WO2017110055A1 - Heat exchange type ventilation device - Google Patents

Heat exchange type ventilation device Download PDF

Info

Publication number
WO2017110055A1
WO2017110055A1 PCT/JP2016/005095 JP2016005095W WO2017110055A1 WO 2017110055 A1 WO2017110055 A1 WO 2017110055A1 JP 2016005095 W JP2016005095 W JP 2016005095W WO 2017110055 A1 WO2017110055 A1 WO 2017110055A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchange
exhaust
supply
exchange element
Prior art date
Application number
PCT/JP2016/005095
Other languages
French (fr)
Japanese (ja)
Inventor
将秀 福本
洋祐 浜田
元気 畑
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015250155A external-priority patent/JP6617280B2/en
Priority claimed from JP2015250157A external-priority patent/JP6561313B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US16/062,401 priority Critical patent/US20180372361A1/en
Priority to CN201680073948.7A priority patent/CN108369018A/en
Publication of WO2017110055A1 publication Critical patent/WO2017110055A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to a heat exchange type ventilator provided with a heat exchange element.
  • the heat exchange ventilator includes a heat exchange element that exchanges heat between supplied air and exhausted air.
  • Heat exchange type ventilators are particularly desired in cold regions where the temperature difference between indoors and outdoors is large.
  • frost is generated inside the heat exchange element, which causes a problem that the exhaust air passage is easily clogged. This is because the warm and humid air in the room is cooled by the cold outside air to a low temperature, and moisture in the air is frozen.
  • frost formation is prominent on the exhaust air passage side in a region where the inlet of the supply air passage and the outlet of the exhaust air passage are in contact with each other via a heat transfer plate inside the heat exchange element.
  • a heat exchange type ventilator for cold districts warms the outside air with a heater and introduces it into the heat exchange element. Further, the heat exchange type ventilator for cold districts melts frost by circulating warm room air inside the heat exchange type ventilator when the heat exchange element is frosted (hereinafter referred to as “defrost”). Called).
  • defrost frosted
  • the heat exchange ventilator 101 includes an air supply blower 102, an exhaust blower 103, and a heat exchange element 107.
  • the air supply / air blowing means 102 supplies outdoor air into the room.
  • the exhaust air blowing means 103 exhausts indoor air to the outside.
  • the heat exchange element 107 includes a heat transfer plate 106 that exchanges total heat.
  • the heat transfer plate 106 partitions the supply air passage 104 through which the supply air flow generated by the supply air blowing means 102 flows and the exhaust air passage 105 through which the exhaust flow generated by the exhaust ventilation means 103 flows.
  • the heat exchange ventilator 101 is provided with a temperature sensor 108 for measuring the temperature of outdoor air.
  • the heat exchange ventilator 101 performs heat exchange according to the measured outdoor air temperature by reducing the cool air supply air volume while maintaining the warm exhaust air volume. Thereby, since the temperature of the whole heat exchange element 107 rises, clogging due to frost formation in the heat exchange element 107 is suppressed.
  • the exhaust air volume is made larger than the supply air volume, so that the outlet side of the exhaust air path is more negative than the inlet side of the supply air path due to the pressure loss of the air flow flowing inside the heat exchange element. It becomes. Therefore, the heat transfer plate that divides the exhaust air passage and the supply air passage is bent toward the exhaust air passage, and the opening area of the exhaust air passage becomes narrow. Accordingly, there is a problem that clogging due to frost is likely to occur in the exhaust air passage.
  • an object of the present invention is to provide a heat exchange type ventilator that suppresses clogging due to frost formation in the exhaust air passage.
  • the heat exchange ventilator includes an air supply blower, an exhaust blower, a heat exchange element, and a pressure adjuster.
  • the supply air blower supplies outdoor air into the room.
  • the exhaust blower exhausts indoor air to the outside.
  • the heat exchange element has a heat transfer plate.
  • the heat transfer plate divides the supply air passage through which the supply air flow generated by the supply air blowing section flows and the exhaust air passage through which the exhaust flow generated by the exhaust ventilation section flows, and sensible heat is generated between the supply air passage and the exhaust air passage. Or replace the total heat.
  • the pressure adjusting unit is located on the upstream side of the heat exchange element of the supply air passage, and adjusts the pressure of the supply air flow.
  • the heat exchange ventilator according to one aspect of the present invention can suppress clogging due to frost formation in the exhaust air passage.
  • FIG. 1 is a schematic diagram showing the example of installation of the heat exchange type ventilator concerning an embodiment.
  • FIG. 2 is a schematic plan view showing the structure of the heat exchange type ventilator according to the embodiment.
  • FIG. 3 is a perspective view showing a total heat exchange element of the heat exchange type ventilator according to the embodiment.
  • FIG. 4 is an exploded perspective view illustrating a part of the total heat exchange element of the heat exchange type ventilator according to the embodiment.
  • FIG. 5 is a conceptual diagram showing an exhaust air passage of a general total heat exchange element.
  • FIG. 6A is a schematic cross-sectional view showing the vicinity of the outlet of the exhaust air passage in the total heat exchange element of the conventional heat exchange ventilator.
  • FIG. 6B is a schematic cross-sectional view showing a state in which frost is generated in the vicinity of the outlet of the exhaust air passage in the total heat exchange element of the conventional heat exchange type ventilator.
  • FIG. 7A is a schematic cross-sectional view showing the vicinity of the outlet of the exhaust air passage in the total heat exchange element of the heat exchange ventilator according to the embodiment.
  • FIG. 7B is a schematic cross-sectional view illustrating a state in which frost is generated in the vicinity of the outlet of the exhaust air passage in the total heat exchange element of the heat exchange type ventilator according to the embodiment.
  • FIG. 8 is a schematic plan view showing another structure of the heat exchange type ventilator according to the embodiment.
  • FIG. 9 is a schematic plan view showing another structure of the heat exchange type ventilator according to the embodiment.
  • FIG. 10 is a schematic plan view showing the structure of a conventional heat exchange type ventilator.
  • FIG. 11 is a schematic diagram illustrating an installation example of a heat exchange type ventilation system according to another embodiment.
  • FIG. 12 is a schematic plan view showing the structure of a total heat exchange type ventilation device of a heat exchange type ventilation system according to another embodiment.
  • FIG. 13 is a perspective view showing a total heat exchange element of a heat exchange type ventilation system according to another embodiment.
  • FIG. 14 is an exploded perspective view showing a part of the total heat exchange element of the heat exchange type ventilation system according to another embodiment.
  • FIG. 15 is a block diagram which shows the structural example of the heat exchange type ventilation system concerning other embodiment.
  • FIG. 16 is a block diagram which shows another structural example of the heat exchange type ventilation system concerning other embodiment.
  • FIG. 17 is a configuration diagram illustrating another configuration example of a heat exchange type ventilation system according to another embodiment.
  • the heat exchange ventilator includes an air supply blower, an exhaust blower, a heat exchange element, and a pressure adjuster.
  • the supply air blower supplies outdoor air into the room.
  • the exhaust blower exhausts indoor air to the outside.
  • the heat exchange element has a heat transfer plate.
  • the heat transfer plate divides the supply air passage through which the supply air flow generated by the supply air blowing section flows and the exhaust air passage through which the exhaust flow generated by the exhaust ventilation section flows, and sensible heat is generated between the supply air passage and the exhaust air passage. Or replace the total heat.
  • the pressure adjusting unit is located on the upstream side of the heat exchange element of the supply air passage, and adjusts the pressure of the supply air flow.
  • the pressure adjusting unit can adjust the pressure of the air supply air flow so that the pressure on the air supply air passage side becomes low. Therefore, the heat transfer plate is suppressed from being bent toward the exhaust air passage, and the opening area of the exhaust air passage is enlarged. Therefore, clogging due to frost formation in the exhaust air passage is suppressed.
  • the heat exchange ventilator includes a temperature detection unit and a control unit.
  • the temperature detection unit detects the temperature of outdoor air.
  • the control unit causes the pressure adjustment unit to adjust the pressure of the air supply air flow based on the temperature of the outdoor air detected by the temperature detection unit.
  • the temperature detection unit detects the temperature of the outdoor air that is assumed to freeze inside the heat exchange element
  • the pressure of the supply air flow is reduced so that the pressure on the supply air passage side is lowered by the pressure adjustment unit. Adjusted. Therefore, the heat transfer plate is suppressed from being bent toward the exhaust air passage, and the opening area of the exhaust air passage is enlarged. Therefore, clogging due to frost formation in the exhaust air passage is suppressed according to the temperature of the outdoor air.
  • the heat exchange type ventilator includes a differential pressure detection unit and a control unit.
  • the differential pressure detection unit detects a pressure difference between the vicinity of the inlet of the supply air path in the heat exchange element and the vicinity of the outlet of the exhaust air path in the heat exchange element.
  • the control unit causes the pressure adjusting unit to adjust the pressure of the supplied airflow according to the pressure difference detected by the differential pressure detecting unit.
  • the pressure of the supply air flow is adjusted by the pressure adjustment unit so that the pressure on the supply air path side is lowered.
  • the pressure on the inlet side of the supply air passage is kept lower than the pressure on the outlet side of the exhaust air passage. That is, regardless of the magnitude of the pressure loss of each whole air passage caused by clogging of each air passage due to dirt accumulated in each air passage, bending of each air passage, the length of each air passage, etc.
  • the pressure on the inlet side is kept low. Therefore, the heat transfer plate is suppressed from being bent toward the exhaust air passage, and clogging due to frost formation in the exhaust air passage is suppressed.
  • the pressure adjusting unit is a damper whose opening degree can be adjusted.
  • the pressure of the air supply air in the heat exchange element is adjusted by the opening degree of the damper, which is a simple mechanism. Therefore, the heat exchange type ventilator which suppresses clogging due to frost formation can be provided at a low cost.
  • the supply air blowing unit has a control function of making the air volume constant regardless of the pressure change of the supply air flow.
  • the heat exchange type ventilator can realize a ventilation operation with a constant air volume even if the pressure of the supply airflow is adjusted.
  • a heat exchange type ventilation device 2 is installed in a house 1.
  • the heat exchange ventilator 2 exhausts indoor air (hereinafter referred to as indoor air) to the outside as indicated by black arrows.
  • the heat exchange ventilator 2 supplies outdoor air (hereinafter referred to as outdoor air) into the room as indicated by white arrows.
  • the heat exchange ventilator 2 performs ventilation.
  • the heat exchange ventilator 2 transmits the heat of the indoor air exhausted to the outside to the outdoor air supplied to the room during the ventilation. Thereby, the heat exchange type ventilation apparatus 2 suppresses discharge
  • the heat exchange ventilator 2 includes a main body case 3 provided with an inside air port 6, an exhaust port 7, an outside air port 9, and an air supply port 10.
  • the heat exchange type ventilation apparatus 2 includes in the main body case 3 a total heat exchange element 4 that is a heat exchange element, an exhaust fan 5 that is an exhaust air blower, and an air supply fan 8 that is a supply air blower.
  • the heat exchange ventilator 2 drives the exhaust fan 5 and sucks room air from the inside air port 6.
  • the heat exchange ventilator 2 exhausts the sucked room air from the exhaust port 7 to the outside through the total heat exchange element 4 and the exhaust fan 5. That is, the exhaust fan 5 exhausts indoor air to the outside.
  • the exhaust flow 14 generated by the exhaust fan 5 flows through the exhaust air passage 20 that connects the inside air port 6 and the exhaust port 7.
  • the heat exchange ventilator 2 drives the air supply fan 8 to suck outdoor air from the outdoor air port 9.
  • the heat exchange ventilator 2 supplies the sucked outdoor air to the room through the total heat exchange element 4 and the air supply fan 8 from the air supply port 10. That is, the air supply fan 8 supplies outdoor air into the room.
  • the air supply air 15 generated by the air supply fan 8 circulates through the air supply air passage 21 that connects the outside air inlet 9 and the air inlet 10.
  • the total heat exchange element 4 includes a plurality of molded products 13 stacked as shown in FIGS. 3 and 4.
  • Each molded product 13 is a member in which the heat transfer plate 12 is attached to the interval holding rib 11.
  • the plurality of molded products 13 are stacked with an interval held by the interval holding rib 11.
  • the exhaust flow 14 and the supply air flow 15 are alternately circulated for each layer of the interval held by the interval holding rib 11. That is, the heat transfer plate 12 partitions the supply air passage 21 and the exhaust air passage 20.
  • the exhaust flow 14 and the supply air flow 15 flow through the molded product 13 with the heat transfer plate 12 interposed therebetween, whereby heat exchange and moisture exchange are performed via the heat transfer plate 12.
  • the total heat exchange element 4 includes the heat transfer plate 12.
  • the heat transfer plate 12 exchanges total heat between the supply air passage 21 and the exhaust air passage 20.
  • FIG. 5 is a conceptual diagram showing an exhaust air passage 20 of a general total heat exchange element.
  • indoor air contains moisture due to heating and human exhalation, and outdoor air is dry.
  • the exhaust flow 14 and the supply air flow 15 are circulated through the molded product 13 on which the heat transfer plate 12 (see FIG. 4) is mounted, so that the heat and moisture of the exhaust flow 14 are transmitted through the heat transfer plate 12. It is transmitted to the air supply 15.
  • the temperature of the exhaust stream 14 is lowered by the low temperature air supply 15. Condensation occurs when the relative humidity of the exhaust stream 14 with reduced temperature exceeds 100%.
  • the condensation freezes and becomes frost.
  • the region where frost formation is likely to occur is a region as shown by the oblique lines in FIG. More specifically, on the exhaust air flow path 20 side in the region where the outlet side of the exhaust air flow path 20 through which the exhaust air flow 14 circulates and the inlet side of the air supply air flow path 21 through which the air supply air flow 15 circulates via the heat transfer plate 12. Frosting is likely to occur. This is because the exhaust flow 14 in this region is most cooled by first exchanging heat with the low temperature air supply 15.
  • FIG. 6A is a schematic cross-sectional view showing the vicinity of the outlet of the exhaust air passage 20 in the total heat exchange element of the conventional heat exchange ventilator.
  • FIG. 6B is a schematic cross-sectional view showing a state in which frost F is generated in the vicinity of the outlet of the exhaust air passage 20 in the total heat exchange element of the conventional heat exchange ventilator.
  • 6A and 6B are schematic cross-sectional views cut along a plane orthogonal to the direction in which the exhaust flow 14 (see FIG. 4) flows.
  • the pressure loss due to the bending of each air passage and the length of each air passage is smaller than the pressure loss due to the air flows 14 and 15 flowing through the air passages 20 and 21 of the total heat exchange element 4. Therefore, the pressure on the outlet side of each air passage 20, 21 is affected by the pressure loss due to the air flow 14, 15 flowing through each air passage 20, 21 of the total heat exchange element 4. Lower than the pressure on the inlet side. Therefore, the pressure on the outlet side of the exhaust air passage 20 through which the exhaust air flow 14 flows is lower than the pressure on the inlet side of the air supply air passage 21 through which the air supply air flow 15 flows. Therefore, the heat transfer plate 12 bends toward the exhaust air passage 20 and the opening area of the exhaust air passage 20 becomes narrow. As a result, as shown in FIG. 6B, when frost F is generated in the exhaust air passage 20, the exhaust air passage 20 of the total heat exchange element 4 is likely to be clogged.
  • the heat exchange ventilator 2 is located upstream of the total heat exchange element 4 of the supply air passage 21 in the main body case 3 (that is, the outside air port 9 side),
  • the damper 16 which is a pressure adjustment part which adjusts the pressure concerning the heat exchanger plate 12 is provided. In other words, the damper 16 adjusts the pressure of the air supply air 15.
  • the opening of the damper 16 By adjusting the opening of the damper 16 to be small, the opening area of the supply air passage 21 through which the supply air flow 15 circulates becomes narrow in the damper 16. Therefore, the pressure loss of the supply air passage 21 in the damper 16 increases. Thus, since the damper 16 reduces the pressure of the supply air flow 15, the pressure near the inlet of the supply air passage 21 in the total heat exchange element 4 decreases.
  • FIG. 7A is a schematic cross-sectional view showing the vicinity of the outlet of the exhaust air passage 20 in the total heat exchange element 4 of the heat exchange ventilator 2.
