JP4784181B2 - Ventilator and building - Google Patents

Ventilator and building Download PDF

Info

Publication number
JP4784181B2
JP4784181B2 JP2005198098A JP2005198098A JP4784181B2 JP 4784181 B2 JP4784181 B2 JP 4784181B2 JP 2005198098 A JP2005198098 A JP 2005198098A JP 2005198098 A JP2005198098 A JP 2005198098A JP 4784181 B2 JP4784181 B2 JP 4784181B2
Authority
JP
Japan
Prior art keywords
air
heat exchange
outside air
indoor
ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005198098A
Other languages
Japanese (ja)
Other versions
JP2007017064A (en
Inventor
知昭 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Co Ltd
Original Assignee
Max Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Co Ltd filed Critical Max Co Ltd
Priority to JP2005198098A priority Critical patent/JP4784181B2/en
Publication of JP2007017064A publication Critical patent/JP2007017064A/en
Application granted granted Critical
Publication of JP4784181B2 publication Critical patent/JP4784181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Description

本発明は、室内の空気を換気する換気装置と、換気装置を備えた建物に関する。   The present invention relates to a ventilator for ventilating indoor air and a building including the ventilator.

従来から、室内の空気と外気の換気を行う換気装置が提案されている。このような換気装置としては、室内の空気と外気の間で熱交換を行い、外気を室内の温度に近づけて供給できるようにするため、熱交換素子を備えた換気装置が知られている(例えば、特許文献1参照)。   Conventionally, ventilation devices that ventilate indoor air and outside air have been proposed. As such a ventilator, a ventilator provided with a heat exchange element is known in order to exchange heat between indoor air and outside air so that the outside air can be supplied close to the room temperature ( For example, see Patent Document 1).

特許3503369号公報Japanese Patent No. 3503369

このような熱交換素子を備えた換気装置を寒冷地等で使用すると、冬季は、温度の低い外気と、温度及び湿度の高い室内の空気との間で熱交換が行われることで、熱交換素子において、室内の空気が流れる風路側で結露及び氷結が発生し、熱交換素子が目詰まりを起こすという問題がある。   When a ventilator equipped with such a heat exchange element is used in a cold region, heat exchange is performed between the outside air having a low temperature and the indoor air having a high temperature and humidity in winter. In the element, there is a problem that dew condensation and icing occur on the side of the air path through which indoor air flows, and the heat exchange element is clogged.

そして、熱交換素子が目詰まりを起こすと、排気が行えなくなり、換気能力が低下するという問題がある。また、外気と室内の空気との間での熱交換が行われなくなり、温度の低い空気が室内に供給されるという問題がある。   When the heat exchange element is clogged, there is a problem that exhaustion cannot be performed and the ventilation capacity is reduced. In addition, there is a problem that heat exchange between the outside air and room air is not performed, and air having a low temperature is supplied to the room.

本発明は、このような課題を解決するためになされたもので、熱交換素子の氷結を防止できるようにした換気装置及びこの換気装置を備えた建物を提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a ventilator capable of preventing the freezing of the heat exchange element and a building including the ventilator.

上述した課題を解決するため、本発明に係る換気装置は、外気を吸い込んで室内に給気する給気手段と、室内の空気を吸い込んで屋外に排気する排気手段と、給気手段で吸い込んだ外気と排気手段で吸い込んだ室内の空気との間で熱交換を行う熱交換手段と、熱交換手段で外気が流入する外気流入部側に配置され、熱交換手段に供給される外気を加熱する加熱手段と、熱交換手段で外気が流入する外気流入部側に対向して配置され、熱交換手段に供給される外気の温度を検出する外気温度検出手段と、熱交換手段を通る室内の空気の風圧を検出する風圧検出手段と、外気温度検出手段で検出される外気の温度と風圧検出手段で検出される熱交換手段を通る室内の空気の風圧に基づいて氷結の発生の有無を検出し、氷結の発生の有無に基づいて、熱交換手段に供給される外気の加熱手段による加熱の有無を切り替える制御手段とを備え、制御手段は、氷結の発生を検出すると、熱交換手段に供給される外気の加熱手段による加熱を行いながら、常時換気を行う場合の風量で換気運転を続行することを特徴とする。

In order to solve the above-described problems, a ventilating apparatus according to the present invention sucks in air supply means for sucking in outside air and supplying it into the room, exhaust means for sucking in indoor air and exhausting it outdoors, and air supply means. Heat exchange means for exchanging heat between the outside air and the indoor air sucked in by the exhaust means, and an outside air inflow portion side through which the outside air flows in by the heat exchange means, heats the outside air supplied to the heat exchange means A heating means, an outside air temperature detection means for detecting the temperature of the outside air supplied to the heat exchange means, facing the outside air inflow portion side through which the outside air flows in by the heat exchange means, and the indoor air passing through the heat exchange means The presence or absence of freezing is detected based on the wind pressure detection means for detecting the wind pressure of the air, the temperature of the outside air detected by the outside air temperature detection means, and the wind pressure of the indoor air passing through the heat exchange means detected by the wind pressure detection means. Based on the presence or absence of freezing And control means for switching the presence or absence of heating by the ambient air of the heating means to be supplied to the heat exchange means, the control means detects the occurrence of the icing, while heating by the ambient air of the heating means to be supplied to the heat exchange means It is characterized in that the ventilation operation is continued with the air volume in the case of always performing ventilation .

本発明の換気装置では、外気と室内の空気との間で熱交換を行って、外気を室内に給気することで、外気が室温に近づけて給気される。冬季に換気装置を使用すると、温度の低い外気と温度及び湿度の高い室内の空気との間で熱交換が行われることで、熱交換手段では、室内の空気が流れる風路側で結露及び氷結が発生する。   In the ventilator of the present invention, heat is exchanged between the outside air and the room air, and the outside air is supplied into the room, so that the outside air is supplied close to room temperature. When a ventilator is used in the winter, heat exchange is performed between outside air having a low temperature and indoor air having a high temperature and humidity. In the heat exchanging means, condensation and icing are generated on the side of the air passage through which the indoor air flows. appear.

このため、熱交換手段に供給される外気を加熱することで、外気の温度を上昇させて、氷結を解凍すると共に、氷結の発生を防ぐ。   For this reason, by heating the outside air supplied to the heat exchanging means, the temperature of the outside air is raised, and the freezing is thawed and the occurrence of freezing is prevented.

本発明に係る建物は、上述した換気装置の何れかを備えたことを特徴とする。   The building according to the present invention includes any one of the above-described ventilation devices.

本発明の建物では、換気装置により外気が室温に近づけられて給気されると共に、室内の空気が屋外へ排気されることで、室内の換気が行われる。冬季に換気装置が使用される場合も、熱交換手段での氷結の発生が抑制されることで、常時換気が可能である。   In the building of the present invention, the outside air is supplied to the room temperature by the ventilator and the room air is exhausted to the outside, and the room is ventilated. Even when a ventilator is used in winter, it is possible to ventilate constantly by suppressing the occurrence of icing in the heat exchange means.

本発明の換気装置によれば、熱交換手段の氷結を防ぐことができるので、熱交換手段における風路の目詰まりを防ぐことができる。これにより、換気能力の低下を防ぐことができる。また、風路の目詰まりに起因して、外気と室内の空気との間での熱交換が行われなくなり、温度の低い外気が室内の給気されることを防ぐことができる。   According to the ventilator of the present invention, since the freezing of the heat exchange means can be prevented, clogging of the air path in the heat exchange means can be prevented. Thereby, the fall of ventilation capability can be prevented. In addition, heat exchange between the outside air and the room air is not performed due to the clogging of the air passage, and it is possible to prevent outside air having a low temperature from being supplied to the room.

本発明の建物によれば、上述した換気装置を備えたことで、換気能力が低下することなく常時換気が行われ、室内の空気を新鮮な状態に保つことができると共に、室内の温度低下を防ぐことができる。   According to the building of the present invention, by providing the above-described ventilation device, ventilation is always performed without lowering the ventilation capacity, the indoor air can be kept fresh, and the indoor temperature can be reduced. Can be prevented.

以下、図面を参照して本発明の換気装置及び建物の実施の形態について説明する。   Embodiments of a ventilation device and a building according to the present invention will be described below with reference to the drawings.

<第1の実施の形態の換気装置の構成例>
図1は第1の実施の形態の換気装置1Aの一例を示す構成図である。第1の実施の形態の換気装置1Aは、外気を吸い込んで室内に給気すると共に、室内の空気を吸い込んで屋外に排気し、かつ、外気と室内の空気との間で熱交換を行う装置であり、ファンユニット2と、熱交換ユニット3と、ファンユニット2及び熱交換ユニット3等を収容した本体ケース4を備える。
<Configuration example of the ventilator according to the first embodiment>
FIG. 1 is a configuration diagram illustrating an example of a ventilation device 1A according to the first embodiment. The ventilation device 1A according to the first embodiment is a device that sucks outside air and supplies the air into the room, sucks indoor air, exhausts it to the outside, and exchanges heat between the outside air and the room air. A fan unit 2, a heat exchange unit 3, and a main body case 4 housing the fan unit 2, the heat exchange unit 3, and the like.

ファンユニット2は、給気ファン5と、排気ファン6と、給気ファン5及び排気ファン6を駆動するファンモータ7と、給気ファン5と排気ファン6とファンモータ7が取り付けられたハウジング8等を備える。   The fan unit 2 includes an air supply fan 5, an exhaust fan 6, a fan motor 7 that drives the air supply fan 5 and the exhaust fan 6, and a housing 8 to which the air supply fan 5, the exhaust fan 6, and the fan motor 7 are attached. Etc.

給気ファン5は給気手段の一例で、ファンモータ7に回転駆動される多翼ファン5aと、風路を形成するファンケース5bを備える。また、排気ファン6は排気手段の一例で、ファンモータ7に回転駆動される多翼ファン6aと、風路を形成するファンケース6bを備える。   The air supply fan 5 is an example of air supply means, and includes a multiblade fan 5a that is rotationally driven by the fan motor 7 and a fan case 5b that forms an air passage. The exhaust fan 6 is an example of exhaust means, and includes a multi-blade fan 6a that is rotationally driven by a fan motor 7 and a fan case 6b that forms an air passage.

ファンユニット2は、給気ファン5においては、多翼ファン5aの軸方向に沿ってファンケース5bの下面に形成されたファン吸込口5cと連通した外気吸込口8aを、ハウジング8の一方の側面に備える。また、ファンケース5bによって多翼ファン5aの接線方向に沿って形成される風路と連通した外気吹出口8bを、ハウジング8の他方の側面に備える。   In the air supply fan 5, the fan unit 2 includes an outside air suction port 8 a communicating with a fan suction port 5 c formed on the lower surface of the fan case 5 b along the axial direction of the multiblade fan 5 a. Prepare for. Further, the other side surface of the housing 8 is provided with an outside air outlet 8b that communicates with an air passage formed along the tangential direction of the multiblade fan 5a by the fan case 5b.

ファンユニット2は、排気ファン6においては、多翼ファン6aの軸方向に沿ってファンケース6bの下面に形成されたファン吸込口6cと連通した室内空気吸込口8cを、ハウジング8の他方の側面に備える。また、ファンケース6bによって多翼ファン6aの接線方向に沿って形成される風路と連通した室内空気吹出口8dを、ハウジング8の一方の側面に備える。   In the exhaust fan 6, the fan unit 2 has an indoor air suction port 8c communicating with a fan suction port 6c formed on the lower surface of the fan case 6b along the axial direction of the multiblade fan 6a. Prepare for. In addition, an indoor air outlet 8 d that is in communication with the air passage formed along the tangential direction of the multiblade fan 6 a by the fan case 6 b is provided on one side surface of the housing 8.

これにより、給気ファン5と排気ファン6は、外気吹出口8bと室内空気吹出口8dが、逆向きとなるように上下に重ねて配置される。ファンモータ7は駆動手段の一例で、本例では両軸のモータであり、駆動軸の一端側に給気ファン5の多翼ファン5aが取り付けられ、駆動軸の他端側に排気ファン6の多翼ファン6aが取り付けられて、単一の駆動源で給気ファン5と排気ファン6が駆動される。   Thus, the air supply fan 5 and the exhaust fan 6 are arranged so as to overlap each other so that the outside air outlet 8b and the indoor air outlet 8d are in opposite directions. The fan motor 7 is an example of a drive unit. In this example, the fan motor 7 is a dual-axis motor. The multi-blade fan 5a of the air supply fan 5 is attached to one end of the drive shaft, and the exhaust fan 6 is connected to the other end of the drive shaft. The multiblade fan 6a is attached, and the supply fan 5 and the exhaust fan 6 are driven by a single drive source.

