WO2014020440A1 - Wound dressing - Google Patents
Wound dressing Download PDFInfo
- Publication number
- WO2014020440A1 WO2014020440A1 PCT/IB2013/002060 IB2013002060W WO2014020440A1 WO 2014020440 A1 WO2014020440 A1 WO 2014020440A1 IB 2013002060 W IB2013002060 W IB 2013002060W WO 2014020440 A1 WO2014020440 A1 WO 2014020440A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- wound dressing
- dressing
- wound
- obscuring
- Prior art date
Links
- 206010052428 Wound Diseases 0.000 claims abstract description 509
- 208000027418 Wounds and injury Diseases 0.000 claims abstract description 509
- 239000012530 fluid Substances 0.000 claims abstract description 99
- 238000009826 distribution Methods 0.000 claims abstract description 67
- 239000010410 layer Substances 0.000 claims description 928
- 239000002250 absorbent Substances 0.000 claims description 243
- 230000002745 absorbent Effects 0.000 claims description 240
- 239000000463 material Substances 0.000 claims description 197
- 239000000835 fiber Substances 0.000 claims description 74
- 239000004744 fabric Substances 0.000 claims description 67
- 230000005540 biological transmission Effects 0.000 claims description 65
- 239000000853 adhesive Substances 0.000 claims description 54
- 230000001070 adhesive effect Effects 0.000 claims description 54
- 238000007789 sealing Methods 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 38
- 239000007788 liquid Substances 0.000 claims description 36
- 239000011241 protective layer Substances 0.000 claims description 36
- 239000002313 adhesive film Substances 0.000 claims description 29
- 238000009581 negative-pressure wound therapy Methods 0.000 claims description 18
- 239000004698 Polyethylene Substances 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 17
- -1 polypropylene Polymers 0.000 claims description 17
- 229920000728 polyester Polymers 0.000 claims description 15
- 229920000573 polyethylene Polymers 0.000 claims description 15
- 239000002131 composite material Substances 0.000 claims description 13
- 229920002678 cellulose Polymers 0.000 claims description 12
- 239000001913 cellulose Substances 0.000 claims description 12
- 239000004743 Polypropylene Substances 0.000 claims description 11
- 229920001155 polypropylene Polymers 0.000 claims description 11
- 239000002270 dispersing agent Substances 0.000 claims description 10
- 238000010521 absorption reaction Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 7
- 229920000297 Rayon Polymers 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 210000000416 exudates and transudate Anatomy 0.000 description 66
- 125000006850 spacer group Chemical group 0.000 description 39
- 230000000873 masking effect Effects 0.000 description 28
- 239000012790 adhesive layer Substances 0.000 description 20
- 239000010408 film Substances 0.000 description 19
- 210000001519 tissue Anatomy 0.000 description 19
- 239000003570 air Substances 0.000 description 17
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 14
- 229920003043 Cellulose fiber Polymers 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 230000002209 hydrophobic effect Effects 0.000 description 12
- 230000000007 visual effect Effects 0.000 description 12
- 229920006264 polyurethane film Polymers 0.000 description 11
- 230000008859 change Effects 0.000 description 9
- 230000036961 partial effect Effects 0.000 description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 description 9
- 239000005020 polyethylene terephthalate Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 244000027321 Lychnis chalcedonica Species 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 7
- 239000003086 colorant Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 230000000699 topical effect Effects 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 239000004831 Hot glue Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 230000035876 healing Effects 0.000 description 4
- 230000036074 healthy skin Effects 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000012800 visualization Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 208000004210 Pressure Ulcer Diseases 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 235000019645 odor Nutrition 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000008733 trauma Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 208000034656 Contusions Diseases 0.000 description 2
- 229920001651 Cyanoacrylate Polymers 0.000 description 2
- 229920006347 Elastollan Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000009519 contusion Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 239000000416 hydrocolloid Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 210000002414 leg Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- 206010056340 Diabetic ulcer Diseases 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 208000035874 Excoriation Diseases 0.000 description 1
- 208000034693 Laceration Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 208000002847 Surgical Wound Diseases 0.000 description 1
- 208000000558 Varicose Ulcer Diseases 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229940048053 acrylate Drugs 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 235000019646 color tone Nutrition 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000013039 cover film Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000000954 sacrococcygeal region Anatomy 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 210000001066 surgical stoma Anatomy 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 230000010388 wound contraction Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/91—Suction aspects of the dressing
- A61M1/915—Constructional details of the pressure distribution manifold
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/01—Non-adhesive bandages or dressings
- A61F13/01008—Non-adhesive bandages or dressings characterised by the material
- A61F13/01012—Non-adhesive bandages or dressings characterised by the material being made of natural material, e.g. cellulose-, protein-, collagen-based
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/01—Non-adhesive bandages or dressings
- A61F13/01008—Non-adhesive bandages or dressings characterised by the material
- A61F13/01017—Non-adhesive bandages or dressings characterised by the material synthetic, e.g. polymer based
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/01—Non-adhesive bandages or dressings
- A61F13/01034—Non-adhesive bandages or dressings characterised by a property
- A61F13/01042—Absorbency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/02—Adhesive bandages or dressings
- A61F13/0203—Adhesive bandages or dressings with fluid retention members
- A61F13/0206—Adhesive bandages or dressings with fluid retention members with absorbent fibrous layers, e.g. woven or non-woven absorbent pads or island dressings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/02—Adhesive bandages or dressings
- A61F13/0203—Adhesive bandages or dressings with fluid retention members
- A61F13/0206—Adhesive bandages or dressings with fluid retention members with absorbent fibrous layers, e.g. woven or non-woven absorbent pads or island dressings
- A61F13/0209—Adhesive bandages or dressings with fluid retention members with absorbent fibrous layers, e.g. woven or non-woven absorbent pads or island dressings comprising superabsorbent material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/02—Adhesive bandages or dressings
- A61F13/0203—Adhesive bandages or dressings with fluid retention members
- A61F13/022—Adhesive bandages or dressings with fluid retention members having more than one layer with different fluid retention characteristics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/02—Adhesive bandages or dressings
- A61F13/0203—Adhesive bandages or dressings with fluid retention members
- A61F13/0223—Adhesive bandages or dressings with fluid retention members characterized by parametric properties of the fluid retention layer, e.g. absorbency, wicking capacity, liquid distribution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/02—Adhesive bandages or dressings
- A61F13/0259—Adhesive bandages or dressings characterised by the release liner covering the skin adhering layer
- A61F13/0266—Adhesive bandages or dressings characterised by the release liner covering the skin adhering layer especially adapted for wound covering/occlusive dressings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/05—Bandages or dressings; Absorbent pads specially adapted for use with sub-pressure or over-pressure therapy, wound drainage or wound irrigation, e.g. for use with negative-pressure wound therapy [NPWT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/91—Suction aspects of the dressing
- A61M1/912—Connectors between dressing and drainage tube
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/00051—Accessories for dressings
- A61F13/00059—Accessories for dressings provided with visual effects, e.g. printed or colored
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00089—Wound bandages
- A61F2013/00153—Wound bandages coloured or with decoration pattern or printing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00089—Wound bandages
- A61F2013/00182—Wound bandages with transparent part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00089—Wound bandages
- A61F2013/00289—Wound bandages easy removing of the protection sheet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/96—Suction control thereof
- A61M1/962—Suction control thereof having pumping means on the suction site, e.g. miniature pump on dressing or dressing capable of exerting suction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/98—Containers specifically adapted for negative pressure wound therapy
- A61M1/982—Containers specifically adapted for negative pressure wound therapy with means for detecting level of collected exudate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/98—Containers specifically adapted for negative pressure wound therapy
- A61M1/984—Containers specifically adapted for negative pressure wound therapy portable on the body
- A61M1/985—Containers specifically adapted for negative pressure wound therapy portable on the body the dressing itself forming the collection container
Definitions
- Embodiments described herein relate to apparatuses, systems, and methods the treatment of wounds, for example using dressings in combination with negative pressure wound therapy.
- Prior art dressings for use in negative pressure have been difficult to apply, particularly around curved or non-flat body surfaces. Further, when used, wound exudate may soak into the dressing, which some patients may find aesthetically unpleasing and difficult to address in social situations.
- a wound dressing comprises:
- the wound dressing may further comprise a fluidic connector configured to connect the backing layer to a source of negative pressure.
- the fluidic connector may be positioned over an opening in the backing layer.
- the acquisition distribution layer may be configured to horizontally wick fluid as the fluid is absorbed upward through the wound dressing.
- the acquisition distribution layer may comprise a mix of cellulosic fibers and composite fibers, the composite fibers comprising a PET core and a PE outer layer.
- the acquisition distribution layer may comprise a plurality of fibers, and a majority of the fiber volume may extend horizontally, or substantially or generally horizontally.
- the acquisition distribution layer may comprise a plurality of fibers, and approximately 80% to approximately 90% of the fiber volume may extend horizontally, or substantially or generally horizontally.
- the acquisition distribution layer may comprise a plurality of fibers, and all or substantially all of the fiber volume may extend horizontally, or substantially or generally horizontally extending fibers.
- the acquisition distribution layer may comprise a plurality of fibers, and a majority of the fibers may span a distance perpendicular to the thickness of the acquisition distribution layer that is greater than the thickness of the acquisition distribution layer.
- the wound dressing may be configured such that a ratio of an amount of fluid wicking laterally across the acquisition distribution layer to an amount of fluid wicking vertically through the acquisition distribution layer when under negative pressure is about 2: 1 or more.
- the absorbent layer and acquisition distribution layer may be bonded together by one or more of adhesive, stitching, or heat bonding.
- the absorbent layer may comprise a fibrous network and superabsorbing particles within the fibrous network.
- the wound dressing may further comprise a wound contact layer below the acquisition distribution layer.
- the wound dressing may further comprise a transmission layer between the wound contact layer and the acquisition distribution layer.
- the transmission layer may be configured to vertically wick fluid.
- the transmission layer may comprise a top fabric layer, a bottom fabric layer, and a plurality of filaments extending generally perpendicularly between said top fabric layer and said bottom fabric layer.
- a majority of filaments, by volume may extend vertically, or substantially or generally vertically.
- approximately 80% to approximately 90% of the filaments, by volume may extend vertically, or substantially or generally vertically.
- all or substantially all of the filaments, by volume may extend vertically, or substantially or generally vertically.
- a majority of filaments may extend upward from the bottom fabric layer and/or downward from the top fabric layer and may extend over a length more than half the distance between the top and bottom fabric layers.
- a majority of filaments may span a distance that is greater in a direction perpendicular to the top and bottom fabric layers than in a direction parallel to the top and bottom fabric layers.
- a ratio of an amount of fluid wicking vertically through the transmission layer to an amount of fluid wicking laterally across the transmission layer when under negative pressure may be, in some embodiments, about 2: 1 or more.
- the acquisition distribution layer may comprise viscose, polyester, polypropylene, cellulose, polyethylene or a combination of some or all of these materials.
- the absorbent layer may comprise between 30% and 40% cellulose matrix and 60% and 70% superabsorbing polymers.
- the absorbent layer may comprise a mix of cellulosic fibers and composite fibers, and the composite fibers may comprise a PET core and a PE outer layer.
- the absorbent layer may comprise a plurality of layers.
- the plurality of layers of the absorbent layer may comprise a textured layer configured to laterally spread absorbed fluid, an absorption layer configured to draw fluid upward into an interior of the absorbent layer, a storage layer configured to absorb the fluid, and a liquid distribution layer configured to apply a reverse suction effect to the storage layer.
- the absorbent layer may further comprise a tissue dispersant layer.
- the backing layer may be transparent or translucent, and the wound dressing may further comprise an obscuring layer between the absorbent layer and the backing layer.
- the wound dressing may comprise one or more viewing windows in the obscuring layer.
- At least the obscuring layer may be shaped with a narrowed central portion along its length.
- the obscuring layer may comprise two rows of three viewing windows.
- the obscuring layer may comprise one row of three viewing windows.
- the obscuring layer may comprise one row of eight viewing windows.
- the obscuring layer may comprise two rows of five viewing windows.
- the obscuring layer may comprise one row of five viewing windows.
- At least the obscuring layer may be shaped with a narrowed central portion along both its width and its length.
- the obscuring layer may comprise a 3 x 3 array of viewing windows.
- the obscuring layer may comprise a quincunx array of viewing windows. At least the obscuring layer may comprise a six-lobed shape.
- the absorbent layer and acquisition distribution layer may be substantially the same shape as the obscuring layer.
- the obscuring layer may further comprise a cross or maltese cross shaped hole over which a fluidic connector for transmitting negative pressure may be connected.
- a wound treatment apparatus for treatment of a wound site comprises:
- a wound dressing comprising:
- an absorbent layer configured to retain fluid
- an obscuring layer configured to at least partly visually obscure fluid within the absorbent layer
- a fluidic connector configured to transmit negative pressure from a negative pressure source to the wound dressing for the application of topical negative pressure at the wound site.
- the obscuring layer is above or below the backing layer.
- the obscuring layer may be configured to at least partially visually obscure fluid contained within the absorbent layer.
- the obscuring layer may comprise at least one viewing window configured to allow a visual determination of the saturation level of the absorbent layer.
- the at least one viewing window may comprise at least one aperture made through the obscuring layer.
- the at least one viewing window may comprise at least one uncolored region of the obscuring layer.
- the viewing window may comprise an array of dots.
- the array of dots may be distributed in a straight line of dots, the straight line of dots being positioned on a center line along a length of the absorbent layer.
- the straight line of dots may comprise an array of three dots.
- the straight line of dots may comprise an array of five dots.
- the straight line of dots may comprise an array of eight dots.
- the array of dots may be distributed in two straight lines of dots, the two straight lines of dots positioned to be an equal distance from a center line along a length of the absorbent layer, the two straight lines of dots having an equal number of dots.
- the two straight lines of dots may comprise an array of three dots.
- the two straight lines of dots may comprise an array of five dots.
- the array of dots may be distributed regularly over the obscuring layer to enable assessment of wound exudate spread.
- the viewing window may be selected from the group consisting of a graphical element or a typographical element.
- the obscuring layer may comprise an auxiliary compound, wherein the auxiliary compound may comprise activated charcoal configured to absorb odors and configured to color or tint the obscuring layer.
- the fluidic connector may comprise an obscuring element configured to substantially visually obscure wound exudate.
- Some embodiments may further comprise an acquisition distribution layer between the wound contact layer and the absorbent material.
- the absorbent layer may comprise cellulose fibers and between 40% and 80% (or between about 40% and about 80%) superabsorbent particles.
- the obscuring layer, in a dry state, may be configured to yield a CIE y value of .4 or less and a CIE x value of .5 or less on a CIE x, y chromaticity diagram.
- the obscuring layer in a dry state, may have a color of Bg, gB, B, pB, bP, P, rP, pPk, RP, O, rO, or yO on a CIE x, y chromaticity diagram.
- the wound dressing further comprises an orifice in the backing layer, the orifice configured to communicate negative pressure to the wound site.
- the obscuring layer may comprise at least one orifice viewing window configured to be positioned adjacent to the orifice in the backing layer, the orifice viewing window configured to allow a visual determination of the saturation level of the absorbent layer adjacent to the orifice.
- the orifice viewing window may be cross- shaped.
- the wound dressing may comprise a first length corresponding to a first edge of a wound dressing and a first width corresponding to a second edge of the wound dressing, a first x axis runs along the first width and a first y axis runs along the first length, wherein the first x axis and the first y axis are in a perpendicular alignment.
- the viewing window may comprise a first arm and a second arm, the first arm of the viewing window define a second length and the second arm defines a second width, a second x axis runs along the second width and a second y axis runs along the second length, wherein the second x axis and the second y axis are in a perpendicular alignment.
- the second x axis and second y axis of the viewing window is offset from the first x axis and the first y axis of the absorbent layer.
- the second x axis and second y axis of the viewing window may be aligned with the first x axis and the first y axis of the absorbent layer.
- the cross-shaped viewing window may comprise flared ends.
- the fluidic connector may be configured to transmit air.
- the fluidic connector may comprise a filter, the filter configured to block fluid transport past itself.
- the fluidic connector may comprise a secondary air leak channel, the secondary air leak channel configured to allow a flow of ambient air to the wound site.
- the secondary air leak channel may comprise a filter.
- the fluidic connector may comprise a soft fluidic connector.
- the soft fluidic connector may comprise a three dimensional fabric.
- the three dimensional fabric is configured to transmit therapeutic levels of negative pressure while an external pressure up to 2 kg/cm 2 is applied thereto.
- the soft fluidic connector may be configured to be connected to a tube in fluid communication with the vacuum source.
- the soft fluidic connector may be configured to be connected directly to the vacuum source.
- the soft fluidic connector may comprise an enlarged distal end, the enlarged distal end configured to be connected to the wound dressing.
- the apparatus may further comprise a tube connected to the fluidic connector.
- the apparatus may further comprise a pump in fluid communication with the fluidic connector.
- the absorbent layer comprises two or more lobes.
- the absorbent layer may further comprise a tissue dispersant layer.
- a wound treatment apparatus for treatment of a wound site comprises:
- a wound dressing configured to be positioned over a wound site, the wound dressing comprising:
- a backing layer having an upper surface and a lower surface and defining a perimeter configured to be positioned over skin surrounding the wound site, the backing layer including an opening;
- the wound contact layer adhered to the lower surface of the backing layer, the wound contact layer comprising an adhesive on a lower surface thereof;
- an absorbent material positioned between the backing layer and the wound contact layer, wherein the absorbent material comprises a vertical hole positioned below the opening in the backing layer; an obscuring layer positioned at least partially over the absorbent material, wherein the obscuring layer comprises a vertical hole positioned between the opening in the backing layer and the vertical hole in the absorbent material;
- one or more viewing windows extending through the obscuring layer configured to allow visualization of wound exudate in the absorbent material; and a port positioned over the opening in the backing layer configured to transmit negative pressure through the port for the application of topical negative pressure at the wound site.
- the backing layer is transparent or translucent.
- the backing layer may define a perimeter with a rectangular or a square shape.
- the wound contact layer may be adhered to the lower surface of the backing layer along the perimeter of the backing layer.
- the hole in the obscuring layer may have a different diameter than the hole in the absorbent material or the opening in the backing layer.
- the one or more viewing windows may be arranged in a repeating pattern across the obscuring layer.
- the one or more viewing windows may have a circular shape.
- Some embodiments may further comprise an acquisition distribution layer between the wound contact layer and the absorbent material.
- the absorbent layer may comprise cellulose fibers and between 40% and 80% (or between about 40% and about 80%) superabsorbent particles.
- the obscuring layer in a dry state, may be configured to yield a color of Bg, gB, B, pB, bP, P, rP, pPk, RP, O, rO, or yO on the CIE x, y chromaticity diagram.
- Some embodiments further comprise a transmission layer between the absorbent material and the wound contact layer.
- the apparatus further comprises a hydrophobic filter positioned in or below the port.
- the absorbent material may have a longitudinal length and a transverse width, wherein the length is greater than the width, and wherein the width of the absorbent material narrows in a central portion along the longitudinal length of the absorbent material.
- the obscuring layer may have substantially the same perimeter shape as the absorbent material.
- the apparatus may further comprise a pump
- a wound treatment apparatus for treatment of a wound site comprises:
- a wound dressing configured to be conformable to a nonplanar wound comprising: an absorbent layer comprising a contoured shape, the contoured shape comprising a substantially rectangular body with a waisted portion, and
- a fiuidic connector configured to transmit negative pressure from a negative pressure source to the wound dressing for the application of topical negative pressure at a wound site.
- Some embodiments may further comprise a wound contact layer.
- the backing layer may be rectangular.
- the negative pressure source is a pump.
- the wound dressing has a longer axis and a shorter axis, and wherein the waisted portion configured to be on the longer axis.
- the apparatus may further comprise an obscuring layer configured to at least partly visually obscure fluid within the absorbent layer.
- the obscuring layer may comprise at least one viewing window configured to allow a visual determination of the saturation level of the absorbent layer.
- the viewing window may comprise an array of dots.
- the fluidic connector may be located along a side or corner of the rectangular body.
- Some embodiments may further comprise an acquisition distribution layer between the wound contact layer and the absorbent material.
- the absorbent layer may comprise cellulose fibers and 40%-80% (or about 40% to about 80%) superabsorbent particles.
- the obscuring layer, in a dry state, may be configured to yield a color of Bg, gB, B, pB, bP, P, rP, pPk, RP, O, rO, or yO on the CIE x, y chromaticity diagram.
- the absorbent layer may further comprise a tissue dispersant layer.
- an apparatus for dressing a wound for the application of topical negative pressure at a wound site comprises:
- an absorbent layer having one or more slits extending at least partially across the width of the absorbent layer
- the backing layer having an orifice for communicating negative pressure to the wound site, wherein the orifice is positioned over a portion of the absorbent layer having no slits.
- the one or more slits comprise one or more concentric arcs.
- a wound treatment apparatus comprises: a wound dressing configured to be conformable to a nonplanar wound comprising:
- the absorbent layer comprising a contoured shape, the contoured shape comprising two or more lobes, and
- the wound treatment apparatus comprises a pump.
- the wound dressing may comprise a fluidic connector configured to transmit negative pressure from a pump to the wound dressing for the application of topical negative pressure at a wound site.
- the wound dressing may also comprise a wound-facing contact layer.
- the contoured shape may comprise three lobes.
- the contoured shape may comprise four lobes.
- the two or more lobes may comprise rounded projections.
- the apparatus may comprise two or more lobes flared lobes.
- the contoured shape may be oval-shaped.
- the contoured shape may comprise six lobes.
- the apparatus may further comprise an obscuring layer disposed so as to obscure the absorbent layer.
- the apparatus may further comprise an obscuring layer configured to at least partly visually obscure fluid within the absorbent layer.
- the obscuring layer may comprise at least one viewing window configured to allow a visual determination of the saturation level of the absorbent layer.
- the viewing window may comprise an array of dots.
- an apparatus for dressing a wound for the application of topical negative pressure at a wound site comprises:
- an absorbent layer configured to retain fluid
- an obscuring layer configured to at least partly visually obscure fluid within the absorbent layer, wherein the obscuring layer, in a dry state, is configured to yield a color of Bg, gB, B, pB, bP, P, rP, pPk, RP, O, rO, or yO on the CIE x, y chromaticity diagram.
- Some embodiments may further comprise one or more viewing windows in the backing layer.
- At least the obscuring layer may be shaped with a narrowed central portion along its length.
- the obscuring layer may comprise a 3 x 3 array of viewing window or a quincunx array of viewing windows.
- at least the obscuring layer may comprise a six-lobed shape.
- the absorbent layer and acquisition distribution layer may be substantially the same shape as the obscuring layer.
- the obscuring layer may further comprise a cross or maltese cross shaped hole over which a fluidic connector for transmitting negative pressure may be connected.
- the apparatus may further comprise a fluidic connector configured to connect the backing layer to a source of negative pressure.
- the absorbent layer may further comprise a tissue dispersant layer.
- a negative pressure wound therapy kit comprising:
- a sheet comprising a plurality of sealing strips and a plurality of perforations configured to facilitate separation of the sealing strips from the sheet.
- the wound dressing may be any of the dressings described herein.
- the kit may further comprise a fluidic connector attached to the wound dressing.
- the sheet comprising a plurality of sealing strips may comprise an adhesive film and at least one protective layer over an adhesive surface of the adhesive film.
- the at least one sealing strip may further comprise a carrier layer configured to be releasably attached to a non-adhesive surface of the adhesive film.
- the carrier layer may comprise at least one tab.
- the at least one protective layer may comprise a central protective layer and two outer protective layers. .
- Figure 1 illustrates an embodiment of a wound treatment system
- Figures 2A-D illustrate the use and application of an embodiment of a wound treatment system onto a patient
- Figure 3A illustrates an embodiment of a wound dressing in cross-section
- Figure 3B illustrates another embodiment of a wound dressing in cross- section
- Figure 3C illustrates another embodiment of a wound dressing in cross- section
- Figures 4A-C illustrate a top view of an embodiment of a wound dressing with a narrow central portion
- Figures 5A-F - 9A-F illustrate a perspective view, a top view, a bottom view, a front view, a back view, and a side view, respectively, of embodiments of a wound dressing including an obscuring layer and viewing windows;
- Figures 10A-F illustrate a perspective view, a top view, a bottom view, a front view, a back view, and a side view, respectively, of embodiments of a wound dressing including an obscuring layer and viewing windows
- Figure 10G illustrates a top view of the wound dressing of Figures 10A-F with a maltese cross shaped viewing window in the obscuring layer
- Figures 11 A-F - 12A-F illustrate a perspective view, a top view, a bottom view, a front view, a back view, and a side view, respectively, of embodiments of a wound dressing including an obscuring layer and viewing windows;
- Figures 13A-B and 14 illustrate a top view of an embodiment of a wound dressing including a cross-shaped viewing window
- Figures 15A-B illustrate a top view of an embodiment of a wound dressing including slits in the wound dressing
- Figure 16 illustrates an embodiment of a dressing comprising a viewing window in the shape of a trademarked brand name
- Figure 17 illustrates a top view of an embodiment of a three-lobe configuration of a wound dressing and a dot pattern of viewing windows
- Figure 18 illustrates a top view of an embodiment of a three-lobe configuration of a wound dressing and viewing windows in the shape of a logo
- Figure 19 illustrates a top view of an embodiment of a three-lobe wound dressing
- Figure 20 illustrates a top view of an embodiment of a three-lobe wound dressing with flared ends on each lobe;
- Figure 21 A illustrates a top view of an embodiment of a four-lobe wound dressing with crescent shaped cut-outs as viewing windows;
- Figure 21B illustrates a top view of an embodiment of a four-lobe wound dressing with an array of dots at viewing windows
- Figure 21 C illustrates a top view of an embodiment of a four-lobe wound dressing with viewing windows;
- Figure 22 illustrates a perspective view of an embodiment of a four-lobe wound dressing;
- Figure 23A-B illustrate embodiments of white and colored fluidic connectors, respectively
- Figures 24A-F illustrate a perspective view, a top view, a bottom view, a front view, a back view, and a side view, respectively, of an embodiment of an oval-shaped wound dressing
- Figure 24G illustrates a top view of an alternate embodiment of the wound dressing of Figures 24A-F;
- Figures 25A-32B illustrate embodiments of a wound dressing including an obscuring layer and viewing windows including an orifice viewing window;
- Figures 33A-B illustrate embodiments of an oval-shaped wound dressing comprising an obscuring layer and an orifice viewing window
- Figure 34A illustrates an exploded view of an embodiment of a wound dressing
- Figure 34B illustrates a cross sectional view of an embodiment of a wound dressing
- Figure 35 illustrates an exploded view of an embodiment of a soft or flexible port for transmitting negative pressure to a wound dressing
- Figure 36 illustrates an embodiment of a soft or flexible port attached to a wound dressing
- Figures 37A-1 and 37A-2 illustrates a perspective view of a wound dressing
- Figures 37B-1 and 37B-2 illustrates a bottom view of the wound dressing of Figures 37A-1 and 37A-2;
- Figure 37C illustrates a photograph of an embodiment of a wound dressing having a soft or flexible port for transmitting negative pressure secured over a cross- shaped viewing window
- Figure 38 illustrates a CIE chromaticity scale
- Figure 39 A illustrates an exploded view of another embodiment of a wound dressing
- Figure 39B illustrates a cross-sectional view of the wound dressing of Figure 39 A
- Figures 40A and 40B illustrate one embodiment of spacer layer material
- Figures 41A-D illustrate one embodiment of acquisition distribution layer material
- Figures 42A and 42B illustrate one embodiment of absorbent layer material
- Figures 43A and 43B illustrate one embodiment of obscuring layer material
- Figure 44 illustrates one embodiment of an adhesive spread on cover layer material
- Figures 45A-D illustrate one embodiment of a sealing strip assembly which may be used with a dressing and/or fluidic connector.
- Embodiments disclosed herein relate to apparatuses and methods of treating a wound with reduced pressure, including pump and wound dressing components and apparatuses.
- the apparatuses and components comprising the wound overlay and packing materials, if any, are sometimes collectively referred to herein as dressings.
- wound is to be broadly construed and encompasses open and closed wounds in which skin is torn, cut or punctured or where trauma causes a contusion, or any other superficial or other conditions or imperfections on the skin of a patient or otherwise that benefit from reduced pressure treatment.
- a wound is thus broadly defined as any damaged region of tissue where fluid may or may not be produced.
- wounds include, but are not limited to, abdominal wounds or other large or incisional wounds, either as a result of surgery, trauma, sterniotomies, fasciotomies, or other conditions, dehisced wounds, acute wounds, chronic wounds, subacute and dehisced wounds, traumatic wounds, flaps and skin grafts, lacerations, abrasions, contusions, bums, diabetic ulcers, pressure ulcers, stoma, surgical wounds, trauma and venous ulcers or the like.
- TNP topical negative pressure
- negative pressure wound therapy assists in the closure and healing of many forms of "hard to heal” wounds by reducing tissue oedema; encouraging blood flow and granular tissue formation; removing excess exudate and may reduce bacterial load (and thus infection risk).
- the therapy allows for less disturbance of a wound leading to more rapid healing.
- TNP therapy systems may also assist on the healing of surgically closed wounds by removing fluid and by helping to stabilize the tissue in the apposed position of closure.
- a further beneficial use of TNP therapy can be found in grafts and flaps where removal of excess fluid is important and close proximity of the graft to tissue is required in order to ensure tissue viability.
- reduced or negative pressure levels represent pressure levels that are below standard atmospheric pressure, which corresponds to 760 mmHg (or 1 atm, 29.93 inHg, 101.325 kPa, 14.696 psi, etc.).
- a negative pressure value of -X mmHg reflects absolute pressure that is X mmHg below 760 mmHg or, in other words, an absolute pressure of (760-X) mmHg.
- negative pressure that is "less” or "smaller” than X mmHg corresponds to pressure that is closer to atmospheric pressure (e.g.,—40 mmHg is less than -60 mmHg).
- Negative pressure that is "more” or “greater” than -X mmHg corresponds to pressure that is further from atmospheric pressure (e.g., -80 mmHg is more than -60 mmHg).
- the negative pressure range for some embodiments of the present disclosure can be approximately -80 mmHg, or between about -20 mmHg and -200 mmHg. Note that these pressures are relative to normal ambient atmospheric pressure. Thus, -200 mmHg would be about 560 mmHg in practical terms. In some embodiments, the pressure range can be between about -40 mmHg and -150 mmHg. Alternatively a pressure range of up to -75 mmHg, up to -80 mmHg or over -80 mmHg can be used. Also in other embodiments a pressure range of below -75 mmHg can be used.
- a pressure range of over approximately -100 mmHg, or even 150 mmHg can be supplied by the negative pressure apparatus.
- increased wound contraction can lead to increased tissue expansion in the surrounding wound tissue. This effect may be increased by varying the force applied to the tissue, for example by varying the negative pressure applied to the wound over time, possibly in conjunction with increased tensile forces applied to the wound via embodiments of the wound closure devices.
- negative pressure may be varied over time for example using a sinusoidal wave, square wave, and/or in synchronization with one or more patient physiological indices (e.g., heartbeat). Examples of such applications where additional disclosure relating to the preceding may be found include Application Serial No.
- FIG. 1 illustrates an embodiment of a TNP wound treatment system 100 comprising a wound dressing 1 10 in combination with a pump 150.
- the wound dressing 1 10 can be any wound dressing embodiment disclosed herein including without limitation dressing embodiment or have any combination of features of any number of wound dressing embodiments disclosed herein.
- the dressing 110 may be placed over a wound as described previously, and a conduit 130 may then be connected to the port 120, although in some embodiments the dressing 101 may be provided with at least a portion of the conduit 130 preattached to the port 120.
- the dressing 1 10 is provided as a single article with all wound dressing elements (including the port 120) pre-attached and integrated into a single unit.
- the wound dressing 110 may then be connected, via the conduit 130, to a source of negative pressure such as the pump 150.
- the pump 150 can be miniaturized and portable, although larger conventional pumps may also be used with the dressing 110 .
- the pump 150 may be attached or mounted onto or adjacent the dressing 110 .
- a connector 140 may also be provided so as to permit the conduit 130 leading to the wound dressing 110 to be disconnected from the pump, which may be useful for example during dressing changes.
- FIGs 2A-D illustrate the use of an embodiment of a TNP wound treatment system being used to treat a wound site on a patient.
- Figure 2A shows a wound site 200 being cleaned and prepared for treatment.
- the healthy skin surrounding the wound site 200 is preferably cleaned and excess hair removed or shaved.
- the wound site 200 may also be irrigated with sterile saline solution if necessary.
- a skin protectant may be applied to the skin surrounding the wound site 200.
- a wound packing material such as foam or gauze, may be placed in the wound site 200. This may be preferable if the wound site 200 is a deeper wound.
- the wound dressing 110 may be positioned and placed over the wound site 200.
- the wound dressing 1 10 is placed with the wound contact layer 2102 over and/or in contact with the wound site 200.
- an adhesive layer is provided on the lower surface 2101 of the wound contact layer 2102, which may in some cases be protected by an optional release layer to be removed prior to placement of the wound dressing 110 over the wound site 200.
- the dressing 110 is positioned such that the port 2150 is in a raised position with respect to the remainder of the dressing 1 10 so as to avoid fluid pooling around the port.
- the dressing 110 is positioned so that the port 2150 is not directly overlying the wound, and is level with or at a higher point than the wound.
- the edges of the dressing 110 are preferably smoothed over to avoid creases or folds.
- the dressing 1 10 is connected to the pump 150.
- the pump 150 is configured to apply negative pressure to the wound site via the dressing 1 10, and typically through a conduit.
- a connector may be used to join the conduit from the dressing 1 10 to the pump 150.
- the dressing 1 10 may, in some embodiments, partially collapse and present a wrinkled appearance as a result of the evacuation of some or all of the air underneath the dressing 110.
- the pump 150 may be configured to detect if any leaks are present in the dressing 1 10, such as at the interface between the dressing 110 and the skin surrounding the wound site 200. Should a leak be found, such leak is preferably remedied prior to continuing treatment.
- fixation strips 210 may also be attached around the edges of the dressing 110. Such fixation strips 210 may be advantageous in some situations so as to provide additional sealing against the skin of the patient surrounding the wound site 200. For example, the fixation strips 210 may provide additional sealing for when a patient is more mobile. In some cases, the fixation strips 210 may be used prior to activation of the pump 150, particularly if the dressing 110 is placed over a difficult to reach or contoured area. [0079] Treatment of the wound site 200 preferably continues until the wound has reached a desired level of healing. In some embodiments, it may be desirable to replace the dressing 110 after a certain time period has elapsed, or if the dressing is full of wound fluids. During such changes, the pump 150 may be kept, with just the dressing 1 10 being changed.
- Figures 3A-C illustrate cross-sections through a wound dressing 2100 similar to the wound dressing of Figure 1 according to an embodiment of the disclosure.
- a view from above the wound dressing 2100 is illustrated in Figure 1 with the line A-A indicating the location of the cross-section shown in Figures 3A and 3B.
- the wound dressing 2100 which can alternatively be any wound dressing embodiment disclosed herein including without limitation wound dressing 1 10 or any combination of features of any number of wound dressing embodiments disclosed herein, can be located over a wound site to be treated.
- the dressing 2100 may be placed to as to form a sealed cavity over the wound site.
- the dressing 2100 comprises a backing layer 2140 attached to a wound contact layer 2102, both of which are described in greater detail below.
- This interior space or chamber may comprise additional structures that may be adapted to distribute or transmit negative pressure, store wound exudate and other fluids removed from the wound, and other functions which will be explained in greater detail below. Examples of such structures, described below, include a transmission layer 2105 and an absorbent layer 2110.
- a lower surface 2101 of the wound dressing 2100 may be provided with an optional wound contact layer 2102.
- the wound contact layer 2102 can be a polyurethane layer or polyethylene layer or other flexible layer which is perforated, for example via a hot pin process, laser ablation process, ultrasound process or in some other way or otherwise made permeable to liquid and gas.
- the wound contact layer 2102 has a lower surface 2101 and an upper surface 2103.
- the perforations 2104 preferably comprise through holes in the wound contact layer 2102 which enable fluid to flow through the layer 2102.
- the wound contact layer 2102 helps prevent tissue ingrowth into the other material of the wound dressing. Preferably, the perforations are small enough to meet this requirement while still allowing fluid to flow therethrough.
- perforations formed as slits or holes having a size ranging from 0.025 mm to 1.2 mm are considered small enough to help prevent tissue ingrowth into the wound dressing while allowing wound exudate to flow into the dressing.
- the wound contact layer 2102 may help maintain the integrity of the entire dressing 2100 while also creating an air tight seal around the absorbent pad in order to maintain negative pressure at the wound.
- the wound contact layer 2102 may also act as a carrier for an optional lower and upper adhesive layer (not shown).
- a lower pressure sensitive adhesive may be provided on the lower surface 2101 of the wound dressing 2100 whilst an upper pressure sensitive adhesive layer may be provided on the upper surface 2103 of the wound contact layer.
- the pressure sensitive adhesive which may be a silicone, hot melt, hydrocolloid or acrylic based adhesive or other such adhesives, may be formed on both sides or optionally on a selected one or none of the sides of the wound contact layer. When a lower pressure sensitive adhesive layer is utilized may be helpful to adhere the wound dressing 2100 to the skin around a wound site.
- the wound contact layer may comprise perforated polyurethane film.
- the lower surface of the film may be provided with a silicone pressure sensitive adhesive and the upper surface may be provided with an acrylic pressure sensitive adhesive, which may help the dressing maintain its integrity.
- a polyurethane film layer may be provided with an adhesive layer on both its upper surface and lower surface, and all three layers may be perforated together.
- a layer 2105 of porous material can be located above the wound contact layer 2102.
- This porous layer, or transmission layer, 2105 allows transmission of fluid including liquid and gas away from a wound site into upper layers of the wound dressing.
- the transmission layer 2105 preferably ensures that an open air channel can be maintained to communicate negative pressure over the wound area even when the absorbent layer has absorbed substantial amounts of exudates.
- the layer 2105 should preferably remain open under the typical pressures that will be applied during negative pressure wound therapy as described above, so that the whole wound site sees an equalized negative pressure.
- the layer 2105 may be formed of a material having a three dimensional structure.
- a layer 2110 of absorbent material is provided above the transmission layer 2105.
- the absorbent material which comprise a foam or non-woven natural or synthetic material, and which may optionally comprise a super-absorbent material, forms a reservoir for fluid, particularly liquid, removed from the wound site.
- the layer 2100 may also aid in drawing fluids towards the backing layer 2140.
- a masking or obscuring layer 2107 can be positioned beneath at least a portion of the backing layer 2140.
- the obscuring layer 2107 can have any of the same features, materials, or other details of any of the other embodiments of the obscuring layers disclosed herein, including but not limited to having any viewing windows or holes.
- the obscuring layer 2107 can be positioned adjacent to the backing layer, or can be positioned adjacent to any other dressing layer desired.
- the obscuring layer 2107 can be adhered to or integrally formed with the backing layer.
- the obscuring layer 2107 is configured to have approximately the same size and shape as the absorbent layer 2110 so as to overlay it. As such, in these embodiments the obscuring layer 2107 will be of a smaller area than the backing layer 2140.
- the material of the absorbent layer 2110 may also prevent liquid collected in the wound dressing 2100 from flowing freely within the dressing, and preferably acts so as to contain any liquid collected within the absorbent layer 21 10.
- the absorbent layer 2110 also helps distribute fluid throughout the layer via a wicking action so that fluid is drawn from the wound site and stored throughout the absorbent layer. This helps prevent agglomeration in areas of the absorbent layer.
- the capacity of the absorbent material must be sufficient to manage the exudates flow rate of a wound when negative pressure is applied. Since in use the absorbent layer experiences negative pressures the material of the absorbent layer is chosen to absorb liquid under such circumstances. A number of materials exist that are able to absorb liquid when under negative pressure, for example superabsorber material.
- the absorbent layer 2110 may typically be manufactured from ALLEVY TM foam, Freudenberg 1 14-224-4 and/or Chem-PositeTMl lC-450.
- the absorbent layer 2110 may comprise a composite comprising superabsorbent powder, fibrous material such as cellulose, and bonding fibers.
- the composite is an airlaid, thermally-bonded composite.
- An orifice 2145 is preferably provided in the backing layer 2140 to allow a negative pressure to be applied to the dressing 2100.
- a suction port 2150 is preferably attached or sealed to the top of the backing layer 2140 over an orifice 2145 made into the dressing 2100, and communicates negative pressure through the orifice 2145.
- a length of tubing 2220 may be coupled at a first end to the suction port 2150 and at a second end to a pump unit (not shown) to allow fluids to be pumped out of the dressing.
- the port may be adhered and sealed to the backing layer 2140 using an adhesive such as an acrylic, cyanoacrylate, epoxy, UV curable or hot melt adhesive.
- the port 2150 is formed from a soft polymer, for example a polyethylene, a polyvinyl chloride, a silicone or polyurethane having a hardness of 30 to 90 on the Shore A scale.
- the port 2150 may be made from a soft or conformable material, for example using the embodiments described below in Figures 23A-B.
- the absorbent layer 2110 and the obscuring layer 2107 include at least one through hole 2146 located so as to underlie the port 2150.
- the through hole 2146 while illustrated here as being larger than the hole through the obscuring layer 2107 and backing layer 2140, may in some embodiments be bigger or smaller than either.
- the respective holes through these various layers 2107, 2140, and 2110 may be of different sizes with respect to each other. As illustrated in Figures 3A-C a single through hole can be used to produce an opening underlying the port 2150. It will be appreciated that multiple openings could alternatively be utilized.
- one or multiple openings may be made in the absorbent layer and the obscuring layer in registration with each respective port.
- the use of through holes in the super-absorbent layer may provide a fluid flow pathway which remains unblocked in particular when the absorbent layer 2100 is near saturation.
- the aperture or through-hole 2146 is preferably provided in the absorbent layer 2110 and the obscuring layer 2107 beneath the orifice 2145 such that the orifice is connected directly to the transmission layer 2105. This allows the negative pressure applied to the port 2150 to be communicated to the transmission layer 2105 without passing through the absorbent layer 21 10. This ensures that the negative pressure applied to the wound site is not inhibited by the absorbent layer as it absorbs wound exudates. In other embodiments, no aperture may be provided in the absorbent layer 2110 and/or the obscuring layer 2107, or alternatively a plurality of apertures underlying the orifice 2145 may be provided.
- the backing layer 2140 is preferably gas impermeable, but moisture vapor permeable, and can extend across the width of the wound dressing 2100.
- the backing layer 2140 which may for example be a polyurethane film (for example, Elastollan SP9109) having a pressure sensitive adhesive on one side, is impermeable to gas and this layer thus operates to cover the wound and to seal a wound cavity over which the wound dressing is placed. In this way an effective chamber is made between the backing layer 2140 and a wound site where a negative pressure can be established.
- the backing layer 2140 is preferably sealed to the wound contact layer 2102 in a border region 2200 around the circumference of the dressing, ensuring that no air is drawn in through the border area, for example via adhesive or welding techniques.
- the backing layer 2140 protects the wound from external bacterial contamination (bacterial barrier) and allows liquid from wound exudates to be transferred through the layer and evaporated from the film outer surface.
- the backing layer 2140 preferably comprises two layers; a polyurethane film and an adhesive pattern spread onto the film.
- the polyurethane film is preferably moisture vapor permeable and may be manufactured from a material that has an increased water transmission rate when wet.