  • FIG. 7B is a schematic cross-sectional view showing a state in which frost F is generated in the vicinity of the outlet of the exhaust air passage 20 in the total heat exchange element 4 of the heat exchange ventilator 2.
  • 7A and 7B are schematic cross-sectional views cut along a plane orthogonal to the direction in which the exhaust flow 14 flows.
  • the heat exchange type ventilation device 2 may include a temperature sensor 17 and a control unit 18 as a temperature detection unit.
  • the temperature sensor 17 detects the temperature of outdoor air. Based on the outdoor temperature detected by the temperature sensor 17, the control unit 18 causes the damper 16 to adjust the pressure near the inlet of the supply air passage 21 in the total heat exchange element 4. That is, the control unit 18 causes the damper 16 to adjust the pressure of the air supply air 15 based on the outdoor temperature detected by the temperature sensor 17.
  • the control unit 18 opens the damper 16 only when the temperature of the outdoor air detected by the temperature sensor 17 is equal to or lower than the temperature at which freezing occurs inside the total heat exchange element 4. Adjust to reduce the degree. As a result, as described above, the pressure in the vicinity of the inlet of the supply air passage 21 in the total heat exchange element 4 is reduced, the deflection of the heat transfer plate 12 toward the exhaust air passage 20 is suppressed, and the frost formation of the exhaust air passage 20 occurs. Clogging due to is suppressed. Moreover, the control part 18 adjusts the opening degree of the damper 16 small, only when it is below the temperature assumed that freezing will generate
  • the heat exchange ventilator 2 may include a differential pressure gauge 19 and a control unit 18 as a differential pressure detection unit.
  • the differential pressure gauge 19 detects a pressure difference between the vicinity of the inlet of the supply air passage 21 in the total heat exchange element 4 and the vicinity of the outlet of the exhaust air passage 20 in the total heat exchange element 4.
  • the control unit 18 may adjust the opening degree of the damper 16 according to the pressure difference detected by the differential pressure gauge 19. That is, the control unit 18 may cause the damper 16 to adjust the pressure of the air supply air 15 according to the pressure difference detected by the differential pressure gauge 19.
  • the differential pressure gauge 19 detects that the pressure near the inlet of the supply air passage 21 in the total heat exchange element 4 is higher than the pressure near the outlet of the exhaust air path 20 in the total heat exchange element 4,
  • the part 18 adjusts the opening degree of the damper 16 to be small.
  • the pressure in the vicinity of the inlet of the supply air passage 21 in the total heat exchange element 4 is reduced, the deflection of the heat transfer plate 12 toward the exhaust air passage 20 is suppressed, and frost formation occurs in the exhaust air passage 20. Clogging due to is suppressed.
  • the air supply air passages in the total heat exchange element 4 are independent of the clogging of the air passages due to dirt accumulated in the air passages 20 and 21, the bending of each air passage, the magnitude of pressure loss due to the length of each air passage, and the like.
  • the pressure near the inlet 21 is kept lower than the pressure near the outlet of the exhaust air passage 20 in the total heat exchange element 4. That is, the opening area of the exhaust air passage 20 of the total heat exchange element 4 is expanded, and clogging due to frost formation in the exhaust air passage 20 is suppressed.
  • the inlet of the supply air path 21 in the total heat exchange element 4 is the inlet of the supply air path 21 in the total heat exchange element 4 on the outside air port 9 side.
  • the outlet of the exhaust air passage 20 in the total heat exchange element 4 is an outlet on the exhaust port 7 side of the exhaust air passage 20 in the total heat exchange element 4.
  • damper 16 capable of adjusting the opening degree as the pressure adjusting unit, it is possible to provide an inexpensive heat exchange ventilator 2 that suppresses clogging due to frost formation.
  • the air supply fan 8 may be provided with a control function for keeping the air volume constant irrespective of the pressure change of the air supply air 15.
  • the heat exchange type ventilator 2 can realize a ventilation operation with a constant air volume regardless of the pressure of the air supply air 15 adjusted by the damper 16.
  • a fan provided with a DC motor can be cited.
  • a fan equipped with a DC motor can realize a control function for keeping the air volume constant and can easily suppress power consumption.
  • the total heat exchange element 4 is an orthogonal heat exchange element, but it may be a hexagonal heat exchange element (not shown) that combines an opposing type and an orthogonal type. .
  • frost formation is most likely to occur in a region where the outlet side of the exhaust air passage 20 and the inlet side of the air supply air passage 21 are in contact via the heat transfer plate 12. Therefore, by reducing the pressure in the vicinity of the inlet of the supply air passage 21 in the heat exchange element, the opening area of the exhaust air passage 20 is expanded, and clogging due to frost formation in the exhaust air passage 20 is suppressed.
  • the total heat exchange element 4 that performs heat exchange and moisture exchange is illustrated as the heat exchange element, but a sensible heat exchange element that performs only heat exchange may be used. That is, the heat transfer plate 12 may exchange only sensible heat between the supply air passage 21 and the exhaust air passage 20.
  • a heat exchange type ventilation system includes a heat exchange type ventilation device, a supply air flow rate adjustment device, a temperature detection unit, and a supply air flow rate control unit.
  • the heat exchange ventilator has an outdoor air inlet for sucking in outdoor air, an air inlet for supplying air into the room, an air inlet for sucking in indoor air, an air outlet for exhausting outside the air, and an air outlet.
  • An air supply passage that communicates with the air supply port, an exhaust air passage that communicates between the internal air port and the exhaust port, and a heat exchange element that performs heat exchange between the air supply passage and the exhaust air passage.
  • the supply air volume adjusting device is provided in the supply air path and adjusts the supply air volume.
  • the temperature detection unit detects an outdoor temperature.
  • the supply air volume control unit controls the supply air volume adjustment device based on the outdoor temperature detected by the temperature detection unit.
  • the heat exchange ventilation system according to another embodiment can suppress clogging due to condensation and freezing in the exhaust air passage.
  • a heat exchange type ventilation system includes a heat exchange type ventilation device, a supply air flow rate adjustment device, a temperature detection unit, and a supply air flow rate control unit.
  • the heat exchange ventilator has an outdoor air inlet for sucking in outdoor air, an air inlet for supplying air into the room, an air inlet for sucking in indoor air, an air outlet for exhausting outside the air, and an air outlet.
  • An air supply passage that communicates with the air supply port, an exhaust air passage that communicates between the internal air port and the exhaust port, and a heat exchange element that performs heat exchange between the air supply passage and the exhaust air passage.
  • the supply air volume adjusting device is provided in the supply air path and adjusts the supply air volume.
  • the temperature detection unit detects an outdoor temperature.
  • the supply air volume control unit controls the supply air volume adjustment device based on the outdoor temperature detected by the temperature detection unit.
  • the supply air amount control unit operates the supply air amount adjustment device. Then, the air volume of the dry supply airflow which distribute
  • the temperature detection unit and the supply air volume control unit are provided inside the supply air volume control device.
  • the supply air amount adjusting device is provided between the outside air port and the heat exchange element.
  • the temperature detection unit is provided between the outside air port and the heat exchange element.
  • the air supply amount adjusting device and the air supply amount control unit are provided between the heat exchange element and the air supply port.
  • the temperature detection unit communicates with the supply air volume control unit.
  • the temperature detection unit is provided at a position adjacent to the heat exchange element.
  • the temperature detection unit can detect the outdoor temperature at a position adjacent to the total heat exchange element. Therefore, the temperature detection unit can accurately detect the temperature at which freezing occurs inside the total heat exchange element.
  • FIG. 11 is a schematic diagram showing a two-story house 201 in which the heat exchange ventilation system 200 is installed.
  • the house 201 is composed of a non-residential space where only exhaust is performed and a residential space where both air supply and exhaust are performed.
  • Non-residential spaces include, for example, toilets, washrooms, bathrooms, and the like.
  • the living space includes, for example, a bedroom and a living room.
  • the heat exchange type ventilation system 200 includes a total heat exchange type ventilator 202 that is a heat exchange type ventilator, and an air supply auxiliary fan 203 that is a supply air volume adjusting device.
  • the heat exchange ventilation system 200 is installed behind the ceiling of the house 201. In order to supply and exhaust air in each room, total heat exchange type ventilation device 202 and auxiliary air supply fan 203 are connected to each room by a duct.
  • FIG. 12 is a schematic plan view showing the configuration of the total heat exchange type ventilation device 202 of the heat exchange type ventilation system 200.
  • the total heat exchange type ventilation device 202 includes an air supply fan 204, an exhaust fan 205, and a total heat exchange element 206.
  • the air supply fan 204 sucks outdoor air and supplies it to the room.
  • the exhaust fan 205 sucks indoor air and discharges it outside the room.
  • Total heat exchange element 206 performs heat exchange and moisture exchange between supply air flow 207 blown by supply air fan 204 and exhaust flow 208 blown by exhaust fan 205.
  • the total heat exchanging ventilator 202 exhausts the outdoor air inlet 216 for sucking in outdoor air, the air inlet 217 for supplying air into the room, the air inlet 218 for sucking in indoor air, and the outdoor air.
  • An exhaust port 219, a supply air passage 220, and an exhaust air passage 221 are provided.
  • the air supply passage 220 communicates the outside air inlet 216 and the air inlet 217.
  • the air supply air 207 flows through the air supply air passage 220.
  • the exhaust air passage 221 communicates the inside air port 218 and the exhaust port 219.
  • the exhaust flow 208 flows through the exhaust air passage 221.
  • the total heat exchange element 206 will be described below with reference to FIGS. 13 and 14.
  • FIG. 13 is a perspective view showing the total heat exchange element 206 of the total heat exchange type ventilator 202.
  • FIG. 14 is an exploded perspective view of a part of the total heat exchange element 206.
  • the total heat exchange element 206 includes a plurality of molded products 224 that are stacked.
  • Each molded product 224 is a member in which the heat transfer plate 223 is attached to the interval holding rib 222.
  • the plurality of molded products 224 are stacked with an interval held by the interval holding rib 222.
  • the air supply air 207 and the exhaust air flow 208 alternately flow for each layer of the interval held by the interval holding rib 222.
  • the heat supply air flow 207 and the exhaust air flow 208 flow with the molded product 224 fitted with the heat transfer plate 223 interposed therebetween, whereby heat exchange and moisture exchange are performed via the heat transfer plate 223. That is, the total heat exchange element 206 performs heat exchange between the supply air passage 220 and the exhaust air passage 221.
  • the mechanism of freezing in the total heat exchange element 206 will be described.
  • the total heat exchange element 206 uses the heat of the exhaust stream 208 to warm the supply air stream 207. Therefore, conversely, the exhaust flow 208 is cooled by the supply air flow 207.
  • the moisture in the exhaust stream 208 is saturated. Then, the moisture that could not be held condenses and adheres to the total heat exchange element 206. Furthermore, the condensed moisture is frozen because it is cooled to below freezing point. The frozen moisture will block the exhaust air passage 221 through which the exhaust flow 208 of the total heat exchange element 206 flows.
  • the blockage of the exhaust air passage 221 can be suppressed by increasing the air volume of the air supply air flow 207 flowing through the air supply air passage 220. Details will be described below.
  • Moisture movement from the exhaust stream 208 to the supply airflow 207 occurs when the absolute humidity of the exhaust stream 208 is higher than the absolute humidity of the supply airflow 207.
  • Absolute humidity is indicated by the weight of water contained in 1 kg of dry air.
  • moisture movement from the exhaust air flow 208 having a high absolute humidity to the air supply air 207 having a low absolute humidity is promoted.
  • the amount of moisture in the exhaust stream 208 is reduced, so that saturation of moisture in the exhaust stream 208 is suppressed, and dew condensation inside the total heat exchange element 206 is suppressed.
  • FIG. 15 is a configuration diagram showing a configuration example of the heat exchange type ventilation system 200.
  • the heat exchange type ventilation system 200 includes a total heat exchange type ventilation device 202, an air supply auxiliary fan 203 as an air supply air amount adjusting device, a connection duct 209, and a temperature sensor as a temperature detection unit. 210 and an outside air connection duct 213.
  • the air supply auxiliary fan 203 is provided in the air supply air passage 220, and includes a sirocco fan 211 and a control board 212 which is an air supply air volume control unit. More specifically, the air supply auxiliary fan 203 and the control board 212 are provided between the air supply port 217 and the total heat exchange element 206.
  • the connection duct 209 is provided between the total heat exchange element 206 and the air supply auxiliary fan 203.
  • the outside air connection duct 213 is provided between the total heat exchange element 206 and the outside air port 216.
  • the temperature sensor 210 is provided inside the outside air connection duct 213 and detects the outdoor temperature. That is, the temperature sensor 210 is provided between the outside air port 216 and the total heat exchange element 206.
  • the temperature sensor 210 is electrically connected to the control board 212 through a signal line 214 that is an outside air temperature communication member, and communicates with the control board 212.
  • the control board 212 controls the operation of the sirocco fan 211 based on the outdoor temperature detected by the temperature sensor 210. That is, the control board 212 controls the air supply auxiliary fan 203 based on the outdoor temperature detected by the temperature sensor 210.
  • thermocouple using an electromotive voltage generated at a junction of different metals, a resistance temperature detector, a heat measurement method using a semiconductor, or the like can be used.
  • a temperature at which freezing occurs inside the total heat exchange element 206 is set in advance as a temperature Td.
  • the control board 212 sends a signal for operating the sirocco fan 211.
  • the control board 212 sends a signal for stopping the sirocco fan 211.
  • FIG. 16 is a configuration diagram showing another configuration example of the heat exchange type ventilation system 200.
  • the temperature sensor 210 and the control board 212 are provided inside the air supply auxiliary fan 203.
  • the air supply auxiliary fan 203 is provided between the outside air connection duct 213 and the total heat exchange element 206. That is, the air supply auxiliary fan 203 is provided between the outside air port 9 and the total heat exchange element 206.
  • the temperature sensor 210 can be installed with simple construction without causing the signal line 214 to be long.
  • FIG. 17 is a configuration diagram showing another configuration example of the heat exchange type ventilation system 200.
  • This configuration example is different from the configuration example shown in FIG. 15 in the position where the temperature sensor 210 is provided.
  • the temperature sensor 210 is provided at a position adjacent to the total heat exchange element 206. With this configuration, the temperature sensor 210 can detect the outdoor temperature in the vicinity of the total heat exchange element 206, and thus can accurately detect the temperature at which freezing occurs in the total heat exchange element 206.
  • the heat exchange type ventilation system 200 is installed in the back of the ceiling of the house 201, you may install in the eaves of a house 201, a machine room, etc.
  • a fan that replaces the sirocco fan 211 may be selected according to the assumed air volume and the required static pressure.
  • the temperature sensor 210 communicates with the control board 212 by wired connection using the signal line 214, but may communicate by wireless connection.
  • the degree of freedom in construction of the temperature sensor 210 and the control board 212 is more preferable.
  • the temperature sensor 210 is installed on the upstream side of the sirocco fan 211, but may be installed on the downstream side of the sirocco fan 211. Even if the temperature sensor 210 is installed downstream of the sirocco fan 211, the temperature sensor 210 can detect the outdoor temperature. However, it is more preferable that the temperature sensor 210 is installed on the upstream side of the sirocco fan 211 because the influence of heat generated by the sirocco fan 211 on the temperature sensor 210 is small.
  • the heat exchange type ventilation system according to the present invention is useful as a ventilation system because the freezing of the total heat exchange element can be suppressed.
  • the heat exchange type ventilator according to the present invention is useful as a heat exchange type ventilator equipped with a heat exchange element because clogging due to frost formation can be effectively suppressed.

