JP6127264B2 - Heat exchange element and heat exchange type ventilation equipment using it - Google Patents

Heat exchange element and heat exchange type ventilation equipment using it Download PDF

Info

Publication number
JP6127264B2
JP6127264B2 JP2012276494A JP2012276494A JP6127264B2 JP 6127264 B2 JP6127264 B2 JP 6127264B2 JP 2012276494 A JP2012276494 A JP 2012276494A JP 2012276494 A JP2012276494 A JP 2012276494A JP 6127264 B2 JP6127264 B2 JP 6127264B2
Authority
JP
Japan
Prior art keywords
air passage
air
exhaust
heat exchange
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012276494A
Other languages
Japanese (ja)
Other versions
JP2014040991A (en
Inventor
泰世 杉本
泰世 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012276494A priority Critical patent/JP6127264B2/en
Priority to PCT/JP2013/004230 priority patent/WO2014017040A1/en
Publication of JP2014040991A publication Critical patent/JP2014040991A/en
Application granted granted Critical
Publication of JP6127264B2 publication Critical patent/JP6127264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Description

本発明は、寒冷地等で使用され、室内の空気を室外へ排気する排気流と、室外の空気を室内へ給気する給気流との間で熱交換する熱交換素子とそれを用いた熱交換形換気装置に関するものである。    The present invention is used in a cold district or the like, and a heat exchange element for exchanging heat between an exhaust flow for exhausting indoor air to the outside and a supply air flow for supplying outdoor air to the interior, and heat using the heat exchange element The present invention relates to a replaceable ventilation device.

この種の熱交換形換気装置は、冬季に室外の温度が、例えば−10℃以下のような低い温度になると、室内からの温かい排気流が流れる熱交換器内の流路内において、隣接する給気の流路に室外から通風される冷たい給気が流れることで、結露・結氷し目詰まりしていくが、従来の熱交換形換気装置では、この結露・結氷による目詰まりを運転停止によって防止する構成をとっていた(例えば、特許文献1参照)。    This type of heat exchange type ventilator is adjacent in the flow path in the heat exchanger in which a warm exhaust flow from the room flows when the outdoor temperature becomes low, for example, −10 ° C. or lower in winter. Condensation / freezing and clogging occur due to the cold supply air flowing from the outside through the air flow path, but in conventional heat exchange ventilators, this clogging due to condensation and icing is caused by shutdown. The structure which prevents was taken (for example, refer patent document 1).

以下、特許文献1に示す熱交換形換気装置について、図7を参照しながら説明する。    Hereinafter, the heat exchange type ventilation apparatus shown in Patent Document 1 will be described with reference to FIG.

熱交換器ユニット101は室内の空気と室外の空気の間で熱交換気を行う。図5に示すように、熱交換器ユニット101は、熱交換器102と、室内の空気を室外へ排気し、熱交換器102を経由する排気経路103と、室外の空気を室内へ給気し、熱交換器102を経由する給気経路104と、排気経路103に組み込まれる排気ファン105と、給気経路104に組み込まれる給気ファン106と、室外の空気の外気温度を検出する温度センサー107と、温度センサー107で検出した外気温度によって排気ファン105と給気ファン106の運転制御を行う制御部を備えている。    The heat exchanger unit 101 exchanges heat between indoor air and outdoor air. As shown in FIG. 5, the heat exchanger unit 101 exhausts heat from the heat exchanger 102, indoor air to the outside, and supplies the exhaust air passage 103 that passes through the heat exchanger 102 and the outdoor air to the room. An air supply path 104 that passes through the heat exchanger 102, an exhaust fan 105 that is incorporated in the exhaust path 103, an air supply fan 106 that is incorporated in the air supply path 104, and a temperature sensor 107 that detects the outside air temperature of the outdoor air. And a control unit that controls the operation of the exhaust fan 105 and the supply fan 106 according to the outside air temperature detected by the temperature sensor 107.

そして、熱交換器ユニット101の制御部は、外気温度が−10℃を下回った時に、熱交換器102が凍結することを抑えるため、外気温度に応じて2つの凍結抑制制御を行う。この2つの凍結抑制制御は第1凍結抑制制御及び第2凍結抑制制御である。    And the control part of the heat exchanger unit 101 performs two freezing suppression controls according to outside air temperature, in order to suppress that the heat exchanger 102 freezes, when outside temperature falls below -10 degreeC. These two freeze suppression controls are a first freeze suppression control and a second freeze suppression control.

第1凍結抑制制御は、外気温度が−10℃を下回った場合に、熱交換器102の凍結を抑制する制御であり、排気ファン105を常時作動させ、給気ファン106の動作を60分のうち最初の15分だけ休止させる運転を繰り返す。    The first freezing suppression control is a control for suppressing freezing of the heat exchanger 102 when the outside air temperature falls below −10 ° C., and the exhaust fan 105 is always operated and the operation of the air supply fan 106 is performed for 60 minutes. Repeat the operation to pause for the first 15 minutes.

第2凍結抑制制御は、外気温度が−15℃を下回った場合に、第1凍結抑制制御よりも強力に熱交換器102の凍結を抑制する制御であり、排気ファン105及び給気ファン106の間欠運転を行う。第2凍結抑制制御は、排気ファン105及び給気ファン106を60分休止させた後に5分だけ作動を再開させる運転を繰り返す。    The second freezing suppression control is a control that suppresses freezing of the heat exchanger 102 more strongly than the first freezing suppression control when the outside air temperature falls below −15 ° C., and the exhaust fan 105 and the supply fan 106 are controlled. Perform intermittent operation. In the second freezing suppression control, the exhaust fan 105 and the air supply fan 106 are paused for 60 minutes and then restarted for 5 minutes.

