WO2014017040A1 - Heat exchanger element and heat recovery ventilation device using same - Google Patents

Heat exchanger element and heat recovery ventilation device using same Download PDF

Info

Publication number
WO2014017040A1
WO2014017040A1 PCT/JP2013/004230 JP2013004230W WO2014017040A1 WO 2014017040 A1 WO2014017040 A1 WO 2014017040A1 JP 2013004230 W JP2013004230 W JP 2013004230W WO 2014017040 A1 WO2014017040 A1 WO 2014017040A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
exhaust
supply
heat exchange
air passage
Prior art date
Application number
PCT/JP2013/004230
Other languages
French (fr)
Japanese (ja)
Inventor
泰世 杉本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014017040A1 publication Critical patent/WO2014017040A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to a heat exchange element and a heat exchange type ventilation device using the heat exchange element.
  • the heat exchange type ventilator exchanges heat between an exhaust flow for exhausting indoor air to the outside and a supply air flow for supplying outdoor air to the room.
  • Heat exchange type ventilation equipment used in cold districts, etc. in the flow path in the heat exchanger in which warm exhaust flow from the room flows when the outdoor temperature becomes low such as ⁇ 10 ° C. or lower in winter.
  • a cold airflow from the outside flows in the flow path of the adjacent air supply, and after dew condensation, it forms ice and clogs. In the conventional heat exchange type ventilator, this clogging was prevented by stopping the operation (for example, see Patent Document 1).
  • FIG. 7 is a conceptual diagram showing a configuration of a conventional heat exchange type ventilation device.
  • the heat exchanger unit 101 performs heat exchange and ventilation between indoor air and outdoor air.
  • the heat exchanger unit 101 includes a heat exchanger 102, an exhaust path 103, an air supply path 104, an exhaust fan 105, an air supply fan 106, a temperature sensor 107, and a control unit.
  • the exhaust path 103 is a path through which indoor air is exhausted to the outside via the heat exchanger 102.
  • the air supply path 104 is a path through which outdoor air is supplied indoors.
  • the exhaust fan 105 is disposed in the exhaust path 103.
  • the air supply fan 106 is disposed in the air supply path 104.
  • the temperature sensor 107 detects the outside air temperature.
  • the control unit controls the operation of the exhaust fan 105 and the supply fan 106 based on the outside air temperature detected by the temperature sensor 107.
  • the control unit performs two freeze suppression controls according to the outside air temperature in order to prevent the heat exchanger 102 from freezing.
  • These two freeze suppression controls are a first freeze suppression control and a second freeze suppression control.
  • the first freezing suppression control is an operation in which the exhaust fan 105 is always operated and the operation of the air supply fan 106 is stopped for the first 15 minutes out of 60 minutes.
  • the second freezing suppression control is freezing suppression control of the heat exchanger 102 that is stronger than the first freezing suppression control when the outside air temperature falls below ⁇ 15 ° C.
  • the second freezing suppression control is an intermittent operation in which the operation is resumed for 5 minutes after the exhaust fan 105 and the air supply fan 106 are suspended for 60 minutes.
  • the operation is stopped for a predetermined time with respect to the problem that the exhaust passage 103 is clogged. Therefore, for example, when only the supply air is stopped, the room becomes negative pressure, and the outdoor air flows from the gaps in the building. As a result, condensation occurs in the cold draft and the indoor space. In addition, when the supply air and the exhaust air are stopped, there is a problem that the necessary ventilation amount in the room cannot be secured.
  • the heat exchange element of the present invention is provided with an exhaust unit in which a plurality of exhaust air passages are formed by providing interval holding portions and a plurality of air passage ribs for holding intervals on a heat transfer plate, and an air supply in which a plurality of air supply air passages are formed. Units are stacked. Further, in the heat exchange element, the exhaust air flowing through the exhaust air passage and the air supply air flowing through the air supply air passage are orthogonally or obliquely crossed at both ends of the exhaust air passage and the air supply air passage, and a central portion between both ends. Are facing each other. Of the plurality of supply air paths, the supply air path closest to the inlet side of the exhaust flow is closed.
  • the exhaust flow of such a heat exchange element is most likely to be frosted in the exhaust air passage, and does not exchange heat in the counterflow portion in the central portion of the air passage closest to the inlet side of the supply air flow, without causing a temperature drop. Can pass through. Therefore, frost formation in the exhaust air passage is suppressed. That is, the exhaust flow is suppressed from a total temperature decrease at the outlet of the exhaust flow even though the temperature is decreased in the cross-flow portion where heat exchange with the supply air flow occurs. As a result, after condensation occurs in the heat exchange element, it does not freeze and clog.
  • the heat exchange type ventilation device using this heat exchange element is free from clogging due to icing of the heat exchange element by the method described above. Therefore, the heat exchange type ventilation device can be continuously operated, and condensation does not occur in the cold draft and the indoor space due to the intermittent operation. In addition, necessary ventilation can be secured.
  • FIG. 1 is a conceptual diagram showing a configuration of a house in which a heat exchange type ventilator according to an embodiment of the present invention is installed.
  • FIG. 2 is a conceptual diagram showing a configuration of the heat exchange type ventilator.
  • FIG. 3 is a perspective view showing a configuration of the heat exchange element.
  • FIG. 4A is a plan view of an exhaust unit constituting an exhaust air passage when the heat exchange element is disassembled.
  • FIG. 4B is a plan view of an air supply unit constituting an air supply air passage when the heat exchange element is disassembled.
  • FIG. 5A is a conceptual diagram showing a normal state of a different configuration of the heat exchange type ventilator. Drawing 5B is a key map showing the state at the time of the airway closure of the different composition of the heat exchange type ventilation equipment.
  • FIG. 6A is a plan view of a normal air supply unit that constitutes an air supply air path when different configurations of the heat exchange element are disassembled.
  • FIG. 6B is a plan view of the air supply unit that constitutes the air supply air passage when the different configurations of the heat exchange element are disassembled when the air passage is closed.
  • FIG. 7 is a conceptual diagram showing a configuration of a conventional heat exchange type ventilation device.
  • FIG. 1 is a conceptual diagram showing a configuration of a house in which a heat exchange type ventilator according to an embodiment of the present invention is installed.
  • the house 1 includes a non-residential space that performs only exhaust and a residential space that supplies and exhausts air.
  • Non-residential spaces are, for example, bathrooms, toilets, and toilets.
  • the living space is, for example, a living room and a bedroom.
  • the exhaust and supply of air in each room is performed by connecting a duct to the heat exchange type ventilation device 2.
  • the heat exchange type ventilator 2 has a built-in heat exchange element 3 for exchanging heat between the outdoor exhaust flow 4 and the outdoor air supply flow 5.
  • FIG. 2 is a conceptual diagram showing the configuration of the heat exchange type ventilator according to the embodiment of the present invention.
  • the heat exchange type ventilation device 2 includes an exhaust air blowing path 4 a, an air supply air blowing path 5 a, an exhaust air blowing part 6, an air supply air blowing part 7, and a heat exchange element 3.
  • the exhaust flow 4 flows through the exhaust air blowing path 4a.
  • the air supply air 5 flows through the air supply air passage 5a.
  • the exhaust blower 6 blows the exhaust flow 4.
  • the supply air blower 7 blows the supply airflow 5.
  • heat exchange element 3 heat exchange between the exhaust flow 4 and the supply air flow 5 is performed.
  • the exhaust air blower 6 and the heat exchange element 3 are provided in the exhaust air passage 4a (solid line arrow in FIG. 2).
  • An air supply air blowing section 7 and a heat exchange element 3 are provided in the air supply air flow path 5a (dotted arrow in FIG. 2).
  • the exhaust air blowing path 4a is from the inside air port 8 for introducing the inside air (RA) to the exhaust port 9 for exhausting (EA) to the outside.
  • the supply air passage 5a extends from an outside air port 10 for introducing outside air (OA) to an air supply port 11 for blowing out air supply (SA) into the room.
  • the exhaust air blowing unit 6 generates an exhaust flow 4 from the inside air port 8 toward the exhaust port 9 in the exhaust air blowing path 4a.
  • the supply air blower 7 generates an air supply air flow 5 from the outside air port 10 toward the air supply port 11 in the air supply air passage 5a.
  • the heat exchange element 3 is disposed at a position where the exhaust air blowing path 4 a and the supply air blowing path 5 a intersect, and performs heat exchange between the exhaust flow 4 and the supply air flow 5.
  • FIG. 3 is a perspective view showing the configuration of the heat exchange element according to the embodiment of the present invention
  • FIG. 4A is a plan view of an exhaust unit constituting the exhaust air passage when the heat exchange element is disassembled
  • FIG. 4B is the same heat exchange.
  • It is a top view of the air supply unit which comprises the air supply air path when an element is decomposed
  • the exhaust air passage 4a in the heat exchange element 3 is the exhaust air passage 14
  • the air supply air passage 5a is the air supply air passage 15
  • the inlet of the exhaust flow 4 of the heat exchange element 3 is the inner air outlet 8a, and the outlet is exhausted.
  • the inlet 9a and the inlet of the supply airflow 5 are referred to as an outside air outlet 10a, and the outlet is referred to as an inlet 11a.
  • the heat exchange element 3 shown in FIG. 3 has a plurality of alternately stacked exhaust units 12 shown in FIG. 4A and air supply units 13 shown in FIG. 4B.
  • the exhaust unit 12 and the air supply unit 13 have substantially hexagonal outer shapes.
  • spacing ribs 12 a and 12 b are provided on the outer periphery of the exhaust unit 12 other than the sides that form the inside air ports 8 a and the exhaust ports 9 a as spacing holding portions that hold the spacing.
  • the exhaust unit 12 includes six air passage ribs 12c that divide air passages that are provided substantially in parallel and at substantially equal intervals.
  • the exhaust unit 12 is provided with interval ribs 12a and 12b that maintain an interval between the heat transfer plate 16 and a plurality of air passage ribs 12c, and a plurality of exhaust air passages 14a, 14b, 14c, 14d, 14e, and 14f. 14g are formed.
  • interval ribs 13a and 13b are provided as interval holding portions for holding intervals.
  • the air supply unit 13 includes six air passage ribs 13c that divide the air passages provided substantially in parallel and at substantially equal intervals. That is, the air supply unit 13 is provided with interval ribs 13a and 13b that hold an interval with the heat transfer plate 16, and a plurality of air passage ribs 13c, and a plurality of air supply air passages 15a, 15b, 15c, 15d, and 15e, 15f and 15g are formed.
  • the heat exchange element 3 is configured such that the exhaust air passages 14 and the air supply air passages 15 are alternately arranged one by one. .
  • the number of stacks of the exhaust unit 12 and the air supply unit 13 is determined by the size of the heat exchange type ventilation device 2 on which the heat exchange element 3 is mounted and the air volume.
  • the exhaust air passage 14 is divided into seven exhaust air passages 14a to 14g by six air passage ribs 12c.
  • the supply air passage 15 is divided into seven supply air passages 15a to 15g by six air passage ribs 13c.
  • the heat transfer plate 16 performs heat exchange between the exhaust flow 4 and the supply air flow 5.
  • a metal plate such as aluminum or a resin plate is used for the heat transfer plate 16.
  • a moisture permeable film such as paper or resin is used for the heat transfer plate 16.
  • the spacing ribs 12a, 12b, 13a, 13b are made of resin or metal.
  • the spacing ribs 12a, 12b, 13a, and 13b are preferably formed by integral molding by inserting the heat transfer plate 16 into a mold and insert injection molding with resin.
  • the exhaust air flow 4 that flows through the exhaust air passage 14 and the air supply air flow 5 that flows through the air supply air passage 15 include both end portions 30 of the exhaust air passage 14 and the air supply air passage 15 (FIG. 4B). In the B part and the D part). And in the center part 31 (C section of FIG. 4B) between the both ends 30, the exhaust flow 4 and the supply airflow 5 oppose.
  • the supply air passage 15g closest to the inlet side of the exhaust flow 4 is closed.
  • both end portions 30 in the embodiment of the present invention indicate the B portion and the D portion in FIG. 4B
  • the central portion 31 indicates the C portion in FIG. 4B.
  • the exhaust air passage 14 and the supply air passage 15 in the central portion 31 are parallel and corrugated, and the corrugations are configured in opposite directions for each layer.
  • the heat exchanging element 3 shown in FIG. 3 is a plane of the exhaust unit 12 of FIG. 4A except for a portion constituting the exhaust air passage 14a of the air passage rib 12c and a portion constituting the supply air passage 15g of the air passage rib 13c.
  • the drawing and the plan view of the air supply unit 13 in FIG. 4B are line symmetric with respect to the line AA in FIG. 4A.
  • the inside air (RA) is introduced from the inside air port 8 by the operation of the exhaust air blowing unit 6 as shown in FIG.
  • the exhaust stream 4 passes through the exhaust air passage 4a.
  • the exhaust stream 4 shown in FIG. 4A passes through the exhaust air passage 14 of the heat exchange element 3, it exchanges heat with the supply air flow 5 passing through the supply air passage 15 of the heat exchange element 3 shown in FIG. Is discharged to the outdoors through the exhaust port 9 shown in FIG.
  • the supply air flow 5 introduces outside air (OA) from the outside air port 10 by the operation of the supply air blowing section 7, and passes through the supply air blowing path 5a.
  • 4B exchanges heat with the exhaust flow 4 passing through the exhaust air passage 14 of the heat exchange element 3 shown in FIG. 4A when passing through the supply air passage 15 of the heat exchange element 3, and then FIG.
  • the air is supplied into the room through the air supply port 11 shown in FIG.
  • the outdoor temperature becomes a low temperature such as ⁇ 10 ° C. or less
  • the temperature of the exhaust stream 4 flowing through the exhaust air passage 14g closest to the outside air port 10a becomes the lowest. That is, frosting starts from the vicinity of the exhaust port 9a of the exhaust air passage 14g.
  • the air supply air passage 15g is closed (shaded portion in the figure) as shown in FIG. 4B.
  • a portion constituting a general normal supply air passage 15g of the air passage rib 13c is indicated by a broken line.
  • the supply air flow 5 does not flow through the supply air passage 15g. That is, the exhaust air flow 4 flowing through the exhaust air passage 14g does not cause heat exchange with the air supply air flow 5 because the air supply air flow 5 does not flow through the central portion 31 that theoretically has high heat exchange efficiency facing the air supply air flow 5. The temperature drop of the exhaust stream 4 is suppressed.
  • the supply air passage 15g closest to the inside air port 8a of the exhaust flow 4 is closed.
  • the exhaust air flow 4 and the supply air flow 5 do not exchange heat, and frost formation in the exhaust air passage 14g is suppressed.
  • FIG. 5A is a conceptual diagram showing a normal state of a different configuration of the heat exchange type ventilator according to the embodiment of the present invention
  • FIG. 5B is a concept showing a state of the heat exchange type ventilator with a different configuration when the air passage is closed
  • FIG. FIG. 6A is a plan view of a normal air supply unit that constitutes an air supply path when different configurations of the heat exchange element of the embodiment of the present invention are disassembled
  • FIG. 6B is an exploded view of different configurations of the heat exchange element. It is a top view at the time of the air path closing of the air supply unit which comprises the air supply air path at the time.
  • the exhaust unit 12 of the heat exchange element 18 shown in FIGS. 5A and 5B has the same shape as the exhaust unit 12 shown in FIG. 4A.
  • the air supply unit 13 of the heat exchange element 18 shown in FIGS. 6A and 6B has a shape symmetrical with the exhaust unit 12, unlike the air supply unit 13 shown in FIG. 4B.
  • the heat exchange type ventilation device 17 includes a damper 19 as an air passage closing portion. Moreover, the wind speed sensor 20 as a frost formation judgment part which judges the presence or absence of frost formation, and the microcomputer 21 are provided.
  • the damper 19 is installed on the outside air port 10 side of the heat exchange element 18. As shown in FIG. 5A, the damper 19 is normally held in a state where the air path of the heat exchange element 18 is not closed.
  • the wind speed sensor 20 is installed in the exhaust air passage 4a.
  • the wind speed sensor 20 detects the wind speed of the exhaust stream 4 and the microcomputer 21 receives the measured value.
  • the frosting determination unit determines that “there is frosting”, assuming that the air volume of the exhaust flow 4 has decreased. .
  • the wind speed sensor 20 detects a wind speed, it can be judged comparatively correctly whether frosting actually occurred.
  • the temperature sensor 22 and the microcomputer 21 may be used as the frost determination unit.
  • the temperature sensor 22 is provided in the air supply air passage 5a close to the outside air port 10, and the temperature of the air supply air flow 5 close to the outside air is measured.
  • the microcomputer 21 that has received the measurement value determines that “there is frost formation”. By measuring the temperature of the supply airflow 5 close to the outside air by the temperature sensor 22, it can be predicted to some extent whether or not frosting will occur at low cost.
  • the microcomputer 21 issues an instruction to the damper 19.
  • the damper 19 closes the inlet of the supply air passage 15 g closest to the inlet side of the exhaust flow 4 in the supply air passage 15 of the heat exchange element 18, that is, held in a closed space. To do.
  • the supply air flow 5 does not flow into the supply air passage 15g. Therefore, the exhaust flow 4 and the supply air flow 5 do not exchange heat in the counterflow portion at the center of the exhaust air passage, and frost formation in the exhaust air passage is suppressed.
  • the heat exchange type ventilation device 17 can suppress frost formation in the exhaust air passage by closing the inlet of the supply air passage 15g during frost formation. Further, at normal times, the entire area of the heat transfer plate 16 is used for heat exchange, and high heat exchange efficiency can be realized. Since the heat exchange efficiency at the normal time is high, the air conditioning load due to ventilation of the house 1 is reduced.
  • the heat exchange element of the present invention and the heat exchange type ventilator using the heat exchange element are useful in cold regions.

Abstract

A heat exchanger element, wherein a plate heat exchanger (16) is provided with spacers (13a, 13b) and a plurality of air duct ribs (13c), and in which an air exhaust unit, forming a plurality of air exhaust ducts, and an air supply unit (13), forming a plurality of air supply ducts, are layered. Moreover, the air exhaust flow and the air supply flow (5) orthogonally intersect or obliquely intersect at both ends (30) of the air exhaust duct and the air supply duct (15), and face in the center portion (31). In addition, the air supply duct (15g), closest to the inlet side of the exhaust air flow of the plurality of air supply ducts (15), is an enclosed region.

Description

熱交換素子とそれを用いた熱交換型換気機器Heat exchange element and heat exchange type ventilation equipment using it
 本発明は、熱交換素子とそれを用いた熱交換型換気機器に関する。 The present invention relates to a heat exchange element and a heat exchange type ventilation device using the heat exchange element.
 熱交換型換気機器は、室内の空気を室外へ排気する排気流と、室外の空気を室内へ給気する給気流との熱交換を行う。寒冷地等において使用される熱交換型換気機器は、冬季に室外の温度が例えば-10℃以下のような低い温度になると、室内からの温かい排気流が流れる熱交換器内の流路内において、隣接する給気の流路に室外からの冷たい給気流が流れ、結露した後、結氷し目詰まりする。従来の熱交換型換気機器では、この目詰まりは運転停止によって防止されていた(例えば、特許文献1参照)。 The heat exchange type ventilator exchanges heat between an exhaust flow for exhausting indoor air to the outside and a supply air flow for supplying outdoor air to the room. Heat exchange type ventilation equipment used in cold districts, etc., in the flow path in the heat exchanger in which warm exhaust flow from the room flows when the outdoor temperature becomes low such as −10 ° C. or lower in winter. A cold airflow from the outside flows in the flow path of the adjacent air supply, and after dew condensation, it forms ice and clogs. In the conventional heat exchange type ventilator, this clogging was prevented by stopping the operation (for example, see Patent Document 1).
 以下、特許文献1の熱交換型換気機器について説明する。図7は、従来の熱交換型換気機器の構成を示す概念図である。 Hereinafter, the heat exchange type ventilator disclosed in Patent Document 1 will be described. FIG. 7 is a conceptual diagram showing a configuration of a conventional heat exchange type ventilation device.
 熱交換器ユニット101は室内の空気と室外の空気との熱交換、および換気を行う。図7に示すように熱交換器ユニット101は、熱交換器102と、排気経路103と、給気経路104と、排気ファン105と、給気ファン106と、温度センサー107と、制御部とを備えている。ここで排気経路103は、室内の空気が熱交換器102を経由して室外へ排気される経路である。給気経路104は、室外の空気が室内へ給気される経路である。排気ファン105は、排気経路103に配置されている。給気ファン106は、給気経路104に配置されている。温度センサー107は、外気温度を検出する。制御部は、温度センサー107により検出した外気温度によって排気ファン105と、給気ファン106との運転制御を行う。 The heat exchanger unit 101 performs heat exchange and ventilation between indoor air and outdoor air. As shown in FIG. 7, the heat exchanger unit 101 includes a heat exchanger 102, an exhaust path 103, an air supply path 104, an exhaust fan 105, an air supply fan 106, a temperature sensor 107, and a control unit. I have. Here, the exhaust path 103 is a path through which indoor air is exhausted to the outside via the heat exchanger 102. The air supply path 104 is a path through which outdoor air is supplied indoors. The exhaust fan 105 is disposed in the exhaust path 103. The air supply fan 106 is disposed in the air supply path 104. The temperature sensor 107 detects the outside air temperature. The control unit controls the operation of the exhaust fan 105 and the supply fan 106 based on the outside air temperature detected by the temperature sensor 107.
 そして制御部は、外気温度が-10℃を下回った時、熱交換器102の凍結抑止のため、外気温度に応じて2つの凍結抑制制御を行う。この2つの凍結抑制制御は、第1凍結抑制制御及び第2凍結抑制制御である。 Then, when the outside air temperature falls below −10 ° C., the control unit performs two freeze suppression controls according to the outside air temperature in order to prevent the heat exchanger 102 from freezing. These two freeze suppression controls are a first freeze suppression control and a second freeze suppression control.
 第1凍結抑制制御は、排気ファン105を常時作動させ、給気ファン106の動作を60分のうち最初の15分だけ休止させる運転である。 The first freezing suppression control is an operation in which the exhaust fan 105 is always operated and the operation of the air supply fan 106 is stopped for the first 15 minutes out of 60 minutes.
 第2凍結抑制制御は、外気温度が-15℃を下回った場合、第1凍結抑制制御よりも強力な熱交換器102の凍結抑止制御である。第2凍結抑制制御は、排気ファン105及び給気ファン106を60分休止させた後に5分だけ作動を再開させる間欠運転である。 The second freezing suppression control is freezing suppression control of the heat exchanger 102 that is stronger than the first freezing suppression control when the outside air temperature falls below −15 ° C. The second freezing suppression control is an intermittent operation in which the operation is resumed for 5 minutes after the exhaust fan 105 and the air supply fan 106 are suspended for 60 minutes.
 このように従来の熱交換型換気機器においては、排気経路103が目詰まりしていく課題に対し、運転を所定の時間停止していた。そのため、例えば給気のみが停止すると室内が負圧となって建物の隙間から室外の空気が流入する。その結果、コールドドラフトおよび室内空間に結露が生じる。また給気と排気とが停止すると、室内の必要換気量が確保できないという課題を有していた。 As described above, in the conventional heat exchange type ventilator, the operation is stopped for a predetermined time with respect to the problem that the exhaust passage 103 is clogged. Therefore, for example, when only the supply air is stopped, the room becomes negative pressure, and the outdoor air flows from the gaps in the building. As a result, condensation occurs in the cold draft and the indoor space. In addition, when the supply air and the exhaust air are stopped, there is a problem that the necessary ventilation amount in the room cannot be secured.
特開2003-148780号公報JP 2003-148780 A
 本発明の熱交換素子は、伝熱板に間隔を保持する間隔保持部と複数の風路リブとを設けて複数の排気風路を形成した排気ユニットと複数の給気風路を形成した給気ユニットとが積層されている。また熱交換素子では、排気風路を流通する排気流と給気風路を流通する給気流とが、排気風路および給気風路の両端部において直交または斜交し、両端部の間の中央部において対向している。そして複数の給気風路のうち、排気流の入口側に最も近い給気風路が閉空間にされる。 The heat exchange element of the present invention is provided with an exhaust unit in which a plurality of exhaust air passages are formed by providing interval holding portions and a plurality of air passage ribs for holding intervals on a heat transfer plate, and an air supply in which a plurality of air supply air passages are formed. Units are stacked. Further, in the heat exchange element, the exhaust air flowing through the exhaust air passage and the air supply air flowing through the air supply air passage are orthogonally or obliquely crossed at both ends of the exhaust air passage and the air supply air passage, and a central portion between both ends. Are facing each other. Of the plurality of supply air paths, the supply air path closest to the inlet side of the exhaust flow is closed.
 このような熱交換素子の排気流は、排気風路内の最も着霜しやすい、給気流の入口側に最も近い風路の中央部の対向流部分において熱交換せず、温度低下せずに通過することができる。そのため、排気風路内の着霜が抑制される。すなわち排気流は、給気流と熱交換する直交流部分において温度低下はあっても、排気流の出口でのトータルの温度低下が抑制される。その結果、熱交換素子内において結露した後、結氷し目詰まりすることがなくなる。 The exhaust flow of such a heat exchange element is most likely to be frosted in the exhaust air passage, and does not exchange heat in the counterflow portion in the central portion of the air passage closest to the inlet side of the supply air flow, without causing a temperature drop. Can pass through. Therefore, frost formation in the exhaust air passage is suppressed. That is, the exhaust flow is suppressed from a total temperature decrease at the outlet of the exhaust flow even though the temperature is decreased in the cross-flow portion where heat exchange with the supply air flow occurs. As a result, after condensation occurs in the heat exchange element, it does not freeze and clog.
 またこの熱交換素子を用いた熱交換型換気機器は、上述の方法により熱交換素子の結氷による目詰まりがなくなる。そのため熱交換型換気機器は、連続運転が可能となり間欠運転によるコールドドラフトおよび室内空間に結露が生じることがない。また、必要換気量も確保できる。 Also, the heat exchange type ventilation device using this heat exchange element is free from clogging due to icing of the heat exchange element by the method described above. Therefore, the heat exchange type ventilation device can be continuously operated, and condensation does not occur in the cold draft and the indoor space due to the intermittent operation. In addition, necessary ventilation can be secured.
図1は、本発明の実施の形態の熱交換型換気機器が設置された住宅の構成を示す概念図である。FIG. 1 is a conceptual diagram showing a configuration of a house in which a heat exchange type ventilator according to an embodiment of the present invention is installed. 図2は、同熱交換型換気機器の構成を示す概念図である。FIG. 2 is a conceptual diagram showing a configuration of the heat exchange type ventilator. 図3は、同熱交換素子の構成を示す斜視図である。FIG. 3 is a perspective view showing a configuration of the heat exchange element. 図4Aは、同熱交換素子を分解した時の排気風路を構成する排気ユニットの平面図である。FIG. 4A is a plan view of an exhaust unit constituting an exhaust air passage when the heat exchange element is disassembled. 図4Bは、同熱交換素子を分解した時の給気風路を構成する給気ユニットの平面図である。FIG. 4B is a plan view of an air supply unit constituting an air supply air passage when the heat exchange element is disassembled. 図5Aは、同熱交換型換気機器の異なる構成の通常時の状態を示す概念図である。FIG. 5A is a conceptual diagram showing a normal state of a different configuration of the heat exchange type ventilator. 図5Bは、同熱交換型換気機器の異なる構成の風路閉鎖時の状態を示す概念図である。Drawing 5B is a key map showing the state at the time of the airway closure of the different composition of the heat exchange type ventilation equipment. 図6Aは、同熱交換素子の異なる構成を分解した時の給気風路を構成する給気ユニットの通常時の平面図である。FIG. 6A is a plan view of a normal air supply unit that constitutes an air supply air path when different configurations of the heat exchange element are disassembled. 図6Bは、同熱交換素子の異なる構成を分解した時の給気風路を構成する給気ユニットの風路閉鎖時の平面図である。FIG. 6B is a plan view of the air supply unit that constitutes the air supply air passage when the different configurations of the heat exchange element are disassembled when the air passage is closed. 図7は、従来の熱交換型換気機器の構成を示す概念図である。FIG. 7 is a conceptual diagram showing a configuration of a conventional heat exchange type ventilation device.
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態)
 図1は、本発明の実施の形態の熱交換型換気機器が設置された住宅の構成を示す概念図である。図1に示すように住宅1は、排気だけを行う非居住空間と、給排気を行う居住空間とから構成されている。非居住空間は、例えば浴室、洗面所、およびトイレである。居住空間は、例えばリビング、および寝室である。
(Embodiment)
FIG. 1 is a conceptual diagram showing a configuration of a house in which a heat exchange type ventilator according to an embodiment of the present invention is installed. As shown in FIG. 1, the house 1 includes a non-residential space that performs only exhaust and a residential space that supplies and exhausts air. Non-residential spaces are, for example, bathrooms, toilets, and toilets. The living space is, for example, a living room and a bedroom.
 各部屋の排気、給気は熱交換型換気機器2にダクトが接続され、行われている。熱交換型換気機器2は屋外への排気流4と、屋外からの給気流5との熱交換を行う熱交換素子3を内蔵している。 The exhaust and supply of air in each room is performed by connecting a duct to the heat exchange type ventilation device 2. The heat exchange type ventilator 2 has a built-in heat exchange element 3 for exchanging heat between the outdoor exhaust flow 4 and the outdoor air supply flow 5.
 図2は、本発明の実施の形態の熱交換型換気機器の構成を示す概念図である。図2に示すように熱交換型換気機器2は、排気送風路4aと、給気送風路5aと、排気送風部6と、給気送風部7と、熱交換素子3とから構成されている。ここで排気流4は、排気送風路4aを流れる。給気流5は、給気送風路5aを流れる。排気送風部6は、排気流4を送風する。給気送風部7は、給気流5を送風する。そして熱交換素子3では、排気流4と給気流5との熱交換が行われる。 FIG. 2 is a conceptual diagram showing the configuration of the heat exchange type ventilator according to the embodiment of the present invention. As shown in FIG. 2, the heat exchange type ventilation device 2 includes an exhaust air blowing path 4 a, an air supply air blowing path 5 a, an exhaust air blowing part 6, an air supply air blowing part 7, and a heat exchange element 3. . Here, the exhaust flow 4 flows through the exhaust air blowing path 4a. The air supply air 5 flows through the air supply air passage 5a. The exhaust blower 6 blows the exhaust flow 4. The supply air blower 7 blows the supply airflow 5. In the heat exchange element 3, heat exchange between the exhaust flow 4 and the supply air flow 5 is performed.
 排気送風路4a(図2の実線矢印)には、排気送風部6と、熱交換素子3とが設けられている。給気送風路5a(図2の点線矢印)には、給気送風部7と、熱交換素子3とが設けられている。ここで排気送風路4aは、内気(RA)を導入する内気口8から屋外に排気(EA)する排気口9までである。給気送風路5aは、外気(OA)を導入する外気口10から室内に給気(SA)を吹き出す給気口11までである。排気送風部6は、排気送風路4aに内気口8から排気口9に向かう排気流4を発生させる。給気送風部7は、給気送風路5aに外気口10から給気口11に向かう給気流5を発生させる。熱交換素子3は、排気送風路4aと給気送風路5aとが交差する位置に配置され、排気流4と給気流5との熱交換を行う。 The exhaust air blower 6 and the heat exchange element 3 are provided in the exhaust air passage 4a (solid line arrow in FIG. 2). An air supply air blowing section 7 and a heat exchange element 3 are provided in the air supply air flow path 5a (dotted arrow in FIG. 2). Here, the exhaust air blowing path 4a is from the inside air port 8 for introducing the inside air (RA) to the exhaust port 9 for exhausting (EA) to the outside. The supply air passage 5a extends from an outside air port 10 for introducing outside air (OA) to an air supply port 11 for blowing out air supply (SA) into the room. The exhaust air blowing unit 6 generates an exhaust flow 4 from the inside air port 8 toward the exhaust port 9 in the exhaust air blowing path 4a. The supply air blower 7 generates an air supply air flow 5 from the outside air port 10 toward the air supply port 11 in the air supply air passage 5a. The heat exchange element 3 is disposed at a position where the exhaust air blowing path 4 a and the supply air blowing path 5 a intersect, and performs heat exchange between the exhaust flow 4 and the supply air flow 5.
 ここで熱交換素子3の構成について図3、図4A、図4Bを用いて説明する。図3は本発明の実施の形態の熱交換素子の構成を示す斜視図、図4Aは同熱交換素子を分解した時の排気風路を構成する排気ユニットの平面図、図4Bは同熱交換素子を分解した時の給気風路を構成する給気ユニットの平面図である。以下では、熱交換素子3内の排気送風路4aを排気風路14、給気送風路5aを給気風路15、熱交換素子3の排気流4の流入口を内気口8a、流出口を排気口9a、給気流5の流入口を外気口10a、流出口を給気口11aと記載する。 Here, the configuration of the heat exchange element 3 will be described with reference to FIGS. 3, 4A and 4B. FIG. 3 is a perspective view showing the configuration of the heat exchange element according to the embodiment of the present invention, FIG. 4A is a plan view of an exhaust unit constituting the exhaust air passage when the heat exchange element is disassembled, and FIG. 4B is the same heat exchange. It is a top view of the air supply unit which comprises the air supply air path when an element is decomposed | disassembled. In the following, the exhaust air passage 4a in the heat exchange element 3 is the exhaust air passage 14, the air supply air passage 5a is the air supply air passage 15, the inlet of the exhaust flow 4 of the heat exchange element 3 is the inner air outlet 8a, and the outlet is exhausted. The inlet 9a and the inlet of the supply airflow 5 are referred to as an outside air outlet 10a, and the outlet is referred to as an inlet 11a.
 図3に示す熱交換素子3は、図4Aに示す排気ユニット12と、図4Bに示す給気ユニット13とが交互に複数積層されている。 The heat exchange element 3 shown in FIG. 3 has a plurality of alternately stacked exhaust units 12 shown in FIG. 4A and air supply units 13 shown in FIG. 4B.
 図4A、図4Bに示すように排気ユニット12と給気ユニット13とは、外形が略六角形である。図4Aに示すように排気ユニット12の内気口8aおよび排気口9aを形成する辺以外の外周には、間隔を保持する間隔保持部としての間隔リブ12a、12bが設けられている。また排気ユニット12は、略平行かつ略等間隔に設けられた風路を分割する6本の風路リブ12cを備えている。すなわち排気ユニット12には、伝熱板16に間隔を保持する間隔リブ12a、12bと、複数の風路リブ12cとが設けられ、複数の排気風路14a、14b、14c、14d、14e、14f、14gが形成されている。 As shown in FIGS. 4A and 4B, the exhaust unit 12 and the air supply unit 13 have substantially hexagonal outer shapes. As shown in FIG. 4A, spacing ribs 12 a and 12 b are provided on the outer periphery of the exhaust unit 12 other than the sides that form the inside air ports 8 a and the exhaust ports 9 a as spacing holding portions that hold the spacing. The exhaust unit 12 includes six air passage ribs 12c that divide air passages that are provided substantially in parallel and at substantially equal intervals. That is, the exhaust unit 12 is provided with interval ribs 12a and 12b that maintain an interval between the heat transfer plate 16 and a plurality of air passage ribs 12c, and a plurality of exhaust air passages 14a, 14b, 14c, 14d, 14e, and 14f. 14g are formed.
 同様に図4Bに示すように給気ユニット13の、外気口10aおよび給気口11aを形成する辺以外の外周には、間隔を保持する間隔保持部としての間隔リブ13a、13bが設けられている。また給気ユニット13は、略平行かつ略等間隔に設けられた風路を分割する6本の風路リブ13cを備えている。すなわち給気ユニット13には、伝熱板16に間隔を保持する間隔リブ13a、13bと、複数の風路リブ13cとが設けられ、複数の給気風路15a、15b、15c、15d、15e、15f、15gが形成されている。 Similarly, as shown in FIG. 4B, on the outer periphery of the air supply unit 13 other than the sides forming the outside air port 10a and the air supply port 11a, interval ribs 13a and 13b are provided as interval holding portions for holding intervals. Yes. In addition, the air supply unit 13 includes six air passage ribs 13c that divide the air passages provided substantially in parallel and at substantially equal intervals. That is, the air supply unit 13 is provided with interval ribs 13a and 13b that hold an interval with the heat transfer plate 16, and a plurality of air passage ribs 13c, and a plurality of air supply air passages 15a, 15b, 15c, 15d, and 15e, 15f and 15g are formed.
 このような排気ユニット12と給気ユニット13とが交互に複数積層されることにより、熱交換素子3は排気風路14と給気風路15とが1層ずつ交互に配置されて構成されている。排気ユニット12と給気ユニット13との積層数は、熱交換素子3を搭載する熱交換型換気機器2の大きさ、および風量によって決定される。 By stacking a plurality of such exhaust units 12 and air supply units 13 alternately, the heat exchange element 3 is configured such that the exhaust air passages 14 and the air supply air passages 15 are alternately arranged one by one. . The number of stacks of the exhaust unit 12 and the air supply unit 13 is determined by the size of the heat exchange type ventilation device 2 on which the heat exchange element 3 is mounted and the air volume.
 また図4Aに示すように排気風路14は、6本の風路リブ12cにより、7本の排気風路14a~14gに分割されている。同様に図4Bに示すように給気風路15は、6本の風路リブ13cにより、7本の給気風路15a~15gに分割されている。 Further, as shown in FIG. 4A, the exhaust air passage 14 is divided into seven exhaust air passages 14a to 14g by six air passage ribs 12c. Similarly, as shown in FIG. 4B, the supply air passage 15 is divided into seven supply air passages 15a to 15g by six air passage ribs 13c.
 伝熱板16は、排気流4と給気流5との熱交換を行う。顕熱だけの交換では、伝熱板16にアルミニウムなどの金属板または樹脂板が用いられる。顕熱と潜熱との両方の交換では、伝熱板16に紙または樹脂などの透湿膜が用いられる。 The heat transfer plate 16 performs heat exchange between the exhaust flow 4 and the supply air flow 5. In exchange only for sensible heat, a metal plate such as aluminum or a resin plate is used for the heat transfer plate 16. In the exchange of both sensible heat and latent heat, a moisture permeable film such as paper or resin is used for the heat transfer plate 16.
 間隔リブ12a、12b、13a、13bは、樹脂または金属により構成される。特に伝熱板16が透湿膜の場合、間隔リブ12a、12b、13a、13bは伝熱板16が金型内に挿入され、樹脂によるインサート射出成形による一体成形により形成されると良い。 The spacing ribs 12a, 12b, 13a, 13b are made of resin or metal. In particular, when the heat transfer plate 16 is a moisture permeable film, the spacing ribs 12a, 12b, 13a, and 13b are preferably formed by integral molding by inserting the heat transfer plate 16 into a mold and insert injection molding with resin.
 図4A、図4Bに示すように排気風路14を流通する排気流4と、給気風路15を流通する給気流5とは、排気風路14および給気風路15の両端部30(図4BのB部およびD部)において直交または斜交している。そして両端部30の間の中央部31(図4BのC部)において、排気流4と給気流5とは対向する。そして複数の給気風路15a、15b、15c、15d、15e、15f、15gのうち、排気流4の入口側に最も近い給気風路15gが閉空間にされる。 As shown in FIGS. 4A and 4B, the exhaust air flow 4 that flows through the exhaust air passage 14 and the air supply air flow 5 that flows through the air supply air passage 15 include both end portions 30 of the exhaust air passage 14 and the air supply air passage 15 (FIG. 4B). In the B part and the D part). And in the center part 31 (C section of FIG. 4B) between the both ends 30, the exhaust flow 4 and the supply airflow 5 oppose. Of the plurality of supply air passages 15a, 15b, 15c, 15d, 15e, 15f, and 15g, the supply air passage 15g closest to the inlet side of the exhaust flow 4 is closed.
 なお本発明の実施の形態における両端部30は、図4BのB部およびD部を指し、中央部31は図4BのC部を指す。中央部31の排気風路14および給気風路15は、平行かつ波形であり、一層ごとに波形が逆向きに構成されている。 Note that both end portions 30 in the embodiment of the present invention indicate the B portion and the D portion in FIG. 4B, and the central portion 31 indicates the C portion in FIG. 4B. The exhaust air passage 14 and the supply air passage 15 in the central portion 31 are parallel and corrugated, and the corrugations are configured in opposite directions for each layer.
 図3に示す熱交換素子3は、風路リブ12cの排気風路14aを構成する部分と風路リブ13cの給気風路15gを構成する部分とを除けば、図4Aの排気ユニット12の平面図と、図4Bの給気ユニット13の平面図とが図4AのA-A線に対して線対称となる。 The heat exchanging element 3 shown in FIG. 3 is a plane of the exhaust unit 12 of FIG. 4A except for a portion constituting the exhaust air passage 14a of the air passage rib 12c and a portion constituting the supply air passage 15g of the air passage rib 13c. The drawing and the plan view of the air supply unit 13 in FIG. 4B are line symmetric with respect to the line AA in FIG. 4A.
 上記のように構成された熱交換型換気機器2、および熱交換素子3の作用と効果について、以下に説明する。 The operation and effect of the heat exchange type ventilation device 2 and the heat exchange element 3 configured as described above will be described below.
 図1に示す住宅1に設置された熱交換型換気機器2において換気運転が開始されると、図2に示すように排気送風部6の運転により、内気(RA)が内気口8から導入され、排気流4は排気送風路4aを通る。そして図4Aに示す排気流4は熱交換素子3の排気風路14を通過する時、図4Bに示す熱交換素子3の給気風路15を通過する給気流5と熱交換した後、図2に示す排気口9から屋外に排出される。 When the ventilation operation is started in the heat exchange type ventilation device 2 installed in the house 1 shown in FIG. 1, the inside air (RA) is introduced from the inside air port 8 by the operation of the exhaust air blowing unit 6 as shown in FIG. The exhaust stream 4 passes through the exhaust air passage 4a. When the exhaust stream 4 shown in FIG. 4A passes through the exhaust air passage 14 of the heat exchange element 3, it exchanges heat with the supply air flow 5 passing through the supply air passage 15 of the heat exchange element 3 shown in FIG. Is discharged to the outdoors through the exhaust port 9 shown in FIG.
 一方、図2に示すように給気流5は給気送風部7の運転により、外気(OA)を外気口10から導入し、給気送風路5aを通る。そして図4Bに示す給気流5は熱交換素子3の給気風路15を通過する時、図4Aに示す熱交換素子3の排気風路14を通過する排気流4と熱交換した後、図2に示す給気口11から室内に給気される。 On the other hand, as shown in FIG. 2, the supply air flow 5 introduces outside air (OA) from the outside air port 10 by the operation of the supply air blowing section 7, and passes through the supply air blowing path 5a. 4B exchanges heat with the exhaust flow 4 passing through the exhaust air passage 14 of the heat exchange element 3 shown in FIG. 4A when passing through the supply air passage 15 of the heat exchange element 3, and then FIG. The air is supplied into the room through the air supply port 11 shown in FIG.
 このとき室外の温度が例えば-10℃以下のような低い温度になると、図4A、図4Bに示す室内からの温かい排気流4が流れる熱交換素子3内において、隣接する給気風路15に室外から通風される冷たい給気流5が流れ、排気風路14の排気口9a近傍が結露、結氷し目詰まりしていく。 At this time, when the outdoor temperature becomes a low temperature such as −10 ° C. or less, for example, in the heat exchange element 3 through which the warm exhaust stream 4 flows from the room shown in FIGS. The cold supply airflow 5 which is ventilated from the air flows, and the vicinity of the exhaust port 9a of the exhaust air passage 14 is dewed and frozen and clogged.
 ここで本願の特徴である排気風路14内の着霜を抑制する手段について、再度図4A、図4Bを用いて説明する。 Here, means for suppressing frost formation in the exhaust air passage 14 which is a feature of the present application will be described with reference to FIGS. 4A and 4B again.
 室外の温度が例えば-10℃以下のような低い温度になった場合、外気口10aに最も近い排気風路14gを流れる排気流4の温度が最も低くなる。すなわち、着霜は排気風路14gの排気口9a近傍から始まる。 When the outdoor temperature becomes a low temperature such as −10 ° C. or less, the temperature of the exhaust stream 4 flowing through the exhaust air passage 14g closest to the outside air port 10a becomes the lowest. That is, frosting starts from the vicinity of the exhaust port 9a of the exhaust air passage 14g.
 排気風路14gを流れる排気流4の温度を高くするため、図4Bに示すように給気風路15gを閉空間(図中の斜線部)にしている。参考までに、風路リブ13cの一般的な通常の給気風路15gを構成する部分を破線にて示す。 In order to increase the temperature of the exhaust flow 4 flowing through the exhaust air passage 14g, the air supply air passage 15g is closed (shaded portion in the figure) as shown in FIG. 4B. For reference, a portion constituting a general normal supply air passage 15g of the air passage rib 13c is indicated by a broken line.
 上述のように給気風路15gは閉空間にされているため、給気風路15gには給気流5が流通しない。すなわち、排気風路14gを流れる排気流4は、給気流5と対向する理論的に熱交換効率が高い中央部31に給気流5が流通しないため、給気流5との熱交換が生じず、排気流4の温度低下が抑制される。 As described above, since the supply air passage 15g is closed, the supply air flow 5 does not flow through the supply air passage 15g. That is, the exhaust air flow 4 flowing through the exhaust air passage 14g does not cause heat exchange with the air supply air flow 5 because the air supply air flow 5 does not flow through the central portion 31 that theoretically has high heat exchange efficiency facing the air supply air flow 5. The temperature drop of the exhaust stream 4 is suppressed.
 熱交換素子3が熱流体解析により解析された結果では、給気風路15gを閉空間にすると排気風路14gを流れる排気流4の最低温度は、従来の熱交換素子よりも約3K上昇することが確認された。この結果は着霜が発生する外気温が、約3K低くなることに相当する。 As a result of analysis of the heat exchange element 3 by thermal fluid analysis, when the supply air passage 15g is closed, the minimum temperature of the exhaust flow 4 flowing through the exhaust air passage 14g is increased by about 3K than the conventional heat exchange element. Was confirmed. This result corresponds to the fact that the outside air temperature at which frost formation occurs is reduced by about 3K.
 なお本実施の形態では、図4A、図4Bに示すように伝熱板16が六角形の場合について説明した。排気風路14および給気風路15の両端部30では、排気流4と給気流5とが直交または斜交し、両端部30の間の中央部31において対向する、例えば風路がL形の四角形でも上記と同様の効果を有する。 In the present embodiment, the case where the heat transfer plate 16 is hexagonal as shown in FIGS. 4A and 4B has been described. At both end portions 30 of the exhaust air passage 14 and the supply air passage 15, the exhaust air flow 4 and the air supply air flow 5 are orthogonal or oblique to each other and face each other at the central portion 31 between the both end portions 30. Even a square has the same effect as described above.
 以上、本実施の形態では給気風路15において、排気流4の内気口8aに最も近い給気風路15gを閉空間にした。このことにより、排気風路14gの中央部31の対向流部分において、排気流4と給気流5とが熱交換せず、排気風路14g内の着霜が抑制される。 As described above, in the present embodiment, in the supply air passage 15, the supply air passage 15g closest to the inside air port 8a of the exhaust flow 4 is closed. Thereby, in the counterflow part of the center part 31 of the exhaust air passage 14g, the exhaust air flow 4 and the supply air flow 5 do not exchange heat, and frost formation in the exhaust air passage 14g is suppressed.
 すなわち、排気風路14内の最も着霜しやすい、外気口10aに最も近い中央部31の対向流部分において熱交換させないことにより、排気流4は、この対向流部分を温度低下せずに通過できる。 That is, by not performing heat exchange in the counterflow portion of the central portion 31 closest to the outside air port 10a that is most likely to form frost in the exhaust air passage 14, the exhaust flow 4 passes through the counterflow portion without lowering the temperature. it can.
 この対向流部分の温度低下がなくされることにより、給気流5と熱交換する直交流部分において温度低下はあっても、排気流4の内気口8aから排気口9aまでのトータルの温度低下が抑制される。そのため、排気風路14内の着霜が抑制され、着霜発生の外気温が低くなるので、室内の必要換気量が確保できる連続運転の時間が長くなる。 By eliminating the temperature drop in the counterflow portion, even if there is a temperature drop in the cross flow portion that exchanges heat with the supply airflow 5, the total temperature drop from the inside air port 8a to the exhaust port 9a of the exhaust flow 4 is reduced. It is suppressed. Therefore, frost formation in the exhaust air passage 14 is suppressed, and the outside air temperature at which frost formation occurs is reduced, so that the continuous operation time in which the necessary ventilation amount in the room can be secured is lengthened.
 図5Aは本発明の実施の形態の熱交換型換気機器の異なる構成の通常時の状態を示す概念図、図5Bは同熱交換型換気機器の異なる構成の風路閉鎖時の状態を示す概念図である。図6Aは本発明の実施の形態の熱交換素子の異なる構成を分解した時の給気風路を構成する給気ユニットの通常時の平面図、図6Bは同熱交換素子の異なる構成を分解した時の給気風路を構成する給気ユニットの風路閉鎖時の平面図である。 FIG. 5A is a conceptual diagram showing a normal state of a different configuration of the heat exchange type ventilator according to the embodiment of the present invention, and FIG. 5B is a concept showing a state of the heat exchange type ventilator with a different configuration when the air passage is closed. FIG. FIG. 6A is a plan view of a normal air supply unit that constitutes an air supply path when different configurations of the heat exchange element of the embodiment of the present invention are disassembled, and FIG. 6B is an exploded view of different configurations of the heat exchange element. It is a top view at the time of the air path closing of the air supply unit which comprises the air supply air path at the time.
 図5A、図5Bに示す熱交換素子18の排気ユニット12は、図4Aに示す排気ユニット12と同様の形状である。しかし図6A、図6Bに示す熱交換素子18の給気ユニット13は、図4Bに示す給気ユニット13と異なり、排気ユニット12と線対称になる形状である。 The exhaust unit 12 of the heat exchange element 18 shown in FIGS. 5A and 5B has the same shape as the exhaust unit 12 shown in FIG. 4A. However, the air supply unit 13 of the heat exchange element 18 shown in FIGS. 6A and 6B has a shape symmetrical with the exhaust unit 12, unlike the air supply unit 13 shown in FIG. 4B.
 図5A、図5Bに示すように熱交換型換気機器17は、風路閉鎖部としてのダンパー19を備えている。また着霜の有無を判断する着霜判断部としての風速センサー20と、マイクロコンピューター21とを備えている。ダンパー19は、熱交換素子18の外気口10側に設置されている。図5Aに示すようにダンパー19は通常、熱交換素子18の風路を閉鎖しない状態に保持される。 As shown in FIGS. 5A and 5B, the heat exchange type ventilation device 17 includes a damper 19 as an air passage closing portion. Moreover, the wind speed sensor 20 as a frost formation judgment part which judges the presence or absence of frost formation, and the microcomputer 21 are provided. The damper 19 is installed on the outside air port 10 side of the heat exchange element 18. As shown in FIG. 5A, the damper 19 is normally held in a state where the air path of the heat exchange element 18 is not closed.
 このとき、図6Aに示すように熱交換素子18の給気ユニット13は、給気風路15a~15gの全てに給気流5が流通する。このため風路リブ13cの分を除いた伝熱板16の全てが、熱交換に利用され、高い熱交換効率となる。 At this time, as shown in FIG. 6A, in the air supply unit 13 of the heat exchange element 18, the air supply air 5 flows through all of the air supply air passages 15a to 15g. For this reason, all of the heat transfer plate 16 excluding the portion of the air passage ribs 13c is used for heat exchange, resulting in high heat exchange efficiency.
 図5A、図5Bに示すように風速センサー20は、排気送風路4aに設置されている。風速センサー20は排気流4の風速を検知し、その測定値をマイクロコンピューター21が受け取る。風速センサー20が検知する排気流4の風速が通常時よりも遅くなった場合、排気流4の風量が低下しているとして、着霜判断部が「着霜がある」と判断するようにする。このように風速センサー20が風速を検知することにより、実際に着霜が起こったかどうかを比較的正確に判断することができる。 As shown in FIGS. 5A and 5B, the wind speed sensor 20 is installed in the exhaust air passage 4a. The wind speed sensor 20 detects the wind speed of the exhaust stream 4 and the microcomputer 21 receives the measured value. When the wind speed of the exhaust flow 4 detected by the wind speed sensor 20 becomes slower than normal, the frosting determination unit determines that “there is frosting”, assuming that the air volume of the exhaust flow 4 has decreased. . Thus, when the wind speed sensor 20 detects a wind speed, it can be judged comparatively correctly whether frosting actually occurred.
 なお、着霜判断部として温度センサー22と、マイクロコンピューター21とが使用される場合もある。その場合、外気口10に近い給気送風路5aに、温度センサー22が設けられ、外気に近い給気流5の温度が測定される。温度センサー22の値が、例えば-10℃以下になった場合、その測定値を受け取ったマイクロコンピューター21が「着霜がある」と判断するようにする。温度センサー22が外気に近い給気流5の温度を測定することにより、低コストにて着霜が起こるかどうかがある程度予測できる。 In addition, the temperature sensor 22 and the microcomputer 21 may be used as the frost determination unit. In that case, the temperature sensor 22 is provided in the air supply air passage 5a close to the outside air port 10, and the temperature of the air supply air flow 5 close to the outside air is measured. When the value of the temperature sensor 22 is, for example, −10 ° C. or lower, the microcomputer 21 that has received the measurement value determines that “there is frost formation”. By measuring the temperature of the supply airflow 5 close to the outside air by the temperature sensor 22, it can be predicted to some extent whether or not frosting will occur at low cost.
 着霜判断部が「着霜がある」と判断した場合、マイクロコンピューター21がダンパー19に指示を出す。ダンパー19は図5Bおよび図6Bに示すように、熱交換素子18の給気風路15の中において排気流4の入口側に最も近い給気風路15gの入口を閉鎖する状態、すなわち閉空間に保持する。給気風路15gの入口が閉鎖されることにより、給気風路15gには給気流5が流入しなくなる。そのため排気風路の中央部の対向流部分において、排気流4と給気流5とが熱交換せず、排気風路内の着霜が抑制される。 When the frosting determination unit determines that “there is frosting”, the microcomputer 21 issues an instruction to the damper 19. As shown in FIGS. 5B and 6B, the damper 19 closes the inlet of the supply air passage 15 g closest to the inlet side of the exhaust flow 4 in the supply air passage 15 of the heat exchange element 18, that is, held in a closed space. To do. By closing the inlet of the supply air passage 15g, the supply air flow 5 does not flow into the supply air passage 15g. Therefore, the exhaust flow 4 and the supply air flow 5 do not exchange heat in the counterflow portion at the center of the exhaust air passage, and frost formation in the exhaust air passage is suppressed.
 熱交換型換気機器17は以上のように、着霜時には給気風路15gの入口を閉鎖することにより排気風路内の着霜を抑制できる。また通常時には伝熱板16の全ての面積が熱交換に利用され、高い熱交換効率が実現できる。通常時の熱交換効率が高いため、住宅1の換気による空調負荷は低減する。 As described above, the heat exchange type ventilation device 17 can suppress frost formation in the exhaust air passage by closing the inlet of the supply air passage 15g during frost formation. Further, at normal times, the entire area of the heat transfer plate 16 is used for heat exchange, and high heat exchange efficiency can be realized. Since the heat exchange efficiency at the normal time is high, the air conditioning load due to ventilation of the house 1 is reduced.
 本発明の熱交換素子とそれを用いた熱交換型換気機器は、寒冷地において有用である。 The heat exchange element of the present invention and the heat exchange type ventilator using the heat exchange element are useful in cold regions.
1  住宅
2,17  熱交換型換気機器
3,18  熱交換素子
4  排気流
4a  排気送風路
5  給気流
5a  給気送風路
6  排気送風部
7  給気送風部
8,8a  内気口
9,9a  排気口
10,10a  外気口
11,11a  給気口
12  排気ユニット
12a,12b,13a,13b  間隔リブ
12c,13c  風路リブ
13  給気ユニット
14,14a,14b,14c,14d,14e,14f,14g  排気風路
15,15a,15b,15c,15d,15e,15f,15g  給気風路
16  伝熱板
19  ダンパー
20  風速センサー
21  マイクロコンピューター
22  温度センサー
30  両端部
31  中央部
DESCRIPTION OF SYMBOLS 1 House 2,17 Heat exchange type ventilator 3,18 Heat exchange element 4 Exhaust flow 4a Exhaust air flow path 5 Supply air flow 5a Supply air air flow path 6 Exhaust air blower part 7 Supply air blower part 8, 8a Interior air hole 9, 9a Exhaust hole 10, 10a Outside air port 11, 11a Air supply port 12 Exhaust unit 12a, 12b, 13a, 13b Spacing rib 12c, 13c Air passage rib 13 Air supply unit 14, 14a, 14b, 14c, 14d, 14e, 14f, 14g Exhaust air 15, 15 a, 15 b, 15 c, 15 d, 15 e, 15 f, 15 g Air supply air passage 16 Heat transfer plate 19 Damper 20 Wind speed sensor 21 Microcomputer 22 Temperature sensor 30 Both ends 31 Central portion

Claims (3)

  1. 伝熱板に間隔を保持する間隔保持部と複数の風路リブとを設けて複数の排気風路を形成した排気ユニットと複数の給気風路を形成した給気ユニットとを積層し、
    前記排気風路を流通する排気流と前記給気風路を流通する給気流とが、前記排気風路および前記給気風路の両端部において直交または斜交し、前記両端部の間の中央部において対向する熱交換素子であって、
    複数の前記給気風路のうち前記排気流の入口側に最も近い前記給気風路を閉空間にすることを特徴とする熱交換素子。
    Laminating an exhaust unit that forms a plurality of exhaust air passages by providing an interval holding unit that holds a gap on the heat transfer plate and a plurality of air passage ribs, and an air supply unit that forms a plurality of air supply air passages,
    The exhaust flow that flows through the exhaust air passage and the supply air flow that flows through the supply air passage intersect at right angles or obliquely at both ends of the exhaust air passage and the supply air passage, and at the central portion between the both ends. An opposing heat exchange element,
    The heat exchange element characterized in that the supply air path closest to the inlet side of the exhaust flow among the plurality of supply air paths is a closed space.
  2. 請求項1に記載の熱交換素子を用いた熱交換型換気機器。 A heat exchange type ventilator using the heat exchange element according to claim 1.
  3. 排気送風部と、
    給気送風部と、
    伝熱板に間隔を保持する間隔保持部と平行かつ等間隔に設けられた複数の風路リブとを設けて複数の排気風路を形成した排気ユニットと複数の給気風路を形成した給気ユニットとを積層し、
    前記排気風路を流通する排気流と前記給気風路を流通する給気流とが、前記排気風路および前記給気風路の両端部において直交または斜交し、前記両端部の間の中央部において対向する熱交換素子と、
    着霜の有無を判断する着霜判断部と、
    前記着霜判断部が着霜があると判断した場合、複数の前記給気風路のうち前記排気流の入口側に最も近い前記給気風路を閉空間にする風路閉鎖部とを備えたことを特徴とする熱交換型換気機器。
    An exhaust blower,
    An air supply section;
    An air supply unit in which a plurality of air supply passages are formed by providing a plurality of air supply air passages by providing a plurality of air passage ribs provided in parallel and at equal intervals to a space holding portion for holding a space in the heat transfer plate. Laminating the unit,
    The exhaust flow that flows through the exhaust air passage and the supply air flow that flows through the supply air passage intersect at right angles or obliquely at both ends of the exhaust air passage and the supply air passage, and at the central portion between the both ends. An opposing heat exchange element;
    A frost determination unit for determining the presence or absence of frost;
    When the frosting determination unit determines that there is frost, an airway closing unit that closes the supply airway closest to the inlet side of the exhaust flow among the plurality of supply airways is provided. Heat exchange type ventilation equipment characterized by
PCT/JP2013/004230 2012-07-24 2013-07-09 Heat exchanger element and heat recovery ventilation device using same WO2014017040A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012163384 2012-07-24
JP2012-163384 2012-07-24
JP2012-276494 2012-12-19
JP2012276494A JP6127264B2 (en) 2012-07-24 2012-12-19 Heat exchange element and heat exchange type ventilation equipment using it

Publications (1)

Publication Number Publication Date
WO2014017040A1 true WO2014017040A1 (en) 2014-01-30

Family

ID=49996868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004230 WO2014017040A1 (en) 2012-07-24 2013-07-09 Heat exchanger element and heat recovery ventilation device using same

Country Status (2)

Country Link
JP (1) JP6127264B2 (en)
WO (1) WO2014017040A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397085A (en) * 2020-04-01 2020-07-10 宁波奥克斯电气股份有限公司 Method and device for detecting dirty blockage of condenser, medium and air conditioner

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102245078B1 (en) * 2020-07-06 2021-04-28 김은경 A spatial image drawing system that confirms the location information of a feature
KR102280852B1 (en) * 2020-07-06 2021-07-23 주식회사 뉴비전네트웍스 Spatial image drawing system that improves the precision of drawing
KR102280848B1 (en) * 2020-07-06 2021-07-23 주식회사 뉴비전네트웍스 Numerical map system that changes numerical map data for each reference point
KR102280849B1 (en) * 2020-07-06 2021-07-23 주식회사 뉴비전네트웍스 Numerical map recognition system that updates data according to the reference point
JPWO2022172376A1 (en) * 2021-02-10 2022-08-18

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611027U (en) * 1984-06-11 1986-01-07 ミサワホ−ム株式会社 air conditioning ventilation fan
JP2009121727A (en) * 2007-11-13 2009-06-04 Royal Electric Co Ltd Total enthalpy heat exchange-type ventilation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611027U (en) * 1984-06-11 1986-01-07 ミサワホ−ム株式会社 air conditioning ventilation fan
JP2009121727A (en) * 2007-11-13 2009-06-04 Royal Electric Co Ltd Total enthalpy heat exchange-type ventilation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397085A (en) * 2020-04-01 2020-07-10 宁波奥克斯电气股份有限公司 Method and device for detecting dirty blockage of condenser, medium and air conditioner

Also Published As

Publication number Publication date
JP6127264B2 (en) 2017-05-17
JP2014040991A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
WO2014017040A1 (en) Heat exchanger element and heat recovery ventilation device using same
JP5220102B2 (en) Heat exchange ventilator
US10527367B2 (en) Heat exchange assembly in an air to air heat exchanger
KR101440723B1 (en) A heat exchanger, a heat recovery ventilator comprising the same and a method for defrosting and checking thereof
US9062890B2 (en) Energy recovery ventilator
KR101441189B1 (en) Ventilation wall system for energy saving
JPH04283333A (en) Heat exchanging ventilating device
WO2012004978A1 (en) Heat exchange ventilation apparatus
Chen et al. Experimental study of plate type air cooler performances under four operating modes
JP2010223487A (en) Air conditioning system in building where many heat generating apparatuses are installed
KR101872225B1 (en) High Efficient Ventilation by using of Backward Flow Preventing Damper for Air Supply and Exhaust and Storage Element
WO2017110055A1 (en) Heat exchange type ventilation device
KR20130026186A (en) Ventilation system for windows without heat loss
WO2013080478A1 (en) Heat exchanging element and heat exchanging ventilation apparatus using same
JP5845389B2 (en) Heat exchange ventilator
JP2015087058A (en) Total heat exchanger type ventilation fan
Cho et al. Experimental analysis on energy recovery ventilator with latent heat exchanger using hollow fiber membrane
JP6561313B2 (en) Heat exchange type ventilator using heat exchange elements
JP2009121727A (en) Total enthalpy heat exchange-type ventilation device
US11384953B2 (en) Air conditioning system
JP5511595B2 (en) Air conditioner and outside air cooling operation method
JP4404698B2 (en) Air conditioner
KR101037871B1 (en) Air handling unit using cooling/dehumidifying energy recovery technology
JP6617280B2 (en) Heat exchange type ventilation system
JP2006017369A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823204

Country of ref document: EP

Kind code of ref document: A1