- the absorbent layer 21 10 may be of a greater area than the transmission layer 2105, such that the absorbent layer overlaps the edges of the transmission layer 2105, thereby ensuring that the transmission layer does not contact the backing layer 2140.
- This provides an outer channel 21 15 of the absorbent layer 2110 that is in direct contact with the wound contact layer 2102, which aids more rapid absorption of exudates to the absorbent layer.
- this outer channel 2115 ensures that no liquid is able to pool around the circumference of the wound cavity, which may otherwise seep through the seal around the perimeter of the dressing leading to the formation of leaks.
- one embodiment of the wound dressing 2100 comprises an aperture 2146 in the absorbent layer 2110 situated underneath the port 2150.
- a wound facing portion of the port 150 may thus come into contact with the transmission layer 2105, which can thus aid in transmitting negative pressure to the wound site even when the absorbent layer 21 10 is filled with wound fluids.
- Some embodiments may have the backing layer 2140 be at least partly adhered to the transmission layer 2105.
- the aperture 2146 is at least 1-2 mm larger than the diameter of the wound facing portion of the port 2150, or the orifice 2145.
- a filter element 2130 that is impermeable to liquids, but permeable to gases is provided to act as a liquid barrier, and to ensure that no liquids are able to escape from the wound dressing.
- the filter element may also function as a bacterial barrier.
- the pore size is 0.2 ⁇ .
- Suitable materials for the filter material of the filter element 2130 include 0.2 micron GoreTM expanded PTFE from the MMT range, PALL VersaporeTM 200R, and DonaldsonTM TX6628. Larger pore sizes can also be used but these may require a secondary filter layer to ensure full bioburden containment.
- the filter element can be attached or sealed to the port and/or the backing layer 2140 over the orifice 2145.
- the filter element 2130 may be molded into the port 2150, or may be adhered to both the top of the backing layer 2140 and bottom of the port 2150 using an adhesive such as, but not limited to, a UV cured adhesive.
- FIG. 3B an embodiment of the wound dressing 2100 is illustrated which comprises spacer elements 2152, 2153 in conjunction with the port 2150 and the filter 2130.
- the port 2150 and filter 2130 may be supported out of direct contact with the absorbent layer 2110 and/or the transmission layer 2105.
- the absorbent layer 2110 may also act as an additional spacer element to keep the filter 2130 from contacting the transmission layer 2105. Accordingly, with such a configuration contact of the filter 2130 with the transmission layer 2105 and wound fluids during use may thus be minimized.
- the aperture 2146 through the absorbent layer 2110 and the obscuring layer 2107 may not necessarily need to be as large or larger than the port 2150, and would thus only need to be large enough such that an air path can be maintained from the port to the transmission layer 2105 when the absorbent layer 2110 is saturated with wound fluids.
- the embodiment illustrated here comprises the backing layer 2140, masking layer 2107, and absorbent layer 2110, all of which have a cut or opening made therethrough which communicate directly to the transmission layer 2105 so as to form the orifice 2145.
- the suction port 2150 is preferably situated above it and communicates with the orifice 2145.
- the port 2150 and through hole may be located in an off-center position as illustrated in Figures 3A-C and in Figure 1. Such a location may permit the dressing 2100 to be positioned onto a patient such that the port 2150 is raised in relation to the remainder of the dressing 2100. So positioned, the port 2150 and the filter 2130 may be less likely to come into contact with wound fluids that could prematurely occlude the filter 2130 so as to impair the transmission of negative pressure to the wound site.
- Figures 4A-C illustrate embodiments of wound dressings 300 similar to the embodiments described above and provided with a narrowed central portion in various lengths and widths.
- Figure 4A illustrates an embodiment of a wound dressing 300 with a narrowed central portion or a waisted middle portion.
- the wound dressing 300 has a backing layer 301.
- the backing layer 301 can have a rectangular or square shaped perimeter and can be a transparent or translucent material.
- the backing layer 301 can have a lower surface 305 and an upper surface 306.
- the lower surface of the backing layer 301 can be configured to be placed on the skin surface surrounding the wound site as discussed previously with reference to Figures 3A-C. Additionally, the lower surface 305 can have a wound contact layer.
- the wound contact layer can have all the features and embodiments described herein, including without limitation wound dressing embodiments described in reference to Figures 3A-C.
- the wound contact layer can be adhered to the perimeter of the lower surface 305 of the backing layer 301.
- the wound contact layer can comprise an adhesive or any other method of attachment that allows attachment of the wound dressing to the skin surface as previously described.
- the wound dressing 300 can have a port 304 offset from the center of the dressing as described previously.
- the port 304 can be a domed port or a soft fluidic connector (described in detail below).
- the port 304 can be placed in a central location on the dressing, it is preferably offset from the center of the dressing to a particular side or edge. As such, the orientation of the port 304, when placed on the body, may thus permit the port 304 to be situated in an elevated position, thereby increasing the amount of time that the dressing 300 may be used before coming into contact with fluids.
- the port 304 has an orifice for the connection of a tube or conduit thereto; this orifice may be angled away from the center of the dressing 300 so as to permit the tube or conduit to extend away from the dressing 300.
- the port 304 comprises an orifice that permits the tube or conduit inserted therein to be approximately parallel to the top surface of the backing layer 301.
- the wound dressing 300 can have an absorbent material 302.
- the absorbent material 302 can be accompanied by the additional components within the wound dressing as described with reference to the wound dressing cross-section in Figure 3A-B, such as a transmission layer and a masking or obscuring layer (not shown).
- the wound dressing 300 can have an absorbent material 302 with a central portion 308.
- the absorbent material 302 can have a longitudinal length and a transverse width. In some embodiments, the longitudinal length is greater than the transverse width. In some embodiments, the longitudinal length and the transverse width are of equal size. In various embodiments, the absorbent material 302 can have a contoured shape with a substantially rectangular body.
- the central portion 308 of the absorbent material 302 may comprise a waisted portion 303.
- the waisted portion 303 can be defined by the transverse width of the absorbent material 302 narrowing at the central portion 308 of the longitudinal length.
- the waisted portion 303 can be a narrow width at the central portion 308 of the absorbent material 302, as illustrated in Figures 4A-C. Additional embodiments of the waisted portion 303 are possible including those described herein.
- the shape of the accompanying components within the wound dressing as described with reference to Figures 3A-C can be formed to the same contoured shape of the absorbent material including the waisted portion.
- the waisted portion 303 can increase the flexibility of the wound dressing and can allow enhanced compatibility of the wound dressing to the patient's body.
- the narrow central region may allow for improved contact and adhesion of the wound dressing to the skin surface when the wound dressing is used on non-planar surfaces and/or wrapped around an arm or leg. Further, the narrow central portion provides increased compatibility with the patient's body and patient movement.
- embodiments of wound dressings may comprise various configurations of slits (described in detail below) so as to further enhance conformability of the dressing in non-planar wounds.
- the absorbent layers may be colored or obscured with an obscuring layer, and optionally provided with one or more viewing windows.
- the domed ports may also be replaced with one or more fluidic connectors of the type described below in Figures 23A-B.
- the wound dressing 300 can comprise all designs or embodiments herein described or have any combination of features of any number of wound dressing embodiments disclosed herein.
- Figure 4B illustrates an embodiment of a wound dressing 300 with a waisted portion.
- a wound dressing 300 as illustrated in Figure 4B can have the features and embodiments as described above with reference to Figure 4A. However, Figure 4B illustrates an embodiment with a shorter longitudinal length with respect to the transverse width.
- Figure 4C illustrates an additional embodiment of a wound dressing 300 with a waisted portion. As illustrated in Figure 4C, the wound dressing can have a longitudinal length and a transverse width that are not substantially different in size, as opposed to a longitudinal length that is substantially longer than the transverse width of the wound dressing as shown in the embodiments illustrated in Figure 4A and 4B.
- the embodiments of a wound dressing illustrated in Figures 4B and 4C can include all features and embodiments described herein for wound dressings including those embodiments of the waisted portion 303 described with reference to Figure 4A.
- FIGS 5A-F, 6A-F, 7A-F, 8A-F, 9A-F, 10A-F, 11A-F, 12A-F, and 24 illustrate additional embodiments of wound dressings.
- a waisted portion 408 is located inwardly with reference to an edge 409 of the absorbent layer 402.
- the contour of the absorbent layer 402 is curved from the edge 409 to the waisted portion 408, so as to form a smooth countour.
- Figures 5A-F illustrate multiple views of an embodiment of a wound dressing with a waisted portion, obscuring layer, and viewing windows.
- Figure 5A illustrates a perspective view of an embodiment of a wound dressing 400.
- the wound dressing 400 preferably comprises a port 406.
- the port 406 is preferably configured to be in fluid communication with a pump as described with reference to Figure 1 , and may include a tube or conduit pre-attached to the port.
- negative pressure can be supplied to the wound dressing through other suitable fluidic connectors, including but not limited to the fluidic connectors of the type described below in Figures 23 A-B.
- the wound dressing 400 can be constructed similar to the embodiments of Figures 3 A and 3B above, and may comprise an absorbent material 402 underneath or within a backing layer 405.
- a wound contact layer and a transmission layer may also be provided as part of the wound dressing 400 as described above.
- the absorbent material 402 can contain a narrowed central or waisted portion 408, as described previously to increase flexibility and conformability of the wound dressing to the skin surface.
- the backing layer 405 may have a border region 401 that extends beyond the periphery of the absorbent material 402.
- the backing layer 405 may be a translucent or transparent backing layer, such that the border region 401 created from the backing layer 405 can be translucent or transparent.
- the area of the border region 401 of the backing layer 405 can be approximately equal around the perimeter of the entire dressing with the exception of the narrowed central portion, where the area of the border region is larger.
- the size of the border region 401 will depend on the full dimensions of the dressing and any other design choices.
- an obscuring layer 404 that optionally has one or more viewing windows 403.
- the obscuring layer 404 may partially or completely obscure contents (such as fluids) contained within the wound dressing 400 and/or the absorbent material (i.e., within the absorbent material 402 or under the backing layer 405).
- the obscuring layer may be a colored portion of the absorbent material, or may be a separate layer that covers the absorbent material.
- the absorbent material 402 may be hidden (partially or completely), colored, or tinted, via the obscuring layer 404, so as to provide cosmetic and/or aesthetic enhancements, in a similar manner to what is described above.
- the obscuring layer is preferably provided between the topmost backing layer 405 and the absorbent material 402, although other configurations are possible.
- the cross-sectional view in Figure 3A and B illustrates this arrangement with respect to the masking or obscuring layer 2107.
- Other layers and other wound dressing components can be incorporated into the dressing as herein described.
- the obscuring layer 404 can be positioned at least partially over the absorbent material 402. In some embodiments, the obscuring layer 404 can be positioned adjacent to the backing layer, or can be positioned adjacent to any other dressing layer desired. In some embodiments, the obscuring layer 404 can be adhered to or integrally formed with the backing layer and/or the absorbent material.
- the obscuring layer 404 can have substantially the same perimeter shape and size as the absorbent material 402.
- the obscuring layer 404 and absorbent material 402 can be of equal size so that the entirety of the absorbent material 402 can be obscured by the obscuring layer 404.
- the obscuring layer 404 may allow for obscuring of wound exudate, blood, or other matter released from a wound. Further, the obscuring layer 404 can be completely or partially opaque having cut-out viewing windows or perforations.
- the obscuring layer 404 can help to reduce the unsightly appearance of a dressing during use, by using materials that impart partial obscuring or masking of the dressing surface.
- the obscuring layer 404 in one embodiment only partially obscures the dressing, to allow clinicians to access the information they require by observing the spread of exudate across the dressing surface.
- the partial masking nature of this embodiment of the obscuring layer enables a skilled clinician to perceive a different color caused by exudate, blood, by-products etc. in the dressing allowing for a visual assessment and monitoring of the extent of spread across the dressing.
- the change in color of the dressing from its clean state to a state containing exudate is only a slight change, the patient is unlikely to notice any aesthetic difference.
- the obscuring layer can be formed from a non- woven fabric (for example, polypropylene), and may be thermally bonded using a diamond pattern with 19% bond area.
- the obscuring layer can be hydrophobic or hydrophilic. Depending on the application, in some embodiments, a hydrophilic obscuring layer may provide added moisture vapor permeability.
- hydrophobic obscuring layers may still provide sufficient moisture vapor permeability (i.e., through appropriate material selection, thickness of the obscuring layer), while also permitting better retention of dye or color in the obscuring layer. As such, dye or color may be trapped beneath the obscuring layer. In some embodiments, this may permit the obscuring layer to be colored in lighter colors or in white.
- the obscuring layer is hydrophobic.
- the obscuring layer material can be sterilizable using ethylene oxide. Other embodiments may be sterilized using gamma irradiation, an electron beam, steam or other alternative sterilization methods.
- the obscuring layer can colored or pigmented, e.g., in medical blue.
- the obscuring layer may also be constructed from multiple layers, including a colored layer laminated or fused to a stronger uncolored layer. Preferably, the obscuring layer is odorless and exhibits minimal shedding of fibers.
- the absorbent layer 402 itself may be colored or tinted in some embodiments, however, so that an obscuring layer is not necessary.
- the dressing may optionally include a means of partially obscuring the top surface. This could also be achieved using a textile (knitted, woven, or non-woven) layer without openings, provided it still enables fluid evaporation from the absorbent structure. It could also be achieved by printing an obscuring pattern on the top film, or on the top surface of the uppermost pad component, using an appropriate ink or colored pad component (yarn, thread, coating) respectively. Another way of achieving this would be to have a completely opaque top surface, which could be temporarily opened by the clinician for inspection of the dressing state (for example through a window), and closed again without compromising the environment of the wound.
- Figure 5A illustrates an embodiment of the wound dressing including one or more viewing windows 403.
- the one or more viewing windows 403 preferably extend through the obscuring layer 404. These viewing windows 403 may allow visualization by a clinician or patient of the wound exudate in the absorbent material below the obscuring layer.
- Figure 5 A illustrates an array of dots (e.g., in one or more parallel rows) that can serve as viewing windows 403 in the obscuring layer 404 of the wound dressing.
- two or more viewing windows 403 may be parallel with one or more sides of the dressing 400.
- the one or more viewing windows may measure between 0.1 mm and 20 mm, preferably 0.4 mm to 10 mm, and even more preferably, 1mm to 4 mm.
- the viewing windows 403 may be cut through the obscuring layer 404 or may be part of an uncolored area of the obscuring layer 404 and therefore may allow visualization of the absorbent material 402.
- the one or more viewing windows 403 can be arranged in a repeating pattern across the obscuring layer 404 or can be arranged at random across the obscuring layer. Additionally, the one or more viewing windows can be a circular shape or dots.
- the one or more viewing windows 403 are configured so as to permit not only the degree of saturation, but also the progression or spread of fluid toward the fluid port 406, as in some embodiments, dressing performance may be adversely affected when the level of fluid has saturated the fluid proximate the port 406.
- a "starburst" array of viewing windows 403 emanating around the port 406 may be suitable to show this progression, although of course other configurations are possible.
- the viewing windows 403 correspond to the area of the absorbent material 402 that is not covered by the obscuring layer 404. As such, the absorbent material 402 is directly adjacent the backing layer 405 in this area. Since the obscuring layer 404 acts as a partial obscuring layer, the viewing windows 403 may be used by a clinician or other trained user to assess the spread of wound exudate throughout the dressing. In some embodiments, the viewing windows 403 can comprise an array of dots or crescent shaped cut-outs.
- an array of dots as viewing windows 403 are illustrated in Figures 5A-F, 6A-F, 7A-F, 8A-F, 9A-F, 10A-F, 11A-F, and 12A-F in which the array of dots are arranged in an 5 x 2, 3 x 2, 8 x 1, 5 x 1, 3 x 1 , 3 x 3, 3 x 3, and quincunx array respectively.
- the dot pattern can be distributed evenly throughout the obscuring layer and across the entire or substantially the entire surface of the obscuring layer.
- the viewing windows 403 may be distributed randomly throughout the obscuring layer.
- the area of the obscuring layer 404 uncovered by the one or more viewing windows 403 is balanced to as to minimize the appearance of exudate while permitting the inspection of the dressing 400 and/or absorbent material 402.
- the area exposed by the one or more viewing windows 403 does not exceed 20% of the area of the obscuring layer 404, preferably 10%, and even more preferably 5%.
- the viewing windows 403 may take several configurations, as will be discussed in relation to Figures 16-18.
- the viewing windows 403 may comprise an array of regularly spaced uncolored dots (holes) made into the obscuring layer 404. While the dots illustrated here are in a particular pattern, the dots may be arranged in different configurations, or at random.
- the viewing windows 403 are preferably configured so as to permit a patient or caregiver to ascertain the status of the absorbent layer, in particular to determine its saturation level, as well as the color of the exudate (e.g., whether excessive blood is present). By having one or more viewing windows, the status of the absorbent layer can be determined in an unobtrusive manner that is not aesthetically unpleasing to a patient.
- the one or more viewing windows 403 may be used to provide a numerical assessment of the degree of saturation of the dressing 400. This may be done electronically (e.g., via a digital photograph assessment), or manually. For example, the degree of saturation may be monitored by counting the number of viewing windows 403 which may be obscured or tinted by exudate or other wound fluids.
- the absorbent layer 402 or the obscuring layer 404 may comprise (or be colored because of) the presence of an auxiliary compound.
- the auxiliary compound may in some embodiments be activated charcoal, which can act to absorb odors.
- the use of antimicrobial, antifungal, anti-inflammatory, and other such therapeutic compounds is also possible.
- the color may change as a function of time (e.g., to indicate when the dressing needs to be changed), if the dressing is saturated, or if the dressing has absorbed a certain amount of a harmful substance (e.g., to indicate the presence of infectious agents).
- the one or more viewing windows 403 may be monitored electronically, and may be used in conjunction with a computer program or system to alert a patient or physician to the saturation level of the dressing 400.
- Figure 16 illustrates an embodiment of a dressing containing a viewing window in the shape of a trademarked brand name ("PICO").
- Figure 18 illustrates an embodiment of a dressing comprising a viewing window in the shape of a logo, here, the Smith & Nephew logo.
- logo here, the Smith & Nephew logo.
- the graphical or textual elements present in the viewing window may also be, for example, instructional in nature.
- instructions may be given to change the wound dressing when the exudate reaches a predetermined distance from the edge of the wound dressing, such as 5 mm from the wound dressing edge or 7 mm from the wound dressing edge, etc.
- a 'traffic light' system may be implemented whereby an electronic indicator shows green, amber or red light to indicate the spread of exudate in the wound dressing.
- another suitable indicator may be used for indicating the spread of exudate over the dressing.
- Figures 5A-F illustrate multiple views of the wound dressing 400.
- Figure 5 A illustrates a perspective view of a wound dressing with the dimensions of 300mm x 150mm.
- Figures 5B and 5C illustrate a top view and bottom view of the embodiment of a wound dressing described in Figure 5A.
- Figures 5D and 5E illustrate a front and back view respectively of the wound dressing 400 described in Figure 5A.
- Figure 5F illustrates a side view of the wound dressing as described in Figure 5A.
- Embodiments of the wound dressings described herein may be arranged such that each embodiment may have enhanced compatibility with body movement. This can be achieved by using a different shape for different wound types or areas of the body.
- Wound dressing embodiments can be of any suitable shape or form or size as illustrated in Figures 5A-F, 6A-F, 7A-F, 8A-F, 9A-F, 10A-F, 11A-F, 12A-F, and 24A-F.
- the overall dimensions of the dressings as illustrated in Figures 5A-F, 6A-F, 7A-F, 8A-F, 9A-F, 10A-F, 11A-F, 12A-F may be, for example but without limitation, 300 mm x 150 mm, 200mm x 150 mm, 400 mm x 100 mm, 300 mm x 100 mm, 200mm x 100 mm, 250 mm x 250 mm, 200mm x 200mm, and 150 mm x 150mm, respectively, although any total size may be used, and the size may be determined to match particular wound sizes.
- the oval-shaped dressing in Figures 24A-F may, in some embodiments, measure 190mm x 230mm, or 145.5mm x 190 mm.
- the preceding embodiments illustrated in Figures 5A-F, 6A-F, 7A-F, 8A-F, 9A-F, 10A-F, 11A-F and 12A-F may comprise a waisted portion 408 located inwardly with reference to an edge 409 of the absorbent layer 402.
- the contour of the absorbent layer to the waisted portion 408 is preferably rounded and smooth.
- the inward distance between the edge 409 and the waisted portion 408 may range from 1mm, 5mm, 10mm, 15mm, 20mm, and 30mm. Preferably, the inward distance is 10mm.
- the inward distance between the edge 409 and the waisted portion 408 may range from 5mm, 10mm, 20mm, 30mm, 40mm, 45mm, 50mm, 60mm, and 75mm.
- Figures 6A-F illustrate a perspective view, a top view, a bottom view, a front view, a back view, and a side view, respectively, of an embodiment of a wound dressing 400.
- the dressing may measure 200mm x 150mm.
- the wound dressing 400 of Figures 6A-F can have a similar configuration and components as described above for Figures 5A-F, except the embodiments of Figure 6A-F are of a smaller size.
- the embodiment of Figures 6A-F comprises a viewing window configuration comprising a 3 x 2 array of dots.
- Figures 7A-F illustrate a perspective view, a top view, a bottom view, a front view, a back view, and a side view, respectively, of an embodiment of a wound dressing 400.
- the dressing may measure 400mm x 100mm.
- the wound dressing 400 of Figures 7A-F can have a similar configuration and components as described above for Figures 5A-F, except the embodiments of Figure 7A-F are of a different size.
- the embodiment of Figures 7A-F comprises a viewing window configuration comprising an 8 x 1 array of dots.
- Figures 8A-F illustrate a perspective view, a top view, a bottom view, a front view, a back view, and a side view, respectively, of an embodiment of a wound dressing 400.
- the dressing may measure 300mm x 100mm.
- the wound dressing 400 of Figures 8A-F can have a similar configuration and components as described above for Figures 5A-F, except the embodiments of Figure 8A-F are of a different size.
- the embodiment of Figures 8A-F comprises a viewing window configuration comprising a 5 x 1 array of dots.
- Figures 9A-F illustrate a perspective view, a top view, a bottom view, a front view, a back view, and a side view, respectively, of an embodiment of a wound dressing 400.
- the dressing may measure 200mm x 100mm.
- the wound dressing 400 of Figures 9A-F can have a similar configuration and components as described above for Figures 5A-F, except the embodiments of Figure 9A-F are of a different size.
- the embodiment of Figures 9A-F comprises a viewing window configuration comprising a 3 x 1 array of dots.
- Figures 12A-F illustrate a perspective view, a top view, a bottom view, a front view, a back view, and a side view, respectively, of an embodiment of a wound dressing 400.
- the dressing may measure 150mm x 150mm.
- the wound dressing 400 of Figures 12A-F can have a similar configuration and components as described above for Figures 5A-F, except the embodiments of Figure 9A-F are of a different size.
- the embodiment of Figures 12A-F comprises a viewing window configuration comprising a quincunx array of dots.
- the quincunx array of dots configuration consists of five dots arranged in a cross, with four of the dots forming a square or rectangle where one dot is positioned at each of the four corners of the square or rectangle shaped wound dressing and a fifth dot in the center.
- one corner of the wound dressing preferably has the fluidic connector or port 406 in place of a dot in the quincunx dot array.
- Figures 10A-F illustrate a perspective view, a top view, a bottom view, a front view, a back view, and a side view, respectively, of an embodiment of a wound dressing 400.
- the dressing may measure 250mm x 250mm.
- the wound dressing 400 of Figures 10A-F can have a similar configuration and components as described above for Figures 5A-F, except the embodiments of Figure 10A-F are of a different size.
- the embodiment of Figures 10A-F comprises a viewing window configuration comprising a 3 x 3 array of dots with an absent dot at a corner position of the wound dressing and in its place is a domed port or a fluidic connector 406 completing the 3 x 3 array.
- Figure 10G illustrates a top view of the wound dressing 400 of Figures 10A-F (without showing a port or fluidic connector or an opening in the backing layer) with a cross shaped opening (for example a maltese cross) in the obscuring layer, described further below.
- a port or fluidic connector may be secured over the maltese cross shaped viewing window and over an opening in the backing layer for transmission of negative pressure to the wound dressing.
- An outer perimeter of the maltese cross may extend beyond an outer perimeter of the port so that the arms of the cross shaped opening forms viewing windows through the obscuring layer (see, for example, Figures 37A- 1 and 37C).
- the cross shaped opening in the obscuring layer may be provided in any of the wound dressings described in this specification.
- the cross in one embodiment may have 4 arms that extend at 45 degree angles relative to the sides of the backing layer, but in other embodiments may be at different angles or may have 2 opposite arms parallel to one side of the backing layer, with the other 2 opposite arms perpendicular thereto.
- Figures 11 A-F illustrate a perspective view, a top view, a bottom view, a front view, a back view, and a side view, respectively, of an embodiment of a wound dressing 400.
- the dressing may measure 200mm x 200mm.
- the wound dressing 400 of Figures 1 1 A-F can have a similar configuration and components as described above for Figures 5 A-F, except the embodiments of Figure 11 A-F are of a different size.
- the embodiment of Figures 1 1 A-F comprises a viewing window configuration comprising a 3 x 3 array of dots with an absent dot at a corner position of the wound dressing and in its place is a domed port or a fluidic connector completing the 3 x 3 array.
- Figures 13A, 13B, and 14 illustrate embodiments of a dressing 500 comprising one or more orifice viewing windows 502 at, near, or adjacent to the port.
- the orifice viewing windows 502 can be provided at, near, adjacent to the port 504 in the backing layer for viewing of the absorbent material 503 present in proximity to the port 504.
- the orifice viewing windows 502 can have the same structure and/or function as the viewing windows herein described.
- the orifice viewing window 502 can be formed from a cross-shaped or Maltese-cross-shaped aperture or cut-out 501 in the obscuring layer.
- the arms of the cross-shaped cut-out 501 can be aligned with the longitudinal length and transverse width of the absorbent material 503 as shown in Figure 13 A.
- the arms of the cross-shaped cut-out 501 can be offset from the longitudinal length and transverse width of the absorbent material, at an angle, for example, a 45° angle, as illustrated in Figure 13B.
- the arms of the cross-shaped cut-out may span a larger dimension than a hole in the absorbent material below the cut-out 501.
- the arms may span a dimension of about 25 mm, while the through-hole in the absorbent material may have a diameter of 10 mm.
- Figure 14 illustrates an embodiment of a wound dressing 600 in which the arms of the cross-shaped aperture can have flared edges 601.
- the orifice viewing windows 502 at, near, or adjacent to the port 604 may be used to indicate that fluid is approaching the port 604 or that the dressing 600 is otherwise becoming saturated. This can assist the clinician or patient in maintaining the wound dressing and determining when to change the dressing, because once fluid contacts the center of the port, such fluid contact may at least partially occlude the hydrophobic filter that may be contained therein so as to interrupt or at least partially block the application of negative pressure.
- the orifice viewing windows 502 can be used with the fluidic connector as well as the domed port or any other suitable connector.
- the wound dressing may also be provided with one or more slits 2150 to aid the dressing in conforming to a non-planar area.
- Figure 15 A illustrates an embodiment of a wound dressing 2100 with a narrowed central portion or waisted portion 2120 and concentric slits 2150. This embodiment may be useful for the treatment of wounds on non-planar surfaces or otherwise contoured wounds, including, for example, feet, knees, sacral regions, or other such areas.
- the wound dressing 2100 may provide for one or more slits 2150 cut into the dressing, preferably into the absorbent layer, that may enhance the conformability of the dressing.
- the slits 2150 are cut in concentric ovoid arcs, although other configurations (as discussed below) are possible.
- the area under the port 2130 or fluidic connector disposed at the top of the device is free from the slits 2150, as this may interfere with fluid transfer from the dressing.
- the slits 2150 may be formed as part of, in addition to, or instead of baffles that may be present within the absorbent layer so as to may aid in distribution of wound exudate.
- a domed connector is shown attached to the dressing, this may be interchanged with any other suitable connector, including for example embodiments of the fluidic connectors described in Figures 23 A and 23B (as described below).
- Figure 15B illustrates an embodiment of a wound dressing 2100 with a narrow central portion 2120.
- one or more slits 2150 extending across the width of the dressing may be present.
- these slits 2150 do not extend entirely across the width of the dressing, in order to promote fluid transfer within the absorbent layer.
- the slits 2150 may enhance conformability of the dressing, possibly in conjunction with the waisted configuration of the dressing, when applied to a non-planar or contoured wound area.
- such a dressing 2100 may be useful when applied so as to wrap around an arm or a leg.
- Figures 23A and 23B illustrate embodiments of white and black (or colored) fluidic connectors 2410, 2420, respectively, that may be used to connect an embodiment of a wound dressing described herein to a source of negative pressure.
- the domed port used in other embodiments discussed herein may be replaced by the fluidic connector 2410, 2420, for example as illustrated in Figures 16-19.
- the fluidic connector 2410, 2420 may be flexible and/or enhance the comfort of the patient.
- the fluidic connector 2410, 2420 preferably comprises a fluidic connector body configured to transmit fluid through itself, including, for example, negative pressure and/or wound exudate.
- the fluidic connector body is preferably encapsulated within one or more layers of fluid-impermeable material.
- the fluid-impermeable material is heat-sealed together to enclose the fluid connector body.
- the body of the fluidic connector 2410 is preferably be constructed from a material configured to transmit fluids therethrough, including fabrics such as 3D fabric.
- the thickness of the fluidic connector body may measure between 0.5 to 4mm, preferably 0.7 to 3mm, and even more preferably between 1 and 2mm; in a preferred embodiment the fluid connector body is 1.5mm thick.
- Suitable materials that may be used for the fluidic connector body, including the 3D fabric, are disclosed in U.S. Application 13/381,885, filed December 30, 2011, published as US2012/0116334, titled "APPARATUSES AND METHODS FOR NEGATIVE PRESSURE WOUND THERAPY,” and which is hereby incorporated by reference in its entirety.
- Use of the 3D fabric in the fluidic connector body may help alleviate fluid blockage when the connector is kinked, and may further provide for a soft fluidic connector that alleviates contact pressure onto a patient, for example when the patient's weight is pressed against the fluidic connector. This may enhance patient comfort and reduce the likelihood of pressure ulcers.
- embodiments of the fluidic connectors described herein can transmit therapeutic levels of negative pressure (i.e., in an amount sufficient to heal a wound) while a weight is pressed down thereupon.
- embodiments are preferably able to transmit therapeutic levels of negative pressure while an external pressure
- the relation between the pressure difference in mmHg was found to equal approximately 4.5 times the applied load in kg/cm 2 . Testing also indicated that the relative pressure difference between the pressure at the pump and the pressure at the wound after five minutes was less than 10 mmHg when measured at the pump for loads under 4 kg/cm 2 , and under 20 mmHg when measured at the wound for loads under 4 kg/cm 2 .
- Testing was also performed with a weight laid on an embodiment of a fluidic connector, while being bent at a 90° angle.
- Various different weights were applied, ranging between 2 and 12 kg/cm 2 , in 2 kg increments, and the resulting pressure difference was approximately linear, with the pressure difference at 12 kg/cm 2 being calculated at 51 mmHg, while the pressure difference at 2 kg/cm 2 being 17 mmHg.
- the relation between the pressure difference in mmHg was found to equal approximately 8 times the applied load in kg/cm 2 .
- testing was also performed on different widths and thicknesses of 3D fabric that may be used in embodiments of fluidic connectors described herein.
- the maximum negative pressure that could be applied using 3D fabric measuring 1, 1.25, 1.5, 1.75, and 2 cm in width was found to be between 85 and 92 mmHg, respectively.
- the maximum negative pressure applied for a 1 cm-width embodiment dropped to 75mmHg, while the 1.25 and 1.5 cm-width embodiments were essentially unchanged, exhibiting pressures between 85 and 90 mmHg.
- using wider and/or thicker 3D fabric may permit improved air flow, together with greater pressure and kink resistance in some context; this may be useful especially if higher absolute negative pressure need to be applied to the wound.
- the greater kink and pressure resistance may need to be balanced with other concerns such as perceived bulk and size of the fluidic connector, aesthetics, and comfort, which may require use of a thinner 3D fabric.
- the proximal end 2411 of the fluidic connector 2410 is configured to be connected to a tube or other conduit that is in fluid communication with a source of negative pressure via the fluid connector body, although some embodiments may provide for the fluidic connector 2410 to be directly connectable to a source of negative pressure without needing a conventional tube.
- the distal end 2412 of the fluidic connector 2410 may be enlarged, and is configured to be attached and/or adhered to a dressing, for example via an aperture in the backing layer of the dressing and/or in the fluidic connector 2410, so that the fluid connector body is in fluid communication therewith.
- the distal end 2412 of the fluidic connector 2410 may be convex on one side and flat on the opposite side. As illustrated in Figures 16-18 below, the flat side may be aligned with the edge of the absorbent layer with the convex side extending over the aperture in the backing layer.
- the fluidic connector 2410 may be provided preattached to the dressing portion, or may be provided in an unattached format so as to be connectable to the dressing portion by the patient or caregiver.
- the enlarged distal end 2412 may aid in providing a larger area capable of transmitting negative pressure to the dressing, although the distal end may be provided without any enlargement.
- the fluidic connector 2410 may be configured so as to transfer exudate in addition to air.
- the distal end of the fluidic connector is preferably provided with a filter configured to block fluid transport beyond itself, such as a hydrophobic filter.
- the fluidic connector may be provided with a secondary air leak channel configured to provide a flow of ambient air to the wound site.
- the secondary air leak channel is provided with a filter to prevent contamination of the wound.
- Figure 23B this figure shows an embodiment similar to Figure 23A, but where the fluidic connector 2420 may appear colored, for example as a result of an obscuring layer similar to that previously described.
- obscuring coloration may be provided by dyeing the material used in the fluidic connector 2420, for example the 3D fabric that may be used therein.
- the obscuring layer may be placed above the 3D fabric, either above or below the fluid- impermeable material.
- the encapsulating fluid-impermeable material may be colored or tinted.
- Coloring the fluidic connector 2420 may enhance the aesthetic appeal of the device, help in disguising or making the device less obtrusive (in particular when the fluidic connector is visible to others), and, when the fluidic connector is used to transfer exudates away from the wound, may hide the presence of the exudates therein.
- the fluidic connector body may be colored as a result of an auxiliary compound such as activated charcoal. Further, some embodiments may provide for text or images to be printed thereon, for example for instructional or advertising purposes. Such improvements may enhance patient comfort and minimize embarrassment, thereby increasing patient compliance and satisfaction with the device.
- the obscuring layer in the fluidic connector can have all features described with reference to the obscuring layer of the wound dressing as herein described.
- FIG 17 illustrates an embodiment of a wound dressing 720 that comprises a hexagonal backing layer and a three-lobed configuration for the absorbent material and the obscuring layer.
- This wound dressing 720 may be advantageously applied to wounds or areas surrounding wounds that are located in non-planar areas.
- the embodiment illustrated here may be particularly advantageous when applied to protruding body portions, for example elbows and heels.
- Figure 18 illustrates a wound dressing 730 with a three-lobed configuration similar in some respects to the embodiment illustrated in Figure 17. Here, however, the dressing is smaller and comprises more rounded projections.
- Figures 16-18 illustrate a fluidic connector 721, 731 similar to those described in Figures 23 A and 23B attached to the device, with the flat end aligned with the edge of the absorbent material and the convex end extending over an aperture in the backing layer.
- This fluidic connector may enhance comfort and prevent pressure ulcers or other complications that may result from extended pressure of a conventional tube onto the wound or skin surrounding the wound (as described above).
- different connectors may be used, such as the domed port illustrated in Figure 1.
- Figures 19-20 also illustrate additional embodiments of wound dressings 740, 750 with three-lobed configurations for the absorbent material and a hexagonal backing layer.
- the wound dressing 750 illustrated in Figure 20 is larger where the lobes of the absorbent material comprises flared ends, while the wound dressing 740 illustrated in Figure 19 is smaller and the absorbent material does not have flared ends.
- All suitable fluidic connectors or conduits may be used, and the domed port connector of Figure 20 may be used in place of the fluidic connector of Figure 19, and vice versa.
- the absorbent layers may be colored or obscured, and one or more slits may be formed onto the absorbent layers to enhance conformability to non-planar surfaces. It will be appreciated that in the embodiments of Figures 17-20, the number of lobes may be varied, and the backing layer can have other shapes, and is not limited to being hexagonal.
- Figures 21A-C and 22 illustrate embodiments of a wound dressing 760, 770, 780, 790 that comprises a four-lobed configuration. Although these embodiments are illustrated without a port or fluidic connector attached thereto, it will of course be understood that such ports and fluidic connectors are envisioned and may be attached in a similar fashion as described previously herein.
- Figures 21A-C comprise embodiments of a four-lobed wound dressing comprising an obscuring layer and viewing windows extending through the obscuring layer. The viewing windows can be used as discussed above for visualization of wound exudate in the absorbent layer. Examples of such viewing windows are illustrated in Figures 21A and 21B.
- the dressing 760 shown in Figure 21 A includes an obscuring layer 762 and crescent-shaped viewing windows 764 provided in the obscuring layer to extend through the obscuring layer allowing visibility of the dressing therebelow.
- the dressing 770 of Figure 21B includes an obscuring layer 772 and a number of holes 774 therethrough acting as viewing windows for viewing the state of the dressing therebelow.
- Figure 21C shows another dressing 780 including an obscuring layer 782 with viewing windows 784.
- Figure 22 illustrates a perspective view of an embodiment of a wound dressing 790 according to an embodiment of the four-lobe configuration.
- Figure 22 shows a possible four-lobe configuration of a dressing, useful for enhanced compatibility with body movement, where each layer is shaped to reduce the incident angle of the pad edge, and to provide somewhat independently moving sub-sections of the dressing.
- the dressing border including the wound contact layer 791 and the backing layer 792 can also comprise slits, provided to further enhance the conformability on application by allowing the borders to overlap if needed.
- Figures 24A-F illustrate an embodiment of a wound dressing 2300 with an oval shaped absorbent layer 2308 having multiple lobes 2301.
- Figures 24A-F illustrate, respectively, perspective, top, bottom, left, right, and side views of an embodiment of the dressing 2300.
- the absorbent layer 2308 can have six lobes.
- two or more lobes 2301 e.g., six lobes
- the lobes 2301 are provided on the wound dressing 2300; the lobes 2301, and specifically, the gaps between the lobes 2301 , aid the wound dressing 2300 in conforming to nonplanar wounds.
- the dressing 2300 can have a rectangular or square shaped backing layer 2302, and in some embodiments, the overall dressing 2300 may measure 190mm x 230mm, or 145.5mm x 190 mm.
- a fluidic connector such as a port 2306 is attached to the dressing 2300, although it will of be recognized that the fluidic connector of Figures 23A-B may be used instead or in addition.
- the dressing 2300 can have an obscuring layer 2304 with a similar perimeter shape as the absorbent layer and one or more viewing windows 2303 similar to that described for other embodiments herein.
- Figure 24 A illustrates a perspective view of the dressing 2300
- Figure 24B illustrates a top view, 24C a bottom view, and 24D-F represent views of the four sides of the dressing 2300.
- Figure 24G illustrates a top view of an alternate embodiment of the wound dressing of Figures 24A-F.
- the dressing may have circular cutouts in a central waisted portion, which may be located along a midline of the dressing transverse to a longitudinal axis of the dressing.
- Such cutouts may be, in some embodiments, 10 mm, or approximately 10 mm, in diameter, or may be in the range of 5 mm to 25 mm, or approximately 5 mm to approximately 25 mm, in diameter.
- the circular cutouts are symmetrically arranged on opposite sides of a longitudinal midline of the dressing, and may form an arc of greater than 180 degrees, preferably between 180 and 270 (or about 180 to 270) degrees.
- the dressing embodiment is illustrated with a cross-shaped viewing window in the obscuring layer and a hole in the backing layer at the middle of the cross-shaped viewing window, which may be positioned so as to underlie a port sealed to the dressing.
- the outer perimeter of the cross-shaped viewing window may extend beyond the outer perimeter of an attached port to provide a visual indication of the level of saturation of the absorbent layer underlying the port.
- the obscuring layer in the dressing may be provided with one or more additional viewing windows, for example in a 1 x 3 array, a 2 x 3 array, or any other configuration suitable for providing a visual indication of the spread of exudate through the absorbent layer of the dressing.
- Figures 25A-B illustrate an embodiment similar in shape and overall configuration to the embodiments illustrated above in Figures 7A-F.
- the dressing 500 comprises an orifice viewing window 502 similar to that described in relation to Figures 13A-B and 14.
- the orifice viewing window 502 is preferably formed from a cross- shaped or Maltese-cross shaped aperture or cutout 501 in the obscuring layer 506.
- the backing layer 510 provided over the obscuring layer preferably has an orifice 504 located at the center of the orifice viewing window 502.
- Reference number 504 can also be considered to designate a port that may be provided in or over the backing layer 510 to provide a connection to a source of negative pressure, for example, a port provided over the orifice in the backing layer as described above.
- a smaller orifice 505 may be located in the absorbent layer 503 that is provided below the obscuring layer 506.
- the dressing 500 may comprise one or more viewing windows 507; here, eight viewing windows 507 are provided in a linear arrangement.
- the bottom side of the dressing 500 optionally comprises a layer of adhesive, over which a release layer 513 may be placed. Dashed lines 512 illustrated in Figure 25A illustrate possible locations where breaks in the release liner 513 may be provided.
- the dressing 500 illustrated here has a longitudinal length of approximately 400 mm, and a transverse width of approximately 100 mm.
- the central axis of each arm of the cutout 501 of the orifice viewing window 502 is preferably offset from the longitudinal length and transverse width of the absorbent material, at an angle, for example, a 45° angle, as illustrated.
- the spacing between each arm of the cutout 501 may be, as illustrated here, 72°, although it will of course be recognized that other angles and configurations are possible.
- Dashed lines 512 illustrated in Figure 25A indicating possible locations where breaks in the release liner 513 may be provided, can be located, for example, at 80mm, 40 ⁇ 4mm, and 25 ⁇ 4mm from each of the top and bottom edges of the dressing 500.
- the orifice or port 504 (and cutout 501) are preferably centered on the transverse midline of the dressing 500, and situated approximately 52-55mm from the top edge of the dressing 500.
- the location may be changed, it may be preferable to locate the port 504 near or along a side, edge, or corner of the dressing 500, which is then preferably elevated with respect to the remainder of the dressing. This configuration may extend the life of the dressing, as fluid would be slower in saturating the absorbent layer below or near the orifice or port 504.
- FIGS 26A-B illustrate an embodiment similar in shape and overall configuration to the embodiments illustrated above in Figures 8A-F.
- the dressing 500 comprises an orifice viewing window 502 and cutout 501, with for example five linearly arranged viewing windows 507, among other parts, that are similar to that described above in relation to Figures 25A-B.
- the dressing 500 illustrated here has a longitudinal length of approximately 300 mm, and a transverse width of approximately 100 mm.
- the spacing between each arm of the cutout 501 may be, as illustrated here, 72°, although it will of course be recognized that other angles and configurations are possible.
- Dashed lines 512 illustrated in Figure 26A indicating possible locations where breaks in the release liner 513 may be provided, can be located, for example, at 80mm, 40 ⁇ 4mm, and 25 ⁇ 4mm from each of the top and bottom edges of the dressing 500.
- the orifice or port 504 (and cutout 501) are preferably centered on the transverse midline of the dressing 500, and situated approximately 52-55mm from the top edge of the dressing 500.