特開2003−148780号公報JP 2003-148780 A

このような従来の熱交換形換気装置においては、冬季に室外の温度が低い温度になると、温かい排気流が、熱交換素子内部の排気経路において隣接する低温の給気流に冷却されて結露・結氷し、排気経路が目詰まりしていく課題に対し、運転を所定の時間停止する構成となっていた。    In such a conventional heat exchange type ventilator, when the outdoor temperature becomes low in winter, the warm exhaust flow is cooled to the adjacent low-temperature air supply air in the exhaust path inside the heat exchange element, causing condensation and icing. However, in response to the problem that the exhaust path is clogged, the operation is stopped for a predetermined time.

そのため、例えば給気のみを停止させると室内が負圧となって建物の隙間から室外の空 気が流入し、室内空間にコールドドラフトや結露を生じさせることとなり、給気と排気の両方を停止させると、室内の必要換気量を確保することが困難となるという課題を有していた。    For this reason, for example, if only the air supply is stopped, the room becomes negative pressure and the air outside the room flows in through the gaps between the buildings, causing cold drafts and condensation in the indoor space, stopping both supply and exhaust When it did, it had the subject that it became difficult to ensure the indoor ventilation required.

そこで本発明は、上記従来の課題を解決するものであり、寒冷地など、熱交換素子内部に結露・結氷が生じる条件下において、排気経路の目詰まりを抑制し、室内の必要換気量を確保できる連続運転の時間を長くすることができる熱交換素子とそれを用いた熱交換形換気装置を提供することを目的とする。    Accordingly, the present invention solves the above-described conventional problems, and prevents clogging of the exhaust path and secures the necessary indoor ventilation volume under conditions where condensation and icing occur inside the heat exchange element, such as in a cold district. It is an object of the present invention to provide a heat exchange element capable of extending the continuous operation time and a heat exchange type ventilator using the heat exchange element.

そして、この目的を達成するために、本発明は、間隔を保持する間隔保持手段と、略平行に略等間隔で設けられた複数の風路リブを備えた複数の伝熱板を積層して排気風路と給気風路を1層ずつ交互に構成し、前記排気風路を流通する排気流と前記給気風路を流通する給気流とが、前記排気風路および前記給気風路の両端部で直交または斜交し、この両端部の間の中央部で対向する熱交換素子であって、前記中央部の前記給気風路の中で前記排気流の入口側に最も近い風路を閉空間にしことを特徴とするものであり、これにより所期の目的を達成するものである。 In order to achieve this object, the present invention includes a plurality of heat transfer plates each having a plurality of heat transfer plates provided with a plurality of air path ribs provided at substantially equal intervals in parallel with the interval holding means. Exhaust air passages and supply air passages are alternately formed one layer at a time, and an exhaust flow flowing through the exhaust air passage and a supply air flow flowing through the supply air passage are both ends of the exhaust air passage and the supply air passage A heat exchange element that intersects at right angles or obliquely and is opposed to the central portion between the two end portions, and closes the air path closest to the inlet side of the exhaust flow in the supply air path in the central portion. and characterized in the that in, thereby is to achieve the intended purpose.

本発明によれば、間隔を保持する間隔保持手段を備えた複数の伝熱手段を積層して排気風路と給気風路を1層ずつ交互に構成し、前記排気風路を流通する排気流と前記給気風路を流通する給気流とが、前記排気風路および前記給気風路の両端部で直交または斜交し、この両端部の間の中央部で対向する熱交換素子であって、前記中央部の前記給気風路で、排気流の入口側に最も近い風路を閉空間にする構成にしたことにより、前記排気風路の中央部の対向流部分で排気流と給気流が熱交換せず、排気風路内の着霜を抑制することができるという効果を得ることができる。    According to the present invention, a plurality of heat transfer means provided with a gap holding means for holding a gap are stacked to alternately constitute the exhaust air passage and the supply air passage one layer at a time, and the exhaust flow flowing through the exhaust air passage And the air supply air flowing through the supply air passage are orthogonal to or obliquely crossed at both ends of the exhaust air passage and the supply air passage, and are opposed to each other at a central portion between both ends, In the air supply air passage in the central portion, the air passage closest to the inlet side of the exhaust air flow is closed, so that the exhaust air flow and the air supply air flow are heated in the counterflow portion in the central portion of the exhaust air passage. The effect that frost formation in the exhaust air passage can be suppressed without replacement is obtained.

すなわち、排気風路内の最も着霜しやすい、給気流の入口側に最も近い風路において、中央部の対向流部分で熱交換させないことにより、排気流はこの対向流部分を温度低下せずに通過することができる。    That is, in the airflow path closest to the inlet side of the supply airflow that is most likely to form frost in the exhaust airflow path, heat is not exchanged in the counterflow portion in the center, so that the exhaust flow does not lower the temperature of this counterflow portion. Can pass through.

この対向流部分の温度低下をなくすことにより、給気流と熱交換する直交流部分での温度低下はあっても、排気流の出口でのトータルの温度低下を抑制できるため、排気風路内の着霜を抑制することができ、着霜が始まる外気温を低くできるので、結果として室内の必要換気量を確保できる連続運転の時間を長くすることができるという効果を得ることができる。    By eliminating the temperature drop in the counter flow part, even if there is a temperature drop in the cross flow part that exchanges heat with the supply airflow, the total temperature drop at the outlet of the exhaust flow can be suppressed. Since frost formation can be suppressed and the outside air temperature at which frost formation starts can be lowered, it is possible to obtain an effect that it is possible to lengthen the continuous operation time in which the necessary indoor ventilation amount can be secured as a result.

