WO2014021208A1 - 高プロトン伝導性ポリマーフィルム、その製造方法及び湿度センサー - Google Patents

高プロトン伝導性ポリマーフィルム、その製造方法及び湿度センサー Download PDF

Info

Publication number
WO2014021208A1
WO2014021208A1 PCT/JP2013/070299 JP2013070299W WO2014021208A1 WO 2014021208 A1 WO2014021208 A1 WO 2014021208A1 JP 2013070299 W JP2013070299 W JP 2013070299W WO 2014021208 A1 WO2014021208 A1 WO 2014021208A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
polymer film
film
conductive polymer
proton
Prior art date
Application number
PCT/JP2013/070299
Other languages
English (en)
French (fr)
Inventor
昌芳 樋口
ラケッシュ クマー パンディ
悟士 森山
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to US14/374,985 priority Critical patent/US20150021180A1/en
Priority to EP13824952.9A priority patent/EP2796488A4/en
Priority to JP2014528113A priority patent/JP5765692B2/ja
Publication of WO2014021208A1 publication Critical patent/WO2014021208A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/40Semi-permeable membranes or partitions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/37Metal complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/37Metal complexes
    • C08G2261/374Metal complexes of Os, Ir, Pt, Ru, Rh, Pd
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/37Metal complexes
    • C08G2261/376Metal complexes of Fe, Co, Ni
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/94Applications in sensors, e.g. biosensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a high proton conductive polymer film, a method for producing the same, and a humidity sensor.
  • the high proton conductive polymer film is a polymer film having high proton conductivity.
  • a material with high proton conductivity is a material whose current-voltage characteristics fluctuate with high sensitivity to humidity, and the conductivity increases at high humidity.
  • Patent Document 1 relates to a coordination polymer metal complex containing copper ions.
  • the coordination polymer metal complex containing these copper ions has a high current sensitivity and a high sensitivity to humidity, and the conductivity increases at high humidity. Therefore, these materials are materials having high proton conductivity.
  • High proton conductive polymer films are used, for example, as proton exchange membranes for fuel cells and humidity sensors (Patent Documents 1 to 3).
  • Nafion As a proton exchange membrane, Nafion (registered trademark) is known. Nafion is a sulfonated tetrafluoroethylene copolymer, and the sulfonic acid group grafted to the end of the polytetrafluoroethylene backbone has a negative charge, so that the positively charged proton group can easily move between them. Thus, proton conductivity is increased.
  • Non-Patent Document 9 examines the proton conduction mechanism in the Nafion membrane.
  • Nafion was developed in the 1960s and has been blended with various other polymers to improve stability and the like.
  • a proton exchange membrane made of Nafion modified to include a hyperbranched polymer has been disclosed as a proton exchange membrane having a conductivity of 8 ⁇ 10 ⁇ 2 Scm ⁇ 1 (Patent Document 1).
  • conductivity (25 °C) 2 ⁇ 10 -2 Scm -1 proton exchange membrane, Nafion 112 conductivity (25 °C) 2.7 ⁇ 10 -2 Scm -1 is also disclosed (Patent Document 2) .
  • Non-Patent Documents 8, 10, and 11 describe that Nafion is a material with high proton conductivity because the current-voltage characteristics of Nafion fluctuate with high sensitivity to humidity and the conductivity increases at high humidity. Yes. Specifically, it is disclosed that the proton conductivity (30 ° C., two-terminal method) of Nafion 112, 115, 117 is about 0.038 to 0.047 Scm ⁇ 1 (Non-patent Document 8). The conductivity of the proton exchange membrane has also been measured by impedance spectroscopy (Non-patent Document 10). Further, as a result of measuring the impedance of the Nafion film, it is disclosed that the conductivity (room temperature, 100% RH) of the Nafion film is 0.073 Scm ⁇ 1 (Non-patent Document 11).
  • a coordination polymer metal complex has been disclosed as having a proton conductivity (100% RH) 10 ⁇ 2 Scm ⁇ 1 comparable to that of Nafion (Patent Document 3).
  • Metal-organic frameworks (Metal-organic frameworks: MOFs, also known as porous coordination polymers (PCPs)) have been reported as materials having high proton conductivity (Non-Patent Documents 1-7). These MOFs (PCPs) are also materials having high proton conductivity because the current-voltage characteristics fluctuate with high sensitivity to humidity and the electric power increases at high humidity.
  • the proton conductivity (298K, 95% RH) of PCPs described in Non-Patent Document 1 is 2.3 ⁇ 10 ⁇ 9 to 2.0 ⁇ 10 ⁇ 6 Scm ⁇ 1 (see, for example, Table. 1).
  • Non-patent Document 14 a humidity sensor using polyaniline to which polyvinyl alcohol (PVA) is added is disclosed (Non-patent Document 14), and the resistance value of this material is measured when the proton conductivity of polyaniline varies greatly with humidity. It can be used as a humidity sensor.
  • PVA polyvinyl alcohol
  • Japanese Unexamined Patent Publication No. 2004-31173 A) Japanese Unexamined Patent Publication No. 2010-155991 (A) Japanese Unexamined Patent Publication No. 2004-31173 (A)
  • the present invention provides a proton conducting membrane having a proton conductivity (room temperature, 95% RH) of 3 ⁇ 10 ⁇ 2 Scm ⁇ 1 or more and usable in a neutral solvent atmosphere, a method for producing the same, and a highly sensitive humidity sensor.
  • the task is to do.
  • the present inventor has developed a proton conducting membrane comprising an organic / metal hybrid polymer and having a proton conductivity (room temperature, 95% RH) of 0.034 ⁇ 10 ⁇ 4 Scm ⁇ 1 to 1.3 ⁇ 10 ⁇ 1 Scm ⁇ 1. I was able to create it. This material was found to be able to be used in a neutral solvent atmosphere, unlike Nafion, which itself is strongly acidic, and completed the present invention.
  • the present invention has the following configuration.
  • a film of an organic / metal hybrid polymer comprising one or more metal ions selected from the group of Fe ions, Co ions, Ru ions, Zn ions, and Ni ions and bis (terpyridyl) benzene.
  • a high proton conductive polymer film characterized by being.
  • M is one or more metal ions selected from the group of Fe ions, Co ions, Ru ions, Zn ions, and Ni ions, and n is an integer of 5 or more and 1000 or less.
  • the solvent is water or an organic solvent and a mixture thereof, and the organic solvent is any one selected from the group consisting of alcohol, acetonitrile, dimethyl sulfoxide, and dimethylformamide.
  • a substrate two electrodes formed on one surface of the substrate so as to be separated from each other, and a film formed on the one surface so as to cover the two electrodes, wherein the film is (1) Or the humidity sensor characterized by being the high proton conductive polymer film as described in (2).
  • the high proton conductive polymer film of the present invention comprises one or more metal ions selected from the group of Fe ions, Co ions, Ru ions, Zn ions, and Ni ions, and bis (terpyridyl) benzene.
  • Proton conductivity room temperature, 95% RH is 3 ⁇ 10 ⁇ 2 Scm ⁇ 1 or higher because it is an organic / metal hybrid polymer film, and a proton conductive membrane that can be used in a neutral solvent atmosphere is provided. Can do.
  • the method for producing a highly proton conductive polymer film of the present invention includes one or more metal ions selected from the group of Fe ions, Co ions, Ru ions, Zn ions, and Ni ions, and bis (terpyridyl) benzene.
  • a step of forming a film on a substrate by a membrane method proton conductivity (room temperature, 95% RH) is 3 ⁇ 10 ⁇ 2 Scm ⁇ 1 or more, and proton conductivity usable in a neutral solvent atmosphere
  • the membrane can be manufactured easily.
  • the humidity sensor of the present invention includes a substrate, two electrodes formed on one surface of the substrate so as to be separated from each other, and a film formed so as to cover the two electrodes on the one surface. Since it is the structure which is a highly proton conductive polymer film as described in (1) or (2), it can be set as a highly sensitive humidity sensor.
  • FIG. 1B is a cross-sectional view taken along the line A-A ′ of the humidity sensor of FIG. 1A. It is the schematic which shows an example of the state of the area
  • the high proton conductive polymer film according to an embodiment of the present invention includes one or more metal ions selected from the group of Fe ions, Co ions, Ru ions, Zn ions, and Ni ions, and bis (terpyridyl). This is an organic / metal hybrid polymer film composed of benzene supramolecules.
  • the organic / metal hybrid polymer is represented by the general formula (1) described above.
  • M is one or more metal ions selected from the group of Fe ions, Co ions, Ru ions, Zn ions, and Ni ions, and n is an integer of 5 or more and 1000 or less.
  • the organic / metal hybrid polymer is represented by the formulas (2) and (3).
  • a method for producing a highly proton conductive polymer film according to an embodiment of the present invention includes any one or more metal ions selected from the group consisting of Fe ions, Co ions, Ru ions, Zn ions, and Ni ions, and bismuth.
  • the solvent is water or an organic solvent and a mixture thereof, and the organic solvent is any selected from the group consisting of alcohol, acetonitrile, dimethyl sulfoxide, and dimethylformamide.
  • the alcohol include methanol and ethanol.