Abstract

The purpose of the present invention is to provide a heat exchange type ventilation device for minimizing clogging due to frost formation in an air exhaust path. The heat exchange type ventilation device (2) is provided with an air supply blower part (8), an air exhaust blower part (5), a heat exchange element (4), and a pressure regulating part (16). The air supply blower part (8) supplies outdoor air to indoors. The air exhaust blower part (5) exhausts indoor air to outdoors. The heat exchange element (4) has a heat transfer plate. The heat transfer plate provides a partition between an air supply path (21) via which a supply air flow (15) generated by the air supply blower part (8) is circulated, and an exhaust air path (20) via which an exhaust air flow (14) generated by the air exhaust blower part (5) is circulated, sensible heat or total heat being exchanged between the air supply path (21) and the air exhaust path (20). The pressure regulating part (16) is positioned upstream of the heat exchange element (4) of the air supply path (21), and regulates the pressure of the supply air flow (15).

Description

熱交換形換気装置Heat exchange ventilator
 本発明は、熱交換素子を備えた熱交換形換気装置に関する。 The present invention relates to a heat exchange type ventilator provided with a heat exchange element.
 近年、地球温暖化にともない、居住分野の省エネルギー性が重視されている。住宅の消費エネルギーの中では、給湯、照明、および冷暖房の消費エネルギーが比較的大きい。そのため、これらの消費エネルギーを低減する技術が切に望まれている。 In recent years, with the global warming, energy saving in the residential area has been emphasized. Among the energy consumption of houses, the energy consumption of hot water supply, lighting, and air conditioning is relatively large. Therefore, a technique for reducing these energy consumptions is strongly desired.
 冷暖房の消費エネルギーに着目すると、住宅の躯体から逃げる熱(冷房の場合は冷熱)と換気によって逃げる熱がある。住宅の躯体から逃げる熱は、ここ数十年の住宅の断熱性能および気密性能の大幅な向上により、かなり低減されてきた。一方、換気によって逃げる熱を低減させるには、給気される空気と排気される空気との間で熱交換を行う熱交換形換気装置が有効である。熱交換形換気装置は、給気される空気と排気される空気との間で熱交換を行う熱交換素子を備えている。 When paying attention to energy consumption of air conditioning, there is heat escaping from the housing of the house (cooling in the case of cooling) and heat escaping by ventilation. The heat escaping from the housing of the house has been significantly reduced due to the significant improvement in the insulation and airtightness of the house over the last few decades. On the other hand, in order to reduce the heat escaped by ventilation, a heat exchange type ventilator that exchanges heat between supplied air and exhausted air is effective. The heat exchange ventilator includes a heat exchange element that exchanges heat between supplied air and exhausted air.
 熱交換形換気装置は、室内外の温度差の大きな寒冷地において、特に望まれている。しかし、寒冷地において外気が低温の場合に、熱交換素子内部で霜が発生するために、排気風路が目詰まりしやすいという課題がある。これは、室内の暖かく湿った空気が冷たい外気によって冷やされて低温になり、空気中の水分が凍結するためである。特に、熱交換素子内部において給気風路の入口と排気風路の出口とが伝熱板を介して接している領域の排気風路側で着霜が顕著である。 熱 Heat exchange type ventilators are particularly desired in cold regions where the temperature difference between indoors and outdoors is large. However, when the outside air is cold in a cold region, frost is generated inside the heat exchange element, which causes a problem that the exhaust air passage is easily clogged. This is because the warm and humid air in the room is cooled by the cold outside air to a low temperature, and moisture in the air is frozen. In particular, frost formation is prominent on the exhaust air passage side in a region where the inlet of the supply air passage and the outlet of the exhaust air passage are in contact with each other via a heat transfer plate inside the heat exchange element.
 一般的な着霜対策として、寒冷地用の熱交換形換気装置は、例えば、ヒーターで外気を温めてから熱交換素子に導入する。また、寒冷地用の熱交換形換気装置は、例えば、熱交換素子が着霜した場合に、暖かい室内空気を熱交換形換気装置内部に循環させて霜を溶かす(以下、「デフロストをする」という)。しかし、ヒーターを使用すると消費エネルギーが増大し、またデフロストをするとその間は換気ができないといった課題がある。 As a general countermeasure against frost formation, a heat exchange type ventilator for cold districts, for example, warms the outside air with a heater and introduces it into the heat exchange element. Further, the heat exchange type ventilator for cold districts melts frost by circulating warm room air inside the heat exchange type ventilator when the heat exchange element is frosted (hereinafter referred to as “defrost”). Called). However, when a heater is used, energy consumption increases, and when defrosted, there is a problem that ventilation cannot be performed during that time.
 これらの課題に対して、熱交換形換気装置の給気風量と排気風量の比率を工夫することにより、外気が低温であっても熱交換素子内部の排気風路が着霜により目詰まりしないようにする検討がなされてきた。 In response to these problems, by devising the ratio of the supply air volume and the exhaust air volume of the heat exchange type ventilator, the exhaust air path inside the heat exchange element will not be clogged due to frost formation even when the outside air is at a low temperature. Consideration has been made.
 従来のこの種の熱交換形換気装置としては、熱交換素子内部が着霜した場合、暖かい排気風量を増やし、冷たい給気風量を減らすような制御をするものが知られている(例えば、特許文献1参照)。 As this type of conventional heat exchange type ventilator, when the inside of the heat exchange element is frosted, a device that controls to increase the amount of warm exhaust air and reduce the amount of cool air supply is known (for example, patents). Reference 1).
 以下、その熱交換形換気装置について図10を参照しながら説明する。 Hereinafter, the heat exchange type ventilator will be described with reference to FIG.
 図10に示すように、熱交換形換気装置101は、給気送風手段102と、排気送風手段103と、熱交換素子107とを備える。給気送風手段102は、室外の空気を室内へ給気する。排気送風手段103は、室内の空気を室外へ排気する。熱交換素子107は、全熱を交換する伝熱板106を有する。伝熱板106は、給気送風手段102により生じる給気流が流通する給気風路104と、排気送風手段103により生じる排気流が流通する排気風路105とを仕切る。 As shown in FIG. 10, the heat exchange ventilator 101 includes an air supply blower 102, an exhaust blower 103, and a heat exchange element 107. The air supply / air blowing means 102 supplies outdoor air into the room. The exhaust air blowing means 103 exhausts indoor air to the outside. The heat exchange element 107 includes a heat transfer plate 106 that exchanges total heat. The heat transfer plate 106 partitions the supply air passage 104 through which the supply air flow generated by the supply air blowing means 102 flows and the exhaust air passage 105 through which the exhaust flow generated by the exhaust ventilation means 103 flows.
 この熱交換形換気装置101には、室外の空気の温度を測定する温度センサ108が設けられている。熱交換形換気装置101は、測定された室外の空気の温度に応じて、暖かい排気風量を維持したまま冷たい給気風量を低減させて、熱交換を行う。これにより、熱交換素子107全体の温度が上がるため、熱交換素子107において着霜による目詰まりが抑制される。 The heat exchange ventilator 101 is provided with a temperature sensor 108 for measuring the temperature of outdoor air. The heat exchange ventilator 101 performs heat exchange according to the measured outdoor air temperature by reducing the cool air supply air volume while maintaining the warm exhaust air volume. Thereby, since the temperature of the whole heat exchange element 107 rises, clogging due to frost formation in the heat exchange element 107 is suppressed.
特開2015-135199号公報Japanese Patent Laying-Open No. 2015-135199
 このような従来の熱交換形換気装置は、排気風量を給気風量より多くするため、熱交換素子内部を流れる気流の圧力損失によって排気風路の出口側が給気風路の入口側よりも負圧となる。そのため、排気風路と給気風路とを仕切る伝熱板が排気風路側へたわみ、排気風路の開口面積が狭くなる。これにより、排気風路において着霜による目詰まりが生じやすいという課題がある。 In such a conventional heat exchange type ventilator, the exhaust air volume is made larger than the supply air volume, so that the outlet side of the exhaust air path is more negative than the inlet side of the supply air path due to the pressure loss of the air flow flowing inside the heat exchange element. It becomes. Therefore, the heat transfer plate that divides the exhaust air passage and the supply air passage is bent toward the exhaust air passage, and the opening area of the exhaust air passage becomes narrow. Accordingly, there is a problem that clogging due to frost is likely to occur in the exhaust air passage.
 そこで、本発明は、排気風路において着霜による目詰まりを抑制する熱交換形換気装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a heat exchange type ventilator that suppresses clogging due to frost formation in the exhaust air passage.
 本発明の一態様にかかる熱交換形換気装置は、給気送風部と、排気送風部と、熱交換素子と、圧力調整部とを備える。給気送風部は、室外の空気を室内へ給気する。排気送風部は、室内の空気を室外へ排気する。熱交換素子は、伝熱板を有する。伝熱板は、給気送風部により生じる給気流が流通する給気風路と排気送風部により生じる排気流が流通する排気風路とを仕切り、給気風路と排気風路との間で顕熱または全熱を交換する。圧力調整部は、給気風路の熱交換素子より上流側に位置し、給気流の圧力を調整する。 The heat exchange ventilator according to one aspect of the present invention includes an air supply blower, an exhaust blower, a heat exchange element, and a pressure adjuster. The supply air blower supplies outdoor air into the room. The exhaust blower exhausts indoor air to the outside. The heat exchange element has a heat transfer plate. The heat transfer plate divides the supply air passage through which the supply air flow generated by the supply air blowing section flows and the exhaust air passage through which the exhaust flow generated by the exhaust ventilation section flows, and sensible heat is generated between the supply air passage and the exhaust air passage. Or replace the total heat. The pressure adjusting unit is located on the upstream side of the heat exchange element of the supply air passage, and adjusts the pressure of the supply air flow.
 本発明の一態様にかかる熱交換形換気装置は、排気風路において着霜による目詰まりを抑制できる。 The heat exchange ventilator according to one aspect of the present invention can suppress clogging due to frost formation in the exhaust air passage.
図1は、実施の形態にかかる熱交換形換気装置の設置例を示す概略図である。 Drawing 1 is a schematic diagram showing the example of installation of the heat exchange type ventilator concerning an embodiment. 図2は、実施の形態にかかる熱交換形換気装置の構造を示す概略平面図である。FIG. 2 is a schematic plan view showing the structure of the heat exchange type ventilator according to the embodiment. 図3は、実施の形態にかかる熱交換形換気装置の全熱交換素子を示す斜視図である。FIG. 3 is a perspective view showing a total heat exchange element of the heat exchange type ventilator according to the embodiment. 図4は、実施の形態にかかる熱交換形換気装置の全熱交換素子の一部を示す分解斜視図である。FIG. 4 is an exploded perspective view illustrating a part of the total heat exchange element of the heat exchange type ventilator according to the embodiment. 図5は、一般的な全熱交換素子の排気風路を示す概念図である。FIG. 5 is a conceptual diagram showing an exhaust air passage of a general total heat exchange element. 図6Aは、従来の熱交換形換気装置の全熱交換素子における排気風路の出口近傍を示す概略断面図である。FIG. 6A is a schematic cross-sectional view showing the vicinity of the outlet of the exhaust air passage in the total heat exchange element of the conventional heat exchange ventilator. 図6Bは、従来の熱交換形換気装置の全熱交換素子における排気風路の出口近傍に霜が発生した様子を示す概略断面図である。FIG. 6B is a schematic cross-sectional view showing a state in which frost is generated in the vicinity of the outlet of the exhaust air passage in the total heat exchange element of the conventional heat exchange type ventilator. 図7Aは、実施の形態にかかる熱交換形換気装置の全熱交換素子における排気風路の出口近傍を示す概略断面図である。FIG. 7A is a schematic cross-sectional view showing the vicinity of the outlet of the exhaust air passage in the total heat exchange element of the heat exchange ventilator according to the embodiment. 図7Bは、実施の形態にかかる熱交換形換気装置の全熱交換素子における排気風路の出口近傍に霜が発生した様子を示す概略断面図である。FIG. 7B is a schematic cross-sectional view illustrating a state in which frost is generated in the vicinity of the outlet of the exhaust air passage in the total heat exchange element of the heat exchange type ventilator according to the embodiment. 図8は、実施の形態にかかる熱交換形換気装置の別の構造を示す概略平面図である。FIG. 8 is a schematic plan view showing another structure of the heat exchange type ventilator according to the embodiment. 図9は、実施の形態にかかる熱交換形換気装置の別の構造を示す概略平面図である。FIG. 9 is a schematic plan view showing another structure of the heat exchange type ventilator according to the embodiment. 図10は、従来の熱交換形換気装置の構造を示す概略平面図である。FIG. 10 is a schematic plan view showing the structure of a conventional heat exchange type ventilator. 図11は、他の実施の形態にかかる熱交換形換気システムの設置例を示す概略図である。FIG. 11 is a schematic diagram illustrating an installation example of a heat exchange type ventilation system according to another embodiment. 図12は、他の実施の形態にかかる熱交換形換気システムの全熱交換形換気装置の構造を示す概略平面図である。FIG. 12 is a schematic plan view showing the structure of a total heat exchange type ventilation device of a heat exchange type ventilation system according to another embodiment. 図13は、他の実施の形態にかかる熱交換形換気システムの全熱交換素子を示す斜視図である。FIG. 13 is a perspective view showing a total heat exchange element of a heat exchange type ventilation system according to another embodiment. 図14は、他の実施の形態にかかる熱交換形換気システムの全熱交換素子の一部を示す分解斜視図である。FIG. 14 is an exploded perspective view showing a part of the total heat exchange element of the heat exchange type ventilation system according to another embodiment. 図15は、他の実施の形態にかかる熱交換形換気システムの構成例を示す構成図である。FIG. 15: is a block diagram which shows the structural example of the heat exchange type ventilation system concerning other embodiment. 図16は、他の実施の形態にかかる熱交換形換気システムの別構成例を示す構成図である。FIG. 16: is a block diagram which shows another structural example of the heat exchange type ventilation system concerning other embodiment. 図17は、他の実施の形態にかかる熱交換形換気システムの別構成例を示す構成図である。FIG. 17 is a configuration diagram illustrating another configuration example of a heat exchange type ventilation system according to another embodiment.
 本発明の一態様にかかる熱交換形換気装置は、給気送風部と、排気送風部と、熱交換素子と、圧力調整部とを備える。給気送風部は、室外の空気を室内へ給気する。排気送風部は、室内の空気を室外へ排気する。熱交換素子は、伝熱板を有する。伝熱板は、給気送風部により生じる給気流が流通する給気風路と排気送風部により生じる排気流が流通する排気風路とを仕切り、給気風路と排気風路との間で顕熱または全熱を交換する。圧力調整部は、給気風路の熱交換素子より上流側に位置し、給気流の圧力を調整する。 The heat exchange ventilator according to one aspect of the present invention includes an air supply blower, an exhaust blower, a heat exchange element, and a pressure adjuster. The supply air blower supplies outdoor air into the room. The exhaust blower exhausts indoor air to the outside. The heat exchange element has a heat transfer plate. The heat transfer plate divides the supply air passage through which the supply air flow generated by the supply air blowing section flows and the exhaust air passage through which the exhaust flow generated by the exhaust ventilation section flows, and sensible heat is generated between the supply air passage and the exhaust air passage. Or replace the total heat. The pressure adjusting unit is located on the upstream side of the heat exchange element of the supply air passage, and adjusts the pressure of the supply air flow.
 これにより、圧力調整部は給気風路側の圧力が低くなるように給気流の圧力を調整できる。そのため、伝熱板が排気風路側へたわむことが抑制され、排気風路の開口面積が拡大する。そのため、排気風路において着霜による目詰まりが抑制される。 Thereby, the pressure adjusting unit can adjust the pressure of the air supply air flow so that the pressure on the air supply air passage side becomes low. Therefore, the heat transfer plate is suppressed from being bent toward the exhaust air passage, and the opening area of the exhaust air passage is enlarged. Therefore, clogging due to frost formation in the exhaust air passage is suppressed.
 また、本発明の一態様にかかる熱交換形換気装置は、温度検知部と、制御部とを備える。温度検知部は、室外の空気の温度を検知する。制御部は、温度検知部によって検知された室外の空気の温度に基づき、給気流の圧力を圧力調整部に調整させる。 The heat exchange ventilator according to one aspect of the present invention includes a temperature detection unit and a control unit. The temperature detection unit detects the temperature of outdoor air. The control unit causes the pressure adjustment unit to adjust the pressure of the air supply air flow based on the temperature of the outdoor air detected by the temperature detection unit.
 これにより、温度検知部が熱交換素子の内部で凍結が生じると想定される室外の空気の温度を検知したときに、圧力調整部によって給気風路側の圧力が低くなるように給気流の圧力は調整される。そのため、伝熱板が排気風路側へたわむことが抑制され、排気風路の開口面積が拡大する。そのため、室外の空気の温度に応じて、排気風路において着霜による目詰まりが抑制される。 As a result, when the temperature detection unit detects the temperature of the outdoor air that is assumed to freeze inside the heat exchange element, the pressure of the supply air flow is reduced so that the pressure on the supply air passage side is lowered by the pressure adjustment unit. Adjusted. Therefore, the heat transfer plate is suppressed from being bent toward the exhaust air passage, and the opening area of the exhaust air passage is enlarged. Therefore, clogging due to frost formation in the exhaust air passage is suppressed according to the temperature of the outdoor air.
