WO2014017956A2 - Способ изготовления напорной комбинированной трубы - Google Patents

Способ изготовления напорной комбинированной трубы Download PDF

Info

Publication number
WO2014017956A2
WO2014017956A2 PCT/RU2013/000640 RU2013000640W WO2014017956A2 WO 2014017956 A2 WO2014017956 A2 WO 2014017956A2 RU 2013000640 W RU2013000640 W RU 2013000640W WO 2014017956 A2 WO2014017956 A2 WO 2014017956A2
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
plasma
binder
layer
pipe
Prior art date
Application number
PCT/RU2013/000640
Other languages
English (en)
French (fr)
Other versions
WO2014017956A3 (ru
Inventor
Владимир Степанович ВИНАРСКИЙ
Александр Иванович ДРАЧЕВ
Иванович ПАНАКОВАлександр
Original Assignee
Обществос Ограниченной Ответственностью "Новые Композиционные Технологии"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Обществос Ограниченной Ответственностью "Новые Композиционные Технологии" filed Critical Обществос Ограниченной Ответственностью "Новые Композиционные Технологии"
Publication of WO2014017956A2 publication Critical patent/WO2014017956A2/ru
Publication of WO2014017956A3 publication Critical patent/WO2014017956A3/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/133Rigid pipes of plastics with or without reinforcement the walls consisting of two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes

Definitions

  • the invention relates to the field of manufacture of rigid pipes, namely, to methods for manufacturing combined pressure pipes from polymers and composite materials, and can be used for the manufacture of pipes for transporting liquid and gaseous media.
  • a known method of manufacturing a combined pressure head pipe including plasma-chemical treatment of the outer surface of the inner sealing layer in the form of a tube of polymer material, applying an outer layer of composite material including reinforcing fibers and a binder, and curing the binder composite material (see application RU 2010146804, class F16L 9/00, published on 05.27.2012).
  • the disadvantage of this method is the need to use as a plasma-forming gas an air mixture with vapors of organic compounds (benzene, toluene, acytelene), some of which, by the nature of the biological effect, belong to substances of the 3rd hazard class (moderately hazardous substances) according to the degree of exposure to the body.
  • the task underlying the claimed invention is to create a method of manufacturing a combined pressure pipe that eliminates the noted drawbacks.
  • the technical result is to simplify the production process.
  • a combined pressure pipe which includes plasma processing of the outer surface of the inner sealing layer in the form of a tubular billet from a polymeric material, applying an outer layer of a composite material including reinforcing fibers and a binder to it, and curing the binder of the composite material, the plasma treatment of the tube stock is carried out in a cold plasma of an abnormal glow discharge in spirit in the flow mode at a pressure of 2-40 Pa.
  • the polymeric material for the tubular billet polyethylene, PVC or polypropylene can be used.
  • Reinforcing fibers for the outer layer can be made of glass, basalt, carbon or aramid and processed in the form of threads, bundles, rovings, ribbons, fabrics or in the form of chopped fibers.
  • Reactive synthetic polyester, epoxy or vinyl ester resins can be used as a binder composite material. The curing of the binder composite material is preferably carried out under the influence of temperature, light exposure or a chemical catalyst.
  • products - pressure combined pipes - are structures consisting of an internal sealing layer made of a polymer pipe billet and an external force layer made of known composite methods from a composite material.
  • Composite materials are reinforcing fibers (glass, basalt, carbon, aramid), processed in the form of threads, tows, rovings, ribbons, fabrics or in the form of chopped fibers, impregnated with polymeric binders made from reactive synthetic resins (polyester, epoxy, vinyl ether, etc.), cured under exposure to temperature, light exposure or a chemical catalyst.
  • a method of manufacturing a product of a pressure head combined pipe includes three stages:
  • Plasma treatment grafting chemically active groups onto the outer surface of a polymer tube preform.
  • Stage I allows one to obtain a surface containing macromolecules with grafted peroxide groups, which easily decompose into radicals in the presence of catalysts (accelerators) or heat and lead to the formation of chemical bonds — crosslinking between the macromolecules of the binder (synthetic resin) of the composite material and the polymer material of the workpiece at their interface .
  • the polyethylene tube billet is processed in a cold plasma of an abnormal glow discharge of reduced pressure in air in a flow mode (continuous change of the working gas - air).
  • the air pressure in the vacuum chamber in which the processing is carried out is maintained within 2-BO Pa.
  • the plasma temperature should not exceed 50 ° C.
  • the blank is placed in the chamber in such a way that its outer surface is in the region of the cathode drop of the discharge and faces the cylindrical cathode, where the concentration of active plasma particles is highest.
  • the electric power deposited in the plasma per unit surface area of the preform is 0.03 –10.1 W / cm 2 , and the exposure time in the plasma is 15–60 s.
  • a grid cathode is used.
  • the mesh size of the metal mesh is 5 mm. To maintain the uniformity of the surface treatment of the polymer preform, this value should not exceed the distance from the cathode to the plasma shell, which encloses the region of the cathodic discharge drop.
  • the ability to obtain a cold plasma with active particles (the gas temperature in the plasma region is significantly lower than the softening temperature of the polymer material of the product and its thermal degradation), distributed uniformly over the entire area of the electrodes;
  • the most active zone of the plasma is the plasma shell, which is observed in the cathode region, has a sufficiently large thickness from 1 to 5 cm, depending on the air pressure in the vacuum chamber;
  • paragraph 3 implies the absence of high requirements for technological distances between the surface of the product and the electrodes and the absence of the need to use special mandrels for a polymer tube billet;
  • the use of the flow regime allows one to significantly reduce and control the gas temperature in the cold plasma region and to continuously remove volatile low molecular weight products of the interaction of the surface of the polymer material with the active particles of the plasma from the active zone.
  • stage II helical winding of glass roving strands was carried out on the outer surface of a pipe polymer (polyethylene) billet pre-moistened with a binder based on a polyester resin. Before winding the fiberglass layer on the pipe surface, a layer of a polyester binder was applied in bulk from the tank to the surface of the rotating pipe. Stage III was performed by cold curing. The result was a pressure head combined pipe with an inner sealing layer of polyethylene and a power layer of fiberglass.
  • pipes were manufactured with a length of 2 m, an inner diameter of 300 mm, a thickness of 5.9 mm of the inner polyethylene layer, and 5 mm of the outer fiberglass reinforced plastic layer with flange joints.
  • Table 1 shows the results of mechanical testing of pipes for fracture pressure before and after exposure to a cyclic load by internal hydraulic pressure, varying from 5 to 60 kgf / cm 2 .
  • Table 2 shows the results of climatic tests of samples of combined pipes for the formation of defects (delaminations at the interface between the power and sealing layers) that affect the deterioration of their operational characteristics, after 10 cooling cycles in a heat chamber, followed by storage for 1 day at a temperature of 70 ° C and heating, followed by storage for 1 day at + 70 ° C.
  • Areas of artificial defects - non-gluing - were obtained by pre-laying in these areas a fluoroplastic tape before the stages of obtaining a power fiberglass layer.
  • the defect — the weld — was obtained by welding two samples of pipes 1 m long each, with subsequent stages II and III of obtaining the force layer.
  • Tear-off tests were carried out on the UTS 1 1 OM-100 machine (machine for testing structural materials) using a computer that recorded the tear-off force during tests.
  • ASTM D 2412-08 “Standard Test Method for Determining the External Load Characteristics of a Plastic Pipe Using Parallel Crimp Plates” was taken as a basis.
  • 5 (five) test samples were made, of which 3 from pipes that underwent thermocyclic tests, 2 samples were cut from pipes that were not subjected to tests. All samples were placed between two parallel plates and subjected to loading on a UTS 110M-100 machine. During the tests, the loading force and the movement of the loading plate (deflection value) were measured. Loading was carried out at a speed of 10 mm / min.
  • Sample 1 was loaded to a deflection value of 30%; no changes in the combined material of the pipe wall were noted.
  • the remaining samples 2, 3, 4, and 5 were loaded until the pipe wall collapsed, while changes in the state of the combined wall material were noted first acoustically, then visually: in all cases, there was a destruction inside the fiberglass layer (delamination), damage in the combined material of the pipe wall along the boundary "Polyethylene fiberglass" was not found.
  • Data on samples and test results are given in table 4 and table 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Изобретение относится к области изготовления жестких труб, а именно, к способам изготовления комбинированных напорных труб из полимеров и композиционных материалов, и может быть использовано для изготовления труб для транспортировки жидких и газообразных сред. Способ изготовления комбинированной напорной трубы включает плазменную обработку внешней поверхности внутреннего герметизирующего слоя, нанесение на него внешнего слоя из композиционного материала в виде армирующих волокон и связующего и отверждение связующего композиционного материала. Внутренний герметизирующий слой выполнен в виде трубной заготовки из полимерного материала. Плазменную обработку трубной заготовки проводят в холодной плазме анормального тлеющего разряда в воздухе в проточном режиме при давлении 210 Па. Изобретение позволяет производить напорные комбинированные трубы с высокими эксплуатационными характеристиками при высокой технологичности производственного процесса.

Description

СПОСОБ ИЗГОТОВЛЕНИЯ
НАПОРНОЙ КОМБИНИРОВАННОЙ ТРУБЫ
Область применения
Изобретение относится к области изготовления жёстких труб, а именно, к способам изготовления комбинированных напорных труб из полимеров и композиционных материалов, и может быть использовано для изготовления труб для транспортировки жидких и газообразных сред.
Предшествующий уровень техники
Известен способ изготовления напорной комбинированной трубы, включающий плазмо-химическую обработку внешней поверхности внутреннего герметизирующего слоя в виде трубной заготовки из полимерного материала, нанесение на него внешнего слоя из композиционного материала, включающего армирующие волокна и связующее, и отверждение связующего композиционного материала (см. заявку RU 2010146804, кл. F16L 9/00, опубл. 27.05.2012). Недостатком известного способа является необходимость использования в качестве плазмообразующего газа воздушной смеси с парами органических соединений (бензола, толуола , ацителена), некоторые из которых по характеру биологического воздействия принадлежат к веществам 3-го класса опасности(умеренно опасные вещества) по степени воздействия на организм.
Раскрытие изобретения
Задача, положенная в основу заявленного изобретения заключается в создании способа изготовления комбинированной напорной трубы, устраняющего отмеченные недостатки. Технический результат заключается в упрощении производственного процесса.
Поставленная задача решается, а технический результат достигается тем, что согласно способу изготовления комбинированной напорной трубы, включающему плазменную обработку внешней поверхности внутреннего герметизирующего слоя в виде трубной заготовки из полимерного материала, нанесение на него внешнего слоя из композиционного материала, включающего армирующие волокна и связующее, и отверждение связующего композиционного материала, плазменную обработку трубной заготовки проводят в холодной плазме анормального тлеющего разряда в воздухе в проточном режиме при давлении 2-40 Па. В качестве полимерного материала для трубной заготовки может быть использован полиэтилен, ПВХ или полипропилен. Армирующие волокна для внешнего слоя могут быть изготовлены из стекла, базальта, углерода или арамида и переработаны в виде нитей, жгутов, ровингов, лент, тканей или в виде рубленых волокон. В качестве связующего композиционного материала могут быть использованы реактивные синтетические полиэфирные, эпоксидные или винилэфирные смолы. Отверждение связующего композиционного материала предпочтительно проводят под воздействием температуры, светового облучения или химического катализатора.
Лучший вариант осуществления изобретения
Полученные с помощью предлагаемого способа изделия - напорные комбинированные трубы - представляют собой конструкции, состоящие из внутреннего герметизирующего слоя, изготовленного из полимерной трубной заготовки, и внешнего силового слоя, изготовленного известными технологическими способами из композиционного материала. Композиционные материалы представляют собой армирующие волокна (стеклянные, базальтовые, углеродные, арамидные), переработанные в виде нитей, жгутов, ровингов, лент, тканей или в виде рубленных волокон, пропитанных полимерными связующими, изготовленными из реактивных синтетических смол (полиэфирных, эпоксидных, винилэфирных и др.), отверждённых под воздействием температуры, светового облучения или химического катализатора.
Способ изготовления изделия напорной комбинированной трубы включает три стадии:
I. Плазменная обработка— прививка химически-активных групп на внешнюю поверхность полимерной трубной заготовки.
И. Намотка на внешнюю поверхность полимерной заготовки слоя из композиционного полимерного материала.
III. Отверждение связующего в композиционном материале.
Стадия I позволяет получить поверхность, содержащую макромолекулы с привитыми пероксидными группами, легко распадающимися на радикалы в присутствии катализаторов (ускорителей) или нагрева и приводящими к образованию химических связей— сшивок между макромолекулами связующего (синтетической смолы) композиционного материала и полимерного материала заготовки на границе их раздела.
Для осуществления стадии I проводят обработку полиэтиленовой трубной заготовки в холодной плазме анормального тлеющего разряда пониженного давления в воздухе в проточном режиме (режиме непрерывной смены рабочего газа - воздуха). Давление воздуха в вакуумной камере, в которой осуществляют обработку, поддерживают в пределах 2-НО Па.
Температура плазмы не должна превышать 50°С. Заготовку помещают в камеру таким образом, что ее внешняя поверхность находится в области катодного падения разряда и обращена к цилиндрическому катоду, где концентрация активных частиц плазмы наиболее высока. Вкладываемая в плазму электрическая мощность на единицу поверхности заготовки составляет 0.03-Ю.1 Вт/см2, время экспозиции в плазме 15 60 с. Для поддержания стабильных параметров плазмы по всей площади поверхности заготовки используют сеточный катод. Размер ячейки металлической сетки составляет 5 мм. Для сохранения равномерности обработки поверхности полимерной заготовки эта величина не должна превышать расстояние от катода до оболочки плазмы, заключающее область катодного падения разряда.
Достоинствами воздушного анормального тлеющего разряда пониженного давления, поддерживаемого в проточном режиме и равномерно распределенного по всей площади крупногабаритного образца, в сравнении с различными типами разрядов атмосферного давления является:
1) высокая экологическая чистота метода (отсутствие вредных химических веществ в техпроцессе);
2) возможность получать холодную плазму с активными частицами (температура газа в области плазмы существенно ниже температуры размягчения полимерного материала изделия и его термодеструкции), распределенную равномерно по всей площади электродов;
3) наиболее активная зона плазмы — оболочка плазмы, которая наблюдается в области катода, имеет достаточно большую толщину от 1 до 5 см, в зависимости от давления воздуха в вакуумной камере;
4) энергия ионов, атомов и молекул, в зоне плазмы не превышает
0.028 эВ, а энергия электронов в зависимости от внешних параметров разряда
(давление плазмообразующего газа, вкладываемая электрическая мощность) не превышает 15-25 эВ, что позволяет проводить с высокой эффективностью обработку полимерного материала только на его поверхности (в атомарном слое - 10-100 А);
5) из пункта 2 вытекает возможность конструировать электроды, распределенные по всей поверхности изделия, имеющего большую площадь поверхности от единиц до десятков квадратных метров, что в свою очередь позволяет существенно снизить общее время экспозиции в плазме изделия до 15-60 с, имеющего площадь поверхности более 10 м ;
6) из пункта 3 вытекает отсутствие высоких требований к технологическим расстояниям между поверхностью изделия и электродами и отсутствие необходимости использования специальных оправок для полимерной трубной заготовки;
7) низкие электрические напряжения питания разряда 300-600 В;
8) использование проточного режима позволяет существенно снизить и контролировать температуру газа в области холодной плазмы и непрерывно выводить из активной зоны летучие низкомолекулярные продукты взаимодействия поверхности полимерного материала с активными частицами плазмы.
П р и м е р.
Для получения тестовых образцов на стадии II проводили спиральную намотку нитей жгута стеклоровинга на внешнюю поверхность трубной полимерной (полиэтиленовой) заготовки, предварительно смоченных связующим на основе полиэфирной смолы. Перед намоткой стеклопластикового слоя на поверхность трубы наносился слой полиэфирного связующего наливом из емкости на поверхность вращающейся трубы. Стадию III проводили методом холодного отверждения. В результате получили напорную комбинированную трубу с внутренним герметизирующим слоем из полиэтилена и силовым слоем из стеклопластика.
Для испытаний на внутреннее давление разрушения, циклические нагрузки внутренним давлением и испытания на изгиб были изготовлены трубы длиной 2 м, внутренним диаметром 300 мм, толщиной внутреннего полиэтиленового слоя 5.9 мм и внешнего силового стеклопластикового слоя 5 мм с фланцевыми соединениями.
В табл.1 приведены результаты механических испытаний труб на давление разрушения до и после воздействия циклической нагрузки внутренним гидравлическим давлением, меняющейся от 5 до 60 кгс/см2.
В табл.2 приведены результаты климатических испытаний образцов комбинированных труб на образование дефектов (отслоений по границе раздела силового и герметизирующего слоев), влияющих на ухудшение их эксплуатационных характеристик, после 10 циклов охлаждения в термокамере с последующим хранением в течение 1 суток при температуре 70°С и нагрева с последующим хранением в течение 1 суток при +70°С. Области искусственных дефектов - непроклеев — получали с помощью предварительной укладки в этих областях фторопластовой ленты перед стадиями получения силового стеклопластикового слоя. Дефект - сварной шов - получали свариванием двух образцов труб длиной по 1 м каждый с последующими стадиями II и III получения силового слоя.
Для определения адгезионных характеристик между элементами стенки трубы проводились испытания на отрыв в радиальном направлении. В табл.3 приведены результаты этих испытаний. Испытания проводились на образцах, прошедших и не подвергавшихся испытаниям термоциклирования, произвольно вырезанных из разных частей труб. Образцы вырезались из труб в направлении образующей. На наружной поверхности образцов (со стороны силового слоя) прорезались канавки на глубину силового слоя. После этого на наружную поверхность силового слоя компаундом холодного отверждения приклеивались «грибки», представляющие собой цилиндрические диски из алюминиевого сплава диаметром 25 мм.
Испытания на отрыв проводились на машине УТС 1 1 ОМ- 100 (машина для испытаний конструкционных материалов) с помощью ЭВМ, в ходе испытаний фиксировавшей усилие отрыва.
При проведении испытаний по определению кольцевой жесткости напорной комбинированной трубы за основу был взят стандарт ASTM D 2412-08 «Стандартная методика испытаний для определения внешней нагрузочной характеристики пластмассовой трубы с использованием параллельных обжимных плит». Для проведения испытаний были изготовлены 5 (пять) испытательных образцов, из них 3 из труб, прошедших термоциклические испытания, 2 образца вырезались из труб, не подвергавшихся испытаниям. Все образцы помещались между двумя параллельными плитами и подвергались нагружению на машине УТС 110М- 100, в ходе испытаний измерялось усилие нагружения и перемещение нагрузочной плиты (величина прогиба). Нагружение осуществлялось со скоростью 10 мм/мин. Образец 1 нагружался до величины прогиба 30%, изменений в комбинированном материале стенки трубы отмечено не было. Остальные образцы 2, 3, 4 и 5 нагружались до разрушения стенки трубы, при этом изменения в состоянии комбинированного материала стенки отмечались сначала акустически, затем визуально: во всех случаях произошло разрушение внутри стеклопластикового слоя (расслоение), разрушений в комбинированном материале стенки трубы по границе «полиэтилен-стеклопластик» обнаружено не было. Данные по образцам и результаты испытаний приведены в табл.4 и табл.5. Промышленная применимость
Результаты испытаний показали, что предлагаемый способ позволяет изготовить комбинированную напорную трубу с внутренним герметизирующим слоем из полиэтилена и силовым слоем из стеклопластика, обладающую следующими свойствами и характеристиками:
1) гарантированной сплошностью сшивки и высокой адгезионной прочностью по границе «полимер-стеклопластик» по всей площади испытанных образцов трубы;
2) высокой адгезионной прочностью между силовым стеклопластиковым и герметизирующим полимерным слоями выше межслоевой прочности внутри стеклопластика, превышающей 15 кг/см2;
3) сохранением адгезионной прочности соединения силового и герметизирующего слоев в местах сварных стыков герметизирующей оболочки и дефектов в виде отсутствия адгезии между слоями;
4) возможностью эксплуатации при высоких рабочих давлениях, величина которых зависит от типа наполнителя и толщины силового слоя;
5) давление эксплуатации изготовленного по предлагаемому способу образца трубы с учетом коэффициента безопасности 3 составило 80 кгс/см ;
6) высокой устойчивостью к температурным климатическим перепадам в интервале от -70°С до +70°С;
7) высокой устойчивостью к кольцевым деформациям.
Таким образом, предлагаемый способ позволяет производить напорные комбинированные трубы с высокими эксплуатационными характеристиками при высокой технологичности производственного процесса. Таблица 1.
Результаты испытаний труб внутренним давлением
Figure imgf000010_0001
Таблица 2.
Результаты климатических испытаний труб
Figure imgf000010_0002
Таблица 3.
Результаты механических испытаний адгезионной прочности между элементами стенки комбинированных труб.
Figure imgf000011_0001
Таблица 4.
Результаты испытаний по определению кольцевой прочности образцов труб
Figure imgf000011_0002
Таблица 5.
Жесткость и фактор жесткости для образцов труб
Figure imgf000012_0001

Claims

Ф О Р М У Л А И З О Б Р Е Т Е Н И Я
1. Способ изготовления комбинированной напорной трубы, включающий плазменную обработку внешней поверхности внутреннего герметизирующего слоя в виде трубной заготовки из полимерного материала, нанесение на него внешнего слоя из композиционного материала, включающего армирующие волокна и связующее, и отверждение связующего композиционного материала, отличающийся тем, что плазменную обработку трубной заготовки проводят в холодной плазме анормального тлеющего разряда в воздухе в проточном режиме при давлении 2-10 Па.
2. Способ изготовления трубы по п.1, отличающийся тем, что в качестве полимерного материала для трубной заготовки используют полиэтилен, ПВХ или полипропилен.
3. Способ изготовления трубы по п.1, отличающийся тем, что армирующие волокна для внешнего слоя изготавливают из стекла, базальта, углерода или арамида и перерабатывают их в виде нитей, жгутов, ровингов, лент, тканей или в виде рубленых волокон.
4. Способ изготовления трубы по п.1, отличающийся тем, что в качестве связующего композиционного материала используют реактивные синтетические полиэфирные, эпоксидные или винилэфирные смолы.
5. Способ изготовления трубы по п.1, отличающийся тем, что отверждение связующего композиционного материала проводят под воздействием температуры, светового облучения или химического катализатора.
PCT/RU2013/000640 2012-07-26 2013-07-25 Способ изготовления напорной комбинированной трубы WO2014017956A2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2012131935/06A RU2488732C1 (ru) 2012-07-26 2012-07-26 Способ изготовления напорной комбинированной трубы
RU2012131935 2012-07-26

Publications (2)

Publication Number Publication Date
WO2014017956A2 true WO2014017956A2 (ru) 2014-01-30
WO2014017956A3 WO2014017956A3 (ru) 2014-06-12

Family

ID=49155698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2013/000640 WO2014017956A2 (ru) 2012-07-26 2013-07-25 Способ изготовления напорной комбинированной трубы

Country Status (2)

Country Link
RU (1) RU2488732C1 (ru)
WO (1) WO2014017956A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10238754B2 (en) 2011-06-08 2019-03-26 Translate Bio, Inc. Lipid nanoparticle compositions and methods for MRNA delivery
US11324759B2 (en) 2017-05-19 2022-05-10 Warsaw Orthopedic, Inc. Oxysterol-statin compounds for bone growth

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2635728C2 (ru) * 2016-02-09 2017-11-15 Общество с ограниченной ответственностью "Новые композитные технологии - разработки и коммерциализация" Способ изготовления комбинированных напорных труб

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2039845C1 (ru) * 1992-07-08 1995-07-20 Институт сильноточной электроники СО РАН Способ вакуумной обработки внутренней поверхности труб
CN101349367A (zh) * 2007-07-18 2009-01-21 张家港中联科技有限公司 增强热塑性塑料管
CN101713477A (zh) * 2009-11-06 2010-05-26 新疆中石油管业工程有限公司 具有增强层的玻璃纤维增强聚丙烯复合管
RU114907U1 (ru) * 2011-06-02 2012-04-20 Михаил Алексеевич Попов Полимерная труба
RU2010146804A (ru) * 2010-11-18 2012-05-27 Общество с ограниченной ответственностью "Новые композитные технологии" (RU) Способ изготовления комбинированного изделия для транспортировки и/или хранения жидких и газообразных сред

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2211983C2 (ru) * 2001-03-21 2003-09-10 Закрытое акционерное общество "НПП Композит-нефть" Труба
RU2293897C1 (ru) * 2005-10-10 2007-02-20 Общество с ограниченной ответственностью "Компания "Армопроект" Многослойная труба и способ ее изготовления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2039845C1 (ru) * 1992-07-08 1995-07-20 Институт сильноточной электроники СО РАН Способ вакуумной обработки внутренней поверхности труб
CN101349367A (zh) * 2007-07-18 2009-01-21 张家港中联科技有限公司 增强热塑性塑料管
CN101713477A (zh) * 2009-11-06 2010-05-26 新疆中石油管业工程有限公司 具有增强层的玻璃纤维增强聚丙烯复合管
RU2010146804A (ru) * 2010-11-18 2012-05-27 Общество с ограниченной ответственностью "Новые композитные технологии" (RU) Способ изготовления комбинированного изделия для транспортировки и/или хранения жидких и газообразных сред
RU114907U1 (ru) * 2011-06-02 2012-04-20 Михаил Алексеевич Попов Полимерная труба

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10238754B2 (en) 2011-06-08 2019-03-26 Translate Bio, Inc. Lipid nanoparticle compositions and methods for MRNA delivery
US10350303B1 (en) 2011-06-08 2019-07-16 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US10507249B2 (en) 2011-06-08 2019-12-17 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US11324759B2 (en) 2017-05-19 2022-05-10 Warsaw Orthopedic, Inc. Oxysterol-statin compounds for bone growth

Also Published As

Publication number Publication date
WO2014017956A3 (ru) 2014-06-12
RU2488732C1 (ru) 2013-07-27

Similar Documents

Publication Publication Date Title
US20200141539A1 (en) High pressure container and method for manufacturing high pressure container
Tressaud et al. Modification of surface properties of carbon-based and polymeric materials through fluorination routes: From fundamental research to industrial applications
Gao et al. Effects of different fluorination routes on aramid fiber surface structures and interlaminar shear strength of its composites
KR102585419B1 (ko) 분말 형태의 열가소성 폴리머로 예비 함침된 섬유성 재료를 제조하기 위한 방법
US6561229B2 (en) Electrostatic charge neutralizing fume duct with continuous carbon fiber
CN110126124A (zh) 在流化床中生产预浸渍有热塑性聚合物的纤维质材料的方法
JP6495932B2 (ja) ポリマーの水性分散体を用いて熱可塑性ポリマー予備含浸繊維材料を製造する方法
CN106163755B (zh) 借助于超临界气体制备预浸渍有热塑性聚合物的纤维质材料的方法
RU2488732C1 (ru) Способ изготовления напорной комбинированной трубы
WO2007004919A2 (fr) Article composite destine au transport et/ou au stockage de milieux liquides ou gazeux et procede de fabrication
WO2016093250A1 (ja) 表面処理炭素繊維、表面処理炭素繊維ストランド及びこれらの製造方法
JP7169774B2 (ja) 炭素繊維を製造するための方法及び装置
US11958948B2 (en) Rotary member and method for manufacturing same
US20050005990A1 (en) Method for making tubular articles
Dowling et al. Enhancing the mechanical performance of 3D‐printed basalt fiber‐reinforced composites using in‐line atmospheric plasma pretreatments
RU2459996C2 (ru) Способ изготовления комбинированного изделия для транспортировки и/или хранения жидких и газообразных сред
JPWO2017149818A1 (ja) 構造体、および構造体の製造方法
CN115059809B (zh) 带缠绕管
US20130087269A1 (en) Radiation cured reinforcement stacks
RU2635728C2 (ru) Способ изготовления комбинированных напорных труб
KR20130012395A (ko) 플라즈마 처리된 rh/pp 화합물 생성 방법 및 이를 이용한 rh/pp 화합물
JP6891438B2 (ja) 成形材料
RU57863U1 (ru) Композитная труба
RU49944U1 (ru) Композитная труба
RU2632295C2 (ru) Многослойный комбинированный материал полимер-композит и способ его изготовления

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 13823127

Country of ref document: EP

Kind code of ref document: A2