- FIGS 27A-B illustrate an embodiment similar in shape and overall configuration to the embodiments illustrated above in Figures 9A-F.
- the dressing 500 comprises an orifice viewing window 502 and cutout 501, with for example three linearly arranged viewing windows 507, among other parts, that are similar to that described above in relation to Figures 25A-B.
- the dressing 500 illustrated here has a longitudinal length of approximately 200 mm, and a transverse width of approximately 100 mm.
- the spacing between each arm of the cutout 501 may be, as illustrated here, 72°, although it will of course be recognized that other angles and configurations are possible.
- Dashed lines 512 illustrated in Figure 27A indicating possible locations where breaks in the release liner 513 may be provided, can be located, for example, at 80mm, 40 ⁇ 4mm, and 25 ⁇ 4mm from each of the top and bottom edges of the dressing 500.
- the orifice or port 504 (and cutout 501) are preferably centered on the transverse midline of the dressing 500, and situated approximately 52-55mm from the top edge of the dressing 500.
- Figures 28A-B illustrate an embodiment similar in shape and overall configuration to the embodiments illustrated above in Figures 5A-F.
- the dressing 500 comprises an orifice viewing window 502 and cutout 501 , with for example two rows of five linearly arranged viewing windows 507, among other parts, that are similar to that described above in relation to Figures 25A-B.
- the dressing 500 illustrated here has a longitudinal length of approximately 300 mm, and a transverse width of approximately 150 mm.
- the spacing between each arm of the cutout 501 may be, as illustrated here, 72°, although it will of course be recognized that other angles and configurations are possible.
- Dashed lines 512 illustrated in Figure 28A indicating possible locations where breaks in the release liner 513 may be provided, can be located, for example, at 80mm, 40 ⁇ 4mm, and 25 ⁇ 4mm from each of the top and bottom edges of the dressing 500.
- the orifice or port 504 (and cutout 501) are preferably centered on the transverse midline of the dressing 500, and situated approximately 52-55mm from the top edge of the dressing 500.
- Figures 29A-B illustrate an embodiment similar in shape and overall configuration to the embodiments illustrated above in Figures 6A-F.
- the dressing 500 comprises an orifice viewing window 502 and cutout 501 , with for example two rows of three linearly arranged viewing windows 507, among other parts, that are similar to that described above in relation to Figures 25A-B.
- the dressing 500 illustrated here has a longitudinal length of approximately 300 mm, and a transverse width of approximately 100 mm.
- the spacing between each arm of the cutout 501 may be, as illustrated here, 72°, although it will of course be recognized that other angles and configurations are possible.
- Dashed lines 512 illustrated in Figure 29A can be located, for example, at 80mm, 40 ⁇ 4mm, and 25 ⁇ 4mm from each of the top and bottom edges of the dressing 500.
- the orifice or port 504 (and cutout 501) are preferably centered on the transverse midline of the dressing 500, and situated approximately 52-55mm from the top edge of the dressing 500.
- Figures 30A-B illustrate an embodiment similar in shape and overall configuration to the embodiments illustrated above in Figures 10A-F.
- the dressing 500 comprises an orifice viewing window 502 and cutout 501, with a 3 x 3 array of viewing windows absent a viewing window at a corner position of the wound dressing, among other parts, that are similar to that described above in relation to Figures 25A-B but located in a corner of the dressing 500.
- the dressing 500 illustrated here is approximately square, with each side measuring approximately 250mm.
- the spacing between each arm of the cutout 501 may be, as illustrated here, 72°, although it will of course be recognized that other angles and configurations are possible. Dashed lines
- the orifice or port 504 (and cutout 501) are preferably centered on a corner of the dressing 500, and situated approximately 52-55mm from the top edge of the dressing 500.
- FIGS 31A-B illustrate an embodiment similar in shape and overall configuration to the embodiments illustrated above in Figures 11 A-F.
- the dressing 500 comprises an orifice viewing window 502 and cutout 501, with a 3 x 3 array of viewing windows absent a viewing window at a corner position of the wound dressing, among other parts, that are similar to that described above in relation to Figures 25A-B but located in a corner of the dressing 500.
- the dressing 500 illustrated here is approximately square, with each side measuring approximately 200mm.
- the spacing between each arm of the cutout 501 may be, as illustrated here, 72°, although it will of course be recognized that other angles and configurations are possible. Dashed lines
- the orifice or port 504 (and cutout 501) are preferably centered on a corner of the dressing 500, and situated approximately 52-55mm from the top edge of the dressing 500.
- Figures 32A-B illustrate an embodiment similar in shape and overall configuration to the embodiments illustrated above in Figures 12A-F.
- the dressing 500 comprises an orifice viewing window 502 and cutout 501, with a quincunx array of viewing windows absent a viewing window at a corner position of the wound dressing, among other parts, that are similar to that described above in relation to Figures 25A-B but located in a corner of the dressing 500.
- the dressing 500 illustrated here is approximately square, with each side measuring approximately 150mm.
- the spacing between each arm of the cutout 501 may be, as illustrated here, 72°, although it will of course be recognized that other angles and configurations are possible.
- Dashed lines 512 of Figure 32 A indicating possible locations where breaks in the release liner 513 may be provided, can be located, for example, at 80mm, 40 ⁇ 4mm, and 25 ⁇ 4mm from each of the top and bottom edges of the dressing 500.
- the port 504 (and cutout 501) are preferably centered on a corner of the dressing 500, and situated approximately 52-55mm from the top edge of the dressing 500.
- Figure 33A-B illustrates an embodiment somewhat similar in shape and overall configuration to the embodiments illustrated above in Figures 24A-F.
- the oval-shaped dressing 500 comprises an orifice viewing window 502 and cutout 501 , among other parts, that are similar to that described above in relation to Figure 25. Viewing windows are not shown, but may be provided as in one embodiment as described above.
- the dressing 500 illustrated in Figure 33A has a longitudinal length of approximately 250 mm, and a transverse width of approximately 200 mm.
- the longitudinal length of the absorbent layer 503 (and corresponding obscuring layer, if so provided) measures approximately 200 mm, with a transverse width of approximately 150mm.
- the embodiment of the dressing 500 illustrated in Figure 33B has a longitudinal length of approximately 200 mm, and a transverse width of approximately 150 mm.
- the longitudinal length of the absorbent layer 503 (and corresponding obscuring layer, if so provided) measures approximately 150 mm, with a transverse width of approximately 100 mm.
- no viewing windows 507 are illustrated, it will of course be understood that one or more such windows 507 may be provided on the dressing 500.
- the spacing between each arm of the cutout 501 may be 72°, although it will of course be recognized that other angles and configurations are possible.
- the orifice or port 504 (and cutout 501) are preferably centered on the transverse midline of the dressing 500, and situated approximately 52-55mm from the top edge of the dressing 500.
- Figure 34A illustrates an exploded view of a dressing 3400 for use in negative pressure wound therapy.
- the dressing 3400 comprises a release layer 3480, wound contact layer 3460, a transmission layer 3450, an acquisition distribution layer (ADL) 3440, an absorbent layer 3430, an obscuring layer 3420, and a backing layer 3410.
- the dressing 3400 may be connected to a port, such as described below with respect to Figures 35 and 36.
- At least the wound contact layer 3460, transmission layer 3450, absorbent layer 3430, obscuring layer 3420, and backing layer 3410 may have properties as described with respect to particular embodiments above, such as the embodiments of Figures 3A-22, and 24A-33B, as well as or instead of the properties described below.
- the dressing 3400 may optionally comprise a wound contact layer 3460 for sealing the dressing 3400 to the healthy skin of a patient surrounding a wound area.
- Certain embodiments of the wound contact layer may comprise three layers: a polyurethane film layer, a lower adhesive layer and an upper adhesive layer.
- the upper adhesive layer may assist in maintaining the integrity of the dressing 3400, and the lower adhesive layer may be employed for sealing the dressing 3400 to the healthy skin of a patient around a wound site.
- some embodiments of the polyurethane film layer may be perforated.
- Some embodiments of the polyurethane film layer and upper and lower adhesive layers may be perforated together after the adhesive layers have been applied to the polyurethane film.
- a pressure sensitive adhesive which may be a silicone, hot melt, hydrocolloid or acrylic based adhesive or other such adhesives, may be formed on both sides or optionally on a selected one side of the wound contact layer.
- the upper adhesive layer may comprise an acrylic pressure sensitive adhesive
- the lower adhesive layer may comprise a silicone pressure sensitive adhesive.
- the wound contact layer 3460 may not be provided with adhesive.
- the wound contact layer 3460 may be transparent or translucent.
- the film layer of the wound contact layer 3460 may define a perimeter with a rectangular or a square shape.
- a release layer 3480 may be removably attached to the underside of the wound contact layer 3460, for example covering the lower adhesive layer, and may be peeled off using flaps 3481. Some embodiments of the release layer 3480 may have a plurality of flaps extending along the length of the layer 3480.
- the dressing 3400 may comprise an optional spacer or transmission layer 3450.
- the transmission layer 3450 may comprise a porous material or 3D fabric configured to allow for the passage of fluids therethrough away from the wound site and into the upper layers of the dressing 3400.
- the transmission layer 3450 can ensure that an open air channel can be maintained to communicate negative pressure over the wound area even when the absorbent layer 3430 has absorbed substantial amounts of exudates.
- the transmission layer 3450 should remain open under the typical pressures that will be applied during negative pressure wound therapy as described above, so that the whole wound site sees an equalized negative pressure.
- An outer perimeter of the transmission layer may be smaller than the outer perimeter of the dressing layer positioned above the transmission layer, for example the ADL 3440 and/or absorbent layer 3430.
- the entire outer perimeter of the transmission layer may be spaced inward from the outer perimeter of the overlying layer by 5 mm, or approximately 5 mm, or 2 mm to 8 mm, or approximately 2 mm to approximately 8 mm.
- the transmission layer 3450 may be formed of a material having a three dimensional structure.
- a knitted or woven spacer fabric for example Baltex 7970 weft knitted polyester
- a non-woven fabric can be used.
- the transmission layer 3450 can have a 3D polyester spacer fabric layer. This layer can have a top layer which is a 84/144 textured polyester, and a bottom layer which can be a 100 denier flat polyester and a third layer formed sandwiched between these two layers which is a region defined by a knitted polyester viscose, cellulose or the like monofilament fiber.
- this differential between filament counts in the spaced apart layers tends to draw liquid away from the wound bed and into a central region of the dressing 3400 where the absorbent layer 3430 helps lock the liquid away or itself wicks the liquid onwards towards the cover layer 3410 where it can be transpired.
- Other materials can be utilized, and examples of such materials are described in U.S. Patent Pub. No. 2011/0282309, which are hereby incorporated by reference and made part of this disclosure.
- the transmission layer 3450 may be optional, and for example may be optional in embodiments of the dressing 3400 which comprise the acquisition distribution layer 3440, described below.
- Some embodiments may comprise a wicking or acquisition distribution layer (ADL) 3440 to horizontally wick fluid such as wound exudate as it is absorbed upward through the layers of the dressing 3400. Lateral wicking of fluid may allow maximum distribution of the fluid through the absorbent layer 3430 and may enable the absorbent layer 3430 to reach its full holding capacity. This may advantageously increase moisture vapor permeation and efficient delivery of negative pressure to the wound site.
- Some embodiments of the ADL 3440 may comprise viscose, polyester, polypropylene, cellulose, or a combination of some or all of these, and the material may be needle-punched.
- Some embodiments of the ADL 3440 may comprise polyethylene in the range of 40-150 grams per square meter (gsm). In some embodiments, the ADL 3440 may have a thickness of 1.2 mm or about 1.2 mm, or may have a thickness in the range of 0.5 mm to 3.0 mm, or about 0.5 mm to about 3.0 mm.
- the dressing 3400 may further comprise an absorbent or superabsorbent layer 3430.
- the absorbent layer can be manufactured from ALLEVY TM foam, Freudenberg 114-224-4 and/or Chem-PositeTMl lC-450, or any other suitable material.
- the absorbent layer 3430 can be a layer of non-woven cellulose fibers having super-absorbent material in the form of dry particles dispersed throughout. Use of the cellulose fibers introduces fast wicking elements which help quickly and evenly distribute liquid taken up by the dressing. The juxtaposition of multiple strand-like fibers leads to strong capillary action in the fibrous pad which helps distribute liquid.
- the absorbent layer 3430 may have a thickness of 1.7 mm or about 1.7 mm, or may have a thickness in the range of 0.5 mm to 3.0 mm, or about 0.5 mm to about 3.0 mm.
- the absorbent layer 3430 may comprise a layered construction of an upper layer of non-woven cellulose fibers, superabsorbent particles (SAP), and a lower layer of cellulose fibers with 40-80% SAP.
- the absorbent layer 3430 may be an air-laid material. Heat fusible fibers can optionally be used to assist in holding the structure of the pad together.
- Some embodiments may combine cellulose fibers and air-laid materials, and may further comprise up to 60% SAP. Some embodiments may comprise 60% SAP and 40% cellulose.
- Other embodiments of the absorbent layer may comprise between 60% and 90% (or between about 60% and about 90%) cellulose matrix and between 10% and 40% (or between about 10% and about 40%) superabsorbent particles.
- the absorbent layer may have about 20% superabsorbent material and about 80% cellulose fibers. It will be appreciated that rather than using super-absorbing particles or in addition to such use, super-absorbing fibers can be utilized according to some embodiments of the present invention.
- An example of a suitable material is the Product Chem-PositeTM 11 C available from Emerging Technologies Inc (ETi) in the USA.
- Super-absorber particles/fibers can be, for example, sodium polyacrylate or carbomethoxycellulose materials or the like or any material capable of absorbing many times its own weight in liquid.
- the material can absorb more than five times its own weight of 0.9% W/W saline, etc.
- the material can absorb more than 15 times its own weight of 0.9% W/W saline, etc.
- the material is capable of absorbing more than 20 times its own weight of 0.9% W/W saline, etc.
- the material is capable of absorbing more than 30 times its own weight of 0.9% W/W saline, etc.
- the absorbent layer 3430 can have one or more through holes 3431 located so as to underlie the suction port.
- Some embodiments of the present disclosure may employ a masking or obscuring layer 3420 to help reduce the unsightly appearance of a dressing 3400 during use due to the absorption of wound exudate.
- the obscuring layer 3420 may be a colored portion of the absorbent material, or may be a separate layer that covers the absorbent material.
- the obscuring layer 3420 may be one of a variety of colors such as blue, orange, yellow, green, or any color suitable for masking the presence of wound exudate in the dressing 3400.
- a blue obscuring layer 3420 may be a shade of blue similar to the shade of blue commonly used for the material of medical gowns, scrubs, and drapes.
- the obscuring layer 3420 may comprise polypropylene spunbond material. Further, some embodiments of the obscuring layer 3420 may comprise a hydrophobic additive or coating. Other embodiments may comprise a thin fibrous sheet of 60, 70, or 80 gsm. In some embodiments, the obscuring layer 3420 may have a thickness of .045 mm or about .045 mm, or may have a thickness in the range of 0.02 mm to 0.5 mm, or about 0.02 mm to about 0.5 mm. [0176] The obscuring layer may comprise at least one viewing window 3422 configured to allow a visual determination of the saturation level of the absorbent layer. The at least one viewing window 3422 may comprise at least one aperture made through the obscuring layer. The at least one viewing window 3422 may comprise at least one uncolored region of the obscuring layer. Some embodiments of the obscuring layer may comprise a plurality of viewing windows or an array of viewing windows, as discussed above with respect to Figures 25-32.
- the masking capabilities of the obscuring layer 3420 should preferably only be partial, to allow clinicians to access the information they require by observing the spread of exudate across the dressing surface.
- a obscuring layer 3420 may be partial due to material properties allowing wound exudate to slightly alter the appearance of the dressing or due to the presence of at least one viewing window 3422 in a completely obscuring material.
- the partial masking nature of the obscuring layer 3420 enables a skilled clinician to perceive a different colour caused by exudate, blood, by-products etc. in the dressing allowing for a visual assessment and monitoring of the extent of spread across the dressing.
- Tests performed upon various dressings with respect to the transmittance properties of the dressing indicate the ability of various samples to mask colour.
- the ability to mask colour may be calculated, for example, by measuring the reduction in absorption of light radiation at particular wavelengths.
- the tests utilized a UV-Vis spectrophotometer Jasco with integrating sphere, with a scanning range 340 to 800 nm, bandwidth 5nm and lOOOnm/sec scanning speed.
- the data labelled black background represents the extreme of exudate colour (the most colour an exudate might have) - the highest level of radiation absorbed and the least amount of radiation reflected from the sample.
- the data for white background represents the upper limit for total masking - generally the lowest level of radiation absorbed and the highest level of reflection.
- Sample 1 was a tinted polymer film placed over a black background, which was judged not to sufficiently mask the black background (representing wound exudate) satisfactorily.
- Sample 2 was a sheet of 3- dimensional spacer fabric (Baltex 3D) placed over a black background, and was judged to provide adequate masking of the black background.
- Sample 3 was a sheet of non-woven material dyed green placed over a black background, and provided complete masking of the black background.
- Wound exudate may have dark yellow, red and/or brown tones. Therefore, to appropriately mask these colours, an obscuring layer 3420 would preferably shield light wavelengths of below 600 nm.
- Measuring the reduction in absorption of light radiation at particular wavelengths may be performed by calculating:
- a complete masking element would preferably require a means for a clinician to judge the spread of wound exudate in the dressing below the obscuring layer 3420, e.g. the masking element not completely covering the entire dressing.
- a plurality of viewing windows may be provided in the obscuring layer 3420 such that the spread of exudate in the dressing below may be adequately assessed.
- a partial masking element may allow a clinician to judge the spread of exudate in the dressing below without additional means.
- Table 4 shows the L*a*b* values found when Samples 1 , 2 and 3 were respectively placed over a black background. The results for the black background alone and a white background are also shown.
- the color of the obscuring layer 3420 may affect the masking ability of the layer.
- various colors are suitable for masking the usual colors of wound exudate, while other colors may not provide optimal masking of the exudate.
- some embodiments of the obscuring layer, in a dry state may be configured to yield a CIE y value of .4 or less and a CIE x value of .5 or less.
- Some embodiments of the obscuring layer in a dry state, may have a color of Bg, gB, B, pB, bP, P, rP, pPk, RP, O, rO, or yO on the CIE x, y chromaticity diagram. It will be appreciated that liquid impermeable embodiments of the obscuring layer may be configured with any color.
- the obscuring layer 3420 can have one or more through holes located so as to underlie the suction port. Some embodiments may have a maltese cross 3421 or other shaped cutout underlying the suction port, wherein the diameter of the maltese cross 3421 is greater than the diameter of the port. This may allow a clinician to easily asses the amount of wound exudate absorbed into the layers beneath the port.
- the obscuring layer 3420 may have an outer perimeter that is larger than the dressing layer or layers provided beneath it, for example the absorbent layer 3430, ADL 3440 and/or transmission layer 3450.
- the entire outer perimeter of the obscuring layer 3420 is spaced 1 mm, or approximately 1 mm, or 0.5 mm to 3 mm, or approximately 0.5 to approximately 3 mm, beyond the dressing layer or layers provided beneath it.
- the larger perimeter of the obscuring layer 3420 may ensure that the underlying layers are adequately covered for visual obscuring of wound exudate.
- the dressing 3400 may also comprise a backing layer, or cover layer 3410 extending across the width of the wound dressing.
- the cover layer 3410 may be gas impermeable but moisture vapor permeable.
- Some embodiments may employ a polyurethane film (for example, Elastollan SP9109) or any other suitable material.
- certain embodiments may comprise translucent or transparent 30gsm EU33 film.
- the cover layer 3410 may have a pressure sensitive adhesive on the lower side, thereby creating a substantially sealed enclosure over the wound in which negative pressure may be established.
- the cover layer can protect the wound as a bacterial barrier from external contamination, and may allow liquid from wound exudates to be transferred through the layer and evaporated from the film outer surface.
- the cover layer 3410 can have an orifice 341 1 located so as to underlie the suction port.
- the orifice 3411 may allow transmission of negative pressure through the cover layer 3410 to the wound enclosure.
- the port may be adhered and sealed to the cover film using an adhesive such as an acrylic, cyanoacrylate, epoxy, UV curable or hot melt adhesive.
- Some embodiments may have a plurality of orifices for the attachment of multiple ports or other sources of negative pressure or other mechanisms for distributing fluid.
- Figure 34B illustrates a cross sectional view of the wound dressing 3400, displaying an embodiment of the relative thicknesses of layers of the dressing 3400.
- the wound contact layer 3460 may be flat and the top film layer 3410 may be contoured over the inner layers of the dressing 3400.
- the spacer layer 3450 may be half as thick as the acquisition distribution layer 3440 in some embodiments.
- the absorbent layer 3430 may be about 1.5 times thicker than the spacer layer 3450.
- the obscuring layer 3420 may be about half the thickness of the spacer layer 3450.
- Figure 35 illustrates a perspective exploded view of an embodiment of a flexible port or fluidic connector 3500 that may be used to connect any of the wound dressings described herein to a source of negative pressure.
- the port 3500 comprises a top layer 3510, a spacer layer 3520, a filter element 3530, a bottom layer 3540, and a conduit 3550.
- the conduit optionally comprises a connector 3560.
- the distal end of the port 3500 (the end connectable to the dressing 3400) is depicted as having an enlarged circular shape, although it will be appreciated that any suitable shape may be used and that the distal end need not be enlarged.
- the distal end can have any of the shapes shown in Figures 23A and 23B above.
- the distal end can also have the shape shown in Figures 3A-3C of International Application No. PCT/IB2013/001469, filed May 22, 2013, incorporated by reference herein.
- the bottom layer 3540 may comprise an elongate bridge portion 3544, an enlarged (e.g., rounded or circular) sealing portion 3545, and an orifice 3541.
- a plurality of orifices may be provided in the bottom layer.
- Some embodiments of the rounded sealing portion 3545 may comprise a layer of adhesive, for example a pressure sensitive adhesive, on the lower surface for use in sealing the port 3500 to a dressing.
- the port may be sealed to the cover layer 3410 of the dressing in Figure 34.
- the orifice 3541 in the bottom layer 3540 of the port 3500 may be aligned with the orifice 341 1 in the cover layer 3410 of the dressing 3400 in order to transmit negative pressure through the dressing 3400 and into a wound site.
- the top layer 3515 may be substantially the same shape as the bottom layer in that it comprises an elongate bridge 3514 and an enlarged (e.g., rounded or circular) portion 3515.
- the top layer 3515 and the bottom layer 3545 may be sealed together, for example by heat welding.
- the bottom layer 3545 may be substantially flat and the top layer 3515 may be slightly larger than the bottom layer 3545 in order to accommodate the height of the spacer layer 3520 and seal to the bottom layer 3545.
- the top layer 3515 and bottom layer 3145 may be substantially the same size, and the layers may be sealed together approximately at the middle of the height of the spacer layer 3520.
- the elongate bridge portions 3544, 3514 may have a length of 10 cm (or about 10 cm) or more, more preferably a length of 20 cm (or about 20 cm) or more and in some embodiments, may be about 27 cm long. In some embodiments, the elongate bridge portions may have a width of between 1 cm and 4 cm (or between about 1 cm and about 4 cm), and in one embodiment, is about 2.5 cm wide. The ratio of the length of the elongate bridge portions 3544, 3514 to their widths may in some embodiments exceed 6: 1 , and may more preferably exceed 8: 1 or even 10: 1. The diameter of the circular portion 3545, 3515 may be about 3.5 cm in some embodiments.
- the bottom and top layers may comprise at least one layer of a flexible film, and in some embodiments may be transparent. Some embodiments of the bottom layer 3540 and top layer 3515 may be polyurethane, and may be liquid impermeable.
- the top layer may comprise a flexible film having a thickness of 90 gsm, or approximately 90 gsm, or any thickness suitable for making the top film difficult to puncture.
- the port 3500 may comprise a spacer layer 3520, such as the 3D fabric discussed above, positioned between the lower layer 3540 and the top layer 3510.
- the spacer layer 3520 may be made of any suitable material, for example material resistant to collapsing in at least one direction, thereby enabling effective transmission of negative pressure therethrough.
- some embodiments of the spacer layer 520 may comprise a fabric configured for lateral wicking of fluid, which may comprise viscose, polyester, polypropylene, cellulose, or a combination of some or all of these, and the material may be needle-punched.
- spacer layer 520 may comprise polyethylene in the range of 40-160 grams per square meter (gsm) (or about 40 to about 160 gsm), for example 80 (or about 80) gsm. Such materials may be constructed so as to resist compression under the levels of negative pressure commonly applied during negative pressure therapy.
- the spacer layer 3520 may comprise an enlarged (e.g., rounded or circular) portion 3525, and may optionally include a fold 3521.
- the elongate bridge portion may have dimensions in the same ranges as the bridge portions of the upper and lower layers described above though slightly smaller, and in one embodiment is about 25.5 cm long and 1.5 cm wide.
- the diameter of the circular portion 3525 may be slightly smaller than the diameters of the enlarged ends 3545, 3515, and in one embodiment is about 2 cm.
- the spacer layer 3520 may have adhesive on one or both of its proximal and distal ends (e.g., one or more dabs of adhesive) in order to secure the spacer layer 3520 to the top layer 3510 and/or the bottom layer 3540. Adhesive may also be provided along a portion or the entire length of the spacer layer. In other embodiments, the spacer layer 3520 may be freely movable within the sealed chamber of the top and bottom layers.
- the fold 3521 of the spacer fabric may make the end of the port 3500 softer and therefore more comfortable for a patient, and may also help prevent the conduit 3550 from blockage.
- the fold 3521 may further protect the end of the conduit 3550 from being occluded by the top or bottom layers.
- the fold 3521 may, in some embodiments, be between 1 cm and 3 cm (or between about 1 cm and about 3 cm) long, and in one embodiment is 2 cm (or about 2 cm) long.
- the spacer fabric may be folded underneath itself, that is toward the bottom layer 3540, and in other embodiments may be folded upward toward the top layer 3510. Other embodiments of the spacer layer 3520 may contain no fold.
- a slot or channel 3522 may extend perpendicularly away from the proximal end of the fold 3521, and the conduit 3550 may rest in the slot or channel 3522.
- the slot 3522 may extend through one layer of the fold, and in others it may extend through both layers of the fold.
- the slot 3522 may, in some embodiments, be 1 cm (or about 1 cm) long.
- Some embodiments may instead employ a circular or elliptical hole in the fold 3521. The hole may face proximally so that the conduit 3550 may be inserted into the hole and rest between the folded layers of spacer fabric.
- the conduit 3550 may be adhered to the material of the fold 3521, while in other embodiments it may not.
- the port 3500 may have a filter element 3530 located adjacent the orifice 3541, and as illustrated is located between the lower layer 3540 and the spacer layer 3520.
- the filter element 3530 may have a round or disc shape.
- the filter element 3530 is impermeable to liquids, but permeable to gases.
- the filter element 3530 can act as a liquid barrier, to substantially prevent or inhibit liquids from escaping from the wound dressing, as well as an odor barrier.
- the filter element 3530 may also function as a bacterial barrier.
- the pore size of the filter element 3530 can be approximately 0.2 ⁇ .
- Suitable materials for the filter material of the filter element include 0.2 micron GoreTM expanded PTFE from the MMT range, PALL VersaporeTM 200R, and DonaldsonTM TX6628.
- the filter element 3530 thus enables gas to be exhausted through the orifice. Liquid, particulates and pathogens however are contained in the dressing. Larger pore sizes can also be used but these may require a secondary filter layer to ensure full bioburden containment.
- the filter element 3530 may be adhered to one or both of top surface of the bottom layer 3540 and the bottom surface of the spacer layer 3520 using an adhesive such as, but not limited to, a UV cured adhesive. In other embodiments, the filter 3530 may be welded to the inside of the spacer layer 3520 and to the top surface of the bottom layer 3540. The filter may also be provided adjacent the orifice on a lower surface of the bottom layer 3540. Other possible details regarding the filter are disclosed in U.S. Patent Pub. No. 2011/0282309 and incorporated by reference herein.
- the proximal end of the port 3500 may be connected to the distal end of a conduit 3550.
- the conduit 3550 may comprise one or more circular ribs 3551.
- the ribs 3551 may be formed in the conduit 3550 by grooves in a mold during the manufacturing of the conduit. During heat welding of the upper and lower layers 3515, 3545 melted material from those layers may flow around the ribs 3551 , advantageously providing a stronger connection between the conduit 3550 and the layers. As a result, it may be more difficult to dislodge the conduit 3550 out from between the layers during use of the port 3500.
- the proximal end of the conduit 3550 may be optionally attached to a connector 3560.
- the connector 3560 may be used to connect the port 3500 to a source of negative pressure, or in some embodiments to an extension conduit which may in turn be connected to a source of negative pressure.
- the distal end of the conduit 3550, which is inserted into the spacer layer 3520, may be shaped in such a way to reduce the possibility of occlusion.
- Figure 36 illustrates an embodiment of a wound dressing 3610 with a flexible port 3620 such as described with respect to Figure 35 attached.
- the port 3620 comprises a conduit 3630 and a connector 3640 for connecting the port to a source of negative pressure or to an extension conduit.
- the dressing 3610 comprises an obscuring layer with one row of eight holes in a linear arrangement, and is described above in more detail with respect to Figure 25.
- the port 3620 is connected over a circular window in the obscuring layer of the dressing 3610, in other embodiments the port 3620 may be connected over a maltese cross in the obscuring layer.
- the maltese cross may be of a larger diameter than the port and may be at least partially viewable after the port is attached to the dressing.
- FIGs 37A-1 and 37A-2 illustrate photographic and line drawing perspective views, respectively, of an embodiment of the dressing. Although the configuration as depicted is similar to the embodiment of Figure 29B, the dressing can have any of the constructions of different layers previously described.
- Conduit 3710 is connected to the dressing 3700 via port 3720, however other embodiments of ports may be connected to the dressing, for example the flexible port of Figure 35.
- Figures 37B-1 and 37B-2 illustrate photographic and line drawing bottom views, respectively, of the dressing 3700.
- the view illustrates a transmission layer 3730 and an acquisition distribution layer 3740, which may be similar to the transmission layer 3450 and acquisition distribution layer 3440 of Figures 34A and 34B.
- the perimeter of the transmission layer 3730 may be slightly smaller than the perimeter of the acquisition distribution layer 3740.
- the view also illustrates one embodiment of a release layer 3750 similar to release layer 3480 previously described for use in protecting the adhesive side of the wound contact layer.
- the release layer 3750 as illustrated is made of two separate layers of material that can be removed from the adhesive side of the wound contact layer by pulling on flaps attached to the release layer.
- Figure 37C illustrates a photograph of an embodiment of a wound dressing having a soft or flexible port for transmitting negative pressure secured over a cross- shaped viewing window in an obscuring layer of the dressing.
- the port comprises a 3D fabric encased in transparent plastic film layers as described above. As illustrated in Figure 35, the plastic film layers have a perimeter larger than the perimeter of the 3D fabric.
- An enlarged distal end of the port is positioned over the cross-shaped viewing window in the obscuring layer of the wound dressing, such that an end portion of each arm of the cross- shaped viewing window extends past the perimeter of the film layers of the enlarged distal end.
- Figure 39A illustrates another embodiment of a wound dressing 3900.
- the wound dressing may comprise a release layer 3980, wound contact layer 3960, a transmission layer 3950, an acquisition distribution layer 3940, an adhesive layer 3970, an absorbent layer 3930, an obscuring layer 3920, and a backing layer 3910.
- this figure illustrates a dressing having one particular shape, the construction of the layers can be applied to any of the embodiments identified above, including Figures 4A-14, 16-22, and 24A-33B.
- At least the wound contact layer 3960, transmission layer 3950, absorbent layer 3930, obscuring layer 3920, and backing layer 3910 may have properties as described with respect to particular embodiments above, such as the embodiments of Figures 3A-22, and 24A-33B, and these layers as well as the acquisition distribution layer 3940 may have properties similar to those described for the layers of the dressing embodiment of Figure 34A, as well as or instead of the properties described below.
- the dressing 3900 may be connected to a port 3990, such as described above with respect to Figures 35 and 36 and as illustrated in Figure 39B (shown without the release layer 3980).
- a port 3990 such as described above with respect to Figures 35 and 36 and as illustrated in Figure 39B (shown without the release layer 3980).
- At least the backing layer 3910, obscuring layer 3920, absorbent layer 3930, and acquisition distribution layer 3940 may have openings underlying the port 3990, and the port 3990 may comprise a three-dimensional fabric 3997 and a filter element 3995 overlying the openings.
- the opening 3921 in the obscuring layer may be cross-shaped.
- the cross-shaped opening 3921 may comprise four arms of roughly equal length extending outward from a central point of intersection of the arms, wherein the sides of each arm are angled or arced such that the far end of each arm is wider than the end closest to the intersection.
- the far ends of the four arms may comprise arcs, for example four arcs from a single circle, giving the cross a rounded shape.
- the opening 3911 in the backing layer 3910, opening 3931 in the absorbent layer 3930, and opening 3941 in the acquisition distribution layer 3940 may be aligned with the central intersection point of the cross-shaped opening 3921.
- the openings 3911 , 3931, and 3941 may be the same size or of varying sizes.
- the backing layer 3910 (as well as the backing layer of previously described embodiments) may comprise, in some embodiments, EU33 film and may optionally have a pressure-sensitive adhesive provided on a lower surface thereof.
- the adhesive may be a water dispersible acrylic adhesive, for example K5.
- the adhesive may be able to be pattern spread, and may be hydrophilic.
- the obscuring layer 3920 may be provided to increase patient comfort by masking the presence of wound exudate absorbed by the inner layers of the dressing.
- the obscuring layer 3920 may have an outer perimeter that is spaced 1 mm, or approximately 1 mm, or 0.5 mm to 3 mm, or approximately 0.5 to approximately 3 mm, beyond the adjacent perimeter edge of the dressing layer or layers provided beneath it, for example the absorbent layer 3930, ADL 3940, and/or transmission layer 3950.
- the obscuring layer 3920 may be provided with a plurality of viewing windows 3922 which may be used to assess the spread of exudate across the dressing 3900.
- the cross-shaped opening 3921 may be used as a viewing window to ascertain the level of saturation of the layer or layers underlying an attached port.
- the width of the cross-shaped opening 3921 may be greater than the width of an attached port to enable such assessment.
- Some embodiments of the obscuring layer 3920 may comprise polypropylene spunbond material of suitable colors such as described above, including medical blue. Further, some embodiments of the obscuring layer 3420 may comprise a hydrophobic additive or coating.
- the absorbent layer 3930 may be configured to absorb and retain exudate from a patient's wound. The absorbent layer 3930 will preferably be constructed from a material which has good absorbent qualities under negative pressure. In some embodiments (including any of the earlier described embodiments), the absorbent layer may comprise cellulose fibers or air-laid materials.
- Some embodiments may comprise a cellulose fibers with 40-80% superabsorbent particles (SAP), for example 40%-60% (or about 40% to about 60%) SAP or 60%-80% (or about 60% to about 80%) SAP.
- SAP superabsorbent particles
- Heat fusible fibers can optionally be used to assist in holding the structure of the absorbent pad together.
- Some embodiments may combine cellulose fibers and air-laid materials, for example as a hybrid bonded airlaid composite in the range of 400-500 gsm (or about 400 to about 500 gsm), for example 460 (or about 460) gsm.
- the absorbent layer 3930 may include polyacrylate superabsorber powder to increase the absorbent capabilities of the material.
- Some embodiments of the absorbent layer 3930 comprise a tissue dispersant layer.
- the tissue dispersant layer may comprise a heat fusible binder to aid in holding the layer structure together.
- the tissue dispersant layer may provide the advantage of enabling fluid transport.
- the tissue dispersant layer may comprise a hot melt adhesive such as ethylene vinyl acetate (EVA), for example applied as a solution to cellulose fibers of the absorbent layer.
- EVA ethylene vinyl acetate
- the adhesive layer 3970 may bond an upper surface of the acquisition distribution layer 3940 to a lower surface of the absorbent layer 3930.
- the adhesive layer 3970 may comprise an adhesive web or net.
- the adhesive layer 3970 may comprise adhesive tape.
- a hot melt adhesive such as EVA.
- EVA powder may be sprinkled over the ADL 3940, which may then be heat bonded to the adhesive layer 3970.
- the acquisition distribution layer 3940 and the absorbent layer 3930 may be stitched or sewn together, and the adhesive layer 3970 may comprise suitable fibers, strands, or threads.
- the adhesive layer 3970 are hydrophilic so as not to affect the transport of water and/or water-based solutions between the acquisition distribution layer 3940 and absorbent layer 3930.
- the adhesive layer may comprise a fine sprinkle of adhesive powder such that the acquisition distribution layer 3940 and absorbent layer 3930 are not bonded together across the entire upper and lower surfaces, respectively, but may be merely tacked together in a number of locations.
- some embodiments of the dressing may be constructed without the use of an adhesive between the acquisition distribution layer 3940 and absorbent layer 3930.
- the acquisition distribution layer (ADL) 3940 may be constructed so as to advantageously horizontally wick fluid, such as wound exudate, as it is absorbed upward through the layers of the dressing 3900. Such lateral wicking of fluid may allow maximum distribution of the fluid through the absorbent layer 3930, enabling the absorbent layer 3930 to reach its full holding capacity.
- Some embodiments of the ADL 3440 may comprise cellulose in the range of 40- 160 gsm (or about 40 to about 160 gsm), for example 80 (or about 80) gsm..
- the ADL may be constructed from a material which resists compression under the levels of negative pressure commonly applied during negative pressure therapy.
- the dressing 3900 may optionally comprise a spacer or transmission layer 3950.
- the transmission layer 3950 may comprise a porous material or 3D fabric configured to allow for the passage of fluids therethrough away from the wound site and into the upper layers of the dressing 3400.
- the transmission layer 3450 should remain open under the typical pressures that will be applied during negative pressure wound therapy as described above, so that the whole wound site sees an equalized negative pressure.
- the acquisition distribution layer 3940 may be sufficient to maintain even transmission of negative pressure throughout the dressing 3900 and the transmission layer 3950 may be excluded.
- An outer perimeter of the transmission layer may be spaced 5 mm, or approximately 5 mm, or 2 mm to 8 mm, or approximately 2 mm to approximately 8 mm, inward of the adjacent perimeter edge of the dressing layer positioned above the transmission layer, for example the ADL 3940 or absorbent layer 3930.
- the dressing 3900 may optionally comprise a wound contact layer 3960 for sealing the dressing 3900 to the healthy skin of a patient surrounding a wound area.
- the wound contact layer 3960 may comprise flexible polyurethane film, and may be provided with a silicone adhesive on a lower surface thereof.
- the wound contact layer 3960 may be perforated to allow for the transmission of fluids such as wound exudate therethrough, so that the fluids may be passed through or retained by the inner layers of the dressing 3900.
- the wound contact layer 3960 Prior to use, the wound contact layer 3960 may be protected by a protective release layer 3980, which may be provided with at least one set of flaps 3981 for removing or peeling off the release layer 3980.
- Figures 40A and 40B illustrate one embodiment of spacer layer, or transmission layer, material which may be used in any of the dressing embodiments described above, and which may also be used in any of the port or fluidic connector embodiments described above.
- the spacer or transmission material is preferably formed of a material having a three dimensional structure, and may have a top layer and a bottom layer comprising a knit pattern.
- a knitted or woven spacer fabric for example Baltex 7970 weft knitted polyester
- the top and bottom fabric layers may comprise polyester, such as 84/144 textured polyester or a flat denier polyester. Other materials and other linear mass densities of fiber could of course be used.
- the top and bottom fabric layers may be the same pattern and the same material, and in other embodiments they may be different patterns and/or different materials.
- the top fabric layer may have more filaments in a yarn used to form it than the number of filaments making up the yarn used to form the bottom fabric layer, in order to control moisture flow across the transmission layer. Particularly, by having a filament count greater in the top layer, that is to say, the top layer is made from a yarn having more filaments than the yarn used in the bottom layer, liquid tends to be wicked along the top layer more than the bottom layer.
- Figure 40A illustrates one possible knit pattern for a top or bottom fabric layer.
- the filaments may comprise a monofilament fiber or a multistrand fiber, and may be knitted polyester viscose or cellulose.
- a majority of the filaments, by volume may extend vertically (that is, perpendicular to the plane of the top and bottom layers), or substantially or generally vertically.
- 80%-90% (or approximately 80% to approximately 90%) of the filaments or more, by volume may extend vertically, or substantially or generally vertically.
- all or substantially all of the filaments, by volume may extend vertically, or substantially or generally vertically.
- a majority, 80%-90% (or approximately 80% to approximately 90%) of the filaments or more, or even all or substantially all of the filaments extend upward from the bottom fabric layer and/or downward from the top fabric layer, and in some embodiments, such filaments extend over a length more than half the distance between the top and bottom fabric layers.
- a majority, 80%-90% (or approximately 80% to approximately 90%) of the filaments or more, or even all or substantially all of the filaments span a distance that is greater in a direction perpendicular to the top and bottom fabric layers (a vertical direction) than in a direction parallel to the top and bottom fabric layers (a horizontal direction). The orientation of such filaments may promote vertical wicking of fluid through the spacer layer.
- the ratio of the amount of fluid wicked vertically through the spacer material to the amount of fluid wicked laterally across the spacer material when under negative pressure may be 2: 1 or more, or approximately 2: 1 or more, or may be up to 10: 1 or more, or approximately 10: 1 or more, in some embodiments.
- Such filaments may also keep the top and bottom layers spaced apart when exposed to compressive forces or negative pressure.
- FIGS 41A-D illustrate one embodiment of acquisition distribution layer (ADL) material which may be used in any of the dressing embodiments described above, and which may also be used in any of the port or fluidic connector embodiments described above.
- the ADL material in an uncompressed state, may be 0.5 mm to 3 mm thick, or approximately 0.5 mm to approximately 3 mm thick, and in some embodiments may be 1.2 mm thick, or approximately 1.2 mm thick, in an uncompressed state.
- the ADL material may comprise a plurality of loosely packed fibers, which may be arranged in a substantially horizontal fibrous network.
- the ADL material may consist of a mix of two fiber types.
- One may be a flat fiber which may be 20 ⁇ to 50 ⁇ in width, or approximately 20 ⁇ to approximately 50 ⁇ in width, and may comprise a cellulosic based material.
- the other fiber may be a two component fiber that has an inner core that is 8 ⁇ to 10 ⁇ in diameter, or approximately is 8 ⁇ to approximately 10 ⁇ in diameter, and an outer layer with a thickness of 1 ⁇ to 2 ⁇ , or approximately 1 ⁇ to approximately 2 ⁇ .
- the two component fiber may be a mix of a polyethylene (PE) type material, and polyethylene terephthalate (PET).
- PE polyethylene
- PET polyethylene terephthalate
- the inner core of the two component fiber may be PET and the outer layer may be PE.
- the PE/PET fibers may have a smooth surface morphology, while the cellulosic fibers may have a relatively rougher surface morphology.
- the ADL material may comprise about 60% to about 90% cellulosic fibers, for example approximately 75% cellulosic fibers, and may comprise about 10% to about 40% PE/PET fibers, for example approximately 25% PE/PET fibers.
- Figure 41A illustrates a backscatter scanning electron microscope (SEM) plan view of a sample portion of acquisition distribution layer material at 140x magnification.
- Figure 41 B illustrates an SEM cross sectional view at 25 Ox magnification.
