生活 的需要, 就要研制出电压和电容量更高的正极材料。 发明内容 为了解决上述技术问题, 本发明提供一种掺杂二次电池正极材料, 掺 杂二次电池正极材料以碱金属盐为基材, 掺有导电掺杂离子和增压掺杂离 子, 其化学通式为:
A2[Bm(DxE1-x)1-m]F/Cy
其中, A为碱金属离子中的一种; B为正二价金属离子中的一种或其两 种以上任意组合; C为碳; D为导电掺杂离子, 其为 Mg2+、 Ca2+ 、 Sr2+、 Nd2+、 Sm2+或 Eu2+中的一种或其两种以上任意组合; E为增压掺杂离子, 其 为 Mn2+、 Ni2+、 Co2+ 、 Cu2+或 Zn2+中的一种或其两种以上任意组合; F为 负 4价阴离子;
x = 0〜0.3 , m = 0.05〜0.95, y =0.01〜0.06。
优选地, A为 Li+、 Na+或 K 。
优选地, Β为 Fe2+、 Mn2+、 Cu2+、 Zn2+、 V2+、 Sn2+、 W2+、 Mo2+、 Ni2+、 Co2+、 Cr2+、 Ti2+或 Pb2+中的一种或其两种以上任意组合。 更优选地, B为 Fe2+
优选地, F为 Si04 4—、 Ti04 4—或 Ge04 4—。 优选地, 掺杂二次电池正极材料的颗粒直径为 40〜80 nm。
本发明提供上述的掺杂二次电池正极材料的制备方法, 包括如下步骤:
1 )计算所需原料量, 取原料: 碱金属盐, 正二价金属的盐, 导电掺杂 剂, 增压掺杂剂和阴离子原料化合物, 混合均匀;
2 )将步骤 1 )得到的粉体压粒后, 在惰性气体环境下, 在 200〜300°C 恒温烧结 2〜3小时;
3 )将步骤 2 )得到的产物冷却至室温, 加入碳源, 碎成粉体、 混合均 匀;
4 )将步骤 3 )所得粉体压粒后,在惰性气体环境下,升温到 500〜800°C , 恒温烧结 8〜15小时;
5 )将步骤 5所得冷却至室温, 粉碎, 即得。
优选地, 步骤 1 )中, 各原料的摩尔比为: 碱金属盐中碱金属离子: [二 价金属的盐中金属离子 + (导电掺杂剂 +增压掺杂剂)]: 阴离子原料化合物: 碳源中碳元素 = 2:1:1 :0.01〜0.06, 其中, 二价金属的盐中金属离子: (导电掺 杂剂 +增压掺杂剂) =0.05〜0.95:0.95〜0.05, 导电掺杂剂: 增压掺杂剂的摩尔 比为 0〜0.3:0.7〜1。
优选地, 碱金属盐为 A(Ac)、 A2C03或 A2C204
优选地, 正二价金属的盐为 B(Ac)2 、 BC03或 BC204
优选地, 导电掺杂剂为 Mg2+、 Ca2+ 、 Sr2+ 、 Nd2+、 Sm2+或 Eu2+的化合 物或其两种以上任意混合物。
优选地, 增压掺杂剂为 Ni2+、 Mn2+、 Co2+ 、 Cu2+或 Zn2+的化合物或其 两种以上任意混合物。
优选地, 阴离子原料化合物为 Si(OC2¾)4、 Ti(OC2¾)4、 Ge(OC2¾)4、 硅酸、 钛酸、 锗酸、 Si02、 Ti02、 或 Ge02
优选地, 碳源为葡萄糖或石墨烯。
作为一优选方案, 步骤 1 ) 中原料的混合方法为:
取原料: 碱金属盐: A(Ac)或 A2C03或 A2C204, 二价金属的盐: B(Ac)2 或 BC03或 BC204, 导电掺杂剂, 增压掺杂剂和阴离子原料化合物, 在球磨 机中碎成粉体。 作为另一优选方案, 步骤 1 ) 中原料的混合方法为:
取原料: 碱金属盐: A(Ac)或 A2C03或 A2C204, 二价金属的盐: B(Ac)2 或 BC03或 BC204, 导电掺杂剂, 增压掺杂剂和阴离子原料化合物, 放入配 有水和乙醇的回流系统中, 80°C搅拌 20〜24小时, 烘干备用。
本发明提供的掺杂纳米级二次电池正极材料, 添加了原子量较小而极 化率极高的正离子作为导电掺杂离子, 将正极材料的电导率从 3 χ 10-9 ~ 10-15S/cm提高到 1 X 10-2S/cm, 提高了 107 ~ 1013倍; 同时添加氧化还原电 位窗口较宽的增压掺杂离子改变正极材料晶体结构的化学势能, 提高了放 电电压(即工作电压), 使其提高了 10.53%; 另外, 该材料的实际放电容量 超过 260mAh/g; 还可以高倍率充、 放电, 可实现一分钟快速充电, 充电寿 命超过 4000次。 该材料不仅可以应用于小容量的二次电池, 而且应用在 100安时以上的大容量、 大功率二次电池中更有价值。 本发明还提供了上述 掺杂二次电池正极材料的制备方法, 该方法具有生产成本低、 操作方法简 单、 生产中无污染和成品率高 ( > 98% ) 的特点。