熱交換ユニット3は、熱交換素子9と、風路形成枠体10を備える。図2は熱交換素子9の概略構成を示す斜視図であり、まず熱交換素子9の構成について説明する。   The heat exchange unit 3 includes a heat exchange element 9 and an air path forming frame 10. FIG. 2 is a perspective view showing a schematic configuration of the heat exchange element 9. First, the configuration of the heat exchange element 9 will be described.

熱交換素子9は熱交換手段の一例で、熱伝導性を有する材質で形成され、第1の風路である外気風路11aが並列して形成された熱交換素子材12aと、第2の風路である室内空気風路11bが並列して形成された熱交換素子材12bとを、外気風路11aと室内空気風路11bが直交する向きとして交互に積層して直方体状に構成したものである。   The heat exchanging element 9 is an example of a heat exchanging means, and is formed of a material having thermal conductivity. The heat exchanging element material 12a in which the outside air path 11a, which is the first air path, is formed in parallel, A heat exchange element member 12b formed by paralleling indoor air air passages 11b, which are air passages, is alternately stacked in a rectangular parallelepiped shape so that the outside air air passages 11a and the indoor air air passages 11b are orthogonal to each other. It is.

熱交換素子9は、外気風路11aと連通する面の一方が外気流入部13aとなり、外気流入部13aと直交し、室内空気風路11bと連通する面の一方が室内空気流入部14aとなる。   One of the surfaces of the heat exchange element 9 that communicates with the outside air air passage 11a serves as the outside air inflow portion 13a, and one of the surfaces that is orthogonal to the outside air inflow portion 13a and communicates with the indoor air air passage 11b serves as the indoor air inflow portion 14a. .

また、外気流入部13aと対向し、外気風路11aと連通する面が外気流出部13bとなり、室内空気流入部14aと対向し、室内空気風路11bと連通する面が室内空気流出部14bとなる。   Further, the surface that faces the outside air inflow portion 13a and communicates with the outside air air passage 11a serves as the outside air outflow portion 13b, and the surface that faces the indoor air inflow portion 14a and communicates with the indoor air air passage 11b is communicated with the indoor air outflow portion 14b. Become.

熱交換素子9は、図1に示す風路形成枠体10により本体ケース4に取り付けられる。風路形成枠体10は、ファンユニット2の外気吹出口8bと連通し、熱交換素子9の外気流入部13aに面した外気流入風路15aと、熱交換素子9の外気流出部13bに面した外気流出風路15bを備える。   The heat exchange element 9 is attached to the main body case 4 by an air passage forming frame 10 shown in FIG. The air path forming frame 10 communicates with the outside air outlet 8b of the fan unit 2 and faces the outside air inflow air path 15a facing the outside air inflow portion 13a of the heat exchange element 9 and the outside air outflow portion 13b of the heat exchange element 9. The outside air outflow air passage 15b is provided.

また、風路形成枠体10は、熱交換素子9の室内空気流入部14aに面した室内空気流入風路16aと、ファンユニット2の室内空気吸込口8cと連通し、熱交換素子9の室内空気流出部14bに面した室内空気流出風路16bを備える。   The air passage forming frame 10 communicates with the indoor air inflow air passage 16 a facing the indoor air inflow portion 14 a of the heat exchange element 9 and the indoor air inlet 8 c of the fan unit 2. An indoor air outflow air passage 16b facing the air outflow portion 14b is provided.

風路形成枠体10は、本体ケース4の内部を上下に仕切る仕切り壁部10aを備え、上下方向に配置される外気流入風路15aと室内空気流出風路16bとの間、及び室内空気流入風路16aと外気流出風路15bとの間は、それぞれ仕切り壁部10aで仕切られる。また、隣接する外気流入風路15aと室内空気流入風路16aとの間、及び外気流出風路15bと室内空気流出風路16bとの間は、それぞれ熱交換素子9で仕切られる。   The air channel forming frame body 10 includes a partition wall portion 10a that divides the interior of the main body case 4 up and down, between the outside air inflow air channel 15a and the indoor air outflow air channel 16b arranged in the vertical direction, and into the room air inflow. The air passage 16a and the outside air outflow air passage 15b are each partitioned by a partition wall portion 10a. Further, the heat exchange element 9 divides between the adjacent outside air inflow air passage 15a and the indoor air inflow air passage 16a, and between the outside air outflow air passage 15b and the indoor air outflow air passage 16b.

熱交換ユニット3は、外気流入風路15aに給気フィルタ17を備えると共に、室内空気流入風路16aに排気フィルタ18を備える。給気フィルタ17は、熱交換素子9の外気流入部13aに対向して配置され、排気フィルタ18は、熱交換素子9の室内空気流入部14aに対向して配置されて、それぞれ熱交換素子9に対して空気の流れる方向の上流側に配置される。   The heat exchange unit 3 includes an air supply filter 17 in the outside air inflow air passage 15a and an exhaust filter 18 in the indoor air inflow air passage 16a. The air supply filter 17 is disposed to face the outside air inflow portion 13a of the heat exchange element 9, and the exhaust filter 18 is disposed to face the indoor air inflow portion 14a of the heat exchange element 9, respectively. Is disposed upstream of the air flow direction.

また、給気フィルタ17と排気フィルタ18は、図示しないガイドレール等に引き出し自在に支持されて、熱交換ユニット3の下面を塞ぐ底蓋19に形成したフィルタ着脱口19aから着脱自在な構成である。   The air supply filter 17 and the exhaust filter 18 are detachably supported by a guide rail (not shown) and the like, and are detachable from a filter attachment / detachment opening 19a formed in the bottom cover 19 that closes the lower surface of the heat exchange unit 3. .

熱交換ユニット3は、本体ケース4の下面にドレンパン20を備える。ドレンパン20はドレン部材の一例で、熱交換ユニット3の底蓋19の下部に取り付けられ、フィルタ着脱口19aの下部に開閉可能に設けられる点検蓋21と、排水口22を備える。   The heat exchange unit 3 includes a drain pan 20 on the lower surface of the main body case 4. The drain pan 20 is an example of a drain member. The drain pan 20 is attached to the lower portion of the bottom lid 19 of the heat exchange unit 3 and includes an inspection lid 21 that can be opened and closed at the lower portion of the filter attaching / detaching port 19 a and a drain port 22.

点検蓋21は、排水口22側に設けた軸21aを支点に回転して、熱交換ユニット3の下面を開閉する。また、点検蓋21は、固定ネジ21b等を利用したロック機構を備え、点検蓋21を閉じて、固定ネジ21bをドレンパン20側の図示しないネジ穴に締結することで、点検蓋21は閉状態でロックされる。   The inspection lid 21 opens and closes the lower surface of the heat exchange unit 3 by rotating around a shaft 21a provided on the drain outlet 22 side. The inspection lid 21 is provided with a lock mechanism using a fixing screw 21b and the like, and the inspection lid 21 is closed by closing the inspection lid 21 and fastening the fixing screw 21b to a screw hole (not shown) on the drain pan 20 side. Locked by.

点検蓋21は、閉状態では水を受ける機能を有し、点検蓋21を含めたドレンパン20の下面は、排水口22へ向けて下がる方向に傾斜しており、水が排水口22へ集められる構成である。   The inspection lid 21 has a function of receiving water in the closed state, and the lower surface of the drain pan 20 including the inspection lid 21 is inclined in a direction downward toward the drain port 22, and water is collected at the drain port 22. It is a configuration.

なお、ドレンパン20と点検蓋21の継ぎ目には、ゴムパッキン等を利用した図示しないシール部材を備える。また、点検蓋21を閉じた状態では、ドレンパン20と点検蓋21の継ぎ目は、水の流れる方向に対して上流側が上側となるように重ね合わさる構成であり、ドレンパン20と点検蓋21との継ぎ目からの水漏れを防ぐ。   Note that a seam between the drain pan 20 and the inspection lid 21 is provided with a seal member (not shown) using rubber packing or the like. When the inspection lid 21 is closed, the seam between the drain pan 20 and the inspection lid 21 is configured to overlap so that the upstream side is the upper side with respect to the direction of water flow, and the seam between the drain pan 20 and the inspection lid 21. Prevent water leakage from the water.

熱交換ユニット3の底蓋19は、水抜き穴19bを備え、熱交換ユニット3において結露等により発生した水分は、フィルタ着脱口19aや水抜き穴19bからドレンパン20に流れ、ドレンパン20の排水口22から屋外等へ排水される。   The bottom cover 19 of the heat exchange unit 3 includes a drain hole 19b, and moisture generated by condensation or the like in the heat exchange unit 3 flows to the drain pan 20 from the filter attaching / detaching port 19a or the drain hole 19b, and the drain port of the drain pan 20 It is drained from 22 to the outdoors.

本体ケース4は直方体形状で、ファンユニット2の外気吸込口8a及び室内空気吹出口8dと対向した一方の側面に、外気吸込口8aと連通した外気吸込ダクト取付口23aを備えると共に、室内空気吹出口8dと連通した排気ダクト取付口23bを備える。   The main body case 4 has a rectangular parallelepiped shape, and is provided with an outside air suction duct mounting port 23a communicating with the outside air suction port 8a on one side face of the fan unit 2 facing the outside air suction port 8a and the room air outlet 8d. An exhaust duct attachment port 23b communicating with the outlet 8d is provided.

また、本体ケース4は、熱交換ユニット3の外気流出風路15b及び室内空気流入風路16aと対向した他方の側面に、外気流出風路15bと連通した給気ダクト取付口24aを備えると共に、室内空気流入風路16aと連通した室内吸込ダクト取付口24bを備える。   The main body case 4 includes an air supply duct attachment port 24a communicating with the outside air outflow air passage 15b on the other side surface of the heat exchange unit 3 facing the outside air outflow air passage 15b and the indoor air inflow air passage 16a. An indoor suction duct attachment port 24b communicating with the indoor air inflow air passage 16a is provided.

これにより、換気装置1Aでは、外気吸込ダクト取付口23aから給気ファン5を通り、給気フィルタ17を介して熱交換素子9の外気風路11aを通って給気ダクト取付口24aにいたる給気風路25aと、室内吸込ダクト取付口24bから排気フィルタ18を介して熱交換素子9の室内空気風路11bを通り、排気ファン6を通って排気ダクト取付口23bにいたる排気風路25bが独立して形成される。   As a result, in the ventilator 1A, the air supply duct 5a passes through the air supply fan 5 through the air supply fan 5, passes through the air supply filter 17, passes through the external air passage 11a of the heat exchange element 9, and reaches the air supply duct attachment port 24a. The exhaust air passage 25b and the exhaust air passage 25b from the indoor suction duct attachment port 24b through the exhaust filter 18 through the indoor air air passage 11b and through the exhaust fan 6 to the exhaust duct attachment port 23b are independent. Formed.

換気装置1Aは、給気風路25aにおいて、熱交換素子9の風上側に外気温度センサ26とヒータ27Aを備える。また、排気風路25bにおいて、熱交換素子9の風下側に風圧センサ28を備える。   The ventilation device 1A includes an outside air temperature sensor 26 and a heater 27A on the windward side of the heat exchange element 9 in the supply air passage 25a. Further, a wind pressure sensor 28 is provided on the leeward side of the heat exchange element 9 in the exhaust air passage 25b.

外気温度センサ26は外気温度検出手段の一例で、外気流入風路15aにおいて、給気フィルタ17を介して熱交換素子9の外気流入部13aと対向した位置に配置され、熱交換素子9に流入する外気の温度を検出する。   The outside air temperature sensor 26 is an example of an outside air temperature detecting means, and is disposed at a position facing the outside air inflow portion 13a of the heat exchange element 9 via the air supply filter 17 in the outside air inflow air passage 15a and flows into the heat exchange element 9. Detect the temperature of the outside air.

ヒータ27Aは加熱手段の一例で、外気流入風路15aにおいて、給気フィルタ17を介して熱交換素子9の外気流入部13aと対向した位置に配置され、熱交換素子9に流入する外気を加熱する。   The heater 27A is an example of a heating unit, and is disposed at a position facing the outside air inflow portion 13a of the heat exchange element 9 through the air supply filter 17 in the outside air inflow air passage 15a, and heats the outside air flowing into the heat exchange element 9. To do.

風圧センサ28は風圧検出手段の一例で、室内空気流出風路16bにおいて、熱交換素子9の室内空気流出部14bと対向した位置に配置され、熱交換素子9から流出する室内空気の風圧を検出する。   The wind pressure sensor 28 is an example of a wind pressure detection means, and is disposed at a position facing the indoor air outflow portion 14b of the heat exchange element 9 in the indoor air outflow air passage 16b, and detects the wind pressure of the indoor air flowing out from the heat exchange element 9. To do.