- a majority of the fiber volume may extend horizontally (that is, parallel to the plane of the top and bottom surfaces of the material), or substantially or generally horizontally.
- 80%-90% (or approximately 80% to approximately 90%) or more of the fiber volume may extend horizontally, or substantially or generally horizontally.
- all or substantially all of the fiber volume may extend horizontally, or substantially or generally horizontally.
- a majority, 80%-90% (or approximately 80% to approximately 90%) of the fibers or more, or even all or substantially all of the fibers span a distance perpendicular to the thickness of the ADL material (a horizontal or lateral distance) that is greater than the thickness of the ADL material.
- the horizontal or lateral distance spanned by such fibers is 2 times (or about 2 times) or more, 3 times (or about 3 times) or more, 4 times (or about 4 times) or more, 5 times (or about 5 times) or more, or 10 times (or about 10 times) or more the thickness of the ADL material.
- the orientation of such such fibers may promote lateral wicking of fluid through the ADL material.
- the ratio of the amount of fluid wicked laterally across the ADL material to the amount of fluid wicked vertically through the ADL material under negative pressure may be 2: 1 or more, or approximately 2: 1 or more, or may be up to 10: 1 or more, or approximately 10: 1 or more, in some embodiments.
- Figure 41 C is a two dimensional microtomographic cross sectional view of a compressed portion of a sample of ADL material which is approximately 9.2 mm long.
- Figure 41D is an SEM cross sectional view at 130x magnification of the compressed portion illustrated in Figure 41C. Such compressed portions may occur in the ADL material may occur due to the application of pressure to the material.
- Figures 41 C and 41D further illustrate the horizontal network of ADL fibers.
- Figures 42A and 42B illustrate one embodiment of absorbent material which may be used in any of the dressing embodiments described above.
- Figure 42A illustrates a three dimensional microtomographic cross sectional view of a sample of absorbent material, depicting a fibrous composition interspersed with superabsorbent particles.
- the absorbent material may, for example, be any of the materials described in U.S. Patent Pub. No. 2012/308780, titled “Absorbent Structure,” filed May 25, 2012, the contents of which are hereby incorporated by reference in their entirety.
- Figure 42B is a cross sectional schematic diagram of an embodiment of the absorbent material illustrating a plurality of layers within the absorbent material.
- the absorbent material may have a textured layer 4210 on one side of a fibrous network, the fibrous network defining the bulk of the absorbent material and comprising layers 4220, 4240, and 4250.
- Superabsorbent particles 4230 may be dispersed throughout layers 4220, 4240, and 4250.
- the textured layer 4210 also referred to as the "tissue dispersant layer" in above portions of this specification, may be configured to laterally transmit fluid.
- the textured layer 4210 may in some embodiments be positioned as the uppermost layer of the absorbent material, and in some embodiments may be positioned as both the lowermost and uppermost layers of the absorbent material.
- the textured layer 4210 may comprise flat fibers 20 ⁇ to 50 ⁇ in width, or approximately 20 ⁇ to approximately 50 ⁇ in width.
- the textured layer 4210 may comprise 1 to 2 or approximately 1 to approximately 2 layers of the flat fibers, and the textured layer 4210 may have an overall thickness of 0.04 mm, or approximately 0.04 mm.
- the bulk of the absorbent material comprising layers 4220, 4240, and 4250, may have a thickness of 1.7 mm, or approximately 1.7 mm, or may have a thickness in the range of 0.5 mm to 3.0 mm, or about 0.5 mm to about 3.0 mm.
- the bulk of the absorbent material may comprise a mix of two fiber types arranged in a fibrous network, for example the cellulosic fiber having a width of 20 ⁇ to 50 ⁇ , or approximately 20 ⁇ to approximately 50 ⁇ , and the PE/PET composite fiber, described above with respect to the ADL material.
- the superabsorbent particles 4230 may be irregularly shaped and varied in size, and may have a diameter of up to 1 mm, or approximately 1 mm.
- the superabsorbent particles 4230 may comprise a sodium acrylate type material. There may be relatively fewer superabsorbent particles in a portion of the uppermost surface of the bulk of the absorbent material (the surface of layer 4250 opposite the textured layer 4210), for example in an uppermost surface having a thickness of approximately 0.1 mm.
- Layer 4220 may be a liquid absorption layer configured to draw liquid upward through the material towards layers 4240 and 4250.
- Layer 4240 may be a storage layer configured to hold absorbed liquid.
- Layer 4220 may be a liquid distribution layer configured to apply a "reverse suction" effect to the liquid storage layer 4240 in order to inhibit (or substantially inhibit) absorbed liquid from leaking back down through the lower layers of the absorbent material, a phenomenon which is commonly known as "backwetting.”
- Superabsorbent particles 4230 may be distributed primarily within the storage layer, may extend partially into the absorption layer 4220 and liquid distribution layer 4250, or may be distributed evenly (or substantially evenly) throughout the layers.
- the layers 4220, 4240, and 4250 may overlap with a portion of adjacent layers, and may or may not be separable.
- Figures 43A and 43B illustrate one embodiment of obscuring layer material which may be used in any of the dressing embodiments described above.
- Figure 43A illustrates a photographic plan view of obscuring material, depicting a material comprising a fibrous network having a reoccurring regularly spaced criss-cross diamond pattern.
- the diamond shaped pattern may, in one embodiment, be 1.2 mm long by 1.0 mm wide, and may have a thickness of approximately 0.04 mm thick, consisting of fibers that are more densely packed relative to the surrounding area of the material.
- the diamond shaped pattern may increase structural stability of the fibrous network of the material, for example serving as "tacking" points.
- Figure 43B illustrates a three dimensional microtomographic perspective view of the compressed diamond pattern and the surrounding uncompressed fibers.
- Some embodiments of the obscuring material may comprise polypropylene spunbond material. Further, some embodiments of the obscuring material may comprise a hydrophobic additive or coating, for example a hydrophobic wash designed to permeate the fibers of the obscuring material to make the material substantially waterproof while permitting vapor permeability. Other embodiments may comprise a thin fibrous sheet of 60, 70, or 80 gsm.
- the fibers of the obscuring material may, in one embodiment, comprise layers of polypropylene (PP) fibers having a smooth surface morphology, and the PP fibers may have a thickness of approximately 25 ⁇ .
- the obscuring material may have a thickness of .045 mm or about .045 mm, or may have a thickness in the range of 0.02 mm to 0.5 mm, or about 0.02 mm to about 0.5 mm.
- Figure 44 illustrates one embodiment of an adhesive spread on approximately one square centimeter of a film material, which may be used as the cover or backing layer in any of the dressing embodiments or fluidic connector embodiments described above.
- the adhesive on the film has been covered with carbon powder for ease of illustrating the spread of the adhesive.
- the adhesive may comprise, for example, an acrylate type adhesive, for example K5 adhesive, and may be laid down in a criss cross pattern.
- the adhesive material may cover approximately 45.5% ⁇ approximately 1.3% of the film surface.
- the pattern and coverage of the adhesive may vary so long as the configuration is suitable for desired vapor permeability.
- Figures 45A-D illustrate one embodiment of a sealing strip assembly 4501 which may be used with a wound dressing and/or fluidic connector to provide additional sealing against the skin of the patient surrounding the wound dressing or fluidic connector. Sealing strips may also be used to reseal a cut or punctured wound dressing or fluidic connector.
- the sealing strips of Figures 45A-D may be used, for example, like the fixation strips 210 of Figure 2D.
- a plurality of sealing strips 4501 may be provided together on one sheet 4500 with a plurality of perforations or weakened lines 4515, separating the individual sealing strips on the sheet. In some embodiments anywhere from 2 to 10 or more sealing strips may be provided on one sheet. As illustrated, 6 sealing strips 4501a, 4501b, 4501c, 4501d, 4501e and 450 If are provided on one sheet 4500 in Figure 45A. In other embodiments each sealing strip may be provided separately, or a plurality of separate sealing strips may be provided, for example in a kit.
- a kit may be provided in the form of a tray, for example a sealed tray, which may include one or more sheets containing a plurality of sealing strips 4501 separated by the plurality of perforations or weakened lines 4515, or other embodiments of sealing strips as described.
- the kit may also contain a wound dressing with a fluidic connector that may be pre-connected to the wound dressing or separately provided.
- the wound dressing may have any of the shapes and layer configurations described above, and the fluidic connector may be any of the soft or hard ports described above.
- the kit may further comprise a pump configured to connect to the fluidic connector and transmit negative pressure to the wound dressing.
- FIG. 45B An example perforation pattern of a perforated cut 4515 is illustrated in Figure 45B, which an enlarged view of the portion of Figure 45 A labeled with the reference number 45B.
- a repeating perforation gap 4525 may extend across the perforation, each gap separated by a connected or intact portion 4590. These perforation gaps 4525 may extend through some or all of the layers of the sealing strip assembly described further below.
- a perforation gap 4525 may be 10 mm, or approximately 10 mm, in length, wherein length is the dimension measured along the perforation line.
- the perforation gap length may be also in the range of 2 mm to 20 mm, or approximately 2 mm to approximately 20 mm, in some embodiments.
- the intact portion 4590 separating perforation gaps may be in the range of 0.25 mm to 3 mm, or approximately 0.25 mm to approximately 3 mm, in length, for example 0.5 mm, or approximately 0.5 mm, in length.
- the sheet 4500 of sealing strips 4501 may comprise an adhesive film 4545, which may be a flexible film material provided with a pressure-sensitive adhesive on a lower surface thereof.
- the adhesive film 4545 may, in some embodiments, be thin and prone to sticking to itself when folded or handled. Therefore, the adhesive film 4545 may be provided with a carrier layer 4535 on an upper, non-adhesive surface having the same length and width as the adhesive film 4545, and may also be provided with a one or protective layers 4570, 4580 on its lower, adhesive surface.
- the protective layers 4570, 4580 may be configured to protect the adhesive surface of the adhesive film 4545.
- First and second outer protective layers 4570 may be provided at opposite ends of the sheet 4500 or an individual sealing strip assembly 4501 (on the right and left sides of Figure 45A and 45C, with only the right side shown in Figure 45D), thereby covering the opposite ends of the individual sealing strips 4501.
- a central protective layer 4580 may be provided over a central portion of the sheet 4500 or an individual sealing strip assembly 4501 and therefore over a central portion of adhesive film 4545, between the opposite ends of the adhesive film 4545and partially overlapping with and underlying the outer protective layers 4570.
- the protective layers 4570 may have an outer edge (shown on the right in Figure 45D) that is positioned beyond the outer edge of the adhesive film 4545, and may also include a folded handle 4575 that is covered by the central protective layer 4580.
- the folded handles 4575 of protective layer 4570 are therefore not in direct contact with the adhesive surface of the adhesive film 4545 to facilitate removal of the outer protective layers 4570.
- the portions 4585 of the central protective layer 4580 overlapping the outer protective layers 4570 are not in direct contact with the adhesive surface of the adhesive film 4545, and are not adhered to the outer protective layers 4570, thereby forming handles to facilitate removal of the central protective layer 4580.
- the carrier layer 4535 that may be provided on the upper surface of the adhesive film may be configured to releasably attach to the non-adhesive surface of the adhesive film 4545, and may comprise a sheet of paper or film with relatively more rigidity than the adhesive film.
- Release tabs 4595 may be provided on one or both opposite ends of the carrier layer 4535 for ease of removing the carrier layer 4535 from the adhesive film 4545. As illustrated in Figure 45D, the release tabs 4595 may extend outwardly from the adhesive film 4545 and carrier layer 4535 to an outer edge aligned with an outer edge of the outer protective layer 4570.
- graphical and/or numbered instructions for removal of the protective layer and carrier layer may be provided on one or both of the protective layer and carrier layer.
- one or more sealing strips 4501 may be removed from the sheet 4500 by cutting or tearing along the perforations 4515.
- the central protective layer 4580 may be removed using the non-adhered portions 4585 of the central protective layer 4580, which serve as handles, for the exposing a central adhesive surface of the adhesive film 4545.
- the adhesive surface may then be applied to skin and/or a dressing or any desired location, or the adhesive surface may be applied after one or both of the outer protective layers 4570 is removed.
- the folded handle 4575 of outer protective layers 4570 may be grasped to remove the outer protective layers 4570, exposing the entirety of the lower adhesive surface of the adhesive film 4545.
- the outer edges of the adhesive surface of the adhesive film 4545 may be placed in a desired location. After sealing the adhesive film 4545, the release tab or tabs 4595 may be used to remove the carrier layer 4535 from the adhesive film 4545. This may be repeated with as many adhesive strips as are needed.
- FIG 45 A illustrates a top view of assembly sheet 4500 of sealing strip assemblies 4501, in which the release tabs 4595 and carrier layer 4535 on adhesive film 4545 would be seen.
- the dashed lines in Figure 45A illustrate edges or fold locations of the adhesive film 4545, central protective layer 4580, outer protective layers 4570, and carrier layer 4535.
- each sealing strip 4501 may have a width 4530 of 40 mm, or approximately 40 mm, or a width in the range of 20 mm to 80 mm, or approximately 20 mm to 80 mm.
- each sealing strip assembly (or the sheet 4500, including release tabs 4595 and outer protective layers 4570) may be 250 mm or 300 mm in some embodiments, or approximately 250 mm or approximately 300 mm, or in the range of 100 mm to 400 mm, or approximately 100 to approximately 400 mm.
- the length 4520 of the adhesive film 4545 and carrier layer 4535 may be 280 mm or 330 mm in some embodiments, or approximately 280 mm or approximately 330 mm, or in the range of 90 mm to 380 mm, or approximately 90 to approximately 380 mm.
- the length 4505 of central protective layer 4580 may be 210 mm or 260 mm in some embodiments, or approximately 210 mm or approximately 260 mm, or may be in the range of 100 mm to 300 mm, or approximately 100 mm to approximately 300 mm.
- the length 4565 of outer protective layers 4570 may be 85 mm or 1 10 mm in some embodiments, or approximately 85 mm or approximately 1 10 mm, or may be in the range of 50 mm to 200 mm, or approximately 500 mm to approximately 200 mm.
- the length 4555 of the folded portion or handle 4575 of outer protective layer 4570 may be 20 mm plus or minus 5 mm, in some embodiments, or approximately 20 mm plus or minus approximately 5 mm.
- the distance 4550 from the outer edge of the folded tab 4575 to the outer edge of the central protective layer 4580 may be 20 mm plus or minus 5 mm, in some embodiments, or approximately 20 mm plus or minus approximately 5 mm.
- dressing configurations are possible other than a narrow central portion configuration, a three-lobed configuration, a four-lobed configuration, including, for example, hexagonal or circular shaped backing layers for use in dressings.
- these embodiments may also comprise various configurations of slits, described previously, so as to enhance conformability of the dressing in non-planar wounds.
- the absorbent layers of these embodiments may be colored or obscured with an obscuring layer, and optionally provided with one or more viewing windows.
- the domed ports of these embodiments may also be replaced with one or more fluidic connectors of the type described below in Figures 23A-B, and vice versa. Additionally, all features and structures described for wound dressings with the waisted portion configuration can be incorporated into any shape or dressing configuration as described herein.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Dermatology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
Claims
Priority Applications (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2013298195A AU2013298195B2 (en) | 2012-08-01 | 2013-07-31 | Wound dressing |
DK13770970.5T DK2879636T3 (en) | 2012-08-01 | 2013-07-31 | Wound dressing |
CA2880143A CA2880143C (en) | 2012-08-01 | 2013-07-31 | Wound dressing |
CN201380051441.8A CN104884008B (en) | 2012-08-01 | 2013-07-31 | Wound dressing |
US14/418,908 US10667955B2 (en) | 2012-08-01 | 2013-07-31 | Wound dressing and method of treatment |
BR112015002154A BR112015002154A2 (en) | 2012-08-01 | 2013-07-31 | wound dressing |
ES13770970.5T ES2625709T3 (en) | 2012-08-01 | 2013-07-31 | Wound dressing |
MX2015001521A MX353782B (en) | 2012-08-01 | 2013-07-31 | Wound dressing. |
RU2015106112A RU2015106112A (en) | 2012-08-01 | 2013-07-31 | Wound dressing |
EP13770970.5A EP2879636B1 (en) | 2012-08-01 | 2013-07-31 | Wound dressing |
JP2015524867A JP6307504B2 (en) | 2012-08-01 | 2013-07-31 | Wound dressing |
ZA2015/00574A ZA201500574B (en) | 2012-08-01 | 2015-01-26 | Wound dressing |
US14/658,068 US9662246B2 (en) | 2012-08-01 | 2015-03-13 | Wound dressing and method of treatment |
AU2017245460A AU2017245460B2 (en) | 2012-08-01 | 2017-10-13 | Wound dressing |
AU2019250207A AU2019250207B2 (en) | 2012-08-01 | 2019-10-17 | Wound dressing |
US16/887,677 US20200360189A1 (en) | 2012-08-01 | 2020-05-29 | Wound dressing and method of treatment |
US17/853,029 US11801338B2 (en) | 2012-08-01 | 2022-06-29 | Wound dressing and method of treatment |
US18/656,261 US20240307606A1 (en) | 2012-08-01 | 2024-05-06 | Wound dressing and method of treatment |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261678569P | 2012-08-01 | 2012-08-01 | |
US61/678,569 | 2012-08-01 | ||
US201361753374P | 2013-01-16 | 2013-01-16 | |
US61/753,374 | 2013-01-16 | ||
US201361753878P | 2013-01-17 | 2013-01-17 | |
US61/753,878 | 2013-01-17 | ||
US201361785054P | 2013-03-14 | 2013-03-14 | |
US61/785,054 | 2013-03-14 | ||
US201361823298P | 2013-05-14 | 2013-05-14 | |
US61/823,298 | 2013-05-14 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/418,908 A-371-Of-International US10667955B2 (en) | 2012-08-01 | 2013-07-31 | Wound dressing and method of treatment |
US14/658,068 Division US9662246B2 (en) | 2012-08-01 | 2015-03-13 | Wound dressing and method of treatment |
US16/887,677 Continuation US20200360189A1 (en) | 2012-08-01 | 2020-05-29 | Wound dressing and method of treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014020440A1 true WO2014020440A1 (en) | 2014-02-06 |
Family
ID=49274835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2013/002060 WO2014020440A1 (en) | 2012-08-01 | 2013-07-31 | Wound dressing |
Country Status (14)
Country | Link |
---|---|
US (6) | US10667955B2 (en) |
EP (1) | EP2879636B1 (en) |
JP (2) | JP6307504B2 (en) |
CN (1) | CN104884008B (en) |
AU (3) | AU2013298195B2 (en) |
BR (1) | BR112015002154A2 (en) |
CA (2) | CA2880143C (en) |
DK (1) | DK2879636T3 (en) |
ES (1) | ES2625709T3 (en) |
HU (1) | HUE033329T2 (en) |
MX (1) | MX353782B (en) |
RU (1) | RU2015106112A (en) |
WO (1) | WO2014020440A1 (en) |
ZA (1) | ZA201500574B (en) |
Cited By (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015193257A1 (en) * | 2014-06-18 | 2015-12-23 | Smith & Nephew Plc | Wound dressing |
US9220823B2 (en) | 2010-09-20 | 2015-12-29 | Smith & Nephew Plc | Pressure control apparatus |
US9375353B2 (en) | 2008-03-13 | 2016-06-28 | Smith & Nephew, Inc. | Shear resistant wound dressing for use in vacuum wound therapy |
WO2016109418A1 (en) * | 2014-12-30 | 2016-07-07 | 3M Innovative Properties Company | Wound dressing with multiple adhesive layers |
US9427505B2 (en) | 2012-05-15 | 2016-08-30 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
US9452248B2 (en) | 2003-10-28 | 2016-09-27 | Smith & Nephew Plc | Wound cleansing apparatus in-situ |
EP2879636B1 (en) | 2012-08-01 | 2017-03-22 | Smith & Nephew PLC | Wound dressing |
US9669138B2 (en) | 2006-05-11 | 2017-06-06 | Kalypto Medical, Inc. | Device and method for wound therapy |
WO2017114745A1 (en) * | 2015-12-30 | 2017-07-06 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
USD796735S1 (en) | 2016-02-29 | 2017-09-05 | Smith & Nephew Plc | Mount apparatus for portable negative pressure apparatus |
WO2017148824A1 (en) | 2016-03-04 | 2017-09-08 | Smith & Nephew Plc | Negative pressure wound therapy apparatus for post breast surgery wounds |
WO2017158428A1 (en) | 2016-03-14 | 2017-09-21 | Smith & Nephew Plc | Wound dressing apparatus with flexible display |
WO2017195038A1 (en) | 2016-05-13 | 2017-11-16 | Smith & Nephew Plc | Sensor enabled wound monitoring and therapy apparatus |
US9829471B2 (en) | 2013-10-08 | 2017-11-28 | Smith & Nephew Plc | pH indicator device and formulation |
US9844475B2 (en) | 2007-11-21 | 2017-12-19 | Smith & Nephew Plc | Wound dressing |
US9844473B2 (en) | 2002-10-28 | 2017-12-19 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US9901664B2 (en) | 2012-03-20 | 2018-02-27 | Smith & Nephew Plc | Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination |
WO2018037075A1 (en) | 2016-08-25 | 2018-03-01 | Smith & Nephew Plc | Absorbent negative pressure wound therapy dressing |
US9956121B2 (en) | 2007-11-21 | 2018-05-01 | Smith & Nephew Plc | Wound dressing |
US9987402B2 (en) | 2007-12-06 | 2018-06-05 | Smith & Nephew Plc | Apparatus and method for wound volume measurement |
US10046096B2 (en) | 2012-03-12 | 2018-08-14 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US10076594B2 (en) | 2015-05-18 | 2018-09-18 | Smith & Nephew Plc | Fluidic connector for negative pressure wound therapy |
US10076449B2 (en) | 2012-08-01 | 2018-09-18 | Smith & Nephew Plc | Wound dressing and method of treatment |
US10080689B2 (en) | 2007-12-06 | 2018-09-25 | Smith & Nephew Plc | Wound filling apparatuses and methods |
WO2018189265A1 (en) | 2017-04-11 | 2018-10-18 | Smith & Nephew Plc | Component positioning and stress relief for sensor enabled wound dressings |
US10105471B2 (en) | 2004-04-05 | 2018-10-23 | Smith & Nephew, Inc. | Reduced pressure treatment system |
WO2018210693A1 (en) | 2017-05-15 | 2018-11-22 | Smith & Nephew Plc | Negative pressure wound therapy system using eulerian video magnification |
WO2018234443A1 (en) | 2017-06-23 | 2018-12-27 | Smith & Nephew Plc | Positioning of sensors for sensor enabled wound monitoring or therapy |
WO2019002086A2 (en) | 2017-06-30 | 2019-01-03 | Smith & Nephew Plc | Spacer layer for use in a wound dressing |
WO2019020550A2 (en) | 2017-07-25 | 2019-01-31 | Smith & Nephew Plc | Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings |
WO2019020551A1 (en) | 2017-07-25 | 2019-01-31 | Smith & Nephew Plc | Skewing pads for impedance measurement |
WO2019020666A1 (en) | 2017-07-25 | 2019-01-31 | Smith & Nephew Plc | Restriction of sensor-monitored region for sensor-enabled wound dressings |
US10201642B2 (en) | 2014-01-21 | 2019-02-12 | Smith & Nephew Plc | Collapsible dressing for negative pressure wound treatment |
US10201644B2 (en) | 2005-09-07 | 2019-02-12 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
WO2019030384A2 (en) | 2017-08-10 | 2019-02-14 | Smith & Nephew Plc | Positioning of sensors for sensor enabled wound monitoring or therapy |
US10231878B2 (en) | 2011-05-17 | 2019-03-19 | Smith & Nephew Plc | Tissue healing |
WO2019067264A1 (en) * | 2017-09-29 | 2019-04-04 | Kci Licensing, Inc. | Dressing exhibiting low tissue ingrowth and negative-pressure treatment method |
WO2019063481A1 (en) | 2017-09-27 | 2019-04-04 | Smith & Nephew Plc | Ph sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses |
WO2019072531A1 (en) | 2017-09-28 | 2019-04-18 | Smith & Nephew Plc | Neurostimulation and monitoring using sensor enabled wound monitoring and therapy apparatus |
WO2019076967A2 (en) | 2017-10-18 | 2019-04-25 | Smith & Nephew Plc | Fluid management for sensor enabled wound therapy dressings and systems |
WO2019086330A1 (en) * | 2017-11-01 | 2019-05-09 | Smith & Nephew Plc | Dressing for negative pressure wound therapy with filter |
US10456497B2 (en) | 2014-09-10 | 2019-10-29 | C. R. Bard, Inc. | Protective dressing for skin-placed medical device |
US10493184B2 (en) | 2013-03-15 | 2019-12-03 | Smith & Nephew Plc | Wound dressing and method of treatment |
CN110662517A (en) * | 2017-06-14 | 2020-01-07 | T.J.史密夫及内修有限公司 | Negative pressure wound therapy device |
US10537657B2 (en) | 2010-11-25 | 2020-01-21 | Smith & Nephew Plc | Composition I-II and products and uses thereof |
WO2020043806A1 (en) | 2018-08-29 | 2020-03-05 | Smith & Nephew Plc | Component positioning and encapsulation for sensor enabled wound dressings |
WO2020079009A1 (en) | 2018-10-19 | 2020-04-23 | T.J.Smith And Nephew,Limited | Tissue treatment device |
WO2020078993A1 (en) | 2018-10-18 | 2020-04-23 | T.J.Smith And Nephew,Limited | Tissue treatment device |
WO2020078978A2 (en) | 2018-10-16 | 2020-04-23 | Smith & Nephew Plc | Systems and method for applying biocompatible encapsulation to sensor enabled wound monitoring and therapy dressings |
US10682446B2 (en) | 2014-12-22 | 2020-06-16 | Smith & Nephew Plc | Dressing status detection for negative pressure wound therapy |
WO2020126991A1 (en) | 2018-12-21 | 2020-06-25 | T.J.Smith And Nephew,Limited | Wound therapy systems and methods with multiple power sources |
US10695226B2 (en) | 2013-03-15 | 2020-06-30 | Smith & Nephew Plc | Wound dressing and method of treatment |
WO2020157066A1 (en) | 2019-01-30 | 2020-08-06 | Smith & Nephew Plc | Optical sensing systems and methods for sensor enabled wound dressings and systems |
WO2020161086A1 (en) | 2019-02-04 | 2020-08-13 | T.J.Smith And Nephew,Limited | Wound contact layer and dressing for iodine delivery |
EP3701920A1 (en) | 2015-04-27 | 2020-09-02 | Smith & Nephew plc | Reduced pressure apparatus and methods |
WO2020187643A1 (en) | 2019-03-19 | 2020-09-24 | Smith & Nephew Plc | Systems and methods for measuring tissue impedance |
EP3349807B1 (en) | 2015-09-17 | 2021-02-24 | 3M Innovative Properties Company | Hybrid silicone and acrylic adhesive cover for use with wound treatment |
GB2586813A (en) * | 2019-09-03 | 2021-03-10 | Marks Spencer Plc | An absorbent composite |
WO2021069642A1 (en) * | 2019-10-11 | 2021-04-15 | T.J. Smith And Nephew, Limited | Apparatuses and methods for negative pressure wound therapy |
WO2021069290A1 (en) | 2019-10-11 | 2021-04-15 | T.J.Smith And Nephew,Limited | Apparatuses and methods for negative pressure wound therapy |
WO2021069291A1 (en) | 2019-10-11 | 2021-04-15 | T.J.Smith And Nephew, Limited | Apparatuses and methods for negative pressure wound therapy with switcheable fluid management |
WO2021089637A1 (en) | 2019-11-06 | 2021-05-14 | T.J. Smith And Nephew, Limited | Wound contact layer testing apparatus and method |
US11090196B2 (en) | 2015-12-30 | 2021-08-17 | Smith & Nephew Plc | Absorbent negative pressure wound therapy dressing |
WO2021198464A1 (en) | 2020-04-02 | 2021-10-07 | T.J.Smith And Nephew,Limited | Wound care compositions and methods of preparation thereof |
WO2021198463A1 (en) | 2020-04-01 | 2021-10-07 | T.J.Smith And Nephew,Limited | Apparatuses for negative pressure wound therapy |
WO2021198461A1 (en) | 2020-04-02 | 2021-10-07 | T.J.Smith And Nephew,Limited | Wound dressing control and activation |
WO2021198470A1 (en) | 2020-04-02 | 2021-10-07 | T.J.Smith And Nephew,Limited | Wound dressing |
WO2021214203A1 (en) | 2020-04-22 | 2021-10-28 | T.J.Smith And Nephew,Limited | Tissue treatment device |
WO2021219752A1 (en) | 2020-04-29 | 2021-11-04 | T.J.Smith And Nephew,Limited | Apparatuses and methods for negative pressure wound therapy |
GB202114307D0 (en) | 2021-10-06 | 2021-11-17 | Smith & Nephew | Wound dressing compositions and methods of use and preparation therof |
GB202114298D0 (en) | 2021-10-06 | 2021-11-17 | Smith & Nephew | Wound dressing with one or more composite layers |
US11253399B2 (en) | 2007-12-06 | 2022-02-22 | Smith & Nephew Plc | Wound filling apparatuses and methods |
RU2769819C1 (en) * | 2021-04-23 | 2022-04-06 | Общество с ограниченной ответственностью "СИЛЬВЕР АСЕПТИКА" | Antiseptic product |
US11484443B2 (en) | 2010-02-26 | 2022-11-01 | Smith & Nephew, Inc. | Systems and methods for using negative pressure wound therapy to manage open abdominal wounds |
US11554051B2 (en) | 2017-06-30 | 2023-01-17 | T.J. Smith And Nephew, Limited | Negative pressure wound therapy apparatus |
USD977624S1 (en) | 2016-02-29 | 2023-02-07 | Smith & Nephew Plc | Portable negative pressure apparatus |
WO2023057356A1 (en) | 2021-10-06 | 2023-04-13 | T.J.Smith And Nephew,Limited | Wound dressing apparatuses and methods for nitric oxide delivery |
US11638666B2 (en) | 2011-11-25 | 2023-05-02 | Smith & Nephew Plc | Composition, apparatus, kit and method and uses thereof |
WO2023152103A1 (en) * | 2022-02-10 | 2023-08-17 | F. Hoffmann-La Roche Ag | Body-wearable medical device comprising a superabsorbent substance |
WO2023165974A1 (en) | 2022-03-01 | 2023-09-07 | T.J.Smith And Nephew, Limited | Oxygen delivery to a wound |
EP3669843B1 (en) | 2018-12-21 | 2023-10-25 | Paul Hartmann AG | Superabsorbent wound dressing with silicone wound contact layer |
US11806217B2 (en) | 2016-12-12 | 2023-11-07 | Smith & Nephew Plc | Wound dressing |
US11931226B2 (en) | 2013-03-15 | 2024-03-19 | Smith & Nephew Plc | Wound dressing sealant and use thereof |
US11938231B2 (en) | 2010-11-25 | 2024-03-26 | Smith & Nephew Plc | Compositions I-I and products and uses thereof |
EP4353271A1 (en) | 2017-07-12 | 2024-04-17 | Smith & Nephew plc | Antimicrobial or wound care materials, devices and uses |
US11992392B2 (en) * | 2017-11-01 | 2024-05-28 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US12011532B2 (en) | 2020-01-29 | 2024-06-18 | T. J. Smith and Nephew, Limited | Systems and methods for measuring and tracking wound volume |
US12121420B2 (en) | 2022-03-02 | 2024-10-22 | Smith & Nephew Plc | Wound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component |
Families Citing this family (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0722820D0 (en) | 2007-11-21 | 2008-01-02 | Smith & Nephew | Vacuum assisted wound dressing |
GB2455962A (en) | 2007-12-24 | 2009-07-01 | Ethicon Inc | Reinforced adhesive backing sheet, for plaster |
BRPI0906095A2 (en) | 2008-03-05 | 2016-06-21 | Kci Licensing Inc | reduced pressure dressing to apply a reduced pressure treatment to a tissue site, method for collecting fluid in a bandage positioned at a tissue site and a reduced pressure dressing adapted to deliver a reduced pressure to a tissue site. |
GB0808376D0 (en) | 2008-05-08 | 2008-06-18 | Bristol Myers Squibb Co | Wound dressing |
GB0817796D0 (en) | 2008-09-29 | 2008-11-05 | Convatec Inc | wound dressing |
US8814842B2 (en) | 2010-03-16 | 2014-08-26 | Kci Licensing, Inc. | Delivery-and-fluid-storage bridges for use with reduced-pressure systems |
GB201020236D0 (en) | 2010-11-30 | 2011-01-12 | Convatec Technologies Inc | A composition for detecting biofilms on viable tissues |
ES2748519T3 (en) | 2010-12-08 | 2020-03-17 | Convatec Technologies Inc | Wound exudate system accessory |
CA2819475C (en) | 2010-12-08 | 2019-02-12 | Convatec Technologies Inc. | Integrated system for assessing wound exudates |
GB2488749A (en) | 2011-01-31 | 2012-09-12 | Systagenix Wound Man Ip Co Bv | Laminated silicone coated wound dressing |
GB201106491D0 (en) | 2011-04-15 | 2011-06-01 | Systagenix Wound Man Ip Co Bv | Patterened silicone coating |
GB201115182D0 (en) | 2011-09-02 | 2011-10-19 | Trio Healthcare Ltd | Skin contact material |
GB2497406A (en) | 2011-11-29 | 2013-06-12 | Webtec Converting Llc | Dressing with a perforated binder layer |
GB201120693D0 (en) | 2011-12-01 | 2012-01-11 | Convatec Technologies Inc | Wound dressing for use in vacuum therapy |
US10940047B2 (en) | 2011-12-16 | 2021-03-09 | Kci Licensing, Inc. | Sealing systems and methods employing a hybrid switchable drape |
EP3005997B1 (en) | 2011-12-16 | 2024-06-26 | Solventum Intellectual Properties Company | Releasable medical drapes |
HUE047600T2 (en) | 2012-05-23 | 2020-04-28 | Smith & Nephew | Apparatuses for negative pressure wound therapy |
KR20150085837A (en) | 2012-11-16 | 2015-07-24 | 케이씨아이 라이센싱 인코포레이티드 | Medical drafe with pattern adhesive layers and method of manufacturing same |
GB201222770D0 (en) | 2012-12-18 | 2013-01-30 | Systagenix Wound Man Ip Co Bv | Wound dressing with adhesive margin |
CA2895896A1 (en) | 2012-12-20 | 2014-06-26 | Convatec Technologies Inc. | Processing of chemically modified cellulosic fibres |
USD738487S1 (en) | 2013-01-28 | 2015-09-08 | Molnlycke Health Care Ab | Suction device for negative pressure therapy |
JP2016518936A (en) | 2013-05-10 | 2016-06-30 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Fluid connector for wound irrigation and aspiration |
WO2015065742A1 (en) | 2013-10-28 | 2015-05-07 | Kci Licensing, Inc. | Hybrid sealing tape |
EP3257486B1 (en) | 2013-10-30 | 2019-06-05 | KCI Licensing, Inc. | Condensate absorbing and dissipating system |
EP3744361B1 (en) * | 2013-10-30 | 2024-07-24 | Solventum Intellectual Properties Company | Absorbent conduit and system |
US9956120B2 (en) * | 2013-10-30 | 2018-05-01 | Kci Licensing, Inc. | Dressing with sealing and retention interface |
EP3173054B1 (en) | 2013-10-30 | 2018-04-25 | KCI Licensing, Inc. | Dressing with diffrentially sized perforations |
US10632020B2 (en) | 2014-02-28 | 2020-04-28 | Kci Licensing, Inc. | Hybrid drape having a gel-coated perforated mesh |
US11026844B2 (en) * | 2014-03-03 | 2021-06-08 | Kci Licensing, Inc. | Low profile flexible pressure transmission conduit |
EP3137029B1 (en) | 2014-05-02 | 2020-09-09 | KCI Licensing, Inc. | Fluid storage devices, systems, and methods |
EP3151795B1 (en) | 2014-06-05 | 2017-09-27 | KCI Licensing, Inc. | Dressing with fluid acquisition and distribution characteristics |
US10398604B2 (en) | 2014-12-17 | 2019-09-03 | Kci Licensing, Inc. | Dressing with offloading capability |
EP3294245B1 (en) | 2015-05-08 | 2019-09-04 | KCI Licensing, Inc. | Low acuity dressing with integral pump |
EP3344205B1 (en) | 2015-09-01 | 2020-09-30 | KCI Licensing, Inc. | Dressing with increased apposition force |
US11591755B2 (en) | 2015-11-03 | 2023-02-28 | Kimberly-Clark Worldwide, Inc. | Paper tissue with high bulk and low lint |
JP6911043B2 (en) | 2016-03-07 | 2021-07-28 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Wound healing devices and methods in which the negative pressure source is integrated within the wound dressing |
CN105662714B (en) * | 2016-03-10 | 2021-04-27 | 温州医科大学 | Medical plaster for drainage hole |
CA3019445A1 (en) | 2016-03-30 | 2017-12-14 | Synovo Gmbh | Detecting microbial infection in wounds |
KR20190013725A (en) | 2016-03-30 | 2019-02-11 | 컨바텍 테크놀러지스 인크 | Detection of microbial infection in wound |
CN109121396B (en) | 2016-04-26 | 2022-04-05 | 史密夫及内修公开有限公司 | Wound dressing and method for use with an integrated negative pressure source having a fluid intrusion inhibiting feature |
GB201608099D0 (en) | 2016-05-09 | 2016-06-22 | Convatec Technologies Inc | Negative pressure wound dressing |
AU2017292881B2 (en) | 2016-07-08 | 2022-03-17 | Convatec Technologies Inc. | Flexible negative pressure system |
CA3030153C (en) | 2016-07-08 | 2023-10-24 | Convatec Technologies Inc. | Fluid flow sensing |
KR20190028467A (en) | 2016-07-08 | 2019-03-18 | 컨바텍 테크놀러지스 인크 | Body fluid collecting device |
WO2018017391A1 (en) * | 2016-07-21 | 2018-01-25 | Kci Licensing, Inc. | Portable negative-pressure wound closure system |
US20190282737A1 (en) | 2016-09-30 | 2019-09-19 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
EP3519001A1 (en) | 2016-09-30 | 2019-08-07 | Smith & Nephew PLC | Negative pressure wound treatment apparatuses and methods with integrated electronics |
USD967439S1 (en) * | 2016-11-08 | 2022-10-18 | Ezbra Advanced Wound Care Ltd | Post-surgical dressing |
AU201716716S (en) | 2017-05-11 | 2017-11-21 | MAƒA¶LNLYCKE HEALTH CARE AB | Wound dressings |
EP3635732A1 (en) | 2017-05-15 | 2020-04-15 | Smith & Nephew plc | Wound analysis device and method |