本方法生产成本低、 操作简单、 环保、 成品率高。 通过本液相或固相 反应制成的掺杂二次电池正极材料,其导电率优于 10-2S/cm, 实际放电容量 > 260mAh/g (其理论放电容量为 333mAh/g), 可快速大功率充放电, 具有低 价、 高能、 安全、 环保等特征, 适用于小型固体、 聚合物、 胶体和液体二 次电池, 尤其适用于大功率动力电池。 附图说明 图 l a: 实施例 1 制备的纳米级掺杂二次电池正极材料 ( ^6。.5^11。.45^04/0).。5)的扫描电镜图, 放大倍数: 80,000 倍; 比例尺: 1.0μηι。
图 1 b: 实施例 1 制备的纳米级掺杂二次电池正极材料 (Li2(Fe。.55Mn。.45)Si04/C。.。5)的透射电镜图 (b ), 比例尺: 100nm。 该材料的 颗粒直径为 40〜80nm。
图 2: 实施例 1 制备的纳米级掺杂二次电池正极材料 (Li2(FeQ.55MnQ.45)Si04/CQ.Q5)制成的扣式锂电池的充、 放电特征曲线图。 图 3: 实施例 1 制备的纳米级掺杂二次电池正极材料
(Li2(Fe。.55Mn。.45)Si04/C。.。5)的 x射线衍射图。 具体实施方式 下面结合附图和具体实施例对本发明作进一步说明, 以使本领域的技 术人员可以更好的理解本发明并能予以实施, 但所举实施例不作为对本发 明的限定。
本发明提供掺杂二次电池正极材料以碱金属盐为基材, 掺有导电掺杂剂 和增压掺杂离子, 其化学通式为:
A2[Bm(DxE1-x)1-m]F/Cy
其中, A为碱金属离子中的一种; B为正二价金属离子中的一种或其 两种以上任意组合; C为碳; D为导电掺杂剂, 其为 Mg2+、 Ca2+ 、 Sr2+、 Nd2+、 Sm2+或 Eu2+中的一种或其两种以上任意组合; E为增压掺杂剂, 其为 Mn2+、 Ni2+、 Co2+ 、 Cu2+或 Zn2+中的一种或其两种以上任意组合; F为负 4 价阴离子;
x = 0〜0.3 , m = 0.05〜0.95, y =0.01〜0.06。
A2[Bm(DxE1-x)1-m]F 结晶体属于正交晶系橄榄石型结构, 电子在 0— Si— 0 (或 0— Ti一 0、 0— Ge— 0 )构成的四面体层间隙中移动, 具有 较高的碱金属离子脱嵌 /嵌入的可逆性。 碳仅充填于 A^B DxE^ JF结晶 体间隙中, 和包覆于 A2[Bm(DxE1→c m]F结晶体的表面, 改善其导电性能。 其有一个优异性能, 就是可以交换两个电子, 所以其理论电容量高达 333mAh/g0
实验中的较佳实施例如下:
实施例 1
本实施例掺杂二次电池正极材料的制备方法如下:
第一步,取 2摩尔醋酸锂(LiAc ); 0. 55摩尔乙二酸亚铁;增压掺杂剂: 0.45摩尔碳酸锰, 和 1摩尔乙醇硅(Si(OC2¾)4放入配有水和乙醇的回流系 统中搅拌混合 20小时, 系统中温度控制在 80度; 再在 120°C下烘干;
第二步, 将第一步制好的粉体压粒后, 放入氧化铝陶瓷坩锅中, 于氮 气 (或氩气)炉中升温至 200〜300°C , 恒温烧结 2小时(此温度下烧结中, C、 H、 0以 CO,C02, ¾0等气体排放, 以下相同。);
第三步, 冷却至室温后取出, 加入 0.05摩尔石墨烯; 球磨成粉体、 混 合均匀;
第四步, 将第三步得到的粉体压粒后, 在氮气 (或氩气) 炉中升温至 500-650 °C , 恒温烧结 8〜15小时, 自然降至室温;
第五步, 将结晶团块压碎至粉末状;
第六步, 将第五步制备的粉末在超微气流粉碎机上进行破碎和分级, 制成纳米级掺杂二次电池正极材料, 经 SEM 和 TEM 测定颗粒直径为 40〜80nm (见图 1A和图 1B )。
本实施例制得的掺杂二次电池正极材料经 XRD检测及分析(如图 3所 示), 其结构式为: Li2(Fe。.55Mn。.45)SiO4/C0.05
经测定, 普通锂铁锰硅酸盐正极材料电导率为 3 x 10_15S/cm, 室温放电 平均电压为 3.8V; 而如图 2所示, 本实施例提供的纳米级掺杂二次电池正 极材料的室温电导率和室温放电电压分别为 1.30 x 10_2S/cm和 4.2V, 分别 提高了 1013倍和 10.53%。 实际放电容量 > 260mAh/g (其理论放电容量为 333mAh/g )。
实施例 2
本实施例掺杂二次电池正极材料的制备方法如下:
第一步, 取 2摩尔醋酸锂(LiAc ); 0.05摩尔乙二酸亚铁; 导电掺杂剂: 0.095摩尔氧化镁; 增压掺杂剂: 0.38摩尔碳酸锰、 0.475摩尔碳酸钴, 和 1 摩尔乙醇硅 Si(OC2¾)4放入配有水和乙醇的回流系统中搅拌混合 20小时, 系统中温度控制在 80度; 再在 120°C下烘干;