 また、本発明の一態様にかかる熱交換形換気装置は、差圧検知部と、制御部とを備える。差圧検知部は、熱交換素子における給気風路の入口近傍と熱交換素子における排気風路の出口近傍との圧力差を検知する。制御部は、差圧検知部によって検知された圧力差に応じて、給気流の圧力を圧力調整部に調整させる。 Moreover, the heat exchange type ventilator according to one aspect of the present invention includes a differential pressure detection unit and a control unit. The differential pressure detection unit detects a pressure difference between the vicinity of the inlet of the supply air path in the heat exchange element and the vicinity of the outlet of the exhaust air path in the heat exchange element. The control unit causes the pressure adjusting unit to adjust the pressure of the supplied airflow according to the pressure difference detected by the differential pressure detecting unit.
 これにより、差圧検知部によって検知された圧力差に応じて、圧力調整部によって給気風路側の圧力が低くなるように給気流の圧力は調整される。そのため、熱交換素子において排気風路の出口側の圧力より給気風路の入口側の圧力が低く保たれる。すなわち、各風路に堆積した汚れによる各風路の目詰まり、各風路の曲がり、各風路長などに起因して生じる各風路全体の圧力損失の大小によらず、給気風路の入口側の圧力が低く保たれる。そのため、伝熱板が排気風路側へたわむことが抑制され、排気風路において着霜による目詰まりが抑制される。 Thereby, according to the pressure difference detected by the differential pressure detection unit, the pressure of the supply air flow is adjusted by the pressure adjustment unit so that the pressure on the supply air path side is lowered. For this reason, in the heat exchange element, the pressure on the inlet side of the supply air passage is kept lower than the pressure on the outlet side of the exhaust air passage. That is, regardless of the magnitude of the pressure loss of each whole air passage caused by clogging of each air passage due to dirt accumulated in each air passage, bending of each air passage, the length of each air passage, etc. The pressure on the inlet side is kept low. Therefore, the heat transfer plate is suppressed from being bent toward the exhaust air passage, and clogging due to frost formation in the exhaust air passage is suppressed.
 また、本発明の一態様にかかる熱交換形換気装置において、圧力調整部は、開度を調整可能なダンパーである。 Further, in the heat exchange type ventilator according to one aspect of the present invention, the pressure adjusting unit is a damper whose opening degree can be adjusted.
 これにより、熱交換素子における給気流の圧力が簡便な機構であるダンパーの開度により調整される。そのため、着霜による目詰まりを抑制する熱交換形換気装置を安価に提供できる。 Thereby, the pressure of the air supply air in the heat exchange element is adjusted by the opening degree of the damper, which is a simple mechanism. Therefore, the heat exchange type ventilator which suppresses clogging due to frost formation can be provided at a low cost.
 また、本発明の一態様にかかる熱交換形換気装置において、給気送風部は、給気流の圧力変化によらず風量を一定にする制御機能を備える。 Further, in the heat exchange ventilator according to one aspect of the present invention, the supply air blowing unit has a control function of making the air volume constant regardless of the pressure change of the supply air flow.
 これにより、熱交換形換気装置は、給気流の圧力を調整しても、一定の風量の換気運転を実現できる。 Thus, the heat exchange type ventilator can realize a ventilation operation with a constant air volume even if the pressure of the supply airflow is adjusted.
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態)
 図1において、家1の屋内に熱交換形換気装置2が設置されている。
(Embodiment)
In FIG. 1, a heat exchange type ventilation device 2 is installed in a house 1.
 熱交換形換気装置2は、室内の空気(以下、室内空気という)を、黒色矢印のごとく、室外へ排気する。 The heat exchange ventilator 2 exhausts indoor air (hereinafter referred to as indoor air) to the outside as indicated by black arrows.
 また、熱交換形換気装置2は、室外の空気(以下、室外空気という)を、白色矢印のごとく、室内へ給気する。 Also, the heat exchange ventilator 2 supplies outdoor air (hereinafter referred to as outdoor air) into the room as indicated by white arrows.
 このようにして、熱交換形換気装置2は換気を行う。熱交換形換気装置2は、この換気時に、室外へ排気する室内空気の熱を室内へ給気する室外空気へと伝達させる。これにより、熱交換形換気装置2は、不要な熱の排出を抑制する。 In this way, the heat exchange ventilator 2 performs ventilation. The heat exchange ventilator 2 transmits the heat of the indoor air exhausted to the outside to the outdoor air supplied to the room during the ventilation. Thereby, the heat exchange type ventilation apparatus 2 suppresses discharge | emission of unnecessary heat.
 熱交換形換気装置2は、図2に示すように、内気口6と、排気口7と、外気口9と、給気口10とが設けられた本体ケース3を備える。また、熱交換形換気装置2は、本体ケース3内に、熱交換素子である全熱交換素子4と、排気送風部である排気ファン5と、給気送風部である給気ファン8とを備える。熱交換形換気装置2は、排気ファン5を駆動することで、室内空気を内気口6から吸い込む。そして、熱交換形換気装置2は、吸い込んだ室内空気を全熱交換素子4および排気ファン5を経由させて排気口7から室外へ排出する。すなわち、排気ファン5は、室内の空気を室外へ排気する。また、排気ファン5により生じる排気流14は、内気口6と排気口7とを連通する排気風路20を流通する。 As shown in FIG. 2, the heat exchange ventilator 2 includes a main body case 3 provided with an inside air port 6, an exhaust port 7, an outside air port 9, and an air supply port 10. Moreover, the heat exchange type ventilation apparatus 2 includes in the main body case 3 a total heat exchange element 4 that is a heat exchange element, an exhaust fan 5 that is an exhaust air blower, and an air supply fan 8 that is a supply air blower. Prepare. The heat exchange ventilator 2 drives the exhaust fan 5 and sucks room air from the inside air port 6. Then, the heat exchange ventilator 2 exhausts the sucked room air from the exhaust port 7 to the outside through the total heat exchange element 4 and the exhaust fan 5. That is, the exhaust fan 5 exhausts indoor air to the outside. Further, the exhaust flow 14 generated by the exhaust fan 5 flows through the exhaust air passage 20 that connects the inside air port 6 and the exhaust port 7.
 また、熱交換形換気装置2は、給気ファン8を駆動することで、室外空気を外気口9から吸い込む。そして、熱交換形換気装置2は、吸い込んだ室外空気を全熱交換素子4および給気ファン8を経由させて給気口10から室内へ給気する。すなわち、給気ファン8は、室外の空気を室内へ給気する。また、給気ファン8により生じる給気流15は、外気口9と給気口10とを連通する給気風路21を流通する。 Also, the heat exchange ventilator 2 drives the air supply fan 8 to suck outdoor air from the outdoor air port 9. The heat exchange ventilator 2 supplies the sucked outdoor air to the room through the total heat exchange element 4 and the air supply fan 8 from the air supply port 10. That is, the air supply fan 8 supplies outdoor air into the room. In addition, the air supply air 15 generated by the air supply fan 8 circulates through the air supply air passage 21 that connects the outside air inlet 9 and the air inlet 10.
 また、全熱交換素子4は、図3および図4に示すように、積層された複数の成型品13を備える。各成型品13は、間隔保持リブ11に伝熱板12を装着させた部材である。すなわち、複数の成型品13は、間隔保持リブ11により保持された間隔をあけて積層されている。排気流14と給気流15は、間隔保持リブ11により保持された間隔の一層ごとに交互に流通する。すなわち、伝熱板12は、給気風路21と排気風路20とを仕切る。排気流14と給気流15とが伝熱板12を装着した成型品13を挟んで流通することにより、熱交換および水分交換が伝熱板12を介して行われる。以上のように、全熱交換素子4は、伝熱板12を有する。また、伝熱板12は、給気風路21と排気風路20との間で全熱を交換する。 The total heat exchange element 4 includes a plurality of molded products 13 stacked as shown in FIGS. 3 and 4. Each molded product 13 is a member in which the heat transfer plate 12 is attached to the interval holding rib 11. In other words, the plurality of molded products 13 are stacked with an interval held by the interval holding rib 11. The exhaust flow 14 and the supply air flow 15 are alternately circulated for each layer of the interval held by the interval holding rib 11. That is, the heat transfer plate 12 partitions the supply air passage 21 and the exhaust air passage 20. The exhaust flow 14 and the supply air flow 15 flow through the molded product 13 with the heat transfer plate 12 interposed therebetween, whereby heat exchange and moisture exchange are performed via the heat transfer plate 12. As described above, the total heat exchange element 4 includes the heat transfer plate 12. The heat transfer plate 12 exchanges total heat between the supply air passage 21 and the exhaust air passage 20.
 ここで、一般的な熱交換素子で着霜が生じるメカニズムについて、図5を参照しながら詳細に説明する。図5は、一般的な全熱交換素子の排気風路20を示す概念図である。冬季において、室内空気は暖房および人の呼気などによる湿気を含んでおり、室外空気は乾燥している。この場合、伝熱板12(図4参照)を装着した成型品13を挟んで排気流14と給気流15がそれぞれ流通することで、排気流14の熱および水分が伝熱板12を介して給気流15に伝わる。このとき、低温の給気流15によって排気流14の温度が低下する。温度が低下した排気流14の相対湿度が100%を超えると、結露が生じる。さらに、排気流14の温度が氷点下まで低下すると、結露が凍結して霜になる。 Here, a mechanism that causes frost formation in a general heat exchange element will be described in detail with reference to FIG. FIG. 5 is a conceptual diagram showing an exhaust air passage 20 of a general total heat exchange element. In winter, indoor air contains moisture due to heating and human exhalation, and outdoor air is dry. In this case, the exhaust flow 14 and the supply air flow 15 are circulated through the molded product 13 on which the heat transfer plate 12 (see FIG. 4) is mounted, so that the heat and moisture of the exhaust flow 14 are transmitted through the heat transfer plate 12. It is transmitted to the air supply 15. At this time, the temperature of the exhaust stream 14 is lowered by the low temperature air supply 15. Condensation occurs when the relative humidity of the exhaust stream 14 with reduced temperature exceeds 100%. Furthermore, when the temperature of the exhaust stream 14 falls below the freezing point, the condensation freezes and becomes frost.
 着霜が生じやすい領域は、図5の斜線で示したような領域である。より詳細には、排気流14が流通する排気風路20の出口側と給気流15が流通する給気風路21の入口側とが伝熱板12を介して接する領域の排気風路20側において着霜が生じやすい。これは、この領域の排気流14が、低温の給気流15と最初に熱交換を行い、最も冷却されるからである。 The region where frost formation is likely to occur is a region as shown by the oblique lines in FIG. More specifically, on the exhaust air flow path 20 side in the region where the outlet side of the exhaust air flow path 20 through which the exhaust air flow 14 circulates and the inlet side of the air supply air flow path 21 through which the air supply air flow 15 circulates via the heat transfer plate 12. Frosting is likely to occur. This is because the exhaust flow 14 in this region is most cooled by first exchanging heat with the low temperature air supply 15.
 図6Aおよび図6Bを用いて、さらに詳細を説明する。図6Aは、従来の熱交換形換気装置の全熱交換素子における排気風路20の出口近傍を示す概略断面図である。図6Bは、従来の熱交換形換気装置の全熱交換素子における排気風路20の出口近傍に霜Fが発生した様子を示す概略断面図である。図6Aおよび図6Bは、排気流14(図4参照)が流通する方向と直交する面に沿って切断された概略断面図である。 Further details will be described with reference to FIGS. 6A and 6B. FIG. 6A is a schematic cross-sectional view showing the vicinity of the outlet of the exhaust air passage 20 in the total heat exchange element of the conventional heat exchange ventilator. FIG. 6B is a schematic cross-sectional view showing a state in which frost F is generated in the vicinity of the outlet of the exhaust air passage 20 in the total heat exchange element of the conventional heat exchange ventilator. 6A and 6B are schematic cross-sectional views cut along a plane orthogonal to the direction in which the exhaust flow 14 (see FIG. 4) flows.
 図6Aに示すように、給気流15が全熱交換素子4の給気風路21を流通すると、給気風路21に圧力損失が発生する。これにより、給気風路21の入口側の圧力より給気風路21の出口側の圧力が低くなる。同様に、排気流14が全熱交換素子4の排気風路20を流通すると、排気風路20の入口側の圧力より排気風路20の出口側の圧力が低くなる。一般的に、各風路20,21の出口側の圧力は、各風路の曲がりおよび各風路長による圧力損失によって決まる。しかし、各風路の曲がりおよび各風路長による圧力損失は、各気流14,15が全熱交換素子4の各風路20,21を流通することによる圧力損失と比較すると小さい。そのため、各気流14,15が全熱交換素子4の各風路20,21を流通することによる圧力損失の影響により、各風路20,21の出口側の圧力は、各風路20,21の入口側の圧力よりも低くなる。したがって、給気流15が流通する給気風路21の入口側の圧力より排気流14が流通する排気風路20の出口側の圧力が低くなる。そのため、排気風路20側へ伝熱板12がたわんで、排気風路20の開口面積が狭くなる。これにより、図6Bに示すように、霜Fが排気風路20に発生すると、全熱交換素子4の排気風路20は目詰まりしやすくなる。 As shown in FIG. 6A, when the supply air flow 15 flows through the supply air passage 21 of the total heat exchange element 4, a pressure loss occurs in the supply air passage 21. Thereby, the pressure on the outlet side of the supply air passage 21 becomes lower than the pressure on the inlet side of the supply air passage 21. Similarly, when the exhaust flow 14 flows through the exhaust air passage 20 of the total heat exchange element 4, the pressure on the outlet side of the exhaust air passage 20 becomes lower than the pressure on the inlet side of the exhaust air passage 20. Generally, the pressure on the outlet side of each of the air passages 20 and 21 is determined by the pressure loss due to the bending of each air passage and the length of each air passage. However, the pressure loss due to the bending of each air passage and the length of each air passage is smaller than the pressure loss due to the air flows 14 and 15 flowing through the air passages 20 and 21 of the total heat exchange element 4. Therefore, the pressure on the outlet side of each air passage 20, 21 is affected by the pressure loss due to the air flow 14, 15 flowing through each air passage 20, 21 of the total heat exchange element 4. Lower than the pressure on the inlet side. Therefore, the pressure on the outlet side of the exhaust air passage 20 through which the exhaust air flow 14 flows is lower than the pressure on the inlet side of the air supply air passage 21 through which the air supply air flow 15 flows. Therefore, the heat transfer plate 12 bends toward the exhaust air passage 20 and the opening area of the exhaust air passage 20 becomes narrow. As a result, as shown in FIG. 6B, when frost F is generated in the exhaust air passage 20, the exhaust air passage 20 of the total heat exchange element 4 is likely to be clogged.
 そこで、本発明にかかる熱交換形換気装置2は、図2に示すように、本体ケース3内の給気風路21の全熱交換素子4より上流側(すなわち外気口9側)に位置し、伝熱板12にかかる圧力を調整する圧力調整部であるダンパー16を備える。言い換えると、ダンパー16は、給気流15の圧力を調整する。 Therefore, as shown in FIG. 2, the heat exchange ventilator 2 according to the present invention is located upstream of the total heat exchange element 4 of the supply air passage 21 in the main body case 3 (that is, the outside air port 9 side), The damper 16 which is a pressure adjustment part which adjusts the pressure concerning the heat exchanger plate 12 is provided. In other words, the damper 16 adjusts the pressure of the air supply air 15.
 ダンパー16の開度を小さくなるように調整することにより、給気流15が流通する給気風路21の開口面積がダンパー16において狭くなる。そのため、ダンパー16における給気風路21の圧力損失が高くなる。このように、ダンパー16が給気流15の圧力を下げるため、全熱交換素子4における給気風路21の入口近傍の圧力が下がる。 By adjusting the opening of the damper 16 to be small, the opening area of the supply air passage 21 through which the supply air flow 15 circulates becomes narrow in the damper 16. Therefore, the pressure loss of the supply air passage 21 in the damper 16 increases. Thus, since the damper 16 reduces the pressure of the supply air flow 15, the pressure near the inlet of the supply air passage 21 in the total heat exchange element 4 decreases.
 図7Aは、熱交換形換気装置2の全熱交換素子4における排気風路20の出口近傍を示す概略断面図である。図7Bは、熱交換形換気装置2の全熱交換素子4における排気風路20の出口近傍に霜Fが発生した様子を示す概略断面図である。図7Aおよび図7Bは、排気流14が流通する方向と直交する面に沿って切断された概略断面図である。 FIG. 7A is a schematic cross-sectional view showing the vicinity of the outlet of the exhaust air passage 20 in the total heat exchange element 4 of the heat exchange ventilator 2. FIG. 7B is a schematic cross-sectional view showing a state in which frost F is generated in the vicinity of the outlet of the exhaust air passage 20 in the total heat exchange element 4 of the heat exchange ventilator 2. 7A and 7B are schematic cross-sectional views cut along a plane orthogonal to the direction in which the exhaust flow 14 flows.
 図7Aに示すように、全熱交換素子4における給気風路21の入口近傍の圧力を下げることにより、排気風路20側への伝熱板12のたわみが抑制される。その結果、排気風路20の開口面積が拡大する。これにより、図7Bに示すように、霜Fが排気風路20に発生しても、全熱交換素子4の排気風路20は目詰まりしにくい。 As shown in FIG. 7A, by reducing the pressure in the vicinity of the inlet of the supply air passage 21 in the total heat exchange element 4, the deflection of the heat transfer plate 12 toward the exhaust air passage 20 is suppressed. As a result, the opening area of the exhaust air passage 20 is expanded. Accordingly, as shown in FIG. 7B, even if frost F is generated in the exhaust air passage 20, the exhaust air passage 20 of the total heat exchange element 4 is not easily clogged.
 通常運転時にはダンパー16の開度を全開になるように調整する。一方で、全熱交換素子4の着霜を抑制したい場合にはダンパー16の開度を小さくなるように調整する。 ¡During normal operation, adjust the damper 16 so that it opens fully. On the other hand, when the frost formation of the total heat exchange element 4 is desired to be suppressed, the opening degree of the damper 16 is adjusted to be small.