WO2018212849A1 (en) * | 2017-05-16 | 2018-11-22 | Kci Licensing, Inc. | An absorbent negative-pressure dressing system for use with post-surgical breast wounds |
CN110996867A (en) * | 2017-06-12 | 2020-04-10 | 凯希特许有限公司 | Foamed and textured sintered polymeric wound fillers |
US10751212B2 (en) * | 2017-06-26 | 2020-08-25 | Maryam Raza | Multilayer dressing device and method for preventing and treating pressure ulcers and chronic wounds |
WO2019007874A1 (en) | 2017-07-07 | 2019-01-10 | Smith & Nephew Plc | Wound therapy system and dressing for delivering oxygen to a wound |
GB201804971D0 (en) | 2018-03-28 | 2018-05-09 | Smith & Nephew | Electrostatic discharge protection for sensors in wound therapy |
EP3681376A1 (en) | 2017-09-10 | 2020-07-22 | Smith & Nephew PLC | Systems and methods for inspection of encapsulation and components in sensor equipped wound dressings |
GB201718070D0 (en) | 2017-11-01 | 2017-12-13 | Smith & Nephew | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US11701265B2 (en) | 2017-09-13 | 2023-07-18 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
WO2019108172A1 (en) | 2017-11-29 | 2019-06-06 | Kimberly-Clark Worldwide, Inc. | Fibrous sheet with improved properties |
EP3498243A1 (en) * | 2017-12-15 | 2019-06-19 | Mölnlycke Health Care AB | Medical dressing |
GB201811449D0 (en) | 2018-07-12 | 2018-08-29 | Smith & Nephew | Apparatuses and methods for negative pressure wound therapy |
CN112469857B (en) | 2018-07-25 | 2022-06-17 | 金伯利-克拉克环球有限公司 | Method for producing three-dimensional foam-laid nonwovens |
EP3849401A1 (en) | 2018-09-12 | 2021-07-21 | Smith & Nephew plc | Device, apparatus and method of determining skin perfusion pressure |
GB2592502B (en) | 2018-09-28 | 2023-03-22 | Smith & Nephew | Optical fibers for optically sensing through wound dressings |
DE102018007692A1 (en) * | 2018-09-30 | 2020-04-02 | Alexander Folwarzny | Wound dressing |
GB201900015D0 (en) | 2019-01-02 | 2019-02-13 | Smith & Nephew | Negative pressure wound therapy apparatus |
USD917711S1 (en) * | 2019-01-11 | 2021-04-27 | KOBAYASHI Healthcare International Inc. | Warmer |
EP3917470A1 (en) | 2019-01-30 | 2021-12-08 | Smith & Nephew plc | Sensor integrated dressings and systems |
GB2614490B (en) | 2019-03-18 | 2023-12-06 | Smith & Nephew | Design rules for sensor integrated substrates |
WO2020186729A1 (en) * | 2019-03-19 | 2020-09-24 | 景润(上海)医疗器械有限公司 | Negative pressure drainage and cleaning system for sutureless closure of skin wound |
GB201903778D0 (en) | 2019-03-20 | 2019-05-01 | Smith & Nephew | Exhaust blockage detection for negative pressure wound treatment apparatuses |
GB201903774D0 (en) | 2019-03-20 | 2019-05-01 | Smith & Nephew | Negative pressure wound treatment apparatuses and methods with integrated electronics |
BR112021020780A2 (en) | 2019-04-17 | 2021-12-14 | Masimo Corp | Electrocardiogram (ECG) device, blood pressure monitoring device, blood pressure monitor, blood pressure cuff, mounting for enabling a caregiver to attach a physiological monitoring device to a user's arm, charging station for providing power to a physiological monitoring device, non-invasive blood pressure monitor and method for a non-invasive blood pressure monitor |
USD934415S1 (en) * | 2019-05-03 | 2021-10-26 | Coloplast A/S | Cold sore patch applicator |
GB201907716D0 (en) | 2019-05-31 | 2019-07-17 | Smith & Nephew | Systems and methods for extending operational time of negative pressure wound treatment apparatuses |
WO2020245656A1 (en) | 2019-06-03 | 2020-12-10 | Convatec Limited | Methods and devices to disrupt and contain pathogens |
KR102628722B1 (en) * | 2019-06-20 | 2024-01-24 | 쿠오후앙 양 | Fluid retention/retention pad |
GB201909947D0 (en) | 2019-07-11 | 2019-08-28 | Smith & Nephew | Sensor sheet with digital distributed data acquisition for wound monitoring and treatment |
USD985498S1 (en) | 2019-08-16 | 2023-05-09 | Masimo Corporation | Connector |
USD917704S1 (en) | 2019-08-16 | 2021-04-27 | Masimo Corporation | Patient monitor |
USD919094S1 (en) | 2019-08-16 | 2021-05-11 | Masimo Corporation | Blood pressure device |
USD919100S1 (en) | 2019-08-16 | 2021-05-11 | Masimo Corporation | Holder for a patient monitor |
USD1006236S1 (en) * | 2019-10-07 | 2023-11-28 | 3M Innovative Properties Company | Wound dressing |
GB201914443D0 (en) | 2019-10-07 | 2019-11-20 | Smith & Nephew | Sensor enabled negative pressure wound monitoring apparatus with different impedances inks |
GB201914427D0 (en) | 2019-10-07 | 2019-11-20 | Smith & Nephew | Negative pressure wound therapy systems and methods with multiple negative pressure sources |
USD927699S1 (en) * | 2019-10-18 | 2021-08-10 | Masimo Corporation | Electrode pad |
CN110694096A (en) * | 2019-11-20 | 2020-01-17 | 湖北双星药业股份有限公司 | Active wound and facial skin repair dressing and preparation method thereof |
GB201918856D0 (en) | 2019-12-19 | 2020-02-05 | Smith & Nephew | Sensor integrated dressings and systems |
US11331221B2 (en) | 2019-12-27 | 2022-05-17 | Convatec Limited | Negative pressure wound dressing |
US11771819B2 (en) | 2019-12-27 | 2023-10-03 | Convatec Limited | Low profile filter devices suitable for use in negative pressure wound therapy systems |
WO2021142224A1 (en) * | 2020-01-08 | 2021-07-15 | ImMutriX Therapeutics, Inc. | Hemostatic gauze comprising carbon |
GB202000274D0 (en) | 2020-01-09 | 2020-02-26 | Smith & Nephew | Systems and methods for monitoring operational lifetime of negative pressure wound treatment apparatuses |
GB202000574D0 (en) | 2020-01-15 | 2020-02-26 | Smith & Nephew | Fluidic connectors for negative pressure wound therapy |
USD948059S1 (en) * | 2020-02-12 | 2022-04-05 | Unexo Life Sciences Pvt. Ltd. | Knee patch |
US11878104B2 (en) | 2020-02-20 | 2024-01-23 | Convatec Limited | Wound dressing and a wound therapy apparatus |
GB202003203D0 (en) | 2020-03-05 | 2020-04-22 | Smith & Nephew | Sensor integrated dressings and systems |
GB202003586D0 (en) | 2020-03-12 | 2020-04-29 | Smith & Nephew | Device, apparatus and method of determining skin perfusion pressure |
USD933232S1 (en) | 2020-05-11 | 2021-10-12 | Masimo Corporation | Blood pressure monitor |
USD979516S1 (en) | 2020-05-11 | 2023-02-28 | Masimo Corporation | Connector |
US20240024565A1 (en) | 2020-10-05 | 2024-01-25 | T.J.Smith And Nephew,Limited | Temperature monitoring and control for negative pressure wound therapy systems |
GB202104922D0 (en) | 2021-04-07 | 2021-05-19 | Smith & Nephew | Temperature monitoring and control for negative pressure wound therapy systems |
US11844918B2 (en) * | 2021-04-25 | 2023-12-19 | Tri.O Medical Device Ltd | Apparatus for use with a pressure-regulating device |
GB202109148D0 (en) | 2021-06-25 | 2021-08-11 | Smith & Nephew | Design of electronic circutry for negative pressure wound therapy systems |
JP2024525191A (en) | 2021-06-25 | 2024-07-10 | ティージェイ スミス アンド ネフュー リミテッド | Liquid ingress protection and design of electronic circuits for negative pressure wound therapy systems |
GB202109154D0 (en) | 2021-06-25 | 2021-08-11 | Smith & Nephew | Liquid ingress protection for negative pressure wound therapy systems |
USD1012294S1 (en) * | 2021-07-02 | 2024-01-23 | Haifei Long | Electrode pad |
GB202110240D0 (en) | 2021-07-16 | 2021-09-01 | Smith & Nephew | Reduced pressure apparatuses and methods |
GB202116857D0 (en) | 2021-11-23 | 2022-01-05 | Smith & Nephew | Soft-start mechanism for wound monitoring and treatment devices |
WO2023131680A1 (en) | 2022-01-10 | 2023-07-13 | T.J.Smith And Nephew,Limited | Temperature detection and protection for negative pressure wound therapy systems |
WO2023135177A1 (en) | 2022-01-14 | 2023-07-20 | T.J.Smith And Nephew, Limited | Self-calibration with dynamic therapy performance for negative pressure wound therapy devices |
DE102022133930A1 (en) | 2022-12-19 | 2024-06-20 | Paul Hartmann Ag | Wound dressing for use in negative pressure therapy of wounds, negative pressure wound therapy kit and negative pressure wound therapy system |
GB202304922D0 (en) | 2023-04-03 | 2023-05-17 | Smith & Nephew | Printed circuit board configurations for negative pressure wound therapy devices |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4030465A1 (en) * | 1990-09-26 | 1992-04-02 | Ruschke Mona | Wound plaster - is coloured in varying shades of brown on exposed side |
GB2331937A (en) * | 1997-12-03 | 1999-06-09 | Sca Hygiene Prod Ab | Absorbent product |
US20020035352A1 (en) * | 1999-03-19 | 2002-03-21 | Peter Ronnberg | Absorbent article |
EP1353001A1 (en) * | 2002-04-11 | 2003-10-15 | Main S.p.A. | Absorbent article |
US20060020234A1 (en) * | 2004-07-21 | 2006-01-26 | Lin-Shing Chou | Absorbent sac wound dressing |
US20090306609A1 (en) | 2005-04-27 | 2009-12-10 | Smith & Nephew Plc | Wound treatment apparatus and method |
US7753894B2 (en) | 2004-04-27 | 2010-07-13 | Smith & Nephew Plc | Wound cleansing apparatus with stress |
US20110282309A1 (en) | 2010-04-27 | 2011-11-17 | Smith & Nephew Plc | Wound dressing and method of use |
US20120095380A1 (en) * | 2009-06-15 | 2012-04-19 | Molnlycke Health Care Ab | Wound dressing with high liquid handling capacity |
US20120116334A1 (en) | 2009-12-22 | 2012-05-10 | SMITH & Nephew ,Inc. | Apparatuses and methods for negative pressure wound therapy |
US20120308780A1 (en) | 2009-11-27 | 2012-12-06 | Roettger Henning | Absorbent structure |
WO2013007973A2 (en) | 2011-07-14 | 2013-01-17 | Smith & Nephew Plc | Wound dressing and method of treatment |
Family Cites Families (956)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1032818A (en) | 1910-04-12 | 1912-07-16 | George F Day | Protected spark-plug. |
US2331271A (en) | 1938-07-09 | 1943-10-05 | John E Gilchrist | Catamenial bandage |
US2727382A (en) | 1950-03-13 | 1955-12-20 | Sudbau Suddeutsche Bautechnik | Hollow frangible block |
US2889039A (en) | 1956-05-02 | 1959-06-02 | Johnson & Johnson | Adhesive bandage |
US2877765A (en) | 1956-07-13 | 1959-03-17 | Bunyan John | Surgical dressings, bandages and the like |
FR1163907A (en) | 1956-10-25 | 1958-10-02 | Skin care devices | |
US2905174A (en) | 1957-09-27 | 1959-09-22 | Johnson & Johnson | Adhesive bandage |
US3073304A (en) | 1960-08-08 | 1963-01-15 | Kendall & Co | Perforated adhesive tape and bandage formed therewith |
US3285245A (en) | 1964-07-06 | 1966-11-15 | Minnesota Mining & Mfg | Absorbent wound dressing |
CS161842B2 (en) | 1968-03-09 | 1975-06-10 | ||
US3568675A (en) | 1968-08-30 | 1971-03-09 | Clyde B Harvey | Fistula and penetrating wound dressing |
US3943734A (en) | 1969-02-26 | 1976-03-16 | Vepa Ag | Apparatus for the continuous treatment of textile material |
US4029598A (en) | 1969-03-14 | 1977-06-14 | E. Merck A. G. | Non-bleeding indicator and dyes therefor |
US3687136A (en) | 1971-05-14 | 1972-08-29 | Raymond Lee Organization Inc | Bandage |
US3929135A (en) | 1974-12-20 | 1975-12-30 | Procter & Gamble | Absorptive structure having tapered capillaries |
US3964039A (en) | 1974-12-24 | 1976-06-15 | Monsanto Company | Luminescent solid state status indicators |
US3972328A (en) | 1975-07-28 | 1976-08-03 | E. R. Squibb & Sons, Inc. | Surgical bandage |
JPS5230463U (en) * | 1975-08-22 | 1977-03-03 | ||
FR2342716A1 (en) | 1976-02-18 | 1977-09-30 | Biotrol Sa Lab | BODILY EXCRETIONS DRAINAGE AND COLLECTION DEVICE |
US4093277A (en) | 1977-01-21 | 1978-06-06 | Hollister Incorporated | Assembly for preparing inserts for hospital identification bracelets |
US4224941A (en) | 1978-11-15 | 1980-09-30 | Stivala Oscar G | Hyperbaric treatment apparatus |
NZ199071A (en) | 1980-12-08 | 1984-05-31 | Johnson & Johnson Prod Inc | Surgical dressing activated charcoal impregnated with anti-microbial agent |
MX156407A (en) | 1981-06-01 | 1988-08-19 | Kendall & Co | SURGICAL SPONGE IMPROVEMENTS FOR TRACHEOTOMY |
EP0086773A1 (en) | 1981-08-26 | 1983-08-31 | TOWSEND, Marvin S | Disposable article with non-leachable saline water indicator |
DE3464326D1 (en) | 1983-04-06 | 1987-07-30 | Smith & Nephew Ass | Dressing |
US4624656A (en) | 1983-07-25 | 1986-11-25 | Hospitak, Inc. | Hyperbaric gas treatment device |
DK149601C (en) | 1984-01-23 | 1987-02-02 | Coloplast As | PRESSURELY BANDAGE |
US5296290A (en) | 1984-01-26 | 1994-03-22 | Johnson & Johnson | Absorbent laminates |
DE3441891A1 (en) | 1984-11-16 | 1986-05-28 | Walter Beck | METHOD AND DEVICE FOR SUCTIONING SECRETARY LIQUID FROM A Wound |
DE3443101A1 (en) | 1984-11-27 | 1986-05-28 | Artur 6230 Frankfurt Beudt | Covering device for open wounds |
US4605399A (en) | 1984-12-04 | 1986-08-12 | Complex, Inc. | Transdermal infusion device |
US4690134A (en) | 1985-07-01 | 1987-09-01 | Snyders Robert V | Ventricular assist device |
US4834735A (en) | 1986-07-18 | 1989-05-30 | The Proctor & Gamble Company | High density absorbent members having lower density and lower basis weight acquisition zones |
US4728499A (en) | 1986-08-13 | 1988-03-01 | Fehder Carl G | Carbon dioxide indicator device |
US4813942A (en) | 1987-03-17 | 1989-03-21 | Bioderm, Inc. | Three step wound treatment method and dressing therefor |
US4770187A (en) | 1987-06-29 | 1988-09-13 | Md Engineering | Surgical aspirator and monitor |
US4846164A (en) | 1987-08-07 | 1989-07-11 | Martz Joel D | Vapor permeable dressing |
US5061258A (en) | 1987-08-07 | 1991-10-29 | Martz Joel D | Vapor permeable dressing with releasable medication |
GB8721659D0 (en) * | 1987-09-15 | 1987-10-21 | Smith & Nephew Ass | Adhesive coated dressings & applicators |
US4798603A (en) | 1987-10-16 | 1989-01-17 | Kimberly-Clark Corporation | Absorbent article having a hydrophobic transport layer |
US4973325A (en) | 1987-11-20 | 1990-11-27 | Kimberly-Clark Corporation | Absorbent article having a fluid transfer member |
US5018515A (en) | 1987-12-14 | 1991-05-28 | The Kendall Company | See through absorbent dressing |
US5383869A (en) | 1988-03-31 | 1995-01-24 | The Procter & Gamble Company | Thin, flexible sanitary napkin |
CA1334926C (en) | 1988-04-28 | 1995-03-28 | Masao Yafuso | Composition, apparatus and method for sensing ionic components |
US4886697A (en) | 1988-04-29 | 1989-12-12 | Weyerhaeuser Company | Thermoplastic material containing absorbent pad or other article |
US5000172A (en) | 1988-05-05 | 1991-03-19 | Smith & Nephew Plc | Dressing system with reference marks |
US4988344A (en) | 1988-05-24 | 1991-01-29 | The Procter & Gamble Company | Absorbent articles with multiple layer absorbent layers |
US4988345A (en) | 1988-05-24 | 1991-01-29 | The Procter & Gamble Company | Absorbent articles with rapid acquiring absorbent cores |
US5197945A (en) | 1988-05-31 | 1993-03-30 | Minnesota Mining And Manufacturing Company | Alginate wound dressing of good integrity |
US4921492A (en) | 1988-05-31 | 1990-05-01 | Laser Technologies Group, Inc. | End effector for surgical plume evacuator |
US5000741A (en) | 1988-08-22 | 1991-03-19 | Kalt Medical Corporation | Transparent tracheostomy tube dressing |
US5151091A (en) | 1988-10-24 | 1992-09-29 | Mcneil-Ppc, Inc. | Absorbent structure having multiple canals |
US5261893A (en) | 1989-04-03 | 1993-11-16 | Zamierowski David S | Fastening system and method |
US4969880A (en) | 1989-04-03 | 1990-11-13 | Zamierowski David S | Wound dressing and treatment method |
US5100396A (en) | 1989-04-03 | 1992-03-31 | Zamierowski David S | Fluidic connection system and method |
US5527293A (en) | 1989-04-03 | 1996-06-18 | Kinetic Concepts, Inc. | Fastening system and method |
JPH02131432U (en) * | 1989-04-04 | 1990-11-01 | ||
US4968181A (en) | 1989-04-07 | 1990-11-06 | Goldman Jerome L | Shock absorber and method for offshore jack-up rigs |
US5106362A (en) | 1989-04-13 | 1992-04-21 | The Kendall Company | Vented absorbent dressing |
US4985467A (en) | 1989-04-12 | 1991-01-15 | Scotfoam Corporation | Highly absorbent polyurethane foam |
US5056510A (en) | 1989-04-13 | 1991-10-15 | The Kendall Company | Vented wound dressing |
US5271987A (en) | 1989-04-17 | 1993-12-21 | Weyerhaeuser Company | Unitary absorbent structure |
CA2014203C (en) | 1989-05-08 | 2000-03-21 | Margaret Gwyn Latimer | Absorbent structure having improved fluid surge management and product incorporating same |
US5124197A (en) | 1989-07-28 | 1992-06-23 | Kimberly-Clark Corporation | Inflated cellulose fiber web possessing improved vertical wicking properties |
US5409472A (en) | 1989-08-03 | 1995-04-25 | Smith & Nephew Plc | Adhesive polymeric foam dressings |
US5374260A (en) | 1989-08-04 | 1994-12-20 | Johnson & Johnson Inc. | Unitized sanitary napkin |
US5106629A (en) | 1989-10-20 | 1992-04-21 | Ndm Acquisition Corp. | Transparent hydrogel wound dressing |
US5264218A (en) | 1989-10-25 | 1993-11-23 | C. R. Bard, Inc. | Modifiable, semi-permeable, wound dressing |
US5181905A (en) | 1989-11-28 | 1993-01-26 | Eric Flam | Method of monitoring the condition of the skin or wound |
US5065600A (en) | 1989-11-30 | 1991-11-19 | Guilford Mills, Inc. | Textile fabric with opposed absorbent and non-absorbent layers and method of fabricating same |
US5021050A (en) | 1989-12-11 | 1991-06-04 | Weyerhaeuser Company | Absorbent panel structure |
US5152757A (en) | 1989-12-14 | 1992-10-06 | Brigham And Women's Hospital | System for diagnosis and treatment of wounds |
CA2068519C (en) | 1990-01-23 | 1997-12-02 | Glen R. Lash | Absorbent structures containing thermally-bonded stiffened fiber layer and superabsorbent material layer |
US5217445A (en) | 1990-01-23 | 1993-06-08 | The Procter & Gamble Company | Absorbent structures containing superabsorbent material and web of wetlaid stiffened fibers |
US5360420A (en) | 1990-01-23 | 1994-11-01 | The Procter & Gamble Company | Absorbent structures containing stiffened fibers and superabsorbent material |
GB9001917D0 (en) | 1990-01-27 | 1990-03-28 | Smith & Nephew | Hygienic absorbent products |
US5149334A (en) | 1990-04-02 | 1992-09-22 | The Procter & Gamble Company | Absorbent articles containing interparticle crosslinked aggregates |
US5115801A (en) | 1990-05-02 | 1992-05-26 | Ndm Acquisition Corp. | Hydrogel burn dressing product |
US5037409A (en) | 1990-07-12 | 1991-08-06 | Kimberly-Clark Corporation | Absorbent article having a hydrophilic flow-modulating layer |
JP2810772B2 (en) | 1990-08-01 | 1998-10-15 | 花王株式会社 | Absorbent articles |
US5591149A (en) * | 1992-10-07 | 1997-01-07 | The Procter & Gamble Company | Absorbent article having meltblown components |
US5382245A (en) | 1991-07-23 | 1995-01-17 | The Procter & Gamble Company | Absorbent articles, especially catamenials, having improved fluid directionality |
US5314743A (en) | 1990-12-17 | 1994-05-24 | Kimberly-Clark Corporation | Nonwoven web containing shaped fibers |
DE9017289U1 (en) | 1990-12-21 | 1992-04-23 | Wolter, Dietmar, Prof. Dr.med., 21033 Hamburg | Device for covering a wound in case of skin perforation by an elongated object |
US5257982A (en) | 1990-12-26 | 1993-11-02 | Hercules Incorporated | Fluid absorbing article utilizing a flow control cover sheet |
US5486167A (en) | 1991-01-03 | 1996-01-23 | The Procter & Gamble Company | Absorbent article having blended multi-layer absorbent structure with improved integrity |
US5242435A (en) | 1991-01-04 | 1993-09-07 | Johnson & Johnson Inc. | Highly absorbent and flexible cellulosic pulp fluff sheet |
SE470052B (en) | 1991-01-25 | 1993-11-01 | Lic Hygien Ab | Venkateterförband |
US5171391A (en) | 1991-02-26 | 1992-12-15 | Weyerhaeuser Company | Method of making an absorbent product |
US5175046A (en) | 1991-03-04 | 1992-12-29 | Chicopee | Superabsorbent laminate structure |
GB9105995D0 (en) | 1991-03-21 | 1991-05-08 | Smith & Nephew | Wound dressing |
US5160315A (en) | 1991-04-05 | 1992-11-03 | Minnesota Mining And Manufacturing Company | Combined adhesive strip and transparent dressing delivery system |
US5080661A (en) | 1991-04-18 | 1992-01-14 | Hollister Incorporated | Fixation pin entry site dressing and method |
US5180375A (en) | 1991-05-02 | 1993-01-19 | Feibus Miriam H | Woven surgical drain and woven surgical sponge |
US5358492A (en) | 1991-05-02 | 1994-10-25 | Feibus Miriam H | Woven surgical drain and method of making |
CA2065220C (en) | 1991-06-11 | 2003-03-18 | Shmuel Dabi | Method of forming a unitized absorbent product with a density gradient |
NZ242994A (en) | 1991-07-19 | 1995-06-27 | Johnson & Johnson Inc | Absorbent structure - peat moss reservoir layer has a basis weight of from 100g/m2 to 300g/m2 |
GR920100221A (en) | 1991-07-19 | 1993-05-24 | Johnson & Johnson Inc | Flexible absorbent sheet. |
DK0549781T3 (en) | 1991-07-23 | 1997-03-10 | Procter & Gamble | |
CA2073849C (en) | 1991-07-23 | 1997-12-23 | Clemson University Research Foundation | Fluid handling structure for use in absorbent articles |
DK0599871T3 (en) | 1991-07-23 | 1997-04-21 | Procter & Gamble | Absorbent articles, especially menstrual articles, with improved fluid directionality, comfort and fit |
CA2073815C (en) | 1991-07-23 | 1998-05-05 | Clemson University Research Foundation | Absorbent articles, especially catamenials, having improved fluid directionality, comfort and fit |
CZ71293A3 (en) | 1991-07-23 | 1993-11-17 | Procter & Gamble | Article with absorptive properties and a resiliently compressible central section |
GR1002212B (en) | 1991-07-26 | 1996-03-28 | Mcneil Ppc Inc | Clean dry facing needled composite. |
US5366451A (en) | 1991-08-02 | 1994-11-22 | Johnson & Johnson Inc. | Disposable absorbent product |
US5160328A (en) | 1991-08-07 | 1992-11-03 | Ndm Acquisition Corp. | Hydrogel bandage |
ATE150957T1 (en) | 1991-08-07 | 1997-04-15 | Hartmann Paul Ag | WOUND DRESSING ON A ROLL |
US5147345A (en) | 1991-08-12 | 1992-09-15 | The Procter & Gamble Company | High efficiency absorbent articles for incontinence management |
CA2076945C (en) | 1991-09-11 | 2002-10-08 | Shannon Kathleen Byerly | Absorbent composites and absorbent articles containing same |
AU2625192A (en) | 1991-11-01 | 1993-05-06 | Ferris Mfg. Corp. | Window dressing |
AU3057792A (en) | 1991-11-06 | 1993-06-07 | Bioderm, Inc. | Occlusive wound dressing and applicator |
CA2122343C (en) | 1991-11-11 | 1999-03-23 | Kazuko Sugahara | Absorbent article with comfortable and rapid acquisition topsheet |
US5669895A (en) | 1991-11-11 | 1997-09-23 | The Procter & Gamble Company | Absorbent article having rapid distribution strip |
BR9206740A (en) | 1991-11-11 | 1995-10-31 | Procter & Gamble | Absorbent article |
US5636643A (en) | 1991-11-14 | 1997-06-10 | Wake Forest University | Wound treatment employing reduced pressure |
US7198046B1 (en) | 1991-11-14 | 2007-04-03 | Wake Forest University Health Sciences | Wound treatment employing reduced pressure |
US5645081A (en) | 1991-11-14 | 1997-07-08 | Wake Forest University | Method of treating tissue damage and apparatus for same |
US6103953A (en) | 1991-12-17 | 2000-08-15 | The Procter & Gamble Company | Absorbent article having fused layers |
ES2121872T5 (en) | 1991-12-17 | 2003-01-16 | Procter & Gamble | HYGIENIC ABSORBENT ARTICLE WITH BLOWED MASS COMPONENTS. |
US5514120A (en) | 1991-12-18 | 1996-05-07 | Minnesota Mining And Manufacturing Company | Liquid management member for absorbent articles |
US5342336A (en) | 1991-12-19 | 1994-08-30 | Kimberly-Clark Corporation | Absorbent structure for masking and distributing a liquid |
US5267952A (en) | 1991-12-24 | 1993-12-07 | Novamedix, Ltd. | Bandage with transverse slits |
JPH05200063A (en) | 1992-01-28 | 1993-08-10 | Uni Charm Corp | Gas permeable liquid-proof back sheet for body fluid disposal article and manufacture thereof |
EP0633762B1 (en) | 1992-04-02 | 1997-08-06 | The Procter & Gamble Company | Absorbent article having a nonwoven topsheet with fluid impervious areas |
US5330456A (en) | 1992-04-09 | 1994-07-19 | Paragon Trade Brands, Inc. | Disposable absorbent panel assembly |
CA2079140C (en) | 1992-05-29 | 2002-05-14 | Joseph Dipalma | An absorbent article having a non-absorbent, resilient layer |
US5947914A (en) * | 1995-02-21 | 1999-09-07 | Augustine Medical, Inc. | Wound covering |
US5354261A (en) | 1992-06-22 | 1994-10-11 | Clark Francis S | Fluid-retentive bandage |
US5238732A (en) | 1992-07-16 | 1993-08-24 | Surface Coatings, Inc. | Waterproof breathable polyurethane membranes and porous substrates protected therewith |
US5678564A (en) | 1992-08-07 | 1997-10-21 | Bristol Myers Squibb | Liquid removal system |
WO1994004330A1 (en) | 1992-08-11 | 1994-03-03 | E. Khashoggi Industries | Hydraulically settable containers |
US5368926A (en) | 1992-09-10 | 1994-11-29 | The Procter & Gamble Company | Fluid accepting, transporting, and retaining structure |
USH1511H (en) | 1992-09-10 | 1995-12-05 | Chappell; Charles W. | Absorbent articles having improved longitudinal fluid movement |
IT1257101B (en) | 1992-09-16 | 1996-01-05 | Gianfranco Palumbo | ABSORBENT ITEM WITH CONTROLLED DISTRIBUTION OF THE LIQUID. |
SE508961C2 (en) | 1992-11-17 | 1998-11-23 | Sca Hygiene Prod Ab | Absorbent structure and absorbent articles containing the structure in question |
SE509037C2 (en) | 1992-11-17 | 1998-11-30 | Sca Hygiene Prod Ab | Absorbent structure and method of manufacture |
US5843064A (en) | 1992-11-20 | 1998-12-01 | Peaudouce | Non woven material and hygienic absorbent article comprising such material |
GB2272645B8 (en) | 1992-11-23 | 2010-02-10 | Johnson & Johnson Medical | Wound dressing |
US5294478A (en) | 1992-12-18 | 1994-03-15 | Kimberly-Clark Corporation | Multi-layer absorbent composite |
GB9301258D0 (en) | 1993-01-22 | 1993-03-17 | Courtaulds Plc | Use of absorbent fibre |
CA2114290C (en) | 1993-01-27 | 2006-01-10 | Nagabushanam Totakura | Post-surgical anti-adhesion device |
US5336219A (en) | 1993-03-23 | 1994-08-09 | Medi-Flex Hospital Products, Inc. | Skin closure system |
US5368909A (en) | 1993-04-02 | 1994-11-29 | The Procter & Gamble Company | Fluid-pervious plastic web having improved fluid drainage |
US5348547A (en) | 1993-04-05 | 1994-09-20 | The Procter & Gamble Company | Absorbent members having improved fluid distribution via low density and basis weight acquisition zones |
WO1994023677A2 (en) | 1993-04-13 | 1994-10-27 | Nicholas John Mills | Thermal coverings/wound dressings |
EP0746293B1 (en) | 1993-05-04 | 2003-02-05 | GENG, Lisa Fernandez | Wound dressing |
TW329666U (en) | 1993-05-12 | 1998-04-11 | Kimberly Clark Co | Absorbent article having enhanced wicking capability |
US5454800A (en) | 1993-05-12 | 1995-10-03 | Kimberly-Clark Corporation | Absorbent article |
NZ250994A (en) | 1993-05-27 | 1995-09-26 | Ndm Acquisition Corp | Wound dressing comprising a hydrogel layer bound to a porous backing layer which is bound to a thin film layer by adhesive |
CA2107169A1 (en) | 1993-06-03 | 1994-12-04 | Cherie Hartman Everhart | Liquid transport material |
US5397316A (en) | 1993-06-25 | 1995-03-14 | The Procter & Gamble Company | Slitted absorbent members for aqueous body fluids formed of expandable absorbent materials |
DK0631768T3 (en) | 1993-06-30 | 1998-06-02 | Procter & Gamble | Absorbent core with improved fluid handling properties |
US5497788A (en) | 1993-07-16 | 1996-03-12 | Tecnol Medical Products, Inc. | Wound closure device for viewing a wound and method |
US5960795A (en) | 1993-07-16 | 1999-10-05 | Tecnol Medical Products, Inc. | Wound covering device |
CA2127173A1 (en) | 1993-07-20 | 1995-01-21 | Frank S. Castellana | Medical dressing with semi-peripheral delivery system and methods therefor |
US5387208A (en) | 1993-07-26 | 1995-02-07 | The Procter & Gamble Co. | Absorbent core having improved dry/wet integrity |
WO1995004511A1 (en) | 1993-08-11 | 1995-02-16 | Michael John Smith | Improvements in and relating to dressings |
NZ271952A (en) | 1993-09-13 | 1997-10-24 | Diversey Corp | High caustic tableted detergent and dispensing thereof |
US5603946A (en) | 1993-10-08 | 1997-02-18 | Bristol-Myers Squibb Company | Wound dressing |
US5536264A (en) | 1993-10-22 | 1996-07-16 | The Procter & Gamble Company | Absorbent composites comprising a porous macrostructure of absorbent gelling particles and a substrate |
US5868724A (en) | 1993-10-22 | 1999-02-09 | The Procter & Gamble Company | Non-continuous absorbent cores comprising a porous macrostructure of absorbent gelling particles |
US5425725A (en) | 1993-10-29 | 1995-06-20 | Kimberly-Clark Corporation | Absorbent article which includes superabsorbent material and hydrophilic fibers located in discrete pockets |
DE4338326A1 (en) | 1993-11-10 | 1995-05-11 | Hartmann Paul Ag | Absorbent structure |
US5456660A (en) | 1993-11-15 | 1995-10-10 | Reich; Marshall P. | Wound dressing support device |
BR9408074A (en) | 1993-11-16 | 1997-08-12 | Procter & Gamble | Absorbent article |
SG63577A1 (en) | 1993-11-17 | 1999-03-30 | Procter & Gamble | Corrugated capillary substrate having selectively disposed discrete parts of osmotic absorbent material |
US6022610A (en) | 1993-11-18 | 2000-02-08 | The Procter & Gamble Company | Deposition of osmotic absorbent onto a capillary substrate without deleterious interfiber penetration and absorbent structures produced thereby |
ATE167049T1 (en) | 1993-11-19 | 1998-06-15 | Procter & Gamble | OSMOTIC AND CAPILLARY ABSORBING STRUCTURE OF DIFFERENT DENSITIES AND METHOD FOR THEIR PRODUCTION |
AU1072695A (en) | 1993-11-27 | 1995-06-13 | Smith & Nephew Plc | Dressing |
CA2122660A1 (en) | 1993-12-14 | 1995-06-15 | John Philip Vukos | Absorbent article having a body adhesive |
CA2136675C (en) | 1993-12-17 | 2005-02-15 | Kimberly-Clark Worldwide, Inc. | Liquid permeable, quilted film laminates |
US5447492A (en) | 1993-12-20 | 1995-09-05 | New Dimensions In Medicine, Inc. | External fixation dressing for accommodating a retaining pin |
US5702356A (en) | 1993-12-23 | 1997-12-30 | Hathman; Johnnie L. | Disposable wound dressing permitting non-invasive examination |
DE69425236T2 (en) | 1993-12-28 | 2000-11-30 | Kao Corp., Tokio/Tokyo | MONTHLY BINDING |
SE508400C2 (en) | 1993-12-29 | 1998-10-05 | Sca Hygiene Prod Ab | Absorption body in an absorbent article |
SE508399C2 (en) | 1993-12-29 | 1998-10-05 | Sca Hygiene Prod Ab | Absorption body in an absorbent article |
US5525407A (en) | 1994-01-03 | 1996-06-11 | Mcneil-Ppc, Inc. | Integrated absorbent structures with density and liquid affinity gradients |
US5549584A (en) | 1994-02-14 | 1996-08-27 | The Kendall Company | Apparatus for removing fluid from a wound |
US5562650A (en) | 1994-03-04 | 1996-10-08 | Kimberly-Clark Corporation | Absorbent article having an improved surge management |
US5500270A (en) | 1994-03-14 | 1996-03-19 | The Procter & Gamble Company | Capillary laminate material |
DK0750484T3 (en) | 1994-03-18 | 1999-08-30 | Procter & Gamble | Fluid absorbent core collection and distribution element |
ATE212820T1 (en) | 1994-03-23 | 2002-02-15 | Smith & Nephew Inc | ASSOCIATION |
US5599335A (en) | 1994-03-29 | 1997-02-04 | The Procter & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
US5701917A (en) | 1994-03-30 | 1997-12-30 | Khouri Biomedical Research, Inc. | Method and apparatus for promoting soft tissue enlargement and wound healing |
US5545155A (en) | 1994-03-30 | 1996-08-13 | Mcneil-Ppc, Inc. | Absorbent article with plates |
CA2129210A1 (en) | 1994-03-31 | 1995-10-01 | Debra Jean Mcdowall | Liquid distribution layer for absorbent articles |
US5591148A (en) | 1994-04-08 | 1997-01-07 | The Procter & Gamble Company | Sanitary napkin having an independently displaceable central core segment |
IN192766B (en) | 1994-04-29 | 2004-05-15 | Clemson Niversit Res Foundatio | |
JPH09512504A (en) | 1994-04-29 | 1997-12-16 | キンバリー クラーク コーポレイション | Elastic fiber nonwoven laminate with slit |
US5852126A (en) | 1994-05-02 | 1998-12-22 | Novartis Ag | Polymerisable composition and the use thereof |
JP3215262B2 (en) | 1994-06-03 | 2001-10-02 | ユニ・チャーム株式会社 | Disposable body fluid absorbent articles |
CA2192172C (en) | 1994-06-21 | 2000-10-31 | Nicholas Albert Ahr | Absorbent member with high density absorbent wicking strips |
ES2135752T3 (en) | 1994-06-30 | 1999-11-01 | Procter & Gamble | FLUID TRANSPORT BELTS THAT EXHIBIT GRADIENTS OF SURFACE ENERGY. |
US5505719A (en) | 1994-06-30 | 1996-04-09 | Mcneil-Ppc, Inc. | Multilayered absorbent structures |
USH1585H (en) | 1994-06-30 | 1996-08-06 | Ahr; Nicholas A. | Absorbent article having a braided wicking structure |
US5873867A (en) | 1994-07-12 | 1999-02-23 | The Procter & Gamble Company | Absorbent with half section of gelling material |
US5830202A (en) | 1994-08-01 | 1998-11-03 | The Procter & Gamble Company | Absorbent comprising upper and lower gel layers |
ES2223977T3 (en) | 1994-08-22 | 2005-03-01 | Kci Licensing, Inc. | CONTAINER. |
AU685986B2 (en) | 1994-08-31 | 1998-01-29 | Kimberly-Clark Worldwide, Inc. | Thin absorbent article having wicking and crush resistant poperties |
CA2153125A1 (en) | 1994-08-31 | 1996-03-01 | Frank Paul Abuto | Liquid-absorbing article |
GB9417738D0 (en) | 1994-09-03 | 1994-10-19 | British United Shoe Machinery | Absorbent material and method of manufacture thereof |
US6436234B1 (en) | 1994-09-21 | 2002-08-20 | Kimberly-Clark Worldwide, Inc. | Wet-resilient webs and disposable articles made therewith |
CA2152407A1 (en) | 1994-09-30 | 1996-03-31 | Duane Girard Uitenbroek | Laminate material and absorbent garment comprising same |
WO1996015301A1 (en) | 1994-11-10 | 1996-05-23 | Weyerhaeuser Company | Densified cellulose fiber pads and method of making the same |
US5817145A (en) | 1994-11-21 | 1998-10-06 | Augustine Medical, Inc. | Wound treatment device |
US5632731A (en) | 1994-11-25 | 1997-05-27 | The Kendall Company | Non-adherent wound dressing |
US5465735A (en) | 1994-12-01 | 1995-11-14 | The Kendall Company | Wound dressing |
US6599262B1 (en) | 1994-12-07 | 2003-07-29 | Masini Michael A | Bandage with thermal insert |
US6225523B1 (en) | 1994-12-07 | 2001-05-01 | Masini Michael A | Invertible wound dressings and method of making the same |
US5643189A (en) | 1994-12-07 | 1997-07-01 | Masini; Michael A. | Composite wound dressing including inversion means |
US5614295A (en) | 1994-12-21 | 1997-03-25 | Kimberly-Clark Corporation | Liquid distribution and retention medium |
US5614283A (en) | 1994-12-22 | 1997-03-25 | Tredegar Industries | Absorbent composite with three-dimensional film surface for use in absorbent disposable products |
SE503779C2 (en) | 1994-12-30 | 1996-09-02 | Moelnlycke Ab | Absorbent articles, comprising a receiving space in a storage layer, which upon wetting increases in extent perpendicular to the surface of the article and absorbent body |
JPH10512167A (en) | 1995-01-10 | 1998-11-24 | ザ、プロクター、エンド、ギャンブル、カンパニー | Absorbent products for liquid management |
GB9500716D0 (en) | 1995-01-14 | 1995-03-08 | Giltech Ltd | Self adhesive laminate |
US5840052A (en) | 1995-01-27 | 1998-11-24 | Bertek, Inc. | Adhesive dressing applicator |
USH1657H (en) | 1995-02-03 | 1997-06-03 | The Procter & Gamble Company | Absorbent article with fractionation member |
US5549589A (en) | 1995-02-03 | 1996-08-27 | The Procter & Gamble Company | Fluid distribution member for absorbent articles exhibiting high suction and high capacity |
US5538500A (en) | 1995-02-08 | 1996-07-23 | Peterson; Donald A. | Postoperative wound dressing |
US5605165A (en) | 1995-03-03 | 1997-02-25 | Ferris Corp. | Wound measurment device and method for its use |
AU5183596A (en) | 1995-03-06 | 1996-09-23 | Weyerhaeuser Company | Fibrous web having improved strength and method of making the same |
IL118000A0 (en) | 1995-04-25 | 1996-08-04 | Sinai School Medicine | Bandage with external anchor |
GB9509943D0 (en) | 1995-05-17 | 1995-07-12 | British United Shoe Machinery | Wound dressing |
US5579765A (en) | 1995-05-30 | 1996-12-03 | Cox; Danny L. | Monitor to detect bleeding |
US5675079A (en) | 1995-06-07 | 1997-10-07 | Kimberly-Clark Worldwide, Inc. | Apparatus for measuring the crush recovery of an absorbent article |
FI106696B (en) | 1995-06-14 | 2001-03-30 | Suominen Oy J W | A method for directing the fluid carrying capacity of a nonwoven, a fabric treated according to this method, and a fabric containing article |
US5810798A (en) | 1995-06-30 | 1998-09-22 | Kimberly-Clark Worldwide, Inc. | Absorbent article having a thin, efficient absorbent core |
CN1200074A (en) | 1995-06-30 | 1998-11-25 | 金伯利-克拉克环球有限公司 | Nonwoven and film corrugated laminates |
EP0844858A1 (en) | 1995-08-07 | 1998-06-03 | The Procter & Gamble Company | Disposable absorbent article with fit and fluid transfer capabilities |
GB9614668D0 (en) | 1995-08-11 | 1996-09-04 | Camelot Superabsorbents Ltd | Absorbent articles |
GB9519574D0 (en) | 1995-09-26 | 1995-11-29 | Smith & Nephew | Conformable absorbent dressing |
US5562107A (en) | 1995-09-27 | 1996-10-08 | Hollister Incorporated | Reclosable wound cover |
US5643238A (en) | 1995-09-29 | 1997-07-01 | Paragon Trade Brands, Inc. | Absorbent core structure comprised of storage and acquisition cells |
US5707499A (en) | 1995-10-06 | 1998-01-13 | Ceramatec, Inc. | Storage-stable, fluid dispensing device using a hydrogen gas generator |
US5704905A (en) | 1995-10-10 | 1998-01-06 | Jensen; Ole R. | Wound dressing having film-backed hydrocolloid-containing adhesive layer with linear depressions |
CA2160757C (en) | 1995-10-17 | 2000-01-04 | Roger Boulanger | Highly absorbent transfer layer structure |
US5827213A (en) | 1995-10-19 | 1998-10-27 | Ole R. Jensen | Heel and elbow dressing |
US5648142A (en) | 1995-10-19 | 1997-07-15 | Eastman Chemical Company | Perforated films having channels with cutout portions capable of spontaneous fluid inversion |
JPH09117470A (en) | 1995-10-27 | 1997-05-06 | Chisso Corp | Absorbing article |
US5665082A (en) | 1995-11-01 | 1997-09-09 | Johnson & Johnson Inc. | Highly absorbent transfer layer structure |
US6206865B1 (en) | 1995-11-13 | 2001-03-27 | Kimberly-Clark Worldwide, Inc. | Absorbent article having a cellulosic transfer layer |
