WO2014019359A1 - 光传送网中传送、接收客户信号的方法和装置 - Google Patents

光传送网中传送、接收客户信号的方法和装置 Download PDF

Info

Publication number
WO2014019359A1
WO2014019359A1 PCT/CN2013/071898 CN2013071898W WO2014019359A1 WO 2014019359 A1 WO2014019359 A1 WO 2014019359A1 CN 2013071898 W CN2013071898 W CN 2013071898W WO 2014019359 A1 WO2014019359 A1 WO 2014019359A1
Authority
WO
WIPO (PCT)
Prior art keywords
otu
optical
otusub
rate level
rate
Prior art date
Application number
PCT/CN2013/071898
Other languages
English (en)
French (fr)
Inventor
苏伟
吴秋游
董立民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2880584A priority Critical patent/CA2880584C/en
Priority to EP13825474.3A priority patent/EP2874332B1/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2015524604A priority patent/JP6086334B2/ja
Priority to RU2015106924/07A priority patent/RU2594296C1/ru
Priority to AU2013299259A priority patent/AU2013299259B2/en
Priority to BR112015002119A priority patent/BR112015002119B8/pt
Priority to DK13825474.3T priority patent/DK2874332T3/da
Priority to EP22171016.3A priority patent/EP4102744A1/en
Priority to ES13825474.3T priority patent/ES2642865T3/es
Priority to KR1020157005266A priority patent/KR101686002B1/ko
Priority to EP19172818.7A priority patent/EP3627727B1/en
Priority to EP17183034.2A priority patent/EP3300266B1/en
Publication of WO2014019359A1 publication Critical patent/WO2014019359A1/zh
Priority to US14/609,232 priority patent/US9531477B2/en
Priority to US15/373,005 priority patent/US10256915B2/en
Priority to US16/280,444 priority patent/US10887020B2/en
Priority to US17/122,142 priority patent/US11595130B2/en
Priority to US18/173,990 priority patent/US20230353250A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0298Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]

Definitions

  • the present invention relates to the field of optical transport networks, and more particularly to a method and apparatus for transmitting and receiving client signals in an optical transport network. Background technique
  • OTN Optical Transport Network
  • 0AM Operaation Administration and Maintenance
  • TCM Tandem
  • Connection Monitoring, Serial Connection Monitoring) Capabilities and FEC Forward Error Correction
  • OTN technology defines a standard package structure that maps various customer services and enables management and monitoring of customer signals.
  • the OTN frame structure is shown in Figure 1.
  • the OTN frame is a 4x4080 byte structure, that is, 4 lines ⁇ 4080 ⁇ ⁇ .
  • OTUk Optical Channel Transport Unit
  • ODUk Optical Channel Data Unit
  • OPUk Optical Channel Payload Unit
  • FEC Area FEC Area
  • the framing area includes an FAS (Frame Alignment Signal) and an MFAS (Multi-frame Alignment Signal), where the information in the OPUk OH is mainly used for customer service mapping and adaptation management.
  • the information in the ODUk OH is mainly used for management and monitoring of an OTN frame, and the information in the OTUk OH is mainly used for monitoring a transmission segment.
  • the fixed rate of OTUk is called the line interface rate. Currently, there are four fixed rate class line interface rates of 2.5G, 10G, 40G and 100G.
  • the OTN transmits the client signal in the following manner.
  • the upper client signal is mapped to the low-rate OPUj, the OPUj overhead is added, and the ODUj overhead is formed to form the ODUj.
  • the low-order ODUj maps the lower-order ODUj to the high-speed OPUk.
  • the OPUk overhead, the ODUk overhead, the OTUk overhead, and the FEC are added to form a fixed rate OTUk.
  • the OTUk is called a high-order OTUk, and the high-order OTUk is modulated to a single optical carrier transmission, and the optical carrier bearer bandwidth is equal to the high-order OTUk fixed rate.
  • ODUflex is introduced in the existing OTN, which is called a low-order variable-rate optical channel data unit, and is used to carry the upper layer at any rate.
  • the low-order ODUflex needs to be mapped to the high-order OPUk first, adding the OPUk overhead, the ODUk overhead, the OTUk overhead, and the FEC to form a fixed-rate high-order OTUk, and then modulating the high-order OTUk to a single optical carrier transmission.
  • the optical transport network system is challenged.
  • the optical spectrum resources are divided according to the bandwidth of the 50 GHz optical spectrum grid, and each optical carrier is allocated a bandwidth of 50 GHz optical spectrum grid.
  • the occupied optical spectrum width does not reach 50 GHz, and there is a waste of optical spectrum resources.
  • the optical spectrum is a finite resource.
  • the optical layer introduces the Flex Grid.
  • the optical carrier can occupy one or more continuous optical spectrum grid bandwidth.
  • the OTN network can allocate the appropriate optical spectrum width according to the traffic size and transmission distance of the client signal to be transmitted, so as to meet the transmission requirements.
  • nQAM n-order quadrature amplitude modulation, quadrature Amplitude Modulation
  • OFDM orthogonal frequency division multiplexing
  • the line interface of the electrical layer OTN is a fixed rate class, and the line interface of the appropriate rate cannot be provided according to the actual traffic volume of the customer service, so that the optimal configuration of the bandwidth resource of the optical transport network cannot be achieved.
  • Embodiments of the present invention provide a method and apparatus for transmitting and receiving client signals in an optical transport network.
  • an embodiment of the present invention provides a method for transmitting a client signal in an optical transport network, the method comprising: mapping a received client signal to a variable rate container OTU-N, The rate of the OTU-N is N times a preset reference rate level, and the value N is a positive integer configurable according to requirements; dividing the variable rate container OTU-N into N-way photons by column Channel transmission unit OTUsub, the rate of each OTUsub is equal to the reference rate level; modulating the N-channel photo sub-channel transmission unit OTUsub onto one or more optical carriers; and transmitting the one or more optical carriers to the same Transfer on the root fiber.
  • an embodiment of the present invention provides a transmitting device in an optical transport network, where the transmitting device includes a constructing module, a mapping module, a splitting module, a modulating module, and a transmitting module.
  • the constructing module is configured to construct a variable rate container 0TU-N, the rate of the 0TU-N is N times a predetermined reference rate level, and the value N is a positive integer configurable according to requirements.
  • the mapping module is configured to map the received client signal into the 0TU-N.
  • the splitting module is configured to split the OTU-N mapped with the client signal into N-way photo sub-channel transmission units OTUsub, and the rate of each OTUsub is the reference rate level.
  • the modulation module is configured to modulate the N-way OTUsub onto one or more optical carriers.
  • the transmitting module is configured to send the one or more optical carriers to the same optical fiber for transmission.
  • an embodiment of the present invention provides a method for receiving a client signal in an optical transport network, the method comprising: receiving one or more optical carriers from the same optical fiber; from the one or more optical carriers Demodulating the N-channel photo sub-channel transmission unit OTUsub; aligning the N-channel OTUsub, the rate of each OTUsub is a preset reference rate level; and aligning the aligned N-channel OTUsubs into one channel by interpolation a variable rate container 0TU-N, the rate of the 0TU-N is N times the reference rate level, the value N is a positive integer configurable according to requirements; and the client signal is demapped from the 0TU-N .
  • an embodiment of the present invention provides a receiving device in an optical transport network, where the receiving device includes a receiving interface, a demodulation module, an alignment module, a multiplexing module, and a demapping module.
  • the receiving interface is for receiving one or more optical carriers from the same fiber.
  • the demodulation module is configured to demodulate the N-way photo sub-channel transmission unit 0TUsub from the one or more optical carriers received by the receiving interface.
  • the alignment module is configured to align the N-way 0TUsub demodulated by the demodulation module.
  • the multiplexing module is configured to interleave the N-way OTUsubs aligned by the alignment module into a variable rate container 0TU-N, and the rate of the 0TU-N is the reference rate level. N times, the value N is a positive integer configurable according to requirements.
  • the demapping module is configured to demap the client signal from the 0TU-N generated by the multiplexing module.
  • an embodiment of the present invention provides a transmitting device in an optical transport network, the device Includes at least one processor.
  • the at least one processor is configured to: map the received client signal to a rate variable container OTU-N, the rate of the OTU-N being N times a predetermined reference rate level, The value N is a positive integer configurable according to requirements; the variable rate container OTU-N is split into N photonic channel transmission units OTUsub, and the rate of each OTUsub is equal to the reference rate level;
  • the N-way photonic channel transmission unit OTUsub modulates onto one or more optical carriers; and transmits the one or more optical carriers to the same optical fiber for transmission.
  • embodiments of the present invention provide a receiving device in an optical transport network, the device including a demodulator and at least one processor.
  • the demodulator is configured to demodulate the N-way photonic channel transmission unit 0TUsub from the received optical carrier.
  • the at least one processor is configured to: receive one or more optical carriers from the same optical fiber; demodulate N optical subchannel transmission units OTUsub from the one or more optical carriers; align the N paths OTUsub, the rate of each OTUsub is a preset reference rate level; the aligned N-way OTUsubs are inter-column-multiplexed into a variable rate container 0TU-N, the rate of the 0TU-N For N times the reference rate level, the value N is a positive integer configurable according to demand; and the client signal is demapped from the 0TU-N.
  • the client signal is mapped to a variable rate container 0TU-N, and the 0TU-N is transmitted through the same optical fiber, which can adapt to the optical layer spectrum bandwidth change and reach the optical transmission network bandwidth resource. Optimized configuration. DRAWINGS
  • FIG. 1 is a structural diagram of an 0TN frame provided in the prior art.
  • FIG. 2 is a schematic diagram of a container 0TU-N frame structure with variable rate of inter-column insertion generated by 0TN frames according to an embodiment of the present invention.
  • variable rate container 0TU-N provided in the embodiment of the present invention.
  • variable rate container 0TU-N provided in an embodiment of the present invention.
  • FIG. 7 is a flow chart of a method for transmitting a client signal in an OTN according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of mapping two low-order ODUts to the rate-variable container OTU-N according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the variable rate container OTU-N according to an embodiment of the present invention, which is inter-column inserted into a multi-channel photo sub-channel transmission unit OTUsub.
  • FIG. 10 is a schematic diagram showing the interleaving of the frame header of the variable rate container OTU-3 according to the embodiment of the present invention.
  • FIG. 11 is a flowchart of a method for receiving a client signal in an optical transport network according to an embodiment of the present invention.
  • Figure 12 is a schematic illustration of a transfer device in an optical transport network provided in an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a receiving apparatus in an optical transport network according to an embodiment of the present invention.
  • Figure 14 is a schematic diagram of a receiving device in another optical transport network provided in an embodiment of the present invention.
  • Figure 15 is a block diagram of a transmitting device in an optical transport network provided in an embodiment of the present invention.
  • Figure 16 is a block diagram of a receiving device in an optical transport network provided in an embodiment of the present invention. detailed description
  • the embodiment of the present invention constructs a variable rate container structure in the OTN electrical layer, which is called an OTU-N (Optical Channel Transport Unit-N), and the value N is a configurable positive integer, the 0TU.
  • the rate of -N is configurable at a predetermined reference rate level, for example, the rate of the 0TU-N is N times the reference rate level.
  • the rate of the 0TU-N can be flexibly configured according to the traffic volume of the client signal, and the traffic size of the client signal can be detected by the 0TN device or configured by the management plane.
  • the value N is flexibly configured according to the transmission requirement.
  • the value N is determined based on the traffic size of the client signal and the reference rate level.
  • the value N is equal to the traffic size of the client signal divided by the reference rate class.
  • the value is rounded up.
  • the quotient of A divided by B is rounded up. If B can divide A, then the quotient of A divided by B is rounded up to be equal to the quotient of A divided by B. If B is not able to divide A, then A Dividing by the quotient of B is rounded up to equal A divided by B The value obtained by taking the quotient is rounded up by one.
  • the preset fixed values of the reference rate level include but are not limited to the following:
  • the rate of 0TU1, OTU2, OTU3, OTU4 defined in the ITU-T G.709 standard, that is, the reference rate level is selected to be one of 2.5G, 10G, 40G, 100G, preferably, OTU4 rate of 100G;
  • optical frequency grid bandwidth defined by ITU-T G.694.
  • the reference rate level is selected to be 12.5G, 25G,
  • the customer signal includes:
  • the frame structure of the OTU-N varies with the change of the N value: the N sub-frames are inter-column interposed, and each sub-frame rate is the reference rate level. If the subframe is M column, it includes Ml overhead, M2 column payload, and M3 column FEC.
  • the OTU-N is an M*N column, which includes Ml*N overhead, M2*N column payload, and M3*N column FEC.
  • the frame structure of the OTU-N is composed of N shares of OTN frames inter-column, and includes 4 rows of 4080*N columns.
  • the first column to the 14th column include the OTU-N framing area, the OTU-N overhead area, and the ODU-N overhead area, and the 14N+1 column to the 16Nth column are OPU-N overhead areas, and the 16N+1 Columns to column 3824N are OPU-N payload areas, and columns 3824N+1 through 4080N are FEC (forward error correction) overhead areas.
  • all the overhead information of one frame is used as the overhead information of the OTU-N, and the other N-1 frames only have its FAS (Frame Alignment Signal) and MFAS. (Multi-frame Alignment Signal) is placed in the overhead area of the first row, the first column to the seventh column of the OTU-N.
  • the optical channel data unit corresponding to the OTU-N is called ODU-N
  • the optical channel payload unit corresponding to the OTU-N is called OPU-N.
  • Divide TS (Tributary Slot) for the OPU-N It includes the following two options:
  • the 0PU-N is divided into N time slots according to a column, and the rate of each time slot is the reference rate level, and the value of the value N in the whole is the same.
  • the 14N+1th column to the 16th Nth column are the Tributary Slot overhead (TSOH), and the 16N+1th column to the 3824Nth column are the OPU-N payload areas.
  • TSOH Tributary Slot overhead
  • the manner in which the time slots are divided is performed at a granularity of 1.25G, for example, for the OTU4-4 of the 400G rate class, (the OTU4-4 is 4)
  • the OTUs 4 are interpolated to form the OTU-N, which can be divided into 320 1.25G time slots.
  • the OTU4 is divided into 80 multiplex frames, and the OPU4 payload area is divided into 80 1.25G slots by byte interleaving.
  • the OTU4-4 may divide the OPU4-4 payload area into 320 1.25G time slots by byte interleave in a period of 80 multiframes.
  • a method for transmitting a client signal in an optical transport network includes:
  • Step 101 Map the received client signal to the OTU-N.
  • the customer data For the customer data, it is mapped into the time slot of the OPU-N by the GMP (Generic Mapping Procedure) or GFP (Generic Framing Procedure) mapping method and the OPU-N overhead is added.
  • the OPU-N adds an ODU-N overhead to form an ODU-N, and adds OTU-N overhead and FEC (Forward Error Correction) information to the OTU-N to form an OTU-N.
  • GMP Generic Mapping Procedure
  • GFP Generic Framing Procedure
  • a low-order ODUt service is mapped to the OPU-N ODTU-N.ts (Optical Channel Data Tributory Unit-N) through GMP mapping, where ts is the low-order path of the path.
  • ODUt occupies the number of time slots of the OPU-N, multiplexes the ODTU-N.ts into ts time slots of the OPU-N, and adds ODU-N overhead to the OPU-N to form an ODU-N Adding OTU-N overhead and FEC to the ODU-N to form an OTU-N.
  • the byte granularity of each low-order ODUt mapped is the same as the number of time slots of the OPU-N occupied by the low-order ODUt.
  • the OTU-3 carries two low-order ODUts, and the two low-order ODUts are the first low-order ODUt and the second low-order ODUt, respectively.
  • the first low-order ODUt occupies 1 time slot of the OPU-3, for example, TS1;
  • the second low-order ODUt occupies 2 times of the OPU-3 Gap, such as TS2 and TS3.
  • the optical channel data tributary unit of the OPU-3 is referred to as ODTU-3.ts, and the ODTU-3.ts includes TSOH (tributory slot overhead) and TS payload, and ts is the ODTU. -3.ts occupy the number of time slots of the OPU-3.
  • TSOH tributory slot overhead
  • TS payload TSOH (tributory slot overhead)
  • TS payload TSOH (tributory slot overhead)
  • ts is the ODTU. -3.ts occupy the number of time slots of the OPU-3.
  • the specific process of multiplexing the two low-order ODUt mappings to the OTU-3 is as follows:
  • mapping the first low-order ODUt into the ODTU-3.1 by GMP with a 1-byte granularity the ODTU-3.1 occupies one time slot TS1 of the OPU-3, and adds mapping information to the time slot.
  • the time slot overhead corresponding to TS1 is in TSOH1.
  • mapping the second low-order ODUt into the ODTU-3.2 by GMP with a 2-byte granularity the ODTU-3.2 occupies two time slots TS1 and TS2 of the OPU-3, and adds mapping information to a TSOH corresponding to any one of the two time slots, for example, added to a time slot overhead TSOH2 corresponding to the time slot TS2;
  • multiplexing the ODTU-3.1 and the ODTU-32 to an OPU-3 adding the ODU-3 overhead to the OPU-3 to generate an ODU-3, and adding the OTU-3 to the OTU-N overhead generation.
  • multiplexing the multiple ODTU-N.ts to one OPU-N can reduce overhead management complexity.
  • PT Payment Type
  • This embodiment can also follow the ITU-T G.709 standard for MSI (Multix Structure).
  • the MSI is modified to indicate whether each time slot in the ODU-N has been The low-order ODUt service is occupied.
  • the definitions of the PT and the MSI are not limited to the above, and the embodiment is not specifically limited.
  • Step 102 As shown in FIG. 9, the OTU-N is interspersed into N-channels.
  • the rate of each OTUsub is the reference rate level.
  • the splitting and splitting the OTU-N into N-channel OTUsubs includes the following two solutions: First, the OTU-N is divided into N sub-channels by inter-column splitting, and each sub-channel is Perform FEC processing and add FEC overhead information to obtain the N-way OTUsub. Preferably, one of the subchannels includes OTU-N overhead, ODU-N overhead, FAS and MFAS, and other N-1 The sub-channels include FAS and MFAS, and the rate of each sub-channel is equal to the reference rate level. Performing FEC processing on each subchannel can reduce the difficulty of FEC processing.
  • one of the OTUsubs includes an OTU-N overhead, an ODU-N overhead, a FAS, and an MFAS, and the other N-1 OTUsubs include a FAS and an MFAS, and the rate of each OTUsub is equal to the reference rate level.
  • the OLMsub may also carry an LLM (Logical Lane Marker).
  • LLMi is the channel identification number of each OTUsub, which can range from 0 to 255.
  • LLMi 0 to 255, indicating the 0th to 255th OTUsub. If the number of OTUsubs is greater than 256, the extended definition can be made in reserved areas in other overheads.
  • the frame header of the OTUsub is as shown in FIG.
  • the seventh byte is the MFAS byte, which will not be described in this embodiment.
  • Step 103 Modulate the N-way OTUsub onto one or more optical carriers.
  • the N-channel OTUsub is modulated onto a single optical carrier.
  • the traffic signal size of the client signal is 400G
  • the reference rate rate of the OTU-N is set to 100G
  • the value N is equal to 4
  • the bearer bandwidth of the single carrier is configured to be 400G.
  • the number of the single-carrier occupied optical spectrum grid bandwidth and the modulation format are not limited. For example, if the single carrier occupies four 12.5G optical frequency grid bandwidths, then Using PM-16QAM (Polarization Multiplexing - 16 Quadrature Amplitude Modulation) modulation format (modulation order is 16), calculated by the formula 2*4* 12.5Gbit/s*log216, the single channel
  • the bandwidth of the carrier can reach 400G bandwidth, which satisfies the requirement of transmitting the customer signal;
  • the bandwidth of the single carrier can also reach 400G, which satisfies the requirement of transmitting the client signal.
  • a multi-path photo subcarrier for example, when the N-channel OTUsub is modulated to the M-channel sub-carrier, the N-channel OTUsub is divided into M groups, the value M is a positive integer, and the each group of OTUsub is modulated to one way. On the carrier.
  • the value N is configured as an integer multiple of the value M.
  • the value M can be set to the traffic value of the client signal divided by the quotient of the bearer bandwidth of one subcarrier, and preferably N is equal to M.
  • the M-channel subcarrier adopts an orthogonal frequency division multiplexing manner.
  • the value N is equal to 16, that is, the OTU-16 is split into 16 OTUsubs, and the M path is configured at the same time.
  • the carrier has a bearer bandwidth of 400G to meet the needs of transmitting the client signal.
  • the value M is configured as 8, that is, 16 channels of OTUsub modulation are transmitted to 8 subcarriers, and every 2 channels of OTUsub are modulated to 1 subcarrier.
  • Each subcarrier occupies the number m of optical spectrum grid bandwidth and the modulation format used (modulation order is k) is not limited. For example, if each subcarrier occupies 4 12.5G optical frequency grid bandwidth, then use BPSK (Binary Phase Shift Keying) modulation format (modulation order is 2), calculated by the formula 4*12.5Gbit/s*log22, the bandwidth of each subcarrier can reach 50G;
  • BPSK Binary Phase Shift Keying
  • Step 104 Send the one or more optical carriers to the same optical fiber for transmission.
  • This embodiment maps the client signal to a variable rate container OTU-N and will
  • the OTU-N is transmitted through the same optical fiber, and can adapt to changes in the optical layer spectrum bandwidth to achieve optimal configuration of the optical transport network bandwidth resources.
  • a method for transmitting a client signal in the foregoing OTN is provided.
  • a method for receiving a client signal in an optical transport network including:
  • Step 501 Receive one or more optical carriers from the same optical fiber.
  • Step 502 Demodulate an N-channel OTUsub (optical sub-channel transport unit) from the one or more optical carriers.
  • OTUsub optical sub-channel transport unit
  • Step 503 Align the N channels of OTUsub, and the rate of each OTUsub is a preset reference rate level.
  • Aligning the N-way OTUsub includes: performing frame processing on the N-way OTUsub according to an FAS (Frame Alignment Signal) of each OTUsub, and locating the N-way OTUsub after the framed The frame header is aligned.
  • FAS Fram Alignment Signal
  • the N-way OTUsub may be aligned based on a frame header, and the N-way OTUsub is further aligned by using the MFAS carried in each OTUsub, that is, After the N-channel OTUsub is aligned, the MFAS (Multiframe Alignment Signal) carried in each OTUsub must be consistent, and the alignment is performed in the implementation process.
  • MFAS Multiframe Alignment Signal
  • Step 504 The aligned ⁇ OTUsub is inter-row-multiplexed into one OTU-N, the rate of the OTU-N is N times of the reference rate level, and the value N is configurable according to requirements. Integer.
  • the aligned N-way OTUsub is inter-row-multiplexed into one channel.
  • the OTU-N includes the following two schemes:
  • the aligned N-channel OTUsubs are separately subjected to FEC decoding processing, and then the N-channel OTUsubs that have completed the FEC decoding process are inter-row-interpolated into one-way OTU-N.
  • the aligned N-channel OTUsubs are inter-row-multiplexed into one of the 0TU-Ns, and the 0TU-N is subjected to FEC decoding processing.
  • Step 505 Demap the client signal from the OTU-N.
  • De-mapping the client signal from the OTU-N comprising: the OTU-N
  • An OPU-N (optical channel payload unit) overhead analysis process is performed to obtain mapping information carried in a slot overhead corresponding to each time slot in the OTU-N; and the client signal is used based on the mapping information De-mapping from the time slot of each time slot of the OTU-N.
  • the transmitting apparatus 60 includes a constructing module 601, a mapping module 603, a splitting module 605, a modulating module 607, and a transmitting module 609.
  • the constructing module 601 is configured to construct a variable rate container structure, called OTU-N, the rate of the OTU-N is N times a preset reference rate level, and the value N is configurable positive Integer.
  • the value N is flexibly configured according to the transmission demand. Preferably, the value N is determined based on the traffic size of the client signal and the reference rate level.
  • the mapping module 603 is configured to map the received client signal to the constructing module 601 The OTU-N constructed.
  • the mapping module 603 maps it to the time slot of the OPU-N and adds the OPU-N through a GMP (Generic Mapping Procedure) or GFP (Generic Framing Procedure) mapping manner. Overhead, the OPU-N is added to the OPU-N to form an ODU-N, and the OTU-N is added with an OTU-N overhead and FEC (Forward Error Correction) information to form an OTU-N.
  • GMP Generic Mapping Procedure
  • GFP Generic Framing Procedure
  • the mapping module 603 maps one low-order ODUt service to the ODTU-N.ts (Optical Channel Data Tributory Unit-N) of the OPU-N through the GMP mapping mode, where ts For the low-order ODUt of the path, occupy the number of time slots of the OPU-N, multiplex the ODTU-N.ts into the ts time slots of the OPU-N, and add the OPU-N to the OPU-N.
  • the overhead forms an ODU-N
  • the OTU-N is added with an OTU-N overhead and the FEC forms an OTU-N.
  • the mapping module 603 maps the byte granularity of each low-order ODUt to the same number of time slots of the OPU-N occupied by the low-order ODUt.
  • the splitting module 605 is configured to split the OTU-N after mapping the client signal by the mapping module 603 into N-channel OTUsub (Optical sub-channel Transport Unit). Channel transmission unit), the rate of each OTUsub is the reference rate level.
  • OTUsub Optical sub-channel Transport Unit
  • Channel transmission unit Channel transmission unit
  • the splitting module 605 splits the OTU-N into N-way OTUsubs according to the following two schemes:
  • the OTU-N is divided into N sub-channels by inter-column, FEC processing is performed on each sub-channel, and FEC overhead information is added to obtain the N-way OTUsub.
  • one of the sub-channels includes an OTU-N overhead, an ODU-N overhead, a FAS, and an MFAS
  • the other N-1 sub-channels include a FAS and an MFAS
  • the rate of each of the sub-channels is equal to the reference rate level.
  • FEC processing on each subchannel can reduce the difficulty of FEC processing.
  • one of the OTUsubs includes an OTU-N overhead, an ODU-N overhead, a FAS, and an MFAS, and the other N-1 OTUsubs include a FAS and an MFAS, and the rate of each OTUsub is equal to the reference rate level.
  • the modulating module 607 is configured to modulate the N-way OTUsub split by the splitting module 605 onto one or more optical carriers. 1) For a single carrier, the modulation module 607 modulates the N-way OTUsub onto a single optical carrier.
  • the N way OTUsub is divided into M groups, the value M is a positive integer, and each group is OTUsub is modulated onto one subcarrier.
  • the value N is configured as an integer multiple of the value M, preferably, N is equal to M.
  • the M-channel subcarrier adopts an orthogonal frequency division multiplexing manner.
  • the transmitting module 609 is configured to send the one or more optical carriers modulated by the modulation module 607 to the same optical fiber for transmission.
  • the receiving device 70 includes a receiving interface 701, a demodulating module 703, an aligning module 705, a multiplexing module 707, and a demapping module 709.
  • the receiving interface 701 is configured to receive one or more optical carriers from the same optical fiber.
  • the demodulation module 703 is configured to demodulate an N-channel OTUsub (optical sub-channel transport unit) from the one or more optical carriers received by the receiving interface 701.
  • OTUsub optical sub-channel transport unit
  • the aligning module 705 is configured to align the N road demodulated by the demodulation module 703
  • the alignment module 705 includes a framing unit 705a and an aligning unit 705b.
  • the framing unit 705a is configured to perform framing processing on the N-way OTUsub according to a frame alignment signal (FAS) of each OTUsub;
  • the aligning unit 705b is configured to: after the framing, the N-way OTUsub The frame header is aligned.
  • the multiplexing module 707 is configured to interleave the N-way OTUsubs aligned by the alignment module 705 into a variable rate container OTU-N, and the rate of the OTU-N is N times the reference rate level, the value N is a positive integer configurable according to demand.
  • the multiplexing module 707 includes a decoding unit 707a and a multiplexing unit 707b.
  • the decoding unit 707a is configured to perform FEC on the aligned N-channel OTUsubs respectively.
  • the decoding unit 703b is configured to interleave the N-channel OTUsubs that have completed the FEC decoding process into one OTU-N.
  • the multiplexing unit 703b is configured to interleave the aligned N-way OTUsubs into one OTU-N by the column; the decoding unit 703a is configured to The OTU-N performs FEC decoding processing.
  • the demapping module 709 is configured to demap the client signal from the OTU-N generated by the multiplexing module 707.
  • the demapping module 709 includes a parsing unit 709a and a demapping unit 709b.
  • the parsing unit 709a is configured to parse the OPU-N (Optical Channel Payload Unit) overhead of the OTU-N to obtain a slot overhead corresponding to each time slot in the OTU-N.
  • the mapping information carried in the mapping device 709b is configured to demap the client signal from each time slot payload area of the OTU-N based on the mapping information.
  • the transmission and receiving apparatus provided in this embodiment may be the same as the method embodiment for transmitting and receiving the client signal, and the specific implementation process is described in detail in the method embodiment, and details are not described herein.
  • the transmitting device 90 includes at least one processor 904, the at least one processor 904 being connectable to the memory 902, the memory 902 for buffering received client signals.
  • the at least one processor 904 is configured to perform the following operations: Constructing a variable rate container structure, referred to as OTU-N, having a rate of N times a predetermined reference rate level, the value N is a configurable positive integer; mapping the received client signal to the OTU-N; interpolating the OTU-N into N-channel OTUsub (Optical sub-channel Transport Unit) And the rate of each OTUsub is the reference rate level; modulating the N-way OTUsub onto one or more optical carriers; and transmitting the one or more optical carriers to the same optical fiber for transmission.
  • OTU-N variable rate container structure
  • N a variable rate container structure
  • N a configurable positive integer
  • mapping the received client signal to the OTU-N
  • the rate of each OTUsub is the reference rate level
  • modulating the N-way OTUsub onto one or more optical carriers and transmitting the one or more optical carriers to the same optical fiber
  • the value N is flexibly configured according to the transmission requirement. Preferably, the value N is determined based on the traffic size of the client signal and the reference rate level.
  • the at least one processor 904 maps it to the time slot of the OPU-N and adds the OPU through a GMP (Generic Mapping Procedure) or GFP (Generic Framing Procedure) mapping manner.
  • GMP Generic Mapping Procedure
  • GFP Generic Framing Procedure
  • -N overhead adding ODU-N overhead to the OPU-N to form an ODU-N
  • adding OTU-N overhead and FEC (Forward Error Correction) information to the OTU-N to form an OTU-N.
  • the at least one processor 904 maps one low-order ODUt service to the ODTU-N.ts (Optical Channel Data Tributary Unit-N) of the OPU-N through the GMP mapping mode.
  • ts is the number of time slots of the OPU-N occupied by the low-order ODUt of the path
  • the ODTU-N.ts is multiplexed into the ts time slots of the OPU-N, and the OPU is added to the OPU-N.
  • the -N overhead forms an ODU-N
  • the OTU-N is added with an OTU-N overhead and the FEC forms an OTU-N.
  • the at least one processor 904 maps the byte granularity of each low-order ODUt to the same number of time slots of the OPU-N occupied by the low-order ODUt.
  • the at least one processor 904 splits the OTU-N into N-way OTUsubs according to the following two schemes:
  • the OTU-N is divided into N sub-channels by inter-column, FEC processing is performed on each sub-channel, and FEC overhead information is added to obtain the N-way OTUsub.
  • one of the sub-channels includes an OTU-N overhead, an ODU-N overhead, a FAS, and an MFAS
  • the other N-1 sub-channels include a FAS and an MFAS
  • the rate of each of the sub-channels is equal to the reference rate level.
  • FEC processing on each subchannel can reduce the difficulty of FEC processing.
  • one of the OTUsubs includes an OTU-N overhead, an ODU-N overhead, a FAS, and an MFAS, and the other N-1 OTUsubs include a FAS and an MFAS, and the rate of each OTUsub is equal to the reference rate level.
  • the at least one processor 904 modulates the N-way OTUsub onto a single optical carrier.
  • the N way OTUsub is divided into M groups, the value M is a positive integer, and each group is OTUsub is modulated onto one subcarrier.
  • the value N is configured as an integer multiple of the value M, preferably, N is equal to M.
  • the M-channel subcarrier adopts an orthogonal frequency division multiplexing manner.
  • FIG. 16 a block diagram of one embodiment of a receiving device in an optical transport network.
  • Receiving device 110 A demodulator 1101 and at least one processor 1104 are included, the at least one processor 1104 being connectable to the memory 1102.
  • the demodulator 1101 demodulates an N-channel OTUsub (optical sub-channel transport unit) from the received optical carrier, and the value N is a positive integer configurable according to requirements.
  • the memory 1102 is configured to buffer the N-way OTU demodulated by the demodulator 1101.
  • the at least one processor 1104 is configured to perform the operations of: receiving one or more optical carriers from the same optical fiber; and demodulating the N-channel OTUsub (optical sub-channel transport unit) from the one or more optical carriers Aligning the N-way OTUsubs; aligning the aligned N-way OTUsubs into a variable rate container 0TU-N, the rate of the 0TU-N is a pre- N times the set reference rate level, the value N is a positive integer configurable according to demand; and the client signal is demapped from the 0TU-N.
  • N-channel OTUsub optical sub-channel transport unit
  • Aligning the N-way OTUsub with the at least one processor 1104 includes: performing frame processing on the N-channel OTUsub according to a frame alignment signal (FAS) of each OTUsub, and locating the N-way OTUsub after the framed The frame header is aligned.
  • FAS frame alignment signal
  • the at least one processor 1104 alternately aligns the aligned N-way OTUsubs into one channel 0TU-N, including the following two schemes:
  • the aligned N-channel OTUsubs are separately subjected to FEC decoding processing, and then the N-channel OTUsubs that have completed the FEC decoding process are interleaved and multiplexed into one of the 0TU-Ns.
  • the aligned N-way OTUsubs are inter-row-multiplexed into one of the 0TU-Ns, and the 0TU-N is subjected to FEC decoding processing.
  • the at least one processor 1104 de-maps the client signal from the 0TU-N, including: parsing the 0PU-N (optical channel payload unit) overhead of the 0TU-N, and obtaining The mapping information carried in the slot overhead corresponding to each time slot in the 0TU-N; based on the mapping information, de-mapping the client signal from each time slot payload area of the 0TU-N.
  • 0PU-N optical channel payload unit
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例提供了一种光传送网中传送、接收客户信号的方法和装置,涉及光传送网领域。所述传送方法包括:将接收到的客户信号映射到一个速率可变的容器OTU-N中,所述OTU-N的速率是一个预先设定的基准速率等级的N倍,数值N是可配置的正整数;将所述速率可变的容器OTU-N按列拆分为N路光子通道传送单元OTUsub,每路OTUsub的速率等于所述基准速率等级;将所述N路光子通道传送单元OTUsub调制到一路或多路光载波上;以及将所述一路或多路光载波发送到同一根光纤上进行传送。本发明实施例将客户信号映射到一种速率可变的容器OTU-N中,并将所述OTU-N通过同一根光纤传送,能够适配光层频谱带宽的变化,达到光传送网带宽资源的最优化配置。

Description

光传送网中传送、 接收客户信号的方法和装置 技术领域
本发明涉及光传送网领域, 特别涉及一种光传送网中传送、 接收客户信 号的方法和装置。 背景技术
OTN ( Optical transport network, 光传送网)作为下一代传送网的核心 技术, 包括电层和光层的技术规范, 具备丰富的 0AM ( Operation Administration and Maintenance, 操作、 管理与维护)、 强大的 TCM ( Tandem Connection Monitoring, 串联连接监视) 能力和带夕卜 FEC ( Forward Error Correction, 前向错误纠正) 能力, 能够实现大容量业务的灵活调度和管理。
在电处理层, OTN技术定义了一种标准的封装结构, 映射各种客户业 务, 能够实现对客户信号的管理和监控。 OTN帧结构如图 1所示, OTN帧 为 4x4080个字节的结构,即 4行 χ4080歹 ^ , ΟΤΝ帧结构包含定帧区域、OTUk ( Optical Channel Transport Unit, 光通道传输单元) OH ( Overhead, 开销)、 ODUk ( Optical Channel Data Unit, 光通道数据单元) OH、 OPUk ( Optical Channel Payload Unit,光通道净荷单元)OH、 OPUk净荷区域( Payload Area )、 FEC区域; k=l , 2, 3 , 4分别对应 2.5G, 10G, 40G, 100G的速率级别。 所述定帧区域包括 FAS ( Frame Alignment Signal, 帧对齐信号)和 MFAS ( Multi-frame Alignment Signal, 复帧对齐信号), 其中, 所述 OPUk OH中 的信息主要用于客户业务映射和适配管理, 所述 ODUk OH中的信息主要用 于对 OTN帧的管理及监视, 所述 OTUk OH中的信息主要用于对传输段的 监视。其中 OTUk的固定速率称为线路接口速率, 目前存在 2.5G, 10G, 40G, 100G四种固定速率等级的线路接口速率。 OTN传送客户信号存在如下方式, 将上层客户信号映射到低速率等级的 OPUj , 添加 OPUj开销、 ODUj开销形 成 ODUj , 我们将其称为低阶 ODUj , 然后将低阶 ODUj映射到高速率等级 的 OPUk, 添加 OPUk开销、 ODUk开销、 OTUk开销及 FEC形成固定速率 OTUk, 该 OTUk称为高阶 OTUk, 调制高阶 OTUk到单个光载波传送, 该 光载波承载带宽等于高阶 OTUk 固定速率。 另外现有 OTN 中引入了 ODUflex, 称为低阶可变速率光通道数据单元, 用于承载任意速率的上层业 务,低阶 ODUflex需要先映射到高阶 OPUk, 添加 OPUk开销、 ODUk开销、 OTUk开销及 FEC形成固定速率的高阶 OTUk, 然后调制高阶 OTUk到单个 光载波传送。
随着上层客户 IP ( Internet Protocol, 网络之间互连的协议 )业务的海量 增长以及灵活可变, 对光传送网体制提出了挑战。 目前光频谱资源按照 50GHz光频谱栅格带宽划分, 每个光载波被分配 50GHz光频谱栅格带宽, 对于承载带宽为 2.5G, 10G, 40G, 100G四种固定速率等级的光载波来讲, 其占用的光频谱宽度并未达到 50GHz, 存在光频谱资源浪费。 而光频谱又属 于有限资源, 为了充分利用光频谱资源, 提高网络的整体传送能力, 以满足 不断增长的上层客户 IP ( Internet Protocol, 网络之间互连的协议)业务传送, 光层引入 Flex Grid (可变栅格)技术, 将光频谱资源从固定 50GHz光频谱 极格带覔划分 ( ITU - T ( International Telecommunication Union - Telecommunication Standardization Sector-elecommunication , 国际电信联盟远 程通信标准化组织) G.694 )扩展到以更小粒度光频谱栅格带宽划分, 目前 最小光频语栅格带宽粒度 slot=12.5GHz, 光载波可以占用一个或多个连续的 光频谱栅格带宽。 OTN 网络可以根据待传送客户信号的流量大小和传送距 离分配合适的光频谱宽度, 从而满足传送需求。
另一方面, 业界也希望尽可能提高频谱效率, 更高的频谱效率的获得需 要高阶调制, 例如 nQAM , ( n 阶正交幅度调制, Quadrature Amplitude Modulation ) 和正交频分复用 ( OFDM , Orthogonal Frequency Division Multiplexing )技术, 也即在固定频谱宽度下, 通过改变光载波调制格式, 满 足实际业务流量大小需求。
然而, 目前电层 OTN的线路接口为固定速率等级, 无法根据客户业务 的实际流量大小提供合适速率的线路接口,从而无法达到光传送网带宽资源 的最优化配置。 发明内容
本发明实施例提供了一种光传送网中传送、 接收客户信号的方法和装 置。
一方面, 本发明实施例提供了一种光传送网中传送客户信号的方法, 所 述方法包括: 将接收到的客户信号映射到一个速率可变的容器 OTU-N中, 所述 OTU-N的速率是一个预先设定的基准速率等级的 N倍,数值 N是根据 需求可配置的正整数; 将所述速率可变的容器 OTU-N按列拆分为 N路光子 通道传送单元 OTUsub, 每路 OTUsub的速率等于所述基准速率等级; 将所 述 N路光子通道传送单元 OTUsub调制到一路或多路光载波上;以及将所述 一路或多路光载波发送到同一根光纤上进行传送。
另一方面, 本发明实施例提供了一种光传送网中的传送装置, 所述传送 装置包括构造模块、 映射模块、 拆分模块、 调制模块和传送模块。 所述构造 模块用于构造一个速率可变的容器 0TU-N, 所述 0TU-N的速率是一个预先 设定的基准速率等级的 N倍, 数值 N是根据需求可配置的正整数。 所述映 射模块用于将接收到的客户信号映射到所述 0TU-N中。 所述拆分模块用于 将映射了客户信号的所述 OTU-N按列间插拆分为 N路光子通道传送单元 OTUsub, 每路 OTUsub 的速率是所述基准速率等级。 所述调制模块用于将 所述 N路 OTUsub调制到一路或多路光载波上。所述传送模块用于将所述一 路或多路光载波发送到同一根光纤上进行传送。
另一方面, 本发明实施例提供了一种光传送网中接收客户信号的方法, 所述方法包括: 从同一根光纤上接收一路或多路光载波; 从所述一路或多路 光载波中解调制出 N路光子通道传送单元 OTUsub;对齐所述 N路 OTUsub, 每路 OTUsub的速率为一个预先设定的基准速率等级;将对齐后的所述 N路 OTUsub按列间插复用为一路速率可变的容器 0TU-N, 所述 0TU-N的速率 为所述基准速率等级的 N倍, 数值 N是根据需求可配置的正整数; 以及从 所述 0TU-N中解映射出客户信号。
另一方面, 本发明实施例提供了一种光传送网中的接收装置, 所述接收 装置包括接收接口、 解调模块、 对齐模块、 复用模块和解映射模块。 所述接 收接口用于从同一根光纤上接收一路或多路光载波。 所述解调模块用于从所 述接收接口接收到的所述一路或多路光载波中解调制出 N路光子通道传送 单元 0TUsub。 所述对齐模块用于对齐所述解调模块解调制出的所述 N路 0TUsub。 所述复用模块用于将所述对齐模块对齐后的所述 N路 OTUsub按 列间插复用为一路速率可变的容器 0TU-N, 所述 0TU-N的速率为所述基准 速率等级的 N倍, 数值 N是根据需求可配置的正整数。 所述解映射模块用 于从所述复用模块生成的所述 0TU-N中解映射出客户信号。
另一方面, 本发明实施例提供了一种光传送网中的传送装置, 所述装置 包括至少一个处理器。 所述至少一个处理器被配置为执行: 将接收到的客户 信号映射到一个速率可变的容器 OTU-N中,所述 OTU-N的速率是一个预先 设定的基准速率等级的 N倍, 数值 N是根据需求可配置的正整数; 将所述 速率可变的容器 OTU-N按列拆分为 N路光子通道传送单元 OTUsub, 每路 OTUsub 的速率等于所述基准速率等级; 将所述 N 路光子通道传送单元 OTUsub调制到一路或多路光载波上; 以及将所述一路或多路光载波发送到 同一根光纤上进行传送。
另一方面, 本发明实施例提供了一种光传送网中的接收装置, 所述装置 包括解调制器和至少一个处理器。 所述解调制器用于从接收到的光载波中解 调制出 N路光子通道传送单元 0TUsub。所述至少一个处理器被配置为执行: 从同一根光纤上接收一路或多路光载波; 从所述一路或多路光载波中解调制 出 N路光子通道传送单元 OTUsub; 对齐所述 N路 OTUsub, 每路 OTUsub 的速率为一个预先设定的基准速率等级;将对齐后的所述 N路 OTUsub按列 间插复用为一路速率可变的容器 0TU-N, 所述 0TU-N的速率为所述基准速 率等级的 N倍, 数值 N是根据需求可配置的正整数; 以及从所述 0TU-N中 解映射出客户信号。
本实施例将客户信号映射到一种速率可变的容器 0TU-N中, 并将所述 0TU-N通过同一根光纤传送, 能够适配光层频谱带宽的变化, 达到光传送 网带宽资源的最优化配置。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中提供的一种 0TN帧结构图。
图 2是本发明实施例中提供的一种由 0TN帧按列间插生成速率可变的 容器 0TU-N帧结构的示意图。
图 3-5是本发明实施例中提供的一种所述速率可变的容器 0TU-N的结 构示意图。
图 6是本发明实施例中提供的一种对所述速率可变的容器 0TU-N的光 通道净荷单元 OPU-N划分时隙的示意图。
图 7是本发明实施例中提供的一种 OTN中传送客户信号的方法的流程 图。
图 8是本发明实施例中提供的一种将 2路低阶 ODUt映射到所述速率可 变的容器 OTU-N的示意图。
图 9是本发明实施例中提供的一种所述速率可变的容器 OTU-N按列间 插拆分为多路光子通道传送单元 OTUsub的示意图。
图 10是本发明实施例中提供的一种所述速率可变的容器 OTU-3的帧头 按列间插拆分的示意图。
图 11 是本发明实施例中提供的一种光传送网中接收客户信号的方法的 流程图。
图 12是本发明实施例中提供的一种光传送网中的传送装置的示意图。 图 13是本发明实施例中提供的一种光传送网中的接收装置的示意图。 图 14是本发明实施例中提供的另一种光传送网中的接收装置的示意图。 图 15是本发明实施例中提供的一种光传送网中的传送装置的框图。 图 16是本发明实施例中提供的一种光传送网中的接收装置的框图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发 明实施方式作进一步地详细描述。
本发明实施例在 OTN电层构造一个速率可变的容器结构, 称为 OTU-N ( Optical channel Transport Unit-N, 光通道传送单元 -N ),数值 N为可配置的 正整数, 所述 0TU-N的速率是以一个预先设定的基准速率等级为粒度可配 置的, 例如, 所述 0TU-N的速率为 N倍基准速率等级。 所述 0TU-N的速 率可以根据客户信号的流量大小灵活配置,客户信号的流量大小可以由 0TN 设备检测得到, 也可以由管理平面配置。
所述数值 N根据传送需求灵活配置, 优选的, 所述数值 N基于客户信 号的流量大小和基准速率等级确定,例如, 所述数值 N等于客户信号的流量 大小除以所述基准速率等级的商值向上取整。 A除以 B的商值向上取整的含 义是, 如果 B能够整除 A, 则 A除以 B的商值向上取整就等于 A除以 B的 商值; 如果 B不能够整除 A, 则 A除以 B的商值向上取整就等于 A除以 B 的商值取整获得的数值再加 1。 例如, 若客户信号的流量大小为 200G, 基准 速率等级设定为 25G, 则数值 N为 200G除以 25G的商值 8, 即 N=8; 如果 客户信号的流量大小为 180G,基准速率等级设定为 25G, 则数值 N为 180G 除以 25G的商值 7.2取整获得的数值 7再加 1 , 即 N=8。
所述基准速率等级预先设定的固定值包括但不限于如下几种:
1、 可以为 ITU-T G.709标准中定义的 0TU1、 OTU2、 OTU3、 OTU4的 速率, 即, 所述基准速率等级选择为 2.5G、 10G、 40G、 100G中的一种, 优 选的, 为 OTU4的速率 100G;
2、 可以为 ITU-T G.694定义的光频语栅格带宽的整数倍, 例如, 所述光 频语栅格带宽带宽为 12.5GHz, 则所述基准速率等级选择为 12.5G、 25G、
50G、 100G中的一种, 优选的, 为 25G。
所述客户信号包括:
1 )客户数据, CBR ( Constant Bit Rate, 固定比特速率)业务, Packet (包)业务;
2 )低阶 ODUt业务, 包括 ITU-T G.709标准中定义的 ODU0、 ODU1、
ODU2、 ODU2e、 ODU3、 ODU4、 ODUflex。
所述 OTU-N的帧结构随着 N值的变化而变化: 由 N份子帧按列间插组 成, 每一份子帧速率即为所述基准速率等级。 若子帧为 M列, 其中包含 Ml 开销、 M2列净荷、 M3列 FEC。 则所述 OTU-N为 M*N列 , 其中包含 Ml *N 开销, M2*N列净荷, M3*N列 FEC。
优选的,如图 2-5所示, 所述 OTU-N的帧结构由 N份 OTN帧按列间插 组成, 包含 4行 4080 *N列。 其中, 第 1列到第 14N列包含 OTU-N的定帧 区、 OTU-N开销区和 ODU-N开销区, 第 14N+1列到第 16N列是 OPU-N开 销区,第 16N+1列到第 3824N列是 OPU-N净荷区,第 3824N+1列到第 4080N 列是 FEC ( forward error correction , 前向错误纠正)开销区。
优选的,如图 3所示,其中一个 ΟΤΝ帧的全部开销信息作为所述 OTU-N 的开销信息, 而其它 N-1个 ΟΤΝ帧仅将其 FAS ( Frame Alignment Signal, 帧对齐信号)和 MFAS ( Multi-frame Alignment Signal, 复帧对齐信号)放在 所述 OTU-N第 1行、 第 1列到第 7N列的开销区。
所述 OTU-N对应的光通道数据单元称为 ODU-N, 所述 OTU-N对应的 光通道净荷单元称为 OPU-N。对所述 OPU-N划分 TS ( Tributary Slot, 时隙 ) 包括如下两种方案:
第一种, 如图 6所示, 将所述 0PU-N按列划分为 N个时隙, 每个时隙 的速率为所述基准速率等级, 全文中的数值 N的取值相同。 其中, 第 14N+1 列到第 16N列是时隙开销区 (Tributary Slot overhead, TSOH ), 第 16N+1 列到第 3824N列是 OPU-N净荷区。 时隙的划分方式, 即以 1.25G速率等级为粒度对所述 OTU-N按字节间插进 行时隙划分, 例如, 对于 400G速率等级的 OTU4-4, (所述 OTU4-4是由 4 个 OTU4按列间插组成的所述 OTU-N ),可以将其划分为 320个 1.25G时隙。 ITU-T G.709标准中, OTU4划分方式为以 80个复帧为周期, 将 OPU4净荷 区按字节间插划分为 80个 1.25G时隙。 本发明实施例中, 所述 OTU4-4可 以以 80个复帧为周期, 将 OPU4-4净荷区按字节间插划分为 320个 1.25G 时隙。
参见图 7, 本实施例中提供了一种光传送网中传送客户信号的方法。 所 述方法包括:
步骤 101、 将接收到的客户信号映射到所述 OTU-N。
对于客户数据, 通过 GMP ( Generic Mapping Procedure, 通用映射规程 ) 或 GFP ( Generic Framing Procedure, 通用成帧规程) 映射方式将其映射到 OPU-N的时隙中并添加 OPU-N开销 ,将所述 OPU-N添加 ODU-N开销形成 ODU-N,将所述 ODU-N添加 OTU-N开销及 FEC ( Forward Error Correction, 前向错误纠正)信息形成 OTU-N。
对于低阶 ODUt业务, 通过 GMP映射方式将一路低阶 ODUt业务映射 到 OPU-N的 ODTU-N.ts ( Optical channel Data Tributory Unit-N, 光通道支路 单元), 其中 ts 为该路低阶 ODUt 占用所述 OPU-N 的时隙数量, 将所述 ODTU-N.ts复用到所述 OPU-N的 ts个时隙中 , 将所述 OPU-N添加 ODU-N 开销形成 ODU-N, 将所述 ODU-N添加 OTU-N开销及 FEC形成 OTU-N。
优选的, 映射每路低阶 ODUt的字节粒度与该路低阶 ODUt占用的所述 OPU-N 的时隙数量相同。 为了使本领域技术人员更容易理解本实施中的映 射方法, 下面参考图 8举例说明。 假设 OTU-3承载 2路低阶 ODUt, 所述 2 路低阶 ODUt分别为第一低阶 ODUt和第二低阶 ODUt。其中,第一低阶 ODUt 占用 OPU-3的 1个时隙, 例如 TS1 ; 第二低阶 ODUt占用 OPU-3的 2个时 隙, 例如 TS2 和 TS3。 其中, 将所述 OPU-3 的光通道数据支路单元称为 ODTU-3.ts, 所述 ODTU-3.ts包含 TSOH ( tributory slot overhead, 时隙开销) 和 TS净荷, ts为该 ODTU-3.ts占用所述 OPU-3的时隙数量。
如图 8所示, 所述 2路低阶 ODUt映射复用到所述 OTU-3的具体过程 如下:
1 )将第一低阶 ODUt通过 GMP以 1个字节粒度映射入所述 ODTU-3.1 , 所述 ODTU-3.1 占用所述 OPU-3的 1个时隙 TS1 ,并将映射信息添加到时隙 TS1对应的时隙开销 TSOH1中。
2 )将第二低阶 ODUt通过 GMP以 2个字节粒度映射入所述 ODTU-3.2, 所述 ODTU-3.2占用所述 OPU-3的 2个时隙 TS1和 TS2 ,并将映射信息添加 到所述两个时隙中的任一个时隙对应的 TSOH 中, 例如, 添加到所述时隙 TS2对应的时隙开销 TSOH2中;
3 )将所述 ODTU-3.1和所述 ODTU-32复用到一路 OPU-3,将所述 OPU-3 添加 ODU-3开销生成 ODU-3 , 将所述 ODU-3添加 OTU-N开销生成所述 OTU-3。 本实施例中, 将所述多路 ODTU-N.ts复用到一路 OPU-N, 能够降 低开销管理复杂度。
本实施例沿用 ITU-T G.709标准中对 PT ( Payload Type, 净荷类型) 的 定义方式。 值得说明的是, 本实施例中还可以新增一种 PT, 例如 PT=0x22, 用于指示所述 ODU-N对多路低阶业务混合承载。
本实施例同样可以沿用 ITU-T G.709 标准对 MSI ( Multiplex Structure
Identifier, 复用结构指示) 的定义方式, 在得到所述映射了多路低阶 ODUt 的 ODU-N之后 , 对其 MSI进行修改, 以指示所述 ODU-N中的各时隙是否 已经被所述低阶 ODUt业务所占用。 当然, PT和 MSI的定义不局限于如上 所述方式, 对此本实施例不做具体限定。
步骤 102、 如图 9所示, 将所述 OTU-N按列间插拆分为 N路 OTUsub
( Optical sub-channel Transport Unit, 光子通道传送单元 ), 每路 OTUsub的 速率是所述基准速率等级。
所述将所述 OTU-N按列间插拆分为 N路 OTUsub包括如下两种方案: 第一种, 将所述 OTU-N按按列间插拆分为 N路子通道, 对各个子通道 进行 FEC处理并添加 FEC开销信息, 得到所述 N路 OTUsub。 优选的, 其 中一路子通道包括 OTU-N开销、 ODU-N开销、 FAS和 MFAS , 其他 N - 1 路子通道包括 FAS和 MFAS ,所述每路子通道的速率等于所述基准速率等级。 在每个子通道上进行 FEC处理, 能够降低 FEC处理的难度。
第二种,对所述 OTU-N进行 FEC处理并添加 FEC开销信息,得到处理 后的所述 OTU-N, 并将处理后的所述 OTU-N按按列间插拆分为所述 N路 OTUsub。 优选的, 其中一路 OTUsub包括 OTU-N开销、 ODU-N开销、 FAS 和 MFAS , 其他 N - 1路 OTUsub包括 FAS和 MFAS , 所述每路 OTUsub的 速率等于所述基准速率等级。
本实施例中, 为便于识别各路 OTUsub , OTUsub 中也可以携带 LLM ( Logical Lane Marker, 還辑通道标示)。 该還辑通道标示占用 FAS的第 6 个字节, 标识为 LLMi, 其中 LLMi即为各路 OTUsub的通道标示号, 取值 范围可以为 0到 255。 LLMi=0到 255 ,分别标示第 0路到第 255路 OTUsub。 若 OTUsub数量大于 256时,则可以在其他开销中的保留区域进行扩展定义。 以 3路 OTUsub为例, 所述 OTUsub的帧头如图 10所示, 第 0路到第 2路 OTUsub携带的逻辑通道标示 LLM1、 LLM2、 LLM3的值分别为 0、 1、 2 , 占用帧头开销的第 6个字节, 其中, OA1和 OA2代表 OTUsub帧头的其它 开销, 对此本实施例不做具体限定。 第 7个字节为 MFAS字节, 对此本实施 例不再赘述。
步骤 103、 将所述 N路 OTUsub调制到一路或多路光载波上。
1 )针对单载波, 将所述 N路 OTUsub调制到一路单光载波上。
例如, 假设客户信号的流量大小是 400G, 并设定所述 OTU-N的基准速 率等级为 100G,则数值 N等于 4 ,同时配置该路单载波的承载带宽为 400G。
该路单载波占用光频谱栅格带宽的个数和釆用的调制格式 (调制阶数为 k ) 不作限定, 例如, 如果该路单载波占用 4个 12.5G光频语栅格带宽, 则 釆用 PM-16QAM ( Polarization Multiplexing - 16 Quadrature Amplitude Modulation, 偏振复用 16阶正交幅度调制 )调制格式(调制阶数为 16 ), 利 用公式 2*4* 12.5Gbit/s*log216计算,该单路载波的带宽可以达到 400G带宽, 满足传送所述客户信号的需求;
如果该路单载波占用 8个 12.5G光频谱栅格带宽, 则釆用 16QAM ( 16 Quadrature Amplitude Modulation, 16阶正交幅度调制)调制格式(调制阶数 为 16 ), 利用公式 8* 12.5Gbit/s*log216计算, 则该单路载波的带宽也可以达 到 400G, 满足传送所述客户信号的需求。 2 )针对多路光子载波, 例如, 将所述 N路 OTUsub调制到 M路子载波 时,将所述 N路 OTUsub分成 M组,数值 M为正整数,并将所述每组 OTUsub 调制到一路子载波上。 数值 N配置为数值 M的整数倍, 例如, 数值 M可以 设置为所述客户信号的流量大小除以一路子载波的承载带宽的商值向上取 整, 优选的, N等于 M。 优选的, 所述 M路子载波釆用正交频分复用方式。
例如, 假设客户信号的流量大小为 400G, 并设定所述 OTU-N的基准速 率等级为 25G, 则数值 N等于 16, 即将所述 OTU-16拆分为 16路 OTUsub, 同时配置该 M路子载波的承载带宽为 400G, 以满足传送所述客户信号的需 求。
如果每路子载波承载带宽为 50G,则数值 M配置为 8,即将 16路 OTUsub 调制到 8路子载波传送, 此时将每 2路 OTUsub调制到 1路子载波。
每路子载波占用光频谱栅格带宽的个数 m和釆用的调制格式(调制阶数 为 k ) 不作限定, 例如, 如果每路子载波占用 4个 12.5G光频语栅格带宽, 则釆用 BPSK ( Binary Phase Shift Keying, 二进制相移键控 )调制格式(调 制阶数为 2 ), 利用公式 4*12.5Gbit/s*log22计算, 则每个子载波的带宽可以 达到 50G;
如果每路子载波占用 1 个 12.5G光频语栅格带宽, 则釆用 PM-QPSK ( Polarization Multiplexing - QPSK, 偏振复用正交相移键控 )调制格式(调 制阶数为 4 ), 利用公式 2*12.5Gbit/s*log24计算出每个子载波的带宽也可以 达到 50G。
步骤 104、 将所述一路或多路光载波发送到同一根光纤上进行传送。 本实施例将客户信号映射到一种速率可变的容器 OTU-N中, 并将所述
OTU-N通过同一根光纤传送, 能够适配光层频谱带宽的变化, 达到光传送 网带宽资源的最优化配置。
参见图 11 , 针对于上述 OTN中传送客户信号的方法, 本实施例中提供 了一种光传送网中接收客户信号的方法, 包括:
步骤 501、 从同一根光纤上接收一路或多路光载波。
步骤 502、 从所述一路或多路光载波中解调制出 N路 OTUsub ( optical sub-channel transport unit, 光子通道传送单元 )。
步骤 503、 对齐所述 N路 OTUsub, 每一路 OTUsub的速率为一个预先 设定的基准速率等级。 所述对齐所述 N路 OTUsub包括:根据所述各路 OTUsub的 FAS( Frame Alignment Signal, 帧对齐信号)对所述 N路 OTUsub进行定帧处理, 并将定 帧后的所述 N路 OTUsub的帧头对齐。
本实施例中, 可选的, 在进行对齐处理时, 可以基于帧头对所述 N路 OTUsub进行对齐, 并借助于各 OTUsub中携带的 MFAS进一步对所述 N路 OTUsub进行对齐处理, 即在所述 N路 OTUsub实现对齐后, 除帧头保持对 齐外, 各路 OTUsub中携带的 MFAS ( Multiframe Alignment Signal , 帧对齐 信号)也需保持一致, 具体实施过程中使用哪种方式进行对齐, 本实施例不 做具体限定。
步骤 504、 将对齐后的所述 Ν路 OTUsub按列间插复用为一路 OTU-N, 所述 OTU-N的速率为所述基准速率等级的 N倍,数值 N是根据需求可配置 的正整数。
可选的, 将对齐后的所述 N路 OTUsub按列间插复用为一路 OTU-N包 括如下两种方案:
第一种, 将对齐后的所述 N路 OTUsub分别进行 FEC解码处理, 之后 将完成 FEC解码处理的 N路 OTUsub按列间插复用为一路所述 OTU-N。
第二种, 将对齐后的所述 N 路 OTUsub 按列间插复用为一路所述 0TU-N, 对所述 0TU-N进行 FEC解码处理。
步骤 505、 从所述 OTU-N中解映射出客户信号。
所述从所述 OTU-N 中解映射出客户信号, 包括: 对所述 OTU-N 的
OPU-N ( optical channel payload unit, 光通道净荷单元 )开销进行解析处理, 得到所述 OTU-N中各时隙对应的时隙开销中携带的映射信息; 基于所述映 射信息, 将客户信号从所述 OTU-N的各时隙净荷区中解映射出来。
参见图 12,本实施例中提供了一种光传送网中的传送装置,所述传送装 置 60包括构造模块 601、 映射模块 603、 拆分模块 605、 调制模块 607和传 送模块 609。
所述构造模块 601 , 用于构造一个速率可变的容器结构, 称为 OTU-N, 所述 OTU-N的速率为一个预先设定的基准速率等级的 N倍,数值 N为可配 置的正整数。 所述数值 N根据传送需求灵活配置, 优选的, 所述数值 N基 于客户信号的流量大小和基准速率等级确定。
所述映射模块 603 , 用于将接收到的客户信号映射到所述构造模块 601 构造的所述 OTU-N。
对于客户数据, 所述映射模块 603 通过 GMP ( Generic Mapping Procedure, 通用映射规程 )或 GFP ( Generic Framing Procedure, 通用成帧规 程)映射方式将其映射到 OPU-N的时隙中并添加 OPU-N开销,将所述 OPU-N 添加 ODU-N开销形成 ODU-N, 将所述 ODU-N添加 OTU-N开销及 FEC ( Forward Error Correction , 前向错误纠正)信息形成 OTU-N。
对于低阶 ODUt业务, 所述映射模块 603通过 GMP映射方式将一路低 阶 ODUt业务映射到 OPU-N的 ODTU-N.ts ( Optical channel Data Tributory Unit-N, 光通道支路单元), 其中 ts为该路低阶 ODUt占用所述 OPU-N的时 隙数量,将所述 ODTU-N.ts复用到所述 OPU-N的 ts个时隙中,将所述 OPU-N 添加 ODU-N开销形成 ODU-N, 将所述 ODU-N添加 OTU-N开销及 FEC形 成 OTU-N。 优选的, 所述映射模块 603映射每一路低阶 ODUt的字节粒度 与该路低阶 ODUt占用的所述 OPU-N的时隙数量相同。
如图 9所示, 所述拆分模块 605 , 用于将所述映射模块 603映射客户信 号后的所述 OTU-N 按列间插拆分为 N路 OTUsub ( Optical sub-channel Transport Unit, 光子通道传送单元), 每路 OTUsub的速率是所述基准速率 等级。
所述拆分模块 605将所述 OTU-N按列间插拆分为 N路 OTUsub包括如 下两种方案:
第一种, 将所述 OTU-N按列间插拆分为 N路子通道, 对各个子通道进 行 FEC处理并添加 FEC开销信息, 得到所述 N路 OTUsub。 优选的, 其中 一路子通道包括 OTU-N开销、 ODU-N开销、 FAS和 MFAS , 其他 N - 1路 子通道包括 FAS和 MFAS , 所述每路子通道的速率等于所述基准速率等级。 在每个子通道上进行 FEC处理, 能够降低 FEC处理的难度。
第二种,对所述 OTU-N进行 FEC处理并添加 FEC开销信息,得到处理 后的所述 OTU-N, 并将处理后的所述 OTU-N按按列间插拆分为所述 N路 OTUsub。 优选的, 其中一路 OTUsub包括 OTU-N开销、 ODU-N开销、 FAS 和 MFAS , 其他 N - 1路 OTUsub包括 FAS和 MFAS , 所述每路 OTUsub的 速率等于所述基准速率等级。
所述调制模块 607 ,用于将所述拆分模块 605拆分出的所述 N路 OTUsub 调制到一路或多路光载波上。 1 )针对单载波, 所述调制模块 607将所述 N路 OTUsub调制到一路单 光载波上。
2 )针对多路光子载波, 例如, 所述调制模块 607将所述 N路 OTUsub 调制到 M路子载波时, 将所述 N路 OTUsub分成 M组, 数值 M为正整数, 并将所述每组 OTUsub调制到一路子载波上。 数值 N配置为数值 M的整数 倍, 优选的, N等于 M。 优选的, 所述 M路子载波釆用正交频分复用方式。
所述传送模块 609, 用于将所述调制模块 607调制后的所述一路或多路 光载波发送到同一根光纤上进行传送。
值得注意的是, 上述传送、 接收装置实施例中, 所包括的各个模块只是 按照功能逻辑进行划分的, 但并不局限于上述的划分, 只要能够实现相应的 功能即可; 另外, 各功能模块的具体名称也只是为了便于相互区分, 并不用 于限制本发明的保护范围。
参见图 13 ,本实施例中提供了一种光传送网中的接收装置,所述接收装 置 70包括接收接口 701、 解调模块 703、 对齐模块 705、 复用模块 707和解 映射模块 709。
所述接收接口 701 , 用于从同一根光纤上接收一路或多路光载波。
所述解调模块 703 , 用于从所述接收接口 701接收到的所述一路或多路 光载波中解调制出 N路 OTUsub ( optical sub-channel transport unit, 光子通 道传送单元 )。
所述对齐模块 705, 用于对齐所述解调模块 703解调制出的所述 N路
OTUsub。
如图 14所示, 所述对齐模块 705包括定帧单元 705a和对齐单元 705b。 所述定帧单元 705a, 用于根据每一路 OTUsub的帧对齐信号( FAS )对所述 N路 OTUsub进行定帧处理; 所述对齐单元 705b, 用于将定帧后的所述 N 路 OTUsub的帧头对齐。 所述复用模块 707 ,用于将所述对齐模块 705对齐后的所述 N路 OTUsub 按列间插复用为一路速率可变的容器 OTU-N, 所述 OTU-N的速率为所述基 准速率等级的 N倍, 数值 N是根据需求可配置的正整数。
参见图 14, 所述复用模块 707包括解码单元 707a和复用单元 707b。 可 选的,所述解码单元 707a,用于将对齐后的所述 N路 OTUsub分别进行 FEC 解码处理;所述复用单元 703b,用于将完成 FEC解码处理的所述 N路 OTUsub 按列间插复用为一路所述 OTU-N。
在另一个实施例中, 所述复用单元 703b, 用于将对齐后的所述 N路 OTUsub按列间插复用为一路所述 OTU-N; 所述解码单元 703a,用于对所述 OTU-N进行 FEC解码处理。
所述解映射模块 709, 用于从所述复用模块 707生成的所述 OTU-N中 解映射出客户信号。
参见图 14,所述解映射模块 709包括解析单元 709a和解映射单元 709b。 所述解析单元 709a, 用于对所述 OTU-N的 OPU-N ( optical channel payload unit, 光通道净荷单元 )开销进行解析处理, 得到所述 OTU-N中各时隙对应 的时隙开销中携带的映射信息; 所述解映射单元 709b,用于基于所述映射信 息, 将客户信号从所述 OTU-N的各时隙净荷区中解映射出来。
本实施例提供的传送、 接收装置, 具体可以分别与传送、 接收客户信号 的方法实施例属于同一构思, 其具体实现过程详见方法实施例, 这里不再赘 述。
值得注意的是, 上述传送、 接收装置实施例中, 所包括的各个模块只是 按照功能逻辑进行划分的, 但并不局限于上述的划分, 只要能够实现相应的 功能即可; 另外, 各功能模块的具体名称也只是为了便于相互区分, 并不用 于限制本发明的保护范围。
参见图 15, 为光传送网中的传送装置的一种实施例框图。 传送装置 90 包括至少一个处理器 904, 所述至少一个处理器 904 可连接到所述存储器 902, 所述存储器 902用于緩存接收到的客户信号。
所述至少一个处理器 904被配置为执行如下操作: 构造一个速率可变的 容器结构, 称为 OTU-N, 所述 OTU-N的速率为一个预先设定的基准速率等 级的 N倍, 数值 N 为可配置的正整数; 将接收到的客户信号映射到所述 OTU-N; 将所述 OTU-N按列间插拆分为 N路 OTUsub ( Optical sub-channel Transport Unit, 光子通道传送单元), 每路 OTUsub的速率是所述基准速率 等级; 将所述 N路 OTUsub调制到一路或多路光载波上; 以及将所述一路或 多路光载波发送到同一根光纤上进行传送。
所述数值 N根据传送需求灵活配置, 优选的, 所述数值 N基于客户信 号的流量大小和基准速率等级确定。 对于客户数据, 所述至少一个处理器 904通过 GMP ( Generic Mapping Procedure, 通用映射规程 )或 GFP ( Generic Framing Procedure, 通用成帧规 程)映射方式将其映射到 OPU-N的时隙中并添加 OPU-N开销,将所述 OPU-N 添加 ODU-N开销形成 ODU-N, 将所述 ODU-N添加 OTU-N开销及 FEC ( Forward Error Correction , 前向错误纠正)信息形成 OTU-N。
对于低阶 ODUt业务, 所述至少一个处理器 904通过 GMP映射方式将 一路低阶 ODUt 业务映射到 OPU-N 的 ODTU-N.ts ( Optical channel Data Tributary Unit-N, 光通道支路单元), 其中 ts 为该路低阶 ODUt 占用所述 OPU-N的时隙数量, 将所述 ODTU-N.ts复用到所述 OPU-N的 ts个时隙中, 将所述 OPU-N添加 ODU-N开销形成 ODU-N, 将所述 ODU-N添加 OTU-N 开销及 FEC形成 OTU-N。 优选的, 所述至少一个处理器 904映射每一路低 阶 ODUt的字节粒度与该路低阶 ODUt占用的所述 OPU-N的时隙数量相同。
所述至少一个处理器 904将所述 OTU-N按列间插拆分为 N路 OTUsub 包括如下两种方案:
第一种, 将所述 OTU-N按列间插拆分为 N路子通道, 对各个子通道进 行 FEC处理并添加 FEC开销信息, 得到所述 N路 OTUsub。 优选的, 其中 一路子通道包括 OTU-N开销、 ODU-N开销、 FAS和 MFAS , 其他 N - 1路 子通道包括 FAS和 MFAS , 所述每路子通道的速率等于所述基准速率等级。 在每个子通道上进行 FEC处理, 能够降低 FEC处理的难度。
第二种,对所述 OTU-N进行 FEC处理并添加 FEC开销信息,得到处理 后的所述 OTU-N, 并将处理后的所述 OTU-N按按列间插拆分为所述 N路 OTUsub。 优选的, 其中一路 OTUsub包括 OTU-N开销、 ODU-N开销、 FAS 和 MFAS , 其他 N - 1路 OTUsub包括 FAS和 MFAS , 所述每路 OTUsub的 速率等于所述基准速率等级。
针对单载波,所述至少一个处理器 904将所述 N路 OTUsub调制到一路 单光载波上。
针对多路光子载波,例如,所述至少一个处理器 904将所述 N路 OTUsub 调制到 M路子载波时, 将所述 N路 OTUsub分成 M组, 数值 M为正整数, 并将所述每组 OTUsub调制到一路子载波上。 数值 N配置为数值 M的整数 倍, 优选的, N等于 M。 优选的, 所述 M路子载波釆用正交频分复用方式。
参见图 16 , 为光传送网中的接收装置的一种实施例框图。 接收装置 110 包括所述解调制器 1101和至少一个处理器 1104, 所述至少一个处理器 1104 可连接到所述存储器 1102。 所述解调制器 1101从接收到的光载波中解调制 出 N路 OTUsub ( optical sub-channel transport unit, 光子通道传送单元 ), 数 值 N是根据需求可配置的正整数。 所述存储器 1102用于緩存所述解调制器 1101解调制出的所述 N路 OTU。
所述至少一个处理器 1104被配置为执行如下操作: 从同一根光纤上接 收一路或多路光载波; 从所述一路或多路光载波中解调制出 N路 OTUsub ( optical sub-channel transport unit, 光子通道传送单元); 对齐所述 N路 OTUsub; 将对齐后的所述 N路 OTUsub按列间插复用为一路速率可变的容 器 0TU-N, 所述 0TU-N的速率是一个预先设定的基准速率等级的 N倍,数 值 N是根据需求可配置的正整数;以及从所述 0TU-N中解映射出客户信号。
所述至少一个处理器 1104对齐所述 N路 OTUsub, 包括: 根据每一路 OTUsub的帧对齐信号 ( FAS )对所述 N路 OTUsub进行定帧处理, 并将定 帧后的所述 N路 OTUsub的帧头对齐。
所述至少一个处理器 1104将对齐后的所述 N路 OTUsub按列间插复用 为一路 0TU-N包括如下两种方案:
第 1种, 将对齐后的所述 N路 OTUsub分别进行 FEC解码处理, 之后 将完成 FEC解码处理的所述 N路 OTUsub按列间插复用为一路所述 0TU-N。
第 2种,将对齐后的所述 N路 OTUsub按列间插复用为一路所述 0TU-N, 并对所述 0TU-N进行 FEC解码处理。
所述至少一个处理器 1104从所述 0TU-N中解映射出客户信号, 包括: 对所述 0TU-N的 0PU-N ( optical channel payload unit, 光通道净荷单元)开 销进行解析处理, 得到所述 0TU-N中各时隙对应的时隙开销中携带的映射 信息; 基于所述映射信息, 将客户信号从所述 0TU-N的各时隙净荷区中解 映射出来。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以 通过硬件来完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以 存储于一种计算机可读存储介质中, 上述提到的存储介质可以是只读存储 器, 磁盘或光盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明 的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发 明的保护范围之内。

Claims

权利要求
1、 一种光传送网中传送客户信号的方法, 其特征在于, 所述方法包括: 将接收到的客户信号映射到一个速率可变的容器 OTU-N 中, 所述 OTU-N的速率是一个预先设定的基准速率等级的 N倍, 数值 N是可配置的 正整数;
将所述速率可变的容器 OTU-N按列拆分为 N路光子通道传送单元 OTUsub, 每路 OTUsub的速率等于所述基准速率等级;
将所述 N路光子通道传送单元 OTUsub调制到一路或多路光载波上;以 及
将所述一路或多路光载波发送到同一根光纤上进行传送。
2、 根据权利要求 1所述的方法, 其特征在于, 所述数值 N基于客户信 号的流量大小和基准速率等级确定。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述 OTU-N的帧结 构由 N份子帧按列间插组成, 每一份子帧的速率为所述基准速率等级。
4、 根据权利要求 1至 3中任一项所述的方法, 其特征在于, 所述预先
2, 3, 4 ) 的其中一种速率等级。
5、 根据权利要求 4所述的方法, 其特征在于, 所述预先设定的基准速 率等级是 OTU4的速率等级。
6、 根据权利要求 1至 3中任一项所述的方法, 其特征在于, 所述预先 设定的基准速率等级是 ITU-T G.694定义的光频语栅格带宽的整数倍。
7、 根据权利要求 6所述的方法, 其特征在于, 所述预先设定的基准速 率等级是所述光频语栅格带宽的 2倍。
8、 根据权利要求 7所述的方法, 其特征在于, 所述光频语栅格带宽是
12.5G, 所述基准速率等级是 25G。
9、根据权利要求 1至 8中任一项所述的方法, 其特征在于, 所述将所述 OTU-N按列间插拆分为 N路 OTUsub包括:
将所述 OTU-N按列间插拆分为 N路子通道, 对各个子通道进行 FEC处 理并添加 FEC开销信息, 得到所述 N路 OTUsub;
或者, 对所述 OTU-N进行 FEC处理并添加 FEC开销信息,得到处理后的所述 OTU-N, 并将处理后的所述 OTU-N按按列间插拆分为所述 N路 OTUsub。
10、 根据权利要求 1至 9中任一项所述的方法, 其特征在于, 所述将所 述 N路 OTUsub调制到多路光载波上, 包括:
将所述 N路 OTUsub分成 M组, 其中, 所述多路光载波包含 M路光子 载波, 数值 M为正整数, 数值 N配置为数值 M的整数倍; 以及
将所述每组 OTUsub调制到一路子载波上。
11、 根据权利要求 10所述的方法, 其特征在于, 所述数值 N和数值 M 相等。
12、 一种光传送网中的传送装置, 其特征在于, 所述传送装置包括: 构造模块, 用于构造一个速率可变的容器 OTU-N, 所述 OTU-N的速率 是一个预先设定的基准速率等级的 N倍, 数值 N是可配置的正整数;
映射模块, 用于将接收到的客户信号映射到所述 OTU-N中;
拆分模块, 用于将映射了客户信号的所述 OTU-N按列间插拆分为 N路 光子通道传送单元 OTUsub, 每路 OTUsub的速率是所述基准速率等级; 调制模块, 用于将所述 N路 OTUsub调制到一路或多路光载波上; 以及 传送模块,用于将所述一路或多路光载波发送到同一根光纤上进行传送。
13、 根据权利要求 12所述的装置, 其特征在于, 所述数值 N基于客户 信号的流量大小和基准速率等级确定。
14、 根据权利要求 12或 13所述的装置, 其特征在于, 所述 OTU-N的 帧结构由 N份子帧按列间插组成, 每一份子帧的速率为所述基准速率等级。
15、 根据权利要求 12至 14中任一项所述的装置, 其特征在于, 所述预 先设定的基准速率等级是 ITU-T G.709标准中定义的光通道传送单元 OTUj (j=l, 2, 3, 4 ) 的其中一种速率等级。
16、 根据权利要求 15所述的装置, 其特征在于, 所述预先设定的基准 速率等级是 OTU4的速率等级。
17、 根据权利要求 12至 12中任一项所述的装置, 其特征在于, 所述预 先设定的基准速率等级是 ITU-T G.694定义的光频语栅格带宽的整数倍。
18、 根据权利要求 17所述的装置, 其特征在于, 所述预先设定的基准 速率等级是所述光频谱栅格带宽的 2倍。
19、 根据权利要求 18所述的装置, 其特征在于, 所述光频谱栅格带宽 是 12.5G, 所述基准速率等级是 25G。
20、 根据权利要求 12至 19中任一项所述的装置, 其特征在于, 所述将 所述 OTU-N按列间插拆分为 N路 OTUsub包括:
将所述 OTU-N按列间插拆分为 N路子通道, 对各个子通道进行 FEC处 理并添加 FEC开销信息, 得到所述 N路 OTUsub;
或者,
对所述 OTU-N进行 FEC处理并添加 FEC开销信息,得到处理后的所述 OTU-N, 并将处理后的所述 OTU-N按按列间插拆分为所述 N路 OTUsub。
21、 根据权利要求 12至 20中任一项所述的装置, 其特征在于, 所述将 所述 N路 OTUsub调制到多路光载波上, 包括:
将所述 N路 OTUsub分成 M组, 其中, 所述多路光载波包含 M路光子 载波, 数值 M为正整数, 数值 N配置为数值 M的整数倍; 以及
将所述每组 OTUsub调制到一路子载波上。
22、 根据权利要求 21所述的装置, 其特征在于, 所述数值 N和数值 M 相等。
23、 一种光传送网中接收客户信号的方法, 其特征在于, 包括: 从同一根光纤上接收一路或多路光载波;
从所述一路或多路光载波中解调制出 N路光子通道传送单元 OTUsub; 对齐所述 N路 OTUsub, 每路 OTUsub的速率为一个预先设定的基准速 率等级;
将对齐后的所述 N路 OTUsub 按列间插复用为一路速率可变的容器 0TU-N, 所述 0TU-N的速率为所述基准速率等级的 N倍,数值 N是可配置 的正整数; 以及
从所述 OTU-N中解映射出客户信号。
24、 根据权利要求 23所述的方法, 其特征在于, 所述数值 N基于客户 信号的流量大小和基准速率等级确定。
25、 根据权利要求 23或 24所述的方法, 其特征在于, 所述 OTU-N的 帧结构由 N份子帧按列间插组成, 每一份子帧的速率为所述基准速率等级。
26、 根据权利要求 23至 25中任一项所述的方法, 其特征在于, 所述预 先设定的基准速率等级是 ITU-T G.709标准中定义的光通道传送单元 OTUj
(j=l, 2, 3, 4 ) 的其中一种速率等级。
27、 根据权利要求 26所述的方法, 其特征在于, 所述预先设定的基准 速率等级是 OTU4的速率等级。
28、 根据权利要求 23至 25中任一项所述的方法, 其特征在于, 所述预 先设定的基准速率等级是 ITU-T G.694定义的光频语栅格带宽的整数倍。
29、 根据权利要求 28所述的方法, 其特征在于, 所述预先设定的基准 速率等级是所述光频谱栅格带宽的 2倍。
30、 根据权利要求 29所述的方法, 其特征在于, 所述光频谱栅格带宽 是 12.5G, 所述基准速率等级是 25G。
31、 根据权利要求 23至 30中任一项所述的方法, 其特征在于, 所述从 所述 OTU-N中解映射出客户信号, 包括:
OTU-N中各时隙对应的时隙开销中携带的映射信息; 以及
基于所述映射信息, 将所述客户信号从所述 OTU-N 的各时隙净荷区中 解映射出来。
32、 一种光传送网中的接收装置, 其特征在于, 所述接收装置包括: 接收接口, 用于从同一根光纤上接收一路或多路光载波;
解调模块, 用于从所述接收接口接收到的所述一路或多路光载波中解调 制出 N路光子通道传送单元 OTUsub;
对齐模块, 用于对齐所述解调模块解调制出的所述 N路 OTUsub;
复用模块, 用于将所述对齐模块对齐后的所述 N路 OTUsub按列间插复 用为一路速率可变的容器 OTU-N, 所述 OTU-N的速率为所述基准速率等级 的 N倍, 数值 N是可配置的正整数; 以及
解映射模块, 用于从所述复用模块生成的所述 OTU-N 中解映射出客户 信号。
33、 根据权利要求 32所述的装置, 其特征在于, 所述数值 N基于客户 信号的流量大小和基准速率等级确定。
34、 根据权利要求 32或 33所述的方法, 其特征在于, 所述 OTU-N的 帧结构由 N份子帧按列间插组成, 每一份子帧的速率为所述基准速率等级。
35、 根据权利要求 32至 34中任一项所述的方法, 其特征在于, 所述预 先设定的基准速率等级是 ITU-T G.709标准中定义的光通道传送单元 OTUj
(j=l, 2, 3, 4 ) 的其中一种速率等级。
36、 根据权利要求 35所述的方法, 其特征在于, 所述预先设定的基准 速率等级是 OTU4的速率等级。
37、 根据权利要求 32至 34中任一项所述的方法, 其特征在于, 所述预 先设定的基准速率等级是 ITU-T G.694定义的光频语栅格带宽的整数倍。
38、 根据权利要求 37所述的方法, 其特征在于, 所述预先设定的基准 速率等级是所述光频谱栅格带宽的 2倍。
39、 根据权利要求 38所述的方法, 其特征在于, 所述光频谱栅格带宽 是 12.5G, 所述基准速率等级是 25G。
40、 根据权利要求 32至 39中任一项所述的方法, 其特征在于, 所述解 映射模块包括: 处理, 得到所述 OTU-N中各时隙对应的时隙开销中携带的映射信息; 以及 解映射单元, 用于基于所述映射信息, 将所述客户信号从所述 OTU-N 的各时隙净荷区中解映射出来。
PCT/CN2013/071898 2012-07-30 2013-02-26 光传送网中传送、接收客户信号的方法和装置 WO2014019359A1 (zh)

Priority Applications (17)

Application Number Priority Date Filing Date Title
ES13825474.3T ES2642865T3 (es) 2012-07-30 2013-02-26 Método y dispositivo para transportar y recibir señal de cliente en red de transporte óptico
EP22171016.3A EP4102744A1 (en) 2012-07-30 2013-02-26 Method and apparatus for transmitting and receiving client signal in optical transport network
JP2015524604A JP6086334B2 (ja) 2012-07-30 2013-02-26 光伝送ネットワークにおいてクライアント信号を送信し、かつ受信するための方法及び装置
RU2015106924/07A RU2594296C1 (ru) 2012-07-30 2013-02-26 Способ и устройство для передачи и приема клиентского сигнала в оптической транспортной сети
AU2013299259A AU2013299259B2 (en) 2012-07-30 2013-02-26 Method and apparatus for transmitting and receiving client signal in optical transport network
BR112015002119A BR112015002119B8 (pt) 2012-07-30 2013-02-26 Método e aparelho para transmitir um sinal de cliente em uma rede de transporte óptico e método e aparelho para receber um sinal de cliente em uma rede de transporte óptico
DK13825474.3T DK2874332T3 (da) 2012-07-30 2013-02-26 Fremgangsmåde og anordning til at transportere og modtage et klientsignal i et optisk transportnet
CA2880584A CA2880584C (en) 2012-07-30 2013-02-26 Method and apparatus for transmitting and receiving client signal in optical transport network
EP13825474.3A EP2874332B1 (en) 2012-07-30 2013-02-26 Method and device for transporting and receiving client signal in optical transport network
EP19172818.7A EP3627727B1 (en) 2012-07-30 2013-02-26 Method and apparatus for transmitting and receiving client signal in optical transport network
KR1020157005266A KR101686002B1 (ko) 2012-07-30 2013-02-26 광 전송망에서 클라이언트 신호를 전송 및 수신하는 방법 및 장치
EP17183034.2A EP3300266B1 (en) 2012-07-30 2013-02-26 Method and apparatus for transmitting and receiving client signal in optical transport network
US14/609,232 US9531477B2 (en) 2012-07-30 2015-01-29 Method and apparatus for transmitting and receiving client signal in optical transport network
US15/373,005 US10256915B2 (en) 2012-07-30 2016-12-08 Method and apparatus for transmitting and receiving client signal in optical transport network
US16/280,444 US10887020B2 (en) 2012-07-30 2019-02-20 Method and apparatus for transmitting and receiving client signal in optical transport network
US17/122,142 US11595130B2 (en) 2012-07-30 2020-12-15 Method and apparatus for transmitting and receiving client signal in optical transport network
US18/173,990 US20230353250A1 (en) 2012-07-30 2023-02-24 Method and Apparatus for Transmitting and Receiving Client Signal in Optical Transport Network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210268385.0A CN102820951B (zh) 2012-07-30 2012-07-30 光传送网中传送、接收客户信号的方法和装置
CN201210268385.0 2012-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/609,232 Continuation US9531477B2 (en) 2012-07-30 2015-01-29 Method and apparatus for transmitting and receiving client signal in optical transport network

Publications (1)

Publication Number Publication Date
WO2014019359A1 true WO2014019359A1 (zh) 2014-02-06

Family

ID=47304828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071898 WO2014019359A1 (zh) 2012-07-30 2013-02-26 光传送网中传送、接收客户信号的方法和装置

Country Status (12)

Country Link
US (5) US9531477B2 (zh)
EP (4) EP2874332B1 (zh)
JP (1) JP6086334B2 (zh)
KR (1) KR101686002B1 (zh)
CN (2) CN102820951B (zh)
AU (1) AU2013299259B2 (zh)
BR (1) BR112015002119B8 (zh)
CA (1) CA2880584C (zh)
DK (1) DK2874332T3 (zh)
ES (3) ES2925243T3 (zh)
RU (1) RU2594296C1 (zh)
WO (1) WO2014019359A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016114109A1 (ja) * 2015-01-14 2017-10-19 日本電気株式会社 送信回路、受信回路、光伝送システムおよびマルチフレームの送信方法
US20180212683A1 (en) * 2015-09-25 2018-07-26 Huawei Technologies Co., Ltd. Signal sending and receiving method, apparatus, and system
US10623836B2 (en) 2016-05-27 2020-04-14 Huawei Technologies Co., Ltd. Service transmission method and first transmission device
CN112752170A (zh) * 2019-10-29 2021-05-04 中兴通讯股份有限公司 参数调整方法、装置、系统和存储介质

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820951B (zh) 2012-07-30 2016-12-21 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置
CN103997388B (zh) * 2013-02-18 2019-04-23 中兴通讯股份有限公司 数据的映射、解映射方法及装置
CN103997387B (zh) * 2013-02-18 2018-08-24 中兴通讯股份有限公司 数据的映射、复用、解复用和解映射方法及装置
US9438376B2 (en) * 2013-03-15 2016-09-06 Cortina Systems, Inc. Apparatus and method for forward error correction over a communication channel
CN104104489B (zh) * 2013-04-07 2018-11-09 南京中兴新软件有限责任公司 基于灵活栅格标签的频谱资源分配方法及装置
CN104303475B (zh) * 2013-04-10 2018-03-06 华为技术有限公司 调整线路接口速率的方法和节点
CN103547338B (zh) * 2013-04-22 2016-09-28 华为技术有限公司 无损业务的多载波频谱迁移方法及装置
CN104468024B (zh) * 2013-09-23 2020-01-14 中兴通讯股份有限公司 一种配置节点的方法、装置及系统
CN103561359B (zh) * 2013-10-22 2016-12-07 华为技术有限公司 一种光通道数据单元的复接方法和装置
WO2015120631A1 (zh) * 2014-02-17 2015-08-20 华为技术有限公司 光传送网中信号传输的方法、装置及系统
US20170163371A1 (en) * 2014-06-25 2017-06-08 Nec Corporation Multicarrier optical transmitter, multicarrier optical receiver, and multicarrier optical transmission method
CN105451102B (zh) * 2014-08-22 2019-05-28 华为技术有限公司 一种处理信号的方法、装置及系统
US10116403B2 (en) * 2014-08-25 2018-10-30 Ciena Corporation OTN adaptation for support of subrate granularity and flexibility and for distribution across multiple modem engines
US10225037B2 (en) * 2014-10-24 2019-03-05 Ciena Corporation Channelized ODUflex systems and methods
JP6235988B2 (ja) * 2014-11-28 2017-11-22 日本電信電話株式会社 光通信システム、光伝送装置、及び光信号伝送方法
US9838290B2 (en) * 2015-06-30 2017-12-05 Ciena Corporation Flexible ethernet operations, administration, and maintenance systems and methods
JP2017143369A (ja) * 2016-02-09 2017-08-17 三菱電機株式会社 フレーム生成方法、光伝送装置および光伝送システム
CN107566074B (zh) * 2016-06-30 2019-06-11 华为技术有限公司 光传送网中传送客户信号的方法及传送设备
JP6636653B2 (ja) 2016-07-22 2020-01-29 華為技術有限公司Huawei Technologies Co.,Ltd. マルチサービス伝送及び受信方法並びに装置
JP6684031B2 (ja) * 2017-02-20 2020-04-22 日本電信電話株式会社 光伝送システム及び光伝送方法
CN108632061B (zh) * 2017-03-20 2020-12-15 华为技术有限公司 一种带宽调整方法及装置
CN107241659B (zh) * 2017-05-27 2019-06-21 烽火通信科技股份有限公司 光传送网通用映射规程的仿真系统及仿真方法
WO2019153253A1 (zh) * 2018-02-09 2019-08-15 华为技术有限公司 一种光传送网中业务数据的处理方法及装置
CN110224946B (zh) * 2018-03-01 2022-05-27 中兴通讯股份有限公司 一种业务发送方法及装置、业务接收方法及装置
CN111294669B (zh) * 2018-12-07 2022-04-29 中国移动通信集团内蒙古有限公司 光传送网otn网络架构及调度方法
CN112118073B (zh) * 2019-06-19 2022-04-22 华为技术有限公司 一种数据处理方法、光传输设备及数字处理芯片
CN114765566A (zh) * 2020-12-30 2022-07-19 中兴通讯股份有限公司 一种多路业务传输方法、系统、存储介质及电子装置
CN112969110B (zh) * 2021-03-03 2022-06-03 电信科学技术第五研究所有限公司 一种otn信号不同映射速率odu识别方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155016A (zh) * 2007-09-14 2008-04-02 中兴通讯股份有限公司 一种光传输网中光净荷单元的时隙划分与开销处理的方法
CN101841749A (zh) * 2009-03-18 2010-09-22 华为技术有限公司 数据传输方法、通信装置及通信系统
CN102820951A (zh) * 2012-07-30 2012-12-12 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE281746T1 (de) * 2001-07-23 2004-11-15 Cit Alcatel Netzelement für signale des optical transport networks (otn)
US7570643B2 (en) * 2003-02-12 2009-08-04 Cisco Technology, Inc. Efficient framing procedure for variable length packets
CN100349390C (zh) * 2004-08-11 2007-11-14 华为技术有限公司 光传送网中传输低速率业务信号的方法及其装置
CN100596043C (zh) * 2004-08-26 2010-03-24 华为技术有限公司 实现低速信号在光传输网络中透明传送的方法和装置
CN100373847C (zh) * 2004-12-14 2008-03-05 华为技术有限公司 在光传送网中传输低速率业务信号的方法
CN1791057B (zh) 2004-12-15 2011-06-15 华为技术有限公司 在光传送网中传输数据业务的方法及其装置
CN100459555C (zh) * 2006-05-17 2009-02-04 华为技术有限公司 通过光传送网透传光通道传输单元信号的方法和装置
JP4826450B2 (ja) * 2006-11-29 2011-11-30 株式会社日立製作所 光スイッチおよび光クロスコネクト装置
CN101242232B (zh) * 2007-02-09 2013-04-17 华为技术有限公司 实现以太网信号在光传送网中传输的方法、装置及系统
AU2008262016B2 (en) 2007-06-06 2012-04-19 Interdigital Technology Corporation Heterogeneous network handover-support mechanism using media independent handover (MIH) functions
CN101325465B (zh) * 2007-06-15 2010-10-27 华为技术有限公司 一种光传送网中客户信号的传送方法及相关设备
CN101389146B (zh) * 2007-09-13 2011-01-05 华为技术有限公司 光传送网同步交叉调度的方法和装置
US8213446B2 (en) * 2007-12-26 2012-07-03 Ciena Corporation Frame-interleaving systems and methods for 100G optical transport enabling multi-level optical transmission
US8045863B2 (en) 2007-12-26 2011-10-25 Ciena Corporation Byte-interleaving systems and methods for 100G optical transport enabling multi-level optical transmission
CN101615967B (zh) 2008-06-26 2011-04-20 华为技术有限公司 一种业务数据的发送、接收方法、装置和系统
CN101640568A (zh) * 2008-07-30 2010-02-03 华为技术有限公司 一种客户信号的发送、接收方法、装置和系统
JP2010050803A (ja) * 2008-08-22 2010-03-04 Nippon Telegr & Teleph Corp <Ntt> 光伝送システム
JP5359202B2 (ja) 2008-11-06 2013-12-04 富士通株式会社 フレーム生成装置、光伝送システム、フレーム生成方法および光伝送方法
JP4870742B2 (ja) * 2008-11-07 2012-02-08 日本電信電話株式会社 光伝送装置
US20100142947A1 (en) 2008-12-08 2010-06-10 Jong-Yoon Shin Apparatus and method for pseudo-inverse multiplexing/de-multiplexing transporting
CN101489157B (zh) * 2009-02-13 2011-06-08 华为技术有限公司 将业务复用映射到光通道传送单元的方法和装置
US8359525B2 (en) * 2009-03-06 2013-01-22 Electronics And Telecommunications Research Institute Method and apparatus for transmitting data in optical transport network
CN101834688B (zh) * 2009-03-09 2011-08-31 华为技术有限公司 光传送网中的映射、解映射方法及装置
CN101841741B (zh) * 2009-03-16 2015-04-08 华为技术有限公司 光通道传送单元信号的传输方法和装置
CN101854220A (zh) 2009-04-01 2010-10-06 华为技术有限公司 一种业务数据发送、接收的方法和装置
JP5628495B2 (ja) * 2009-08-14 2014-11-19 日本電信電話株式会社 デジタル多重伝送装置
EP3094022B1 (en) 2009-09-17 2018-07-04 Huawei Technologies Co., Ltd. Dynamic hitless resizing in optical transport networks
CN102640442B (zh) * 2009-12-01 2015-01-28 三菱电机株式会社 纠错方法以及装置
CN102195859B (zh) * 2010-03-04 2015-05-06 中兴通讯股份有限公司 基于gfp的灵活光通道数据单元带宽调整方法及系统
JP5153815B2 (ja) * 2010-04-13 2013-02-27 日本電信電話株式会社 マルチレーン伝送方法及びシステム
US10320510B2 (en) * 2010-10-05 2019-06-11 Infinera Corporation TE-link bandwidth model of ODU switch capable OTN interfaces
US8982775B2 (en) * 2010-11-02 2015-03-17 Infinera Corporation GMPLS signaling for networks having multiple multiplexing levels
KR101507996B1 (ko) * 2010-11-30 2015-04-07 한국전자통신연구원 클라이언트 신호 매핑 장치 및 그 방법
US8934479B2 (en) * 2011-10-28 2015-01-13 Infinera Corporation Super optical channel transport unit signal supported by multiple wavelengths
CA2843207A1 (en) * 2011-11-15 2012-12-13 Huawei Technologies Co., Ltd. Method, apparatus and system for transmitting service data on optical transport network
US9231721B1 (en) * 2012-06-28 2016-01-05 Applied Micro Circuits Corporation System and method for scaling total client capacity with a standard-compliant optical transport network (OTN)
MY169356A (en) * 2012-07-26 2019-03-26 Ericsson Telefon Ab L M Method and apparatus for transporting a client signal over an optical network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155016A (zh) * 2007-09-14 2008-04-02 中兴通讯股份有限公司 一种光传输网中光净荷单元的时隙划分与开销处理的方法
CN101841749A (zh) * 2009-03-18 2010-09-22 华为技术有限公司 数据传输方法、通信装置及通信系统
CN102820951A (zh) * 2012-07-30 2012-12-12 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITU-T: "Interfaces for the optical transport network", G.709/Y.1331, February 2012 (2012-02-01) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016114109A1 (ja) * 2015-01-14 2017-10-19 日本電気株式会社 送信回路、受信回路、光伝送システムおよびマルチフレームの送信方法
US20180212683A1 (en) * 2015-09-25 2018-07-26 Huawei Technologies Co., Ltd. Signal sending and receiving method, apparatus, and system
RU2683287C1 (ru) * 2015-09-25 2019-03-27 Хуавей Текнолоджиз Ко., Лтд Система, устройство и способ передачи и приема сигнала
US10601514B2 (en) 2015-09-25 2020-03-24 Huawei Technologies Co., Ltd. Signal sending and receiving method, apparatus, and system
US11251875B2 (en) 2015-09-25 2022-02-15 Huawei Technologies Co., Ltd. Signal sending and receiving method, apparatus, and system
US11962349B2 (en) 2015-09-25 2024-04-16 Huawei Technologies Co., Ltd. Signal sending and receiving method, apparatus, and system
US10623836B2 (en) 2016-05-27 2020-04-14 Huawei Technologies Co., Ltd. Service transmission method and first transmission device
CN112752170A (zh) * 2019-10-29 2021-05-04 中兴通讯股份有限公司 参数调整方法、装置、系统和存储介质

Also Published As

Publication number Publication date
ES2925243T3 (es) 2022-10-14
BR112015002119B8 (pt) 2023-03-21
ES2642865T3 (es) 2017-11-20
US20150139650A1 (en) 2015-05-21
US20210099233A1 (en) 2021-04-01
JP2015531194A (ja) 2015-10-29
AU2013299259B2 (en) 2016-04-28
KR20150038495A (ko) 2015-04-08
US9531477B2 (en) 2016-12-27
JP6086334B2 (ja) 2017-03-01
EP2874332B1 (en) 2017-08-09
KR101686002B1 (ko) 2016-12-13
BR112015002119B1 (pt) 2023-01-24
US20190181957A1 (en) 2019-06-13
EP4102744A1 (en) 2022-12-14
EP2874332A1 (en) 2015-05-20
EP3300266B1 (en) 2019-07-24
US20170093498A1 (en) 2017-03-30
EP3627727B1 (en) 2022-05-25
US11595130B2 (en) 2023-02-28
AU2013299259A1 (en) 2015-03-05
US10887020B2 (en) 2021-01-05
US10256915B2 (en) 2019-04-09
DK2874332T3 (da) 2017-11-13
ES2750834T3 (es) 2020-03-27
RU2594296C1 (ru) 2016-08-10
EP2874332A4 (en) 2015-08-26
CN106301661A (zh) 2017-01-04
CN102820951B (zh) 2016-12-21
CN102820951A (zh) 2012-12-12
EP3300266A1 (en) 2018-03-28
CN106301661B (zh) 2018-10-19
BR112015002119A2 (pt) 2017-07-04
EP3627727A1 (en) 2020-03-25
US20230353250A1 (en) 2023-11-02
CA2880584C (en) 2017-02-21
CA2880584A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
US20230353250A1 (en) Method and Apparatus for Transmitting and Receiving Client Signal in Optical Transport Network
US10003866B2 (en) Method and apparatus for transmitting and receiving client signal
RU2465732C2 (ru) Способ, устройство и система передачи и приема клиентских сигналов
JP6636653B2 (ja) マルチサービス伝送及び受信方法並びに装置
JP2019519999A (ja) 光伝送ネットワーク内でのクライアント信号の送信方法および光伝送デバイス
WO2013177799A1 (zh) 光传送网中传送客户信号的方法及传送设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2880584

Country of ref document: CA

Ref document number: 2015524604

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013825474

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013825474

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157005266

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015106924

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013299259

Country of ref document: AU

Date of ref document: 20130226

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015002119

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015002119

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150129