第二步, 将第一步制好的粉体压粒后, 放入氧化铝陶瓷坩锅中, 于氮 气 (或氩气)炉中升温至 200〜300°C , 恒温烧结 2小时;
第三步, 冷却至室温后取出, 加入 0.01摩尔葡萄糖; 球磨成粉体、 混 合均匀;
第四步, 将第三步得到的粉体压粒后, 在氮气 (或氩气) 炉中升温至 500-650 °C , 恒温烧结 8〜15小时, 自然降至室温; 第五步, 将结晶团块压碎至粉末状;
第六步, 将第五步制备的粉末在超微气流粉碎机上进行破碎和分级, 制成纳米级掺杂二次电池正极材料, 颗粒直径为 40〜80nm。
本实施例制得的掺杂二次电池正极材料经 XRD检测及分析,其结构式 为: Li Feo.o^Mgo.iMno^Coo.^o.^SiC Co.o^
经测定, 普通锂铁锰硅酸盐正极材料电导率为 3 x 10_15S/cm, 室温放电 平均电压为 3.8V; 而本实施例提供的纳米级掺杂二次电池正极材料的室温 电导率和室温放电电压分别为 1.30 x lO_2S/cm和 4.0V, 分别提高了 1013倍 和 5.3%。 实际放电容量 > 260mAh/g (其理论放电容量为 333mAh/g )。
实施例 3
第一步, 取 2摩尔 醋酸锂 (LiAc.2¾0 ); 0.1摩尔乙二酸亚铁; 导电 掺杂剂: 0.27摩尔氧化镁; 增压掺杂剂: 0.18摩尔碳酸锰、 0.45摩尔碳酸 钴, 和 1摩尔固体乙醇硅 Si(OC2¾)4放入 ZrO球磨机中, 球磨、 搅拌混合 第二步, 将第一步制好的粉体压粒后, 放入氧化铝陶瓷坩锅中, 于氮 气 (或氩气)炉中升温至 200〜300°C , 恒温烧结 1.5〜2.5小时;
第三步, 冷却至室温后取出, 球磨成粉体、 加入 0.01摩尔石墨烯; 球 磨并搅拌均匀;
第四步, 将第三步得到的粉体压粒后, 在氮气 (或氩气) 炉中继续升 温至 500〜650°C , 恒温烧结 8〜15小时, 自然降温至室温;
第五步, 将结晶团块压碎至粉末状;
第六步, 将第五步制备的粉末在超微气流粉碎机上进行破碎和分级, 制成纳米级掺杂二次电池正极材料, 粉体颗粒直径为 40〜80nm。
本实施例制得的掺杂二次电池正极材料经 XRD检测及分析,其结构式 为:
Figure imgf000009_0001
经测定, 普通锂铁锰硅酸盐正极材料电导率为 3 X 10_15S/cm, 室温放 电平均电压为 3.8V; 而本实施例提供的纳米级掺杂二次电池正极材料的室 温电导率和室温放电电压分别为 1.30 x lO_2S/cm和 4.1V, 分别提高了 1013 倍和 7.9%。 实际放电容量 > 260mA /g (其理论放电容量为 333mAh/g )。 实施例 4
第一步, 取 1摩尔碳酸锂 (Li2C03 ); 0.4摩尔乙二酸亚铁; 导电掺杂 剂: 0.12摩尔氧化镁; 增压掺杂剂: 0.24摩尔碳酸锰、 0.24摩尔碱式碳酸 镍, 和 1摩尔纳米 Ti02, 放入 ZrO球磨机中球磨、 搅拌混合 2〜3小时, 碎 第二步, 将第一步制好的粉体压粒后, 放入氧化铝陶瓷坩锅中, 于氮 气 (或氩气)炉中升温至 200〜300°C , 恒温烧结 2〜3小时;
第三步, 冷却至室温后取出, 加入 0.04摩尔石墨烯; 球磨成粉体、 搅 拌均匀;
第四步, 将第三步得到的粉体压粒后, 在氮气 (或氩气) 炉中继续升 温至 500〜650°C , 恒温烧结 8〜15小时, 自然降温至室温;
第五步, 将结晶团块压碎至粉末状;
第六步, 将第五步制备的粉末在超微气流粉碎机上进行破碎和分级, 制成纳米级掺杂二次电池正极材料, 颗粒直径为 40〜80nm。
本实施例制得的掺杂二次电池正极材料经 XRD检测及分析,其结构式 为: Li2[Fe。.4(Mg。.2Mn。.4Ni。.4)。.6]TiO4/C0.04
经测定, 普通锂铁锰钛酸盐正极材料电导率为 3 X 10_13S/cm, 室温放 电平均电压为 3.7V; 而本实施例提供的纳米级掺杂二次电池正极材料的室 温电导率和室温放电电压分别为 1.30 x 10_2S/cm和 4.2V, 分别提高了 1011 倍和 13.51%。 实际放电容量 > 260mAh/g (其理论放电容量为 328mAh/g )。
实施例 5
第一步, 取 1摩尔碳酸钠 (Na2C03 ); 0.95摩尔乙二酸锌; 导电掺杂 剂: 0.01摩尔氧化钙; 增压掺杂剂: 0.02摩尔碳酸锰、 0.02摩尔碱式碳酸 镍, 和 1摩尔纳米 Si02, 放入 ZrO球磨机中球磨、 搅拌混合 2〜3小时, 碎 第二步, 将第一步制好的粉体压粒后, 放入氧化铝陶瓷坩锅中, 于氮 气 (或氩气)炉中升温至 200〜300°C , 恒温烧结 2〜3小时;
第三步, 冷却至室温后取出, 加入 0.03摩尔石墨烯; 球磨成粉体、 搅 拌均匀; 第四步, 将第三步得到的粉体压粒后, 在氮气 (或氩气) 炉中继续升 温至 650〜800°C , 恒温烧结 8〜15小时, 自然降温至室温;
第五步, 将结晶团块压碎至粉末状;
第六步, 将第五步制备的粉末在超微气流粉碎机上进行破碎和分级, 制成纳米级掺杂二次电池正极材料, 颗粒直径为 40〜80nm。
本实施例制得的掺杂二次电池正极材料经 XRD检测及分析,其结构式 为: Na2[Zn0.95(Ca0.2Mn0.4Ni0.4)0.05]SiO4/C0.03
经测定, 普通钠锰硅酸盐正极材料电导率为 3 x lO-uS/cm, 室温放电 平均电压为 2.7V; 而本实施例提供的纳米级掺杂二次电池正极材料的室温 电导率和室温放电电压分别为 1.30 x 10_2S/cm和 4.0V,分别提高了 109倍和 48%。 实际放电容量 > 250mAh/g。
实施例 6
第一步,取 1摩尔碳酸钾(K2C03 ); 0.5摩尔乙二酸亚铁; 导电掺杂剂: 0.05摩尔氧化钙、 0.05摩尔氧化镁; 增压掺杂剂: 0.2摩尔碳酸锰、 0.2摩 尔碱式碳酸镍,和 1摩尔纳米 Si02,放入 ZrO球磨机中球磨、搅拌混合 2〜3 第二步, 将第一步制好的粉体压粒后, 放入氧化铝陶瓷坩锅中, 于氮 气 (或氩气)炉中升温至 200〜300°C , 恒温烧结 2〜3小时;
第三步, 冷却至室温后取出, 加入 0.03摩尔石墨烯; 球磨成粉体、 搅 拌均匀;
第四步, 将第三步得到的粉体压粒后, 在氮气 (或氩气) 炉中继续升 温至 650〜800°C , 恒温烧结 8〜15小时, 生成掺杂纳米钠钛锰硅酸盐晶体, 自然降温至室温;
第五步, 将结晶团块压碎至粉末状;
第六步, 将第五步制备的粉末在超微气流粉碎机上进行破碎和分级, 制成纳米级掺杂二次电池正极材料, 颗粒直径为 40〜80nm。
本实施例制得的掺杂二次电池正极材料经 XRD检测及分析,其结构式 为: K^Feo.s Cao.iMgfuMn^Nio^o.^SiC Co.o
经测定, 普通钾锰硅酸盐正极材料电导率为 3 X 10-uS/cm, 室温放电 平均电压为 2.7V; 而本实施例提供的纳米级掺杂二次电池正极材料的室温 电导率和室温放电电压分别为 1.30 x 10_2S/cm和 4.0V,分别提高了 109倍和 48% 。 实际放电容量 > 245mAh/g。
本发明实施例 1〜6提供的纳米级掺杂二次电池正极材料可以 0.1C〜10C 的速率快速充电、 30C的速率快速放电, 充电寿命超过 4000次, 其中实施 例 1〜4的实际放电容量超过 260mAh/g。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例, 本发 明的保护范围不限于此。 本技术领域的技术人员在本发明基础上所作的等 同替代或变换, 均在本发明的保护范围之内。 本发明的保护范围以权利要 求书为准。

Claims

权利要求书
1、 一种掺杂二次电池正极材料, 其特征在于, 所述掺杂二次电池正极 材料以碱金属盐为基材, 掺有导电掺杂离子和增压掺杂离子, 其化学通式 为:
A2[Bm(DxE1-x)1-m]F/Cy
其中, A为碱金属离子中的一种; B为正二价金属离子中的一种或其两 种以上任意组合; C为碳; D为导电掺杂离子, 其为 Mg2+、 Ca2+ 、 Sr2+、 Nd2+、 Sm2+或 Eu2+中的一种或其两种以上任意组合; E为增压掺杂离子, 其 为 Mn2+、 Ni2+、 Co2+、 Cu2+或 Zn2+中的一种或其两种以上任意组合; F为负 4价阴离子;
x = 0〜0.3 , m = 0.05〜0.95, y =0.01〜0.06。
2、 根据权利要求 1所述的掺杂二次电池正极材料, 其特征在于, 所述 A为 Li+、 Na+或 K
3、 根据权利要求 1所述的掺杂二次电池正极材料, 其特征在于, 所述 Β为 Fe2+、 Mn2+、 Cu2+、 Zn2+、 V2+、 Sn2+、 W2+、 Mo2+、 Ni2+、 Co2+、 Cr2+、 Ti2+或 Pb2+中的一种或其两种以上任意组合。
4、 根据权利要求 1所述的掺杂二次电池正极材料, 其特征在于, 所述 B为 Fe2+
5、 根据权利要求 1所述的掺杂二次电池正极材料, 其特征在于, 所述 F为 Si04 4—、 Ti04 4—或 Ge04 4—。
6、 根据权利要求 1所述的掺杂二次电池正极材料, 其特征在于, 所述 掺杂二次电池正极材料的颗粒直径为 40〜80 nm。