<第1の実施の形態の換気装置の設置例>
図3は第1の実施の形態の換気装置1Aの設置例を示す構成図である。換気装置1Aは、後述するような建物の天井裏の空間31に、例えばアンカーボルト32を利用して吊り下げる形態で設置される。
<Installation example of the ventilator according to the first embodiment>
FIG. 3 is a configuration diagram illustrating an installation example of the ventilation device 1A according to the first embodiment. The ventilator 1A is installed in a space 31 on the back of the ceiling of a building as will be described later, for example, using an anchor bolt 32.

換気装置1Aは、外気吸込ダクト取付口23aに外気吸込ダクト33が接続され、排気ダクト取付口23bに排気ダクト34が接続される。また、換気装置1Aは、給気ダクト取付口24aに給気ダクト35が接続され、室内吸込ダクト取付口24bに室内吸込ダクト36が接続される。   In the ventilator 1A, the outside air suction duct 33 is connected to the outside air suction duct attachment port 23a, and the exhaust duct 34 is connected to the exhaust duct attachment port 23b. In the ventilator 1A, the air supply duct 35 is connected to the air supply duct attachment port 24a, and the indoor suction duct 36 is connected to the indoor intake duct attachment port 24b.

外気吸込ダクト33は、外気の取り入れ口となる屋外フード33aから外気を吸い込む。また、排気ダクト34は、室内空気の排気口となる屋外フード34aから室内の空気を排気する。   The outside air suction duct 33 sucks outside air from an outdoor hood 33a that serves as an intake port for outside air. The exhaust duct 34 exhausts indoor air from an outdoor hood 34a serving as an exhaust port for room air.

給気ダクト35は、天井パネル37に設置される給気グリル35aと接続され、外気を部屋に給気する。ここで、給気ダクト35に分岐チャンバー35bを備え、1本の給気ダクト35に複数の給気グリル35aを接続できるようにして、複数の部屋への給気が可能な構成である。   The air supply duct 35 is connected to an air supply grill 35a installed on the ceiling panel 37, and supplies outside air to the room. Here, the air supply duct 35 is provided with a branch chamber 35b, and a plurality of air supply grilles 35a can be connected to one air supply duct 35 so that air can be supplied to a plurality of rooms.

室内吸込ダクト36は、天井パネル37に設置される吸込グリル36aと接続され、室内の空気を吸い込む。   The indoor suction duct 36 is connected to a suction grill 36a installed on the ceiling panel 37 and sucks indoor air.

なお、天井パネル37には開閉可能な点検口37aを備え、点検口37aを開けることで、換気装置1Aのドレンパン20に設けた点検蓋21を開けて、フィルタの交換が可能となっている。   The ceiling panel 37 is provided with an openable / closable inspection port 37a. By opening the inspection port 37a, the inspection lid 21 provided on the drain pan 20 of the ventilator 1A can be opened, and the filter can be replaced.

<第1の実施の形態の換気装置の制御機能例>
図4は第1の実施の形態の換気装置1Aの制御系の一例を示す機能ブロック図である。換気装置1Aは、制御部41Aと操作部42を備える。制御部41Aは制御手段の一例で、ファンモータ7と、ヒータ27Aと、外気温度センサ26と、風圧センサ28等が接続される。
<Control function example of the ventilator according to the first embodiment>
FIG. 4 is a functional block diagram illustrating an example of a control system of the ventilation device 1A according to the first embodiment. The ventilation device 1A includes a control unit 41A and an operation unit 42. The control unit 41A is an example of a control unit, and is connected to the fan motor 7, the heater 27A, the outside air temperature sensor 26, the wind pressure sensor 28, and the like.

制御部41Aは、図示しないCPUやメモリ等を備え、操作部42での操作と、外気温度センサ26及び風圧センサ28の出力を受け、予め記憶されているプログラムに従って、ファンモータ7とヒータ27Aを制御する。   The control unit 41A includes a CPU, a memory, and the like (not shown). The control unit 41A receives the operation of the operation unit 42 and the outputs of the outside air temperature sensor 26 and the wind pressure sensor 28. Control.

<第1の実施の形態の建物の構成例>
図5は換気装置1Aが設置された第1の実施の形態の建物の一例を示す構成図で、図5(a)は建物51の概要側面図、図5(b)は建物51の概要平面図である。
<Configuration example of the building of the first embodiment>
FIG. 5 is a configuration diagram illustrating an example of the building according to the first embodiment in which the ventilation device 1A is installed. FIG. 5A is a schematic side view of the building 51, and FIG. FIG.

建物51は、本例では2階建ての一戸建て住宅を例にしており、居間や台所等、壁52aや扉52bで仕切られた複数の部屋52を有する。建物51は、各フロアの廊下53等の天井裏の空間31に換気装置1Aを備える。   The building 51 is an example of a two-story single-family house in this example, and has a plurality of rooms 52 partitioned by walls 52a and doors 52b, such as a living room and a kitchen. The building 51 includes a ventilation device 1A in a space 31 behind the ceiling such as the hallway 53 of each floor.

換気装置1Aは、建物51の外壁に屋外フード33aと屋外フード34aが取り付けられ、図3で説明したように、屋外フード33aと外気吸込ダクト33を介して接続されると共に、屋外フード34aと排気ダクト34を介して接続される。   In the ventilator 1A, an outdoor hood 33a and an outdoor hood 34a are attached to the outer wall of a building 51, and as described with reference to FIG. 3, the outdoor hood 33a and the outdoor air suction duct 33 are connected, and the outdoor hood 34a and the exhaust air are exhausted. It is connected via a duct 34.

また、換気装置1Aは、ドレンパン20の排水口22が排水ホース54を介して屋外と接続される。   Further, in the ventilator 1 </ b> A, the drain port 22 of the drain pan 20 is connected to the outside via a drain hose 54.

建物51は、例えば複数の部屋52のそれぞれの天井に給気グリル35aを備え、各給気グリル35aと換気装置1Aは、給気ダクト35a及び分岐チャンバー35bを介して接続される。また、建物51は、例えば廊下53の天井に吸込グリル36aを備え、吸込グリル36aと換気装置1Aは、室内吸込ダクト36を介して接続される。   The building 51 includes, for example, air supply grilles 35a on the ceilings of a plurality of rooms 52, and each air supply grille 35a and the ventilator 1A are connected via an air supply duct 35a and a branch chamber 35b. The building 51 includes a suction grill 36 a on the ceiling of the hallway 53, for example, and the suction grill 36 a and the ventilator 1 </ b> A are connected via the indoor suction duct 36.

建物51は、扉52bに設けたアンダーカットUDや、図示しないガラリ等を通して部屋52と廊下53の間等で空気が流れる構成である。   The building 51 has a configuration in which air flows between the room 52 and the corridor 53 through an undercut UD provided on the door 52b, a gallery or the like (not shown), and the like.

<第1の実施の形態の換気装置の動作例>
次に、各図を参照して第1の実施の形態の換気装置1Aの動作について説明する。
<Operation example of the ventilator according to the first embodiment>
Next, the operation of the ventilation device 1A according to the first embodiment will be described with reference to the drawings.

換気装置1Aは、所定時間、例えば1時間で部屋52の空気の半分を入れ替えるために、24時間連続運転される。すなわち、換気装置1Aは、ファンモータ7を駆動することで、給気ファン5の多翼ファン5aと排気ファン6の多翼ファン6aが同期して回転する。   The ventilation device 1A is continuously operated for 24 hours in order to replace half of the air in the room 52 in a predetermined time, for example, 1 hour. That is, in the ventilation device 1A, the multi-blade fan 5a of the air supply fan 5 and the multi-blade fan 6a of the exhaust fan 6 rotate in synchronization by driving the fan motor 7.

まず、給気ファン5側の空気の流れを説明すると、給気ファン5の多翼ファン5aが回転駆動されることで、給気風路25aを通る空気の流れが生じ、ファンユニット2の外気吸込口8aから空気が吸い込まれ、吸い込まれた空気はファンユニット2の外気吹出口8bから熱交換ユニット3の外気流入風路15aへ排出される。   First, the air flow on the air supply fan 5 side will be described. When the multi-blade fan 5a of the air supply fan 5 is rotationally driven, an air flow through the air supply air passage 25a is generated, and the outside air suction of the fan unit 2 is performed. Air is sucked from the opening 8a, and the sucked air is discharged from the outside air outlet 8b of the fan unit 2 to the outside air inflow air passage 15a of the heat exchange unit 3.

外気吸込口8aは外気吸込ダクト取付口23aと連通し、外気吸込ダクト取付口23aは、図3及び図5に示すように、屋外フード33aと外気吸込ダクト33を介して接続されるので、給気ファン5が回転駆動されることで、外気OAが吸い込まれる。   The outside air suction port 8a communicates with the outside air suction duct mounting port 23a, and the outside air suction duct mounting port 23a is connected via the outdoor hood 33a and the outside air suction duct 33 as shown in FIGS. When the air fan 5 is driven to rotate, the outside air OA is sucked.

ファンユニット2の外気吹出口8bから熱交換ユニット3の外気流入風路15aへ排出された空気(外気)は、給気フィルタ17を介して外気流入部13aから熱交換素子9の外気風路11aへ流入し、外気流出部13bから外気流出風路15bへ排出される。   The air (outside air) discharged from the outside air outlet 8b of the fan unit 2 to the outside air inflow air passage 15a of the heat exchange unit 3 is supplied from the outside air inflow portion 13a through the air supply filter 17 to the outside air air passage 11a of the heat exchange element 9. And is discharged from the outside air outflow portion 13b to the outside air outflow air passage 15b.

外気流出風路15bは給気ダクト取付口24aと連通し、給気ダクト取付口24aは、図3及び図5に示すように、給気グリル35aと給気ダクト35及び分岐チャンバー35bを介して接続されるので、給気ファン5が回転駆動されることで、外気OAが給気SAとして各部屋52に供給される。   The outside air outlet air passage 15b communicates with the air supply duct mounting port 24a, and the air supply duct mounting port 24a passes through the air supply grille 35a, the air supply duct 35, and the branch chamber 35b as shown in FIGS. Since the air supply fan 5 is rotationally driven, the outside air OA is supplied to each room 52 as the air supply SA.

次に、排気ファン6側の空気の流れを説明すると、排気ファン6の多翼ファン6aが回転駆動されることで、排気風路25bを通る空気の流れが生じ、室内吸込ダクト取付口24bから熱交換ユニット3の室内空気流入風路16aに空気が吸い込まれる。室内吸込ダクト取付口24bは、図3及び図5に示すように、吸込グリル36aと室内吸込ダクト36を介して接続されるので、排気ファン6が回転駆動されることで、廊下53から室内の空気(RA)が吸い込まれる。   Next, the flow of air on the side of the exhaust fan 6 will be described. When the multi-blade fan 6a of the exhaust fan 6 is rotationally driven, an air flow through the exhaust air passage 25b is generated, and the air flows from the indoor suction duct attachment port 24b. Air is sucked into the indoor air inflow air passage 16a of the heat exchange unit 3. As shown in FIGS. 3 and 5, the indoor suction duct mounting port 24 b is connected to the suction grill 36 a via the indoor suction duct 36. Air (RA) is inhaled.

ここで、建物51では、廊下53と各部屋52の間は、扉52bのアンダーカットUDや図示しないガラリ等を介して空気が流れる構成である。このため、廊下53に設けた吸込グリル36aから換気装置1Aにより空気を吸い込むと、図5に矢印で示すように、各部屋52から廊下53へと空気が流れる。これにより、換気装置1Aで各部屋52の空気が吸い込まれる。   Here, in the building 51, the air flows between the hallway 53 and each room 52 through an undercut UD of the door 52b, a louver (not shown), or the like. For this reason, when air is sucked from the suction grill 36a provided in the hallway 53 by the ventilation device 1A, the air flows from each room 52 to the hallway 53 as shown by arrows in FIG. Thereby, the air of each room | chamber 52 is inhaled with 1 A of ventilation apparatuses.

室内吸込ダクト取付口24bから熱交換ユニット3の室内空気流入風路16aへ吸い込まれた空気は、排気フィルタ18を介して室内空気流入部14aから熱交換素子9の室内空気風路11bへ流入し、室内空気流出部14bから室内空気流出風路16bへ排出される。   The air sucked into the indoor air inflow air passage 16a of the heat exchange unit 3 from the indoor suction duct mounting port 24b flows into the indoor air air passage 11b of the heat exchange element 9 from the indoor air inflow portion 14a via the exhaust filter 18. Then, the air is discharged from the indoor air outflow portion 14b to the indoor air outflow air passage 16b.

熱交換ユニット3の室内空気流出風路16bへ排出された空気は、室内空気流出風路16bと連通したファンユニット2の室内空気吸込口8cから吸い込まれ、吸い込まれた空気はファンユニット2の室内空気吹出口8dへ排出される。   The air discharged to the indoor air outflow air passage 16b of the heat exchange unit 3 is sucked from the indoor air intake port 8c of the fan unit 2 communicating with the indoor air outflow air passage 16b, and the sucked air is taken into the room of the fan unit 2. It is discharged to the air outlet 8d.