本発明の実施の形態1の熱交換型換気機器が設置された住宅の構成を示す概念図The conceptual diagram which shows the structure of the house in which the heat exchange type | mold ventilation apparatus of Embodiment 1 of this invention was installed 同熱交換型換気機器の構成を示す概念図Conceptual diagram showing the configuration of the heat exchange type ventilation equipment 同熱交換素子の構成を示す斜視図A perspective view showing a configuration of the heat exchange element (a)同熱交換素子を分解した時の排気風路を構成する排気ユニットの平面図、(b)同熱交換素子を分解した時の給気風路を構成する給気ユニットの平面図(A) Plan view of the exhaust unit constituting the exhaust air passage when the heat exchange element is disassembled, (b) Plan view of the air supply unit constituting the air supply air path when the heat exchange element is disassembled (a)本発明の実施の形態2の熱交換型換気機器の構成の通常時の状態を示す概念図、(b)本発明の実施の形態2の熱交換型換気機器の構成の風路閉鎖時の状態を示す概念図(A) The conceptual diagram which shows the normal state of the structure of the heat exchange type | mold ventilation apparatus of Embodiment 2 of this invention, (b) The air path closure of the structure of the heat exchange type | mold ventilation apparatus of Embodiment 2 of this invention Conceptual diagram showing the state of time (a)同熱交換素子を分解した時の給気風路を構成する給気ユニットの通常時の平面図、(b)同熱交換素子を分解した時の給気風路を構成する給気ユニットの風路閉鎖時の平面図(A) Plan view of the air supply unit that constitutes the air supply air path when the heat exchange element is disassembled, and (b) The air supply unit that constitutes the air supply air path when the heat exchange element is disassembled Top view when the airway is closed 従来の熱交換型換気機器の構成を示す概念図Conceptual diagram showing the configuration of a conventional heat exchange ventilation device

(実施の形態1)
図1は熱交換型換気機器が設置された2階建ての住宅を示す概念図である。図1に示すように、住宅1は、排気だけを行う非居住空間、例えば浴室、洗面所、トイレ、給排気を行う居住空間、例えばリビング、寝室、で構成されている。
(Embodiment 1)
FIG. 1 is a conceptual diagram showing a two-story house in which a heat exchange type ventilation device is installed. As shown in FIG. 1, the house 1 is composed of a non-residential space that exhausts air only, such as a bathroom, a washroom, a toilet, and a residential space that supplies and exhausts air, such as a living room and a bedroom.

各部屋の排気、給気はダクトで接続され、熱交換型換気機器2に接続され、熱交換型換気機器2は、屋外への排気流と屋外からの給気流の間で熱交換する熱交換素子3(図2で説明)を内蔵している。    Exhaust air and air supply in each room are connected by a duct and connected to a heat exchange type ventilator 2. The heat exchange type ventilator 2 exchanges heat between the exhaust air flow to the outside and the air supply air flow from the outside. The element 3 (described in FIG. 2) is incorporated.

図2は熱交換型換気機器2の構成を示す概念図である。図2に示すように、熱交換型換気機器2は、排気流4の排気送風路4a、給気流5の給気送風路5aと、排気流4を送風する排気送風手段6と、給気流5を送風する給気送風手段7と、排気流4と給気流5の間で熱交換する熱交換素子3で構成されている。    FIG. 2 is a conceptual diagram showing a configuration of the heat exchange type ventilation device 2. As shown in FIG. 2, the heat exchange type ventilator 2 includes an exhaust air flow path 4 a for the exhaust flow 4, an air supply air flow path 5 a for the air flow 5, an exhaust air blowing means 6 for blowing the exhaust flow 4, and the air flow 5. And a heat exchange element 3 for exchanging heat between the exhaust flow 4 and the supply air flow 5.

排気流4(図中の実線矢印)、給気流5(図中の破線矢印)の送風路には、内気(RA)を導入する内気口8から屋外に排気(EA)する排気口9にかけての排気送風路4aと、外気(OA)を導入する外気口10から室内に給気(SA)を吹き出す給気口11にかけての給気送風路5aと、排気送風路4aに内気口8から排気口9に向かう排気流4を発生させる排気送風手段6と、給気送風路5aに外気口10から給気口11に向かう給気流5を発生させる給気送風手段7と、排気送風路4aと給気送風路5aが交差する位置に、排気送風路4aを流通する排気流4と給気送風路5aを流通する給気流5との間で熱交換する熱交換素子3が設けられている。    In the air flow path of the exhaust flow 4 (solid line arrow in the figure) and the supply airflow 5 (broken line arrow in the figure), the air flow from the inside air port 8 for introducing the inside air (RA) to the exhaust port 9 for exhausting (EA) to the outside is provided. Exhaust air passage 4a, an air supply passage 5a from the outside air port 10 for introducing outside air (OA) to the air supply port 11 for blowing air supply (SA) into the room, and an exhaust air port from the inside air port 8 to the exhaust air passage 4a Exhaust air blowing means 6 for generating an exhaust flow 4 directed to 9, an air supply air blowing means 7 for generating a supply air flow 5 from the outside air port 10 to the air supply port 11 in the air supply air passage 5a, and an air supply air passage 4a. A heat exchange element 3 that exchanges heat between the exhaust air flow 4 that flows through the exhaust air passage 4a and the air supply air flow 5 that flows through the air supply air passage 5a is provided at a position where the air air passage 5a intersects.

ここで熱交換素子3の構成について図3、図4を用いて説明する。以下では、熱交換素子3内の排気送風路4aを排気風路14、給気送風路5aを給気風路15、熱交換素子3の排気流4の流入口を内気口8a、流出口を排気口9a、給気流5の流入口を外気口10a、流出口を給気口11aと記載して説明する。    Here, the configuration of the heat exchange element 3 will be described with reference to FIGS. 3 and 4. In the following, the exhaust air passage 4a in the heat exchange element 3 is the exhaust air passage 14, the air supply air passage 5a is the air supply air passage 15, the inlet of the exhaust flow 4 of the heat exchange element 3 is the inner air outlet 8a, and the outlet is exhausted. The inlet 9a and the inlet of the supply airflow 5 will be described as the outside inlet 10a, and the outlet will be described as the inlet 11a.