7、 权利要求 1〜6任一项所述的掺杂二次电池正极材料的制备方法, 其 特征在于, 包括如下步骤:
1 )计算所需原料量, 取原料: 碱金属盐, 正二价金属的盐, 导电掺杂 剂, 增压掺杂剂和阴离子原料化合物, 混合均匀;
2 )将步骤 1 )得到的粉体压粒后, 在惰性气体环境下, 在 200〜300°C 恒温烧结 2〜3小时;
3 )将步骤 2 )得到的产物冷却至室温, 加入碳源, 碎成粉体、 混合均 匀;
4 )将步骤 3 )所得粉体压粒后,在惰性气体环境下,升温到 500〜800°C , 恒温烧结 8〜15小时;
5 )将步骤 5所得冷却至室温, 粉碎, 即得。
8、 根据权利要求 7所述的制备方法, 其特征在于, 步骤 1 ) 中, 各原 料的摩尔比为: 碱金属盐中碱金属离子: [二价金属的盐中金属离子 + (导 电掺杂剂 +增压掺杂剂 ) ]: 阴离子原料化合物: 碳源中碳元素 = 2:1 :1:0.01-0.06, 其中, 二价金属的盐中金属离子: (导电掺杂剂 +增压掺杂 剂)=0.05〜0.95:0.95〜0.05 ,导电掺杂剂:增压掺杂剂的摩尔比为 0〜0.3:0.7〜1。
9、 根据权利要求 7 所述的制备方法, 其特征在于, 所述碱金属盐为 A(Ac)、 A2C03或 A2C204
10、 根据权利要求 7所述的制备方法, 其特征在于, 所述正二价金属 的盐为 B(Ac)2 、 BC03或 BC204
11、 根据权利要求 7所述的制备方法, 其特征在于, 所述导电掺杂剂 为 Mg2+、 Ca2+ 、 Sr2+ 、 Nd2+、 Sm2+或 Eu2+的化合物或其两种以上任意混合
12、 根据权利要求 7所述的制备方法, 其特征在于, 所述增压掺杂剂 为 Ni2+、 Mn2+、 Co2+ 、 Cu2+或 Zn2+的化合物或其两种以上任意混合物。
13、 根据权利要求 7所述的制备方法, 其特征在于, 所述阴离子原料 化合物为 Si(OC2¾)4、 Ti(OC2¾)4、 Ge(OC2¾)4、 硅酸、 钛酸、 锗酸、 Si02、 Ti02或 Ge02
14、 根据权利要求 7所述的制备方法, 其特征在于, 所述碳源为葡萄 糖或石墨烯。
15、 根据权利要求 7所述的制备方法, 其特征在于, 步骤 1 )中原料的 混合方法为:
取原料: 碱金属盐: A(Ac)或 A2C03或 A2C204, 二价金属的盐: B(Ac)2 或 BC03或 BC204, 导电掺杂剂, 增压掺杂剂和阴离子原料化合物, 在球磨 机中碎成粉体。
16、 根据权利要求 7所述的制备方法, 其特征在于, 步骤 1 )中原料的 混合方法为:
取原料: 碱金属盐: A(Ac)或 A2C03或 A2C204, 二价金属的盐: B(Ac)2 或 BC03或 BC204, 导电掺杂剂, 增压掺杂剂和阴离子原料化合物, 放入配 有水和乙醇的回流系统中, 80°C搅拌 20〜24小时, 烘干备用。
PCT/CN2012/079827 2012-08-08 2012-08-08 掺杂二次电池正极材料及其制备方法 WO2014022989A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/079827 WO2014022989A1 (zh) 2012-08-08 2012-08-08 掺杂二次电池正极材料及其制备方法
CN201280037192.2A CN103733396B (zh) 2012-08-08 2012-08-08 掺杂二次电池正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/079827 WO2014022989A1 (zh) 2012-08-08 2012-08-08 掺杂二次电池正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2014022989A1 true WO2014022989A1 (zh) 2014-02-13

Family

ID=50067381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079827 WO2014022989A1 (zh) 2012-08-08 2012-08-08 掺杂二次电池正极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN103733396B (zh)
WO (1) WO2014022989A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116830305A (zh) * 2023-02-23 2023-09-29 宁德时代新能源科技股份有限公司 硅基负极活性材料、二次电池及用电装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148839B (zh) * 2017-10-31 2021-04-23 格林美(江苏)钴业股份有限公司 一种硅钛氟共掺杂的镍钴酸锂正极材料及其制备方法
CN111525100B (zh) * 2019-12-04 2022-06-17 南通鼎鑫电池有限公司 一种表面具有预压应力的多孔碳包覆LiFePO4正极材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803608A (zh) * 2006-01-13 2006-07-19 厦门大学 可充锂电池用硅酸锰铁锂/碳复合正极材料及其制备方法
CN102088074A (zh) * 2009-12-02 2011-06-08 深圳市贝特瑞新能源材料股份有限公司 一种复合硅酸盐正极材料及其制备方法
US20120001120A1 (en) * 2010-06-30 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing Method of Electrode Material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2569991A1 (en) * 2006-12-07 2008-06-07 Michel Gauthier C-treated nanoparticles and agglomerate and composite thereof as transition metal polyanion cathode materials and process for making

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803608A (zh) * 2006-01-13 2006-07-19 厦门大学 可充锂电池用硅酸锰铁锂/碳复合正极材料及其制备方法
CN102088074A (zh) * 2009-12-02 2011-06-08 深圳市贝特瑞新能源材料股份有限公司 一种复合硅酸盐正极材料及其制备方法
US20120001120A1 (en) * 2010-06-30 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing Method of Electrode Material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, S.: "Doping Effects of Magnesium on the Electrochemical Performance of Li2FeSiO4 for Lithium Ion Batteries.", JOURNAL OF ELECTROANALYTICAL CHEMISTRY., vol. 644, no. 2, 1 June 2010 (2010-06-01), pages 150 - 154, XP027052428 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116830305A (zh) * 2023-02-23 2023-09-29 宁德时代新能源科技股份有限公司 硅基负极活性材料、二次电池及用电装置

Also Published As

Publication number Publication date
CN103733396A (zh) 2014-04-16
CN103733396B (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5347031B2 (ja) リチウム電池用ナノ正極材料及びその製造方法
Akhilash et al. A journey through layered cathode materials for lithium ion cells–from lithium cobalt oxide to lithium-rich transition metal oxides
Hou et al. Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries
Yan et al. A review of spinel lithium titanate (Li4Ti5O12) as electrode material for advanced energy storage devices
Yi et al. Recent advances of Li 4 Ti 5 O 12 as a promising next generation anode material for high power lithium-ion batteries
Sun et al. Advances in spinel Li 4 Ti 5 O 12 anode materials for lithium-ion batteries
Wang et al. Syntheses and electrochemical properties of the Na-doped LiNi0. 5Mn1. 5O4 cathode materials for lithium-ion batteries
US8734675B2 (en) Method for preparing Li4NbxTi5−xO12/C nanocomposite as an anode material for li-ion batteries
JP2021520333A (ja) O3/p2混合相ナトリウム含有ドープ層状酸化物材料
CN102745663B (zh) 制备磷酸铁锂材料的方法
Lou et al. Mg-doped Li1. 2Mn0. 54Ni0. 13Co0. 13O2 nano flakes with improved electrochemical performance for lithium-ion battery application
CN111048770A (zh) 一种三元掺杂的硅基复合材料及其制备方法和应用
Jin et al. Synthesis of single-crystalline octahedral LiMn2O4 as high performance cathode for Li-ion battery
Chang et al. Lithium‐ion battery: A comprehensive research progress of high nickel ternary cathode material
KR100994269B1 (ko) 신규의 칼슘-코발트 산화물계 음극활물질 및 이의 제조방법
Zou et al. High-entropy oxides: an emerging anode material for lithium-ion batteries
Chao et al. La-doped SnO2 synthesis and its electrochemical property
CN113603152A (zh) 一种4.7v级钴酸锂正极材料及其制备方法及相应电池
WO2014022989A1 (zh) 掺杂二次电池正极材料及其制备方法
Wang et al. Nano-sized over-lithiated oxide by a mechano-chemical activation-assisted microwave technique as cathode material for lithium ion batteries and its electrochemical performance
CN111663182A (zh) 一种锂离子电池用大颗粒单晶钴酸锂及其阳离子掺杂的制备方法
Li et al. Facile synthesis of ultrasmall stannic oxide nanoparticles as anode materials with superior cyclability and rate capability for lithium-ion batteries
CN104518210B (zh) 一种复合钛酸锂材料的制备方法
Wen Nanostructured Li4Ti5O12 as anode material for Lithium Ion batteries
JP7402711B2 (ja) 全固体リチウムイオン二次電池用正極活物質、全固体リチウムイオン二次電池、及び全固体リチウムイオン二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882694

Country of ref document: EP

Kind code of ref document: A1