室内空気吹出口8dは排気ダクト取付口23bと連通し、排気ダクト取付口23bは、図3及び図5に示すように、屋外フード34aと排気ダクト34を介して接続されるので、排気ファン6が回転駆動されることで、室内の空気RAが吸い込まれて排気EAとして屋外へ排気される。   The indoor air outlet 8d communicates with the exhaust duct attachment port 23b, and the exhaust duct attachment port 23b is connected to the outdoor hood 34a via the exhaust duct 34 as shown in FIGS. Is rotationally driven, indoor air RA is sucked and exhausted to the outdoors as exhaust EA.

熱交換素子9は、上述したように外気風路11aを外気OAが通る。これに対して、室内空気風路11bは室内の空気RAが通る。これにより、外気風路11aが形成された熱交換素子材12aと室内空気風路11bが形成された熱交換素子材12bを介して熱交換が行われ、外気OAは室温に近づけられて供給される。   In the heat exchange element 9, as described above, the outside air OA passes through the outside air passage 11a. On the other hand, indoor air RA passes through the indoor air air passage 11b. Thereby, heat exchange is performed via the heat exchange element material 12a in which the outdoor air passage 11a is formed and the heat exchange element member 12b in which the indoor air air passage 11b is formed, and the outside air OA is supplied close to room temperature. The

換気装置1Aでは、建物51の屋外から吸い込まれて、各部屋52に供給される外気OAが通る給気風路25aと、各部屋52から吸い込まれて屋外へ排気される室内の空気RAが取る排気風路25bは、熱交換ユニット3を構成する風路形成枠体10、熱交換素子9、ファンユニット2を構成するハウジング8によって独立している。   In the ventilator 1A, the air intake air passage 25a through which the outside air OA sucked from the outside of the building 51 and supplied to each room 52 passes, and the exhaust air taken by the indoor air RA sucked from each room 52 and exhausted to the outside. The air path 25 b is independent by the air path forming frame 10 constituting the heat exchange unit 3, the heat exchange element 9, and the housing 8 constituting the fan unit 2.

これにより、屋外から吸い込んだ外気OAと部屋52から吸い込んだ室内の空気RAが混合することなく、熱交換が行われて換気が行われる。更に、熱交換ユニット3に給気フィルタ17を備えることで、埃等が除去される。よって、建物51の各部屋52に新鮮な空気を供給することができると共に、各部屋52の空気を排気することで、部屋52の空気を入れ替えることができる。   Thus, heat exchange is performed and ventilation is performed without mixing the outdoor air OA sucked from the outside and the indoor air RA sucked from the room 52. Furthermore, dust etc. are removed by providing the heat exchange unit 3 with the air supply filter 17. Therefore, fresh air can be supplied to each room 52 of the building 51, and the air in each room 52 can be replaced by exhausting the air in each room 52.

なお、熱交換ユニット3に排気フィルタ18を備えるのは、室内の埃等で熱交換素子9が目詰まり等を起こすことを防ぐためである。   The reason why the exhaust filter 18 is provided in the heat exchange unit 3 is to prevent the heat exchange element 9 from being clogged by dust or the like in the room.

さて、寒冷地に建築された建物51に換気装置1Aを設置して使用する場合、特に冬季は外気OAと室内温度の差が大きいことから、熱交換ユニット3で内部結露を生じる。   Now, when installing and using the ventilation apparatus 1A in the building 51 constructed in a cold region, especially in the winter, the difference between the outside air OA and the room temperature is large, so that internal condensation occurs in the heat exchange unit 3.

換気装置1Aは、熱交換ユニット3の下部にドレンパン20を備えているので、熱交換ユニット3で発生した内部結露による水は、底蓋19のフィルタ着脱口19aや水抜き穴19b等を通してドレンパン20に流れ込み、排水口22から排水ホース54を介して建物51の屋外へ排水される。   Since the ventilator 1A includes the drain pan 20 at the lower portion of the heat exchange unit 3, water due to internal condensation generated in the heat exchange unit 3 passes through the filter attaching / detaching port 19a of the bottom cover 19, the drain hole 19b, and the like. And is drained from the drain port 22 to the outside of the building 51 through the drain hose 54.

<第1の実施の形態の換気装置の氷結防止制御例>
図6は第1の実施の形態の換気装置1Aにおける氷結防止制御例を示すフローチャートで、次に、各図を参照して、第1の実施の形態の換気装置1Aにおける氷結防止制御について説明する。
<Example of anti-icing control of the ventilator according to the first embodiment>
FIG. 6 is a flowchart showing an example of anti-icing control in the ventilator 1A of the first embodiment. Next, with reference to each drawing, the anti-icing control in the ventilator 1A of the first embodiment will be described. .

ステップSA1:換気装置1Aの制御部41Aは、上述した動作例で説明した通り、ファンモータ7を駆動して建物51の常時24時間換気を行う。   Step SA1: The control unit 41A of the ventilation device 1A drives the fan motor 7 to ventilate the building 51 continuously for 24 hours as described in the above-described operation example.

ステップSA2:制御部41Aは、外気温度センサ26の出力を監視する。外気温度センサ26は、検出した温度が所定の値を下回ると、例えば出力がオンに変化するように構成される。外気温度センサ26は給気風路25aに備えてあるので、給気ファン5で吸い込んだ外気OAの温度が検出される。これにより、冬季に換気装置1Aを使用した場合、外気OAの温度が低下(例えば氷点下)すると、外気温度センサ26の出力がオンに変化する。   Step SA2: The control unit 41A monitors the output of the outside air temperature sensor 26. The outside temperature sensor 26 is configured such that, for example, the output changes to ON when the detected temperature falls below a predetermined value. Since the outside air temperature sensor 26 is provided in the air supply air passage 25a, the temperature of the outside air OA sucked by the air supply fan 5 is detected. Thereby, when the ventilator 1A is used in winter, when the temperature of the outside air OA decreases (for example, below freezing point), the output of the outside air temperature sensor 26 is turned on.

ステップSA3:制御部41Aは、風圧センサ28の出力を監視する。風圧センサ28は、検出した風圧が所定の値を下回ると、例えば出力がオンに変化するように構成される。風圧センサ28は、排気風路25bにおいて熱交換素子9の風下側に備えてあるので、熱交換素子9の室内空気風路11bを正常に空気が流れているか否かが検出される。   Step SA3: The control unit 41A monitors the output of the wind pressure sensor 28. The wind pressure sensor 28 is configured such that, for example, the output changes to ON when the detected wind pressure falls below a predetermined value. Since the wind pressure sensor 28 is provided on the leeward side of the heat exchange element 9 in the exhaust air path 25b, it is detected whether or not air is normally flowing through the indoor air path 11b of the heat exchange element 9.

さて、冬季に換気装置1Aを使用した場合、外気OAの温度が低く、これに対して空気調和された室内の空気RAの温度及び湿度が高いので、外気OAと室内の空気RAが熱交換素子9で熱交換されると、湿った暖かい室内の空気RAが冷却されることで飽和空気となり、熱交換素子9の室内空気風路11bで結露が生じる。   When the ventilation device 1A is used in winter, the temperature of the outside air OA is low, and the temperature and humidity of the indoor air RA conditioned by air are high. Therefore, the outside air OA and the room air RA are heat exchange elements. When the heat exchange is performed at 9, the humid warm indoor air RA is cooled to become saturated air, and condensation occurs in the indoor air air passage 11 b of the heat exchange element 9.

そして、寒冷地で冬季に換気装置1Aを使用して、外気OAの温度が氷点下に達すると、熱交換素子9の室内空気風路11bで氷結が発生し、目詰まりを生じる。熱交換素子9においては、特に、室内空気風路11bと繋がる室内空気流出部14bで氷結が発生しやすい。   When the temperature of the outside air OA reaches below the freezing point by using the ventilator 1A in a cold region in winter, icing occurs in the indoor air passage 11b of the heat exchange element 9 and clogging occurs. In the heat exchange element 9, icing is likely to occur particularly at the indoor air outflow portion 14b connected to the indoor air air passage 11b.

これにより、冬季に換気装置1Aを使用した場合、外気OAの温度が氷点下に達すると、熱交換素子9の室内空気風路11b側で氷結が発生することで空気の流れが悪化し、風圧センサ28の出力がオンに変化する。   As a result, when the ventilator 1A is used in winter, when the temperature of the outside air OA reaches below freezing point, icing occurs on the indoor air flow path 11b side of the heat exchange element 9 and air flow deteriorates, and the wind pressure sensor The output of 28 changes to ON.

ステップSA4:制御部41Aは、外気温度センサ26の出力がオンに変化し、風圧センサ28の出力がオンに変化すると、ヒータ27Aに通電する。ヒータ27Aは、給気風路25aにおいて熱交換素子9の風上側に備えてあるので、ヒータ27Aに通電すると、熱交換素子9に流入する外気OAが加熱される。   Step SA4: When the output of the outside air temperature sensor 26 is turned on and the output of the wind pressure sensor 28 is turned on, the control unit 41A energizes the heater 27A. Since the heater 27A is provided on the windward side of the heat exchange element 9 in the supply air passage 25a, when the heater 27A is energized, the outside air OA flowing into the heat exchange element 9 is heated.

これにより、温度の高い空気が熱交換素子9の外気風路11aを通過することになり、熱交換素子材12a,12bを介して外気風路11aと接する室内空気風路11bも温められ、室内空気風路11側bで発生した氷結を解凍することができる。   As a result, high-temperature air passes through the outdoor air passage 11a of the heat exchange element 9, and the indoor air air passage 11b in contact with the outdoor air passage 11a is also warmed through the heat exchange element members 12a and 12b. Freezing that has occurred on the air baffle 11 side b can be thawed.

従って、熱交換素子9の室内空気風路11b側での目詰まりは解消し、換気能力が正常になる。なお、氷結が解凍したことで発生した水分は、底蓋19のフィルタ着脱口19aや水抜き穴19b等を通してドレンパン20に流れ込み、排水口22から排水ホース54を介して建物51の屋外へ排水される。   Therefore, the clogging of the heat exchange element 9 on the indoor air air passage 11b side is eliminated, and the ventilation capacity becomes normal. Moisture generated by thawing of the ice flows into the drain pan 20 through the filter attaching / detaching port 19a and the drain hole 19b of the bottom lid 19, and is drained from the drain port 22 to the outside of the building 51 through the drain hose 54. The

そして、熱交換素子9の室内空気風路11b側での目詰まりが解消すると、風圧センサ28の出力がオフに変化する。制御部41Aは、風圧センサ28の出力がオフに変化すると、ヒータ27Aへの通電を停止する。   When the clogging of the heat exchange element 9 on the indoor air air passage 11b side is eliminated, the output of the wind pressure sensor 28 is turned off. When the output of the wind pressure sensor 28 is turned off, the control unit 41A stops energizing the heater 27A.

なお、外気OAの温度が高い場合に、埃等で熱交換素子9の室内空気風路11bが目詰まりを起こし、風圧センサ28の出力がオンに変化した場合は、外気温度センサ26の出力はオフのままでオンに変化しないので、ヒータ27Aは通電されない。よって、誤動作を防止できる。   When the temperature of the outside air OA is high, dust or the like causes the indoor air flow path 11b of the heat exchange element 9 to be clogged and the output of the wind pressure sensor 28 is turned on. Since it remains off and does not change to on, the heater 27A is not energized. Therefore, malfunction can be prevented.

以上説明したように、第1の実施の形態の換気装置1Aでは、外気OAの温度と熱交換素子9の室内空気風路11bを流れる空気の風圧から、熱交換素子9での氷結の発生を検出し、ヒータ27Aで外気OAを加熱して氷結を溶かす構成とした。寒冷地で冬季に換気装置1Aを使用した場合に、熱交換素子9の室内空気風路11bで氷結が発生すると、排気風路25bを正常に空気が流れなくなり、換気能力が低下する。また、熱交換素子9での熱交換が行われなくなり、熱交換されない冷たい空気が部屋に供給される。   As described above, in the ventilation device 1A according to the first embodiment, icing is generated in the heat exchange element 9 from the temperature of the outside air OA and the wind pressure of the air flowing through the indoor air air passage 11b of the heat exchange element 9. It detected, and it was set as the structure which heats external air OA with the heater 27A and melts icing. When the ventilator 1A is used in a cold region in winter, if icing occurs in the indoor air air passage 11b of the heat exchange element 9, air does not normally flow through the exhaust air air passage 25b, and the ventilation capacity is reduced. Further, heat exchange in the heat exchange element 9 is not performed, and cold air that is not heat exchanged is supplied to the room.