 また、図8に示すように、熱交換形換気装置2は、温度検知部として温度センサ17と、制御部18とを備えてもよい。温度センサ17は、室外の空気の温度を検知する。制御部18は、温度センサ17によって検知された室外の温度に基づき、全熱交換素子4における給気風路21入口近傍の圧力をダンパー16に調整させる。すなわち、制御部18は、温度センサ17によって検知された室外の温度に基づき、給気流15の圧力をダンパー16に調整させる。 Further, as shown in FIG. 8, the heat exchange type ventilation device 2 may include a temperature sensor 17 and a control unit 18 as a temperature detection unit. The temperature sensor 17 detects the temperature of outdoor air. Based on the outdoor temperature detected by the temperature sensor 17, the control unit 18 causes the damper 16 to adjust the pressure near the inlet of the supply air passage 21 in the total heat exchange element 4. That is, the control unit 18 causes the damper 16 to adjust the pressure of the air supply air 15 based on the outdoor temperature detected by the temperature sensor 17.
 より具体的には、制御部18は、温度センサ17によって検知された室外の空気の温度が全熱交換素子4の内部で凍結が生じると想定される温度以下の場合のみに、ダンパー16の開度を小さくなるように調整する。これにより、上述したように、全熱交換素子4における給気風路21の入口近傍の圧力が下がり、排気風路20側への伝熱板12のたわみが抑制され、排気風路20の着霜による目詰まりが抑制される。また、制御部18は、全熱交換素子4の内部で凍結が生じると想定される温度以下の場合のみに、ダンパー16の開度を小さく調整する。そのため、ダンパー16の制御回数が少なくなり、ダンパー16の消耗が抑制される。 More specifically, the control unit 18 opens the damper 16 only when the temperature of the outdoor air detected by the temperature sensor 17 is equal to or lower than the temperature at which freezing occurs inside the total heat exchange element 4. Adjust to reduce the degree. As a result, as described above, the pressure in the vicinity of the inlet of the supply air passage 21 in the total heat exchange element 4 is reduced, the deflection of the heat transfer plate 12 toward the exhaust air passage 20 is suppressed, and the frost formation of the exhaust air passage 20 occurs. Clogging due to is suppressed. Moreover, the control part 18 adjusts the opening degree of the damper 16 small, only when it is below the temperature assumed that freezing will generate | occur | produce inside the total heat exchange element 4. FIG. For this reason, the number of times the damper 16 is controlled is reduced, and consumption of the damper 16 is suppressed.
 また、図9に示すように、熱交換形換気装置2は、差圧検知部として差圧計19と、制御部18とを備えてもよい。差圧計19は、全熱交換素子4における給気風路21の入口近傍と全熱交換素子4における排気風路20の出口近傍との圧力差を検知する。制御部18は、差圧計19によって検知された圧力差に応じて、ダンパー16の開度を調整してもよい。すなわち、制御部18は、差圧計19によって検知された圧力差に応じて、給気流15の圧力をダンパー16に調整させてもよい。 Moreover, as shown in FIG. 9, the heat exchange ventilator 2 may include a differential pressure gauge 19 and a control unit 18 as a differential pressure detection unit. The differential pressure gauge 19 detects a pressure difference between the vicinity of the inlet of the supply air passage 21 in the total heat exchange element 4 and the vicinity of the outlet of the exhaust air passage 20 in the total heat exchange element 4. The control unit 18 may adjust the opening degree of the damper 16 according to the pressure difference detected by the differential pressure gauge 19. That is, the control unit 18 may cause the damper 16 to adjust the pressure of the air supply air 15 according to the pressure difference detected by the differential pressure gauge 19.
 より具体的には、差圧計19が、全熱交換素子4における給気風路21の入口近傍の圧力が全熱交換素子4における排気風路20の出口近傍の圧力より高いと検知した場合、制御部18は、ダンパー16の開度を小さくなるように調整する。これにより、上述のように、全熱交換素子4における給気風路21の入口近傍の圧力が下がり、排気風路20側への伝熱板12のたわみが抑制され、排気風路20において着霜による目詰まりが抑制される。そのため、各風路20,21に堆積した汚れによる各風路の目詰まり、各風路の曲がり、各風路長などによる圧力損失の大きさに関係なく、全熱交換素子4における給気風路21の入口近傍の圧力は、全熱交換素子4における排気風路20の出口近傍の圧力より低く保たれる。すなわち、全熱交換素子4の排気風路20の開口面積が拡大し、排気風路20において着霜による目詰まりが抑制される。 More specifically, when the differential pressure gauge 19 detects that the pressure near the inlet of the supply air passage 21 in the total heat exchange element 4 is higher than the pressure near the outlet of the exhaust air path 20 in the total heat exchange element 4, The part 18 adjusts the opening degree of the damper 16 to be small. As a result, as described above, the pressure in the vicinity of the inlet of the supply air passage 21 in the total heat exchange element 4 is reduced, the deflection of the heat transfer plate 12 toward the exhaust air passage 20 is suppressed, and frost formation occurs in the exhaust air passage 20. Clogging due to is suppressed. Therefore, the air supply air passages in the total heat exchange element 4 are independent of the clogging of the air passages due to dirt accumulated in the air passages 20 and 21, the bending of each air passage, the magnitude of pressure loss due to the length of each air passage, and the like. The pressure near the inlet 21 is kept lower than the pressure near the outlet of the exhaust air passage 20 in the total heat exchange element 4. That is, the opening area of the exhaust air passage 20 of the total heat exchange element 4 is expanded, and clogging due to frost formation in the exhaust air passage 20 is suppressed.
 ここで、全熱交換素子4における給気風路21の入口とは、全熱交換素子4における給気風路21の外気口9側の入口である。また、全熱交換素子4における排気風路20の出口とは、全熱交換素子4における排気風路20の排気口7側の出口である。 Here, the inlet of the supply air path 21 in the total heat exchange element 4 is the inlet of the supply air path 21 in the total heat exchange element 4 on the outside air port 9 side. The outlet of the exhaust air passage 20 in the total heat exchange element 4 is an outlet on the exhaust port 7 side of the exhaust air passage 20 in the total heat exchange element 4.
 さらに、圧力調整部として開度を調整可能なダンパー16を用いることで、着霜による目詰まりを抑制する安価な熱交換形換気装置2を提供できる。 Furthermore, by using the damper 16 capable of adjusting the opening degree as the pressure adjusting unit, it is possible to provide an inexpensive heat exchange ventilator 2 that suppresses clogging due to frost formation.
 また、給気ファン8は、給気流15の圧力変化によらず、風量を一定にする制御機能を備えていてもよい。これにより、熱交換形換気装置2は、ダンパー16によって調整された給気流15の圧力によらず、一定の風量の換気運転を実現できる。 Further, the air supply fan 8 may be provided with a control function for keeping the air volume constant irrespective of the pressure change of the air supply air 15. Thereby, the heat exchange type ventilator 2 can realize a ventilation operation with a constant air volume regardless of the pressure of the air supply air 15 adjusted by the damper 16.
 なお、給気ファン8として、DCモータを備えたファンが挙げられる。DCモータを備えたファンは、風量を一定にする制御機能を実現でき、かつ、消費電力を抑制しやすい。 In addition, as the air supply fan 8, a fan provided with a DC motor can be cited. A fan equipped with a DC motor can realize a control function for keeping the air volume constant and can easily suppress power consumption.
 なお、本実施の形態では全熱交換素子4は、直交型の熱交換素子であったが、対向型と直交型を組み合わせた六角形型の熱交換素子(図示せず)であってもよい。六角形型の熱交換素子の場合でも、排気風路20の出口側と給気風路21の入口側とが伝熱板12を介して接する領域で最も着霜が生じやすい。そのため、熱交換素子における給気風路21の入口近傍の圧力を下げることで、排気風路20の開口面積が拡大し、排気風路20において着霜による目詰まりが抑制される。 In the present embodiment, the total heat exchange element 4 is an orthogonal heat exchange element, but it may be a hexagonal heat exchange element (not shown) that combines an opposing type and an orthogonal type. . Even in the case of a hexagonal heat exchange element, frost formation is most likely to occur in a region where the outlet side of the exhaust air passage 20 and the inlet side of the air supply air passage 21 are in contact via the heat transfer plate 12. Therefore, by reducing the pressure in the vicinity of the inlet of the supply air passage 21 in the heat exchange element, the opening area of the exhaust air passage 20 is expanded, and clogging due to frost formation in the exhaust air passage 20 is suppressed.
 なお、本実施の形態では熱交換素子として、熱交換および水分交換を行う全熱交換素子4を例示したが、熱交換のみを行う顕熱交換素子を用いてもよい。すなわち、伝熱板12は、給気風路21と排気風路20との間で顕熱のみを交換してもよい。 In this embodiment, the total heat exchange element 4 that performs heat exchange and moisture exchange is illustrated as the heat exchange element, but a sensible heat exchange element that performs only heat exchange may be used. That is, the heat transfer plate 12 may exchange only sensible heat between the supply air passage 21 and the exhaust air passage 20.
 (他の実施の形態)
 上述の実施の形態の構成によって、排気風路の開口面積が拡大するので、排気風路において着霜による目詰まりが抑制される。一方、寒冷地や冬季では、室外の空気は室内の空気よりも乾燥している。そのため、乾燥した室外の空気の供給量を増加させることで、排気風路において結露および凍結による目詰まりを抑制できる。
(Other embodiments)
Since the opening area of the exhaust air passage is enlarged by the configuration of the above-described embodiment, clogging due to frost formation in the exhaust air passage is suppressed. On the other hand, in cold regions and in winter, outdoor air is dryer than indoor air. Therefore, by increasing the supply amount of dry outdoor air, clogging due to condensation and freezing in the exhaust air passage can be suppressed.
 他の実施の形態にかかる熱交換形換気システムは、熱交換形換気装置と、給気風量調節装置と、温度検知部と、給気風量制御部とを備える。熱交換形換気装置は、室外の空気を吸入する外気口と、室内へ給気を行う給気口と、室内の空気を吸入する内気口と、室外へ排気を行う排気口と、外気口と給気口とを連通する給気風路と、内気口と排気口とを連通する排気風路と、給気風路と排気風路との間で熱交換を行う熱交換素子とを有する。給気風量調節装置は、給気風路に設けられ、給気風量を調節する。温度検知部は、室外の温度を検知する。給気風量制御部は、温度検知部で検知した室外の温度に基づき給気風量調節装置を制御する。 A heat exchange type ventilation system according to another embodiment includes a heat exchange type ventilation device, a supply air flow rate adjustment device, a temperature detection unit, and a supply air flow rate control unit. The heat exchange ventilator has an outdoor air inlet for sucking in outdoor air, an air inlet for supplying air into the room, an air inlet for sucking in indoor air, an air outlet for exhausting outside the air, and an air outlet. An air supply passage that communicates with the air supply port, an exhaust air passage that communicates between the internal air port and the exhaust port, and a heat exchange element that performs heat exchange between the air supply passage and the exhaust air passage. The supply air volume adjusting device is provided in the supply air path and adjusts the supply air volume. The temperature detection unit detects an outdoor temperature. The supply air volume control unit controls the supply air volume adjustment device based on the outdoor temperature detected by the temperature detection unit.
 他の実施の形態にかかる熱交換形換気システムは、排気風路において結露および凍結による目詰まりを抑制できる。 The heat exchange ventilation system according to another embodiment can suppress clogging due to condensation and freezing in the exhaust air passage.
 他の実施の形態にかかる熱交換形換気システムは、熱交換形換気装置と、給気風量調節装置と、温度検知部と、給気風量制御部とを備える。熱交換形換気装置は、室外の空気を吸入する外気口と、室内へ給気を行う給気口と、室内の空気を吸入する内気口と、室外へ排気を行う排気口と、外気口と給気口とを連通する給気風路と、内気口と排気口とを連通する排気風路と、給気風路と排気風路との間で熱交換を行う熱交換素子とを有する。給気風量調節装置は、給気風路に設けられ、給気風量を調節する。温度検知部は、室外の温度を検知する。給気風量制御部は、温度検知部で検知した室外の温度に基づき給気風量調節装置を制御する。 A heat exchange type ventilation system according to another embodiment includes a heat exchange type ventilation device, a supply air flow rate adjustment device, a temperature detection unit, and a supply air flow rate control unit. The heat exchange ventilator has an outdoor air inlet for sucking in outdoor air, an air inlet for supplying air into the room, an air inlet for sucking in indoor air, an air outlet for exhausting outside the air, and an air outlet. An air supply passage that communicates with the air supply port, an exhaust air passage that communicates between the internal air port and the exhaust port, and a heat exchange element that performs heat exchange between the air supply passage and the exhaust air passage. The supply air volume adjusting device is provided in the supply air path and adjusts the supply air volume. The temperature detection unit detects an outdoor temperature. The supply air volume control unit controls the supply air volume adjustment device based on the outdoor temperature detected by the temperature detection unit.
 これにより、温度検知部が、全熱交換素子の内部で凍結が生じると想定される温度を検知したとき、給気風量制御部が給気風量調節装置を作動させる。すると、給気風路を流通する乾燥した給気流の風量が増加する。そのため、排気風路から給気風路への水分の移動が促進され、排気風路での結露の発生が抑制される。すなわち、排気風路において結露および凍結による目詰まりが抑制される。 Thus, when the temperature detection unit detects a temperature at which freezing is expected to occur inside the total heat exchange element, the supply air amount control unit operates the supply air amount adjustment device. Then, the air volume of the dry supply airflow which distribute | circulates a supply air path increases. For this reason, the movement of moisture from the exhaust air passage to the air supply air passage is promoted, and the occurrence of condensation in the exhaust air passage is suppressed. That is, clogging due to condensation and freezing in the exhaust air passage is suppressed.
 また、他の実施の形態にかかる熱交換形換気システムにおいて、温度検知部および給気風量制御部は、給気風量調節装置の内部に設けられている。給気風量調節装置は、外気口と熱交換素子との間に設けられている。 Further, in the heat exchange type ventilation system according to another embodiment, the temperature detection unit and the supply air volume control unit are provided inside the supply air volume control device. The supply air amount adjusting device is provided between the outside air port and the heat exchange element.
 これにより、温度検知部を、信号線を長く配線させることなく、簡易的な施工で設置できる。 This makes it possible to install the temperature detection unit with simple construction without having to extend the signal line for a long time.
 また、他の実施の形態にかかる熱交換形換気システムにおいて、温度検知部は、外気口と熱交換素子との間に設けられている。給気風量調節装置および給気風量制御部は、熱交換素子と給気口との間に設けられている。温度検知部は、給気風量制御部と通信を行う。 Further, in the heat exchange type ventilation system according to another embodiment, the temperature detection unit is provided between the outside air port and the heat exchange element. The air supply amount adjusting device and the air supply amount control unit are provided between the heat exchange element and the air supply port. The temperature detection unit communicates with the supply air volume control unit.
 これにより、室外の空気に含まれる汚れは熱交換素子の伝熱板により浄化されるため、熱交換素子より下流に設けられた給気風量調節装置は汚れにくい。そのため、給気風量調節装置のメンテナンスの回数を削減できる。 Thus, dirt contained in the outdoor air is purified by the heat transfer plate of the heat exchange element, so that the supply air flow rate adjusting device provided downstream from the heat exchange element is not easily dirty. For this reason, the number of maintenance of the supply air volume adjusting device can be reduced.
 また、他の実施の形態にかかる熱交換形換気システムにおいて、温度検知部は、熱交換素子に隣接した位置に設けられている。 In the heat exchange type ventilation system according to another embodiment, the temperature detection unit is provided at a position adjacent to the heat exchange element.
 これにより、温度検知部は、全熱交換素子に隣接した位置で室外の温度を検知することができる。そのため、温度検知部は、全熱交換素子内部で凍結が生じる温度を精度良く検知できる。 Thereby, the temperature detection unit can detect the outdoor temperature at a position adjacent to the total heat exchange element. Therefore, the temperature detection unit can accurately detect the temperature at which freezing occurs inside the total heat exchange element.
 以下、本発明の他の実施の形態について図面を参照しながら説明する。 Hereinafter, other embodiments of the present invention will be described with reference to the drawings.
 図11は、熱交換形換気システム200が設置された2階建ての家201を示す概略図である。図11に示すように、家201は、排気のみが行われる非居住空間と、給気と排気の両方が行われる居住空間とから構成されている。非居住空間は、例えばトイレ、洗面所、浴室等を含む。居住空間は、例えば寝室、リビング等を含む。また、熱交換形換気システム200は、熱交換形換気装置である全熱交換形換気装置202と、給気風量調節装置である給気補助ファン203とを備える。熱交換形換気システム200は、家201の天井裏に設置されている。各部屋の給気と排気を行うため、全熱交換形換気装置202および給気補助ファン203と各部屋とがダクトで接続されている。 FIG. 11 is a schematic diagram showing a two-story house 201 in which the heat exchange ventilation system 200 is installed. As shown in FIG. 11, the house 201 is composed of a non-residential space where only exhaust is performed and a residential space where both air supply and exhaust are performed. Non-residential spaces include, for example, toilets, washrooms, bathrooms, and the like. The living space includes, for example, a bedroom and a living room. The heat exchange type ventilation system 200 includes a total heat exchange type ventilator 202 that is a heat exchange type ventilator, and an air supply auxiliary fan 203 that is a supply air volume adjusting device. The heat exchange ventilation system 200 is installed behind the ceiling of the house 201. In order to supply and exhaust air in each room, total heat exchange type ventilation device 202 and auxiliary air supply fan 203 are connected to each room by a duct.