GB9523253D0 (en) | 1995-11-14 | 1996-01-17 | Mediscus Prod Ltd | Portable wound treatment apparatus |
US6107539A (en) | 1995-11-14 | 2000-08-22 | The Procter & Gamble Company | Disposable absorbent articles having reduced surface wetness |
US5603707A (en) | 1995-11-28 | 1997-02-18 | The Procter & Gamble Company | Absorbent article having a rewet barrier |
US6060638A (en) | 1995-12-22 | 2000-05-09 | Kimberly-Clark Worldwide, Inc. | Matched permeability liner/absorbent structure system for absorbent articles and the like |
US5662599A (en) | 1996-02-20 | 1997-09-02 | No Mulligans, Llc | Disposable wound dressing and support unit |
DE19609462A1 (en) | 1996-03-11 | 1997-09-18 | Kimberly Clark Gmbh | Absorbent article and method for the directed discharge of locally escaping fluids |
US6372952B1 (en) | 1996-03-22 | 2002-04-16 | The Procter & Gamble Company | Absorbent components having a sustained acquisition rate capability upon absorbing multiple discharges of aqueous body fluids |
MX215827B (en) | 1996-03-22 | 2003-08-15 | Procter & Gamble | Absorbent cores that have improved acquisition capacity and absorbent articles that contain them |
US5855572A (en) | 1996-03-22 | 1999-01-05 | The Procter & Gamble Company | Absorbent components having a fluid acquisition zone |
SE509260C2 (en) | 1996-04-03 | 1998-12-21 | Duni Ab | Slit material layer of tissue paper or polymer fibers and device for making the material layer |
US5662625A (en) | 1996-05-06 | 1997-09-02 | Gwr Medical, L.L.P. | Pressure controllable hyperbaric device |
SE505000C2 (en) | 1996-05-14 | 1997-06-09 | Moelnlycke Ab | Wound dressing and manufacturing process therefore |
US5735145A (en) | 1996-05-20 | 1998-04-07 | Monarch Knitting Machinery Corporation | Weft knit wicking fabric and method of making same |
DK0904038T3 (en) | 1996-05-22 | 2002-02-11 | Coloplast As | Bandage comprising a body part and a handle portion |
ATE206607T1 (en) | 1996-05-24 | 2001-10-15 | Coloplast As | PERMANENTLY DEFORMABLE BANDAGE |
US6294710B1 (en) | 1996-05-28 | 2001-09-25 | The Procter & Gamble Company | Fluid distribution materials with improved wicking properties |
SE514465C2 (en) | 1996-05-31 | 2001-02-26 | Sca Hygiene Prod Ab | Absorbent structure and production of absorbent structure by matting on high loft materials |
US5827254A (en) | 1996-06-13 | 1998-10-27 | The Procter & Gamble Company | Absorbent article |
US6191340B1 (en) | 1996-07-01 | 2001-02-20 | The Procter & Gamble Company | Disposable absorbent article having a decoupled, randomly arranged absorbent structure |
DE19640451A1 (en) | 1996-09-30 | 1998-04-02 | Kimberly Clark Gmbh | Absorbent article |
EP0946210A1 (en) | 1996-11-14 | 1999-10-06 | The Procter & Gamble Company | Antimicrobial-coated hydrogel forming absorbent polymers |
EP0842650A1 (en) | 1996-11-19 | 1998-05-20 | The Procter & Gamble Company | Resin bonded fluid handling materials |
EP0852268B1 (en) | 1996-12-04 | 2002-08-21 | Fibertech Group, Inc. | Absorbent articles having improved separator layer |
JP2001505961A (en) | 1996-12-06 | 2001-05-08 | ウェイアーヒューサー・カンパニー | Integrated absorption layer |
US20020007169A1 (en) | 1996-12-06 | 2002-01-17 | Weyerhaeuser Company | Absorbent composite having improved surface dryness |
SE512638C2 (en) | 1996-12-11 | 2000-04-17 | Sca Hygiene Prod Ab | Liquid-receiving layers for absorbent articles, absorbent articles and liquid-receiving articles |
CA2273854C (en) | 1996-12-20 | 2005-08-16 | Kimberly-Clark Worldwide, Inc. | Absorbent articles having reduced outer cover dampness |
US5891120A (en) | 1997-01-30 | 1999-04-06 | Paragon Trade Brands, Inc. | Absorbent article comprising topsheet, backsheet and absorbent core with liquid transferring layer near backsheet |
US5795439A (en) | 1997-01-31 | 1998-08-18 | Celanese Acetate Llc | Process for making a non-woven, wet-laid, superabsorbent polymer-impregnated structure |
US6018092A (en) | 1997-03-04 | 2000-01-25 | 3M Innovative Properties Company | Medical adhesive bandage, delivery system and method |
US5968855A (en) * | 1997-03-04 | 1999-10-19 | Bba Nonwovens Simpsonville, Inc. | Nonwoven fabrics having liquid transport properties and processes for manufacturing the same |
US5925026A (en) | 1997-03-10 | 1999-07-20 | Kimberly-Clark Worldwide, Inc. | Apertured absorbent pads for use in absorbent articles |
US5931823A (en) | 1997-03-31 | 1999-08-03 | Kimberly-Clark Worldwide, Inc. | High permeability liner with improved intake and distribution |
US5968027A (en) | 1997-03-31 | 1999-10-19 | Mcneil-Ppc, Inc. | Absorbent article with coiled side walls |
US5865824A (en) | 1997-04-21 | 1999-02-02 | Chen; Fung-Jou | Self-texturing absorbent structures and absorbent articles made therefrom |
US5752945A (en) | 1997-04-25 | 1998-05-19 | Fibertech Group, Inc. | Absorbent article with liquid transfer layer |
EP0875224A1 (en) | 1997-04-28 | 1998-11-04 | Cidieffe S.r.l. | Absorbent article which includes superabsorbent material located in discrete pockets and manufacturing process |
DE19722075C1 (en) | 1997-05-27 | 1998-10-01 | Wilhelm Dr Med Fleischmann | Medication supply to open wounds |
US6008429A (en) | 1997-06-06 | 1999-12-28 | Ritger; Philip L. | Wound dressing delivery system |
SE514864C2 (en) | 1997-06-26 | 2001-05-07 | Sca Hygiene Prod Ab | Entry or transport layers for absorbent articles and absorbent articles comprising such a layer and use of the layer |
NL1006457C2 (en) | 1997-07-03 | 1999-01-05 | Polymedics N V | Drainage system to be used with an open wound, element used for applying a drainage pipe or hose and method for applying the drainage system. |
AU3812897A (en) | 1997-07-24 | 1999-02-16 | Procter & Gamble Company, The | Process for making perfume-impregnated hydrogel-forming absorbent polymers |
US6907921B2 (en) | 1998-06-18 | 2005-06-21 | 3M Innovative Properties Company | Microchanneled active fluid heat exchanger |
US6124520A (en) | 1997-08-25 | 2000-09-26 | Tri-State Hospital Supply Corporation | Window dressing |
GB9719520D0 (en) | 1997-09-12 | 1997-11-19 | Kci Medical Ltd | Surgical drape and suction heads for wound treatment |
US6103954A (en) | 1997-09-18 | 2000-08-15 | Fibertechgroup, Inc. | Liquid acquisition layer for personal absorbent article |
US6168849B1 (en) | 1997-11-14 | 2001-01-02 | Kimberly-Clark Worldwide, Inc. | Multilayer cover system and method for producing same |
US6362390B1 (en) | 1997-12-18 | 2002-03-26 | The Procter & Gamble Company | Use of stain masking backsheets in absorbent articles |
US5981120A (en) | 1998-01-08 | 1999-11-09 | Xerox Corporation | Verdefilm for more uniform charging |
WO1999038929A1 (en) | 1998-01-30 | 1999-08-05 | Coloplast A/S | An article having a surface showing adhesive properties |
EP0934737A1 (en) | 1998-02-05 | 1999-08-11 | The Procter & Gamble Company | Absorbent article comprising topsheet with masking capabilities |
DE19804665B4 (en) | 1998-02-06 | 2004-09-23 | Beiersdorf Ag | Opaque eye patch |
US6071267A (en) | 1998-02-06 | 2000-06-06 | Kinetic Concepts, Inc. | Medical patient fluid management interface system and method |
US5938995A (en) | 1998-02-06 | 1999-08-17 | Air Products And Chemicals, Inc. | Compression resistant cellulosic-based fabrics having high rates of absorbency |
EP0941726A1 (en) | 1998-03-12 | 1999-09-15 | Coloplast A/S | A dressing |
EP1061877A1 (en) | 1998-03-13 | 2000-12-27 | The Procter & Gamble Company | Absorbent structures comprising fluid storage members with improved ability to dewater high flux distribution members |
AU6555998A (en) | 1998-03-13 | 1999-09-27 | Procter & Gamble Company, The | Liquid distribution materials with improved distribution properties under sub-saturation |
MXPA00008957A (en) | 1998-03-13 | 2001-05-01 | Gianfranco Palumbo | Absorbent structures comprising fluid storage members with improved ability to dehydrate distribution members |
US6570057B1 (en) | 1998-03-13 | 2003-05-27 | The Procter & Gamble Company | Absorbent articles with improved distribution properties under sur-saturation |
IL138231A0 (en) | 1998-03-13 | 2001-10-31 | Procter & Gamble | Absorbent structures comprising fluid storage members with improved ability to dewater distribution members |
US6630054B1 (en) | 1998-03-19 | 2003-10-07 | Weyerhaeuser Company | Methods for forming a fluted composite |
US6068620A (en) | 1998-03-30 | 2000-05-30 | Paragon Trade Brands | Absorbent laminate |
EP0951913A1 (en) | 1998-04-22 | 1999-10-27 | The Procter & Gamble Company | High liquid suction absorbent structures with permanently hydrophilic meltblown non-woven wrap sheet with small diameter fibers |
US6127595A (en) | 1998-04-22 | 2000-10-03 | Air Products And Chemicals, Inc. | Cover sheet lamination for absorbent article and low temperature lamination process |
US6040493A (en) | 1998-04-24 | 2000-03-21 | Replication Medical, Inc. | Bioreactor wound dressing |
US6664439B1 (en) | 1998-04-28 | 2003-12-16 | The Procter & Gamble Company | Absorbent articles with distribution materials positioned underneath storage material |
AR018822A1 (en) | 1998-05-05 | 2001-12-12 | Kimberly Clark Co | A MATERIAL FOR PRODUCTS FOR PERSONAL HYGIENE AND PRODUCTS FOR PERSONAL HYGIENE OBTAINED |
US6420626B1 (en) | 1999-06-08 | 2002-07-16 | Buckeye Technologies Inc. | Unitary fluid acquisition, storage, and wicking material |
US6403857B1 (en) | 1998-06-08 | 2002-06-11 | Buckeye Technologies Inc. | Absorbent structures with integral layer of superabsorbent polymer particles |
US6479415B1 (en) | 1998-06-08 | 2002-11-12 | Bki Holding Corporation | Absorbent structures having fluid acquisition and distribution layer |
US20040033750A1 (en) | 1998-06-12 | 2004-02-19 | Everett Rob D | Layered absorbent structure with a heterogeneous layer region |
AU8378198A (en) | 1998-06-29 | 2000-01-17 | Procter & Gamble Company, The | Liquid transport member for high flux rates against gravity |
WO2000000127A1 (en) | 1998-06-29 | 2000-01-06 | The Procter & Gamble Company | High flux liquid transport members comprising two different permeability regions |
US6545194B1 (en) | 1998-06-29 | 2003-04-08 | The Procter & Gamble Company | Device for managing body fluids comprising a fast acquiring liquid handling member that expands upon liquid acquisition and contracts upon liquid release |
DE69908776T2 (en) | 1998-06-29 | 2004-04-22 | The Procter & Gamble Company, Cincinnati | DEVICE FOR HANDLING BODY FLUIDS THAT TRANSFER BODY FLUIDS BY EXTRACTION |
WO2000000129A1 (en) | 1998-06-29 | 2000-01-06 | The Procter & Gamble Company | Liquid transport member for high flux rates between two port regions |
US6727403B1 (en) | 1998-06-29 | 2004-04-27 | The Procter & Gamble Company | Absorbent article exhibiting high sustained acquisition rates |
WO2000000131A1 (en) | 1998-06-29 | 2000-01-06 | The Procter & Gamble Company | Liquid transport member having high permeability bulk regions and high threshold pressure port regions |
US6683229B1 (en) | 1998-06-29 | 2004-01-27 | The Procter & Gamble Company | Disposable absorbent article storing liquid in a constant pattern |
US6506960B1 (en) | 1998-06-29 | 2003-01-14 | The Procter & Gamble Company | Absorbent article comprising a liquid handling member having high suction and high permeability |
US6458109B1 (en) | 1998-08-07 | 2002-10-01 | Hill-Rom Services, Inc. | Wound treatment apparatus |
GB2341098B (en) | 1998-09-03 | 2003-03-05 | Bid Instr Ltd | Eye protector |
DE19844355A1 (en) | 1998-09-28 | 2000-04-06 | Rainer E Sachse | Adhesive wound dressing of flexible, membrane like material penetrable by air comprises integrated device which drains wound secretions or produces reduced pressure, or can be connected to an external suction system |
US6673982B1 (en) | 1998-10-02 | 2004-01-06 | Kimberly-Clark Worldwide, Inc. | Absorbent article with center fill performance |
US6231721B1 (en) | 1998-10-09 | 2001-05-15 | Weyerhaeuser Company | Compressible wood pulp product |
GB9822341D0 (en) | 1998-10-13 | 1998-12-09 | Kci Medical Ltd | Negative pressure therapy using wall suction |
US6124522A (en) * | 1998-11-24 | 2000-09-26 | Schroeder; Mark R. | Packaging for adhesive-sided articles to allow one-handed application |
EP1013290A1 (en) | 1998-12-17 | 2000-06-28 | Fort James Corporation | Multi-layered absorbent composites having one or more apertured transfer layers |
US6610903B1 (en) | 1998-12-18 | 2003-08-26 | Kimberly-Clark Worldwide, Inc. | Materials for fluid management in personal care products |
US6613028B1 (en) | 1998-12-22 | 2003-09-02 | Kimberly-Clark Worldwide, Inc. | Transfer delay for increased access fluff capacity |
US6767334B1 (en) | 1998-12-23 | 2004-07-27 | Kci Licensing, Inc. | Method and apparatus for wound treatment |
US6562743B1 (en) | 1998-12-24 | 2003-05-13 | Bki Holding Corporation | Absorbent structures of chemically treated cellulose fibers |
US6719742B1 (en) | 1998-12-30 | 2004-04-13 | Kimberly-Clark Worldwide, Inc. | Pattern embossed multilayer microporous films |
EP1016389A1 (en) | 1998-12-30 | 2000-07-05 | The Procter & Gamble Company | Tridimensional disposable absorbent article with an absorbent core having special fluid handling properties |
GB9900348D0 (en) | 1999-01-09 | 1999-02-24 | Bristol Myers Squibb Co | Multi layered wound dressing |
GB9901085D0 (en) | 1999-01-20 | 1999-03-10 | Tudorose Decorative Trims Limi | Bandage |
EP1025822A1 (en) | 1999-02-08 | 2000-08-09 | Paul Hartmann Aktiengesellschaft | Absorption body for a hygienic article |
US6765125B2 (en) | 1999-02-12 | 2004-07-20 | Kimberly-Clark Worldwide, Inc. | Distribution—Retention material for personal care products |
US6124521A (en) | 1999-03-10 | 2000-09-26 | Tri-State Hospital Supply Corporation | Dermal wound window dressing securement system |
US6506175B1 (en) | 1999-03-26 | 2003-01-14 | Samuel A. Goldstein | Therapeutic bandage |
NZ514480A (en) | 1999-04-02 | 2005-05-27 | Kci Licensing Inc | Vacuum assisted closure system with heating and cooling provision |
US6534149B1 (en) | 1999-04-03 | 2003-03-18 | Kimberly-Clark Worldwide, Inc. | Intake/distribution material for personal care products |
JP2004538023A (en) | 1999-04-08 | 2004-12-24 | ザ プロクター アンド ギャンブル カンパニー | Absorbent products with improved combination of tactile sensation and fluid treatment |
US6695823B1 (en) | 1999-04-09 | 2004-02-24 | Kci Licensing, Inc. | Wound therapy device |
WO2000061206A1 (en) | 1999-04-09 | 2000-10-19 | Kci Licensing, Inc. | Wound therapy device |
GB9909301D0 (en) | 1999-04-22 | 1999-06-16 | Kci Medical Ltd | Wound treatment apparatus employing reduced pressure |
SE9901539L (en) | 1999-04-27 | 2000-10-28 | Sca Hygiene Prod Ab | Absorbent structure |
SE514211C2 (en) | 1999-05-27 | 2001-01-22 | Sca Hygiene Prod Ab | Absorbent articles with improved liquid dispersion |
US20020019617A1 (en) | 1999-06-10 | 2002-02-14 | Charles Edward Bolian | Leakage protection means in a material for distributing fluid |
AR024567A1 (en) | 1999-06-14 | 2002-10-16 | Bki Holding Corp | AN ABSORBENT STRUCTURE AND ABSORBENT PRODUCT THAT USES SUCH STRUCTURE. |
US6497689B1 (en) | 1999-06-29 | 2002-12-24 | The Procter & Gamble Company | Device for handling body liquids which transports body liquid by siphoning |
GB2355228A (en) | 1999-07-03 | 2001-04-18 | Dyecor Ltd | Absorbent |
DE19931192C1 (en) | 1999-07-07 | 2000-10-19 | Sandler C H Gmbh | Absorber and distributor element for liquids in absorbent articles comprises fleece layer in which microfiber proportion increases with distance from layer top surface |
US6497688B2 (en) * | 1999-07-19 | 2002-12-24 | Mcneil-Ppc, Inc. | Absorbent article comprising flocked fibers |
US6312416B1 (en) | 1999-08-16 | 2001-11-06 | Johnson & Johnson, Inc. | Thin sanitary napkin capable of controlled deformation when in use |
US6261283B1 (en) | 1999-08-31 | 2001-07-17 | Alcon Universal Ltd. | Liquid venting surgical system and cassette |
US6264776B1 (en) | 1999-09-15 | 2001-07-24 | Kimberly-Clark Worldwide, Inc. | Method for forming an absorbent structure having vertically orientated absorbent members |
US6486379B1 (en) | 1999-10-01 | 2002-11-26 | Kimberly-Clark Worldwide, Inc. | Absorbent article with central pledget and deformation control |
US6783837B1 (en) | 1999-10-01 | 2004-08-31 | Kimberly-Clark Worldwide, Inc. | Fibrous creased fabrics |
US6492574B1 (en) | 1999-10-01 | 2002-12-10 | Kimberly-Clark Worldwide, Inc. | Center-fill absorbent article with a wicking barrier and central rising member |
US6613955B1 (en) | 1999-10-01 | 2003-09-02 | Kimberly-Clark Worldwide, Inc. | Absorbent articles with wicking barrier cuffs |
US20020180092A1 (en) | 1999-10-14 | 2002-12-05 | Kimberly-Clark Worldwide, Inc. | Process for making textured airlaid materials |
CN1293953A (en) | 1999-11-01 | 2001-05-09 | 王亮 | 'Xianketie' medicine for treating tinea |
GB9926538D0 (en) | 1999-11-09 | 2000-01-12 | Kci Medical Ltd | Multi-lumen connector |
GB2356145B (en) | 1999-11-10 | 2004-07-28 | Mas Mfg Ltd | Dressing |
US6509513B2 (en) | 1999-11-12 | 2003-01-21 | Tyco Healthcare Retail Services Ag | Absorbent article with improved fluid acquisition system |
PL366290A1 (en) | 1999-11-29 | 2005-01-24 | Hill-Rom Services, Inc. | Wound treatment apparatus |
US6764462B2 (en) | 2000-11-29 | 2004-07-20 | Hill-Rom Services Inc. | Wound treatment apparatus |
US6478781B1 (en) | 2000-04-11 | 2002-11-12 | Circuit Tree Medical, Inc. | Anterior chamber stabilizing device for use in eye surgery |
EP1242026B1 (en) | 1999-12-22 | 2007-07-11 | The Procter & Gamble Company | Absorbent article |
US20010044610A1 (en) | 1999-12-29 | 2001-11-22 | Kim Hyung Byum | Absorbent article with fluid intake intensifier |
US6528696B1 (en) | 2000-01-11 | 2003-03-04 | Christine M. Ireland | Pliable contact bandage |
IL134269A (en) | 2000-01-27 | 2006-06-11 | L R Res & Dev Ltd | Anti-inflammatory pad |
US6794554B2 (en) | 2000-02-01 | 2004-09-21 | Ferris Pharmaceuticals, Inc. | Wound packing material |
US6566575B1 (en) | 2000-02-15 | 2003-05-20 | 3M Innovative Properties Company | Patterned absorbent article for wound dressing |
US20020019602A1 (en) | 2000-03-07 | 2002-02-14 | Geng Lisa Fernandez | Wound dressing |
DE60026343T2 (en) | 2000-03-10 | 2006-10-19 | 3M Innovative Properties Co., Saint Paul | MEDICAL WOUND ASSOCIATION WITH SEVERAL ADHESIVES AND MANUFACTURING PROCESS |
AR028271A1 (en) | 2000-03-24 | 2003-04-30 | Kimberly Clark Co | A SYSTEM FOR A HYGIENIC PRODUCT AND A PAD FOR WOMEN'S HYGIENE THAT UNDERSTANDS THIS SYSTEM |
SE516036C2 (en) | 2000-03-27 | 2001-11-12 | Sca Hygiene Prod Ab | Fiber-based material layer comprising at least two continuous fibers webs, so-called tow, method of making it, and absorbent articles containing the layer |
GB0011202D0 (en) | 2000-05-09 | 2000-06-28 | Kci Licensing Inc | Abdominal wound dressing |
US20020019614A1 (en) | 2000-05-17 | 2002-02-14 | Woon Paul S. | Absorbent articles having improved performance |
US6471685B1 (en) | 2000-05-18 | 2002-10-29 | David James Johnson | Medical dressing assembly and associated method of using the same |
CN1443055A (en) | 2000-05-19 | 2003-09-17 | 金伯利-克拉克环球有限公司 | Topsheet and transfer layer for absorbent article |
MXPA02011416A (en) | 2000-05-22 | 2004-08-12 | Arthur C Coffey | Combination sis and vacuum bandage and method. |
US20030208175A1 (en) | 2000-06-12 | 2003-11-06 | Gross James R. | Absorbent products with improved vertical wicking and rewet capability |
CA2414223C (en) | 2000-06-21 | 2007-09-25 | The Procter & Gamble Company | Disposable absorbent articles having low rewet and a reduced evaporation from the core through the topsheet |
US20020035354A1 (en) | 2000-06-21 | 2002-03-21 | The Procter & Gamble Company | Absorbent barrier structures having a high convective air flow rate and articles made therefrom |
WO2002004729A1 (en) | 2000-07-11 | 2002-01-17 | Polymer Group Inc. | Multi-component nonwoven fabric for use in disposable absorbent articles |
US6447799B1 (en) | 2000-07-24 | 2002-09-10 | Joseph M. Ullman | Thromboplastic system |
IL138099A0 (en) | 2000-08-25 | 2001-10-31 | Naimer Richard | Bandage |
WO2002017840A1 (en) | 2000-08-28 | 2002-03-07 | Merrild Bente Kaethe Yonne | Bandage for treatment of pressure sores, bedsores and similar ailments |
AR030767A1 (en) | 2000-09-22 | 2003-09-03 | Kimberly Clark Co | AN ABSORBENT SYSTEM FOR PRODUCTS FOR PERSONAL HYGIENE SUCH AS PANELS, LEARNING SHOES, INCONTINENCE PRODUCTS, BANDS AND HEALTH TOWELS |
US6700036B2 (en) | 2000-09-22 | 2004-03-02 | Tredegar Film Products Corporation | Acquisition distribution layer having void volumes for an absorbent article |
WO2002027088A2 (en) | 2000-09-29 | 2002-04-04 | Cotton Incorporated | Cellulosic substrates with reduced absorbent capacity having the capability to wick liquids |
GB2367245B (en) | 2000-09-29 | 2004-11-17 | Johnson & Johnson Medical Ltd | Adaptable dressings |
WO2002038096A2 (en) | 2000-10-24 | 2002-05-16 | Velcro Industries B.V. | Wound covering |
DE10053895C2 (en) | 2000-10-31 | 2003-04-10 | Corovin Gmbh | Disposable liquid absorbent product with additional layer |
MXPA03004124A (en) | 2000-11-10 | 2004-02-12 | Bki Holding Corp | Cellulose fibers having low water retention value and low capillary desorption pressure. |
AU2002246515A1 (en) | 2000-11-16 | 2002-10-08 | Chris Lipper | Medicated tattoos |
US7091394B2 (en) | 2000-11-20 | 2006-08-15 | Coloplast A/S | Dressing |
JP2002153506A (en) | 2000-11-21 | 2002-05-28 | Koichi Murai | Absorptive article |
US6855135B2 (en) | 2000-11-29 | 2005-02-15 | Hill-Rom Services, Inc. | Vacuum therapy and cleansing dressing for wounds |
US6685681B2 (en) | 2000-11-29 | 2004-02-03 | Hill-Rom Services, Inc. | Vacuum therapy and cleansing dressing for wounds |
MXPA03005184A (en) | 2000-12-07 | 2003-09-10 | Weyerhaeuser Co | Unitary distribution layer. |
GB2369799B (en) | 2000-12-07 | 2004-07-07 | Johnson & Johnson Medical Ltd | Layered polyurethane materials |
US6863933B2 (en) | 2001-01-30 | 2005-03-08 | The Procter And Gamble Company | Method of hydrophilizing materials |
US20020110672A1 (en) | 2001-02-12 | 2002-08-15 | Joanne Muratore-Pallatino | Cosmetic skin tattoo |
US7700819B2 (en) | 2001-02-16 | 2010-04-20 | Kci Licensing, Inc. | Biocompatible wound dressing |
US7070584B2 (en) | 2001-02-20 | 2006-07-04 | Kci Licensing, Inc. | Biocompatible wound dressing |
EP2269603B1 (en) | 2001-02-19 | 2015-05-20 | Novartis AG | Treatment of breast tumors with a rapamycin derivative in combination with exemestane |
JP4840895B2 (en) | 2001-02-20 | 2011-12-21 | 株式会社日本吸収体技術研究所 | Liquid distribution unit and absorbent product comprising the same |
US20020133132A1 (en) | 2001-02-21 | 2002-09-19 | Copat Marcelo S. | Absorbent article with a response surface |
US6706940B2 (en) | 2001-02-22 | 2004-03-16 | George Medical, L.L.C. | Transparent film dressing and a method for applying and making the same |
US6776769B2 (en) | 2001-03-05 | 2004-08-17 | Joseph Smith | Anatomically configured tubular body of woven or knitted fabric for pressure support of articulating joint |
USD473947S1 (en) | 2001-03-12 | 2003-04-29 | 3M Innovative Properties Company | Notched medical dressing |
DE10112895B4 (en) | 2001-03-15 | 2011-09-29 | Ltn Servotechnik Gmbh | Slip ring unit with a printed circuit board |
US6586653B2 (en) | 2001-04-03 | 2003-07-01 | Mcneil-Ppc, Inc. | Discrete absorbent article |
US7645269B2 (en) | 2001-04-30 | 2010-01-12 | Kci Licensing, Inc. | Gradient wound treatment system and method |
US7108683B2 (en) | 2001-04-30 | 2006-09-19 | Kci Licensing, Inc | Wound therapy and tissue management system and method with fluid differentiation |
US6841715B2 (en) | 2001-05-10 | 2005-01-11 | Tri-State Hospital Supply, Corp. | Window dressing |
AU2002315027A1 (en) | 2001-05-15 | 2002-11-25 | Children's Medical Center Corporation | Methods and apparatus for application of micro-mechanical forces to tissues |
US20020176964A1 (en) | 2001-05-24 | 2002-11-28 | Koslow Technologies Corp. | Rapid absorbent structures |
US20020177831A1 (en) | 2001-05-25 | 2002-11-28 | Kimberly-Clark Worldwide, Inc. | Personal care absorbent with inherent transfer delay |
US6689931B2 (en) | 2001-06-12 | 2004-02-10 | Tiax Llc | Wound dressing and method of making |
US20030014786P1 (en) | 2001-06-15 | 2003-01-16 | Meilland Alain A. | Hybrid tea rose plant named 'Meifebink' |
US7002054B2 (en) | 2001-06-29 | 2006-02-21 | The Procter & Gamble Company | Absorbent article having a fever indicator |
JP3971136B2 (en) | 2001-07-12 | 2007-09-05 | ユニ・チャーム株式会社 | Absorbent articles |
DE60236156D1 (en) | 2001-07-12 | 2010-06-10 | Kci Medical Resources Grand Ca | Control of the rate of vacuum change |
WO2003013406A1 (en) | 2001-08-03 | 2003-02-20 | Asahi Kasei Life & Living Corporation | Color masking component for use with feminine sanitary pad and the like |
US20030135174A1 (en) | 2001-08-06 | 2003-07-17 | Benecke Herman P. | Products with color masking properties |
US6500947B1 (en) | 2001-08-24 | 2002-12-31 | Weyerhaeuser Company | Superabsorbent polymer |
US7004915B2 (en) | 2001-08-24 | 2006-02-28 | Kci Licensing, Inc. | Negative pressure assisted tissue treatment system |
US6888045B2 (en) | 2001-09-06 | 2005-05-03 | Sca Hygiene Products Ab | Method of producing a fibrous material layer, a fibrous material layer and an absorbent article containing same |
JP4229309B2 (en) | 2001-09-07 | 2009-02-25 | 株式会社日本吸収体技術研究所 | Absorber that is three-dimensionalized in the center by water absorption and absorbent product using the same |
DE10144128A1 (en) | 2001-09-08 | 2003-03-27 | Hartmann Paul Ag | Absorbent pad for articles of hygiene comprises two fibrous layers pressed together at pattern of points, forming joins and funnel-like pore gradients |
US8426670B2 (en) | 2001-09-19 | 2013-04-23 | Nippon Shokubai Co., Ltd. | Absorbent structure, absorbent article, water-absorbent resin, and its production process and evaluation method |
US20030097113A1 (en) | 2001-10-05 | 2003-05-22 | Molee Kenneth John | Absorbent product with reduced rewet properties under load |
US20030009122A1 (en) | 2001-11-02 | 2003-01-09 | Veras Harry George | Visi-band |
US20030088229A1 (en) | 2001-11-02 | 2003-05-08 | Andrew Baker | Absorbent article with bimodal acquisition layer |
US6787682B2 (en) | 2001-11-05 | 2004-09-07 | Hollister Incorporated | Absorbent foam wound dressing |
USD515701S1 (en) | 2001-11-06 | 2006-02-21 | Stephen Horhota | Adhesive patch |
DE10155482B4 (en) | 2001-11-13 | 2004-11-25 | Sandler Ag | Composite material for the management of body fluids |
US6648862B2 (en) | 2001-11-20 | 2003-11-18 | Spheric Products, Ltd. | Personally portable vacuum desiccator |
AR031489A1 (en) | 2001-11-21 | 2003-09-24 | Freudenberg S A | NON-WOVEN FABRIC, APPARATUS FOR GOFRING THE SAME AND ROLLER FOR USE IN THIS DEVICE |
US7396584B2 (en) | 2001-11-21 | 2008-07-08 | Basf Aktiengesellschaft | Crosslinked polyamine coating on superabsorbent hydrogels |
US20030105442A1 (en) | 2001-11-30 | 2003-06-05 | Johnston Lee W. | Convection of absorbent cores providing enhanced thermal transmittance |
AU2002346641A1 (en) | 2001-12-03 | 2003-06-17 | Tredegar Film Products Corporation | Apertured non-woven composites and method for making |
US6958432B2 (en) | 2001-12-14 | 2005-10-25 | Kimberly-Clark Worldwide, Inc. | Disposable absorbent article |
GB2382989B (en) | 2001-12-14 | 2005-03-16 | Johnson & Johnson Medical Ltd | Polyurethane foam cavity wound dressings |
US6726668B2 (en) | 2001-12-14 | 2004-04-27 | Kimberly-Clark Worldwide, Inc. | Disposable absorbent article |
US20030120249A1 (en) | 2001-12-20 | 2003-06-26 | Wulz Andrea Susan | Absorbent article having an insert providing for improved fluid distribution |
DE60225480T2 (en) | 2001-12-26 | 2009-03-19 | Hill-Rom Services, Inc., Batesville | VACUUM PACKAGING BIND |
CA2468912A1 (en) | 2001-12-26 | 2003-07-17 | Hill-Rom Services, Inc. | Vented vacuum bandage and method |
US20030171729A1 (en) | 2001-12-28 | 2003-09-11 | Kaun James Martin | Multifunctional containment sheet and system for absorbent atricles |
US20030125646A1 (en) | 2001-12-29 | 2003-07-03 | Whitlock Russell Ward | Device and method for relieving pain |
US6645330B2 (en) | 2002-01-03 | 2003-11-11 | Paragon Trade Brands, Inc. | Method of making disposable absorbent article having graphics using ultrasonic thermal imaging |
US6832905B2 (en) | 2002-01-16 | 2004-12-21 | Paragon Trade Brands, Inc. | System and method for dry forming absorbent cores |
US20030135177A1 (en) | 2002-01-16 | 2003-07-17 | Andrew Baker | Absorbent articles containing multi-component core composite and methods of making same |
US6762337B2 (en) | 2002-01-24 | 2004-07-13 | Stanley Boukanov | Pressure bandages for wounds |
JP2005516676A (en) | 2002-02-05 | 2005-06-09 | ジアコメティ,クラウデイオ | DIAPTER, COMPOSITE ABSORBING COMPOSITION FOR PRODUCING sanitation napkins |
US6641695B2 (en) | 2002-02-14 | 2003-11-04 | Paragon Trade Brands, Inc. | Dry formed composite with cut and place layers |
CA2477674A1 (en) | 2002-02-28 | 2003-09-12 | Jeffrey S. Lockwood | External catheter access to vacuum bandage |
AU2003214639A1 (en) | 2002-03-01 | 2003-09-16 | Claudio Giacometti | Method for producing a composite absorbent structure for absorbent article, and structure formed in this way |
AU2003217872A1 (en) | 2002-03-04 | 2003-09-22 | Georgia Tech Research Corporation | Biocompatible hydrophilic films from polymeric mini-emulsions for application to skin |
WO2003075750A2 (en) | 2002-03-07 | 2003-09-18 | Board Of Regents, The University Of Texas System | Conformable bi-laminate compression bolster and method for using same |
US6613953B1 (en) | 2002-03-22 | 2003-09-02 | Dan Altura | Insulator-conductor device for maintaining a wound near normal body temperature |
KR101130879B1 (en) | 2002-04-04 | 2012-03-28 | 더 유니버시티 오브 아크론 | Non-woven fiber assemblies |
US8168848B2 (en) | 2002-04-10 | 2012-05-01 | KCI Medical Resources, Inc. | Access openings in vacuum bandage |
US20030199800A1 (en) | 2002-04-17 | 2003-10-23 | Levin John M. | Bandage including perforated gel |
US7910789B2 (en) | 2002-05-07 | 2011-03-22 | Polyremedy, Inc. | Method for treating wound, dressing for use therewith and apparatus and system for fabricating dressing |
US20030212357A1 (en) | 2002-05-10 | 2003-11-13 | Pace Edgar Alan | Method and apparatus for treating wounds with oxygen and reduced pressure |
US20040078016A1 (en) | 2002-05-14 | 2004-04-22 | Andrew Baker | Absorbent article with gravity resistant acquisition layer |
US6942683B2 (en) | 2002-05-24 | 2005-09-13 | 3M Innovative Properties Company | Wound closure system and method |
US7166094B2 (en) | 2002-05-28 | 2007-01-23 | Tyco Healthcare Retail Services Ag | Multiple layer absorbent article |
AR034469A1 (en) | 2002-06-11 | 2004-02-25 | Freudenberg S A | A TRANSFER LAYER OF LIQUID FLUIDS AND ABSORBENT ARTICLE THAT INCLUDES IT. |
GB2389794A (en) | 2002-06-19 | 2003-12-24 | Johnson & Johnson Medical Ltd | Wound dressing with variable shape |
DE20209581U1 (en) | 2002-06-20 | 2003-10-30 | Braun Melsungen Ag | syringe pump |
US20040019340A1 (en) | 2002-07-23 | 2004-01-29 | Tredegar Film Products Corporation | Absorbent article having a surface energy gradient between the topsheet and the acquisition distribution layer |
US7759540B2 (en) | 2002-07-23 | 2010-07-20 | Paragon Trade Brands, Llc | Absorbent articles containing absorbent cores having zoned absorbency and methods of making same |
US20040019339A1 (en) | 2002-07-26 | 2004-01-29 | Sridhar Ranganathan | Absorbent layer attachment |
US20040024375A1 (en) | 2002-08-02 | 2004-02-05 | John Litvay | Multi-functional tissue for absorbent articles |
US8062331B2 (en) | 2002-08-21 | 2011-11-22 | Kci Licensing, Inc. | Internal and external medical closure screen systems and methods |
AU2002359833A1 (en) | 2002-08-21 | 2004-03-11 | Hill-Rom Services, Inc. | Wound packing for preventing wound closure |
US7846141B2 (en) | 2002-09-03 | 2010-12-07 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
US6979324B2 (en) | 2002-09-13 | 2005-12-27 | Neogen Technologies, Inc. | Closed wound drainage system |
US7815616B2 (en) | 2002-09-16 | 2010-10-19 | Boehringer Technologies, L.P. | Device for treating a wound |
US7625362B2 (en) | 2003-09-16 | 2009-12-01 | Boehringer Technologies, L.P. | Apparatus and method for suction-assisted wound healing |
US20040054343A1 (en) | 2002-09-18 | 2004-03-18 | Barnett Larry N. | Horizontal density gradient absorbent system for personal care products |
US6960181B2 (en) | 2002-10-22 | 2005-11-01 | Carol J. Stevens | Irrigation dressing with a tubular dam |
GB0224986D0 (en) | 2002-10-28 | 2002-12-04 | Smith & Nephew | Apparatus |
WO2004041064A2 (en) | 2002-10-30 | 2004-05-21 | Rossen Joel S | Simplified one-handed preemptive medical procedure site dressing to prevent sharps injuries and exposure to bloodborne pathogens |
US20040087884A1 (en) | 2002-10-31 | 2004-05-06 | Haddock Teresa H. | Textured breathable films and their use as backing material for bandages |
US6844482B2 (en) | 2002-11-13 | 2005-01-18 | Sca Hygiene Products Ab | Absorbent article with improved liquid acquisition capacity |
SE0203358D0 (en) | 2002-11-13 | 2002-11-13 | Sca Hygiene Prod Ab | Absorbent articles with improved fluid absorbency |
US7122712B2 (en) | 2002-12-02 | 2006-10-17 | Lutri Thomas P | Surgical bandage and methods for treating open wounds |
AU2003301024A1 (en) | 2002-12-16 | 2004-07-22 | Velcro Industries B.V. | Inflatable products and methods of their formation and use |
AU2003304367A1 (en) | 2002-12-20 | 2005-02-14 | Polymer Group, Inc. | Liquid acquisition layer with caliper recovery and the method for producing the same |
EP1578477B2 (en) | 2002-12-31 | 2020-05-06 | KCI Licensing, Inc. | A dressing assembly for a closed wound or incision |
US7976519B2 (en) | 2002-12-31 | 2011-07-12 | Kci Licensing, Inc. | Externally-applied patient interface system and method |
US7423193B2 (en) | 2002-12-31 | 2008-09-09 | Ossur, Hf | Wound dressing |
US6951553B2 (en) | 2002-12-31 | 2005-10-04 | Kci Licensing, Inc | Tissue closure treatment system and method with externally-applied patient interface |
GB0300625D0 (en) | 2003-01-10 | 2003-02-12 | Bristol Myers Squibb Co | Wound dressing |
US6838589B2 (en) | 2003-02-19 | 2005-01-04 | 3M Innovative Properties Company | Conformable wound dressing |
JPWO2004073566A1 (en) | 2003-02-21 | 2006-06-01 | 株式会社メニコン | Medical dressing |
FR2851729B1 (en) | 2003-02-27 | 2005-12-23 | Catherine Dufour | FLEXIBLE ADHESIVE MULTILAYER MEMBRANE BASED ON NON-WOVEN AND MEDICAL SILICONES, USE OF THIS MEMBRANE IN COSMETICS OR DERMATOLOGY |
AU2003227020A1 (en) | 2003-02-27 | 2004-09-17 | Bang And Olufsen A/S | Metal structure with translucent region |
SE0300694D0 (en) | 2003-03-14 | 2003-03-14 | Sca Hygiene Prod Ab | Absorbent articles with improved surface material |
US7763770B2 (en) | 2003-03-14 | 2010-07-27 | Sca Hygiene Products Ab | Absorbent article with improved surface material |
US20040177935A1 (en) | 2003-03-14 | 2004-09-16 | Hamed Othman A. | Method for making chemically cross-linked cellulosic fiber in the sheet form |
US7838721B2 (en) | 2003-04-09 | 2010-11-23 | Paragon Trade Brands, Llc | Disposable articles using high column AUL superabsorbents |
US20040230184A1 (en) | 2003-05-01 | 2004-11-18 | Babusik Kimberly H. | Multiple layer absorbent system |
US6998511B2 (en) | 2003-05-03 | 2006-02-14 | George Medical | Dressing and a method for applying the same |
WO2004103432A2 (en) | 2003-05-20 | 2004-12-02 | Avery Dennison Corporation | Facial masks for managing skin wounds |
US20040243080A1 (en) | 2003-05-27 | 2004-12-02 | Bba Nonwovens Simpsonville, Inc. | Absorbent pads |
US20040253894A1 (en) | 2003-06-13 | 2004-12-16 | Fell David A. | Three dimensionally patterned stabilized absorbent material and method for producing same |
JP4467258B2 (en) | 2003-06-25 | 2010-05-26 | 株式会社ブリヂストン | Butadiene polymer, process for producing the same, and rubber composition and tire using the same |
EP1640023B1 (en) | 2003-06-26 | 2018-12-05 | Zuiko Corporation | Wound coating material and wound coating material kit |
ES2582936T3 (en) | 2003-07-11 | 2016-09-16 | Nonwovens Innovation & Research Institute Limited | Non-woven spacer fabric |
US20050015036A1 (en) | 2003-07-17 | 2005-01-20 | Lutri Thomas Placido | Surgical bandage for use with tissue adhesives and other medicaments |
JP4795234B2 (en) | 2003-07-22 | 2011-10-19 | ケーシーアイ ライセンシング インク | Negative pressure wound dressing |
JP4611980B2 (en) | 2003-08-08 | 2011-01-12 | ザ シーバーグ カンパニー インコーポレイテッド | Friction reduction device |
CN2676918Y (en) | 2003-08-20 | 2005-02-09 | 孙成宏 | Sterile butterfly shaped adhesive plaster |
US7179952B2 (en) | 2003-08-25 | 2007-02-20 | Kimberly-Clark Worldwide, Inc. | Absorbent article formed with microlayered films |
US7942866B2 (en) | 2003-08-28 | 2011-05-17 | Boehringer Technologies, L.P. | Device for treating a wound |
US7361184B2 (en) | 2003-09-08 | 2008-04-22 | Joshi Ashok V | Device and method for wound therapy |
US7531711B2 (en) | 2003-09-17 | 2009-05-12 | Ossur Hf | Wound dressing and method for manufacturing the same |
US20050079361A1 (en) | 2003-10-14 | 2005-04-14 | Hamed Othman A. | Materials useful in making cellulosic acquisition fibers in sheet form |
US7118545B2 (en) | 2003-10-14 | 2006-10-10 | Boyde Sandra M | Wound dressing retainer and fastening device |
WO2005039467A1 (en) | 2003-10-22 | 2005-05-06 | Tamicare Ltd. | Absorbent articles having defined functional zones |
US20050090860A1 (en) | 2003-10-23 | 2005-04-28 | Paprocki Loran J. | Segmented plug for tissue tracts |
GB0325129D0 (en) | 2003-10-28 | 2003-12-03 | Smith & Nephew | Apparatus in situ |
GB0409443D0 (en) | 2004-04-28 | 2004-06-02 | Smith & Nephew | Apparatus |
GB0325126D0 (en) | 2003-10-28 | 2003-12-03 | Smith & Nephew | Apparatus with heat |