これに対して、熱交換素子9での氷結の発生を検出して、氷結が発生していると判断できる場合は、換気運転は行いながら、ヒータ27Aに通電して氷結を溶かすこととしたので、寒冷地で冬季に換気装置1Aを使用しても、換気能力及び熱交換能力を低下させることなく24時間換気が可能となる。   On the other hand, when the occurrence of icing in the heat exchange element 9 is detected and it can be determined that icing has occurred, the heater 27A is energized to melt the icing while performing the ventilation operation. Even if the ventilation device 1A is used in a cold region in winter, ventilation is possible for 24 hours without lowering the ventilation capacity and heat exchange capacity.

<第2の実施の形態の換気装置の構成例>
図7は第2の実施の形態の換気装置1Bの一例を示す構成図である。第2の実施の形態の換気装置1Bは、外気を吸い込んで室内に給気する給気ファン5と、室内の空気を吸い込んで屋外に排気する排気ファン6とを有するファンユニット2と、外気と室内の空気との間で熱交換を行う熱交換素子9を有する熱交換ユニット3とを備える。
<Example of the configuration of the ventilator according to the second embodiment>
FIG. 7 is a configuration diagram illustrating an example of a ventilation device 1B according to the second embodiment. The ventilation device 1B of the second embodiment includes a fan unit 2 having an air supply fan 5 that sucks outside air and supplies the air into the room, an exhaust fan 6 that sucks indoor air and exhausts it to the outside, and outside air. A heat exchange unit 3 having a heat exchange element 9 for exchanging heat with indoor air.

そして、図1で説明した第1の実施の形態の換気装置1Aの外気温度センサ26とヒータ27Aと風圧センサ28に代えて、温度センサ29とヒータ27Bを、室内空気流出風路16bにおいて熱交換素子9の室内空気流出部14bと対向した位置に備えたものである。   Then, instead of the outside air temperature sensor 26, the heater 27A, and the wind pressure sensor 28 of the ventilation device 1A according to the first embodiment described with reference to FIG. 1, the temperature sensor 29 and the heater 27B are heat exchanged in the indoor air outflow air passage 16b. The element 9 is provided at a position facing the indoor air outflow portion 14b.

温度センサ29は氷結温度検出手段の一例で、熱交換素子9の室内空気流出部14bの表面に取り付けられ、熱交換素子9の室内空気流出部14bの温度を検出する。   The temperature sensor 29 is an example of an icing temperature detection means, and is attached to the surface of the indoor air outflow portion 14b of the heat exchange element 9, and detects the temperature of the indoor air outflow portion 14b of the heat exchange element 9.

ヒータ27Bは加熱手段の一例で、熱交換素子9の室内空気流出部14bを直接的に加熱する。   The heater 27B is an example of a heating unit, and directly heats the indoor air outflow portion 14b of the heat exchange element 9.

ここで、第2の換気装置1Bにおいて、他の構成は第1の実施の形態の換気装置1Aと同等であるので、構成の説明は省略する。また、第2の実施の形態の換気装置1Bの設置例としては、図3及び図5に示す設置例と同じで良く、換気装置1Aを換気装置1Bに置き換えれば良い。   Here, in 2nd ventilation apparatus 1B, since another structure is equivalent to 1 A of ventilation apparatuses of 1st Embodiment, description of a structure is abbreviate | omitted. Further, the installation example of the ventilation device 1B of the second embodiment may be the same as the installation example shown in FIGS. 3 and 5, and the ventilation device 1A may be replaced with the ventilation device 1B.

<第2の実施の形態の換気装置の制御機能例>
図8は第2の実施の形態の換気装置1Bの制御系の一例を示す機能ブロック図である。換気装置1Bは、制御部41Bと操作部42を備える。制御部41Bは制御手段の一例で、ファンモータ7と、ヒータ27Bと、温度センサ29等が接続される。
<Control function example of the ventilator according to the second embodiment>
FIG. 8 is a functional block diagram illustrating an example of a control system of the ventilation device 1B according to the second embodiment. The ventilation device 1B includes a control unit 41B and an operation unit 42. The control unit 41B is an example of a control unit, and is connected to the fan motor 7, the heater 27B, the temperature sensor 29, and the like.

換気装置1Bは、換気風量を切り替えられる構成であり、本例では、換気風量として「標準」と「弱」の2段階に切り替えられるように、ファンモータ7の速度を2段階に切り替える例えば速度切り替えリレー43を備える。   The ventilation device 1B is configured to switch the ventilation air volume. In this example, the speed of the fan motor 7 is switched to two stages so that the ventilation air volume can be switched between two stages of “standard” and “weak”. A relay 43 is provided.

ここで、本例では、常時の24時間換気を行う場合の換気風量を「標準」と設定し、常時24時間換気運転時より弱い換気風量で換気運転を行う場合の換気風量を「弱」と設定している。   Here, in this example, the ventilation air volume when performing normal 24-hour ventilation is set as “standard”, and the ventilation air volume when performing ventilation operation with a weaker ventilation air flow than during normal 24-hour ventilation operation is set as “weak”. It is set.

制御部41Bは、図示しないCPUやメモリ等を備え、温度センサ29の出力を受け、予め記憶されているプログラムに従って、ファンモータ7とヒータ27Bを制御する。   The control unit 41B includes a CPU and a memory (not shown), receives the output of the temperature sensor 29, and controls the fan motor 7 and the heater 27B according to a program stored in advance.

<第2の実施の形態の換気装置の氷結防止制御例>
図9は第2の実施の形態の換気装置1Bにおける氷結防止制御例を示すフローチャートで、次に、各図を参照して、第2の実施の形態の換気装置1Bにおける氷結防止制御について説明する。
<Example of anti-icing control of the ventilator according to the second embodiment>
FIG. 9 is a flowchart showing an example of anti-icing control in the ventilation device 1B of the second embodiment. Next, with reference to each drawing, the anti-icing control in the ventilation device 1B of the second embodiment will be described. .

ステップSB1:換気装置1Bの制御部41Bは、換気風量が「標準」となるようにファンモータ7の速度を速度切り替えリレー43で切り替えて、建物51の常時24時間換気を行う。   Step SB1: The controller 41B of the ventilator 1B switches the speed of the fan motor 7 with the speed switching relay 43 so that the ventilation airflow becomes “standard”, and ventilates the building 51 constantly for 24 hours.

ステップSB2:制御部41Bは、温度センサ29の出力を監視して、熱交換素子9の室内空気流出部14bの温度を検出する。上述したように、冬季に換気装置1Bを使用した場合、外気OAの温度が低く、これに対して空気調和された室内の空気RAの温度及び湿度が高いので、外気OAと室内の空気RAが熱交換素子9で熱交換されると、湿った暖かい室内の空気RAが冷却されることで、熱交換素子9の室内空気風路11bで結露が生じる。   Step SB2: The control unit 41B monitors the output of the temperature sensor 29 and detects the temperature of the indoor air outflow portion 14b of the heat exchange element 9. As described above, when the ventilator 1B is used in winter, the temperature of the outside air OA is low, and the temperature and humidity of the indoor air RA that is air-conditioned are high. Therefore, the outside air OA and the room air RA are When heat exchange is performed by the heat exchange element 9, the moist and warm indoor air RA is cooled, thereby causing condensation in the indoor air air passage 11 b of the heat exchange element 9.

そして、寒冷地で冬季に換気装置1Bを使用して、外気OAの温度が氷点下に達すると、熱交換素子9の室内空気風路11bで主に室内空気流出部14bに氷結が発生する。これにより、寒冷地で冬季に換気装置1Bを使用して、室内空気流出部14bに氷結が発生すると、温度センサ29での検出温度は0℃以下となる。   When the temperature of the outside air OA reaches below the freezing point using the ventilator 1B in the winter in a cold region, icing occurs mainly in the indoor air outflow portion 14b in the indoor air air passage 11b of the heat exchange element 9. As a result, when freezing occurs in the indoor air outflow portion 14b using the ventilator 1B in a cold region in winter, the temperature detected by the temperature sensor 29 becomes 0 ° C. or lower.

ステップSB3:制御部41Bは、温度センサ29での検出温度が例えば0℃以下となると、ヒータ27Bに通電する。なお、ヒータ通電時の検出温度は一例である。ヒータ27Bは、熱交換素子9の室内空気流出部14bに対向して備えてあるので、ヒータ27Bに通電すると、氷結が発生しやすい熱交換素子9の室内空気流出部14bが直接加熱される。   Step SB3: When the temperature detected by the temperature sensor 29 is 0 ° C. or lower, for example, the control unit 41B energizes the heater 27B. The detected temperature when the heater is energized is an example. Since the heater 27B is provided so as to face the indoor air outflow portion 14b of the heat exchange element 9, when the heater 27B is energized, the indoor air outflow portion 14b of the heat exchange element 9 in which freezing is likely to occur is directly heated.

これにより、熱交換素子9の室内空気流出部14bや室内空気風路11bで発生した氷結を溶かすことができる。   Thereby, the icing generated in the indoor air outflow portion 14b of the heat exchange element 9 or the indoor air air passage 11b can be melted.

ステップSB4:制御部41Bは、温度センサ29での検出温度が0℃以下となると、換気風量が「弱」となるようにファンモータ7の速度を速度切り替えリレー43で切り替えて、換気運転を続行する。   Step SB4: When the temperature detected by the temperature sensor 29 is 0 ° C. or lower, the control unit 41B switches the speed of the fan motor 7 with the speed switching relay 43 so that the ventilation air volume becomes “weak” and continues the ventilation operation. To do.

換気風量を「弱」に切り替えることで、熱交換素子9を通る外気OAの風量が低下する。これにより、氷結の促進を抑制すると共に、ヒータ27Bの加熱による氷結の解凍を促進する。   By switching the ventilation air volume to “weak”, the air volume of the outside air OA passing through the heat exchange element 9 decreases. This suppresses the promotion of freezing and promotes the thawing of freezing due to the heating of the heater 27B.

ステップSB5:制御部41Bは、ヒータ27Bへの通電及び換気風量を「弱」としての換気運転を実行すると、温度センサ29の出力を監視して、熱交換素子9の室内空気流出部14bの温度を検出する。ヒータ27Bへの通電により、熱交換素子9の室内空気流出部14bが加熱されると、氷結が解凍すると共に、熱交換素子9の室内空気流出部14bの温度が上昇する。これにより、温度センサ29での検出温度は、氷結が発生しない温度、例えば+5℃となる。   Step SB5: When the controller 41B performs the ventilation operation with the heater 27B energized and the ventilation airflow set to “weak”, the controller 41B monitors the output of the temperature sensor 29 and the temperature of the indoor air outflow portion 14b of the heat exchange element 9 Is detected. When the indoor air outflow portion 14b of the heat exchange element 9 is heated by energizing the heater 27B, freezing is thawed and the temperature of the indoor air outflow portion 14b of the heat exchange element 9 rises. Thereby, the temperature detected by the temperature sensor 29 is a temperature at which freezing does not occur, for example, + 5 ° C.

そして、制御部41Bは、温度センサ29での検出温度が氷結が発生しない温度、例えば+5℃以上となると、ステップSB1に戻り、換気風量が「標準」となるようにファンモータ7の速度を速度切り替えリレー43で切り替えて、建物51の常時24時間換気を行う。   Then, when the temperature detected by the temperature sensor 29 reaches a temperature at which freezing does not occur, for example, + 5 ° C. or higher, the control unit 41B returns to step SB1 and increases the speed of the fan motor 7 so that the ventilation airflow becomes “standard”. It is switched by the switching relay 43 and the building 51 is constantly ventilated for 24 hours.

これに対して、制御部41Bは、温度センサ29での検出温度が氷結が発生しない温度、例えば+5℃に到達しない場合は、ヒータ27Bへの通電及び換気風量を「弱」としての換気運転を続行する。   On the other hand, when the temperature detected by the temperature sensor 29 does not reach a temperature at which icing does not occur, for example, + 5 ° C., the control unit 41B performs the ventilation operation with the current supplied to the heater 27B and the ventilation airflow set to “weak”. continue.

以上説明したように、第2の実施の形態の換気装置1Bでは、氷結の発生しやすい熱交換素子9の室内空気流出部14bの温度を直接検出し、ヒータ27Bで熱交換素子9の室内空気流出部14bを加熱して氷結を溶かす構成とした。   As described above, in the ventilation device 1B according to the second embodiment, the temperature of the indoor air outflow portion 14b of the heat exchange element 9 where freezing is likely to occur is directly detected, and the indoor air of the heat exchange element 9 is detected by the heater 27B. The outflow part 14b was heated to melt the ice.