  • spin coating it is preferable to have a low-speed rotation process and a high-speed rotation process. For example, first rotate at 400 rpm for 120 seconds and then rotate at 500 rpm for 160 seconds. Thereby, a uniform and flat film can be formed.
  • FIGS. 1A and 1B are schematic diagrams illustrating an example of a humidity sensor according to an embodiment of the present invention.
  • 1A is a plan view
  • FIG. 1B is a cross-sectional view taken along the line AA ′.
  • the humidity sensor 1 includes a substrate 41, two electrodes 31 and 32 formed on one surface of the substrate 41 at a distance l, and the two electrodes 31 on the one surface. And a film 11 formed to cover 32.
  • the film 11 is the high proton conductive polymer film described above.
  • the electrodes 31 and 32 are connected to a power source 36 via a wiring 34. By operating the power source 36, a voltage can be applied to the region 11 c between the electrodes 31 and 32 of the film 11.
  • FIG. 2 is a schematic diagram showing an example of a state of an inter-electrode region of a high proton conductive polymer film when a voltage is applied in a 95% RH atmosphere by a humidity sensor using a film made of Fe polymer. .
  • a region made of Fe (III) appears in the vicinity of one of the electrodes. Thereby, proton conductivity is improved.
  • the high proton conductive polymer film which is embodiment of this invention can also be used for a solid polymer fuel cell.
  • a polymer electrolyte fuel cell according to an embodiment of the present invention includes a cathode electrode, an anode electrode disposed so as to face the cathode electrode, and an electrolyte sandwiched between the two electrodes.
  • the high proton conductive polymer film, the production method thereof, and the humidity sensor which are the embodiments of the present invention are not limited to the above-described embodiments, and various modifications are made within the scope of the technical idea of the present invention. be able to. Specific examples of this embodiment are shown in the following examples. However, the present invention is not limited to these examples.
  • Example 1 [Preparation of conductivity measurement sample] First, a quartz substrate having a rectangular shape in plan view provided with eight electrodes on one surface was prepared. Four of these electrodes are connected to a power supply connection portion having a rectangular shape in plan view on one side, and the other four are connected to a power supply connection portion having a rectangular shape in plan view on the other side. Each of the electrodes is in a planar view between two rectangular substrate center mark portions in a planar view, and four electrodes are extended from the power connection portion on one side and 4 are extended from the power connection portion on the other side.
  • the books are arranged so as to mesh with each other, and are parallel to each other at the meshing portions. The length (electrode width) of the parallel part is 2.5 mm.
  • the electrode spacing is different between 10 ⁇ m and 250 ⁇ m.
  • an Fe polymer (organic / metal hybrid polymer) was dispersed in ethanol at a concentration of 100 mg / L to prepare a mixed solution.
  • the substrate was washed with acetone for 2 minutes with acetone and then with isopropanol to remove residual water and dust on the electrode surface of the substrate and then blown with nitrogen gas.
  • 10 ml of the mixed solution was formed on one surface of the substrate so as to cover the electrode by a spin coating method.
  • the spin coating was performed under the condition of first rotating at 400 rpm for 120 seconds and then rotating at 500 rpm for 160 seconds.
  • FIG. 3 is a photograph showing a substrate with an electrode used in this example and a polymer film formed thereon, and is an overall photograph (a) and a partially enlarged photograph (b). Since the polymer film is transparent, the film forming portion is indicated by an arrow.
  • Example 2 A conductivity measurement sample of Example 2 was prepared in the same manner as in Example 1 except that a mixed solution was prepared using Ru polymer (organic / metal hybrid polymer) dispersed in ethanol at a concentration of 250 mg / L. did.
  • Example 3 The conductivity measurement sample of Example 3 was prepared in the same manner as in Example 1 except that a mixed solution was prepared using a Zn polymer (organic / metal hybrid polymer) dispersed in ethanol at a concentration of 250 mg / L. Produced.
  • Example 4 A conductivity measurement sample of Example 4 was prepared in the same manner as in Example 1 except that a mixed solution was prepared using a Co polymer (organic / metal hybrid polymer) dispersed in ethanol at a concentration of 100 mg / L. did.
  • Example 5 A conductivity measurement sample of Example 5 was prepared in the same manner as in Example 1 except that a mixed solution was prepared by using Ni polymer (organic / metal hybrid polymer) and dispersing in ethanol at a concentration of 100 mg / L. did. Each conductivity measurement sample was stored in a closed container (chamber) until each measurement was performed and while each condition was changed and each measurement was performed.
  • the thickness of each polymer film was measured with an ellipsometer. First, casting was performed at a concentration of 500 mg / L to prepare a reference sample with a thick film thickness of each polymer film, and optical constants of each polymer film were determined. Next, using these optical constant values, data fitting was performed using a general oscillator model, and the thickness of each polymer film was calculated. The thickness of each polymer film of Fe, Ru, Zn, Co, and Ni was calculated to be 4.5 nm, 6.8 nm, 20.0 nm, 6.4 nm, and 6.1 nm, respectively.
  • the conductivity of the polymer film was measured using a Solartron 1287 (consisting of a potentiostat and a frequency response analysis system (1260 frequency response analyzer system)).
  • the polymer film resistance value was calculated from the impedance plot (Nyquist plot) under the conditions of “frequency range 50 Hz to 5 MHz, amplitude 10 mV ac or 1.0 V dc bias”. From the obtained resistance value, the proton conductivity of the polymer was calculated using the following equation.
  • FIG. 4A to 4D are impedance plots (Nyquist plots) of the Fe polymer film. It is a plot under 95% RH conditions.
  • FIG. 4A is a plot with Z real ⁇ 10 5 in the range of 0-4. Raw (raw data) is indicated by a filled square, and fitting (fitting data) is indicated by an unfilled square. Similarly, a filled mark indicates raw data, and an unfilled mark indicates fitting data.
  • FIG. 4B is a plot with Z real ⁇ 10 5 ranging from 0 to 0.6.
  • FIG. 4C is a plot of Z real ⁇ 10 5 in the range of 0 to 45 when a different dc bias from 0.1 V to 2.0 V is applied.
  • FIG. 4D is a plot with Z real ⁇ 10 5 ranging from 0 to 1.0.
  • FIG. 5 is a Nyquist plot for an Fe polymer film at 58% RH at room temperature.
  • FIG. 6A-6C are Nyquist plots of Ru polymer films.
  • FIG. 6A is a Nyquist plot under 95% RH conditions.
  • FIG. 6B is a Nyquist plot at different dc biases, and
  • FIG. 6C is a plot with Z real ⁇ 10 6 ranging from 0 to 0.15.
  • FIG. 7A-7C are Nyquist plots of Zn polymer films.
  • FIG. 7A is a Nyquist plot of a Zn polymer film under 95% RH conditions.
  • FIG. 7B is a Nyquist plot of a Zn polymer film at different dc biases, and
  • FIG. 7C is a plot with Z real ⁇ 10 6 ranging from 0 to 0.11.
  • FIG. 8 is a Nyquist plot of the Co polymer film. It is a Nyquist plot of Co polymer film under 95% RH condition.
  • FIG. 9 is a Nyquist plot of the Ni polymer film. It is a Nyquist plot of Ni polymer film under 95% RH condition.
  • FIG. 10 is a graph showing an example of the measured leakage current.
  • FIG. 11 is the IV characteristic of the Fe polymer film at 95% RH.
  • FIG. 12 shows IV characteristics of the Fe polymer film under reduced pressure and in the air (28% RH).
  • FIG. 13 is an IV characteristic of an Fe polymer film in air (28% RH) after 95% RH experiment. The sweep goes from -3.0V to 3.0V and back to -3.0V again.
  • FIG. 14 is an IV characteristic of an Fe polymer film in the air (28% RH) after the 95% RH experiment. The sweep goes from -5.0V to 5.0V and back to -5.0V again. The current was positive in both directions.
  • FIG. 15 shows IV characteristics of the Fe polymer film at a sweep rate of 1 s delay (a), 5 s delay (b), and 20 s delay (c). All experiments were performed in air (28% RH) after the experiment in 95% RH. The current increased with increasing sweep speed.
  • FIG. 16 is an IV characteristic of a Ru polymer film in air (28% RH) after 95% RH experiment. No change in current was observed.
  • FIG. 17A and FIG. 17B are graphs showing the IV characteristics of the Ru polymer film.
  • FIG. 17A is an IV characteristic of a Ru polymer film under reduced pressure and in air (28% RH). The sweep direction is -2.0V to 2.0V.
  • FIG. 17B is the IV characteristic of a Ru polymer film in 95% RH.
  • FIG. 18 is an IV characteristic of a Zn polymer film at 95% RH.
  • the proton conductive polymer film of the present invention, the production method thereof, and the humidity sensor have a proton conductivity (room temperature, 95% RH) of 3 ⁇ 10 ⁇ 2 Scm ⁇ 1 or more and can be used in a neutral solvent atmosphere.
  • the present invention relates to a membrane and can be used as a highly sensitive humidity sensor or a proton exchange membrane of a polymer electrolyte fuel cell, and may be used in the humidity sensor industry, the fuel cell industry, and the like.