 図12は、熱交換形換気システム200の全熱交換形換気装置202の構成を示す概略平面図である。図12に示すように、全熱交換形換気装置202は、給気ファン204と、排気ファン205と、全熱交換素子206とを備える。給気ファン204は、室外の空気を吸入し室内へ供給する。排気ファン205は、室内の空気を吸入し室外へ排出する。全熱交換素子206は、給気ファン204により送風される給気流207と排気ファン205により送風される排気流208との間で熱交換および水分交換を行う。さらに、全熱交換形換気装置202は、室外の空気を吸入する外気口216と、室内へ給気を行う給気口217と、室内の空気を吸入する内気口218と、室外へ排気を行う排気口219と、給気風路220と、排気風路221とを備える。給気風路220は、外気口216と給気口217とを連通する。給気流207は、給気風路220を流通する。排気風路221は、内気口218と排気口219とを連通する。排気流208は、排気風路221を流通する。 FIG. 12 is a schematic plan view showing the configuration of the total heat exchange type ventilation device 202 of the heat exchange type ventilation system 200. As shown in FIG. 12, the total heat exchange type ventilation device 202 includes an air supply fan 204, an exhaust fan 205, and a total heat exchange element 206. The air supply fan 204 sucks outdoor air and supplies it to the room. The exhaust fan 205 sucks indoor air and discharges it outside the room. Total heat exchange element 206 performs heat exchange and moisture exchange between supply air flow 207 blown by supply air fan 204 and exhaust flow 208 blown by exhaust fan 205. Further, the total heat exchanging ventilator 202 exhausts the outdoor air inlet 216 for sucking in outdoor air, the air inlet 217 for supplying air into the room, the air inlet 218 for sucking in indoor air, and the outdoor air. An exhaust port 219, a supply air passage 220, and an exhaust air passage 221 are provided. The air supply passage 220 communicates the outside air inlet 216 and the air inlet 217. The air supply air 207 flows through the air supply air passage 220. The exhaust air passage 221 communicates the inside air port 218 and the exhaust port 219. The exhaust flow 208 flows through the exhaust air passage 221.
 また、全熱交換素子206について、図13と図14を用いて以下に説明する。 The total heat exchange element 206 will be described below with reference to FIGS. 13 and 14.
 図13は、全熱交換形換気装置202の全熱交換素子206を示す斜視図である。図14は、全熱交換素子206の一部の分解斜視図である。全熱交換素子206は、図13および図14に示すように、積層された複数の成型品224を備える。各成型品224は、間隔保持リブ222に伝熱板223を装着させた部材である。すなわち、複数の成型品224は、間隔保持リブ222により保持された間隔をあけて積層されている。給気流207と排気流208は、間隔保持リブ222により保持された間隔の一層ごとに交互に流れている。給気流207と排気流208とが伝熱板223を装着した成型品224を挟んで流れることにより、熱交換および水分交換が伝熱板223を介して行われる。すなわち、全熱交換素子206は、給気風路220と排気風路221との間で熱交換を行う。 FIG. 13 is a perspective view showing the total heat exchange element 206 of the total heat exchange type ventilator 202. FIG. 14 is an exploded perspective view of a part of the total heat exchange element 206. As shown in FIGS. 13 and 14, the total heat exchange element 206 includes a plurality of molded products 224 that are stacked. Each molded product 224 is a member in which the heat transfer plate 223 is attached to the interval holding rib 222. In other words, the plurality of molded products 224 are stacked with an interval held by the interval holding rib 222. The air supply air 207 and the exhaust air flow 208 alternately flow for each layer of the interval held by the interval holding rib 222. The heat supply air flow 207 and the exhaust air flow 208 flow with the molded product 224 fitted with the heat transfer plate 223 interposed therebetween, whereby heat exchange and moisture exchange are performed via the heat transfer plate 223. That is, the total heat exchange element 206 performs heat exchange between the supply air passage 220 and the exhaust air passage 221.
 ここで、全熱交換素子206に凍結が生じるメカニズムについて説明する。冬季において、全熱交換素子206は、排気流208の熱を用いて給気流207を温める。そのため、逆に、排気流208は給気流207により冷却される。排気流208が氷点下まで冷却されると、排気流208中の水分が飽和する。そして、保持しきれなくなった水分が、結露して全熱交換素子206に付着する。さらに、結露した水分は、氷点下まで冷却されているために凍結する。凍結した水分は、全熱交換素子206の排気流208が流通する排気風路221を閉塞してしまう。 Here, the mechanism of freezing in the total heat exchange element 206 will be described. In winter, the total heat exchange element 206 uses the heat of the exhaust stream 208 to warm the supply air stream 207. Therefore, conversely, the exhaust flow 208 is cooled by the supply air flow 207. When the exhaust stream 208 is cooled to below freezing, the moisture in the exhaust stream 208 is saturated. Then, the moisture that could not be held condenses and adheres to the total heat exchange element 206. Furthermore, the condensed moisture is frozen because it is cooled to below freezing point. The frozen moisture will block the exhaust air passage 221 through which the exhaust flow 208 of the total heat exchange element 206 flows.
 これに対し、給気風路220を流通する給気流207の風量を増加させることにより、排気風路221の閉塞を抑制できる。以下、詳細に説明する。 On the other hand, the blockage of the exhaust air passage 221 can be suppressed by increasing the air volume of the air supply air flow 207 flowing through the air supply air passage 220. Details will be described below.
 排気流208から給気流207への水分移動は、給気流207の絶対湿度より排気流208の絶対湿度が高い場合に生じる。絶対湿度は、乾燥空気1kgに含まれる水分重量で示される。ここで、給気流207の風量を増加させることで、絶対湿度の高い排気流208から絶対湿度の低い給気流207への水分移動が促進される。このことから、排気流208の水分量が減少するため、排気流208の水分の飽和が抑制され、全熱交換素子206内部の結露が抑制される。 Moisture movement from the exhaust stream 208 to the supply airflow 207 occurs when the absolute humidity of the exhaust stream 208 is higher than the absolute humidity of the supply airflow 207. Absolute humidity is indicated by the weight of water contained in 1 kg of dry air. Here, by increasing the air volume of the air supply air 207, moisture movement from the exhaust air flow 208 having a high absolute humidity to the air supply air 207 having a low absolute humidity is promoted. As a result, the amount of moisture in the exhaust stream 208 is reduced, so that saturation of moisture in the exhaust stream 208 is suppressed, and dew condensation inside the total heat exchange element 206 is suppressed.
 図15は、熱交換形換気システム200の構成例を示す構成図である。図15に示すように、熱交換形換気システム200は、全熱交換形換気装置202と、給気風量調節装置としての給気補助ファン203と、接続ダクト209と、温度検知部である温度センサ210と、外気接続ダクト213とを備える。 FIG. 15 is a configuration diagram showing a configuration example of the heat exchange type ventilation system 200. As shown in FIG. 15, the heat exchange type ventilation system 200 includes a total heat exchange type ventilation device 202, an air supply auxiliary fan 203 as an air supply air amount adjusting device, a connection duct 209, and a temperature sensor as a temperature detection unit. 210 and an outside air connection duct 213.
 給気補助ファン203は、給気風路220に設けられており、シロッコファン211と、給気風量制御部である制御基板212とを有する。より具体的には、給気補助ファン203および制御基板212は、給気口217と全熱交換素子206との間に設けられている。接続ダクト209は、全熱交換素子206と給気補助ファン203との間に設けられている。外気接続ダクト213は、全熱交換素子206と外気口216との間に設けられている。温度センサ210は、外気接続ダクト213の内部に設けられており、室外の温度を検知する。すなわち、温度センサ210は、外気口216と全熱交換素子206との間に設けられている。また、温度センサ210は、外気温度通信部材である信号線214により制御基板212と電気的に接続されており、制御基板212と通信を行う。制御基板212は、温度センサ210で検知した室外の温度に基づきシロッコファン211の運転を制御する。すなわち、制御基板212は、温度センサ210で検知した室外の温度に基づき給気補助ファン203を制御する。 The air supply auxiliary fan 203 is provided in the air supply air passage 220, and includes a sirocco fan 211 and a control board 212 which is an air supply air volume control unit. More specifically, the air supply auxiliary fan 203 and the control board 212 are provided between the air supply port 217 and the total heat exchange element 206. The connection duct 209 is provided between the total heat exchange element 206 and the air supply auxiliary fan 203. The outside air connection duct 213 is provided between the total heat exchange element 206 and the outside air port 216. The temperature sensor 210 is provided inside the outside air connection duct 213 and detects the outdoor temperature. That is, the temperature sensor 210 is provided between the outside air port 216 and the total heat exchange element 206. The temperature sensor 210 is electrically connected to the control board 212 through a signal line 214 that is an outside air temperature communication member, and communicates with the control board 212. The control board 212 controls the operation of the sirocco fan 211 based on the outdoor temperature detected by the temperature sensor 210. That is, the control board 212 controls the air supply auxiliary fan 203 based on the outdoor temperature detected by the temperature sensor 210.
 温度センサ210として、既知の温度検知手段を用いることができる。温度センサ210として、例えば異種金属の接合部に生じる起電圧を利用した熱電対、測温抵抗体、半導体を用いた熱計測方式等を用いることができる。 As the temperature sensor 210, known temperature detecting means can be used. As the temperature sensor 210, for example, a thermocouple using an electromotive voltage generated at a junction of different metals, a resistance temperature detector, a heat measurement method using a semiconductor, or the like can be used.
 この構成において、全熱交換素子206の内部で凍結が生じると想定される温度を予め温度Tdと設定する。温度センサ210が検知した室外の温度Txが温度Td以下である場合、制御基板212はシロッコファン211を稼動させる信号を送る。一方で、温度Txが温度Tdより大きい場合、制御基板212はシロッコファン211を停止させる信号を送る。これにより、温度センサ210が全熱交換素子206の内部で凍結が生じると想定される温度Tdを検知したとき、制御基板212はシロッコファン211の運転を制御する。そのため、給気風路220を流通する給気流207の風量が増加し、全熱交換素子206内部での結露および凍結が抑制される。 In this configuration, a temperature at which freezing occurs inside the total heat exchange element 206 is set in advance as a temperature Td. When the outdoor temperature Tx detected by the temperature sensor 210 is equal to or lower than the temperature Td, the control board 212 sends a signal for operating the sirocco fan 211. On the other hand, when the temperature Tx is higher than the temperature Td, the control board 212 sends a signal for stopping the sirocco fan 211. Thereby, when the temperature sensor 210 detects the temperature Td at which freezing is expected to occur inside the total heat exchange element 206, the control board 212 controls the operation of the sirocco fan 211. Therefore, the air volume of the supply airflow 207 flowing through the supply air passage 220 is increased, and condensation and freezing inside the total heat exchange element 206 are suppressed.
 また、図16は、熱交換形換気システム200の別構成例を示す構成図である。図16に示すように、本構成例において、温度センサ210および制御基板212は、給気補助ファン203の内部に設けられている。また、給気補助ファン203は、外気接続ダクト213と全熱交換素子206との間に設けられている。すなわち、給気補助ファン203は、外気口9と全熱交換素子206との間に設けられている。この構成により、温度センサ210を、信号線214を長く配線させることなく、簡易的な施工で設置できる。 FIG. 16 is a configuration diagram showing another configuration example of the heat exchange type ventilation system 200. As shown in FIG. 16, in this configuration example, the temperature sensor 210 and the control board 212 are provided inside the air supply auxiliary fan 203. The air supply auxiliary fan 203 is provided between the outside air connection duct 213 and the total heat exchange element 206. That is, the air supply auxiliary fan 203 is provided between the outside air port 9 and the total heat exchange element 206. With this configuration, the temperature sensor 210 can be installed with simple construction without causing the signal line 214 to be long.
 また、図17は、熱交換形換気システム200の別構成例を示す構成図である。本構成例は、図15に示される構成例と、温度センサ210が設けられている位置において異なる。本構成例において、温度センサ210は、全熱交換素子206に隣接した位置に設けられている。この構成により、温度センサ210は、全熱交換素子206の近傍で室外の温度を検知できるため、全熱交換素子206内部で凍結が生じる温度を精度良く検知できる。 FIG. 17 is a configuration diagram showing another configuration example of the heat exchange type ventilation system 200. This configuration example is different from the configuration example shown in FIG. 15 in the position where the temperature sensor 210 is provided. In this configuration example, the temperature sensor 210 is provided at a position adjacent to the total heat exchange element 206. With this configuration, the temperature sensor 210 can detect the outdoor temperature in the vicinity of the total heat exchange element 206, and thus can accurately detect the temperature at which freezing occurs in the total heat exchange element 206.
 なお、本実施の形態において、熱交換形換気システム200は、家201の天井裏に設置されているが、家201の軒下や機械室等に設置されてもよい。 In addition, in this Embodiment, although the heat exchange type ventilation system 200 is installed in the back of the ceiling of the house 201, you may install in the eaves of a house 201, a machine room, etc.
 なお、シロッコファン211として、他の既知の種類のファンを用いてもよい。シロッコファン211に代えるファンを、想定される風量と必要な静圧に応じて選定してもよい。 It should be noted that other known types of fans may be used as the sirocco fan 211. A fan that replaces the sirocco fan 211 may be selected according to the assumed air volume and the required static pressure.
 なお、温度センサ210は、信号線214を用いた有線接続によって制御基板212と通信を行ったが、無線接続によって通信を行ってもよい。温度センサ210が無線接続によって通信を行う場合、温度センサ210と制御基板212の施工自由度が増すため、より好適である。 The temperature sensor 210 communicates with the control board 212 by wired connection using the signal line 214, but may communicate by wireless connection. When the temperature sensor 210 communicates by wireless connection, the degree of freedom in construction of the temperature sensor 210 and the control board 212 is more preferable.
 なお、図17において、温度センサ210をシロッコファン211よりも上流側に設置したが、シロッコファン211よりも下流側に設置してもよい。温度センサ210をシロッコファン211よりも下流側に設置しても、温度センサ210は室外の温度を検知することは可能である。ただし、温度センサ210をシロッコファン211よりも上流側に設置したほうが、温度センサ210に対するシロッコファン211の発熱の影響が少なく、より好適である。 In FIG. 17, the temperature sensor 210 is installed on the upstream side of the sirocco fan 211, but may be installed on the downstream side of the sirocco fan 211. Even if the temperature sensor 210 is installed downstream of the sirocco fan 211, the temperature sensor 210 can detect the outdoor temperature. However, it is more preferable that the temperature sensor 210 is installed on the upstream side of the sirocco fan 211 because the influence of heat generated by the sirocco fan 211 on the temperature sensor 210 is small.
 本発明にかかる熱交換形換気システムは、全熱交換素子の凍結を抑制できるため、換気システムとして有用である。 The heat exchange type ventilation system according to the present invention is useful as a ventilation system because the freezing of the total heat exchange element can be suppressed.
 本発明にかかる熱交換形換気装置は、着霜による目詰まりを効果的に抑制できるため、熱交換素子を備えた熱交換形換気装置として有用である。 The heat exchange type ventilator according to the present invention is useful as a heat exchange type ventilator equipped with a heat exchange element because clogging due to frost formation can be effectively suppressed.
 1  家
 2  熱交換形換気装置
 3  本体ケース
 4  全熱交換素子(熱交換素子)
 5  排気ファン(排気送風部)
 6  内気口
 7  排気口
 8  給気ファン(給気送風部)
 9  外気口
 10  給気口
 11  間隔保持リブ
 12  伝熱板
 13  成型品
 14  排気流
 15  給気流
 16  ダンパー(圧力調整部)
 17  温度センサ(温度検知部)
 18  制御部
 19  差圧計(差圧検知部)
 20  排気風路
 21  給気風路
 101  熱交換形換気装置
 102  給気送風手段
 103  排気送風手段
 104  給気風路
 105  排気風路
 106  伝熱板
 107  熱交換素子
 108  温度センサ
 200  熱交換形換気システム
 201  家
 202  全熱交換形換気装置
 203  給気補助ファン(給気風量調節装置)
 204  給気ファン
 205  排気ファン
 206  全熱交換素子(熱交換素子)
 207  給気流
 208  排気流
 209  接続ダクト
 210  温度センサ(温度検知部)
 211  シロッコファン
 212  制御基板(給気風量制御部)
 213  外気接続ダクト
 214  信号線
 216  外気口
 217  給気口
 218  内気口
 219  排気口
 220  給気風路
 221  排気風路
 222  間隔保持リブ
 223  伝熱板
 224  成型品
1 House 2 Heat Exchange Ventilator 3 Body Case 4 Total Heat Exchange Element (Heat Exchange Element)
5 Exhaust fan (exhaust air blower)
6 Inside air port 7 Exhaust port 8 Air supply fan (supply air blower)
9 Outside Air Port 10 Air Supply Port 11 Interval Holding Rib 12 Heat Transfer Plate 13 Molded Product 14 Exhaust Flow 15 Air Supply Air 16 Damper (Pressure Adjustment Unit)
17 Temperature sensor (temperature detector)
18 Control unit 19 Differential pressure gauge (Differential pressure detection unit)
DESCRIPTION OF SYMBOLS 20 Exhaust air path 21 Supply air path 101 Heat exchange type ventilation apparatus 102 Supply air ventilation means 103 Exhaust air blow means 103 Exhaust air path 105 Exhaust air path 106 Heat transfer plate 107 Heat exchange element 108 Temperature sensor 200 Heat exchange type ventilation system 201 House 202 Total Heat Exchange Ventilator 203 Air Supply Auxiliary Fan (Air Supply Air Volume Control Device)
204 Air supply fan 205 Exhaust fan 206 Total heat exchange element (heat exchange element)
207 Supply air 208 Exhaust flow 209 Connection duct 210 Temperature sensor (temperature detection unit)
211 Sirocco fan 212 Control board (supply air volume control unit)
213 Outside air connection duct 214 Signal line 216 Outside air port 217 Air supply port 218 Inside air port 219 Exhaust port 220 Supply air channel 221 Exhaust air channel 222 Spacing rib 223 Heat transfer plate 224 Molded product