これにより、寒冷地で冬季に換気装置1Bを使用する際に、氷結による熱交換素子9の目詰まりを防ぎ、換気能力及び熱交換能力を低下させることなく24時間換気が可能となる。   This prevents clogging of the heat exchange element 9 due to icing when using the ventilator 1B in a cold region in winter, and ventilation is possible for 24 hours without lowering the ventilation capacity and heat exchange capacity.

また、熱交換素子9の室内空気流出部14bの温度を直接検出することで、氷結の発生を確実に検出することができ、ヒータ27Bへの無駄な通電を抑えることができる。更に、熱交換素子9の室内空気流出部14bを直接加熱することで、氷結を短時間で解凍することができると共に、換気風量を落とすことで、氷結の解凍を促進することができる。   Further, by directly detecting the temperature of the indoor air outflow portion 14b of the heat exchange element 9, it is possible to reliably detect the occurrence of icing and to suppress unnecessary energization to the heater 27B. Furthermore, by directly heating the indoor air outflow portion 14b of the heat exchange element 9, it is possible to thaw icing in a short time, and it is possible to promote thawing of icing by reducing the ventilation air volume.

これにより、ヒータ27Bでの電力消費を抑えることができる。   Thereby, the power consumption in the heater 27B can be suppressed.

<第3の実施の形態の換気装置の構成例>
図10は第3の実施の形態の換気装置1Cの一例を示す構成図である。第3の実施の形態の換気装置1Cは、外気を吸い込んで室内に給気する給気ファン5と、室内の空気を吸い込んで屋外に排気する排気ファン6とを有するファンユニット2と、外気と室内の空気との間で熱交換を行う熱交換素子9を有する熱交換ユニット3とを備える。
<Configuration example of the ventilator according to the third embodiment>
FIG. 10 is a configuration diagram illustrating an example of a ventilation device 1 </ b> C according to the third embodiment. A ventilator 1C according to the third embodiment includes a fan unit 2 having an air supply fan 5 that sucks outside air and supplies the air into the room, an exhaust fan 6 that sucks indoor air and exhausts it to the outside, and outside air. A heat exchange unit 3 having a heat exchange element 9 for exchanging heat with indoor air.

そして、図1で説明した第1の実施の形態の換気装置1Aの外気温度センサ26とヒータ27Aと風圧センサ28に代えて、温度センサ30を外気吸込ダクト取付口23aに備えると共に、外気吸込ダクト取付口23aに風路開閉ダンパ23cを備えたものである。   Then, instead of the outside air temperature sensor 26, the heater 27A, and the wind pressure sensor 28 of the ventilation device 1A according to the first embodiment described with reference to FIG. 1, a temperature sensor 30 is provided in the outside air suction duct attachment port 23a, and the outside air suction duct. The attachment opening 23a is provided with an air path opening / closing damper 23c.

温度センサ30は外気温度検出手段の一例で、換気装置1Cで吸い込む外気OAの温度を検出する。   The temperature sensor 30 is an example of an outside air temperature detection unit, and detects the temperature of the outside air OA sucked by the ventilation device 1C.

風路開閉ダンパ23cは風路開閉手段の一例で、外気吸込ダクト取付口23aを開閉して、外気OAを吸い込む風路の開閉を行う。   The air passage opening / closing damper 23c is an example of air passage opening / closing means, and opens and closes the air passage that sucks in the outside air OA by opening and closing the outside air suction duct attachment port 23a.

ここで、第3の換気装置1Cにおいて、他の構成は第1の実施の形態の換気装置1Aと同等であるので、構成の説明は省略する。また、第3の実施の形態の換気装置1Cの設置例としては、図3及び図5に示す設置例と同じで良く、換気装置1Aを換気装置1Cに置き換えれば良い。   Here, in 3rd ventilation apparatus 1C, since another structure is equivalent to 1 A of ventilation apparatuses of 1st Embodiment, description of a structure is abbreviate | omitted. Further, the installation example of the ventilation device 1C of the third embodiment may be the same as the installation example shown in FIGS. 3 and 5, and the ventilation device 1A may be replaced with the ventilation device 1C.

<第3の実施の形態の換気装置の制御機能例>
図11は第3の実施の形態の換気装置1Cの制御系の一例を示す機能ブロック図である。換気装置1Cは、制御部41Cと操作部42を備える。制御部41Cは制御手段の一例で、ファンモータ7と、温度センサ30と、風路開閉ダンパ23cを駆動するダンパモータ44等が接続される。
<Control function example of the ventilator according to the third embodiment>
FIG. 11 is a functional block diagram illustrating an example of a control system of the ventilator 1C according to the third embodiment. The ventilation device 1C includes a control unit 41C and an operation unit 42. The control unit 41C is an example of a control unit, and is connected to the fan motor 7, the temperature sensor 30, the damper motor 44 that drives the air path opening / closing damper 23c, and the like.

換気装置1Cは、換気風量を切り替えられる構成であり、本例では、換気風量として「標準」と「弱」の2段階に切り替えられるように、ファンモータ7の速度を2段階に切り替える例えば速度切り替えリレー43を備える。   The ventilation device 1C is configured to switch the ventilation air volume. In this example, the speed of the fan motor 7 is switched to two stages so that the ventilation air volume can be switched between two stages of “standard” and “weak”. A relay 43 is provided.

ここで、本例では、常時の24時間換気を行う場合の換気風量を「標準」と設定し、常時24時間換気運転時より弱い換気風量で換気運転を行う場合の換気風量を「弱」と設定している。   Here, in this example, the ventilation air volume when performing normal 24-hour ventilation is set as “standard”, and the ventilation air volume when performing ventilation operation with a weaker ventilation air flow than during normal 24-hour ventilation operation is set as “weak”. It is set.

制御部41Cは、図示しないCPUやメモリ等を備え、温度センサ30の出力を受け、予め記憶されているプログラムに従って、ファンモータ7とダンパモータ44を制御する。   The control unit 41C includes a CPU and a memory (not shown), receives the output of the temperature sensor 30, and controls the fan motor 7 and the damper motor 44 in accordance with a program stored in advance.

<第3の実施の形態の換気装置の氷結防止制御例>
図12は第3の実施の形態の換気装置1Cにおける氷結防止制御例を示すフローチャートで、次に、各図を参照して、第3の実施の形態の換気装置1Cにおける氷結防止制御について説明する。
<Example of anti-icing control of the ventilator according to the third embodiment>
FIG. 12 is a flowchart showing an example of anti-icing control in the ventilator 1C of the third embodiment. Next, with reference to each drawing, the anti-icing control in the ventilator 1C of the third embodiment will be described. .

ステップSC1:換気装置1Cの制御部41Cは、換気風量が「標準」となるようにファンモータ7の速度を速度切り替えリレー43で切り替えて、建物51の常時24時間換気を行う。   Step SC1: The control unit 41C of the ventilator 1C switches the speed of the fan motor 7 with the speed switching relay 43 so that the ventilation airflow becomes “standard”, and ventilates the building 51 constantly for 24 hours.

ステップSC2:制御部41Cは、温度センサ30の出力を監視して、換気装置1Cで吸い込む外気OAの温度を検出する。上述したように、寒冷地で冬季に換気装置1Cを使用すると、外気OAの温度によっては熱交換素子9の室内空気風路11bで主に室内空気流出部14bに氷結が発生する。このため、制御部41Cは、吸い込んだ外気OAの温度が、熱交換素子9で氷結が発生する温度か否かを判断する。   Step SC2: The controller 41C monitors the output of the temperature sensor 30 and detects the temperature of the outside air OA sucked by the ventilator 1C. As described above, when the ventilator 1C is used in a cold region in winter, icing occurs mainly in the indoor air outflow portion 14b in the indoor air flow path 11b of the heat exchange element 9 depending on the temperature of the outside air OA. For this reason, the control unit 41C determines whether or not the temperature of the sucked outside air OA is a temperature at which freezing occurs in the heat exchange element 9.

ステップSC3:制御部41Cは、温度センサ30での検出温度が熱交換素子9で氷結が発生する温度以下、例えば−10℃以下となると、ダンパモータ44を駆動して、風路開閉ダンパ23cにより外気吸込ダクト取付口23aを閉じる。   Step SC3: When the temperature detected by the temperature sensor 30 is equal to or lower than the temperature at which freezing occurs in the heat exchange element 9, for example, −10 ° C. or lower, the control unit 41C drives the damper motor 44 and causes the outside air to open by the air path opening / closing damper 23c. The suction duct attachment port 23a is closed.

風路開閉ダンパ23cで外気吸込ダクト取付口23aを閉じると、給気ファン5が駆動されていても、外気OAは吸い込まれないので、室内への給気は停止する。熱交換素子9の室内空気流出部14bで氷結が発生して、室内空気風路11bが目詰まりを起こすと、外気風路11a側でのみ空気が流れることで、外気OAと室内の空気RAの熱交換が行われず、室内に温度の低い外気OAがそのまま供給されてしまう。   When the outside air suction duct attachment port 23a is closed by the air path opening / closing damper 23c, the outside air OA is not sucked even if the air supply fan 5 is driven, so that the air supply into the room is stopped. When freezing occurs in the indoor air outflow portion 14b of the heat exchange element 9 and the indoor air air passage 11b is clogged, air flows only on the outside air air passage 11a side, so that the outside air OA and the indoor air RA are Heat exchange is not performed, and the outside air OA having a low temperature is supplied to the room as it is.

このため、風路開閉ダンパ23cで外気吸込ダクト取付口23aを閉じることで、室内への給気を停止して、温度の低い外気OAが室内へ供給されることを防ぐ。   For this reason, by closing the outside air suction duct attachment port 23a with the air passage opening / closing damper 23c, the supply of air into the room is stopped and the low temperature outside air OA is prevented from being supplied into the room.

また、これにより、熱交換素子9へ温度の低い外気OAの供給が停止されることで、氷結の発生を抑えると共に、暖かい室内の空気RAは熱交換素子9へ供給されるので、熱交換素子9で氷結が発生している場合は、氷結は解凍される。   Further, by this, the supply of the outside air OA having a low temperature to the heat exchange element 9 is stopped, so that the generation of freezing is suppressed and the warm indoor air RA is supplied to the heat exchange element 9. If freezing occurs at 9, the freezing is thawed.

ステップSC4:制御部41Cは、温度センサ30での検出温度が熱交換素子9で氷結が発生する温度以下、例えば−10℃以下となると、換気風量が「弱」となるようにファンモータ7の速度を速度切り替えリレー43で切り替えて、換気運転を続行する。   Step SC4: When the temperature detected by the temperature sensor 30 is equal to or lower than the temperature at which freezing occurs in the heat exchange element 9, for example, −10 ° C. or lower, the controller 41C controls the fan motor 7 so that the ventilation airflow becomes “weak”. The speed is switched by the speed switching relay 43 and the ventilation operation is continued.

換気風量を「弱」に切り替えることで、室内の暖められている空気の排気量を減らし、室内の温度低下を防ぐ。   By switching the ventilation air volume to “Weak”, the amount of exhausted air that is warmed in the room is reduced, and the temperature in the room is prevented from decreasing.

ステップSC5:制御部41Cは、ヒータ27Bへの通電及び換気風量を「弱」としての換気運転を実行すると、温度センサ30の出力を監視して、外気OAの温度を検出する。そして、制御部41Cは、温度センサ30での外気OAの検出温度が熱交換素子9で氷結が発生しない温度以上、例えば−5℃以上となると、ダンパモータ44を駆動して、風路開閉ダンパ23cにより外気吸込ダクト取付口23aを開ける。また、換気風量が「標準」となるようにファンモータ7の速度を速度切り替えリレー43で切り替えて、建物51の常時24時間換気を行う。   Step SC5: When the control unit 41C performs the ventilation operation with the heater 27B energized and the ventilation airflow set to “weak”, the controller 41C monitors the output of the temperature sensor 30 and detects the temperature of the outside air OA. When the detected temperature of the outside air OA by the temperature sensor 30 is equal to or higher than the temperature at which freezing does not occur in the heat exchange element 9, for example, −5 ° C. or higher, the control unit 41C drives the damper motor 44 to open the air path opening / closing damper 23c. To open the outside air suction duct attachment port 23a. Further, the speed of the fan motor 7 is switched by the speed switching relay 43 so that the ventilation airflow becomes “standard”, and the building 51 is constantly ventilated for 24 hours.

これに対して、制御部41Cは、温度センサ30での外気OAの検出温度が熱交換素子9で氷結が発生しない温度以上、例えば−5℃に到達しない場合は、風路開閉ダンパ23cによる外気吸込ダクト取付口23bの閉鎖及び換気風量を「弱」としての換気運転を続行する。   On the other hand, when the temperature detected by the temperature sensor 30 of the outside air OA does not reach the temperature at which icing does not occur in the heat exchange element 9 or, for example, −5 ° C., the control unit 41C The ventilation operation is continued with the suction duct attachment port 23b closed and the ventilation airflow set to “weak”.