US20050096616A1 (en) | 2003-10-31 | 2005-05-05 | Arora Tarun K. | Discrete absorbent articles |
US20050112979A1 (en) | 2003-11-24 | 2005-05-26 | Sawyer Lawrence H. | Integrally formed absorbent materials, products incorporating same, and methods of making same |
US7676257B2 (en) | 2003-11-25 | 2010-03-09 | General Electric Company | Method and apparatus for segmenting structure in CT angiography |
JP4851338B2 (en) * | 2003-11-28 | 2012-01-11 | コロプラスト アクティーゼルスカブ | Dressing goods |
JP4185445B2 (en) | 2003-12-02 | 2008-11-26 | 大王製紙株式会社 | Absorbent articles |
USD525362S1 (en) * | 2003-12-09 | 2006-07-18 | Ambu A/S | Electromedical electrode |
US20050136773A1 (en) | 2003-12-22 | 2005-06-23 | Kimberly-Clark Worldwide, Inc. | Treated nonwoven material |
CN1859935B (en) | 2003-12-22 | 2011-07-20 | 美德乐控股公司 | Drainage apparatus and method |
DE102004001594B4 (en) | 2004-01-09 | 2006-09-21 | Bio-Gate Ag | Wound dressing and process for its preparation |
ES2348306T3 (en) | 2004-02-13 | 2010-12-02 | Convatec Technologies Inc. | MULTIPLE LAYER LAYOUT FOR WOUNDS. |
US7511187B2 (en) | 2004-03-12 | 2009-03-31 | Mcneil - Ppc Inc. | Absorbent article having stain masking characteristics |
US7049478B1 (en) | 2004-03-16 | 2006-05-23 | Patricia Ann Smith | Tri-lobe planar heel wound dressing |
US7754937B2 (en) | 2004-03-18 | 2010-07-13 | Boehringer Technologies, L.P. | Wound packing material for use with suction |
EP1579831A1 (en) | 2004-03-23 | 2005-09-28 | The Procter & Gamble Company | An absorbent article comprising edge barriers comprising a liquid absorbent thermoplastic composition |
US20050215965A1 (en) | 2004-03-29 | 2005-09-29 | The Procter & Gamble Company | Hydrophilic nonwovens with low retention capacity comprising cross-linked hydrophilic polymers |
JP2005288265A (en) | 2004-03-31 | 2005-10-20 | Procter & Gamble Co | Aqueous liquid absorbent and its manufacturing method |
US7776028B2 (en) | 2004-04-05 | 2010-08-17 | Bluesky Medical Group Incorporated | Adjustable overlay reduced pressure wound treatment system |
US7708724B2 (en) | 2004-04-05 | 2010-05-04 | Blue Sky Medical Group Incorporated | Reduced pressure wound cupping treatment system |
US10058642B2 (en) | 2004-04-05 | 2018-08-28 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
US8062272B2 (en) | 2004-05-21 | 2011-11-22 | Bluesky Medical Group Incorporated | Flexible reduced pressure treatment appliance |
EP1602467A1 (en) | 2004-04-12 | 2005-12-07 | Tredegar Film Products Corporation | Formed film having a cellularly defined base pattern and visible design |
US7884258B2 (en) | 2004-04-13 | 2011-02-08 | Boehringer Technologies, L.P. | Wound contact device |
US7951124B2 (en) | 2004-04-13 | 2011-05-31 | Boehringer Technologies, Lp | Growth stimulating wound dressing with improved contact surfaces |
GB0409446D0 (en) | 2004-04-28 | 2004-06-02 | Smith & Nephew | Apparatus |
GB0409291D0 (en) | 2004-04-27 | 2004-06-02 | Smith & Nephew | Apparatus with stress |
US20050084641A1 (en) | 2004-05-14 | 2005-04-21 | Glue Dots International, Llc | Perforated adhesive dispensing sheets |
US20050261649A1 (en) | 2004-05-19 | 2005-11-24 | Cohen Richmond R | Absorbent article with layered acquisition/distribution system |
US20050267429A1 (en) | 2004-05-25 | 2005-12-01 | Cohen Richmond R | Acquisition/distribution layer |
GB2415382A (en) | 2004-06-21 | 2005-12-28 | Johnson & Johnson Medical Ltd | Wound dressings for vacuum therapy |
US20050288691A1 (en) | 2004-06-28 | 2005-12-29 | Leiboff Arnold R | Hernia patch |
US20060009744A1 (en) | 2004-07-09 | 2006-01-12 | Erdman Edward P | Decorative component for an absorbent article |
JP4566640B2 (en) * | 2004-07-13 | 2010-10-20 | 株式会社瑞光 | Covering material fixing auxiliary material |
US20060020250A1 (en) | 2004-07-23 | 2006-01-26 | Bba Nonwovens Simpsonville, Inc. | Absorbent structure |
EP1625885A1 (en) | 2004-08-11 | 2006-02-15 | Vlaamse Instelling Voor Technologisch Onderzoek (Vito) | Integrated permeate channel membrane |
US20060047257A1 (en) | 2004-08-31 | 2006-03-02 | Maria Raidel | Extensible absorbent core and absorbent article |
EP1634556B1 (en) | 2004-09-13 | 2019-06-12 | The Procter & Gamble Company | Absorbent articles with improved acquisition rate |
US20060069366A1 (en) | 2004-09-24 | 2006-03-30 | Cole Robert T | Core for an absorbent article |
US20060069375A1 (en) | 2004-09-29 | 2006-03-30 | Andrew Waksmundzki | Absorbent article with C-folded moisture barrier and methods of manufacturing same |
US20060069367A1 (en) | 2004-09-29 | 2006-03-30 | Andrew Waksmundzki | Absorbent core having two or more types of superabsorbent |
US20110313373A1 (en) * | 2004-11-02 | 2011-12-22 | Birgit Riesinger | Device for the treatment of wounds using a vacuum |
DE202004017052U1 (en) | 2004-11-02 | 2005-06-09 | Riesinger, Birgit | Device for wound treatment using negative pressure |
EP1807145B1 (en) | 2004-11-05 | 2016-03-23 | ConvaTec Technologies Inc. | Vacuum wound dressing |
US7485112B2 (en) | 2004-11-08 | 2009-02-03 | Boehringer Technologies, L.P. | Tube attachment device for wound treatment |
DE202004018245U1 (en) | 2004-11-24 | 2005-07-07 | Riesinger, Birgit | Drainage device for treating wounds using reduced pressure has absorption body with layer(s) of textile section enriched with super-absorbents enclosed by liquid transmissive sleeve; absorbed wound secretions remain in absorption body |
US20060122548A1 (en) | 2004-12-06 | 2006-06-08 | Leonard Abrams | Devices and methods of treatment of wounds and burns and related impaired blood circulation problems |
US20070239125A9 (en) | 2004-12-08 | 2007-10-11 | Tyco Healthcare Retail Group, Ag | Absorbent article with multi-zone acquisition |
US7576256B2 (en) | 2004-12-10 | 2009-08-18 | Abigo Medical Ab | Wound dressing with a bacterial adsorbing composition |
US7161056B2 (en) | 2005-01-28 | 2007-01-09 | Ossur Hf | Wound dressing and method for manufacturing the same |
USD537948S1 (en) * | 2005-01-31 | 2007-03-06 | Patricia Ann Smith | Tri-lobe planar heel wound dressing |
EP1688111B1 (en) | 2005-02-08 | 2013-07-03 | Attends Healthcare AB | Absorbent article |
DE102005007016A1 (en) | 2005-02-15 | 2006-08-24 | Fleischmann, Wilhelm, Dr.med. | Device for the treatment of wounds |
US7312297B2 (en) | 2005-02-16 | 2007-12-25 | Rayonier Trs Holdings, Inc. | Treatment composition for making acquisition fluff pulp in sheet form |
US8211078B2 (en) | 2005-02-17 | 2012-07-03 | The Procter And Gamble Company | Sanitary napkins capable of taking complex three-dimensional shape in use |
US20060206074A1 (en) | 2005-03-11 | 2006-09-14 | The Procter & Gamble Company | Absorbent core structures having undulations |
US20060206073A1 (en) | 2005-03-11 | 2006-09-14 | Crane Patrick L | Insitube-formed absorbent core structures |
US20060206047A1 (en) | 2005-03-14 | 2006-09-14 | Lampe John K | Bandage with splint |
BRPI0501157C1 (en) | 2005-03-31 | 2007-02-21 | Kimberly Clark Kenko Ind E Com | absorbent article containing a density gradient in at least two directions, and method for manufacturing the same |
US8067662B2 (en) | 2009-04-01 | 2011-11-29 | Aalnex, Inc. | Systems and methods for wound protection and exudate management |
US8415523B2 (en) | 2005-04-16 | 2013-04-09 | Aalnex, Inc. | Secondary wound dressings for securing primary dressings and managing fluid from wounds, and methods of using same |
US7749531B2 (en) | 2005-06-08 | 2010-07-06 | Indicator Systems International | Apparatus and method for detecting bacterial growth beneath a wound dressing |
DE102005026771B4 (en) | 2005-06-10 | 2007-04-19 | Erdmann, Alfons, Dr. med. | Device for treating patients suffering from skin lesions distributed on the skin surface as well as body coverage |
WO2006135848A2 (en) | 2005-06-10 | 2006-12-21 | Pamela Howard | Wound management system |
WO2006138723A2 (en) | 2005-06-16 | 2006-12-28 | Biolase Technology, Inc. | Tissue coverings bearing cutomized tissue images |
JP2008544824A (en) | 2005-07-08 | 2008-12-11 | コロプラスト アクティーゼルスカブ | Access port |
US20110077605A1 (en) | 2005-07-14 | 2011-03-31 | Boehringer Technologies, L.P. | Pump system for negative pressure wound therapy |
US7988673B2 (en) | 2005-07-14 | 2011-08-02 | Venetec International, Inc. | Protective dressing and methods of use thereof |
US7438705B2 (en) | 2005-07-14 | 2008-10-21 | Boehringer Technologies, L.P. | System for treating a wound with suction and method detecting loss of suction |
WO2007013064A1 (en) | 2005-07-24 | 2007-02-01 | Carmeli Adahan | Suctioning system, method and kit |
JP4970445B2 (en) | 2005-07-24 | 2012-07-04 | カーメリ・アダハン | Wound cover and drainage system |
US7503910B2 (en) | 2006-02-01 | 2009-03-17 | Carmeli Adahan | Suctioning system, method and kit |
WO2007016590A2 (en) | 2005-07-29 | 2007-02-08 | Diadexus, Inc. | Ovr232v3 antibody compositions and methods of use |
US7608066B2 (en) | 2005-08-08 | 2009-10-27 | Innovative Therapies, Inc. | Wound irrigation device pressure monitoring and control system |
DE102005039772A1 (en) | 2005-08-22 | 2007-03-08 | Prominent Dosiertechnik Gmbh | solenoid |
US7812212B2 (en) | 2005-08-23 | 2010-10-12 | Centurion Medical Products Corporation | Window dressing |
US7294751B2 (en) | 2005-08-23 | 2007-11-13 | Tri-State Hospital Supply Corporation | Window dressing |
WO2007027755A2 (en) | 2005-08-30 | 2007-03-08 | Mayo Foundation For Medical Education And Research | Inflatable compression dressing |
CN101257875A (en) | 2005-09-06 | 2008-09-03 | 泰科保健集团有限合伙公司 | Self contained wound dressing with micropump |
AU2006287461A1 (en) | 2005-09-07 | 2007-03-15 | Tyco Healthcare Group L.P. | Self contained wound dressing apparatus |
WO2007030598A2 (en) | 2005-09-07 | 2007-03-15 | Tyco Healthcare Group Lp | Wound dressing with vacuum reservoir |
US7723561B2 (en) | 2005-09-09 | 2010-05-25 | Centurion Medical Products Corporation | PIV dressing assembly |
US20070078467A1 (en) | 2005-09-13 | 2007-04-05 | Mullen Gary J | Surgical depilatory device |
KR100639727B1 (en) | 2005-09-20 | 2006-11-01 | 유한킴벌리 주식회사 | Absorbent article with apertured surge layer |
ATE418949T1 (en) | 2005-09-23 | 2009-01-15 | Procter & Gamble | PERFORATED TOP AND LIQUID ABSORPTION LAYER |
WO2007040606A2 (en) | 2005-09-28 | 2007-04-12 | Tyco Healthcare Retail Services, Ag | Absorbent article with c-foldedd moisture barrier and methods of manufacturing same |
US7838719B2 (en) | 2005-10-03 | 2010-11-23 | Hilton Jr Jimmy Earl | Bandage for covering a wound with no adhesive-to-skin contact |
CN2843399Y (en) | 2005-10-18 | 2006-12-06 | 俞新中 | Band-aid |
JP5196774B2 (en) | 2005-12-06 | 2013-05-15 | 小林製薬株式会社 | Multi-layer absorbent hygiene articles |
DE202005019670U1 (en) | 2005-12-14 | 2006-04-27 | Riesinger, Birgit | Wound treatment device with elastically deformable negative pressure generating element |
US7622629B2 (en) | 2005-12-15 | 2009-11-24 | Aalnex, Inc. | Wound shield for exudate management |
US20070142804A1 (en) | 2005-12-16 | 2007-06-21 | Bernard Bobby L | Hollow-core fibers |
ITMO20050343A1 (en) | 2005-12-23 | 2007-06-24 | Lorenz Biotech Spa | SUPPORT FOR MEDICATION |
DE102006000781A1 (en) | 2006-01-04 | 2007-07-05 | Johnson & Johnson Gmbh | Cover and transfer layer structure for sanitary article, has non-woven cover layer whereby non-woven cover layer contains super absorbing fibers and multi-component fibers that are produced by calendaring |
DE102006000780A1 (en) | 2006-01-04 | 2007-07-05 | Johnson & Johnson Gmbh | Laminated absorbing acquisition and distribution laminated structure for sanitary articles, has surface layer, which consists non-woven manufactured by means of spunlace technology and area is provided with hydrophilic features |
US7896823B2 (en) | 2006-01-17 | 2011-03-01 | Theranova, Llc | Method and apparatus for treating wound using negative pressure therapy |
US20110137222A1 (en) | 2006-01-18 | 2011-06-09 | Masini Michael A | Healing wound bandaging kit and method |
EP1811071A1 (en) | 2006-01-18 | 2007-07-25 | Celanese Emulsions GmbH | Latex bonded airlaid fabric and its use |
DE202006007877U1 (en) | 2006-01-25 | 2006-07-27 | Riesinger, Birgit | Prefabricated wound dressing with superabsorber |
JP4719278B2 (en) | 2006-02-06 | 2011-07-06 | ケーシーアイ ライセンシング インコーポレイテッド | Adapter for applying negative pressure wound therapy to tissue sites |
US8235939B2 (en) | 2006-02-06 | 2012-08-07 | Kci Licensing, Inc. | System and method for purging a reduced pressure apparatus during the administration of reduced pressure treatment |
US7816577B2 (en) | 2006-02-13 | 2010-10-19 | Aalnex, Inc. | Wound shield |
GB2435422A (en) | 2006-02-22 | 2007-08-29 | Chou Chang-Tsung | Slow release agent absorbent dressing |
GB2435423A (en) | 2006-02-22 | 2007-08-29 | Chou Chang-Tsung | Three-dimensional absorbent dressing comprising slow release agent |
US20070219585A1 (en) | 2006-03-14 | 2007-09-20 | Cornet Douglas A | System for administering reduced pressure treatment having a manifold with a primary flow passage and a blockage prevention member |
AU2007225050B2 (en) | 2006-03-14 | 2011-08-18 | Solventum Intellectual Properties Company | System and method for purging a reduced pressure apparatus during the administration of reduced pressure treatment |
US20070220692A1 (en) * | 2006-03-22 | 2007-09-27 | Ben Kusin | Odor neutralization apparatus and method |
US7790640B2 (en) | 2006-03-23 | 2010-09-07 | Kimberly-Clark Worldwide, Inc. | Absorbent articles having biodegradable nonwoven webs |
US20070239232A1 (en) | 2006-03-28 | 2007-10-11 | Eastman Kodak Company | Light guide based light therapy device |
GB0606661D0 (en) | 2006-04-03 | 2006-05-10 | Brightwake Ltd | Improvements relating to dressings |
US20070238167A1 (en) * | 2006-04-04 | 2007-10-11 | 3M Innovative Properties Company | Flat microfibers as matrices for cell growth |
EP1842513B1 (en) | 2006-04-07 | 2014-09-10 | The Procter and Gamble Company | Absorbent article having nonwoven lateral zones |
US9050777B2 (en) | 2006-04-10 | 2015-06-09 | First Quality Nonwovens, Inc. | Contendered nonwoven/pulp composite fabric and method for making the same |
DE102006021240B4 (en) | 2006-04-28 | 2008-01-31 | Bühler Motor GmbH | rotary pump |
US7686921B2 (en) | 2006-05-01 | 2010-03-30 | Rayonier Trs Holding Inc. | Liquid distribution mat made of enhanced cellulosic fibers |
US7615036B2 (en) | 2006-05-11 | 2009-11-10 | Kalypto Medical, Inc. | Device and method for wound therapy |
US7779625B2 (en) | 2006-05-11 | 2010-08-24 | Kalypto Medical, Inc. | Device and method for wound therapy |
US20070270070A1 (en) | 2006-05-19 | 2007-11-22 | Hamed Othman A | Chemically Stiffened Fibers In Sheet Form |
WO2007143179A2 (en) | 2006-06-02 | 2007-12-13 | Bengtson Bradley P | Assemblies, systems, and methods for vacuum assisted internal drainage during wound healing |
US7576257B2 (en) | 2006-06-06 | 2009-08-18 | Lagreca Sr Alfred J | Reclosable wound dressing system |
US7294752B1 (en) | 2006-06-27 | 2007-11-13 | Tri-State Hospital Supply Corporation | Window dressing having integral anchor |
US9220645B2 (en) | 2006-06-30 | 2015-12-29 | First Quality Retail Services, Llc | Absorbent article with embossing |
SE0601536L (en) | 2006-07-11 | 2008-01-12 | Moelnlycke Health Care Ab | Coil connection |
US20080015532A1 (en) | 2006-07-13 | 2008-01-17 | Tyco Healthcare Retail Services Ag | Absorbent article having multi fiber and density absorbent core |
US7686785B2 (en) | 2006-07-13 | 2010-03-30 | Boehringer Laboratories, Incorporated | Medical suction control with isolation characteristics |
US8916742B2 (en) | 2006-07-19 | 2014-12-23 | Joseph O. Smith | Anatomically engineered configured article |
EP2046412A1 (en) | 2006-07-24 | 2009-04-15 | Coloplast A/S | Canister, suction device and system for vacuum treatment securing a fixed treatment pressure |
EP1884223A1 (en) | 2006-08-04 | 2008-02-06 | IP Randwyck B.V. | Wound-stimulating unit |
EP2068798A4 (en) | 2006-08-30 | 2009-12-16 | Southeastern Medical Technolog | Methods, compositions and apparatuses to treat wounds with pressures altered from atmospheric |
US20080058691A1 (en) | 2006-08-31 | 2008-03-06 | Bradford Tyler Sorensen | Bullet plug gunshot wound first aid, open operation device |
EP2059268A1 (en) | 2006-08-31 | 2009-05-20 | Basf Se | Superabsorbent polymers having superior gel integrity, absorption capacity, and permeability |
WO2008025655A2 (en) | 2006-08-31 | 2008-03-06 | Basf Se | Polyamine coated superabsorbent polymers having transient hydrophobicity |
US8061360B2 (en) | 2006-09-19 | 2011-11-22 | Kci Licensing, Inc. | System and method for locating fluid leaks at a drape of a reduced pressure delivery system |
JP4859606B2 (en) | 2006-09-21 | 2012-01-25 | 大王製紙株式会社 | Absorbent articles |
US20090326430A1 (en) | 2006-09-22 | 2009-12-31 | Jesper Mads Bartroff Frederiksen | Film dressing |
WO2008039223A1 (en) | 2006-09-26 | 2008-04-03 | Boehringer Technologies L.P. | Pump system for negative pressure wound therapy |
US9820888B2 (en) | 2006-09-26 | 2017-11-21 | Smith & Nephew, Inc. | Wound dressing |
GB0903032D0 (en) | 2009-02-24 | 2009-04-08 | Smith & Nephew | Drapeable wound dressing |
CA2664677C (en) | 2006-09-26 | 2016-01-26 | T.J. Smith & Nephew, Limited | Lattice dressing |
CA2604623C (en) | 2006-09-28 | 2018-10-30 | Tyco Healthcare Group Lp | Portable wound therapy system |
US20080082075A1 (en) | 2006-09-28 | 2008-04-03 | Tyco Healthcare Retail Services Ag | Absorbent article with a C-fold absorbent layer |
SE0602064L (en) | 2006-10-03 | 2008-04-04 | Moelnlycke Health Care Ab | Wound dressing with pressure distributing hose inlet |
US20080243096A1 (en) | 2006-10-05 | 2008-10-02 | Paul Svedman | Device For Active Treatment and Regeneration of Tissues Such as Wounds |
US20080090050A1 (en) | 2006-10-13 | 2008-04-17 | Tredegar Film Products Corporation | Dry top formed film |
WO2008049277A1 (en) | 2006-10-25 | 2008-05-02 | Jiangsu Yenssen Biotech Co., Ltd. | Transparent film-isolating paper for water-proof wound dressing |
US20080167592A1 (en) | 2006-10-26 | 2008-07-10 | Greer Steven E | Preventing or treating wounds with a collodion barrier incorporating active agents |
US20080113143A1 (en) | 2006-10-31 | 2008-05-15 | David Stirling Taylor | Flexible Material and Method of Manufacturing the Flexible Material |
ATE494914T1 (en) | 2006-11-07 | 2011-01-15 | Hartmann Paul Ag | MULTI-LAYER ABSORBENT WOUND DRESSING WITH A HYDROPHILIC WOUND CONTACT LAYER |
US7518032B2 (en) | 2006-11-14 | 2009-04-14 | Tredegar Film Products Corporation | Three-dimensional apertured film for transmitting dynamically-deposited and statically-retained fluids |
RU62504U1 (en) | 2006-12-07 | 2007-04-27 | Юрий Павлович Савченко | MEDIUM DRAINING DEVICE |
US8044255B2 (en) | 2006-12-15 | 2011-10-25 | Kimberly-Clark Worldwide, Inc. | Treatment of personal care products to reduce leakage |
EP1943992B1 (en) | 2007-01-12 | 2012-02-22 | The Procter & Gamble Company | Absorbent core having improved structure |
JP4867025B2 (en) | 2007-01-30 | 2012-02-01 | アルケア株式会社 | Catheter fixture |
US7829819B2 (en) | 2007-02-08 | 2010-11-09 | Automotive Components Holdings, Llc | Attaching a component to an internal surface of a tank formed of polymer |
MX2009008399A (en) | 2007-02-09 | 2009-11-10 | Kci Licensing Inc | Apparatus and method for administering reduced pressure treatment to a tissue site. |
RU2428208C2 (en) | 2007-02-09 | 2011-09-10 | КейСиАй Лайсензинг Инк. | System and method of low pressure control in tissue area |
CN101605519B (en) | 2007-02-09 | 2013-05-22 | 凯希特许有限公司 | Breathable interface system for topical pressure reducing |
US8267908B2 (en) | 2007-02-09 | 2012-09-18 | Kci Licensing, Inc. | Delivery tube, system, and method for storing liquid from a tissue site |
US8083712B2 (en) | 2007-03-20 | 2011-12-27 | Neogen Technologies, Inc. | Flat-hose assembly for wound drainage system |
US20080243100A1 (en) | 2007-03-29 | 2008-10-02 | Tyco Healthcare Retail Services Ag | Absorbent article having fluid transfer layer |
US20080255533A1 (en) | 2007-04-12 | 2008-10-16 | Tyco Healthcare Retail Services Ag | Disposable absorbent article with fluid redistribution layer |
DE102008020553A1 (en) | 2007-04-29 | 2008-10-30 | Iskia Gmbh & Co.Kg | Flat drainage for wound treatment |
US8057446B2 (en) | 2007-05-01 | 2011-11-15 | The Brigham And Women's Hospital, Inc. | Wound healing device |
EP2152333B1 (en) | 2007-05-07 | 2012-10-17 | Carmeli Adahan | Suction system |
WO2008141470A1 (en) | 2007-05-22 | 2008-11-27 | Medela Holding Ag | Drainage tube unit |
GB0710846D0 (en) | 2007-06-06 | 2007-07-18 | Bristol Myers Squibb Co | A wound dressing |
WO2009047596A1 (en) | 2007-06-12 | 2009-04-16 | Dsg Technology Holdings Ltd. | Absorbent article with a slit absorbent core |
CN101686879B (en) | 2007-06-18 | 2013-03-27 | 宝洁公司 | Disposable absorbent article with improved acquisition system with substantially continuously distributed absorbent particulate polymer material |
US20080312622A1 (en) | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Improved Acquisition System |
JP5497987B2 (en) | 2007-06-22 | 2014-05-21 | ユニ・チャーム株式会社 | Nonwoven fabric and method for producing the same |
SE531259C2 (en) | 2007-06-27 | 2009-02-03 | Moelnlycke Health Care Ab | Device for treating reduced pressure ulcers |
GB0715259D0 (en) | 2007-08-06 | 2007-09-12 | Smith & Nephew | Canister status determination |
IN2010KN00792A (en) | 2007-08-03 | 2015-08-28 | Nicast Ltd | |
US20090043268A1 (en) | 2007-08-06 | 2009-02-12 | Eddy Patrick E | Wound treatment system and suction regulator for use therewith |
WO2009021523A1 (en) | 2007-08-14 | 2009-02-19 | Coloplast A/S | Pressure-distributing element of closed cell foam |
US20090099519A1 (en) | 2007-09-07 | 2009-04-16 | Albert Einstein Healthcare Network | Advanced abdominal dressing for the treatment of the postoperative hypothermic patients with an open abdomen |
US20090076472A1 (en) | 2007-09-17 | 2009-03-19 | Tisteron, Ltd. | Absorbent layer, structure and article along with a method of forming the same |
JP2011500272A (en) * | 2007-10-23 | 2011-01-06 | ボリンジャー・テクノロジーズ・エル・ピー | Thin film wound covering, suction wound treatment system using thin film wound covering, method of using thin film wound covering, and method of manufacturing thin film wound covering |
US20090112175A1 (en) | 2007-10-30 | 2009-04-30 | Kofi Ayensu Bissah | Absorbent article including an absorbent layer having a plurality of spaced beam elements |
TWI340653B (en) | 2007-11-09 | 2011-04-21 | Ind Tech Res Inst | Detachable pump and the negative pressure wound therapy system using the same |
US9408755B2 (en) | 2007-11-13 | 2016-08-09 | Medela Holding Ag | Wound drainage dressing |
DE102007055565B3 (en) | 2007-11-20 | 2009-04-16 | Aloys F. Dornbracht Gmbh & Co. Kg | Device for concealed fixing of sanitary elements |
AU2007361484A1 (en) | 2007-11-20 | 2009-05-28 | Sca Hygiene Products Ab | Shaped absorbent article |
CA2705896C (en) | 2007-11-21 | 2019-01-08 | Smith & Nephew Plc | Wound dressing |
HUE049431T2 (en) | 2007-11-21 | 2020-09-28 | Smith & Nephew | Wound dressing |
GB0722820D0 (en) | 2007-11-21 | 2008-01-02 | Smith & Nephew | Vacuum assisted wound dressing |
WO2009068665A1 (en) | 2007-11-30 | 2009-06-04 | Coloplast A/S | Tube assembly for use in a wound drainage system |
GB0723872D0 (en) | 2007-12-06 | 2008-01-16 | Smith & Nephew | Apparatus for topical negative pressure therapy |
US20090157024A1 (en) | 2007-12-14 | 2009-06-18 | Kimberly-Clark Worldwide, Inc. | Hydration Test Devices |
SE531853C2 (en) | 2007-12-18 | 2009-08-25 | Moelnlycke Health Care Ab | Transparent film dressing for protection of skin surrounding a wound |
US8377017B2 (en) | 2008-01-03 | 2013-02-19 | Kci Licensing, Inc. | Low-profile reduced pressure treatment system |
WO2009086580A1 (en) | 2008-01-07 | 2009-07-16 | Cerulean Medical Pty Ltd | Negative pressure treatment device |
CN201139694Y (en) | 2008-01-18 | 2008-10-29 | 王河川 | Adhesive bandage for finger root arthrosis |
EP2259803B2 (en) | 2008-02-29 | 2019-03-13 | Ferrosan Medical Devices A/S | Device for promotion of hemostasis and/or wound healing |
BRPI0906095A2 (en) | 2008-03-05 | 2016-06-21 | Kci Licensing Inc | reduced pressure dressing to apply a reduced pressure treatment to a tissue site, method for collecting fluid in a bandage positioned at a tissue site and a reduced pressure dressing adapted to deliver a reduced pressure to a tissue site. |
US8298200B2 (en) | 2009-06-01 | 2012-10-30 | Tyco Healthcare Group Lp | System for providing continual drainage in negative pressure wound therapy |
US9033942B2 (en) | 2008-03-07 | 2015-05-19 | Smith & Nephew, Inc. | Wound dressing port and associated wound dressing |
US8021347B2 (en) | 2008-07-21 | 2011-09-20 | Tyco Healthcare Group Lp | Thin film wound dressing |
US20090234306A1 (en) | 2008-03-13 | 2009-09-17 | Tyco Healthcare Group Lp | Vacuum wound therapy wound dressing with variable performance zones |
US8152785B2 (en) | 2008-03-13 | 2012-04-10 | Tyco Healthcare Group Lp | Vacuum port for vacuum wound therapy |
EP2977067B1 (en) | 2008-03-13 | 2020-12-09 | 3M Innovative Properties Company | Apparatus for applying reduced pressure to a tissue site on a foot |
CN101980688B (en) | 2008-03-28 | 2014-04-16 | 荷兰联合利华有限公司 | Hair styling composition |
CA2723364A1 (en) | 2008-04-01 | 2009-11-12 | Ohio Medical Corporation | Wound treatment system |
JP2011516167A (en) | 2008-04-04 | 2011-05-26 | スリーエム イノベイティブ プロパティズ カンパニー | Wound dressing with micropump |
SE533170C2 (en) | 2008-04-09 | 2010-07-13 | Moelnlycke Health Care Ab | Device for treating wounds with suppression |
EP2305326B1 (en) | 2008-05-02 | 2015-09-16 | KCI Licensing, Inc. | Reduced pressure pump having regulated pressure capabilities for wound treatment |
EP2374486B1 (en) | 2008-05-13 | 2018-11-07 | KCI Licensing, Inc. | Catheter/filament device for treatment of wounds beneath the surface of the skin |
GB0809131D0 (en) | 2008-05-20 | 2008-06-25 | Brightwake Ltd | Soft silicones tapes |
US8414519B2 (en) | 2008-05-21 | 2013-04-09 | Covidien Lp | Wound therapy system with portable container apparatus |
KR101567619B1 (en) | 2008-05-21 | 2015-11-10 | 모리스 토파즈 | Wound healing device |
AU2009251802B2 (en) | 2008-05-27 | 2013-05-30 | Smith & Nephew, Inc. | Control unit with pump module for a negative pressure wound therapy device |
AU2009251810B2 (en) | 2008-05-27 | 2013-03-28 | Smith & Nephew, Inc. | Negative pressure wound therapy device |
CN103417332B (en) | 2008-05-30 | 2015-10-07 | 凯希特许有限公司 | Super-absorbent, reduced-pressure wound dressing and system |
CA2725569C (en) | 2008-05-30 | 2014-11-25 | Kci Licensing, Inc. | Reduced-pressure, linear wound closing bolsters and systems |
GB0810404D0 (en) | 2008-06-06 | 2008-07-09 | Manuka Medical Ltd | Compositions |
MX2010013783A (en) | 2008-06-13 | 2010-12-21 | Procter & Gamble | Absorbent article with absorbent polymer material, wetness indicator, and reduced migration of surfactant. |
SE0801490A0 (en) * | 2008-06-24 | 2009-12-25 | Moelnlycke Health Care Ab | Wound dressings |
US20090320852A1 (en) | 2008-06-27 | 2009-12-31 | Cuevas Brian J | Tracheostomy Tube Butterfly Flange |
WO2010005910A2 (en) | 2008-07-08 | 2010-01-14 | Monarch Labs Llc | Maggot debridement therapy dressings and methods |
GB0813542D0 (en) | 2008-07-24 | 2008-08-27 | Brightwake Ltd | Material for use as a wound packing element in particulary negative pressure wound therapy (NPWT) |
US8460698B2 (en) | 2008-08-01 | 2013-06-11 | Milliken & Company | Composite article suitable for use as a wound dressing |
US8454990B2 (en) | 2008-08-01 | 2013-06-04 | Milliken & Company | Composite article suitable for use as a wound dressing |
WO2010016791A1 (en) | 2008-08-05 | 2010-02-11 | Mölnlycke Health Care Ab | Component for securing attachment of a medical device to skin |
EP2313041B1 (en) | 2008-08-06 | 2013-07-17 | Basf Se | Fluid-absorbent articles |
DK2309961T3 (en) * | 2008-08-08 | 2018-03-12 | Smith & Nephew Inc | Wound dressing of continuous fibers |
EP2153809B1 (en) | 2008-08-08 | 2015-12-09 | The Procter and Gamble Company | Absorbent core |
US8251979B2 (en) | 2009-05-11 | 2012-08-28 | Tyco Healthcare Group Lp | Orientation independent canister for a negative pressure wound therapy device |
EP2323703A4 (en) | 2008-08-28 | 2013-11-20 | Covidien Lp | Environmentally activated compositions, articles and methods |
EP2161011B2 (en) | 2008-09-03 | 2015-05-20 | Gert Pistor | Wound protection |
EP2320844A1 (en) | 2008-09-05 | 2011-05-18 | Birgit Riesinger | Wound care article, comprising a portion of modified natural fibers or synthetic fibers |
US9414968B2 (en) | 2008-09-05 | 2016-08-16 | Smith & Nephew, Inc. | Three-dimensional porous film contact layer with improved wound healing |
KR20110063523A (en) | 2008-09-18 | 2011-06-10 | 케이씨아이 라이센싱 인코포레이티드 | A system and method for delivering reduced pressure to subcutaneous tissue |
EP2326295B2 (en) * | 2008-09-18 | 2021-09-01 | KCI Licensing, Inc. | Multi-layer dressings, systems, and methods for applying reduced pressure at a tissue site |
RU2011107119A (en) | 2008-09-18 | 2012-10-27 | КейСиАй Лайсензинг, Инк. (US) | SYSTEMS AND METHODS OF DELIVERY THERAPY |
KR20100033209A (en) | 2008-09-19 | 2010-03-29 | 유한킴벌리 주식회사 | Method for manufacturing unwooven web perforated without phisical or thermal deformation and absorbent articles comprising the unwooven web |
US20100084074A1 (en) | 2008-10-06 | 2010-04-08 | Tatuyou, Llc | Transparent breathable polyurethane film for tattoo aftercare and method |
US8158844B2 (en) | 2008-10-08 | 2012-04-17 | Kci Licensing, Inc. | Limited-access, reduced-pressure systems and methods |
US8092436B2 (en) | 2008-10-17 | 2012-01-10 | Sterigear LLC | Bodily fluid drainage assembly |
US20100106120A1 (en) | 2008-10-24 | 2010-04-29 | 3M Innovative Properties Company | Wound dressing |
WO2010048078A1 (en) | 2008-10-24 | 2010-04-29 | 3M Innovative Properties Company | Conformable wound dressing |
US8110718B2 (en) | 2008-10-27 | 2012-02-07 | 3M Innovative Properties Company | Thin film delivery system and method of manufacture |
RU2011114218A (en) | 2008-10-29 | 2012-12-10 | КейСиАй ЛАЙСЕНЗИНГ, ИНК. | OPEN CAVITY THERAPY DEVICES AND SYSTEMS REDUCED PRESSURE |
USD625018S1 (en) | 2008-11-05 | 2010-10-05 | Smith & Nephew Plc | Medical dressing |
US20100121298A1 (en) | 2008-11-10 | 2010-05-13 | Tredegar Film Products Corporation | Transfer layer for absorbent article |
EP3388093B1 (en) | 2008-11-14 | 2020-05-20 | KCI Licensing, Inc. | Fluid pouch, system, and method for storing fluid from a tissue site |
US8563800B2 (en) | 2008-11-18 | 2013-10-22 | Patricia A. Smith | Method of use of a tulip-shaped sacral wound dressing |
KR20110097852A (en) | 2008-11-19 | 2011-08-31 | 케이씨아이 라이센싱 인코포레이티드 | Dynamic, reduced-pressure treatment systems and methods |
JP5680544B2 (en) | 2008-11-25 | 2015-03-04 | スパイラキュア インコーポレイテッド | Device for delivering reduced pressure to the body surface |
KR20110102918A (en) * | 2008-12-24 | 2011-09-19 | 케이씨아이 라이센싱 인코포레이티드 | Membranes, systems, and methods for applying reduced pressure to a subcutaneous tissue site |
US8674168B2 (en) | 2008-12-30 | 2014-03-18 | The Procter & Gamble Company | Disposable wearable absorbent articles with multiple indicating colors |
WO2010078166A2 (en) | 2008-12-31 | 2010-07-08 | Kci Licensing, Inc. | Sleeves, manifolds, systems, and methods for applying reduced pressure to a subcutaneous tissue site |
WO2010080907A1 (en) | 2009-01-07 | 2010-07-15 | Spiracur Inc. | Reduced pressure therapy of the sacral region |
US7982087B2 (en) | 2009-01-09 | 2011-07-19 | Smith & Nephew, Inc. | Wound dressing |
SE0900039L (en) | 2009-01-16 | 2009-12-29 | Ragnhild Klum Nyberg Med Ragnh | Shall dressings |
US8162907B2 (en) | 2009-01-20 | 2012-04-24 | Tyco Healthcare Group Lp | Method and apparatus for bridging from a dressing in negative pressure wound therapy |
US20100191198A1 (en) | 2009-01-26 | 2010-07-29 | Tyco Healthcare Group Lp | Wound Filler Material with Improved Nonadherency Properties |
US8212101B2 (en) | 2009-02-03 | 2012-07-03 | Centurion Medical Products Corporation | Window dressing having integral anchor |
FI121001B (en) | 2009-02-05 | 2010-06-15 | Finnomedo Oy | product Packaging |
GB0902368D0 (en) | 2009-02-13 | 2009-04-01 | Smith & Nephew | Wound packing |
US8439860B2 (en) | 2009-02-24 | 2013-05-14 | Neogenix, Llc | Oxygen-producing bandage with releasable oxygen source |
CN201375590Y (en) | 2009-03-13 | 2010-01-06 | 何晋荣 | Infantile umbilical hernia protective plaster |
GB2468905B (en) | 2009-03-27 | 2013-12-11 | Brightwake Ltd | Wound packing material |
US8283516B2 (en) | 2009-04-01 | 2012-10-09 | Litvay John D | Absorbent product with low dryness index |
US8193944B2 (en) | 2009-04-10 | 2012-06-05 | Richard Brand Caso | System and method for measuring fluid pressure |
WO2010121186A1 (en) | 2009-04-17 | 2010-10-21 | Kalypto Medical, Inc. | Negative pressure wound therapy device |
CN201418816Y (en) | 2009-04-24 | 2010-03-10 | 杨玉林 | Medical band-aid |
US8377015B2 (en) | 2009-04-24 | 2013-02-19 | Alcare Co., Ltd. | Wound dressing and method for producing it |
GB2470358B (en) | 2009-05-18 | 2014-05-14 | Inotec Amd Ltd | Hyperbaric dressing and method |
ES1070675Y (en) | 2009-05-20 | 2010-01-14 | Canada Juan Marquez | IMPROVED VACUUM TANK APPLICABLE AS POSTOPERATIVE COMPRESSION TREATMENT |
US9421309B2 (en) | 2009-06-02 | 2016-08-23 | Kci Licensing, Inc. | Reduced-pressure treatment systems and methods employing hydrogel reservoir members |
US20100310845A1 (en) | 2009-06-03 | 2010-12-09 | Eric Bryan Bond | Fluid permeable structured fibrous web |
GB2470940A (en) | 2009-06-10 | 2010-12-15 | Systagenix Wound Man Ip Co Bv | Vacuum wound dressing with hydrogel layer |
US20100318043A1 (en) * | 2009-06-10 | 2010-12-16 | Tyco Healthcare Group Lp | Negative Pressure Wound Therapy Systems Capable of Vacuum Measurement Independent of Orientation |
WO2010147930A1 (en) | 2009-06-16 | 2010-12-23 | 3M Innovative Properties Company | Conformable medical dressing with self supporting substrate |
US20100318047A1 (en) | 2009-06-16 | 2010-12-16 | Ducker Paul M | Absorbent, nonwoven material exhibiting z-direction density gradient |
US20100324516A1 (en) | 2009-06-18 | 2010-12-23 | Tyco Healthcare Group Lp | Apparatus for Vacuum Bridging and/or Exudate Collection |
GB2471560B (en) | 2009-06-29 | 2014-04-16 | Mark Ital | Weight-bearing leg support with cushioning means |
DE102009031992A1 (en) * | 2009-07-06 | 2011-01-13 | Paul Hartmann Ag | Device for negative pressure therapy of wounds |
US8252971B2 (en) | 2009-07-16 | 2012-08-28 | Aalnex, Inc. | Systems and methods for protecting incisions |
US20110034892A1 (en) | 2009-08-10 | 2011-02-10 | John Buan | Passive wound therapy device |
DE102009043023A1 (en) | 2009-08-24 | 2011-03-03 | Riesinger, geb. Dahlmann, Birgit | Wound care article with a plastically deformable or modelable active element |
US8690844B2 (en) | 2009-08-27 | 2014-04-08 | Kci Licensing, Inc. | Re-epithelialization wound dressings and systems |
US8778387B2 (en) | 2009-09-02 | 2014-07-15 | Hyprotek, Inc. | Antimicrobial medical dressings and protecting wounds and catheter sites |
US8481159B2 (en) | 2009-09-04 | 2013-07-09 | Basf Se | Water-absorbent porous polymer particles having specific sphericity and high bulk density |
US8764719B2 (en) | 2009-09-04 | 2014-07-01 | Johnson & Johnson Ind. E Com. Ltda | Absorbent article including an absorbent core layer having a material free zone and a transfer layer arranged below the absorbent core layer |
US20110066123A1 (en) | 2009-09-15 | 2011-03-17 | Aidan Marcus Tout | Medical dressings, systems, and methods employing sealants |
BR112012007510A2 (en) | 2009-10-01 | 2016-11-22 | Webcore Ip Inc | composite cores and panels |
US8529526B2 (en) | 2009-10-20 | 2013-09-10 | Kci Licensing, Inc. | Dressing reduced-pressure indicators, systems, and methods |
SE0901356A1 (en) | 2009-10-20 | 2011-04-21 | Moelnlycke Health Care Ab | Article for use in wound care |
GB0919659D0 (en) | 2009-11-10 | 2009-12-23 | Convatec Technologies Inc | A component for a wound dressing |
WO2011067626A1 (en) | 2009-12-03 | 2011-06-09 | Pharmaplast Sae | A wound dressing, and method and production line of producing the wound dressing |
US20110152813A1 (en) | 2009-12-17 | 2011-06-23 | Daniel Lee Ellingson | Absorbent Article with Channel Portion |
DE102009060596A1 (en) | 2009-12-23 | 2011-06-30 | Paul Hartmann Aktiengesellschaft, 89522 | Connection device for use in the vacuum treatment of wounds |
FR2954911A1 (en) | 2010-01-04 | 2011-07-08 | Commissariat Energie Atomique | METHOD FOR DETECTING AN ANALYTE IN A BODILY FLUID |
WO2011090410A1 (en) | 2010-01-19 | 2011-07-28 | Sca Hygiene Products Ab | Absorbent article comprising an absorbent porous foam |
US20110178375A1 (en) | 2010-01-19 | 2011-07-21 | Avery Dennison Corporation | Remote physiological monitoring |
US8546642B2 (en) | 2010-01-28 | 2013-10-01 | Sca Hygiene Products Ab | Absorbent article with slitted absorbent core |
US8581020B2 (en) | 2010-01-28 | 2013-11-12 | Tredegar Film Products Corporation | Transfer layer for absorbent article |
US8383227B2 (en) | 2010-01-28 | 2013-02-26 | Tredegar Film Products Corporation | Transfer layer for absorbent article |
CH702752A1 (en) | 2010-02-16 | 2011-08-31 | Medela Holding Ag | Coupling part of a drainage tube unit. |
US20110208145A1 (en) | 2010-02-22 | 2011-08-25 | Le Zhang | Fluid Management System |
WO2011104388A1 (en) | 2010-02-26 | 2011-09-01 | Vir I Kinda Ab | Wound dressing comprising a superabsorbent substance |
US8791315B2 (en) | 2010-02-26 | 2014-07-29 | Smith & Nephew, Inc. | Systems and methods for using negative pressure wound therapy to manage open abdominal wounds |
US8563798B2 (en) | 2010-03-04 | 2013-10-22 | Kalliope Dontas | Enclosing bandage for providing comfortable wound care and limiting fluid leakage |