Claims (5)

  1.  室外の空気を室内へ給気する給気送風部と、
     室内の空気を室外へ排気する排気送風部と、
     前記給気送風部により生じる給気流が流通する給気風路と前記排気送風部により生じる排気流が流通する排気風路とを仕切り、前記給気風路と前記排気風路との間で顕熱または全熱を交換する伝熱板を有する熱交換素子と、
     前記給気風路の前記熱交換素子より上流側に位置し、前記給気流の圧力を調整する圧力調整部と、を備える熱交換形換気装置。
    A supply air blowing section for supplying outdoor air into the room;
    An exhaust blower for exhausting indoor air to the outside;
    A supply air passage through which a supply air flow generated by the supply air blowing section flows and an exhaust air passage through which an exhaust flow generated by the exhaust ventilation section flows, and sensible heat or between the supply air passage and the exhaust air passage A heat exchange element having a heat transfer plate for exchanging total heat;
    A heat exchange type ventilation apparatus comprising: a pressure adjusting unit that is located upstream of the heat exchange element in the supply air passage and adjusts the pressure of the supply airflow.
  2.  室外の空気の温度を検知する温度検知部と、
     前記温度検知部によって検知された室外の空気の温度に基づき、前記給気流の圧力を前記圧力調整部に調整させる制御部と、を備える請求項1に記載の熱交換形換気装置。
    A temperature detector for detecting the temperature of the outdoor air;
    The heat exchange type ventilator according to claim 1, further comprising: a control unit that adjusts the pressure of the air supply air flow based on the temperature of outdoor air detected by the temperature detection unit.
  3.  前記熱交換素子における前記給気風路の入口近傍と前記熱交換素子における前記排気風路の出口近傍との圧力差を検知する差圧検知部と、
     前記差圧検知部によって検知された圧力差に応じて、前記給気流の圧力を前記圧力調整部に調整させる制御部と、を備える請求項1に記載の熱交換形換気装置。
    A differential pressure detection unit that detects a pressure difference between the vicinity of the inlet of the supply air path in the heat exchange element and the vicinity of the outlet of the exhaust air path in the heat exchange element;
    The heat exchange type ventilation apparatus according to claim 1, further comprising: a control unit that causes the pressure adjusting unit to adjust the pressure of the supply airflow according to a pressure difference detected by the differential pressure detecting unit.
  4.  前記圧力調整部は、開度を調整可能なダンパーである請求項1に記載の熱交換形換気装置。 The heat exchange ventilator according to claim 1, wherein the pressure adjusting unit is a damper whose opening degree can be adjusted.
  5.  前記給気送風部は、前記給気流の圧力変化によらず風量を一定にする制御機能を備える請求項1に記載の熱交換形換気装置。 The heat exchange ventilator according to claim 1, wherein the air supply and ventilation section has a control function of making the air volume constant regardless of a pressure change of the air supply airflow.
PCT/JP2016/005095 2015-12-22 2016-12-09 Heat exchange type ventilation device WO2017110055A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/062,401 US20180372361A1 (en) 2015-12-22 2016-12-09 Heat exchange type ventilation device
CN201680073948.7A CN108369018A (en) 2015-12-22 2016-12-09 Heat exchange ventilator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-250157 2015-12-22
JP2015250155A JP6617280B2 (en) 2015-12-22 2015-12-22 Heat exchange type ventilation system
JP2015250157A JP6561313B2 (en) 2015-12-22 2015-12-22 Heat exchange type ventilator using heat exchange elements
JP2015-250155 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017110055A1 true WO2017110055A1 (en) 2017-06-29

Family

ID=59089910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005095 WO2017110055A1 (en) 2015-12-22 2016-12-09 Heat exchange type ventilation device

Country Status (3)

Country Link
US (1) US20180372361A1 (en)
CN (1) CN108369018A (en)
WO (1) WO2017110055A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2571723A (en) * 2018-03-05 2019-09-11 Ventive Ltd Ventilation system including a heat pump
US20220178630A1 (en) * 2019-02-27 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Heat exchange element and heat exchange-type ventilation device using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6687063B2 (en) * 2018-07-11 2020-04-22 ダイキン工業株式会社 Ventilation system
JP7352773B2 (en) * 2019-09-17 2023-09-29 パナソニックIpマネジメント株式会社 Heat exchange type ventilation device with dehumidification function
US11391480B2 (en) * 2019-12-04 2022-07-19 Johnson Controls Tyco IP Holdings LLP Systems and methods for freeze protection of a coil in an HVAC system
CN113513804A (en) * 2021-07-22 2021-10-19 中山市万得福电子热控科技有限公司 Air treatment apparatus, control method thereof, and computer-readable storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023643U (en) * 1983-07-26 1985-02-18 ミサワホ−ム株式会社 air conditioning ventilation fan
JPS6063728U (en) * 1983-10-07 1985-05-04 ミサワホーム株式会社 ventilation system
JPS6219555U (en) * 1986-03-25 1987-02-05
JPH08159530A (en) * 1994-12-02 1996-06-21 Ebara Corp Total heat exchanger
WO2013073165A1 (en) * 2011-11-16 2013-05-23 パナソニック株式会社 Supply and exhaust ventilation device
JP2014092291A (en) * 2012-10-31 2014-05-19 Max Co Ltd Ventilation device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI100132B (en) * 1995-03-03 1997-09-30 Abb Installaatiot Oy Arrangement in connection with an air handling unit
US8702482B2 (en) * 2004-12-07 2014-04-22 Trane International Inc. Ventilation controller
WO2007069349A1 (en) * 2005-12-14 2007-06-21 Matsushita Electric Industrial Co., Ltd. Heat exchange type ventilator
US7942193B2 (en) * 2007-11-21 2011-05-17 Nu-Air Ventilation Systems Inc. Heat recovery ventilator with defrost
DK200800397A (en) * 2008-03-14 2009-09-15 Exhausto As Rotating heat exchanger
CN102007346B (en) * 2008-04-16 2014-02-26 三菱电机株式会社 Heat exchanging ventilating apparatus
JP6035509B2 (en) * 2012-04-16 2016-11-30 パナソニックIpマネジメント株式会社 Heat exchange ventilator
WO2013157045A1 (en) * 2012-04-20 2013-10-24 三菱電機株式会社 Heat exchange element
KR101431211B1 (en) * 2013-08-12 2014-08-18 주식회사 클린에어나노테크 Electrical Heating Element Using Counterflow Ventilation Unit
JP6274869B2 (en) * 2014-01-16 2018-02-07 三菱電機株式会社 Ventilation equipment
CN203718957U (en) * 2014-02-21 2014-07-16 广东美的制冷设备有限公司 Air conditioner capable of two-way ventilation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023643U (en) * 1983-07-26 1985-02-18 ミサワホ−ム株式会社 air conditioning ventilation fan
JPS6063728U (en) * 1983-10-07 1985-05-04 ミサワホーム株式会社 ventilation system
JPS6219555U (en) * 1986-03-25 1987-02-05
JPH08159530A (en) * 1994-12-02 1996-06-21 Ebara Corp Total heat exchanger
WO2013073165A1 (en) * 2011-11-16 2013-05-23 パナソニック株式会社 Supply and exhaust ventilation device
JP2014092291A (en) * 2012-10-31 2014-05-19 Max Co Ltd Ventilation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2571723A (en) * 2018-03-05 2019-09-11 Ventive Ltd Ventilation system including a heat pump
GB2571723B (en) * 2018-03-05 2021-11-24 Ventive Ltd Ventilation system including a heat pump
US20220178630A1 (en) * 2019-02-27 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Heat exchange element and heat exchange-type ventilation device using same

Also Published As

Publication number Publication date
CN108369018A (en) 2018-08-03
US20180372361A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
WO2017110055A1 (en) Heat exchange type ventilation device
US8944897B2 (en) Ventilation system and controlling method of the same
US7987680B2 (en) Air conditioner
KR101034936B1 (en) Ventilation apparatus of heat exchanging type and controlling method thereof
JP6253459B2 (en) Ventilator for air conditioning
CN104136857A (en) Heat-exchange type ventilation apparatus
ES2668804T3 (en) Ventilation equipment
JP2005265401A (en) Air conditioner
US20170234571A1 (en) Heat exchanger ventilator
JP4784181B2 (en) Ventilator and building
JP2005172309A (en) Blower and air conditioning system for room
US20230408119A1 (en) Air convection system
JP6561313B2 (en) Heat exchange type ventilator using heat exchange elements
JP5916346B2 (en) Air conditioning equipment
JP6848956B2 (en) Indoor unit of air conditioner
US20070213001A1 (en) Window defroster system
JP6617280B2 (en) Heat exchange type ventilation system
KR20070050565A (en) Ventilating apparatus and controlling method for a fan of the same
JP2013185714A (en) Heat exchange ventilator
JP4404698B2 (en) Air conditioner
JP2006017369A5 (en)
JPH11248232A (en) Floor-heating air-conditioning system
JP7170562B2 (en) heat exchange ventilation system
JP2014202369A (en) Circulator
JP2013104656A (en) Ventilation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877960

Country of ref document: EP

Kind code of ref document: A1