以上説明したように、第3の実施の形態の換気装置1Cでは、吸い込む外気OAの温度を検出し、外気OAの温度が熱交換素子9で氷結が発生する温度以下となると、外気吸込ダクト取付口23aを閉鎖して外気OAを供給しない構成とした。   As described above, in the ventilator 1C according to the third embodiment, the temperature of the outside air OA to be sucked is detected, and when the temperature of the outside air OA is equal to or lower than the temperature at which freezing occurs in the heat exchange element 9, the outside air suction duct is attached. The mouth 23a is closed and no external air OA is supplied.

これにより、寒冷地で冬季に換気装置1Cを使用する際に、氷結による熱交換素子9の目詰まりを防ぐことができる。また、温度の低い外気OAが室内に供給されることを防ぐと共に、換気風量を落とすことで、室内の暖められている空気の排気量を減らし、室内の温度低下を防ぐことができる。   Thereby, when using the ventilator 1C in a cold region in winter, clogging of the heat exchange element 9 due to freezing can be prevented. Further, it is possible to prevent the outside air OA having a low temperature from being supplied into the room and reduce the ventilation air volume, thereby reducing the amount of exhausted air that is warmed in the room and preventing the temperature in the room from being lowered.

<第4の実施の形態の換気装置の構成例>
図13は第4の実施の形態の換気装置1Dの一例を示す構成図である。第4の実施の形態の換気装置1Dは、外気を吸い込んで室内に給気する給気ファン5と、室内の空気を吸い込んで屋外に排気する排気ファン6とを有するファンユニット2と、外気と室内の空気との間で熱交換を行う熱交換素子9を有する熱交換ユニット3とを備える。
<Configuration Example of Ventilation Device of Fourth Embodiment>
FIG. 13: is a block diagram which shows an example of ventilation apparatus 1D of 4th Embodiment. A ventilator 1D according to the fourth embodiment includes a fan unit 2 having an air supply fan 5 that sucks outside air and supplies the air into the room, an exhaust fan 6 that sucks indoor air and exhausts the air outside, and outside air. A heat exchange unit 3 having a heat exchange element 9 for exchanging heat with indoor air.

そして、図1で説明した第1の実施の形態の換気装置1Aの外気温度センサ26とヒータ27Aと風圧センサ28に代えて、熱交換素子9の室内空気流入部14bより風上側の風路に除湿手段としての除湿部材を備えたものである。   Then, instead of the outside air temperature sensor 26, the heater 27A, and the wind pressure sensor 28 of the ventilation device 1A according to the first embodiment described in FIG. A dehumidifying member is provided as a dehumidifying means.

除湿部材38Aは、湿気を吸収すると共に空気を通すシート状の部材を、排気フィルタ18に設置した例である。   The dehumidifying member 38 </ b> A is an example in which a sheet-like member that absorbs moisture and allows air to pass is installed in the exhaust filter 18.

除湿部材38Bは、熱交換素子9の室内空気流入部14bより風上側の風路を構成する室内吸込ダクト36の内壁に、湿気を吸収する部材を設置した例である。   The dehumidifying member 38B is an example in which a member that absorbs moisture is installed on the inner wall of the indoor suction duct 36 that forms the wind path on the windward side of the indoor air inflow portion 14b of the heat exchange element 9.

除湿部材38Cは、湿気を吸収すると共に空気を通すシート状の部材を、室内吸込ダクト36に接続された吸込グリル36aのフィルタ39に設置した例である。   The dehumidifying member 38C is an example in which a sheet-like member that absorbs moisture and allows air to pass is installed in the filter 39 of the suction grill 36a connected to the indoor suction duct 36.

なお、除湿部材38A〜38Cは、全てを備えても良いし、何れかを単体もしくは組み合わせて選択的に備えても良い。   It should be noted that the dehumidifying members 38A to 38C may include all of them, or may selectively include any of them alone or in combination.

ここで、第4の換気装置1Dにおいて、他の構成は第1の実施の形態の換気装置1Aと同等であるので、構成の説明は省略する。また、第4の実施の形態の換気装置1Dの設置例としては、図3及び図5に示す設置例と同じで良く、換気装置1Aを換気装置1Dに置き換えれば良い。   Here, in 4th ventilation apparatus 1D, since another structure is equivalent to 1 A of ventilation apparatuses of 1st Embodiment, description of a structure is abbreviate | omitted. Further, the installation example of the ventilation device 1D of the fourth embodiment may be the same as the installation example shown in FIGS. 3 and 5, and the ventilation device 1A may be replaced with the ventilation device 1D.

<第4の実施の形態の換気装置の動作例>
次に、第4の実施の形態の換気装置1Dの動作例について説明する。換気装置1Dは、所定時間、例えば1時間で部屋52の空気の半分を入れ替えるために、24時間連続運転される。すなわち、換気装置1Dは、ファンモータ7を駆動することで、給気ファン5の多翼ファン5aと排気ファン6の多翼ファン6aが同期して回転する。
<Example of Operation of Ventilator of Fourth Embodiment>
Next, an operation example of the ventilation device 1D according to the fourth embodiment will be described. The ventilator 1D is continuously operated for 24 hours in order to replace half of the air in the room 52 in a predetermined time, for example, 1 hour. That is, in the ventilator 1D, the multi-blade fan 5a of the air supply fan 5 and the multi-blade fan 6a of the exhaust fan 6 rotate in synchronization by driving the fan motor 7.

これにより、第1の実施の形態の換気装置1Aの動作で説明したように、給気ファン5によって外気OAが吸い込まれ、吸い込まれた外気OAは熱交換素子9の外気風路11aに流入する。また、排気ファン6によって室内の空気RAが吸い込まれ、吸い込まれた室内の空気RAは熱交換素子9の室内空気風路11bに流入する。   As a result, as described in the operation of the ventilator 1A of the first embodiment, the outside air OA is sucked by the air supply fan 5, and the sucked outside air OA flows into the outside air passage 11a of the heat exchange element 9. . Further, the indoor air RA is sucked in by the exhaust fan 6, and the sucked indoor air RA flows into the indoor air air passage 11 b of the heat exchange element 9.

換気装置1Dは、熱交換素子9の室内空気風路11bと繋がる室内空気流入部14bより風上側の風路に除湿部材38A〜38Cを備えている。これにより、熱交換素子9の室内空気風路11bに流入する室内の空気RAは湿気が吸収され、低湿度の空気となる。   Ventilator 1D is provided with dehumidification members 38A-38C in the air path above the indoor air inflow part 14b connected with indoor air air path 11b of heat exchange element 9. As a result, the indoor air RA flowing into the indoor air air passage 11b of the heat exchange element 9 absorbs moisture and becomes low-humidity air.

例えば、除湿部材38Aを備えた構成では、室内の空気RAが排気フィルタ18を通過することで除湿される。また、除湿部材38Bを備えた構成では、室内の空気RAが室内吸込ダクト36を通ることで除湿される。更に、除湿部材38Cを備えた構成では、室内の空気RAが吸込グリル36aから吸い込まれ、吸込グリル36aのフィルタ39を通ることで除湿される。   For example, in the configuration including the dehumidifying member 38 </ b> A, the indoor air RA is dehumidified by passing through the exhaust filter 18. In the configuration including the dehumidifying member 38 </ b> B, the indoor air RA is dehumidified by passing through the indoor suction duct 36. Further, in the configuration including the dehumidifying member 38C, the indoor air RA is sucked from the suction grill 36a and dehumidified by passing through the filter 39 of the suction grill 36a.

熱交換素子9では、外気OAと室内の空気RAとの間で熱交換が行われるが、熱交換素子9の室内空気風路11bに流入する室内の空気RAが低湿度の空気であるので、冬季に換気装置1Dを使用した場合に、温度が低い外気OAと温度の高い室内の空気RAとの間で熱交換が行われ、室内の空気RAが冷却されても、飽和空気とはならない。これにより、熱交換素子9の室内空気風路11bで結露や氷結は発生せず、熱交換素子9の室内空気風路11bでの目詰まりは起こらない。   In the heat exchange element 9, heat exchange is performed between the outside air OA and the indoor air RA. However, since the indoor air RA flowing into the indoor air air passage 11b of the heat exchange element 9 is low-humidity air, When the ventilator 1D is used in the winter, heat exchange is performed between the outdoor air OA having a low temperature and the indoor air RA having a high temperature, and even if the indoor air RA is cooled, it does not become saturated air. Accordingly, no condensation or icing occurs in the indoor air air passage 11b of the heat exchange element 9, and clogging in the indoor air air passage 11b of the heat exchange element 9 does not occur.

熱交換素子9で熱交換されて室温に近づけられた外気OAは、給気SAとして室内に供給される。また、室内の空気RAは排気EAとして屋外に排気される。   The outside air OA that has been heat-exchanged by the heat exchange element 9 and brought close to room temperature is supplied indoors as an air supply SA. Also, the indoor air RA is exhausted outdoors as exhaust EA.

以上説明したように、第4の実施の形態の換気装置1Dでは、熱交換素子9の室内空気風路11bと繋がる室内空気流入部14bより風上側の風路に除湿部材38(A〜C)を備える構成とした。   As described above, in the ventilator 1D of the fourth embodiment, the dehumidifying member 38 (A to C) is connected to the wind path on the windward side of the indoor air inflow portion 14b connected to the indoor air path 11b of the heat exchange element 9. It was set as the structure provided with.

これにより、熱交換素子9の室内空気風路11bに流入する室内の空気RAは湿気が吸収され、低湿度の空気となるので、冬季に換気装置1Dを使用した場合に、温度が低い外気OAと温度の高い室内の空気RAとの間で熱交換が行われ、室内の空気RAが冷却されても、飽和空気とはならない。   As a result, the indoor air RA flowing into the indoor air flow path 11b of the heat exchange element 9 absorbs moisture and becomes low-humidity air. Even if the room air RA is cooled by heat exchange between the room air RA and the room air RA having a high temperature, the air does not become saturated air.

従って、熱交換素子9の室内空気風路11bで結露や氷結は発生せず、熱交換素子9の室内空気風路11bでの目詰まりは起こらないので、寒冷地で冬季に換気装置1Dを使用しても、換気能力及び熱交換能力を低下させることなく24時間換気が可能となる。   Accordingly, no condensation or icing occurs in the indoor air air passage 11b of the heat exchange element 9, and no clogging occurs in the indoor air air passage 11b of the heat exchange element 9, so the ventilator 1D is used in the cold in winter. Even so, it is possible to ventilate for 24 hours without reducing the ventilation capacity and heat exchange capacity.

<換気装置及び建物の変形例>
以上説明した第1の実施の形態の換気装置1Aでは、外気温度センサ26と風圧センサ28を用いて氷結の発生を検出するようにしたが、外気温度センサ26と風圧センサ28のどちらか一方を備えて氷結の発生を検出する構成としても良い。
<Ventilation device and building modification>
In the ventilation device 1A of the first embodiment described above, the occurrence of icing is detected using the outside air temperature sensor 26 and the wind pressure sensor 28. However, either the outside air temperature sensor 26 or the wind pressure sensor 28 is used. It is good also as a structure which prepares and detects generation | occurrence | production of freezing.

また、第1の実施の形態の換気装置1A、第2の実施の形態の換気装置1B及び第3の実施の形態の換気装置1Cは、第4の実施の形態の換気装置1Dと組み合わせて、熱交換素子9の室内空気流入部14bより風上側の風路に除湿部材38(A〜C)を備える構成としても良い。   Further, the ventilation device 1A of the first embodiment, the ventilation device 1B of the second embodiment, and the ventilation device 1C of the third embodiment are combined with the ventilation device 1D of the fourth embodiment. It is good also as a structure provided with the dehumidification member 38 (A-C) in the wind path on the windward side from the indoor air inflow part 14b of the heat exchange element 9. FIG.

また、本実施の形態の建物51では、給気を行う部屋と室内の空気を吸い込む部屋を異なる部屋としたが、同じ部屋でも良い。   In the building 51 of the present embodiment, the room for supplying air and the room for sucking indoor air are different rooms, but the same room may be used.

本発明は、寒冷地で使用される換気装置に適用される。   The present invention is applied to a ventilator used in a cold region.