図3は熱交換素子3の外観を示す斜視図であり、図4(a)は熱交換素子3を分解した時の排気風路を構成するリブと伝熱板16とを組み合わせた、伝熱手段としての排気ユニット12の平面図であり、図4(b)は熱交換素子3を分解した時の給気風路を構成するリブと伝熱板16とを組み合わせた、伝熱手段としての給気ユニット13の平面図であり、図3に示す熱交換素子3は、図4に示す排気ユニット12と給気ユニット13を交互に複数積層した構成となっている。    FIG. 3 is a perspective view showing the appearance of the heat exchange element 3, and FIG. 4 (a) is a view of heat transfer in which the ribs constituting the exhaust air passage when the heat exchange element 3 is disassembled and the heat transfer plate 16 are combined. FIG. 4B is a plan view of the exhaust unit 12 serving as a means, and FIG. 4B is a diagram illustrating a heat supply means serving as a heat transfer means in which ribs constituting the air supply air passage when the heat exchange element 3 is disassembled and the heat transfer plate 16 are combined. 4 is a plan view of the air unit 13, and the heat exchange element 3 shown in FIG. 3 has a configuration in which a plurality of exhaust units 12 and air supply units 13 shown in FIG. 4 are alternately stacked.

図4に示すように、排気ユニット12と給気ユニット13は外形が略六角形である。    As shown in FIG. 4, the outer shape of the exhaust unit 12 and the air supply unit 13 is substantially hexagonal.

図4(a)に示すように、排気ユニット12の、内気口8aおよび排気口9aを形成する対向辺以外の外周には、間隔を保持する間隔保持手段としての間隔リブ12a、12bが設けられている。    As shown in FIG. 4 (a), spacing ribs 12a and 12b are provided on the outer periphery of the exhaust unit 12 other than the opposing sides that form the inside air port 8a and the exhaust port 9a, as space holding means for holding the space. ing.

また、排気ユニット12は風路を分割する6本の風路リブ12cを備えている。    The exhaust unit 12 includes six air passage ribs 12c that divide the air passage.

同様に、図4(b)に示すように、給気ユニット13の、外気口10aおよび給気口11aを形成する対向辺以外の外周には、間隔を保持する間隔保持手段としての間隔リブ13a、13bが設けられている。    Similarly, as shown in FIG. 4B, on the outer periphery of the air supply unit 13 other than the opposing sides forming the outside air port 10a and the air supply port 11a, the interval rib 13a as an interval holding means for holding an interval is provided. , 13b are provided.

また、給気ユニット13は風路を分割する6本の風路リブ13cを備えている。    The air supply unit 13 includes six air passage ribs 13c that divide the air passage.

このような排気ユニット12と給気ユニット13を交互に積層することにより、熱交換素子3は排気風路14と給気風路15を1層ずつ交互に配置して構成されている。積層数は熱交換素子3を搭載する熱交換型換気機器2の大きさや風量によって決定される。    By alternately stacking the exhaust units 12 and the air supply units 13 as described above, the heat exchange element 3 is configured by alternately arranging the exhaust air passages 14 and the air supply air passages 15 one by one. The number of layers is determined by the size and air volume of the heat exchange type ventilation device 2 on which the heat exchange element 3 is mounted.

また、図4(a)に示すように、排気風路14は、6本の風路リブ12cにより、7本の排気風路14a〜14gに分割されている。    Further, as shown in FIG. 4A, the exhaust air passage 14 is divided into seven exhaust air passages 14a to 14g by six air passage ribs 12c.

同様に、図4(b)に示すように、給気風路15は、6本の風路リブ13cにより、7本の給気風路15a〜15gに分割されている。    Similarly, as shown in FIG. 4B, the air supply air passage 15 is divided into seven air supply air passages 15a to 15g by six air passage ribs 13c.

伝熱板16は排気流4と給気流5の間で熱交換する役割を持つものであり、温度だけを交換するときは伝熱板16にアルミニウムなどの金属板や樹脂板を用い、温度と湿度を交換するときは伝熱板16に紙や樹脂などの透湿膜などを用い、目的に応じて適宜選択して良い。    The heat transfer plate 16 has a role of exchanging heat between the exhaust flow 4 and the supply air flow 5. When only the temperature is exchanged, a metal plate such as aluminum or a resin plate is used for the heat transfer plate 16, and the temperature and When the humidity is exchanged, a moisture permeable film such as paper or resin is used for the heat transfer plate 16 and may be appropriately selected according to the purpose.

間隔リブ12a、12b、13a、13bは樹脂や金属で構成される。特に伝熱板16を透湿膜にする場合、間隔リブ12a、12b、13a、13bは伝熱板16を金型内に挿入し、樹脂によるインサート射出成形による一体成形で形成すると良い。    The spacing ribs 12a, 12b, 13a, 13b are made of resin or metal. In particular, when the heat transfer plate 16 is a moisture permeable film, the spacing ribs 12a, 12b, 13a, 13b are preferably formed by integral molding by inserting the heat transfer plate 16 into a mold and insert injection molding with resin.

図4に示すように、排気風路14を流通する排気流4と給気風路15を流通する給気流5とは、排気風路14および給気風路15の両端部(図4のB部およびD部:以降省略)では直交または斜交し、この両端部の間の中央部(図4のC部:以降省略)で対向する熱交換素子である。    As shown in FIG. 4, the exhaust air flow 4 flowing through the exhaust air passage 14 and the air supply air flow 5 flowing through the air supply air passage 15 are both ends of the exhaust air passage 14 and the air supply air passage 15 (B portion in FIG. 4 and In part D: omitted hereinafter, the heat exchange elements are orthogonal or oblique and face each other at the central part (part C in FIG. 4: omitted hereinafter) between both ends.

なお、この明細書における両端部は図4のB部およびD部の範囲を指し、中央部は図4のC部を指す。中央部の排気風路14および給気風路15は並行で波形であり、一層ごとに波形が逆向きに構成されている。    In addition, both ends in this specification indicate the range of the B part and the D part in FIG. 4, and the central part indicates the C part in FIG. The central exhaust air passage 14 and the air supply air passage 15 have a waveform in parallel, and the waveforms are formed in opposite directions for each layer.

本実施の形態1の熱交換素子3は、風路リブ12cの排気風路14gを構成する部分と風路リブ13cの給気風路15gを構成する部分を除けば、図4(a)の排気ユニット12の平面図と、図4(b)の給気ユニット13の平面図とがA−A線に対して、線対称の関係となる構成である。    The heat exchange element 3 according to the first embodiment is configured as shown in FIG. 4A except for a portion constituting the exhaust air passage 14g of the air passage rib 12c and a portion constituting the supply air passage 15g of the air passage rib 13c. The plan view of the unit 12 and the plan view of the air supply unit 13 of FIG. 4B are in a line-symmetric relationship with respect to the AA line.