Abstract

 プロトン伝導度(室温、95%RH)が3×10-2Scm-1以上であり、中性溶媒雰囲気で使用可能なプロトン伝導膜、その製造方法及び高感度な湿度センサーを提供する。Feイオン、Coイオン、Ruイオン、Znイオン、Niイオンの群から選択されるいずれか1又は2以上の金属イオンと、ビス(ターピリジル)ベンゼンとからなる有機/金属ハイブリッドポリマーのフィルムである高プロトン伝導性ポリマーフィルムを用いる。

Description

高プロトン伝導性ポリマーフィルム、その製造方法及び湿度センサー
 本発明は、高プロトン伝導性ポリマーフィルム、その製造方法及び湿度センサーに関するものである。
 本願は、2012年8月1日に、日本に出願された特願2012-171062号に基づき優先権を主張し、その内容をここに援用する。
 高プロトン伝導性ポリマーフィルムは、プロトン伝導度の高いポリマーフィルムである。
 プロトン伝導度の高い材料は、電流電圧特性が湿度に高感度に変動し、高湿度において伝導度が上がる材料である。
 特許文献1は、銅イオンを含む配位高分子金属錯体に関するものである。これらの銅イオンを含む配位高分子金属錯体は、電流電圧特性が湿度に高感度に変動し、高湿度において伝導度が上がるので、これらの材料がプロトン伝導度の高い材料である。
 高プロトン伝導性ポリマーフィルムは、例えば、燃料電池や湿度センサーのプロトン交換膜として用いられる(特許文献1~3)。
 プロトン交換膜としては、ナフィオン(Nafion、登録商標)が知られている。ナフィオンは、スルホン化テトラフルオロエチレンコポリマーであり、ポリテトラフルオロエチレン骨格鎖の末端にグラフトされたスルホン酸基がマイナスチャージを有するので、それらの間をプラスチャージされたプロトン基が移動することが容易となり、プロトン伝導度が高くなる。非特許文献9では、ナフィオン膜中のプロトン伝導機構が検討されている。
 ナフィオンは1960年代に開発されてから、様々な他のポリマーとブレンドされ、安定性等の改良もなされている。例えば、ハイパーブランチポリマーを含むように改良されたナフィオンからなるプロトン交換膜では、伝導率8×10-2Scm-1のプロトン交換膜が開示されている(特許文献1)。また、伝導率(25℃)2×10-2Scm-1のプロトン交換膜、伝導率(25℃)2.7×10-2Scm-1のナフィオン112も開示されている(特許文献2)。
 非特許文献8、10、11には、ナフィオンの電流電圧特性が湿度に高感度に変動し、高湿度において伝導度が上がることから、ナフィオンがプロトン伝導度の高い材料であることが記載されている。
 具体的には、ナフィオン112、115、117のプロトン伝導度(30℃、2端子法)は約0.038~0.047Scm-1であることが開示されている(非特許文献8)。
 インピーダンス・スペクトロスコピーによるプロトン交換膜の伝導率の測定もされている(非特許文献10)。また、ナフィオン膜のインピーダンスの測定結果、ナフィオン膜の伝導率(室温、100%RH)は0.073Scm-1であることが開示されている(非特許文献11)。
 ナフィオンに匹敵するプロトン伝導率(100%RH)10-2Scm-1を有するものとして、配位高分子金属錯体が開示されている(特許文献3)。
 プロトン伝導度の高い材料として金属-有機骨格(Metal-organic frameworks:MOFs、別名:ポーラス配位ポリマー(Porous coordination polymers:PCPs))も報告されている(非特許文献1-7)。これらMOFs(PCPs)も、電流電圧特性が湿度に高感度に変動し、高湿度において電動度が上がることから、プロトン伝導度が高い材料である。
 非特許文献1に記載のPCPsのプロトン伝導度(298K、95%RH)は2.3×10-9~2.0×10-6Scm-1である(例えば、非特許文献1のTable.1を参照)。
 プロトン伝導度の高い材料としてセラミックス膜の報告もある。その電流電圧特性は湿度に高感度に変動し、高湿度において電動度が上がることから、セラミックスはプロトン伝導度が高い材料である。
 BZY(BaZr0.80.23-δ)膜の伝導率(500℃)は0.11Scm-1である(非特許文献12)。
 Ca-doped LaNbO膜の伝導率(800℃、wet atmospheres)は約10-3Scm-1である(非特許文献13)。
 また、ポリビニルアルコール(PVA)を添加したポリアニリンを用いた湿度センサーが開示されており(非特許文献14)、ポリアニリンのプロトン伝導度が湿度により大きく変化することにより、この材料の抵抗値を測定して、湿度センサーとして用いることができることを示されている。
 しかし、これらの材料は、燃料電池や湿度センサーのプロトン交換膜としてプロトン伝導度の点で十分なものではなく、成膜性も十分ではなかった。
更にまた、ナフィオンについては、それ自体が強酸性であるので、中性溶媒雰囲気で使用ができないという問題があった。
日本国特開2004-31173号公報(A) 日本国特開2010-155991号公報(A) 日本国特開2004-31173号公報(A)
Akihito Shigematsu et al.,Wide control of proton conductivity in porous coordination polymers,J.Am.Chem.Soc., 2011,133,2034-2036 Masaaki Sadakiyo et al.,Promotion of low-humidity proton conduction by controlling hydrophilicity in layered metal-organic frameworks,J.Am.Chem.Soc., 2012,134,5472-5475 Teppei Yamada et al.,High proton conductivity of one-dimentional ferrous oxalate dehydrate,J.Am.Chem.Soc.,2009,131,3144-3145 Sareeya Bureekaew et al.,One-dimentional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity, nature materials,vol.8,october 2009,831-836 Masaaki Sadakiyo et al.,Rational designs for highly proton-conductive metal-organic frameworks,J.Am.Chem.Soc.,2009,131,9906-9907 Hiroshi Kitagawa et al.,Highly proton-conductive copper coordination polymer, H2dtoaCu (H2dtoa=dithiooxamide anion),Inorganic chemistry communications  6(2003)346-348 Y.Nagao et al., Preparation and proton transport property of N,N’-diethydithiooxamidatocopper coordination polymer, Synthetic metals 154(2005)89-92 Chang Hyun Lee et al.,Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application,Ind.Eng.Chem.Res.2005,44,7617-7626 Klaus schmidt-rohr et al.,Parallel cylindrical water nanochannels in Nafion fuel-cell membranes,nature materials,vol.7,January 2008,75-83 S.D.Mikhailenko et at.,Measurements of PEM conductivity by impedance spectroscopy,Solid State Ionics 179(2008)619-624 J.J.Fontanella et al.,Electrical studies of acid form NAFION membranes,Solid State Ionics 66(1993)1-4 Daniele Pergolesi et al.,High proton conduction in grin-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition,nature materials,vol.9,October 2010,846-852 Reidar Haugsrud et at.,Proton conduction in rare-earth ortho-nibates and ortho-tantalates,nature materials,vol.5,march 2006,193-196 Ming-Zhi Yang et al.,Fabrication and characterization of Polyaniline/PVA humidity microsensors,Sensors 2011 11 8143-8151
 本発明は、プロトン伝導度(室温、95%RH)が3×10-2Scm-1以上であり、中性溶媒雰囲気で使用可能なプロトン伝導膜、その製造方法及び高感度な湿度センサーを提供することを課題とする。
 本発明者は、有機/金属ハイブリッドポリマーからなり、プロトン伝導度(室温、95%RH)が0.034×10-4Scm-1~1.3×10-1Scm-1のプロトン伝導膜を作成することができた。この材料は、それ自体が強酸性であるナフィオンとは異なり、このプロトン伝導膜を中性溶媒雰囲気で使用できることを見出し、本発明を完成した。
 本発明は、以下の構成を有する。
 (1)Feイオン、Coイオン、Ruイオン、Znイオン、Niイオンの群から選択されるいずれか1又は2以上の金属イオンと、ビス(ターピリジル)ベンゼンとからなる有機/金属ハイブリッドポリマーのフィルムであることを特徴とする高プロトン伝導性ポリマーフィルム。
 (2)前記有機/金属ハイブリッドポリマーが、下記一般式(1)で表されることを特徴とする(1)に記載の高プロトン伝導性ポリマーフィルム。
Figure JPOXMLDOC01-appb-C000002
 式(1)で、MはFeイオン、Coイオン、Ruイオン、Znイオン、Niイオンの群から選択されるいずれか1又は2以上の金属イオンであり、nは5以上1000以下の整数である。
 (3)Feイオン、Coイオン、Ruイオン、Znイオン、Niイオンの群から選択されるいずれか1又は2以上の金属イオンと、ビス(ターピリジル)ベンゼンとからなる有機/金属ハイブリッドポリマーを10~1000mg/Lの濃度で溶媒に分散させて混合溶液を調製する工程と、前記混合溶液をキャスト法、ディッピング法又はスピンコーティング法のいずれか一の湿式成膜法により基板上に成膜する工程と、を有することを特徴とする高プロトン伝導性ポリマーフィルムの製造方法。
 (4)前記溶媒が水又は有機溶媒及びこれらの混合物であり、前記有機溶媒が、アルコール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミドの群から選択されるいずれかであることを特徴とする(3)に記載の高プロトン伝導性ポリマーフィルムの製造方法。
 (5)基板と、前記基板の一面に離間して形成された2つの電極と、前記一面で、前記2つの電極を覆うように形成されたフィルムと、を有し、前記フィルムが(1)又は(2)に記載の高プロトン伝導性ポリマーフィルムであることを特徴とする湿度センサー。
 本発明の高プロトン伝導性ポリマーフィルムは、Feイオン、Coイオン、Ruイオン、Znイオン、Niイオンの群から選択されるいずれか1又は2以上の金属イオンと、ビス(ターピリジル)ベンゼンとからなる有機/金属ハイブリッドポリマーのフィルムである構成なので、プロトン伝導度(室温、95%RH)が3×10-2Scm-1以上であり、中性溶媒雰囲気で使用可能なプロトン伝導膜を提供することができる。
 本発明の高プロトン伝導性ポリマーフィルムの製造方法は、Feイオン、Coイオン、Ruイオン、Znイオン、Niイオンの群から選択されるいずれか1又は2以上の金属イオンと、ビス(ターピリジル)ベンゼンとからなる有機/金属ハイブリッドポリマーを10~1000mg/Lの濃度で溶媒に分散させて混合溶液を調製する工程と、前記混合溶液をキャスト法、ディッピング法又はスピンコーティング法のいずれか一の湿式成膜法により基板上に成膜する工程と、を有する構成なので、プロトン伝導度(室温、95%RH)が3×10-2Scm-1以上であり、中性溶媒雰囲気で使用可能なプロトン伝導膜を容易に製造することができる。
 本発明の湿度センサーは、基板と、前記基板の一面に離間して形成された2つの電極と、前記一面で、前記2つの電極を覆うように形成されたフィルムと、を有し、前記フィルムが(1)又は(2)に記載の高プロトン伝導性ポリマーフィルムである構成なので、高感度な湿度センサーとすることができる。
本発明の湿度センサーの一例を示す平面概略図である。 図1Aの湿度センサーのA-A’での断面図である。 高プロトン伝導性ポリマーフィルムの電極間領域の状態の一例を示す概略図である。 本実施例で用いた電極付き基板と、それに成膜したポリマーフィルムを示す写真である。 Feポリマーフィルムのインピーダンスプロット(ナイキストプロット)である。 Feポリマーフィルムのインピーダンスプロット(ナイキストプロット)である。 Feポリマーフィルムのインピーダンスプロット(ナイキストプロット)である。 Feポリマーフィルムのインピーダンスプロット(ナイキストプロット)である。 58%RH、室温条件下のFeポリマーフィルムのナイキストプロットである。 Ruポリマーフィルムのナイキストプロットである。 Ruポリマーフィルムのナイキストプロットである。 Ruポリマーフィルムのナイキストプロットである。 Znポリマーフィルムのナイキストプロットである。 Znポリマーフィルムのナイキストプロットである。 Znポリマーフィルムのナイキストプロットである。 Coポリマーフィルムのナイキストプロットである。 Niポリマーフィルムのナイキストプロットである。 測定された漏れ電流の一例を示すグラフである。 95%RHでのFeポリマーフィルムのI-V特性である。 減圧下と大気中(28%RH)のFeポリマーフィルムのI-V特性である。 95%RHの実験後、大気中(28%RH)のFeポリマーフィルムのI-V特性である。スイープは-3.0Vから3.0Vまで行き、再び-3.0Vに戻る。 95%RHの実験後、大気中(28%RH)のFeポリマーフィルムのI-V特性である。スイープは-5.0Vから5.0Vまで行き、再び-5.0Vに戻る。 Feポリマーフィルムのスイープ速度1s遅延(a)、5s遅延(b)、20s遅延(c)でのI-V特性である。 95%RHの実験後、大気中(28%RH)のRuポリマーフィルムのI-V特性である。 RuポリマーフィルムのI-V特性を示すグラフである。 RuポリマーフィルムのI-V特性を示すグラフである。 95%RHでのZnポリマーフィルムのI-V特性である。