CA2789489C (en) | 2010-03-10 | 2015-02-17 | Bsn Medical, Inc. | Water resistant medical bandaging product |
US8721606B2 (en) | 2010-03-11 | 2014-05-13 | Kci Licensing, Inc. | Dressings, systems, and methods for treating a tissue site |
US8454580B2 (en) | 2010-03-12 | 2013-06-04 | Kci Licensing, Inc. | Adjustable reduced-pressure wound coverings |
JP2013522403A (en) | 2010-03-15 | 2013-06-13 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing water-absorbing polymer particles by polymerization of droplets of monomer solution |
US8852742B2 (en) | 2010-03-15 | 2014-10-07 | Basf Se | Water absorbent polymer particles formed by polymerizing droplets of a monomer solution and coated with sulfinic acid, sulfonic acid, and/or salts thereof |
US8814842B2 (en) | 2010-03-16 | 2014-08-26 | Kci Licensing, Inc. | Delivery-and-fluid-storage bridges for use with reduced-pressure systems |
DE102010012521A1 (en) | 2010-03-17 | 2011-09-22 | Aesculap Ag | Medical kit for use in vacuum sealing therapy |
RU2432177C1 (en) | 2010-03-19 | 2011-10-27 | Анатолий Владимирович Толстов | Sustained-action bandage |
KR101782188B1 (en) | 2010-03-24 | 2017-09-26 | 바스프 에스이 | Ultrathin fluid-absorbent cores |
US20110247636A1 (en) | 2010-04-12 | 2011-10-13 | Pollack Larry H | Nipple/Areola Protective Cover |
GB201006323D0 (en) | 2010-04-15 | 2010-06-02 | Systagenix Wound Man Ip Co Bv | Leakage-reducing dressing |
US20120053547A1 (en) | 2010-08-31 | 2012-03-01 | Karyn Clare Schroeder | Absorbent Composite With A Resilient Coform Layer |
US8604265B2 (en) | 2010-04-16 | 2013-12-10 | Kci Licensing, Inc. | Dressings and methods for treating a tissue site on a patient |
US20110257611A1 (en) | 2010-04-16 | 2011-10-20 | Kci Licensing, Inc. | Systems, apparatuses, and methods for sizing a subcutaneous, reduced-pressure treatment device |
US8328858B2 (en) | 2010-04-26 | 2012-12-11 | Solar Light Company, Inc. | Infrared wound healing unit |
GB201006988D0 (en) | 2010-04-27 | 2010-06-09 | Smith & Nephew | Suction port |
GB201006986D0 (en) * | 2010-04-27 | 2010-06-09 | Smith & Nephew | Wound dressing |
GB201006985D0 (en) * | 2010-04-27 | 2010-06-09 | Smith & Nephew | Wound dressing |
GB201006983D0 (en) | 2010-04-27 | 2010-06-09 | Smith & Nephew | Wound dressing |
GB201008347D0 (en) * | 2010-05-19 | 2010-07-07 | Smith & Nephew | Wound protection |
WO2011137323A2 (en) | 2010-04-30 | 2011-11-03 | The Procter & Gamble Company | Nonwoven having durable hydrophilic coating |
CN104287890B (en) | 2010-06-01 | 2017-09-22 | 株式会社瑞光 | Wound dressing surface patch and wound dressing |
EP2582337A2 (en) | 2010-06-16 | 2013-04-24 | ISKIA GmbH & Co. KG | Device for wound treatment and wound covering plaster |
US9962459B2 (en) | 2010-07-02 | 2018-05-08 | Basf Se | Ultrathin fluid-absorbent cores |
JP2012016476A (en) * | 2010-07-08 | 2012-01-26 | Ribateepu Seiyaku Kk | Sheet covering material, and method for manufacturing and using the same |
WO2012009370A2 (en) | 2010-07-12 | 2012-01-19 | Martin Long Medical Products, Llc | Protective wound shield |
US8926291B2 (en) | 2010-07-19 | 2015-01-06 | Michael Orndorff | Speed control for diaphragm pump |
US20120197229A1 (en) | 2010-08-04 | 2012-08-02 | Kalypto Medical, Inc. | Sacral wound dressing and method of manufacturing a wound therapy device |
EP2417947A1 (en) | 2010-08-12 | 2012-02-15 | John Bennett | Integrated contoured negative pressure bandages |
US9089624B2 (en) | 2010-08-23 | 2015-07-28 | Basf Se | Ultrathin fluid-absorbent cores comprising adhesive and having very low dry SAP loss |
US10751221B2 (en) | 2010-09-14 | 2020-08-25 | Kpr U.S., Llc | Compression sleeve with improved position retention |
JP5800520B2 (en) | 2010-09-16 | 2015-10-28 | ユニ・チャーム株式会社 | Body fluid absorbent article |
GB201015656D0 (en) | 2010-09-20 | 2010-10-27 | Smith & Nephew | Pressure control apparatus |
US8710293B2 (en) | 2010-09-21 | 2014-04-29 | Basf Se | Ultrathin fluid-absorbent cores |
CA2814823A1 (en) | 2010-10-15 | 2012-04-19 | The Procter & Gamble Company | Absorbent article having surface visual texture |
CA140189S (en) | 2010-10-15 | 2011-11-07 | Smith & Nephew | Medical dressing |
CA140188S (en) | 2010-10-15 | 2011-11-07 | Smith & Nephew | Medical dressing |
US8591493B2 (en) | 2010-10-25 | 2013-11-26 | Entrotech, Inc. | Wound compression dressing |
US8865962B2 (en) | 2010-11-11 | 2014-10-21 | Linda A. Weidemann-Hendrickson | Multipurpose medical wrap |
DE102010052336A1 (en) | 2010-11-25 | 2012-05-31 | Paul Hartmann Ag | Wound dressing for the negative pressure therapy |
BR112013012785A2 (en) | 2010-11-25 | 2020-10-20 | Bluestar Silicones France Sas | composition i - ii and products and uses thereof |
GB201020005D0 (en) | 2010-11-25 | 2011-01-12 | Smith & Nephew | Composition 1-1 |
WO2012074512A1 (en) | 2010-11-30 | 2012-06-07 | Kimberly-Clark Worldwide, Inc. | Absorbent article having asymmetric printed patterns for providing a functional cue |
US20120136329A1 (en) | 2010-11-30 | 2012-05-31 | Sca Hygiene Products Ab | Absorbent article with an acquisition distribution layer with channels |
TW201223512A (en) | 2010-12-06 | 2012-06-16 | Kang Na Hsiung Entpr Co Ltd | Absorbent hygiene product |
PL2648668T3 (en) | 2010-12-08 | 2018-10-31 | Convatec Technologies Inc. | Self-sealing dressing |
TWI465263B (en) | 2010-12-10 | 2014-12-21 | Ind Tech Res Inst | Medical dressing and negative pressure wound therapy apparatus using the same |
USD714433S1 (en) | 2010-12-22 | 2014-09-30 | Smith & Nephew, Inc. | Suction adapter |
RU2016111981A (en) | 2010-12-22 | 2018-11-27 | Смит Энд Нефью, Инк. | DEVICE AND METHOD FOR TREATING RAS WITH NEGATIVE PRESSURE |
US8637726B2 (en) | 2011-01-02 | 2014-01-28 | Omnitek Partners Llc | Shape and pressure adjustable dressing |
DE102011010181A1 (en) | 2011-02-02 | 2012-08-02 | Pierburg Gmbh | Workpiece part, in particular for housing arrangements and methods for connecting by means of laser beams of workpiece parts |
US20120220973A1 (en) | 2011-02-28 | 2012-08-30 | Jennifer Wing-Yee Chan | Adhesive bandage |
US8785714B2 (en) | 2011-02-28 | 2014-07-22 | Celanese International Corporation | Alkali neutralizing acquisition and distribution structures for use in personal care articles |
FR2972923B1 (en) | 2011-03-25 | 2013-08-23 | Urgo Lab | FILMOGENIC COMPOSITION CONTAINING A SOLAR FILTER, ITS USE FOR THE TREATMENT OF SCARS |
GB2489947B (en) | 2011-04-11 | 2018-12-12 | Adv Med Solutions Ltd | Wound dressing |
CA2827124C (en) | 2011-04-12 | 2019-03-12 | Kci Licensing, Inc. | Evaporative fluid pouch and systems for use with body fluids |
FR2974005B1 (en) | 2011-04-15 | 2014-05-02 | Urgo Lab | THIN ABSORBENT THIN ADHESIVE DRESSING, ITS USES FOR THE TREATMENT OF CHRONIC WOUNDS |
JP5883924B2 (en) | 2011-04-21 | 2016-03-15 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Blockage management |
DE102011002268A1 (en) | 2011-04-26 | 2012-10-31 | Birgit Riesinger | Wound care article with a pattern of incisions and / or punches |
EP2704674A1 (en) | 2011-05-02 | 2014-03-12 | Birgit Riesinger | Wound care article |
DE102011075844A1 (en) | 2011-05-13 | 2012-11-15 | Paul Hartmann Ag | Device for providing negative pressure for the negative pressure treatment of wounds |
US9067003B2 (en) | 2011-05-26 | 2015-06-30 | Kalypto Medical, Inc. | Method for providing negative pressure to a negative pressure wound therapy bandage |
EP3299041B1 (en) | 2011-05-27 | 2021-05-19 | 3M Innovative Properties Company | Systems and methods for delivering fluid to a wound therapy dressing |
TW201249489A (en) | 2011-06-01 | 2012-12-16 | Suzric Entpr Co Ltd | Wound drainage equipment, conduit, connector and wound cover |
DE102011110705A1 (en) | 2011-06-01 | 2012-12-06 | Alexander May | Device for negative pressure wound treatment |
CN102274574A (en) | 2011-06-02 | 2011-12-14 | 陈德华 | Surgical wound surface closed negative pressure drainage device |
WO2012167210A1 (en) | 2011-06-03 | 2012-12-06 | Tredegar Film Products Corporation | Absorbent article having a troughed film as a transfer layer providing a cool fluid dynamic |
US20120310186A1 (en) | 2011-06-06 | 2012-12-06 | Tyco Healthcare Group Lp | Dressings and Related Methods Therefor |
EP2717935B1 (en) | 2011-06-07 | 2016-12-07 | BSN medical GmbH | Wound-covering article with preparation for attachment of a vacuum device |
US9681993B2 (en) | 2011-06-07 | 2017-06-20 | Kci Licensing, Inc. | Solutions for bridging and pressure concentration reduction at wound sites |
JP6325440B2 (en) | 2011-06-23 | 2018-05-16 | メデラ ホールディング アーゲー | System for aspirating fluids from the body by means of negative pressure |
WO2013066426A2 (en) | 2011-06-24 | 2013-05-10 | Kci Licensing, Inc. | Reduced-pressure dressings employing tissue-fixation elements |
ES2518890T3 (en) | 2011-07-18 | 2014-11-05 | Laboratoires Urgo | Negative pressure wound treatment set |
DE102011108726A1 (en) | 2011-07-26 | 2013-01-31 | Paul Hartmann Ag | Connection device for use in the vacuum treatment of wounds |
US9023012B2 (en) | 2011-07-26 | 2015-05-05 | Kci Licensing, Inc. | Systems and methods for treating a tissue site with reduced pressure involving a reduced-pressure interface having a multi-lumen conduit for contacting a manifold |
ES2396090B1 (en) | 2011-07-28 | 2014-06-06 | Establecimientos Sumisan, S.A. | LIQUID COLLECTOR |
KR20140049582A (en) | 2011-08-03 | 2014-04-25 | 케이씨아이 라이센싱 인코포레이티드 | Reduced-pressure wound dressings |
US8932623B2 (en) | 2011-08-25 | 2015-01-13 | Ethicon, Inc. | Protective wound dressing device for oral and pharyngeal space |
WO2013029652A1 (en) | 2011-08-26 | 2013-03-07 | Vir I Kinda Ab | Bandage |
US8911681B2 (en) | 2011-09-12 | 2014-12-16 | Kimberly-Clark Worldwide, Inc. | Wetness indicator having varied hues |
EP2755618B1 (en) | 2011-09-14 | 2018-11-28 | KCI Licensing, Inc. | Reduced-pressure systems and methods employing a leak-detection member |
CN202263100U (en) | 2011-09-20 | 2012-06-06 | 常州市中天卫生材料有限公司 | Butterfly adhesive bandage |
WO2013043972A1 (en) | 2011-09-23 | 2013-03-28 | Avery Dennison Corporation | Negative pressure wound therapy apparatus including a fluid port and methods |
EP2586410A1 (en) | 2011-10-24 | 2013-05-01 | Bostik SA | Novel process for preparing an absorbent article |
EP3326656B1 (en) | 2011-11-02 | 2020-06-24 | Smith & Nephew plc | Reduced pressure therapy apparatuses |
WO2013078214A1 (en) | 2011-11-23 | 2013-05-30 | Kci Licensing, Inc. | Reduced-pressure systems, methods, and devices for simultaneously treating a plurality of tissue sites |
US20150159066A1 (en) | 2011-11-25 | 2015-06-11 | Smith & Nephew Plc | Composition, apparatus, kit and method and uses thereof |
EP2787944A1 (en) | 2011-12-09 | 2014-10-15 | Birgit Riesinger | Set comprising wound dressing and wound filler |
EP3005997B1 (en) | 2011-12-16 | 2024-06-26 | Solventum Intellectual Properties Company | Releasable medical drapes |
WO2013110008A1 (en) | 2012-01-18 | 2013-07-25 | Worldwide Innovative Healthcare, Inc. | Modifiable occlusive skin dressing |
GB2501055B (en) | 2012-02-01 | 2017-08-30 | Banwell Paul | Scar reduction apparatus |
AU2013215067A1 (en) | 2012-02-02 | 2014-06-12 | Kci Licensing, Inc. | Foam structure wound inserts for directional granulation |
CA2864414C (en) | 2012-02-13 | 2021-03-16 | Integrated Healing Technologies | Wound dressing apparatus |
EP2628500B1 (en) | 2012-02-16 | 2014-05-28 | Lohmann & Rauscher GmbH | Wound treatment assembly |
CN104066990B (en) | 2012-03-07 | 2017-02-22 | 凯希特许有限公司 | Disc pump with advanced actuator |
EP3708196A1 (en) | 2012-03-12 | 2020-09-16 | Smith & Nephew PLC | Reduced pressure apparatus and methods |
CA2864428A1 (en) | 2012-03-28 | 2013-10-03 | Kci Licensing, Inc. | Reduced-pressure systems, dressings, and methods facilitating separation of electronic and clinical component parts |
US9427505B2 (en) | 2012-05-15 | 2016-08-30 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
AU346291S (en) * | 2012-05-15 | 2013-01-09 | Smith & Nephew | Medical dressing |
HUE047600T2 (en) | 2012-05-23 | 2020-04-28 | Smith & Nephew | Apparatuses for negative pressure wound therapy |
USD679402S1 (en) | 2012-06-06 | 2013-04-02 | 3M Innovative Properties Company | Medical dressing |
EP2888479B1 (en) | 2012-07-05 | 2021-03-03 | 3M Innovative Properties Company | Systems and methods for supplying reduced pressure using a disc pump with electrostatic actuation |
FR2993465B1 (en) | 2012-07-23 | 2015-06-26 | Commissariat Energie Atomique | ARTICLE INTENDED TO COME IN CONTACT WITH A LIQUID, IN PARTICULAR DRESSING. |
ES2625709T3 (en) | 2012-08-01 | 2017-07-20 | Smith & Nephew Plc. | Wound dressing |
MX2015001520A (en) | 2012-08-01 | 2015-08-20 | Smith & Nephew | Wound dressing. |
CA2884419A1 (en) | 2012-09-12 | 2014-03-20 | Kci Licensing, Inc. | Systems and methods for collecting exudates in reduced-pressure therapy |
JP6306031B2 (en) | 2012-10-25 | 2018-04-04 | ケーシーアイ ライセンシング インコーポレイテッド | Wound connection pad with pneumatic connection confirmation capability |
DE102013100157A1 (en) | 2013-01-09 | 2014-07-10 | Birgit Riesinger | Liquid-permeable primary dressing with a silicone coating |
EP3092988B1 (en) | 2013-01-16 | 2018-03-21 | KCI Licensing, Inc. | Dressing with asymmetric absorbent core for negative pressure wound therapy |
AU2014216501B8 (en) | 2013-02-12 | 2018-09-20 | Electrochemical Oxygen Concepts, Inc. | Dressing for wound treatment |
WO2014158526A1 (en) | 2013-03-14 | 2014-10-02 | Kci Licensing, Inc. | Negative pressure therapy with dynamic profile capability |
EP3434236B1 (en) | 2013-03-14 | 2021-12-29 | 3M Innovative Properties Company | Absorbent dressing with hybrid drape |
WO2014140606A1 (en) | 2013-03-15 | 2014-09-18 | Smith & Nephew Plc | Wound dressing and method of treatment |
US10695226B2 (en) | 2013-03-15 | 2020-06-30 | Smith & Nephew Plc | Wound dressing and method of treatment |
AU2014307884B2 (en) | 2013-08-12 | 2019-03-28 | Bsn Medical Gmbh | Wound care article having a substantially polygonal or ellipsoid main surface and at least one recess arranged on one side |
MX370332B (en) | 2013-08-12 | 2019-12-10 | Bsn Medical Gmbh | Wound care article having super-absorbent fibers and super-absorbent particles. |
USD712546S1 (en) * | 2013-11-07 | 2014-09-02 | Coloplast A/S | Wound dressing |
USD785189S1 (en) * | 2015-10-20 | 2017-04-25 | Dr. Ausbüttel & Co. Gmbh | Medical eye patch |
GB201608099D0 (en) | 2016-05-09 | 2016-06-22 | Convatec Technologies Inc | Negative pressure wound dressing |
USD870719S1 (en) * | 2018-05-23 | 2019-12-24 | Annex Products Pty. Ltd. | Adhesive base |
-
2013
- 2013-07-31 ES ES13770970.5T patent/ES2625709T3/en active Active
- 2013-07-31 HU HUE13770970A patent/HUE033329T2/en unknown
- 2013-07-31 BR BR112015002154A patent/BR112015002154A2/en not_active IP Right Cessation
- 2013-07-31 CA CA2880143A patent/CA2880143C/en active Active
- 2013-07-31 AU AU2013298195A patent/AU2013298195B2/en active Active
- 2013-07-31 RU RU2015106112A patent/RU2015106112A/en not_active Application Discontinuation
- 2013-07-31 MX MX2015001521A patent/MX353782B/en active IP Right Grant
- 2013-07-31 CN CN201380051441.8A patent/CN104884008B/en active Active
- 2013-07-31 JP JP2015524867A patent/JP6307504B2/en active Active
- 2013-07-31 EP EP13770970.5A patent/EP2879636B1/en not_active Revoked
- 2013-07-31 US US14/418,908 patent/US10667955B2/en active Active
- 2013-07-31 DK DK13770970.5T patent/DK2879636T3/en active
- 2013-07-31 CA CA3178997A patent/CA3178997A1/en active Pending
- 2013-07-31 WO PCT/IB2013/002060 patent/WO2014020440A1/en active Application Filing
-
2015
- 2015-01-26 ZA ZA2015/00574A patent/ZA201500574B/en unknown
- 2015-03-13 US US14/658,068 patent/US9662246B2/en active Active
-
2017
- 2017-10-13 AU AU2017245460A patent/AU2017245460B2/en active Active
-
2018
- 2018-03-12 JP JP2018044042A patent/JP6893892B2/en active Active
- 2018-09-19 US US29/663,872 patent/USD914887S1/en active Active
-
2019
- 2019-10-17 AU AU2019250207A patent/AU2019250207B2/en active Active
-
2020
- 2020-05-29 US US16/887,677 patent/US20200360189A1/en not_active Abandoned
-
2022
- 2022-06-29 US US17/853,029 patent/US11801338B2/en active Active
-
2024
- 2024-05-06 US US18/656,261 patent/US20240307606A1/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4030465A1 (en) * | 1990-09-26 | 1992-04-02 | Ruschke Mona | Wound plaster - is coloured in varying shades of brown on exposed side |
GB2331937A (en) * | 1997-12-03 | 1999-06-09 | Sca Hygiene Prod Ab | Absorbent product |
US20020035352A1 (en) * | 1999-03-19 | 2002-03-21 | Peter Ronnberg | Absorbent article |
EP1353001A1 (en) * | 2002-04-11 | 2003-10-15 | Main S.p.A. | Absorbent article |
US7753894B2 (en) | 2004-04-27 | 2010-07-13 | Smith & Nephew Plc | Wound cleansing apparatus with stress |
US20060020234A1 (en) * | 2004-07-21 | 2006-01-26 | Lin-Shing Chou | Absorbent sac wound dressing |
US20090306609A1 (en) | 2005-04-27 | 2009-12-10 | Smith & Nephew Plc | Wound treatment apparatus and method |
US20120095380A1 (en) * | 2009-06-15 | 2012-04-19 | Molnlycke Health Care Ab | Wound dressing with high liquid handling capacity |
US20120308780A1 (en) | 2009-11-27 | 2012-12-06 | Roettger Henning | Absorbent structure |
US20120116334A1 (en) | 2009-12-22 | 2012-05-10 | SMITH & Nephew ,Inc. | Apparatuses and methods for negative pressure wound therapy |
US20110282309A1 (en) | 2010-04-27 | 2011-11-17 | Smith & Nephew Plc | Wound dressing and method of use |
WO2013007973A2 (en) | 2011-07-14 | 2013-01-17 | Smith & Nephew Plc | Wound dressing and method of treatment |
Cited By (165)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10278869B2 (en) | 2002-10-28 | 2019-05-07 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US9844473B2 (en) | 2002-10-28 | 2017-12-19 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US10842678B2 (en) | 2002-10-28 | 2020-11-24 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US10758651B2 (en) | 2003-10-28 | 2020-09-01 | Smith & Nephew Plc | Wound cleansing apparatus in-situ |
US11857746B2 (en) | 2003-10-28 | 2024-01-02 | Smith & Nephew Plc | Wound cleansing apparatus in-situ |
US9452248B2 (en) | 2003-10-28 | 2016-09-27 | Smith & Nephew Plc | Wound cleansing apparatus in-situ |
US10105471B2 (en) | 2004-04-05 | 2018-10-23 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US10201644B2 (en) | 2005-09-07 | 2019-02-12 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
US11737925B2 (en) | 2005-09-07 | 2023-08-29 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
US11278658B2 (en) | 2005-09-07 | 2022-03-22 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
US11813394B2 (en) | 2006-05-11 | 2023-11-14 | Smith & Nephew, Inc. | Device and method for wound therapy |
US9795725B2 (en) | 2006-05-11 | 2017-10-24 | Kalypto Medical, Inc. | Device and method for wound therapy |
US11517656B2 (en) | 2006-05-11 | 2022-12-06 | Smith & Nephew, Inc. | Device and method for wound therapy |
US9669138B2 (en) | 2006-05-11 | 2017-06-06 | Kalypto Medical, Inc. | Device and method for wound therapy |
US10744242B2 (en) | 2006-05-11 | 2020-08-18 | Smith & Nephew, Inc. | Device and method for wound therapy |
US10391212B2 (en) | 2006-05-11 | 2019-08-27 | Smith & Nephew, Inc. | Device and method for wound therapy |
US11179276B2 (en) | 2007-11-21 | 2021-11-23 | Smith & Nephew Plc | Wound dressing |
US11364151B2 (en) | 2007-11-21 | 2022-06-21 | Smith & Nephew Plc | Wound dressing |
US10123909B2 (en) | 2007-11-21 | 2018-11-13 | Smith & Nephew Plc | Wound dressing |
US10555839B2 (en) | 2007-11-21 | 2020-02-11 | Smith & Nephew Plc | Wound dressing |
US10744041B2 (en) | 2007-11-21 | 2020-08-18 | Smith & Nephew Plc | Wound dressing |
US10231875B2 (en) | 2007-11-21 | 2019-03-19 | Smith & Nephew Plc | Wound dressing |
US9844475B2 (en) | 2007-11-21 | 2017-12-19 | Smith & Nephew Plc | Wound dressing |
US11129751B2 (en) | 2007-11-21 | 2021-09-28 | Smith & Nephew Plc | Wound dressing |
US11110010B2 (en) | 2007-11-21 | 2021-09-07 | Smith & Nephew Plc | Wound dressing |
US11351064B2 (en) | 2007-11-21 | 2022-06-07 | Smith & Nephew Plc | Wound dressing |
US9956121B2 (en) | 2007-11-21 | 2018-05-01 | Smith & Nephew Plc | Wound dressing |
US10016309B2 (en) | 2007-11-21 | 2018-07-10 | Smith & Nephew Plc | Wound dressing |
US9987402B2 (en) | 2007-12-06 | 2018-06-05 | Smith & Nephew Plc | Apparatus and method for wound volume measurement |
US11253399B2 (en) | 2007-12-06 | 2022-02-22 | Smith & Nephew Plc | Wound filling apparatuses and methods |
US10080689B2 (en) | 2007-12-06 | 2018-09-25 | Smith & Nephew Plc | Wound filling apparatuses and methods |
US12102512B2 (en) | 2007-12-06 | 2024-10-01 | Smith & Nephew Plc | Wound filling apparatuses and methods |
US12029549B2 (en) | 2007-12-06 | 2024-07-09 | Smith & Nephew Plc | Apparatus and method for wound volume measurement |
US11523943B2 (en) | 2008-03-13 | 2022-12-13 | Smith & Nephew, Inc. | Shear resistant wound dressing for use in vacuum wound therapy |
US10188555B2 (en) | 2008-03-13 | 2019-01-29 | Smith & Nephew, Inc. | Shear resistant wound dressing for use in vacuum wound therapy |
US9375353B2 (en) | 2008-03-13 | 2016-06-28 | Smith & Nephew, Inc. | Shear resistant wound dressing for use in vacuum wound therapy |
US11484443B2 (en) | 2010-02-26 | 2022-11-01 | Smith & Nephew, Inc. | Systems and methods for using negative pressure wound therapy to manage open abdominal wounds |
US9220823B2 (en) | 2010-09-20 | 2015-12-29 | Smith & Nephew Plc | Pressure control apparatus |
US11534540B2 (en) | 2010-09-20 | 2022-12-27 | Smith & Nephew Plc | Pressure control apparatus |
US10105473B2 (en) | 2010-09-20 | 2018-10-23 | Smith & Nephew Plc | Pressure control apparatus |
US10058644B2 (en) | 2010-09-20 | 2018-08-28 | Smith & Nephew Plc | Pressure control apparatus |
US11027051B2 (en) | 2010-09-20 | 2021-06-08 | Smith & Nephew Plc | Pressure control apparatus |
US11730876B2 (en) | 2010-11-25 | 2023-08-22 | Smith & Nephew Plc | Composition I-II and products and uses thereof |
US10537657B2 (en) | 2010-11-25 | 2020-01-21 | Smith & Nephew Plc | Composition I-II and products and uses thereof |
US11938231B2 (en) | 2010-11-25 | 2024-03-26 | Smith & Nephew Plc | Compositions I-I and products and uses thereof |
US11246757B2 (en) | 2011-05-17 | 2022-02-15 | Smith & Nephew Plc | Tissue healing |
US10231878B2 (en) | 2011-05-17 | 2019-03-19 | Smith & Nephew Plc | Tissue healing |
US11638666B2 (en) | 2011-11-25 | 2023-05-02 | Smith & Nephew Plc | Composition, apparatus, kit and method and uses thereof |
US10660994B2 (en) | 2012-03-12 | 2020-05-26 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US10046096B2 (en) | 2012-03-12 | 2018-08-14 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US11129931B2 (en) | 2012-03-12 | 2021-09-28 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US11903798B2 (en) | 2012-03-12 | 2024-02-20 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US9901664B2 (en) | 2012-03-20 | 2018-02-27 | Smith & Nephew Plc | Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination |
US11730877B2 (en) | 2012-03-20 | 2023-08-22 | Smith & Nephew Plc | Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination |
US10881764B2 (en) | 2012-03-20 | 2021-01-05 | Smith & Nephew Plc | Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination |
US10702418B2 (en) | 2012-05-15 | 2020-07-07 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
US9427505B2 (en) | 2012-05-15 | 2016-08-30 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
US9545465B2 (en) | 2012-05-15 | 2017-01-17 | Smith & Newphew Plc | Negative pressure wound therapy apparatus |
US10299964B2 (en) | 2012-05-15 | 2019-05-28 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
US12116991B2 (en) | 2012-05-15 | 2024-10-15 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
US11864981B2 (en) | 2012-08-01 | 2024-01-09 | Smith & Nephew Plc | Wound dressing and method of treatment |
US10667955B2 (en) | 2012-08-01 | 2020-06-02 | Smith & Nephew Plc | Wound dressing and method of treatment |
US11801338B2 (en) | 2012-08-01 | 2023-10-31 | Smith & Nephew Plc | Wound dressing and method of treatment |
US9662246B2 (en) | 2012-08-01 | 2017-05-30 | Smith & Nephew Plc | Wound dressing and method of treatment |
EP2879636B1 (en) | 2012-08-01 | 2017-03-22 | Smith & Nephew PLC | Wound dressing |
US10076449B2 (en) | 2012-08-01 | 2018-09-18 | Smith & Nephew Plc | Wound dressing and method of treatment |
US11771796B2 (en) | 2013-03-15 | 2023-10-03 | Smith & Nephew Plc | Wound dressing and method of treatment |
US10493184B2 (en) | 2013-03-15 | 2019-12-03 | Smith & Nephew Plc | Wound dressing and method of treatment |
US11931226B2 (en) | 2013-03-15 | 2024-03-19 | Smith & Nephew Plc | Wound dressing sealant and use thereof |
US10695226B2 (en) | 2013-03-15 | 2020-06-30 | Smith & Nephew Plc | Wound dressing and method of treatment |
US10288590B2 (en) | 2013-10-08 | 2019-05-14 | Smith & Nephew Plc | PH indicator device and formulation |
US9829471B2 (en) | 2013-10-08 | 2017-11-28 | Smith & Nephew Plc | pH indicator device and formulation |
US11344665B2 (en) | 2014-01-21 | 2022-05-31 | Smith & Nephew Plc | Collapsible dressing for negative pressure wound treatment |
US10201642B2 (en) | 2014-01-21 | 2019-02-12 | Smith & Nephew Plc | Collapsible dressing for negative pressure wound treatment |
US11596552B2 (en) | 2014-06-18 | 2023-03-07 | Smith & Nephew Plc | Wound dressing and method of treatment |
US10610414B2 (en) * | 2014-06-18 | 2020-04-07 | Smith & Nephew Plc | Wound dressing and method of treatment |
WO2015193257A1 (en) * | 2014-06-18 | 2015-12-23 | Smith & Nephew Plc | Wound dressing |
US20170143552A1 (en) * | 2014-06-18 | 2017-05-25 | Smith & Nephew Plc | Wound dressing and method of treatment |
JP2017524417A (en) * | 2014-06-18 | 2017-08-31 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Wound dressing and method of treatment |
CN106659590A (en) * | 2014-06-18 | 2017-05-10 | 史密夫及内修公开有限公司 | Wound dressing |
CN106659590B (en) * | 2014-06-18 | 2020-08-21 | 史密夫及内修公开有限公司 | Wound dressing |
US10456497B2 (en) | 2014-09-10 | 2019-10-29 | C. R. Bard, Inc. | Protective dressing for skin-placed medical device |
US10682446B2 (en) | 2014-12-22 | 2020-06-16 | Smith & Nephew Plc | Dressing status detection for negative pressure wound therapy |
US10973965B2 (en) | 2014-12-22 | 2021-04-13 | Smith & Nephew Plc | Systems and methods of calibrating operating parameters of negative pressure wound therapy apparatuses |
US10780202B2 (en) | 2014-12-22 | 2020-09-22 | Smith & Nephew Plc | Noise reduction for negative pressure wound therapy apparatuses |
US11654228B2 (en) | 2014-12-22 | 2023-05-23 | Smith & Nephew Plc | Status indication for negative pressure wound therapy |
US10737002B2 (en) | 2014-12-22 | 2020-08-11 | Smith & Nephew Plc | Pressure sampling systems and methods for negative pressure wound therapy |
CN107106723A (en) * | 2014-12-30 | 2017-08-29 | 3M创新有限公司 | Negative pressure wound dressings with absorbent binder sealant |
CN107106334B (en) * | 2014-12-30 | 2021-02-09 | 3M创新有限公司 | Wound dressing with multiple adhesive layers |
CN107106334A (en) * | 2014-12-30 | 2017-08-29 | 3M创新有限公司 | Wound dressing with multiple adhesive phases |
US10537478B2 (en) | 2014-12-30 | 2020-01-21 | 3M Innovative Properties Company | Negative pressure wound dressing with absorbent adhesive sealant layer |
WO2016109418A1 (en) * | 2014-12-30 | 2016-07-07 | 3M Innovative Properties Company | Wound dressing with multiple adhesive layers |
US11007086B2 (en) | 2014-12-30 | 2021-05-18 | 3M Innovative Properties Company | Wound dressing with multiple adhesive layers |
EP3701920A1 (en) | 2015-04-27 | 2020-09-02 | Smith & Nephew plc | Reduced pressure apparatus and methods |
US12042361B2 (en) | 2015-05-18 | 2024-07-23 | Smith & Nephew Plc | Fluidic connector for negative pressure wound therapy |
US11154649B2 (en) | 2015-05-18 | 2021-10-26 | Smith & Nephew Plc | Fluidic connector for negative pressure wound therapy |
US10076594B2 (en) | 2015-05-18 | 2018-09-18 | Smith & Nephew Plc | Fluidic connector for negative pressure wound therapy |
EP3349807B1 (en) | 2015-09-17 | 2021-02-24 | 3M Innovative Properties Company | Hybrid silicone and acrylic adhesive cover for use with wound treatment |
US11364150B2 (en) | 2015-12-30 | 2022-06-21 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
US11090196B2 (en) | 2015-12-30 | 2021-08-17 | Smith & Nephew Plc | Absorbent negative pressure wound therapy dressing |
WO2017114745A1 (en) * | 2015-12-30 | 2017-07-06 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
US11766365B2 (en) | 2015-12-30 | 2023-09-26 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
USD796735S1 (en) | 2016-02-29 | 2017-09-05 | Smith & Nephew Plc | Mount apparatus for portable negative pressure apparatus |
USD985755S1 (en) | 2016-02-29 | 2023-05-09 | Smith & Nephew Plc | Portable negative pressure apparatus |
USD977624S1 (en) | 2016-02-29 | 2023-02-07 | Smith & Nephew Plc | Portable negative pressure apparatus |
WO2017148824A1 (en) | 2016-03-04 | 2017-09-08 | Smith & Nephew Plc | Negative pressure wound therapy apparatus for post breast surgery wounds |
US11771820B2 (en) | 2016-03-04 | 2023-10-03 | Smith & Nephew Plc | Negative pressure wound therapy apparatus for post breast surgery wounds |
WO2017158428A1 (en) | 2016-03-14 | 2017-09-21 | Smith & Nephew Plc | Wound dressing apparatus with flexible display |
WO2017195038A1 (en) | 2016-05-13 | 2017-11-16 | Smith & Nephew Plc | Sensor enabled wound monitoring and therapy apparatus |
WO2018037075A1 (en) | 2016-08-25 | 2018-03-01 | Smith & Nephew Plc | Absorbent negative pressure wound therapy dressing |
US11806217B2 (en) | 2016-12-12 | 2023-11-07 | Smith & Nephew Plc | Wound dressing |
WO2018189265A1 (en) | 2017-04-11 | 2018-10-18 | Smith & Nephew Plc | Component positioning and stress relief for sensor enabled wound dressings |
WO2018210693A1 (en) | 2017-05-15 | 2018-11-22 | Smith & Nephew Plc | Negative pressure wound therapy system using eulerian video magnification |
AU2018285235B2 (en) * | 2017-06-14 | 2023-11-02 | T.J.Smith & Nephew, Limited | Negative pressure wound therapy apparatus |
US11471333B2 (en) * | 2017-06-14 | 2022-10-18 | T.J.Smith And Nephew, Limited | Negative pressure wound therapy apparatus |
CN110662517A (en) * | 2017-06-14 | 2020-01-07 | T.J.史密夫及内修有限公司 | Negative pressure wound therapy device |
WO2018234443A1 (en) | 2017-06-23 | 2018-12-27 | Smith & Nephew Plc | Positioning of sensors for sensor enabled wound monitoring or therapy |
US11554051B2 (en) | 2017-06-30 | 2023-01-17 | T.J. Smith And Nephew, Limited | Negative pressure wound therapy apparatus |
WO2019002086A2 (en) | 2017-06-30 | 2019-01-03 | Smith & Nephew Plc | Spacer layer for use in a wound dressing |
EP4353271A1 (en) | 2017-07-12 | 2024-04-17 | Smith & Nephew plc | Antimicrobial or wound care materials, devices and uses |
WO2019020551A1 (en) | 2017-07-25 | 2019-01-31 | Smith & Nephew Plc | Skewing pads for impedance measurement |
WO2019020666A1 (en) | 2017-07-25 | 2019-01-31 | Smith & Nephew Plc | Restriction of sensor-monitored region for sensor-enabled wound dressings |
WO2019020550A2 (en) | 2017-07-25 | 2019-01-31 | Smith & Nephew Plc | Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings |
EP4346340A2 (en) | 2017-07-25 | 2024-04-03 | Smith & Nephew PLC | Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings |
WO2019030384A2 (en) | 2017-08-10 | 2019-02-14 | Smith & Nephew Plc | Positioning of sensors for sensor enabled wound monitoring or therapy |
WO2019063481A1 (en) | 2017-09-27 | 2019-04-04 | Smith & Nephew Plc | Ph sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses |
WO2019072531A1 (en) | 2017-09-28 | 2019-04-18 | Smith & Nephew Plc | Neurostimulation and monitoring using sensor enabled wound monitoring and therapy apparatus |
WO2019067264A1 (en) * | 2017-09-29 | 2019-04-04 | Kci Licensing, Inc. | Dressing exhibiting low tissue ingrowth and negative-pressure treatment method |
US11266537B2 (en) | 2017-09-29 | 2022-03-08 | Kci Licensing, Inc. | Dressing exhibiting low tissue ingrowth and negative-pressure treatment method |
WO2019076967A2 (en) | 2017-10-18 | 2019-04-25 | Smith & Nephew Plc | Fluid management for sensor enabled wound therapy dressings and systems |
WO2019086330A1 (en) * | 2017-11-01 | 2019-05-09 | Smith & Nephew Plc | Dressing for negative pressure wound therapy with filter |
US11992392B2 (en) * | 2017-11-01 | 2024-05-28 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
WO2020043806A1 (en) | 2018-08-29 | 2020-03-05 | Smith & Nephew Plc | Component positioning and encapsulation for sensor enabled wound dressings |
WO2020078978A2 (en) | 2018-10-16 | 2020-04-23 | Smith & Nephew Plc | Systems and method for applying biocompatible encapsulation to sensor enabled wound monitoring and therapy dressings |
WO2020078993A1 (en) | 2018-10-18 | 2020-04-23 | T.J.Smith And Nephew,Limited | Tissue treatment device |
WO2020079009A1 (en) | 2018-10-19 | 2020-04-23 | T.J.Smith And Nephew,Limited | Tissue treatment device |
WO2020126991A1 (en) | 2018-12-21 | 2020-06-25 | T.J.Smith And Nephew,Limited | Wound therapy systems and methods with multiple power sources |
EP3669843B1 (en) | 2018-12-21 | 2023-10-25 | Paul Hartmann AG | Superabsorbent wound dressing with silicone wound contact layer |
WO2020157066A1 (en) | 2019-01-30 | 2020-08-06 | Smith & Nephew Plc | Optical sensing systems and methods for sensor enabled wound dressings and systems |
WO2020161086A1 (en) | 2019-02-04 | 2020-08-13 | T.J.Smith And Nephew,Limited | Wound contact layer and dressing for iodine delivery |
WO2020187643A1 (en) | 2019-03-19 | 2020-09-24 | Smith & Nephew Plc | Systems and methods for measuring tissue impedance |
GB2588289A (en) * | 2019-09-03 | 2021-04-21 | Marks Spencer Plc | An absorbent composite |
GB2586813B (en) * | 2019-09-03 | 2022-02-02 | Marks Spencer Plc | An absorbent composite |
GB2586813A (en) * | 2019-09-03 | 2021-03-10 | Marks Spencer Plc | An absorbent composite |
GB2588289B (en) * | 2019-09-03 | 2022-02-23 | Marks Spencer Plc | An absorbent composite |
WO2021069290A1 (en) | 2019-10-11 | 2021-04-15 | T.J.Smith And Nephew,Limited | Apparatuses and methods for negative pressure wound therapy |
WO2021069642A1 (en) * | 2019-10-11 | 2021-04-15 | T.J. Smith And Nephew, Limited | Apparatuses and methods for negative pressure wound therapy |
WO2021069291A1 (en) | 2019-10-11 | 2021-04-15 | T.J.Smith And Nephew, Limited | Apparatuses and methods for negative pressure wound therapy with switcheable fluid management |
WO2021089637A1 (en) | 2019-11-06 | 2021-05-14 | T.J. Smith And Nephew, Limited | Wound contact layer testing apparatus and method |
US12011532B2 (en) | 2020-01-29 | 2024-06-18 | T. J. Smith and Nephew, Limited | Systems and methods for measuring and tracking wound volume |
WO2021198463A1 (en) | 2020-04-01 | 2021-10-07 | T.J.Smith And Nephew,Limited | Apparatuses for negative pressure wound therapy |
WO2021198464A1 (en) | 2020-04-02 | 2021-10-07 | T.J.Smith And Nephew,Limited | Wound care compositions and methods of preparation thereof |
WO2021198470A1 (en) | 2020-04-02 | 2021-10-07 | T.J.Smith And Nephew,Limited | Wound dressing |
WO2021198461A1 (en) | 2020-04-02 | 2021-10-07 | T.J.Smith And Nephew,Limited | Wound dressing control and activation |
WO2021214203A1 (en) | 2020-04-22 | 2021-10-28 | T.J.Smith And Nephew,Limited | Tissue treatment device |
WO2021219752A1 (en) | 2020-04-29 | 2021-11-04 | T.J.Smith And Nephew,Limited | Apparatuses and methods for negative pressure wound therapy |
RU2769819C1 (en) * | 2021-04-23 | 2022-04-06 | Общество с ограниченной ответственностью "СИЛЬВЕР АСЕПТИКА" | Antiseptic product |
WO2023057354A1 (en) | 2021-10-06 | 2023-04-13 | T.J.Smith And Nephew,Limited | Wound dressing compositions and methods of use and preparation therof |
WO2023057356A1 (en) | 2021-10-06 | 2023-04-13 | T.J.Smith And Nephew,Limited | Wound dressing apparatuses and methods for nitric oxide delivery |
GB202114307D0 (en) | 2021-10-06 | 2021-11-17 | Smith & Nephew | Wound dressing compositions and methods of use and preparation therof |
GB202114298D0 (en) | 2021-10-06 | 2021-11-17 | Smith & Nephew | Wound dressing with one or more composite layers |
WO2023057355A1 (en) | 2021-10-06 | 2023-04-13 | T.J.Smith And Nephew, Limited | Wound dressing with one or more composite layers |
WO2023152103A1 (en) * | 2022-02-10 | 2023-08-17 | F. Hoffmann-La Roche Ag | Body-wearable medical device comprising a superabsorbent substance |
WO2023165974A1 (en) | 2022-03-01 | 2023-09-07 | T.J.Smith And Nephew, Limited | Oxygen delivery to a wound |
US12121420B2 (en) | 2022-03-02 | 2024-10-22 | Smith & Nephew Plc | Wound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2019250207B2 (en) | Wound dressing | |
AU2019283937B2 (en) | Wound dressing and method of treatment | |
US20230310221A1 (en) | Apparatuses and methods for negative pressure wound therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13770970 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2880143 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2015524867 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14418908 Country of ref document: US Ref document number: MX/A/2015/001521 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2013298195 Country of ref document: AU Date of ref document: 20130731 Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013770970 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013770970 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015106112 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015002154 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015002154 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150130 |