上記のように構成された熱交換型換気機器2および熱交換素子3の作用と効果について、以下に説明する。    The operation and effect of the heat exchange type ventilation device 2 and the heat exchange element 3 configured as described above will be described below.

図1に示すような住宅に設置された熱交換型換気機器2において換気運転が開始されると、排気流4は排気送風手段6の運転により、内気(RA)を内気口8から導入し、排気送風路4aを通り、熱交換素子3の排気風路14を通過する時に、熱交換素子3の給気風路15を通過する給気流5と熱交換した後、排気口9から屋外に排出される。    When the ventilation operation is started in the heat exchange type ventilation device 2 installed in the house as shown in FIG. 1, the exhaust flow 4 introduces the inside air (RA) from the inside air port 8 by the operation of the exhaust air blowing means 6, When passing through the exhaust air passage 4a and passing through the exhaust air passage 14 of the heat exchange element 3, the heat exchange with the supply air flow 5 passing through the air supply air passage 15 of the heat exchange element 3 is performed and then discharged to the outside from the exhaust port 9. The

一方、給気流5は給気送風手段7の運転により、外気(OA)を外気口10から導入し、給気送風路5aを通り、熱交換素子3の給気風路15を通過する時に、熱交換素子3の排気風路14を通過する排気流4と熱交換した後、給気口11から室内に給気される。    On the other hand, the supply air flow 5 is heated when the supply air blowing means 7 operates to introduce outside air (OA) from the outside air port 10, pass through the supply air passage 5 a, and pass through the supply air passage 15 of the heat exchange element 3. After exchanging heat with the exhaust flow 4 passing through the exhaust air passage 14 of the exchange element 3, the air is supplied into the room from the air supply port 11.

このとき、冬季に室外の温度が、例えば−10℃以下のような低い温度になると、室内からの温かい排気流4が流れる熱交換素子3内において、隣接する給気風路15に室外から通風される冷たい給気が流れることで、排気風路14の排気口9a近傍が結露・結氷し目詰まりしていくことになる。    At this time, when the outdoor temperature becomes a low temperature such as −10 ° C. or less in winter, the air is passed from the outdoor to the adjacent supply air passage 15 in the heat exchange element 3 through which the warm exhaust flow 4 flows from the room. As the cool air supply flows, the vicinity of the exhaust port 9a of the exhaust air passage 14 is clogged with condensation and icing.

ここで、本願の特徴である、その目詰まり、排気風路14内の着霜を抑制する手段について再度図4を用いて説明する。    Here, the means for suppressing the clogging and frost formation in the exhaust air passage 14, which is a feature of the present application, will be described again with reference to FIG.

冬季に室外の温度が、例えば−10℃以下のような低い温度になった場合、外気口10aに最も近い排気風路14gを流れる排気流4の温度が最も低くなる。すなわち、着霜は排気風路14gの排気口9a近傍から始まる。    When the outdoor temperature becomes a low temperature such as −10 ° C. or lower in winter, the temperature of the exhaust stream 4 flowing through the exhaust air passage 14g closest to the outside air port 10a becomes the lowest. That is, frosting starts from the vicinity of the exhaust port 9a of the exhaust air passage 14g.

この排気風路14gを流れる排気流4の温度を高くするために、図4(b)に示すように、給気風路15gを閉空間(図中の斜線部)にしている。参考までに、風路リブ13cの一般的な通常の給気風路15gを構成する部分を破線で示す。    In order to increase the temperature of the exhaust flow 4 flowing through the exhaust air passage 14g, as shown in FIG. 4B, the air supply air passage 15g is closed (shaded portion in the figure). For reference, a portion constituting a general normal supply air passage 15g of the air passage rib 13c is indicated by a broken line.

上記構成により、給気風路15gを閉空間にしているため、給気風路15gには給気流5が流通しない。すなわち、排気風路14gを流れる排気流4は、給気流5と対向する、理論的に熱交換効率が高い中央部に給気流5が流通しないため、給気流5との間で熱交換せず、結果として排気流4の温度低下が抑制される。    With the above configuration, the supply air flow path 15g is a closed space, so the supply air flow 5 does not flow through the supply air flow path 15g. That is, the exhaust flow 4 flowing through the exhaust air passage 14g does not exchange heat with the supply air flow 5 because the supply air flow 5 does not flow through the central portion facing the supply air flow 5 and theoretically high in heat exchange efficiency. As a result, the temperature drop of the exhaust stream 4 is suppressed.

実施の形態1の熱交換素子3を熱流体解析で解析した結果では、排気風路14gを流れる排気流4の最低温度が従来の熱交換素子よりも約3K上昇することを確認した。この結果は着霜が発生する外気温が約3K低くなることに相当する。    As a result of analyzing the heat exchange element 3 of the first embodiment by thermal fluid analysis, it was confirmed that the minimum temperature of the exhaust flow 4 flowing through the exhaust air passage 14g was increased by about 3K as compared with the conventional heat exchange element. This result corresponds to the fact that the outside air temperature at which frost formation occurs is reduced by about 3K.

なお、本実施の形態では、伝熱手段が六角形の場合について説明したが、両端部では直交または斜交し、この両端部の間の中央部で対向する、例えば風路がL形の四角形でも上記と同様の効果を有する。    In the present embodiment, the case where the heat transfer means is a hexagon has been described. However, the both ends are orthogonal or oblique, and are opposed to each other at the center between the both ends. But it has the same effect as above.

以上、中央部の給気風路15で、排気流4の内気口8aに最も近い給気風路15gを閉空間にする構成にしたことにより、排気風路14gの中央部の対向流部分で排気流4と給気流5が熱交換せず、排気風路14g内の着霜を抑制することができるという効果を得ることができる。    As described above, since the supply air passage 15g closest to the inside air port 8a of the exhaust flow 4 is closed in the central supply air passage 15, the exhaust air flow in the counterflow portion in the center of the exhaust air passage 14g. 4 and the supply airflow 5 do not exchange heat, and an effect that frost formation in the exhaust air passage 14g can be suppressed can be obtained.

すなわち、排気風路14内の最も着霜しやすい、外気口10aに最も近い中央部の対向流部分で熱交換させないことにより、排気流4はこの対向流部分を温度低下せずに通過することができる。    That is, the exhaust flow 4 passes through the counterflow portion without lowering the temperature by not performing heat exchange in the counterflow portion in the central portion closest to the outside air port 10a that is most likely to form frost in the exhaust air passage 14. Can do.

この対向流部分の温度低下をなくすことにより、給気流5と熱交換する直交流部分での温度低下はあっても、排気流4の内気口8aから排気口9aでのトータルの温度低下を抑制できるため、排気風路内の着霜を抑制することができ、着霜が発生する外気温を低くできるので、結果として室内の必要換気量を確保できる連続運転の時間を長くすることができるという効果を得ることができる。    By eliminating the temperature drop in the counter flow part, even if there is a temperature drop in the cross flow part that exchanges heat with the supply air flow 5, the total temperature drop from the inside air port 8a to the exhaust port 9a of the exhaust stream 4 is suppressed. Therefore, it is possible to suppress frost formation in the exhaust air passage and to reduce the outside air temperature at which frost formation occurs. As a result, it is possible to lengthen the continuous operation time that can secure the necessary ventilation amount in the room. An effect can be obtained.

(実施の形態2)
実施の形態2の熱交換型換気機器17は実施の形態1の熱交換型換気機器2と概ね同様の構成であり、特に断りがない限り、実施の形態1の熱交換型換気機器2と同じ構成部品には同じ名称と符号を使用するものとする。
(Embodiment 2)
The heat exchange type ventilator 17 of the second embodiment has substantially the same configuration as the heat exchange type ventilator 2 of the first embodiment, and is the same as the heat exchange type ventilator 2 of the first embodiment unless otherwise specified. The same names and symbols shall be used for the components.

以下、実施の形態2の熱交換型換気機器17が実施の形態1の熱交換型換気機器2と異なる部分について図5と図6を参照しながら説明する。図5は熱交換型換気機器17の構成を示す概念図、図6は実施の形態2の熱交換素子18を分解した時の給気風路を構成する給気ユニット13の平面図である。    Hereinafter, the difference between the heat exchange type ventilator 17 of the second embodiment and the heat exchange type ventilator 2 of the first embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a conceptual diagram showing the configuration of the heat exchange type ventilation device 17, and FIG. 6 is a plan view of the air supply unit 13 constituting the air supply air passage when the heat exchange element 18 of the second embodiment is disassembled.

熱交換素子18の排気ユニット12は実施の形態1の熱交換素子3の排気ユニット12と同様の形状である。しかし熱交換素子18の給気ユニット13は実施の形態1の熱交換素子3の給気ユニット13と異なり、排気ユニット12と線対称になる形状である。    The exhaust unit 12 of the heat exchange element 18 has the same shape as the exhaust unit 12 of the heat exchange element 3 of the first embodiment. However, unlike the air supply unit 13 of the heat exchange element 3 of the first embodiment, the air supply unit 13 of the heat exchange element 18 has a shape that is line symmetrical with the exhaust unit 12.

熱交換型換気機器17は風路閉鎖手段としてのダンパー19を備え、また着霜判断手段としての風速センサー20とマイクロコンピューター21(図示せず)を備えている。    The heat exchange type ventilator 17 includes a damper 19 as a wind path closing means, and also includes a wind speed sensor 20 and a microcomputer 21 (not shown) as frost determination means.

ダンパー19は熱交換素子18の外気口10側に設置され、通常は図5(a)に示すように熱交換素子18の風路を閉鎖しない状態に保持される。    The damper 19 is installed on the outside air port 10 side of the heat exchange element 18 and is normally held in a state where the air passage of the heat exchange element 18 is not closed as shown in FIG.

このとき、熱交換素子18の給気ユニット13は図6(a)に示すように給気風路15a〜15gの全てに給気流5が流通する。このため風路リブ13cの分を除いた伝熱板16の全ての面積を熱交換に利用することができ、高い熱交換効率を実現することができる。    At this time, in the air supply unit 13 of the heat exchange element 18, the air supply airflow 5 flows through all of the air supply air passages 15a to 15g as shown in FIG. For this reason, the entire area of the heat transfer plate 16 excluding the portion of the air passage ribs 13c can be used for heat exchange, and high heat exchange efficiency can be realized.

風速センサー20は排気送風路4aに設置され、排気流4の風速を検知し、その測定値をマイクロコンピューター21が受け取る。風速センサー20が検知する排気流4の風速が通常時よりも遅くなった場合には排気流4の風量が低下しているとして、マイクロコンピューター21が「着霜がある」と判断するようにする。このように風速センサー20が風速を検知することにより、実際に着霜が起こったかどうかを比較的正確に判断することができる。    The wind speed sensor 20 is installed in the exhaust air blowing path 4a, detects the wind speed of the exhaust flow 4, and the microcomputer 21 receives the measured value. When the wind speed of the exhaust stream 4 detected by the wind speed sensor 20 becomes slower than normal, the microcomputer 21 determines that “there is frosting”, assuming that the air volume of the exhaust stream 4 has decreased. . Thus, when the wind speed sensor 20 detects a wind speed, it can be judged comparatively correctly whether frosting actually occurred.

なお、着霜判断手段として温度センサー22(図示せず)とマイクロコンピューター21を使用する方法もある。その場合、外気口10に近い給気送風路5aに温度センサー22を設け、外気に近い給気流5の温度を測定し、温度センサーの温度がある値、例えば−10℃以下になった場合にはその測定値を受け取ったマイクロコンピューター21が「着霜がある」と判断するようにする。温度センサー22が外気に近い給気流5の温度を測定することでコストを抑制しながら着霜が起こるかどうかをある程度予測することができる。    In addition, there is also a method of using a temperature sensor 22 (not shown) and the microcomputer 21 as frost formation determination means. In that case, when the temperature sensor 22 is provided in the air supply air passage 5a close to the outside air port 10 and the temperature of the air supply air flow 5 close to the outside air is measured and the temperature of the temperature sensor becomes a certain value, for example, −10 ° C. or less. The microcomputer 21 that receives the measurement value determines that “there is frost formation”. It can be predicted to some extent whether or not frosting occurs while the cost is suppressed by the temperature sensor 22 measuring the temperature of the supply airflow 5 close to the outside air.

マイクロコンピューター21が「着霜がある」と判断した場合、マイクロコンピューター21がダンパー19に指示を出し、ダンパー19は図5(b)および図6(b)に示すように、熱交換素子18の給気風路15の中で排気流4の入口側に最も近い給気風路15gの入口を閉鎖する状態に保持される。給気風路15gの入口を閉鎖することにより、給気風路15gには給気流5が流入しなくなり、排気風路14gの中央部の対向流部分で排気流4と給気流5が熱交換せず、排気風路14g内の着霜を抑制することができるという効果を得ることができる。    When the microcomputer 21 determines that “there is frost formation”, the microcomputer 21 gives an instruction to the damper 19, and the damper 19 is connected to the heat exchange element 18 as shown in FIGS. 5 (b) and 6 (b). In the supply air passage 15, the inlet of the supply air passage 15 g closest to the inlet side of the exhaust flow 4 is kept closed. By closing the inlet of the air supply air passage 15g, the air supply air flow 5 does not flow into the air supply air passage 15g, and the exhaust air flow 4 and the air supply air flow 5 do not exchange heat in the counterflow portion at the center of the exhaust air air passage 14g. The effect that frost formation in the exhaust air passage 14g can be suppressed can be obtained.

実施の形態2の熱交換型換気機器17は以上のように、着霜時には給気風路15gの入口を閉鎖することにより排気風路14g内の着霜を抑制することができるが、通常時には伝熱板16の全ての面積を熱交換に利用し、高い熱交換効率を実現することができる。通常時の熱交換効率を高めることにより、住宅1の換気による空調負荷を低減することができる。    As described above, the heat exchange type ventilator 17 according to the second embodiment can suppress frost formation in the exhaust air passage 14g by closing the inlet of the supply air passage 15g during frost formation. The entire area of the hot plate 16 can be used for heat exchange, and high heat exchange efficiency can be realized. By increasing the heat exchange efficiency during normal times, the air conditioning load due to ventilation of the house 1 can be reduced.

本発明にかかる対向流型熱交換素子とそれを用いた熱交換型換気機器は、排気流の出口でのトータルの温度低下を抑制できるため、排気風路内の着霜を抑制することができ、着霜が始まる外気温を低くできるので、結果として室内の必要換気量を確保できる連続運転の時間を長くすることができるので、寒冷地での熱交換素子とそれを用いた熱交換型換気 機器として有用である。    The counterflow type heat exchange element according to the present invention and the heat exchange type ventilator using the same can suppress a total temperature decrease at the outlet of the exhaust flow, and therefore can suppress frost formation in the exhaust air passage. Since the outside air temperature at which frosting starts can be lowered, the continuous operation time that can secure the necessary ventilation volume in the room can be extended as a result, so the heat exchange element and the heat exchange type ventilation using it in a cold region Useful as equipment.

1 住宅
2 熱交換型換気機器
3 熱交換素子
4 排気流
4a 排気送風路
5 給気流
5a 給気送風路
6 排気送風手段
7 給気送風手段
8、8a 内気口
9、9a 排気口
10、10a 外気口
11、11a 給気口
12 排気ユニット
13 給気ユニット
12a、12b、13a、13b 間隔リブ
12c、13c 風路リブ
14、14a、14b、14c、14d、14e、14f、14g 排気風路
15、15a、15b、15c、15d、15e、15f、15g 給気風路
16 伝熱板
17 熱交換型換気機器
18 熱交換素子
19 ダンパー
20 風速センサー
21 マイクロコンピューター
22 温度センサー
DESCRIPTION OF SYMBOLS 1 House 2 Heat exchange type ventilator 3 Heat exchange element 4 Exhaust flow 4a Exhaust air supply path 5 Supply air flow 5a Supply air ventilation path 6 Exhaust air supply means 7 Supply air supply means 8, 8a Inside air port 9, 9a Exhaust port 10, 10a Outside air Port 11, 11a Air supply port 12 Exhaust unit 13 Air supply unit 12a, 12b, 13a, 13b Spacing rib 12c, 13c Air passage rib 14, 14a, 14b, 14c, 14d, 14e, 14f, 14g Exhaust air passage 15, 15a , 15b, 15c, 15d, 15e, 15f, 15g Air supply air passage 16 Heat transfer plate 17 Heat exchange type ventilation equipment 18 Heat exchange element 19 Damper 20 Wind speed sensor 21 Microcomputer 22 Temperature sensor

Claims (3)

間隔を保持する間隔保持手段と、略平行に略等間隔で設けられた複数の風路リブを備えた複数の伝熱手段を積層して排気風路と給気風路を1層ずつ交互に構成し、前記排気風路を流通する排気流と前記給気風路を流通する給気流とが、前記排気風路および前記給気風路の両端部で直交または斜交し、この両端部の間の中央部で対向する熱交換素子であって、前記中央部の前記給気風路の中で前記排気流の入口側に最も近い風路を閉空間にしことを特徴とする熱交換素子。 An exhaust air passage and a supply air passage are alternately formed by stacking a gap holding means for holding a gap and a plurality of heat transfer means provided with a plurality of air passage ribs provided substantially at equal intervals in parallel. The exhaust air flow that circulates through the exhaust air passage and the supply air flow that circulates through the air supply air passage intersect at right angles or obliquely at both ends of the exhaust air passage and the air supply air passage, and the center between the both ends. a heat exchange element opposed to each other in part, the heat exchange element characterized in that the closed space closest air passage to the inlet side of the exhaust stream in the sheet air path of the central portion. 請求項1に記載の熱交換素子を用いた熱交換型換気機器。  A heat exchange type ventilator using the heat exchange element according to claim 1. 間隔を保持する間隔保持手段と、略平行に略等間隔で設けられた複数の風路リブを備えた複数の伝熱手段を積層して排気風路と給気風路を1層ずつ交互に構成し、前記排気風路を流通する排気流と前記給気風路を流通する給気流とが、前記排気風路および前記給気風路の両端部で直交または斜交し、この両端部の間の中央部で対向する熱交換素子と、前記中央部の前記給気風路の中で前記排気流の入口側に最も近い風路を閉空間にする風路閉鎖手段と、着霜の有無を判断する着霜判断手段を備え、前記着霜判断手段が着霜があると判断した場合に、前記風路閉鎖手段が前記中央部の前記給気風路の中で前記排気流の入口側に最も近い風路を閉空間にする熱交換型換気機器。  An exhaust air passage and a supply air passage are alternately formed by stacking a gap holding means for holding a gap and a plurality of heat transfer means provided with a plurality of air passage ribs provided substantially at equal intervals in parallel. The exhaust air flow that circulates through the exhaust air passage and the supply air flow that circulates through the air supply air passage intersect at right angles or obliquely at both ends of the exhaust air passage and the air supply air passage, and the center between the both ends. A heat exchange element facing each other, an air passage closing means for closing an air passage closest to the inlet side of the exhaust flow in the supply air passage in the central portion, and an attachment for determining whether or not frost is formed An air passage that is provided with frost judging means, and in which the air passage closing means is closest to the inlet side of the exhaust air flow in the air supply air passage in the central part when the frost judging means judges that there is frost formation Heat exchange type ventilation equipment that keeps the space closed.
JP2012276494A 2012-07-24 2012-12-19 Heat exchange element and heat exchange type ventilation equipment using it Active JP6127264B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012276494A JP6127264B2 (en) 2012-07-24 2012-12-19 Heat exchange element and heat exchange type ventilation equipment using it
PCT/JP2013/004230 WO2014017040A1 (en) 2012-07-24 2013-07-09 Heat exchanger element and heat recovery ventilation device using same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012163384 2012-07-24
JP2012163384 2012-07-24
JP2012276494A JP6127264B2 (en) 2012-07-24 2012-12-19 Heat exchange element and heat exchange type ventilation equipment using it

Publications (2)

Publication Number Publication Date
JP2014040991A JP2014040991A (en) 2014-03-06
JP6127264B2 true JP6127264B2 (en) 2017-05-17

Family

ID=49996868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012276494A Active JP6127264B2 (en) 2012-07-24 2012-12-19 Heat exchange element and heat exchange type ventilation equipment using it

Country Status (2)

Country Link
JP (1) JP6127264B2 (en)
WO (1) WO2014017040A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397085B (en) * 2020-04-01 2021-09-14 宁波奥克斯电气股份有限公司 Method and device for detecting dirty blockage of condenser, medium and air conditioner
KR102280848B1 (en) * 2020-07-06 2021-07-23 주식회사 뉴비전네트웍스 Numerical map system that changes numerical map data for each reference point
KR102280852B1 (en) * 2020-07-06 2021-07-23 주식회사 뉴비전네트웍스 Spatial image drawing system that improves the precision of drawing
KR102245078B1 (en) * 2020-07-06 2021-04-28 김은경 A spatial image drawing system that confirms the location information of a feature
KR102280849B1 (en) * 2020-07-06 2021-07-23 주식회사 뉴비전네트웍스 Numerical map recognition system that updates data according to the reference point
EP4293293A4 (en) * 2021-02-10 2024-03-13 Mitsubishi Electric Corp Heat exchange ventilator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611027U (en) * 1984-06-11 1986-01-07 ミサワホ−ム株式会社 air conditioning ventilation fan
JP2009121727A (en) * 2007-11-13 2009-06-04 Royal Electric Co Ltd Total enthalpy heat exchange-type ventilation device

Also Published As

Publication number Publication date
WO2014017040A1 (en) 2014-01-30
JP2014040991A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP6127264B2 (en) Heat exchange element and heat exchange type ventilation equipment using it
JP5220102B2 (en) Heat exchange ventilator
US8944897B2 (en) Ventilation system and controlling method of the same
KR101034936B1 (en) Ventilation apparatus of heat exchanging type and controlling method thereof
JP5932350B2 (en) Air conditioning apparatus and air conditioning control method
Jiang et al. Experimental investigation on a novel temperature and humidity independent control air conditioning system–Part I: Cooling condition
KR101269287B1 (en) Thermal energy collection ventilator
WO2017110055A1 (en) Heat exchange type ventilation device
JP2013100992A (en) Outdoor air-conditioning unit with air-conditioning function
JP2015087058A (en) Total heat exchanger type ventilation fan
WO2013080478A1 (en) Heat exchanging element and heat exchanging ventilation apparatus using same
JP2009109116A (en) Humidity conditioner
JP5660075B2 (en) Air conditioning ventilator
JP2015068544A (en) Heat exchange ventilator
JP2018004115A (en) Heat exchange type ventilation device
JP2013036705A (en) Outside air processing device
JP6561313B2 (en) Heat exchange type ventilator using heat exchange elements
JP2012255580A (en) Simultaneous supply/exhaust type heat exchange ventilation device
JP2011145030A (en) Dehumidifier
JP5511595B2 (en) Air conditioner and outside air cooling operation method
JP2013185714A (en) Heat exchange ventilator
JP4404698B2 (en) Air conditioner
JP2006017369A5 (en)
KR101037871B1 (en) Air handling unit using cooling/dehumidifying energy recovery technology
JP6617280B2 (en) Heat exchange type ventilation system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R151 Written notification of patent or utility model registration

Ref document number: 6127264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151