第1の実施の形態の換気装置の一例を示す構成図である。It is a block diagram which shows an example of the ventilation apparatus of 1st Embodiment. 熱交換素子の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of a heat exchange element. 第1の実施の形態の換気装置の設置例を示す構成図である。It is a block diagram which shows the example of installation of the ventilation apparatus of 1st Embodiment. 第1の実施の形態の換気装置の制御系の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the control system of the ventilation apparatus of 1st Embodiment. 換気装置が設置された第1の実施の形態の建物の一例を示す構成図である。It is a block diagram which shows an example of the building of 1st Embodiment in which the ventilator was installed. 第1の実施の形態の換気装置における氷結防止制御例を示すフローチャートである。It is a flowchart which shows the icing prevention control example in the ventilation apparatus of 1st Embodiment. 第2の実施の形態の換気装置の一例を示す構成図である。It is a block diagram which shows an example of the ventilation apparatus of 2nd Embodiment. 第2の実施の形態の換気装置の制御系の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the control system of the ventilation apparatus of 2nd Embodiment. 第2の実施の形態の換気装置における氷結防止制御例を示すフローチャートである。It is a flowchart which shows the icing prevention control example in the ventilation apparatus of 2nd Embodiment. 第3の実施の形態の換気装置の一例を示す構成図である。It is a block diagram which shows an example of the ventilation apparatus of 3rd Embodiment. 第3の実施の形態の換気装置の制御系の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the control system of the ventilation apparatus of 3rd Embodiment. 第3の実施の形態の換気装置における氷結防止制御例を示すフローチャートである。It is a flowchart which shows the example of icing prevention control in the ventilation apparatus of 3rd Embodiment. 第4の実施の形態の換気装置の一例を示す構成図である。It is a block diagram which shows an example of the ventilation apparatus of 4th Embodiment.

符号の説明Explanation of symbols

1A,1B,1C,1D・・・換気装置、2・・・ファンユニット、3・・・熱交換ユニット、4・・・本体ケース、5・・・給気ファン、6・・・排気ファン、7・・・ファンモータ、8・・・ハウジング、8a・・・外気吸込口、8b・・・外気吹出口、8c・・・室内空気吸込口、8d・・・室内空気吹出口、9・・・熱交換素子、10・・・風路形成枠体、11a・・・外気風路、11b・・・室内空気風路、12a・・・熱交換素子材、12b・・・熱交換素子材、13a・・・外気流入部、13b・・・外気流出部、14a・・・室内空気流入部、14b・・・室内空気流出部、15a・・・外気流入風路、15b・・・外気流出風路、16a・・・室内空気流入風路、16b・・・室内空気流出風路、17・・・給気フィルタ、18・・・排気フィルタ、19・・・底蓋、20・・・ドレンパン、21・・・点検蓋、22・・・排水口、23a・・・外気吸込ダクト取付口、23b・・・排気ダクト取付口、23c・・・風路開閉ダンパ、24a・・・給気ダクト取付口、24b・・・室内吸込ダクト取付口、25a・・・給気風路、25b・・・排気風路、26・・・外気温度センサ、27A,27B・・・ヒータ、28・・・風圧センサ、29・・・温度センサ、30・・・温度センサ、31・・・天井裏、32・・・アンカーボルト、33・・・外気吸込ダクト、34・・・排気ダクト、35・・・給気ダクト、36・・・室内吸込ダクト、38A,38B,38C・・・除湿部材、41A,41B,41C・・・制御部、42・・・操作部、44・・・ダンパモータ、51・・・建物、52・・・部屋、53・・・廊下、
1A, 1B, 1C, 1D ... Ventilation device, 2 ... Fan unit, 3 ... Heat exchange unit, 4 ... Body case, 5 ... Air supply fan, 6 ... Exhaust fan, DESCRIPTION OF SYMBOLS 7 ... Fan motor, 8 ... Housing, 8a ... Outside air inlet, 8b ... Outside air outlet, 8c ... Indoor air inlet, 8d ... Indoor air outlet, 9 ... -Heat exchange element, 10 ... air path forming frame, 11a ... outdoor air path, 11b ... indoor air air path, 12a ... heat exchange element material, 12b ... heat exchange element material, 13a ... Outside air inflow portion, 13b ... Outside air outflow portion, 14a ... Indoor air inflow portion, 14b ... Indoor air outflow portion, 15a ... Outside air inflow air passage, 15b ... Outside air outflow air Path, 16a ... indoor air inflow air path, 16b ... indoor air outflow air path, 17 ... air supply filter DESCRIPTION OF SYMBOLS 18 ... Exhaust filter, 19 ... Bottom cover, 20 ... Drain pan, 21 ... Inspection lid, 22 ... Drain port, 23a ... Outside air suction duct attachment port, 23b ... Exhaust duct Mounting port, 23c: Air path opening / closing damper, 24a: Supply duct mounting port, 24b: Indoor suction duct mounting port, 25a: Supply air channel, 25b: Exhaust air channel, 26 ..Outside air temperature sensor, 27A, 27B ... heater, 28 ... wind pressure sensor, 29 ... temperature sensor, 30 ... temperature sensor, 31 ... back of ceiling, 32 ... anchor bolt, 33 ... Outside air suction duct, 34 ... Exhaust duct, 35 ... Air supply duct, 36 ... Indoor suction duct, 38A, 38B, 38C ... Dehumidifying member, 41A, 41B, 41C ... Control Part, 42... Operation part, 44. Motor, 51 ... building, 52 ... room, 53 ... hallway,

Claims (3)

外気を吸い込んで室内に給気する給気手段と、
室内の空気を吸い込んで屋外に排気する排気手段と、
前記給気手段で吸い込んだ外気と前記排気手段で吸い込んだ室内の空気との間で熱交換を行う熱交換手段と、
前記熱交換手段で外気が流入する外気流入部側に配置され、前記熱交換手段に供給される外気を加熱する加熱手段と、
前記熱交換手段で外気が流入する外気流入部側に対向して配置され、前記熱交換手段に供給される外気の温度を検出する外気温度検出手段と、
前記熱交換手段を通る室内の空気の風圧を検出する風圧検出手段と、
前記外気温度検出手段で検出される外気の温度と前記風圧検出手段で検出される前記熱交換手段を通る室内の空気の風圧に基づいて氷結の発生の有無を検出し、氷結の発生の有無に基づいて、前記熱交換手段に供給される外気の前記加熱手段による加熱の有無を切り替える制御手段とを備え
前記制御手段は、氷結の発生を検出すると、前記熱交換手段に供給される外気の前記加熱手段による加熱を行いながら、常時換気を行う場合の風量で換気運転を続行する
ことを特徴とする換気装置。
An air supply means for sucking in outside air and supplying air into the room;
An exhaust means for sucking indoor air and exhausting it outdoors;
Heat exchange means for exchanging heat between the outside air sucked by the air supply means and the indoor air sucked by the exhaust means;
A heating unit that is disposed on the outside air inflow portion side through which outside air flows in by the heat exchange unit, and heats the outside air supplied to the heat exchange unit;
An outside air temperature detecting means that is disposed opposite to an outside air inflow portion side through which outside air flows in the heat exchange means, and detects a temperature of outside air supplied to the heat exchange means;
Wind pressure detection means for detecting the wind pressure of the indoor air passing through the heat exchange means;
The presence or absence of icing is detected based on the temperature of the outside air detected by the outside air temperature detecting means and the wind pressure of the indoor air passing through the heat exchange means detected by the wind pressure detecting means. Based on the control means for switching the presence or absence of heating by the heating means of the outside air supplied to the heat exchange means ,
When the control means detects the occurrence of icing, the ventilation means continues the ventilation operation with the air volume in the case of continuous ventilation while heating the outside air supplied to the heat exchange means by the heating means. apparatus.
前記風圧検出手段は、前記熱交換手段で室内の空気が流出する室内空気流出部側に配置される
ことを特徴とする請求項1記載の換気装置。
The ventilator according to claim 1 , wherein the wind pressure detecting means is disposed on an indoor air outflow side from which indoor air flows out by the heat exchange means .
請求項1または請求項2に記載の換気装置を備えた
ことを特徴とする建物
A building comprising the ventilation device according to claim 1 .
JP2005198098A 2005-07-06 2005-07-06 Ventilator and building Active JP4784181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198098A JP4784181B2 (en) 2005-07-06 2005-07-06 Ventilator and building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198098A JP4784181B2 (en) 2005-07-06 2005-07-06 Ventilator and building

Publications (2)

Publication Number Publication Date
JP2007017064A JP2007017064A (en) 2007-01-25
JP4784181B2 true JP4784181B2 (en) 2011-10-05

Family

ID=37754377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198098A Active JP4784181B2 (en) 2005-07-06 2005-07-06 Ventilator and building

Country Status (1)

Country Link
JP (1) JP4784181B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748829A (en) * 2012-07-31 2012-10-24 北京环都人工环境科技有限公司 Thin heat exchange type air interchanger
CN104422057A (en) * 2013-09-11 2015-03-18 曾国辉 Energy-saving air exchange device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090017004A (en) * 2007-08-13 2009-02-18 삼성전자주식회사 Apparatus to protect ptc heater for a heat exchanger and control method thereof
JP5076930B2 (en) * 2008-01-31 2012-11-21 マックス株式会社 Blower
JP5434202B2 (en) * 2009-04-02 2014-03-05 パナソニック株式会社 Heat exchange ventilator
JP6035509B2 (en) * 2012-04-16 2016-11-30 パナソニックIpマネジメント株式会社 Heat exchange ventilator
JP6142502B2 (en) * 2012-10-31 2017-06-07 マックス株式会社 Ventilation equipment
JP6211206B2 (en) * 2014-10-10 2017-10-11 三菱電機株式会社 Heat exchange ventilator
KR102515945B1 (en) * 2022-08-01 2023-03-29 김재성 Anti-freeze louver system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2500064B2 (en) * 1981-02-17 1985-11-08 Snecma DEVICE FOR IGNITING FUEL INJECTED INTO A FAST FLOW GAS MEDIUM
US4529068A (en) * 1983-06-28 1985-07-16 Goodyear Aerospace Corporation Integral disk brake actuator and adjuster
JPS6016948A (en) * 1983-07-06 1985-01-28 Ishihara Sangyo Kaisha Ltd Production of methoxybenzophenone compound
NL8502042A (en) * 1985-07-16 1985-10-01 Akzo Nv NEW FLEGMATIZED KETONE PEROXIDE COMPOSITIONS AND THEIR APPLICATION IN THE MANUFACTURE OF CASTING CORE OR FORM.
JPS6231233A (en) * 1985-08-02 1987-02-10 Matsushita Electric Ind Co Ltd Sales data management device for store
JPH0240428A (en) * 1988-07-28 1990-02-09 Matsushita Seiko Co Ltd Ventilating and air-conditioning device
JPH04283333A (en) * 1991-03-13 1992-10-08 Daikin Ind Ltd Heat exchanging ventilating device
JP2003269772A (en) * 2002-03-13 2003-09-25 Sanyo Electric Co Ltd Refrigeration unit, air conditioner, and their control method
JP4432556B2 (en) * 2004-03-18 2010-03-17 パナソニック株式会社 Heat exchange ventilator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748829A (en) * 2012-07-31 2012-10-24 北京环都人工环境科技有限公司 Thin heat exchange type air interchanger
CN102748829B (en) * 2012-07-31 2015-06-10 北京环都人工环境科技有限公司 Thin heat exchange type air interchanger
CN104422057A (en) * 2013-09-11 2015-03-18 曾国辉 Energy-saving air exchange device
CN104422057B (en) * 2013-09-11 2017-05-10 曾国辉 Energy-saving air exchange device

Also Published As

Publication number Publication date
JP2007017064A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4784181B2 (en) Ventilator and building
KR101513651B1 (en) a apparatus of air condition to improve the control performance, and a control method of thereof
KR100826688B1 (en) Ventilating device with air circulation control structure
KR102287901B1 (en) Ventilator
JP2014092291A (en) Ventilation device
WO2011089728A1 (en) Ventilation terminal device and ventilation system
JP5096788B2 (en) Ventilation system
FI125451B2 (en) Ventilation window
JP2008164203A (en) Desiccant air conditioning device
JP4424113B2 (en) Ventilation system and housing structure
WO2017051524A1 (en) Heat exchanging ventilation device
JP2008241131A (en) Humidifying ventilation system and humidified air supply system
JP2018123999A (en) Wind passage selector damper, fan coil unit and air conditioning system
JP6656043B2 (en) Ventilation systems and equipment
KR102125693B1 (en) Ductless ventilation system
JP4372698B2 (en) Embedded ceiling heat exchange ventilator
JP2010091243A (en) Energy saving ventilation system and energy saving building having the same
JPH09280604A (en) Air conditioning unit
JP2004003837A (en) Air conditioner
JP2002013219A (en) Ventilating system for house
KR20070089001A (en) Ventilation of window type
JP2006023065A (en) Ventilation function-equipped air conditioner, ventilation device for ventilation function-equipped air conditioner and ventilation method for ventilation function-equipped air conditioner
JP5370923B2 (en) Bathroom Dryer
JP2010101600A (en) Air conditioning system
JP2020148386A (en) Pressure heat exchange ventilation type building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4784181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3