(本発明の実施形態)
 以下、添付図面を参照しながら、本発明の実施形態である高プロトン伝導性ポリマーフィルム、その製造方法及び湿度センサーについて説明する。
<高プロトン伝導性ポリマーフィルム>
 まず、本発明の実施形態である高プロトン伝導性ポリマーフィルムについて説明する。
 本発明の実施形態である高プロトン伝導性ポリマーフィルムは、Feイオン、Coイオン、Ruイオン、Znイオン、Niイオンの群から選択されるいずれか1又は2以上の金属イオンと、ビス(ターピリジル)ベンゼンの超分子とからなる有機/金属ハイブリッドポリマーのフィルムである。
 前記有機/金属ハイブリッドポリマーは、先に記載の一般式(1)で表される。
 式(1)で、MはFeイオン、Coイオン、Ruイオン、Znイオン、Niイオンの群から選択されるいずれか1又は2以上の金属イオンであり、nは5以上1000以下の整数である。
 例えば、前記有機/金属ハイブリッドポリマーは、式(2)、(3)で表される。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
<高プロトン伝導性ポリマーフィルムの製造方法>
 次に、本発明の実施形態である高プロトン伝導性ポリマーフィルムの製造方法について説明する。
 本発明の実施形態である高プロトン伝導性ポリマーフィルムの製造方法は、Feイオン、Coイオン、Ruイオン、Znイオン、Niイオンの群から選択されるいずれか1又は2以上の金属イオンと、ビス(ターピリジル)ベンゼンの超分子とからなる有機/金属ハイブリッドポリマーを10~1000mg/Lの濃度で溶媒に分散させて混合溶液を調製する工程と、前記混合溶液をキャスト法、ディッピング法又はスピンコーティング法のいずれか一の湿式成膜法により基板上に成膜する工程と、を有する。
 有機/金属ハイブリッドポリマーを10~1000mg/Lの濃度で溶媒に分散させて混合溶液を調製することを要する。このような混合溶液を用いて、湿式成膜することにより、均質で、平坦な膜を形成できる。
 前記溶媒が水又は有機溶媒及びこれらの混合物であり、前記有機溶媒が、アルコール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミドの群から選択されるいずれかであることが好ましい。
 アルコールとしては、メタノール、エタノール等を挙げることができる。
 スピンコーティングする場合、低速回転工程と、高速回転工程と、を有するようにすることが好ましい。例えば、最初に120秒間400rpmで回転させ、次に160秒間500rpmで回転させる。これにより、均質で、平坦な膜を形成できる。
<湿度センサー>
 次に、本発明の実施形態である湿度センサーについて説明する。
図1Aおよび図1Bは、本発明の実施形態である湿度センサーの一例を示す概略図である。図1Aは平面図、図1BはA-A’線における断面図である。
 図1Aおよび図1Bに示すように、湿度センサー1は、基板41と、基板41の一面に距離lで離間して形成された2つの電極31、32と、前記一面で、2つの電極31、32を覆うように形成されたフィルム11と、を有する。
 フィルム11は、先に記載の高プロトン伝導性ポリマーフィルムである。
 電極31、32は配線34を介して電源36に接続されている。
電源36を操作することにより、フィルム11の電極31、32間の領域11cに電圧を印加することができる。
 図2は、Feポリマーからなるフィルムを用いた湿度センサーで、95%RHの雰囲気下、電圧を印加したときの、高プロトン伝導性ポリマーフィルムの電極間領域の状態の一例を示す概略図である。
 電圧を印加すると、一方の電極の近傍にFe(III)とされた領域が発現する。これにより、プロトン伝導性が高められる。
 なお、本発明の実施形態である高プロトン伝導性ポリマーフィルムは、固体高分子燃料電池に用いることもできる。
 本発明の実施形態である固体高分子型燃料電池は、カソード電極と、前記カソード電極と対向するように配置したアノード電極と、該両電極に挟まれた電解質を有し、前記電解質が先に記載の高プロトン伝導性ポリマーフィルムである。
 この固体高分子型燃料電池は、高プロトン伝導性ポリマーフィルムを電解質として用いているので、蓄電性の高い燃料電池として用いることができる。
 本発明の実施形態である高プロトン伝導性ポリマーフィルム、その製造方法及び湿度センサーは、上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内で、種々変更して実施することができる。本実施形態の具体例を以下の実施例で示す。しかし、本発明はこれらの実施例に限定されるものではない。
(実施例1)
[伝導度測定用サンプル作製]
 まず、8つの電極を一面上に設けた平面視矩形状の石英基板を用意した。
 これらの電極のうち4つは一辺側の平面視矩形状の電源接続部に接続されており、他の4つは他辺側の平面視矩形状の電源接続部に接続されている。
 電極はいずれも2つの平面視矩形状の基板中心マーク部の間で平面視線状とされ、一辺側の電源接続部から延伸された4本と、他辺側の電源接続部から延伸された4本が互いにかみ合うように配置され、かつ、かみ合う部分で互いに平行とされている。平行とされた部分の長さ(電極幅)は2.5mmである。また、電極間隔は10μm~250μmの間でそれぞれ異なるものとされている。これにより、基板中心マーク部の間の電極を覆うようにフィルムを形成したとき、一辺側のいずれかの電源接続部と、他辺側のいずれかの電源接続部をそれぞれ電源に接続して、フィルムに電圧を印加することにより、異なる電極間隔でフィルムの電流電圧特性を測定できる。
 次に、Feポリマー(有機/金属ハイブリッドポリマー)をエタノールに100mg/Lの濃度で分散して、混合溶液を調製した。
 次に、基板を、超音波で2分間アセトン洗浄してから、イソプロパノール洗浄して、基板の電極表面の残留水やごみを取り除いた後、窒素ガスでブローした。
 その後すぐに、混合溶液を10ml、電極を覆うように基板の一面に、スピンコーティング法によりポリマーフィルムを成膜した。スピンコーティングは、最初に120秒間400rpmで回転させ、次に160秒間500rpmで回転させる条件とした。
 次に、成膜したポリマーフィルムのうち、基板中心マーク部の間のエリア以外の部分をすべて、エタノールで湿らせた綿で注意深く取り除いた。
 以上により、実施例1の伝導度測定用サンプルを作製した。
 図3は、本実施例で用いた電極付き基板と、それに成膜したポリマーフィルムを示す写真であって、全体写真(a)と、部分拡大写真(b)である。ポリマーフィルムは透明であるので、成膜部分を矢印で示している。
(実施例2)
 Ruポリマー(有機/金属ハイブリッドポリマー)を用い、エタノールに250mg/Lの濃度で分散して、混合溶液を調製した他は実施例1と同様にして、実施例2の伝導度測定用サンプルを作製した。
(実施例3)
 Znポリマー(有機/金属ハイブリッドポリマー)を用い、エタノールに250 mg/Lの濃度で分散して、混合溶液を調製した他は実施例1と同様にして、実施例3の伝導度測定用サンプルを作製した。
(実施例4)
 Coポリマー(有機/金属ハイブリッドポリマー)を用い、エタノールに100mg/Lの濃度で分散して、混合溶液を調製した他は実施例1と同様にして、実施例4の伝導度測定用サンプルを作製した。
(実施例5)
 Niポリマー(有機/金属ハイブリッドポリマー)を用い、エタノールに100mg/Lの濃度で分散して、混合溶液を調製した他は実施例1と同様にして、実施例5の伝導度測定用サンプルを作製した。
 各伝導度測定用サンプルは、それぞれの測定を行うまで、また、条件を変更して各測定を行う間は、閉鎖系コンテナ(チャンバー)内で貯蔵した。
[厚さ測定]
 各ポリマーフィルムの厚さは、エリプソメーター(ellipsometer)により測定した。
 まず、500mg/Lの濃度でキャストして、各ポリマーフィルムの膜厚が厚いリファレンス・サンプルを作成し、各ポリマーフィルムの光学定数(optical constants)を決定した。
 次に、これらの光学定数の値を用い、一般的なオシレーターモデルでデータフィットして、各ポリマーフィルムの厚さを算出した。
 Fe、Ru、Zn、Co、Niの各ポリマーフィルムの厚さは、それぞれ4.5nm、6.8nm、20.0nm、6.4nm、6.1nmと算出された。
[伝導度測定]
 ポリマーフィルムの伝導度は、ソラートロン1287(Solartron 1287:ポテンシオスタット(potentiostat)と周波数反応分析システム(1260 frequency response analyzer system)からなる)を用いて測定した。
 「周波数範囲50Hz~5MHz、振幅10mVのac又は1.0Vのdcバイアス」の条件で、インピーダンスプロット(ナイキストプロット)からポリマーフィルム抵抗値を算出した。求めた抵抗値から、以下の式を用いてポリマーのプロトン導電性を算出した。
 ポリマーのプロトン導電性(σ)/Scm-1 =(1/R)×(l/A)
ここで、
R=ナイキストプロットから求めた抵抗値、
l=電極間距離、
A=ポリマー膜の断面積(ポリマーの膜厚から算出)である。
[実施例1のFeポリマーフィルムの伝導度]
図4Aから図4Dは、Feポリマーフィルムのインピーダンスプロット(ナイキストプロット)である。95%RH条件下のプロットである。図4AはZreal×10が0~4の範囲のプロットである。Raw(生データ)は、塗りつぶした四角で示しており、Fitting(フィッティングデータ)は、塗りつぶさない四角で示している。以下同様に、塗りつぶしたマークは生データを示し、塗りつぶさないマークはフィッティングデータを示す。
 図4Bは、Zreal×10が0~0.6の範囲のプロットである。
また、図4Cは0.1Vから2.0Vまで異なるdcバイアスを印加した時のZreal×10が0~45の範囲のプロットである。dcバイアス0.1Vが四角、0.5Vが丸、1.0Vが三角、1.5Vがひし形、2.0Vが星型を示す(以下、同様)。
 図4Dは、Zreal×10が0~1.0の範囲のプロットである。
図5は、58%RH、室温条件下のFeポリマーフィルムのナイキストプロットである。
[実施例2のRuポリマーフィルムの伝導度]
 図6Aから図6Cは、Ruポリマーフィルムのナイキストプロットである。図6Aは95%RH条件下のナイキストプロットである。図6Bは、異なるdcバイアスでのナイキストプロットであり、図6Cは、Zreal×10が0~0.15の範囲のプロットである。
[実施例3のZnポリマーフィルムの伝導度]
 図7Aから図7Cは、Znポリマーフィルムのナイキストプロットである。図7Aは95%RH条件下のZnポリマーフィルムのナイキストプロットである。図7Bは異なるdcバイアスでのZnポリマーフィルムのナイキストプロットであり、図7Cは、Zreal×10が0~0.11の範囲のプロットである。
[実施例4のCoポリマーフィルムの伝導度]
 図8は、Coポリマーフィルムのナイキストプロットである。95%RH条件下のCoポリマーフィルムのナイキストプロットである。
[実施例5のNiポリマーフィルムの伝導度]
 図9は、Niポリマーフィルムのナイキストプロットである。95%RH条件下のNiポリマーフィルムのナイキストプロットである。
[I-V特性測定]
 ポリマーフィルムのI-V特性測定には、標準的な半導体特性評価システムであるKeithley 4200-SCSを用いた。
 得られたI-Vデータからポリマーフィルムの平均漏れ電流(leakage current)を抽出した。
 図10は、測定された漏れ電流の一例を示すグラフである。
[実施例1のFeポリマーフィルムのI-V特性]
 図11は、95%RHでのFeポリマーフィルムのI-V特性である。
 図12は、減圧下と大気中(28%RH)のFeポリマーフィルムのI-V特性である。
 図13は、95%RHの実験後、大気中(28%RH)のFeポリマーフィルムのI-V特性である。スイープは-3.0Vから3.0Vまで行き、再び-3.0Vに戻る。
 図14は、95%RHの実験後、大気中(28%RH)のFeポリマーフィルムのI-V特性である。スイープは-5.0Vから5.0Vまで行き、再び-5.0Vに戻る。
 両方向で電流がプラスとなった。
 図15は、Feポリマーフィルムのスイープ速度1s遅延(a)、5s遅延(b)、20s遅延(c)でのI-V特性である。
 すべての実験は95%RH中の実験後、大気中(28%RH)で実施した。
電流はスイープ速度の増加とともに増加した。
[実施例2のRuポリマーフィルムのI-V特性]
 図16は、95%RHの実験後、大気中(28%RH)のRuポリマーフィルムのI-V特性である。
 電流変化がみられなかった。
 図17Aおよび図17Bは、RuポリマーフィルムのI-V特性を示すグラフである。図17Aは、減圧下と大気中(28%RH)のRuポリマーフィルムのI-V特性である。スイープ方向は-2.0Vから2.0Vである。図17Bは95%RH中のRuポリマーフィルムのI-V特性である。
[実施例3のZnポリマーフィルムのI-V特性]
 図18は、95%RHでのZnポリマーフィルムのI-V特性である。
 本発明の高プロトン伝導性ポリマーフィルム、その製造方法及び湿度センサーは、プロトン伝導度(室温、95%RH)が3×10-2Scm-1以上で、中性溶媒雰囲気で使用可能なプロトン伝導膜に関するものであり、高感度な湿度センサーや固体高分子型燃料電池のプロトン交換膜として利用することができ、湿度センサー産業、燃料電池産業等において利用可能性がある。
 1  湿度センサー
 11  高プロトン伝導性ポリマーフィルム
 11c  高プロトン伝導性ポリマーフィルムの電極間領域
 31、32  電極
 34  配線
 36  電源
 41  基板

Claims (5)

  1.  Feイオン、Coイオン、Ruイオン、Znイオン、Niイオンの群から選択されるいずれか1又は2以上の金属イオンと、ビス(ターピリジル)ベンゼンとからなる有機/金属ハイブリッドポリマーのフィルムであることを特徴とする高プロトン伝導性ポリマーフィルム。
  2.  前記有機/金属ハイブリッドポリマーが、下記一般式(1)で表されることを特徴とする請求項1に記載の高プロトン伝導性ポリマーフィルム。
    Figure JPOXMLDOC01-appb-C000001
    式(1)で、MはFeイオン、Coイオン、Ruイオン、Znイオン、Niイオンの群から選択されるいずれか1又は2以上の金属イオンであり、nは5以上1000以下の整数である。
  3.  Feイオン、Coイオン、Ruイオン、Znイオン、Niイオンの群から選択されるいずれか1又は2以上の金属イオンと、ビス(ターピリジル)ベンゼンとからなる有機/金属ハイブリッドポリマーを10~1000mg/Lの濃度で溶媒に分散させて混合溶液を調製する工程と、
     前記混合溶液をキャスト法、ディッピング法又はスピンコーティング法のいずれか一の湿式成膜法により基板上に成膜する工程と、を有することを特徴とする高プロトン伝導性ポリマーフィルムの製造方法。
  4.  前記溶媒が水又は有機溶媒及びこれらの混合物であり、
     前記有機溶媒が、アルコール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミドの群から選択されるいずれかであることを特徴とする請求項3に記載の高プロトン伝導性ポリマーフィルムの製造方法。
  5.  基板と、
     前記基板の一面に離間して形成された2つの電極と、
     前記一面で、前記2つの電極を覆うように形成されたフィルムと、を有し、
     前記フィルムが請求項1又は2に記載の高プロトン伝導性ポリマーフィルムであることを特徴とする湿度センサー。
PCT/JP2013/070299 2012-08-01 2013-07-26 高プロトン伝導性ポリマーフィルム、その製造方法及び湿度センサー WO2014021208A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/374,985 US20150021180A1 (en) 2012-08-01 2013-07-26 Highly proton-conductive polymer film, method for producing same, and humidity sensor
EP13824952.9A EP2796488A4 (en) 2012-08-01 2013-07-26 IN HIGH TIMES PROTON-CONDUCTIVE POLYMERIC FILM, MANUFACTURING METHOD AND HUMIDITY SENSOR
JP2014528113A JP5765692B2 (ja) 2012-08-01 2013-07-26 湿度センサー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-171062 2012-08-01
JP2012171062 2012-08-01

Publications (1)

Publication Number Publication Date
WO2014021208A1 true WO2014021208A1 (ja) 2014-02-06

Family

ID=50027885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070299 WO2014021208A1 (ja) 2012-08-01 2013-07-26 高プロトン伝導性ポリマーフィルム、その製造方法及び湿度センサー

Country Status (4)

Country Link
US (1) US20150021180A1 (ja)
EP (1) EP2796488A4 (ja)
JP (1) JP5765692B2 (ja)
WO (1) WO2014021208A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185679A1 (ja) * 2015-05-15 2016-11-24 パナソニック株式会社 化学センサ
EP3138868A4 (en) * 2014-05-02 2017-09-27 National Institute for Materials Science Organic/heterometallic hybrid polymer, process for producing same, film of organic/heterometallic hybrid polymer, organic/multimetallic hybrid polymer, process for producing same, and film of organic/multimetallic hybrid polymer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11127898B2 (en) * 2016-01-22 2021-09-21 Nippon Steel Corporation Microswitch and electronic device in which same is used
WO2018025828A1 (ja) 2016-08-05 2018-02-08 国立研究開発法人科学技術振興機構 ブロック共重合体、多層構造体、固体高分子膜、燃料電池、多層構造体の製造方法、及び無機ナノ粒子を含む多層構造体の製造方法
CN113087958B (zh) * 2021-04-30 2022-08-30 重庆文理学院 一种紧致有序MOFs材料的制备方法及湿度传感设备
CN113218984B (zh) * 2021-05-07 2022-07-05 河北工业大学 湿度传感器的敏感元件的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241337A (ja) * 1988-07-29 1990-02-09 Nitto Denko Corp ポリタングステン酸含有樹脂組成物及びフィルム
WO2002062896A1 (fr) * 2001-02-05 2002-08-15 Kaneka Corporation Film polymere conducteur protonique et son procede de production
JP2004031173A (ja) 2002-06-26 2004-01-29 Japan Science & Technology Corp プロトン交換膜及びその製造方法
WO2007049371A1 (ja) * 2005-10-24 2007-05-03 National Institute For Materials Science ビスターピリジン型モノマーとその製造方法、および、該モノマーから誘導された高分子材料とその製造方法、および、エレクトロクロミック素子
WO2008081762A1 (ja) * 2006-12-28 2008-07-10 National Institute For Materials Science ビス(ターピリジン)化合物金属集積体およびハイブリッドポリマーとその製造方法ならびに用途
WO2008143324A1 (ja) * 2007-05-24 2008-11-27 National Institute For Materials Science 有機-無機ハイブリッドポリマーとその製造方法ならびに分子量調整方法
JP2009265437A (ja) * 2008-04-25 2009-11-12 Hitachi Chem Co Ltd 調光フィルム
JP2010126723A (ja) 2008-11-27 2010-06-10 Ind Technol Res Inst プロトン交換膜およびその形成方法
JP2010155991A (ja) 2008-12-31 2010-07-15 Ind Technol Res Inst プロトン交換膜の組成
JP2012188519A (ja) * 2011-03-10 2012-10-04 National Institute For Materials Science 有機/蛍光性金属ハイブリッドポリマー及びその配位子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900405A (en) * 1987-07-15 1990-02-13 Sri International Surface type microelectronic gas and vapor sensor
JP2741381B2 (ja) * 1988-02-04 1998-04-15 フィガロ技研株式会社 ガス検出装置
US5131990A (en) * 1989-07-27 1992-07-21 Texas Instruments Incorporated Fluoropolymer humidity sensors
JP3531971B2 (ja) * 1994-05-16 2004-05-31 フィガロ技研株式会社 ガスまたは湿度を検出するセンサとその製造方法
JP2002310978A (ja) * 2001-04-12 2002-10-23 Ngk Spark Plug Co Ltd 水素センサ
JP2003156464A (ja) * 2001-11-19 2003-05-30 Denso Corp 容量式湿度センサ
US8472115B2 (en) * 2008-12-08 2013-06-25 Konica Minolta Opto, Inc. Anistropic dye layer, coordination polymer for anistropic dye layer and polarization element, and polarization control film, polarization control element, multi-layer polarization control element, ellipse polarization plate, light emission element, and method for controlling polarization properties employing the anistropic dye layer
JPWO2010147017A1 (ja) * 2009-06-18 2012-12-06 独立行政法人物質・材料研究機構 表示素子とそれを用いたカラー電子ペーパー

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241337A (ja) * 1988-07-29 1990-02-09 Nitto Denko Corp ポリタングステン酸含有樹脂組成物及びフィルム
WO2002062896A1 (fr) * 2001-02-05 2002-08-15 Kaneka Corporation Film polymere conducteur protonique et son procede de production
JP2004031173A (ja) 2002-06-26 2004-01-29 Japan Science & Technology Corp プロトン交換膜及びその製造方法
WO2007049371A1 (ja) * 2005-10-24 2007-05-03 National Institute For Materials Science ビスターピリジン型モノマーとその製造方法、および、該モノマーから誘導された高分子材料とその製造方法、および、エレクトロクロミック素子
WO2008081762A1 (ja) * 2006-12-28 2008-07-10 National Institute For Materials Science ビス(ターピリジン)化合物金属集積体およびハイブリッドポリマーとその製造方法ならびに用途
WO2008143324A1 (ja) * 2007-05-24 2008-11-27 National Institute For Materials Science 有機-無機ハイブリッドポリマーとその製造方法ならびに分子量調整方法
JP2009265437A (ja) * 2008-04-25 2009-11-12 Hitachi Chem Co Ltd 調光フィルム
JP2010126723A (ja) 2008-11-27 2010-06-10 Ind Technol Res Inst プロトン交換膜およびその形成方法
JP2010155991A (ja) 2008-12-31 2010-07-15 Ind Technol Res Inst プロトン交換膜の組成
JP2012188519A (ja) * 2011-03-10 2012-10-04 National Institute For Materials Science 有機/蛍光性金属ハイブリッドポリマー及びその配位子

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
AKIHITO SHIGEMATSU ET AL.: "Wide control of proton conductivity in porous coordination polymers", J. AM. CHEM. SOC., vol. 133, 2011, pages 2034 - 2036
CHANG HYUN LEE ET AL.: "Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application", IND. ENG. CHEM. RES., vol. 44, 2005, pages 7617 - 7626
DANIELE PERGOLESI ET AL.: "High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition", NATURE MATERIALS, vol. 9, October 2010 (2010-10-01), pages 846 - 852, XP055276403, DOI: doi:10.1038/nmat2837
HIROSHI KITAGAWA ET AL.: "Highly proton-conductive copper coordination polymer, H dtoaCu (H dtoa=dithiooxamide anion", INORGANIC CHEMISTRY COMMUNICATIONS, vol. 6, 2003, pages 346 - 348
J. J. FONTANELLA ET AL.: "Electrical impedance studies of acid form NAFION membranes", SOLID STATE IONICS, vol. 66, 1993, pages 1 - 4, XP024474564, DOI: doi:10.1016/0167-2738(93)90020-4
KLAUS SCHMIDT-ROHR ET AL.: "Parallel cylindrical water nanochannels in Nafion fuel-cell membranes", NATURE MATERIALS, 7 January 2008 (2008-01-07), pages 75 - 83
MASAAKI SADAKIYO ET AL.: "Promotion of low-humidity proton conduction by controlling hydrophilicity in layered metal-organic frameworks", J. AM. CHEM. SOC., vol. 134, 2012, pages 5472 - 5475
MASAAKI SADAKIYO ET AL.: "Rational designs for highly proton-conductive metal-organic frameworks", J. AM. CHEM. SOC., vol. 131, 2009, pages 9906 - 9907
MING-ZHI YANG ET AL.: "Fabrication and characterization of Polyaniline/PVA humidity microsensors", SENSORS, vol. 11, 2011, pages 8143 - 8151
REIDAR HAUGSRUD ET AL.: "Proton conduction in rare-earth ortho-niobates and ortho-tantalates", NATURE MATERIALS, vol. 5, March 2006 (2006-03-01), pages 193 - 196
S. D. MIKHAILENKO ET AL.: "Measurements of PEM conductivity by impedance spectroscopy", SOLID STATE IONICS, vol. 179, no. 2008, pages 619 - 624, XP022735057, DOI: doi:10.1016/j.ssi.2008.04.020
SAREEYA BUREEKAEW ET AL.: "One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity", NATURE MATERIALS, October 2009 (2009-10-01), pages 831 - 836, XP055224758, DOI: doi:10.1038/nmat2526
See also references of EP2796488A4 *
TEPPEI YAMADA ET AL.: "High proton conductivity of one-dimensional ferrous oxalate dihydrate", J. AM. CHEM. SOC., vol. 131, 2009, pages 3144 - 3145
Y. NAGAO ET AL.: "Preparation and proton transport property of N,N' -diethyldithiooxamidatocopper coordination polymer", SYNTHETIC METALS, vol. 154, 2005, pages 89 - 92, XP025270773, DOI: doi:10.1016/j.synthmet.2005.07.006

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3138868A4 (en) * 2014-05-02 2017-09-27 National Institute for Materials Science Organic/heterometallic hybrid polymer, process for producing same, film of organic/heterometallic hybrid polymer, organic/multimetallic hybrid polymer, process for producing same, and film of organic/multimetallic hybrid polymer
US10118995B2 (en) 2014-05-02 2018-11-06 National Institute Of Materials Science Organic/heterometallic hybrid polymer, process for producing same, film of organic/heterometallic hybrid polymer, organic/multimetallic hybrid polymer, process for producing same, and film of organic/multimetallic hybrid polymer
WO2016185679A1 (ja) * 2015-05-15 2016-11-24 パナソニック株式会社 化学センサ

Also Published As

Publication number Publication date
JP5765692B2 (ja) 2015-08-19
JPWO2014021208A1 (ja) 2016-07-21
EP2796488A1 (en) 2014-10-29
EP2796488A4 (en) 2014-11-26
US20150021180A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP5765692B2 (ja) 湿度センサー
Liu et al. Sandwiching h-BN monolayer films between sulfonated poly (ether ether ketone) and nafion for proton exchange membranes with improved ion selectivity
Lin et al. Heterogeneous MXene/PS‐b‐P2VP nanofluidic membranes with controllable ion transport for osmotic energy conversion
Xu et al. New proton exchange membranes based on poly (vinyl alcohol) for DMFCs
Ruffmann et al. Organic/inorganic composite membranes for application in DMFC
Bayer et al. Tunable mixed ionic/electronic conductivity and permittivity of graphene oxide paper for electrochemical energy conversion
Asgari et al. Nafion®/histidine functionalized carbon nanotube: High-performance fuel cell membranes
Jia et al. Novel composite proton exchange membrane with connected long-range ionic nanochannels constructed via exfoliated nafion–boron nitride nanocomposite
Zhang et al. A highly sensitive breathable fuel cell gas sensor with nanocomposite solid electrolyte
Shabanikia et al. Novel nanocomposite membranes based on polybenzimidazole and Fe 2 TiO 5 nanoparticles for proton exchange membrane fuel cells
Selvakumar et al. Influence of barium zirconate on SPEEK-based polymer electrolytes for PEM fuel cell applications
Zhao et al. Highly conductive, methanol resistant fuel cell membranes fabricated by layer-by-layer self-assembly of inorganic heteropolyacid
Thiemann et al. Spray-coatable ionogels based on silane-ionic liquids for low voltage, flexible, electrolyte-gated organic transistors
Ünlü et al. Study of alkaline electrodes for hybrid polymer electrolyte fuel cells
Ducros et al. Ionic and electronic conductivities in carbon nanotubes–ionogel solid device
Lin et al. Layer-by-layer self-assembly of in situ polymerized polypyrrole on sulfonated poly (arylene ether ketone) membrane with extremely low methanol crossover
EP3197906A1 (en) Polyoxometalate salts, proton exchange membranes and precursors, membrane-electrode assemblies, fuel cells and methods
Ko et al. Eco-friendly cellulose based solid electrolyte with high performance and enhanced low humidity performance by hybridizing with aluminum fumarate MOF
Huang et al. Development of gas diffusion electrodes for low relative humidity proton exchange membrane fuel cells
Rehman et al. Chemically tethered functionalized graphene oxide based novel sulfonated polyimide composite for polymer electrolyte membrane
TW201634119A (zh) 具優先取向紋理的離子交換薄膜
US20220008871A1 (en) Composite films and methods of making and use thereof
US20180259471A1 (en) Copper(ii) oxide and cellulose acetate composite resistance-based humidity sensor
Inoue et al. Performance of H2/O2 fuel cell using membrane electrolyte of phosphotungstic acid-modified 3-glycidoxypropyl-trimethoxysilanes
Lysova et al. Effect of phosphorylation of polybenzimidazole on its conductive properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528113

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013824952

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14374985

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE