JP5845389B2 - Heat exchange ventilator - Google Patents

Heat exchange ventilator Download PDF

Info

Publication number
JP5845389B2
JP5845389B2 JP2011055130A JP2011055130A JP5845389B2 JP 5845389 B2 JP5845389 B2 JP 5845389B2 JP 2011055130 A JP2011055130 A JP 2011055130A JP 2011055130 A JP2011055130 A JP 2011055130A JP 5845389 B2 JP5845389 B2 JP 5845389B2
Authority
JP
Japan
Prior art keywords
exhaust
air supply
heat exchange
opening
switching unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011055130A
Other languages
Japanese (ja)
Other versions
JP2012189290A (en
Inventor
洋祐 浜田
洋祐 浜田
村山 拓也
拓也 村山
朋宜 若松
朋宜 若松
俊司 三宅
俊司 三宅
将秀 福本
将秀 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011055130A priority Critical patent/JP5845389B2/en
Publication of JP2012189290A publication Critical patent/JP2012189290A/en
Application granted granted Critical
Publication of JP5845389B2 publication Critical patent/JP5845389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、寒冷地等で使用され、室外の空気を室内に取り込む給気経路と、室内の空気を室外に排出する排気経路との間で熱交換する熱交換形換気装置に関するものである。   The present invention relates to a heat exchange type ventilator that is used in a cold district or the like and exchanges heat between an air supply path for taking outdoor air into the room and an exhaust path for discharging indoor air to the outside.

この種の熱交換形換気装置は、冬季に室外が、例えば−10℃以下のような低い温度になると、室内から通風された温かい排気流が流れる熱交換素子の排気経路内において、隣接する給気経路内の室外から通風された冷たい給気流によって排気流が冷やされることで、排気流路が結露・結氷が発生し目詰まりしていくが、従来の熱交換形換気装置では、この結露・結氷による目詰まりを凍結抑制制御による間欠運転によって抑制する構成をとっていた(例えば、特許文献1参照)。   In this type of heat exchange type ventilator, when the outdoor temperature becomes low, such as −10 ° C. or lower in winter, the adjacent air supply in the exhaust path of the heat exchange element through which the warm exhaust air ventilated from the room flows. The exhaust flow is cooled by the cold airflow that is ventilated from outside the air path, causing condensation and icing to occur in the exhaust flow path, but clogging occurs in conventional heat exchange ventilators. A configuration has been adopted in which clogging due to icing is suppressed by intermittent operation by freezing suppression control (for example, see Patent Document 1).

以下、特許文献1に示す熱交換形換気装置について、図5を参照しながら説明する。   Hereinafter, the heat exchange type ventilator disclosed in Patent Document 1 will be described with reference to FIG.

図5に示すように、熱交換器ユニット101は、熱交換換気を行なうことができる熱交換エレメント102と、室内の空気を室外へ排気し熱交換エレメント102を経由する排気経路103と、室外の空気を室内へ給気し熱交換エレメント102を経由する給気経路104と、排気経路103に組み込まれる排気ファン105と、給気経路104に組み込まれる給気ファン106と、室外の空気の外気温度を検出する温度センサ107と、温度センサ107で検出した外気温度によって排気ファン105と給気ファン106の運転制御を行う制御部とを備えている。   As shown in FIG. 5, the heat exchanger unit 101 includes a heat exchange element 102 that can perform heat exchange ventilation, an exhaust path 103 that exhausts indoor air to the outside and passes through the heat exchange element 102, An air supply path 104 that supplies air into the room and passes through the heat exchange element 102, an exhaust fan 105 that is incorporated in the exhaust path 103, an air supply fan 106 that is incorporated in the air supply path 104, and the outdoor air temperature of the outdoor air And a control unit that controls the operation of the exhaust fan 105 and the supply fan 106 according to the outside air temperature detected by the temperature sensor 107.

そして、熱交換器ユニット101の制御部は、外気温度が−10℃を下回った時に、熱交換エレメント102が凍結することを抑えるため、外気温度に応じて2つの凍結抑制制御を行う。この2つの凍結抑制制御は第1凍結抑制制御及び第2凍結抑制制御である。   And the control part of the heat exchanger unit 101 performs two freezing suppression control according to external temperature, in order to suppress that the heat exchange element 102 freezes, when external temperature falls below -10 degreeC. These two freeze suppression controls are a first freeze suppression control and a second freeze suppression control.

第1凍結抑制制御は、外気温度が−10℃を下回った場合に、熱交換エレメント102の凍結を抑制する制御であり、排気ファン105を常時作動させ、給気ファン106の動作を60分のうち最初の15分だけ休止させる運転を繰り返す。   The first freezing suppression control is a control for suppressing freezing of the heat exchange element 102 when the outside air temperature falls below −10 ° C., and the exhaust fan 105 is always operated and the operation of the air supply fan 106 is performed for 60 minutes. Repeat the operation to pause for the first 15 minutes.

第2凍結抑制制御は、外気温度が−15℃を下回った場合に、第1凍結抑制制御よりも強力に熱交換エレメント102の凍結を抑制する制御であり、排気ファン105及び給気ファン106の間欠運転を行う。第2凍結抑制制御は、排気ファン105及び給気ファン106を60分休止させた後に5分だけ作動を再開させる運転を繰り返す。   The second freezing suppression control is a control for suppressing freezing of the heat exchange element 102 more strongly than the first freezing suppression control when the outside air temperature falls below −15 ° C., and the exhaust fan 105 and the supply fan 106 are controlled. Perform intermittent operation. In the second freezing suppression control, the exhaust fan 105 and the air supply fan 106 are paused for 60 minutes and then restarted for 5 minutes.

特開2003−148780号公報JP 2003-148780 A

このような従来の熱交換形換気装置においては、凍結抑制制御による間欠運転をおこなっている間は熱交換換気ができないという課題を有していた。   Such a conventional heat exchange type ventilator has a problem that heat exchange ventilation cannot be performed during intermittent operation by freezing suppression control.

そこで本発明は、上記従来の課題を解決するものであり、寒冷地など熱交換素子内部に結露・結氷が発生する条件下において、熱交換換気を行いながら結露・結氷を蒸発・融解させることができる熱交換形換気装置を提供することを目的とする。   Therefore, the present invention solves the above-mentioned conventional problems, and it is possible to evaporate and melt condensation and ice while performing heat exchange ventilation under conditions where condensation and condensation occur inside a heat exchange element such as in a cold district. An object of the present invention is to provide a heat exchange type ventilation device that can be used.

そして、この目的を達成するために、本発明の熱交換形換気装置は、室外の空気を室内に取り込む給気経路と、室内の空気を室外に排出する排気経路と、前記給気経路と前記排気経路との間で熱交換を行う熱交換素子と、前記給気経路中の給気流を前記熱交換素子に流すために前記熱交換素子に開口した第一開口部および第二開口部と、前記熱交換素子内の給気流の流通方向を反転させる室外側給気切替部と室内側給気切替部とを備え、前記室外側給気切替部は、室外と前記第一開口部または前記第二開口部の何れか一方を連通させ、前記室内側給気切替部は、前記第一開口部または前記第二開口部の何れか一方を室内と連通させ、前記室外側給気切替部と前記室内側給気切替部を同時に動作させることで、前記第一開口部と室外とが連通するとともに前記第二開口部と室内とが連通する第一給気状態と、前記第一開口部と室内とが連通するとともに前記第二開口部と室外とが連通する第二給気状態とを切り替えて、前記熱交換素子内を流れる前記給気流の流通方向を反転するという構成としたものであり、これにより所期の目的を達成するものである。 In order to achieve this object, the heat exchange ventilator of the present invention includes an air supply path for taking outdoor air into the room, an exhaust path for discharging indoor air to the outside, the air supply path, A heat exchange element that exchanges heat with the exhaust path, and a first opening and a second opening that are opened in the heat exchange element in order to flow an air flow in the air supply path to the heat exchange element, The outdoor-side air supply switching unit and the indoor-side air supply switching unit that reverse the flow direction of the supply airflow in the heat exchange element, the outdoor-side air supply switching unit, the outdoor and the first opening or the first Either one of the two openings communicates, and the indoor air supply switching unit communicates either the first opening or the second opening with the room, and the outdoor air supply switching unit and the By operating the indoor air supply switching unit at the same time, the first opening communicates with the outside. Switching a first air supply state and the second opening and chamber communicates, and a second air supply state and the first opening and the chamber is communicated with the outdoor said second opening communicated with with Te, which has a configuration that you reverse the flow direction of the supply flow flowing through the heat exchanger in the device, thereby is to achieve the intended purpose.

また、室外の空気を室内に取り込む給気経路と、室内の空気を室外に排出する排気経路と、前記給気経路と前記排気経路との間で熱交換を行う熱交換素子と、前記排気経路中の排気流を前記熱交換素子に流すために前記熱交換素子に開口した第三開口部および第四開口部と、前記熱交換素子内の排気流の流通方向を反転させる室外側排気切替部と室内側排気切替部とを備え、前記室外側排気切替部は、室外と前記第三開口部または前記第四開口部の何れか一方を連通させ、前記室内側排気切替部は、前記第三開口部または前記第四開口部の何れか一方を室内と連通させ、前記室外側排気切替部と前記室内側排気切替部を同時に動作させることで、前記第三開口部と室外とが連通するとともに前記第四開口部と室内とが連通する第一排気状態と、前記第三開口部と室内とが連通するとともに前記第四開口部と室外とが連通する第二排気状態とを切り替えて、前記熱交換素子内を流れる前記排気流の流通方向を反転するという構成にしてもよく、これにより所期の目的を達成するものである。 An air supply path for taking outdoor air into the room, an exhaust path for discharging indoor air to the outdoors, a heat exchange element for exchanging heat between the air supply path and the exhaust path, and the exhaust path A third opening and a fourth opening opened in the heat exchange element for flowing an exhaust flow therein to the heat exchange element, and an outdoor exhaust switching unit for reversing the flow direction of the exhaust flow in the heat exchange element And the indoor side exhaust gas switching unit, the outdoor side exhaust gas switching unit communicates either the outside or the third opening or the fourth opening, and the indoor side exhaust gas switching unit is Either the opening or the fourth opening communicates with the room, and the outdoor exhaust switching unit and the indoor exhaust switching unit are operated at the same time, so that the third opening communicates with the outside. A first exhaust state in which the fourth opening communicates with the room; By switching the second exhaust state where said third opening and chamber communicating with the outdoor said fourth opening communicated with, that you reverse the flow direction of the exhaust flow through the heat exchanger in the device It may be configured to achieve the intended purpose.

本発明の熱交換形換気装置によれば、室外の空気を室内に取り込む給気経路と、室内の空気を室外に排出する排気経路と、前記給気経路と前記排気経路との間で熱交換を行う熱交換素子と、前記給気経路中の給気流を前記熱交換素子に流すために前記熱交換素子に開口した第一開口部および第二開口部と、前記熱交換素子内の給気流の流通方向を反転させる室外側給気切替部と室内側給気切替部とを備え、前記室外側給気切替部は、室外と前記第一開口部または前記第二開口部の何れか一方を連通させ、前記室内側給気切替部は、前記第一開口部または前記第二開口部の何れか一方を室内と連通させ、前記室外側給気切替部と前記室内側給気切替部を同時に動作させることで、前記第一開口部と室外とが連通するとともに前記第二開口部と室内とが連通する第一給気状態と、前記第一開口部と室内とが連通するとともに前記第二開口部と室外とが連通する第二給気状態とを切り替えるという構成にしたことにより、室外がきわめて低い温度になり熱交換素子内部の排気経路に結露・氷結が発生して熱交換換気が困難になる時に、第一給気状態と、第二給気状態とを切り替えることで、熱交換素子内を流れる給気流の流通方向を反転させる。   According to the heat exchange ventilator of the present invention, heat exchange between the air supply path for taking outdoor air into the room, the exhaust path for discharging indoor air to the outside, and the air supply path and the exhaust path. A heat exchanging element, a first opening and a second opening that are opened in the heat exchanging element in order to flow an air flow in the air supply path to the heat exchanging element, and an air supply air in the heat exchanging element An outdoor-side air supply switching unit and an indoor-side air supply switching unit that reverse the flow direction of the outdoor air-supply switching unit, wherein the outdoor-side air supply switching unit is configured to connect either the outdoor or the first opening or the second opening. The indoor air supply switching unit communicates either the first opening or the second opening with the room, and the outdoor air supply switching unit and the indoor air supply switching unit are simultaneously connected. By operating, the first opening and the outdoor communicate with each other and the second opening and the chamber By switching between the first air supply state in which the first opening and the room communicate with each other and the second air supply state in which the second opening and the outside communicate with each other, When the temperature becomes extremely low and condensation or icing occurs in the exhaust path inside the heat exchange element, making heat exchange ventilation difficult, heat exchange can be performed by switching between the first air supply state and the second air supply state. The flow direction of the air supply flowing through the element is reversed.

給気流の流通方向を反転させることにより、熱交換前の冷たい給気流が流入していた第一開口部から熱交換後の暖かい給気流が流出し、熱交換後の暖かい給気流が流出していた第二開口部に熱交換前の冷たい給気流が流入するようにし、熱交換素子内部の給気流路の温度分布を反転できる。   By reversing the flow direction of the supply air flow, the warm supply air after heat exchange flows out from the first opening where the cold supply air flow before heat exchange flows, and the warm supply air after heat exchange flows out. In addition, the cold air supply air before heat exchange flows into the second opening, and the temperature distribution of the air supply flow path inside the heat exchange element can be reversed.

その結果、熱交換素子内部の相対的に低温となっていた部分、すなわち給気流が流入していた第一開口部近傍の排気経路に発生していた結露・結氷を給気経路中の熱交換後の暖かい給気流により蒸発・融解できる。   As a result, heat exchange in the air supply path is achieved by the condensation and icing that have occurred in the part of the heat exchange element that is relatively cold, that is, in the exhaust path near the first opening where the air supply flow was flowing. It can be evaporated and melted by the warm air supply later.

さらに、熱交換前の給気流を切り替える室外側給気切替部と、熱交換後の給気流を切り替える室内側給気切替部とを別に備えることにより、給気流を切り替える際に熱交換前後の温度差・湿度差を持った気体が混合され、切替部内部に結露・結氷が発生する危険を低減することができる。このことにより、室外がきわめて低い温度になった場合であっても安定して給気流を反転させることができる。   Furthermore, by providing a separate outdoor air supply switching unit that switches the airflow before heat exchange and an indoor air supply switching unit that switches the airflow after heat exchange, the temperature before and after heat exchange when switching the airflow Gases with differences in humidity and humidity can be mixed to reduce the risk of condensation and icing inside the switching unit. This makes it possible to stably reverse the air supply air even when the outdoor temperature is extremely low.

また、室外の空気を室内に取り込む給気経路と、室内の空気を室外に排出する排気経路と、前記給気経路と前記排気経路との間で熱交換を行う熱交換素子と、前記排気経路中の排気流を前記熱交換素子に流すために前記熱交換素子に開口した第三開口部および第四開口部と、前記熱交換素子内の排気流の流通方向を反転させる室外側排気切替部と室内側排気切替部とを備え、前記室外側排気切替部は、室外と前記第三開口部または前記第四開口部の何れか一方を連通させ、前記室内側排気切替部は、前記第三開口部または前記第四開口部の何れか一方を室内と連通させ、前記室外側排気切替部と前記室内側排気切替部を同時に動作させることで、前記第三開口部と室外とが連通するとともに前記第四開口部と室内とが連通する第一排気状態と、前記第三開口部と室内とが連通するとともに前記第四開口部と室外とが連通する第二排気状態とを切り替えるという構成にしたことにより、室外がきわめて低い温度になり熱交換素子内部の排気経路に結露・氷結が発生して熱交換換気が困難になる時に、第一排気状態と、第二排気状態とを切り替えることで、熱交換素子内を流れる排気流の流通方向を反転させる。   An air supply path for taking outdoor air into the room, an exhaust path for discharging indoor air to the outdoors, a heat exchange element for exchanging heat between the air supply path and the exhaust path, and the exhaust path A third opening and a fourth opening opened in the heat exchange element for flowing an exhaust flow therein to the heat exchange element, and an outdoor exhaust switching unit for reversing the flow direction of the exhaust flow in the heat exchange element And the indoor side exhaust gas switching unit, the outdoor side exhaust gas switching unit communicates either the outside or the third opening or the fourth opening, and the indoor side exhaust gas switching unit is Either the opening or the fourth opening communicates with the room, and the outdoor exhaust switching unit and the indoor exhaust switching unit are operated at the same time, so that the third opening communicates with the outside. A first exhaust state in which the fourth opening communicates with the room; By switching the second exhaust state in which the third opening and the room communicate with each other and the fourth opening and the outside communicate with each other, the outdoor temperature becomes extremely low, and the exhaust inside the heat exchange element is exhausted. When condensation or icing occurs in the path and heat exchange ventilation becomes difficult, the flow direction of the exhaust flow flowing in the heat exchange element is reversed by switching between the first exhaust state and the second exhaust state.

排気流の流通方向を反転させることにより、熱交換前の暖かい排気流が流入していた第四開口部から熱交換後の冷たい排気流が流出し、熱交換後の冷たい排気流が流出していた第三開口部に熱交換前の暖かい排気流が流入するようにし、熱交換素子内部の排気経路の温度分布を反転できる。   By reversing the flow direction of the exhaust flow, the cold exhaust flow after heat exchange flows out from the fourth opening where the warm exhaust flow before heat exchange flows in, and the cold exhaust flow after heat exchange flows out The warm exhaust flow before heat exchange flows into the third opening, and the temperature distribution of the exhaust path inside the heat exchange element can be reversed.

その結果、熱交換素子内部の相対的に低温となっていた部分、すなわち排気流が流出していた第三開口部近傍の排気経路に発生していた結露・結氷を熱交換前の暖かい排気流により蒸発・融解できる。   As a result, the dew condensation and icing that have occurred in the portion of the heat exchange element that is relatively cold, that is, the exhaust path near the third opening where the exhaust flow has flowed out, are removed from the warm exhaust flow before the heat exchange. Can evaporate and melt.

さらに、熱交換前の排気流を切り替える室外側排気切替部と、熱交換後の排気流を切り替える室内側排気切替部とを別に備えることにより、排気流を切り替える際に熱交換前後の温度差・湿度差を持った気体が混合され、切替部内部に結露・結氷が発生する危険を低減することができる。このことにより、室外がきわめて低い温度になった場合であっても安定して排気流を反転させることができる。   Furthermore, by providing an outdoor exhaust switching unit that switches the exhaust flow before heat exchange and an indoor exhaust switching unit that switches the exhaust flow after heat exchange, the temperature difference before and after the heat exchange when switching the exhaust flow Gases with a difference in humidity can be mixed to reduce the risk of condensation or icing inside the switching unit. As a result, the exhaust flow can be stably reversed even when the outdoor temperature is extremely low.

以上の作用により熱交換換気を行いながら結露・結氷を蒸発・融解することができる熱交換換気装置を提供することを目的とする。   An object of the present invention is to provide a heat exchange ventilator capable of evaporating and melting condensation and ice while performing heat exchange ventilation by the above-described action.

本発明の実施の形態1における第一給気状態および第一排気状態の熱交換形換気装置を示す構成模式図The structure schematic diagram which shows the heat exchange type | formula ventilation apparatus of the 1st air supply state and 1st exhaust state in Embodiment 1 of this invention 本発明の実施の形態1における第二給気状態および第二排気状態の熱交換形換気装置を示す構成模式図Configuration schematic diagram showing a heat exchange type ventilator in the second air supply state and the second exhaust state in the first embodiment of the present invention 本発明の実施の形態1における室外側給気切替部の断面を示す構成図The block diagram which shows the cross section of the outdoor air supply switching part in Embodiment 1 of this invention 本発明の実施の形態1における第二給気状態および第一排気状態の熱交換形換気装置を示す構成模式図Configuration schematic diagram showing a heat exchange type ventilator in the second air supply state and the first exhaust state in the first embodiment of the present invention 本発明の実施の形態1における第一給気状態および第二排気状態の熱交換形換気装置を示す構成模式図The structure schematic diagram which shows the heat exchange type | formula ventilation apparatus of the 1st air supply state and 2nd exhaust state in Embodiment 1 of this invention 室外側給気切替部近傍の構成模式図Schematic diagram of the configuration near the outdoor air supply switching unit 従来の熱交換気ユニットを示す概略断面の構成図Configuration diagram of schematic cross section showing a conventional heat exchange air unit

本発明の請求項1記載の熱交換形換気装置は、室外の空気を室内に取り込む給気経路と、室内の空気を室外に排出する排気経路と、前記給気経路と前記排気経路との間で熱交換を行う熱交換素子と、前記給気経路中の給気流を前記熱交換素子に流すために前記熱交換素子に開口した第一開口部および第二開口部と、前記熱交換素子内の給気流の流通方向を反転させる室外側給気切替部と室内側給気切替部とを備え、前記室外側給気切替部は、室外と前記第一開口部または前記第二開口部の何れか一方を連通させ、前記室内側給気切替部は、前記第一開口部または前記第二開口部の何れか一方を室内と連通させ、前記室外側給気切替部と前記室内側給気切替部を同時に動作させることで、前記第一開口部と室外とが連通するとともに前記第二開口部と室内とが連通する第一給気状態と、前記第一開口部と室内とが連通するとともに前記第二開口部と室外とが連通する第二給気状態とを切り替えて、前記熱交換素子内を流れる前記給気流の流通方向を反転するという構成を有する。 The heat exchange type ventilator according to claim 1 of the present invention includes an air supply path for taking outdoor air into the room, an exhaust path for discharging indoor air to the outside, and between the air supply path and the exhaust path. A heat exchange element for exchanging heat in the heat exchange element, a first opening and a second opening opened in the heat exchange element for flowing a supply airflow in the air supply path to the heat exchange element, and in the heat exchange element An outdoor-side air supply switching unit and an indoor-side air supply switching unit that reverse the flow direction of the air-supply airflow, and the outdoor-side air supply switching unit is either the outdoor, the first opening, or the second opening. One of the first opening and the second opening communicates with the room, and the outdoor-side air supply switching unit and the indoor-side air supply switching. By operating the part simultaneously, the first opening and the outdoor communicate with each other and the second opening A first air supply state parts and the chamber is communicated, the the first opening and the chamber and the outdoor said second opening communicated with by switching between the second air supply state communicating, the heat exchanger It has a configuration that you reverse the flow direction of the supply flow flowing through the device.

これにより、室外がきわめて低い温度になり熱交換素子内部の排気経路に結露・氷結が発生して熱交換換気が困難になる時に、第一給気状態と、第二給気状態とを切り替えることで、熱交換素子内を流れる給気流の流通方向を反転する。   This makes it possible to switch between the first air supply state and the second air supply state when the outdoor temperature becomes extremely low and condensation or icing occurs in the exhaust path inside the heat exchange element, making heat exchange ventilation difficult. Thus, the flow direction of the air supply flowing through the heat exchange element is reversed.

給気流の流通方向を反転することにより、熱交換前の冷たい給気流が流入していた第一開口部から熱交換後の暖かい給気流が流出し、熱交換後の暖かい給気流が流出していた第二開口部に熱交換前の冷たい給気流が流入するようになり、熱交換素子内部の給気流路の温度分布が反転する。   By reversing the flow direction of the supply air flow, the warm supply air after the heat exchange flows out from the first opening where the cold supply air flow before the heat exchange flows, and the warm supply air after the heat exchange flows out. The cold air supply air before heat exchange flows into the second opening, and the temperature distribution of the air supply flow path inside the heat exchange element is reversed.

その結果、熱交換素子内部の相対的に低温となっていた部分、すなわち給気流が流入していた第一開口部近傍の排気経路に発生していた結露・結氷を給気経路中の熱交換後の暖かい給気流により暖めて蒸発・融解することができる。   As a result, heat exchange in the air supply path is achieved by the condensation and icing that have occurred in the part of the heat exchange element that is relatively cold, that is, in the exhaust path near the first opening where the air supply flow was flowing. It can be warmed and evaporated / melted by a warm air supply later.

さらに、熱交換前の給気流を切り替える室外側給気切替部と、熱交換後の給気流を切り替える室内側給気切替部とを別に備えることにより、給気流を切り替える際に熱交換前後の温度差・湿度差を持った気体が混合され、切替部内部に結露・結氷が発生する危険を低減することができる。このことにより、室外がきわめて低い温度になった場合であっても安定して給気流を反転させることができる。   Furthermore, by providing a separate outdoor air supply switching unit that switches the airflow before heat exchange and an indoor air supply switching unit that switches the airflow after heat exchange, the temperature before and after heat exchange when switching the airflow Gases with differences in humidity and humidity can be mixed to reduce the risk of condensation and icing inside the switching unit. This makes it possible to stably reverse the air supply air even when the outdoor temperature is extremely low.

以上の作用により熱交換換気を行いながら結露・結氷を蒸発・融解させることができるという効果を奏する。   With the above action, it is possible to evaporate and melt condensation and ice while performing heat exchange ventilation.

また、室外側給気切替部と室内側給気切替部はそれぞれ断熱性を有する素材からなるという構成にしてもよい。   The outdoor air supply switching unit and the indoor air supply switching unit may be made of a material having heat insulation properties.

これにより、室外側給気切替部または室内側給気切替部が給気経路を切り替える時に、切替前に給気流が流通していた経路と切替後に給気流が流通した経路との間で温度差が生じた場合であっても、両経路間で熱交換が生じることを抑制することができる。そのため、前記熱交換による室外側給気切替部または室内側給気切替部近傍の給気経路内部における結露・結氷の発生を抑制し、給気切替部の結露・結氷による動作不全の発生を抑制することができるため、継続的に給気流の流通方向を反転させ、熱交換換気を行いながら結露・結氷を蒸発・融解させることができるという効果を奏する。   As a result, when the outdoor air supply switching unit or the indoor air supply switching unit switches the air supply path, the temperature difference between the path through which the air supply air flows before switching and the path through which the air supply air flows after switching. Even if this occurs, heat exchange between the two paths can be suppressed. Therefore, the occurrence of condensation and icing in the air supply path near the outdoor air supply switching unit or the indoor air supply switching unit due to the heat exchange is suppressed, and the occurrence of malfunction due to condensation and icing in the air supply switching unit is suppressed. Therefore, it is possible to continuously reverse the flow direction of the supply airflow, and to evaporate and melt condensation and ice while performing heat exchange ventilation.

また、室外側給気切替部を迂回して、第一給気状態に室外と第二開口部を連通させ、第二給気状態に室外と第一開口部を連通させる給気バイパスを備える構成としてもよい。   Further, a configuration is provided that includes an air supply bypass that bypasses the outdoor air supply switching unit, communicates the outdoor and second openings in the first air supply state, and communicates the outdoor and first openings in the second air supply state. It is good.

これにより、室外がきわめて低い温度になり、第一給気状態と第二給気状態を切り替えることで熱交換素子内部の結露・結氷を蒸発・融解させるときに、給気バイパスを用いて給気流の一部を、前記熱交換素子を流通させずに室内へ給気することができる。そのため、前記熱交換素子全体の温度低下を抑制することができ、前記給気流の流通方向の反転による前記熱交換素子内部の結露・結氷の蒸発・融解を促進することができる。   As a result, the outdoor air temperature becomes extremely low, and the air supply bypass is used to evaporate and melt the condensation and icing inside the heat exchange element by switching between the first air supply state and the second air supply state. A part of the air can be supplied into the room without circulating the heat exchange element. Therefore, the temperature drop of the whole heat exchange element can be suppressed, and the condensation and ice evaporation and melting inside the heat exchange element due to the reversal of the flow direction of the supply airflow can be promoted.

また、室外の空気を室内に取り込む給気経路と、室内の空気を室外に排出する排気経路と、前記給気経路と前記排気経路との間で熱交換を行う熱交換素子と、前記排気経路中の排気流を前記熱交換素子に流すために前記熱交換素子に開口した第三開口部および第四開口部と、前記熱交換素子内の排気流の流通方向を反転させる室外側排気切替部と室内側排気切替部とを備え、前記室外側排気切替部は、室外と前記第三開口部または前記第四開口部の何れか一方を連通させ、前記室内側排気切替部は、前記第三開口部または前記第四開口部の何れか一方を室内と連通させ、前記室外側排気切替部と前記室内側排気切替部を同時に動作させることで、前記第三開口部と室外とが連通するとともに前記第四開口部と室内とが連通する第一排気状態と、前記第三開口部と室内とが連通するとともに前記第四開口部と室外とが連通する第二排気状態とを切り替えて、前記熱交換素子内を流れる前記排気流の流通方向を反転するという構成にしてもよい。 An air supply path for taking outdoor air into the room, an exhaust path for discharging indoor air to the outdoors, a heat exchange element for exchanging heat between the air supply path and the exhaust path, and the exhaust path A third opening and a fourth opening opened in the heat exchange element for flowing an exhaust flow therein to the heat exchange element, and an outdoor exhaust switching unit for reversing the flow direction of the exhaust flow in the heat exchange element And the indoor side exhaust gas switching unit, the outdoor side exhaust gas switching unit communicates either the outside or the third opening or the fourth opening, and the indoor side exhaust gas switching unit is Either the opening or the fourth opening communicates with the room, and the outdoor exhaust switching unit and the indoor exhaust switching unit are operated at the same time, so that the third opening communicates with the outside. A first exhaust state in which the fourth opening communicates with the room; By switching the second exhaust state where said third opening and chamber communicating with the outdoor said fourth opening communicated with, that you reverse the flow direction of the exhaust flow through the heat exchanger in the device It may be configured.

これにより、室外がきわめて低い温度になり熱交換素子内部の排気経路に結露・氷結が発生して熱交換換気が困難になる時に、第一排気状態と、第二排気状態とを切り替えることで、熱交換素子内を流れる排気流の流通方向を反転させることができる。そのため、熱交換前の暖かい排気流が流入していた第四開口部から熱交換後の冷たい排気流が流出し、熱交換後の冷たい排気流が流出していた第三開口部に熱交換前の暖かい排気流が流入することで、熱交換素子内部の排気経路の温度分布を反転できる。その結果、熱交換換気を行いながら、熱交換素子内部の相対的に低温となっていた部分、すなわち排気流が流出していた第三開口部近傍の排気経路に発生していた結露・結氷を熱交換前の暖かい排気流により蒸発・融解できるという効果を奏する。   As a result, when the outdoor temperature becomes extremely low and condensation or icing occurs in the exhaust path inside the heat exchange element and heat exchange ventilation becomes difficult, by switching between the first exhaust state and the second exhaust state, The flow direction of the exhaust flow flowing in the heat exchange element can be reversed. Therefore, the cold exhaust flow after the heat exchange flows out from the fourth opening where the warm exhaust flow before the heat exchange flows, and the third opening where the cold exhaust flow after the heat exchange flows out before the heat exchange. As a result, the temperature distribution of the exhaust path inside the heat exchange element can be reversed. As a result, while performing heat exchange ventilation, the dew condensation and icing that occurred in the part of the heat exchange element that was relatively cold, that is, the exhaust path near the third opening where the exhaust flow was flowing out, were removed. It has the effect of being able to evaporate and melt by the warm exhaust flow before heat exchange.

さらに、熱交換前の排気流を切り替える室外側排気切替部と、熱交換後の排気流を切り替える室内側排気切替部とを別に備えることにより、排気流を切り替える際に熱交換前後の温度差・湿度差を持った気体が混合され、切替部内部に結露・結氷が発生する危険を低減することができる。このことにより、室外がきわめて低い温度になった場合であっても安定して排気流を反転させることができるという効果を奏する。   Furthermore, by providing an outdoor exhaust switching unit that switches the exhaust flow before heat exchange and an indoor exhaust switching unit that switches the exhaust flow after heat exchange, the temperature difference before and after the heat exchange when switching the exhaust flow Gases with a difference in humidity can be mixed to reduce the risk of condensation or icing inside the switching unit. As a result, the exhaust flow can be stably reversed even when the outdoor temperature is extremely low.

また、室外側排気切替部と室内側排気切替部はそれぞれ断熱性の高い素材からなるという構成にしてもよい。   Moreover, you may make it the structure that an outdoor side exhaust gas switching part and an indoor side exhaust gas switching part consist of a material with high heat insulation, respectively.

これにより、室外側排気切替部または室内側排気切替部が排気経路を切り替える時に、切替前に排気流が流通していた経路と切替後に排気流が流通した経路との間で温度差が生じた場合であっても、両経路間で熱交換が生じることを抑制することができる。そのため、前記熱交換による室外側排気切替部または室内側排気切替部近傍の排気経路内部における結露・結氷の発生を抑制し、排気切替部の結露・結氷による動作不全の発生を抑制することができるため、継続的に排気流の流通方向を反転させ、熱交換換気を行いながら結露・結氷を蒸発・融解させることができるという効果を奏する。   As a result, when the outdoor exhaust switching unit or the indoor exhaust switching unit switches the exhaust path, a temperature difference occurs between the path through which the exhaust flow circulated before switching and the path through which the exhaust flow circulated after switching. Even if it is a case, it can suppress that heat exchange arises between both paths. Therefore, it is possible to suppress the occurrence of condensation or icing in the exhaust path near the outdoor exhaust switching unit or the indoor exhaust switching unit due to the heat exchange, and to suppress the occurrence of malfunction due to condensation or icing in the exhaust switching unit. Therefore, it is possible to continuously reverse the flow direction of the exhaust flow and evaporate and melt the condensation and ice while performing heat exchange ventilation.

また、排気経路に通風するための排気送風手段を備え、室外側排気切替部または室内側排気切替部にて切り替えを行なう間、前記排気送風手段の搬送動力を停止または低下させるという構成にしてもよい。   In addition, an exhaust blower for ventilating the exhaust path is provided, and the conveyance power of the exhaust blower is stopped or reduced while switching is performed at the outdoor exhaust switching unit or the indoor exhaust switching unit. Good.

これにより、室外側排気切替部または室内側排気切替部にて切り替えを行なう時に、熱交換前の暖かい排気流が、熱交換素子を通過せずに熱交換後の冷たい排気流で冷やされた排気経路へ流れ込むことで、排気経路内に結露・結氷が発生することを抑制することができる。そのため、室外側排気切替部の結露・結氷による動作不全の発生を抑制することができ、継続的に排気流の流通方向を反転させ、熱交換換気を行いながら結露・結氷を蒸発・融解させることができるという効果を奏する。   As a result, when switching is performed at the outdoor exhaust switching unit or the indoor exhaust switching unit, the warm exhaust flow before heat exchange is cooled by the cold exhaust flow after heat exchange without passing through the heat exchange element. By flowing into the path, it is possible to suppress the occurrence of condensation or icing in the exhaust path. Therefore, it is possible to suppress the occurrence of malfunction due to condensation or icing in the outdoor exhaust switching part, and to continuously reverse the flow direction of the exhaust flow and evaporate and melt the condensation and icing while performing heat exchange ventilation. There is an effect that can be.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1および図2に本実施の形態における熱交換形換気装置の構成模式図を示す。後述するように、図1と図2とは、熱交換素子内部を流れる給気流および排気流の流通方向が反転している。
(Embodiment 1)
FIG. 1 and FIG. 2 show a schematic configuration diagram of a heat exchange type ventilator in the present embodiment. As will be described later, in FIGS. 1 and 2, the flow directions of the supply air flow and the exhaust flow flowing inside the heat exchange element are reversed.

本実施の形態における熱交換形換気装置は、本体箱1に室外より室外の空気を取り込む室外吸込口2と、室内へ室外の空気を給気する室内給気口3と、室内より室内の空気を取り込む室内吸込口4と、室外へ室内の空気を排出する室外排気口5とを備えている。   The heat exchange type ventilator according to the present embodiment includes an outdoor suction port 2 that takes outdoor air into the main body box 1 from the outside, an indoor air supply port 3 that supplies outdoor air to the room, and indoor air from the room. And an outdoor exhaust port 5 for discharging indoor air to the outside.

また、室外吸込口2と室内給気口3とを連通させた給気経路6と、室内吸込口4と室外排気口5とを連通させた排気経路7と、給気経路6を流れる給気流を送風するための給気送風手段8と、排気経路7を流れる排気流を送風するための排気送風手段9、給気経路6と排気経路7との間で熱交換を行う熱交換素子10とを備えている。   In addition, an air supply path 6 that connects the outdoor suction port 2 and the indoor air supply port 3, an exhaust path 7 that connects the indoor suction port 4 and the outdoor exhaust port 5, and a supply airflow that flows through the air supply path 6 Supply air blowing means 8 for blowing air, exhaust air blowing means 9 for blowing an exhaust flow flowing through the exhaust path 7, and a heat exchange element 10 for exchanging heat between the supply air path 6 and the exhaust path 7. It has.

熱交換素子10には給気経路6中を流れる給気流を流すために開口した第一開口部11および第二開口部12と、排気経路7中を流れる排気流を流すために開口した第三開口部13および第四開口部14を備えている。   The heat exchange element 10 has a first opening portion 11 and a second opening portion 12 that are opened for flowing a supply airflow flowing in the supply passage 6, and a third opening that is opened for flowing an exhaust flow flowing in the exhaust passage 7. An opening 13 and a fourth opening 14 are provided.

さらに、給気流の反転手段として、室外側給気切替部15と室内側給気切替部16とを備え、排気流の反転手段として、室外側排気切替部17と室内側排気切替部18とを備える。これら切替部の構造に関しては、図3に例示し、後述する。   Furthermore, an outdoor air supply switching unit 15 and an indoor air supply switching unit 16 are provided as air supply reversing means, and an outdoor exhaust gas switching unit 17 and an indoor exhaust switching unit 18 are provided as exhaust flow reversing means. Prepare. The structure of these switching units is illustrated in FIG. 3 and will be described later.

図1には第一給気状態の給気経路6と第一排気状態の排気経路7とを示した。第一給気状態の給気経路6は室外吸込口2から室外側給気切替部15と第一開口部11と第二開口部12と室内側給気切替部16と給気送風手段8とを経て室内給気口3を連通する経路となっている。第一排気状態の排気経路7は室内吸込口4から室内側排気切替部18と第四開口部14と第三開口部13と室外側排気切替部17と排気送風手段9とを経て室外排気口5を連通する経路となっている。   FIG. 1 shows an air supply path 6 in the first air supply state and an exhaust path 7 in the first exhaust state. The air supply path 6 in the first air supply state includes the outdoor air supply inlet 2, the outdoor air supply switching unit 15, the first opening 11, the second opening 12, the indoor air supply switching unit 16, and the air supply and blowing means 8. Through the indoor air supply port 3. The exhaust path 7 in the first exhaust state passes from the indoor suction port 4 through the indoor side exhaust switching part 18, the fourth opening part 14, the third opening part 13, the outdoor side exhaust switching part 17, and the exhaust air blowing means 9. 5 is a route that communicates 5.

図2には第二給気状態の給気経路6と第二排気状態の排気経路7を示した。第二給気状態の給気経路6は室外吸込口2から室外側給気切替部15と第二開口部12と第一開口部11と室内側給気切替部16と給気送風手段8とを経て室内給気口3を連通する経路となっている。第二排気状態の排気経路7は室内吸込口4から室内側排気切替部18と第三開口部13と第四開口部14と室外側排気切替部17とを経て室外排気口5を連通する経路となっている。   FIG. 2 shows an air supply path 6 in the second air supply state and an exhaust path 7 in the second exhaust state. The air supply path 6 in the second air supply state includes the outdoor air inlet 2, the outdoor air supply switching unit 15, the second opening 12, the first opening 11, the indoor air supply switching unit 16, and the air supply / air blowing means 8. Through the indoor air supply port 3. The exhaust path 7 in the second exhaust state is a path that communicates with the outdoor exhaust port 5 from the indoor suction port 4 through the indoor side exhaust switching unit 18, the third opening 13, the fourth opening 14, and the outdoor side exhaust switching unit 17. It has become.

図3には室外側給気切替部15の断面図を示した。図3(a)は室外と第一開口部11を連通させる第一給気状態を示し、図3(b)は室外と第二開口部12を連通させる第二給気状態を示している。室外側開口部19は室外と連通しており、第一開口部接続口20は第一開口部11と、第二開口部接続口21は第二開口部12とそれぞれ連通している。   FIG. 3 shows a cross-sectional view of the outdoor air supply switching unit 15. 3A shows a first air supply state in which the outdoor and the first opening 11 are communicated, and FIG. 3B shows a second air supply state in which the outdoor and the second opening 12 are in communication. The outdoor opening 19 communicates with the outside, the first opening connection port 20 communicates with the first opening 11, and the second opening connection port 21 communicates with the second opening 12.

切り替えは、第一仕切板22と第二仕切板23が軸24を通じて駆動部25によって回転されることで行う。軸24の回転によって、第一仕切板22または第二仕切板23が、室外側給気切替部15内壁面に対し平行になった場合に、給気経路6を第一仕切板22または第二仕切板23を越えて連通でき、室外側給気切替部15内壁面に対し垂直になった場合に、給気経路6を第一仕切板22または第二仕切板23により断絶することができる。   The switching is performed by the first partition plate 22 and the second partition plate 23 being rotated by the drive unit 25 through the shaft 24. When the first partition plate 22 or the second partition plate 23 is parallel to the inner wall surface of the outdoor air supply switching unit 15 by the rotation of the shaft 24, the air supply path 6 is changed to the first partition plate 22 or the second partition plate 22. The air supply path 6 can be disconnected by the first partition plate 22 or the second partition plate 23 when the partition plate 23 can be communicated and becomes perpendicular to the inner wall surface of the outdoor air supply switching unit 15.

さらに、第一仕切板22と第二仕切板23をお互いに垂直になるように構成することで、図3(a)および(b)のように、室外と第一開口部11または第二開口部12のいずれか一方のみが連通できる。   Furthermore, by configuring the first partition plate 22 and the second partition plate 23 to be perpendicular to each other, as shown in FIGS. 3A and 3B, the outdoor and the first opening 11 or the second opening. Only one of the parts 12 can communicate.

また、材質に関して、第一仕切板22と第二仕切板23はそれぞれ断熱性を有する、例えば、ABS等のエンジニアリングプラスチックで構成し、室外側給気切替部15の他の部位に関しても、断熱性の高い素材、例えば発泡スチロールなどを用いて構成する。   Moreover, regarding the material, the first partition plate 22 and the second partition plate 23 each have a heat insulation property, for example, are composed of engineering plastics such as ABS, and the other part of the outdoor air supply switching unit 15 is also a heat insulation property. The material is made of a high-quality material such as polystyrene foam.

本発明における断熱性を有する材料とは、熱伝達率の低い材料、例えば、1W/m・K以下、好ましくは0.1W/m・Kの材料等と、熱容量の大きな材料、例えば比熱が1J/g・K以上の材料等との少なくともどちらか一方の特性を満たすものを示す。両方の特性を満たすものであればなお好ましく、例示した発泡スチロールはこの両方の特性を満たす材料の一つである。   The material having heat insulation in the present invention is a material having a low heat transfer coefficient, for example, 1 W / m · K or less, preferably 0.1 W / m · K, and a material having a large heat capacity, for example, a specific heat of 1 J The material satisfying at least one of the characteristics such as a material of / g · K or more. It is still more preferable if both of the characteristics are satisfied, and the exemplified polystyrene foam is one of materials that satisfy both of these characteristics.

本実施の形態では、室内側給気切替部16と、室外側排気切替部17と、室内側排気切替部18とにおいても、室外側給気切替部15と同様の構成を備えたものとする。   In the present embodiment, the indoor-side air supply switching unit 16, the outdoor-side exhaust switching unit 17, and the indoor-side exhaust switching unit 18 also have the same configuration as the outdoor-side air supply switching unit 15. .

以上のような構成において、第一給気状態および第一排気状態から第二給気状態および第二排気状態へと切り替える操作について図1と図2とを用いて説明する。   In the above configuration, an operation for switching from the first supply state and the first exhaust state to the second supply state and the second exhaust state will be described with reference to FIGS. 1 and 2.

室外がきわめて低い温度条件、例えば−10℃以下のとき、図1に示す第一給気状態および第一排気状態では熱交換後の冷たい排気流が流出する第三開口部13近傍の排気経路7に結露・結氷が発生し熱交換換気が困難となる。   When the outdoor temperature is extremely low, for example, −10 ° C. or lower, the exhaust path 7 in the vicinity of the third opening 13 through which the cool exhaust flow after heat exchange flows out in the first supply state and the first exhaust state shown in FIG. Condensation and icing occur in the air, making heat exchange ventilation difficult.

ここで、室外側給気切替部15と室内側給気切替部16と室外側排気切替部17と室内側排気切替部18とを用い、図1に示す第一給気状態および第一排気状態から図2に示す第二給気状態および第二排気状態に切り替えることで、熱交換素子10内を流れる給気流および排気流の流通方向を反転させることができる。   Here, using the outdoor side air supply switching unit 15, the indoor side air supply switching unit 16, the outdoor side exhaust switching unit 17, and the indoor side exhaust switching unit 18, the first air supply state and the first exhaust state shown in FIG. 2 is switched to the second air supply state and the second exhaust state shown in FIG. 2, the flow direction of the air supply flow and the exhaust flow flowing in the heat exchange element 10 can be reversed.

反転の結果、熱交換前の冷たい給気流が流入していた第一開口部11から熱交換後の暖かい給気流が流出し、熱交換後の暖かい給気流が流出していた第二開口部12に熱交換前の冷たい給気流が流入する。また、熱交換前の暖かい排気流が流入していた第四開口部14から熱交換後の冷たい排気流が流出し、熱交換後の冷たい排気流が流出していた第三開口部13に熱交換前の暖かい排気流が流入するようになり、熱交換素子10内部の温度分布が反転する。   As a result of the inversion, the warm supply air after the heat exchange flows out from the first opening 11 into which the cold supply air before the heat exchange flows, and the second opening 12 from which the warm supply air after the heat exchange flows out. The cold airflow before heat exchange flows into the. In addition, a cold exhaust flow after heat exchange flows out from the fourth opening 14 into which the warm exhaust flow before heat exchange flows, and heat is supplied to the third opening 13 from which the cold exhaust flow after heat exchange flows out. The warm exhaust flow before exchange flows in, and the temperature distribution inside the heat exchange element 10 is reversed.

その結果、熱交換素子10内部で相対的に低温となっていた第四開口部14近傍の排気経路7が相対的に高温となり、発生していた結露・結氷を蒸発・融解することができる。   As a result, the exhaust path 7 in the vicinity of the fourth opening 14 that has been relatively cold inside the heat exchange element 10 becomes relatively hot, and the generated condensation and ice can be evaporated and melted.

また、第一給気状態および第二給気状態において、室外側給気切替部15には熱交換前の給気流のみが、室内側給気切替部16には熱交換後の給気流のみが連通される。そのため、それぞれの切替部において、熱交換前後の給気流が混合されることによる結露・結氷の発生を抑制することができ、切替部を安定して稼動することができるため、室外がきわめて低い温度条件であっても、上記切り替えを行うことができる。   Further, in the first air supply state and the second air supply state, only the air supply air before heat exchange is supplied to the outdoor air supply switch unit 15, and only the air supply air after heat exchange is supplied to the indoor air supply switch unit 16. Communicated. Therefore, in each switching unit, it is possible to suppress the formation of condensation and icing due to mixing of the airflow before and after heat exchange, and the switching unit can be operated stably, so the outdoor temperature is extremely low. The above switching can be performed even under conditions.

同様に、第一排気状態および第二排気状態において、室外側排気切替部17には熱交換後の排気流のみが、室内側排気切替部18には熱交換前の排気流のみが連通される。そのため、それぞれの切替部において、熱交換前後の排気流が混合されることによる結露・結氷の発生を抑制することができ、切替部を安定して稼動することができるため、室外がきわめて低い温度条件であっても、上記切り替えを行うことができる。   Similarly, in the first exhaust state and the second exhaust state, only the exhaust flow after heat exchange communicates with the outdoor exhaust switching unit 17, and only the exhaust flow before heat exchange communicates with the indoor exhaust switching unit 18. . Therefore, in each switching unit, it is possible to suppress the occurrence of condensation and icing due to mixing of the exhaust flow before and after heat exchange, and the switching unit can be operated stably, so the outdoor temperature is extremely low. The above switching can be performed even under conditions.

さらに、室外側給気切替部15および室内側給気切替部16、室外側排気切替部17、室内側排気切替部18が断熱性の高い素材からなることで、外気温の変動や、室内温度の変動により、切替前に給気流または排気流が流通していた経路と切替後に給気流または排気流が流通した経路との間で温度差が生じた場合であっても、切替部を介した熱交換が生じることを抑制することができる。そのため、前記熱交換による室外側給気切替部15および室内側給気切替部16、室外側排気切替部17、室内側排気切替部18近傍の給気経路および排気経路内部における結露・結氷の発生を抑制し、結露・結氷による動作不全の発生を抑制することができる。   Furthermore, since the outdoor side air supply switching unit 15, the indoor side air supply switching unit 16, the outdoor side exhaust switching unit 17, and the indoor side exhaust switching unit 18 are made of a highly heat-insulating material, fluctuations in outside air temperature, Even if there is a temperature difference between the path through which the supply airflow or exhaust flow circulated before switching and the path through which the supply airflow or exhaust flow circulated after switching, The occurrence of heat exchange can be suppressed. Therefore, the outdoor air supply switching unit 15 and the indoor air supply switching unit 16, the outdoor exhaust gas switching unit 17, and the air supply path in the vicinity of the indoor exhaust gas switching unit 18 and the generation of condensation and icing in the exhaust path due to the heat exchange. It is possible to suppress the occurrence of malfunction due to condensation and icing.

このように、結露・結氷が発生し熱交換換気が困難になった場合に第一給気状態および第一排気状態と第二給気状態および第二排気状態とを切り替え、給気流と排気流との流通方向を反転させることで、熱交換換気を行いながら結露・結氷を蒸発・融解させることができる。室外のきわめて低い温度条件が続く場合は、この切り替えを一定時間ごと、例えば1時間ごとに行うことにより、連続して熱交換換気運転ができる。   In this way, when condensation or icing occurs and heat exchange ventilation becomes difficult, the first air supply state, the first exhaust state, the second air supply state, and the second exhaust state are switched, and the air supply air flow and the exhaust air flow are changed. By reversing the flow direction, condensation and ice can be evaporated and melted while performing heat exchange ventilation. When the outdoor extremely low temperature condition continues, the heat exchange ventilation operation can be continuously performed by performing this switching at regular intervals, for example, every hour.

なお、実施の形態1では室内給気口3付近に給気送風手段8を備えたが、給気流を給気経路6に流すことのできる位置であればどこでもよく、例えば室外吸込口2と室外側給気切替部15との間でもよい。   In the first embodiment, the air supply / air blowing means 8 is provided in the vicinity of the indoor air supply port 3. However, any position can be used as long as the air supply air can flow through the air supply path 6. It may be between the outer air supply switching unit 15.

なお、実施の形態1では室外排気口5付近に排気送風手段9を備えたが、排気流を排気経路7に流すことのできる位置であればどこでもよく、例えば室内吸込口4と室内側排気切替部18との間でもよい。   Although the exhaust air blowing means 9 is provided in the vicinity of the outdoor exhaust port 5 in the first embodiment, it may be located anywhere as long as the exhaust flow can flow into the exhaust path 7, for example, the indoor suction port 4 and the indoor side exhaust gas switching. It may be between the unit 18.

なお、実施の形態1のように室内給気口3付近に給気送風手段8を備え、室外排気口5付近に排気送風手段9を備えた構成や、室外吸込口2付近に給気送風手段8を備え、室内吸込口4付近に排気送風手段9を備えた構成を用いると、熱交換素子10内部の給気経路6と排気経路7とが共に負圧または正圧となり、熱交換素子10を流れる給気流および排気流の圧力差が小さくなるため、熱交換素子10へかかる負担が軽減できより好適である。   As in the first embodiment, the air supply / air blowing means 8 is provided near the indoor air supply port 3 and the air supply / air blowing means 9 is provided near the outdoor exhaust port 5, or the air supply / air blowing means is provided near the outdoor suction port 2. 8 and an exhaust air blowing means 9 in the vicinity of the indoor suction port 4 is used, both the air supply path 6 and the exhaust path 7 inside the heat exchange element 10 become negative pressure or positive pressure, and the heat exchange element 10 Since the pressure difference between the supply air flow and the exhaust flow flowing through the space becomes small, the burden on the heat exchange element 10 can be reduced, which is more preferable.

なお、実施の形態1では室外側給気切替部15が第一仕切板22および第二仕切板23を備えることによって給気流の切り替えを行なったが、仕切板を用いずに、給気経路6を遮断する弁のようなものを備えるか、また、選択的に給気経路6の一部を動かし繋ぎかえる機構を備えたとしてもよく、その効果に差異を生じない。   In the first embodiment, the outdoor air supply switching unit 15 includes the first partition plate 22 and the second partition plate 23 to switch the air supply. However, the air supply path 6 is used without using the partition plate. Or a mechanism for selectively moving and reconnecting a part of the air supply path 6 without any difference in the effect.

なお、実施の形態1では、第一仕切板22および第二仕切板23に断熱性の高い素材を用いたが、仕切板自体ではなく、仕切板表面に断熱性の高い素材、例えば発泡スチロールなどを備えてもよく、その効果に差異を生じない。   In Embodiment 1, the first partition plate 22 and the second partition plate 23 are made of a highly heat-insulating material. However, instead of the partition plate itself, a highly heat-insulating material such as polystyrene foam is used on the surface of the partition plate. It may be prepared and does not make a difference in its effect.

なお、実施の形態1では、室外側給気切替部15と室内側給気切替部16および室外側排気切替部17、室内側排気切替部18とを同じ構成としたが、上記に挙げたように別な構成を用いてもよい。例えば、室外が室内よりも低温の場合、室外側給気切替部15に対し、室内側給気切替部16は相対的に温度が高く、結露・結氷が生じにくい。そのため、
室外側給気切替部15の断熱性をより高いものにする、例えば発泡スチロールを断熱材として用いその厚みを増す、といった構成の差異化が挙げられる。
In the first embodiment, the outdoor-side air supply switching unit 15, the indoor-side air supply switching unit 16, the outdoor-side exhaust switching unit 17, and the indoor-side exhaust switching unit 18 have the same configuration. Another configuration may be used. For example, when the outdoor temperature is lower than the indoor temperature, the indoor air supply switching unit 16 is relatively higher in temperature than the outdoor air supply switching unit 15, and condensation and icing are unlikely to occur. for that reason,
Differentiating configurations such as increasing the heat insulation property of the outdoor air supply switching unit 15, for example, increasing the thickness by using foamed polystyrene as a heat insulating material can be mentioned.

また、例えば熱交換素子10に顕熱交換素子を用いた場合、熱交換により排気流の相対湿度は増加し、給気流の相対湿度は減少する。そのため、室外側給気切替部15および室内側給気切替部16は、室外側排気切替部17および室内側排気切替部18に比べ相対的に結露・結氷が生じにくい。このため、給気流の切替部に対し、排気流の切替部の断熱性を増す構成や駆動部のトルクを上昇させるといった構成の差異化が挙げられる。   For example, when a sensible heat exchange element is used for the heat exchange element 10, the relative humidity of the exhaust air flow increases and the relative humidity of the supply air flow decreases due to heat exchange. Therefore, the outdoor-side air supply switching unit 15 and the indoor-side air supply switching unit 16 are relatively less likely to cause condensation and icing than the outdoor-side exhaust switching unit 17 and the indoor-side exhaust switching unit 18. For this reason, the difference of the structure which increases the heat insulation of the switching part of an exhaust flow, and the torque of a drive part with respect to the switching part of a supply airflow is mentioned.

なお、ここでは給気状態の切り替えと排気状態の切り替えとを同時に行なう場合について説明したが、排気状態を切り替えず給気状態のみ切り替えた場合であっても給気状態を切り替えず排気状態のみ切り替えた場合であっても排気経路7に発生していた結露・結氷を蒸発・融解できる。   In addition, although the case where the switching of the air supply state and the switching of the exhaust state is performed at the same time has been described here, even if the air supply state is switched without switching the exhaust state, only the exhaust state is switched without switching the air supply state Even in such a case, the dew condensation / icing formed in the exhaust path 7 can be evaporated / melted.

まず排気状態を切り替えず給気状態のみ切り替えた場合について図1と図4とを用いて説明する。   First, the case where only the air supply state is switched without switching the exhaust state will be described with reference to FIGS. 1 and 4.

室外がきわめて低い温度条件下において、前述のように図1に示す第一給気状態および第一排気状態では熱交換前の冷たい給気流が流入する第一開口部11と熱交換後の冷たい排気流が流出する第四開口部14との近傍の排気経路7に結露・結氷が発生し熱交換換気が困難になる。   As described above, in the first air supply state and the first exhaust state shown in FIG. 1, the first opening 11 into which the cold air supply air before heat exchange flows and the cold exhaust air after the heat exchange are provided under the extremely low temperature conditions outside. Condensation and icing occur in the exhaust path 7 in the vicinity of the fourth opening 14 from which the flow flows out, making it difficult to perform heat exchange ventilation.

ここで、図1に示す第一給気状態および第一排気状態から図4に示す第二給気状態および第一排気状態に切り替えることで、熱交換素子10内を流れる給気流の流通方向を反転させる。給気流の流通方向を反転させることにより、給気経路6では第一開口部11から熱交換後の暖かい給気流を流出させ、第二開口部12に熱交換前の冷たい給気流を流入させるようになり、熱交換素子10内部の給気経路6の温度分布が反転する。   Here, by switching from the first air supply state and the first exhaust state shown in FIG. 1 to the second air supply state and the first exhaust state shown in FIG. 4, the flow direction of the air supply air flowing through the heat exchange element 10 is changed. Invert. By reversing the flow direction of the air supply airflow, in the air supply path 6, the warm airflow after heat exchange flows out from the first opening 11, and the cold airflow before heat exchange flows into the second opening 12. Thus, the temperature distribution of the air supply path 6 inside the heat exchange element 10 is reversed.

その結果、熱交換素子10内部の相対的に低温となっていた第一開口部11と第四開口部14との近傍の排気経路7に発生していた結露・結氷を蒸発・融解できる。   As a result, it is possible to evaporate and melt the dew condensation / ice formation that has occurred in the exhaust path 7 in the vicinity of the first opening 11 and the fourth opening 14 that are relatively low in temperature inside the heat exchange element 10.

このように、結露・結氷が発生し熱交換換気が困難になった場合に第一給気状態と第二給気状態とを切り替え、給気流の流通方向を反転させることで、熱交換換気を行いながら結露・結氷を蒸発・融解させることができる。室外のきわめて低い温度条件が続く場合は、この切り替えを一定時間ごとに行うことにより、熱交換換気を連続して運転できる。   In this way, when heat exchange ventilation becomes difficult due to condensation or icing, switching between the first air supply state and the second air supply state and reversing the flow direction of the air supply air flow makes it possible to perform heat exchange ventilation. Condensation and ice can be evaporated and melted while performing. If the outdoor low temperature condition continues, heat exchange ventilation can be operated continuously by performing this switching at regular intervals.

次に、給気状態を切り替えず排気状態のみ切り替えた場合について図1と図5とを用いて説明する。   Next, the case where only the exhaust state is switched without switching the air supply state will be described with reference to FIGS.

図1では第一給気状態および第一排気状態を示しており、室外がきわめて低い温度条件下において、第一開口部11と第四開口部14との近傍の排気経路7に結露・結氷が発生し熱交換換気が困難になる。   FIG. 1 shows a first air supply state and a first exhaust state, and condensation and icing are formed in the exhaust passage 7 near the first opening 11 and the fourth opening 14 under a temperature condition where the outdoor temperature is extremely low. Heat exchange ventilation becomes difficult.

ここで、図5に示す第一給気状態および第二排気状態に切り替えることで、熱交換素子10内を流れる排気流の流通方向を反転させる。排気流の流通方向を反転させることにより、排気経路7では第三開口部13から熱交換後の冷たい排気流が流出し、第四開口部14に熱交換前の暖かい排気流が流入するようになり、熱交換素子10内部の排気経路7の温度分布が反転する。   Here, the flow direction of the exhaust flow flowing in the heat exchange element 10 is reversed by switching to the first supply state and the second exhaust state shown in FIG. By reversing the flow direction of the exhaust flow, in the exhaust path 7, the cold exhaust flow after heat exchange flows out from the third opening 13, and the warm exhaust flow before heat exchange flows into the fourth opening 14. Thus, the temperature distribution of the exhaust path 7 inside the heat exchange element 10 is reversed.

その結果、熱交換素子10内部の相対的に低温となっていた第一開口部11と第四開口部14との近傍の排気経路7に発生していた結露・結氷を蒸発・融解できる。   As a result, it is possible to evaporate and melt the dew condensation / ice formation that has occurred in the exhaust path 7 in the vicinity of the first opening 11 and the fourth opening 14 that are relatively low in temperature inside the heat exchange element 10.

このように、結露・結氷が発生し熱交換換気が困難になる場合に第一排気状態と第二排気状態とを切り替え、排気流の流通方向を反転させることで、熱交換換気を行いながら結露・結氷を蒸発・融解させることができる。室外のきわめて低い温度条件が続く場合は、この切り替えを一定時間ごとに行うことにより、熱交換換気を連続して運転できる。   In this way, when condensation and icing occur and heat exchange ventilation becomes difficult, dew condensation occurs while performing heat exchange ventilation by switching between the first exhaust state and the second exhaust state and reversing the flow direction of the exhaust flow.・ I can evaporate and melt the ice. If the outdoor low temperature condition continues, heat exchange ventilation can be operated continuously by performing this switching at regular intervals.

また、図6に室外側給気切替部15近傍の構成模式図として示したように、室外側給気切替部15を迂回して、第一給気状態に室外と第二開口部12を連通させる第一給気バイパス26と、第二給気状態に室外と第一開口部11を連通させる第二給気バイパス27とを備える構成とした。   Further, as shown in the schematic configuration diagram in the vicinity of the outdoor air supply switching unit 15 in FIG. 6, the outdoor air supply switching unit 15 is bypassed and the outdoor and the second opening 12 are communicated in the first air supply state. It was set as the structure provided with the 2nd air supply bypass 27 which makes the outdoor and the 1st opening part 11 communicate in the 2nd air supply state.

第一給気バイパス26および第二給気バイパス27にはそれぞれ、第一閉止弁28および第二閉止弁29が備えられ、第一閉止弁28を開くことで第一給気バイパス26を連通させ、第二閉止弁29を開くことで第二給気バイパス27を連通させることができる。   The first air supply bypass 26 and the second air supply bypass 27 are respectively provided with a first closing valve 28 and a second closing valve 29, and the first air supply bypass 26 is communicated by opening the first closing valve 28. The second air supply bypass 27 can be communicated by opening the second shut-off valve 29.

この構成により、第一給気状態では第一閉止弁28を開き第二閉止弁29を閉じることで、第一給気バイパス26を用いて、給気流の一部を、前記熱交換素子10を流通させずに室内へ給気することができる。また、第二給気状態では第一閉止弁28を閉じ第二閉止弁29を開くことで、第二給気バイパス27を用いて、給気流の一部を、前記熱交換素子10を流通させずに室内へ給気することができる。   With this configuration, in the first air supply state, the first shut-off valve 28 is opened and the second shut-off valve 29 is closed, so that the heat exchange element 10 is partly supplied to the heat exchange element 10 using the first air supply bypass 26. Air can be supplied indoors without being distributed. Further, in the second air supply state, by closing the first shut-off valve 28 and opening the second shut-off valve 29, a part of the air supply air is circulated through the heat exchange element 10 using the second air supply bypass 27. It is possible to supply air into the room without any problems.

この結果、前記熱交換素子10全体の温度低下を抑制することができ、前記給気流の流通方向の反転による前記熱交換素子10内部の結露・結氷の蒸発・融解を促進することができる。   As a result, the temperature drop of the entire heat exchange element 10 can be suppressed, and condensation / ice evaporation inside the heat exchange element 10 due to the reversal of the flow direction of the supply airflow can be promoted.

なお、図6には第一給気バイパス26と第二給気バイパス27を用いた場合を示したが、室外側給気切替部15を切り替え途中で停止させることによっても同様の効果を得ることができる。例えば、図3に示した構成の場合、軸24によって第一仕切板22および第二仕切板23を回転させる際に、第一仕切板22または第二仕切板23が室外側給気切替部15内部の壁面に対し垂直になる前に回転を停止することで、給気流を第一開口部11および第二開口部12へ連通させることができる。さらに、回転角度の調整により、給気流を第一開口部11および第二開口部12へ任意の割合で連通させることができる。この結果、前記熱交換素子10全体の温度低下を抑制することができ、前記給気流の流通方向の反転による前記熱交換素子10内部の結露・結氷の蒸発・融解を促進することができる。   In addition, although the case where the 1st air supply bypass 26 and the 2nd air supply bypass 27 were used was shown in FIG. 6, the same effect is acquired also by stopping the outdoor side air supply switching part 15 in the middle of switching. Can do. For example, in the case of the configuration shown in FIG. 3, when the first partition plate 22 and the second partition plate 23 are rotated by the shaft 24, the first partition plate 22 or the second partition plate 23 is connected to the outdoor air supply switching unit 15. By stopping the rotation before becoming perpendicular to the inner wall surface, the air supply air can be communicated with the first opening 11 and the second opening 12. Furthermore, the supply airflow can be communicated with the first opening 11 and the second opening 12 at an arbitrary ratio by adjusting the rotation angle. As a result, the temperature drop of the entire heat exchange element 10 can be suppressed, and condensation / ice evaporation inside the heat exchange element 10 due to the reversal of the flow direction of the supply airflow can be promoted.

また、室外側排気切替部17および室内側排気切替部18にて排気流の切り替えを行なう間、排気送風手段9の搬送動力を停止または低下させる構成とした。   In addition, while the outdoor flow switching unit 17 and the indoor exhaust switching unit 18 switch the exhaust flow, the conveyance power of the exhaust air blowing means 9 is stopped or reduced.

室外側排気切替部17は、熱交換後の冷たい排気流が流通するため、内部壁面の温度が低温になる。ここで、排気流の切り替え中に熱交換前の暖かい排気流が熱交換せずに室外側排気切替部17を通過した場合、内部壁面において結露・結氷し、室外側排気切替部17の動作不全を生じる可能性がある。そのため、この構成により、切り替え中の排気流を停止もしくは流量低下させることで、上記動作不全の発生を抑制することができる。   Since the cold exhaust flow after heat exchange flows through the outdoor exhaust switching unit 17, the temperature of the inner wall surface becomes low. Here, when the warm exhaust flow before heat exchange passes through the outdoor exhaust switching unit 17 without exchanging heat during switching of the exhaust flow, dew condensation or icing occurs on the inner wall surface, and the outdoor exhaust switching unit 17 malfunctions. May occur. Therefore, with this configuration, the occurrence of the malfunction can be suppressed by stopping or reducing the flow rate of the exhaust gas being switched.

なお、搬送動力を低下させず、例えば室内側排気切替部などの部位において切り替え中に圧損を上昇させる構成とすることによって排気流の風量を低下させてもよく、その効果に差異を生じない。   It should be noted that the air volume of the exhaust flow may be reduced by reducing the conveyance power, for example, by increasing the pressure loss during switching at a site such as the indoor exhaust switching unit, and the effect does not differ.

本発明にかかる熱交換形換気装置は、熱交換換気を行いながら結露・結氷を蒸発・融解させることができるものである。寒冷地等で熱交換素子内部において結露・結氷が発生する条件下においてに使用される、室外の空気を室内へ給気する給気流と、室内の空気を室外へ排気する排気流との間で熱交換する熱交換形換気装置等として有用である。   The heat exchange type ventilator according to the present invention is capable of evaporating and melting condensation and ice while performing heat exchange ventilation. Between a supply air flow that supplies outdoor air to the room and an exhaust flow that exhausts indoor air to the outside, which is used under conditions that cause condensation and icing inside the heat exchange element in cold regions. It is useful as a heat exchange type ventilation device that exchanges heat.

1 本体箱
2 室外吸込口
3 室内給気口
4 室内吸込口
5 室外排気口
6 給気経路
7 排気経路
8 給気送風手段
9 排気送風手段
10 熱交換素子
11 第一開口部
12 第二開口部
13 第三開口部
14 第四開口部
15 室外側給気切替部
16 室内側給気切替部
17 室外側排気切替部
18 室内側排気切替部
19 室外側開口部
20 第一開口部接続口
21 第二開口部接続口
22 第一仕切板
23 第二仕切板
24 軸
25 駆動部
26 第一給気バイパス
27 第二給気バイパス
28 第一閉止弁
29 第二閉止弁
DESCRIPTION OF SYMBOLS 1 Main body box 2 Outdoor suction port 3 Indoor air inlet 4 Indoor air inlet 5 Outdoor exhaust port 6 Air supply path 7 Exhaust path 8 Supply air blowing means 9 Exhaust air blowing means 10 Heat exchange element 11 First opening part 12 Second opening part 13 Third opening 14 Fourth opening 15 Outdoor air supply switching unit 16 Indoor air supply switching unit 17 Outdoor exhaust switching unit 18 Indoor exhaust switching unit 19 Outdoor opening 20 First opening connection port 21 First Two opening connection ports 22 First partition plate 23 Second partition plate 24 Shaft 25 Drive unit 26 First supply bypass 27 Second supply bypass 28 First shut-off valve 29 Second shut-off valve

Claims (6)

室外の空気を室内に取り込む給気経路と、室内の空気を室外に排出する排気経路と、前記給気経路と前記排気経路との間で熱交換を行う熱交換素子と、前記給気経路中の給気流を前記熱交換素子に流すために前記熱交換素子に開口した第一開口部および第二開口部と、前記熱交換素子内の給気流の流通方向を反転させる室外側給気切替部と室内側給気切替部とを備え、
前記室外側給気切替部は、室外と前記第一開口部または前記第二開口部の何れか一方を連通させ、
前記室内側給気切替部は、前記第一開口部または前記第二開口部の何れか一方を室内と連通させ、
前記室外側給気切替部と前記室内側給気切替部を同時に動作させることで、
前記第一開口部と室外とが連通するとともに前記第二開口部と室内とが連通する第一給気状態と、
前記第一開口部と室内とが連通するとともに前記第二開口部と室外とが連通する第二給気状態とを切り替えて、前記熱交換素子内を流れる前記給気流の流通方向を反転することを特徴とする熱交換形換気装置。
An air supply path for taking outdoor air into the room, an exhaust path for discharging indoor air to the outside, a heat exchange element for exchanging heat between the air supply path and the exhaust path, and the air supply path A first opening and a second opening that are opened in the heat exchange element in order to flow the air supply air flow to the heat exchange element, and an outdoor air supply switching unit that reverses the flow direction of the air supply air in the heat exchange element And an indoor air supply switching unit,
The outdoor side air supply switching unit communicates either the first opening or the second opening with the outdoor,
The indoor-side air supply switching unit communicates either the first opening or the second opening with the room,
By operating the outdoor side air supply switching unit and the indoor side air supply switching unit simultaneously,
A first air supply state in which the first opening and the outside communicate with each other and the second opening and the room communicate with each other;
By switching the second air supply state and the indoor said first opening communicating with the outdoor said second opening communicated with, you reverse the flow direction of the supply flow flowing through the heat exchanger in the device A heat exchange type ventilator characterized by that.
室外側給気切替部と室内側給気切替部はそれぞれ断熱性を有する素材からなることを特徴とする請求項1に記載の熱交換形換気装置。 The heat exchange type ventilation apparatus according to claim 1, wherein each of the outdoor air supply switching unit and the indoor air supply switching unit is made of a heat-insulating material. 室外側給気切替部を迂回して、第一給気状態に室外と第二開口部を連通させ、第二給気状態に室外と第一開口部を連通させる給気バイパスを備えることを特徴とした請求項1または2に記載の熱交換形換気装置。 It is provided with an air supply bypass that bypasses the outdoor air supply switching unit, communicates the outdoor and the second opening in the first air supply state, and communicates the outdoor and the first opening in the second air supply state. The heat exchange type ventilator according to claim 1 or 2. 室外の空気を室内に取り込む給気経路と、室内の空気を室外に排出する排気経路と、前記給気経路と前記排気経路との間で熱交換を行う熱交換素子と、前記排気経路中の排気流を前記熱交換素子に流すために前記熱交換素子に開口した第三開口部および第四開口部と、前記熱交換素子内の排気流の流通方向を反転させる室外側排気切替部と室内側排気切替部とを備え、前記室外側排気切替部は、室外と前記第三開口部または前記第四開口部の何れか一方を連通させ、前記室内側排気切替部は、前記第三開口部または前記第四開口部の何れか一方を室内と連通させ、前記室外側排気切替部と前記室内側排気切替部を同時に動作させることで、前記第三開口部と室外とが連通するとともに前記第四開口部と室内とが連通する第一排気状態と、前記第三開口部と室内とが連通するとともに前記第四開口部と室外とが連通する第二排気状態とを切り替えて、前記熱交換素子内を流れる前記排気流の流通方向を反転することを特徴とする熱交換形換気装置。 An air supply path for taking outdoor air into the room, an exhaust path for discharging indoor air to the outdoor, a heat exchange element for exchanging heat between the air supply path and the exhaust path, A third opening and a fourth opening opened in the heat exchange element for flowing an exhaust flow through the heat exchange element; an outdoor exhaust switching unit and a chamber for reversing the flow direction of the exhaust flow in the heat exchange element; An inside exhaust switching unit, wherein the outdoor side exhaust switching unit communicates either the outside or the third opening or the fourth opening, and the indoor side exhaust switching unit is configured to communicate with the third opening. Alternatively, any one of the fourth openings communicates with the room, and the outdoor exhaust switching unit and the indoor exhaust switching unit are operated simultaneously, so that the third opening communicates with the outside and the first A first exhaust state in which the four openings communicate with the room; The fourth opening and the outdoor is switched and a second exhaust state for communicating, characterized that you reverse the flow direction of the exhaust flow through the heat exchanger in the device together with the third opening and the chamber communicating Heat exchange type ventilator. 室外側排気切替部と室内側排気切替部はそれぞれ断熱性の高い素材からなることを特徴とする請求項4に記載の熱交換形換気装置。 The heat exchange type ventilation apparatus according to claim 4, wherein the outdoor side exhaust switching unit and the indoor side exhaust switching unit are each made of a highly heat-insulating material. 排気経路に通風するための排気送風手段を備え、室外側排気切替部または室内側排気切替部にて切り替えを行なう間、前記排気送風手段の搬送動力を停止または低下させることを特徴とする請求項5に記載の熱交換形換気装置。 An exhaust blower for ventilating the exhaust path is provided, and the transfer power of the exhaust blower is stopped or reduced while switching is performed in the outdoor exhaust switching unit or the indoor exhaust switching unit. 5. The heat exchange type ventilator according to 5.
JP2011055130A 2011-03-14 2011-03-14 Heat exchange ventilator Expired - Fee Related JP5845389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011055130A JP5845389B2 (en) 2011-03-14 2011-03-14 Heat exchange ventilator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011055130A JP5845389B2 (en) 2011-03-14 2011-03-14 Heat exchange ventilator

Publications (2)

Publication Number Publication Date
JP2012189290A JP2012189290A (en) 2012-10-04
JP5845389B2 true JP5845389B2 (en) 2016-01-20

Family

ID=47082665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011055130A Expired - Fee Related JP5845389B2 (en) 2011-03-14 2011-03-14 Heat exchange ventilator

Country Status (1)

Country Link
JP (1) JP5845389B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013823B1 (en) * 2013-11-28 2018-09-21 F2A - Fabrication Aeraulique Et Acoustique DOUBLE FLOW AIR / AIR EXCHANGER, AIR TREATMENT PLANT AND METHOD FOR CLEANING SUCH EXCHANGER
US20160216006A1 (en) * 2015-01-23 2016-07-28 Heatco, Inc. Indirect gas-fired condensing furnace
KR101790696B1 (en) * 2015-12-23 2017-10-26 주식회사 경동나비엔 Heat exchange type ventilator having bypass and recirculation function
CN111121260A (en) * 2018-10-30 2020-05-08 广东松下环境系统有限公司 Air supply device
CN112984678A (en) * 2021-02-08 2021-06-18 珠海格力电器科技有限公司 Air treatment device
CN114811850B (en) * 2022-04-28 2023-09-08 苏州浪潮智能科技有限公司 Air conditioner ice melting method and device and air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896988A (en) * 1981-12-07 1983-06-09 Matsushita Electric Ind Co Ltd Heat exchange method
JPH11223372A (en) * 1998-02-04 1999-08-17 Mitsubishi Electric Corp Ventilation device
JP2000193282A (en) * 1998-12-24 2000-07-14 Aisin Seiki Co Ltd Heat exchanging ventilator
KR100628078B1 (en) * 2005-02-15 2006-09-26 엘지전자 주식회사 Ventilation Systems
JP4644517B2 (en) * 2005-04-19 2011-03-02 伸和コントロールズ株式会社 4-port automatic switching valve
JP5617585B2 (en) * 2010-07-07 2014-11-05 パナソニック株式会社 Heat exchange ventilator

Also Published As

Publication number Publication date
JP2012189290A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5845389B2 (en) Heat exchange ventilator
JP4978303B2 (en) Heat exchange ventilator
JP5967403B2 (en) Air conditioner for vehicles
JP5617585B2 (en) Heat exchange ventilator
JP5925004B2 (en) Air conditioning ventilation system
WO2009128150A1 (en) Heat exchanging ventilating apparatus
JP4582243B2 (en) Dehumidification system
EP1485657B1 (en) Heat recuperator with frost protection
JPH04283333A (en) Heat exchanging ventilating device
CN104704300A (en) Air conditioning device
JP2011202814A (en) Heat exchange type ventilation device
JP2006071225A (en) Ventilating device and air conditioning system
WO2014017040A1 (en) Heat exchanger element and heat recovery ventilation device using same
JP2018100791A (en) Air Conditioning System
TWI439646B (en) Recuperative climate conditioning system
JP5845388B2 (en) Heat exchange ventilator
JP2018004115A (en) Heat exchange type ventilation device
JP2010243005A (en) Dehumidification system
JP2010071497A (en) Air conditioner
JP3649196B2 (en) Humidity control device
JP2002181349A (en) Heat pump air conditioner
JP6494691B2 (en) Heat exchange ventilator
JP5286903B2 (en) Heat exchange ventilator
KR100975103B1 (en) Heat exchanging ventilation device
WO2005057089A1 (en) Freeze prevention device for ventilator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R151 Written notification of patent or utility model registration

Ref document number: 5845389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees