WO2014016116A1 - Composition de caoutchouc thermo-expansible pour pneumatique apte a reduire les bruits de roulage - Google Patents

Composition de caoutchouc thermo-expansible pour pneumatique apte a reduire les bruits de roulage Download PDF

Info

Publication number
WO2014016116A1
WO2014016116A1 PCT/EP2013/064546 EP2013064546W WO2014016116A1 WO 2014016116 A1 WO2014016116 A1 WO 2014016116A1 EP 2013064546 W EP2013064546 W EP 2013064546W WO 2014016116 A1 WO2014016116 A1 WO 2014016116A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
composition according
phr
composition
butadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2013/064546
Other languages
English (en)
French (fr)
Inventor
Yu Shiraishi
Salvatore Pagano
Olivia Cuscito
Frédéric PIALOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michelin Recherche et Technique SA Switzerland
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Michelin Recherche et Technique SA Switzerland
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Compagnie Generale des Etablissements Michelin SCA filed Critical Michelin Recherche et Technique SA Switzerland
Priority to KR20157001745A priority Critical patent/KR20150037870A/ko
Priority to US14/416,361 priority patent/US20150183953A1/en
Priority to CN201380039224.7A priority patent/CN104487507B/zh
Priority to EP13734799.3A priority patent/EP2877530B1/fr
Priority to JP2015523475A priority patent/JP6416763B2/ja
Publication of WO2014016116A1 publication Critical patent/WO2014016116A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • C08J9/008Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the invention relates to tires for motor vehicles as well as rubber compositions usable for the manufacture of such tires.
  • tires comprising, in the vulcanized state, a foam rubber composition intended to reduce the noise emitted by these tires during the running of the vehicles.
  • the acoustic waves emitted by the tire are directly propagated by air inside the vehicle, the latter acting as a filter; this is referred to as airborne transmission, which generally dominates in the high frequencies (about 600 Hz and beyond).
  • the so-called “noise noise” refers rather to the perceived overall level in the vehicle and in a frequency range up to 2000 Hz.
  • the noise called “cavity” refers to the annoyance due to the resonance of the cavity of inflation of the tire casing. Concerning the noise emitted outside the vehicle, are relevant the various interactions between the tire and the road surface, the tire and the air, which will cause an inconvenience to the residents of the vehicle when it rolls on a road. floor.
  • these expansion agents such as, for example, nitro, sulfonyl or azo compounds, are capable of liberating, during a thermal activation, for example during the vulcanization of the tire, a large quantity of gas, in particular nitrogen, and thus lead to the formation of bubbles within a sufficiently soft material such as a rubber composition comprising such expansion agents.
  • a sufficiently soft material such as a rubber composition comprising such expansion agents.
  • Such tire foam rubber formulations which, once expanded (vulcanized) to reduce rolling noise, have been described, for example, in EP patent 337,787 or US 5,176,765, EP 885,925 or US 6,427,738, EP 1 800 911 or US 2007/0065821, JP 3-167008, WO 2009/003577 or US 2010/0133, WO 2011/051203.
  • expansion agents and / or expansion promoters can significantly slow the cooking times or vulcanization of these rubber compositions, which is of course detrimental to tire production rates, so much so that it is difficult for those skilled in the art to find foam rubber formulations to reduce rolling noise without penalizing the cooking properties.
  • the present invention relates to a heat-expandable rubber composition
  • a heat-expandable rubber composition comprising at least:
  • microparticles of a carbonate or sodium hydrogencarbonate or potassium said microparticles having a median size of between 1 and 50 ⁇ ;
  • the invention also relates to a rubber composition in the vulcanized state (thus (expanded) obtained after firing (vulcanization) of the composition according to the invention above.
  • the invention also relates to any tire, whether in the green (uncured) or cured (vulcanized) state, comprising a composition according to the invention, in particular any tire whose tread, at least for the portion (radially outermost part) of the latter intended to come into direct contact with the surface of the road, comprises a rubber composition according to the invention.
  • the tires of the invention are particularly intended to equip tourism-type motor vehicles, including 4x4 vehicles (four-wheel drive) and SUV vehicles ("Sport Utility Vehicles"), two-wheel vehicles (including motorcycles) as industrial vehicles chosen in particular from vans and "heavy goods vehicles” (ie, metro, buses, road transport vehicles such as trucks, tractors).
  • 4x4 vehicles four-wheel drive
  • SUV vehicles Sport Utility Vehicles
  • two-wheel vehicles including motorcycles
  • industrial vehicles chosen in particular from vans
  • "heavy goods vehicles” ie, metro, buses, road transport vehicles such as trucks, tractors.
  • iene elastomer or indistinctly rubber is meant an elastomer derived at least in part (that is to say a homopolymer or a copolymer) from monomer (s) diene (s) (ie, carrier (s) two carbon-carbon double bonds, conjugated or not).
  • isoprene elastomer is meant a homopolymer or copolymer of isoprene, in other words a diene elastomer selected from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), the various copolymers of isoprene, isoprene and mixtures of these elastomers.
  • any range of values designated by the expression “between a and b” represents the range of values greater than "a” and less than “b” (i.e., terminals a and b excluded). while any range of values designated by the term “from a to b” means the range of values from "a" to "b” (i.e. including the strict limits a and b).
  • the thermally expandable (i.e., uncured) rubber composition of the invention therefore has the essential feature of comprising at least:
  • microparticles of one at least one, that is to say one or more sodium or potassium carbonate or hydrogen carbonate, said microparticles having a median size (weight distribution) of between 1 and 50 ⁇ ;
  • the various components above are described in detail below.
  • the first essential characteristic of the heat-expandable rubber composition is that it comprises 50 to 100 phr of a copolymer based on styrene and butadiene, that is to say on a copolymer of at least one styrene monomer and at least one butadiene monomer; in other words, said copolymer based on styrene and butadiene has by definition at least units derived from styrene and units derived from butadiene.
  • the level of said copolymer, in the thermoexpansible rubber composition is in a range of 50 to 90 phr, more preferably in a range of 60 to 85 phr.
  • butadiene monomers 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-di (C 1 -C 5 alkyl) -1,3-butadienes, such as for example 2, are particularly suitable. 3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-3-isopropyl-1,3 -butadiene, an aryl-1,3-butadiene.
  • styrene monomers are especially suitable styrene, methylstyrenes, para-tert-butylstyrene, methoxystyrenes, chloro styrenes.
  • Said copolymer based on styrene and butadiene may have any microstructure which is a function of the polymerization conditions used, in particular the presence or absence of a modifying and / or randomizing agent and amounts of modifying and / or randomizing agent used. It can be for example block, statistical, sequenced, microsequenced, and be prepared in dispersion or in solution; it may be coupled and / or starred or functionalized with a coupling agent and / or starring or functionalization.
  • the styrene-butadiene-based copolymer is selected from the group consisting of styrene-butadiene copolymers (abbreviated to SBR), styrene-butadiene-isoprene copolymers (abbreviated to SBIR) and mixtures of such copolymers.
  • SBR styrene-butadiene copolymers
  • SBIR styrene-butadiene-isoprene copolymers
  • SBIR copolymers mention may be made especially of those having a styrene content of between 5% and 50% by weight and more particularly of between 10% and 40%, an isoprene content of between 15% and 60% by weight. and more particularly between 20% and 50%), a butadiene content of between 5% and 50% by weight and more particularly between 20% and 40%, a content (% molar) in units.
  • an SBR copolymer is used.
  • SBR copolymers mention may in particular be made of those having a styrene content of between 5% and 60% by weight and more in particular between 20% and 50%, a content (mol%) in -1,2 bonds of the butadiene part of between 4% and 75%, a content (mol%) of trans-1,4 bonds of between 10% and 80%.
  • the Tg (glass transition temperature) of the copolymer based on styrene and butadiene is preferably greater than -40 ° C., more preferably greater than -35 ° C., in particular between -30 ° C. and + 30 ° C.
  • Tg of the elastomers described here is measured in a conventional manner, well known to those skilled in the art, on an elastomer in the dry state (ie, without extension oil) and by DSC (for example according to ASTM D3418-1999). .
  • the person skilled in the art knows how to modify the microstructure of a copolymer based on styrene and butadiene, in particular on an SBR, to increase and adjust its Tg, in particular by modifying the styrene contents in -1-bonds. 2 or in trans-1,4 bonds of the butadiene part. More preferably, an SBR (solution or emulsion) having a styrene content (mol%) which is greater than 35%, more preferably between 35% o and 60%), in particular in a range from 38% to 50%, is more preferably used.
  • High Tg SBRs are well known to those skilled in the art, they have been used primarily in tire treads to improve some of their wear properties.
  • copolymer based on styrene and butadiene above may be associated with at least one other (also called second) diene elastomer, different from said copolymer (that is to say not having units derived from styrene and butadiene ), said second diene elastomer being present at a weight ratio which is therefore at most equal to 50 phr.
  • second diene elastomer different from said copolymer (that is to say not having units derived from styrene and butadiene )
  • said second diene elastomer being present at a weight ratio which is therefore at most equal to 50 phr.
  • This second optional diene elastomer is preferably selected from the group consisting of natural rubbers (NR), synthetic polyisoprenes (IR), polybutadienes (BR), isoprene copolymers and mixtures of these elastomers.
  • Such copolymers are more preferably selected from the group consisting of isoprene-butadiene copolymers (BIR) and isoprene-styrene copolymers (SIR).
  • polybutadiene homopolymers and in particular those having a content (mol%) in units of 1,2,2 between 4% and 80% or those having a content (mol%) of cis-1, are particularly suitable, 4 greater than 80%; polyisoprene homopolymers (IR); butadiene-isoprene copolymers (BIR) and in particular those having an isoprene content of between 5% and 90% by weight and a Tg of -40 ° C to -80 ° C .; isoprene-styrene copolymers (SIR) and in particular those having a styrene content of between 5% and 50% by weight and a Tg of between -25 ° C.
  • IR polyisoprene homopolymers
  • BIR butadiene-isoprene copolymers
  • SIR isoprene-styrene copolymers
  • the second diene elastomer is an isoprene elastomer, more preferably natural rubber or a synthetic polyisoprene of cis-1,4 type; of these synthetic polyisoprenes, polyisoprenes having a content (mol%) of cis-1,4 bonds greater than 90%, more preferably still greater than 98%, are preferably used.
  • the second diene elastomer is a polybutadiene, preferably a polybutadiene having a cis-1,4 bond ratio greater than 90%.
  • the second diene elastomer is a mixture of polybutadiene with an isoprene elastomer (natural rubber or synthetic polyisoprene).
  • the level of second diene elastomer in particular polybutadiene and / or isoprene elastomer (in particular natural rubber), is in a range of 10 to 50 phr, more preferably in a range of 15 to 40 phr.
  • the diene elastomers previously described could also be associated, in a minor amount, with synthetic elastomers other than diene, or even polymers other than elastomers, for example thermoplastic polymers.
  • Any known filler for its ability to reinforce a rubber composition is usable, for example an organic filler such as carbon black, or an inorganic filler such as silica to which is associated in a known manner a coupling agent.
  • Such a charge preferably consists of nanoparticles whose average size (in mass) is less than one micrometer, generally less than 500 nm, most often between 20 and 200 nm, in particular and more preferably between 20 and 150 nm.
  • the content of total reinforcing filler is between 50 and 150 phr.
  • a content greater than 50 phr is favorable for good mechanical strength; above 150 phr, there is a risk of excessive rigidity of the rubber composition.
  • the rate of total reinforcing filler is more preferably within a range of 70 to 120 phr.
  • Suitable carbon blacks are, for example, all carbon blacks which are conventionally used in tires (so-called tire-grade blacks) such as blacks of the series 100, 200, 300 (ASTM grades), for example blacks NI 15, N134, N234, N326, N330, N339, N347, N375.
  • the carbon blacks could for example already be incorporated into the diene elastomer, in particular isoprenic elastomer, in the form of a masterbatch (see, for example, applications WO 97/36724 or WO 99/16600).
  • organic fillers other than carbon blacks mention may be made of functionalized polyvinyl organic fillers as described in applications WO-A-2006/069792 and WO-A-2006/069793, WO-A-2008/003434. and WO-A-2008/003435.
  • Reinforcing inorganic filler means any inorganic or mineral filler, irrespective of its color and origin (natural or synthetic), also called “white” filler, “clear” filler or even “non-black filler” as opposed to carbon black, capable of reinforcing on its own, without any other means than an intermediate coupling agent, a rubber composition intended for the manufacture of tires, in other words able to replace, in its function of reinforcement, a conventional carbon black tire grade; such a filler is generally characterized, in known manner, by the presence of hydroxyl groups (-OH) on its surface.
  • -OH hydroxyl groups
  • Suitable reinforcing inorganic fillers are mineral fillers of the siliceous type, in particular silica (SiO 2 ).
  • the silica used may be any reinforcing silica known to those skilled in the art, in particular any precipitated or fumed silica having a BET surface and a CTAB specific surface both less than 450 m 2 / g, preferably from 30 to 400 m 2 / g, especially between 60 and 300 m 2 / g.
  • HDS highly dispersible precipitated silicas
  • the majority filler used is a reinforcing inorganic filler, in particular silica, at a level within a range of 70 to 120 phr, reinforcing inorganic filler to which advantageously black of carbon at a minority rate at most equal to 15 phr, in particular in a range of 1 to 10 phr.
  • an at least bifunctional coupling agent or bonding agent
  • organosilanes or at least bifunctional polyorganosiloxanes are used.
  • polysulfide silanes called “symmetrical” or “asymmetrical” silanes according to their particular structure, are used, as described for example in the applications WO03 / 002648 (or US 2005/016651) and WO03 / 002649 (or US 2005/016650).
  • polysulphide silanes having the following general formula (I) are not suitable for the following definition:
  • x is an integer of 2 to 8 (preferably 2 to 5);
  • the symbols A which are identical or different, represent a divalent hydrocarbon radical (preferably a C 1 -C 18 alkylene group or a C 6 -C 12 arylene group, more particularly a C 1 -C 10 , especially C 1 -C 4 , alkylene, in particular propylene);
  • R2 R2 in which:
  • the radicals R 1 which may be substituted or unsubstituted, which are identical to or different from one another, represent a Ci-C18 alkyl, C 5 -C 8 cycloalkyl or C 6 -C 18 aryl group (preferably C 1 -C 8 alkyl groups); C 6 , cyclohexyl or phenyl, especially C 1 -C 4 alkyl groups, more particularly methyl and / or ethyl).
  • radicals R 2 substituted or unsubstituted, identical or different, represent an alkoxy group or Ci-Ci 8 cycloalkoxy, C 5 -C 8 (preferably a group selected from alkoxyls Cg and C cycloalkoxyls 5 -C 8 , more preferably still a group selected from C 1 -C 4 alkoxyls, in particular methoxyl and ethoxyl).
  • the average value of the "x" is a fractional number preferably between 2 and 5, more preferably close to 4.
  • polysulphide silanes mention may be made more particularly of bis (C 1 -C 4 ) alkoxy-C 1 -C 4 alkylsilyl-C 1 -C 4 alkyl (especially disulfide, trisulphide or tetrasulfide) polysulphides.
  • TESPT bis (3-triethoxysilylpropyl) tetrasulfide
  • TESPD bis (3-triethoxysilylpropyl) tetrasulfide
  • TESPD bis (3-triethoxysilylpropyl) tetrasulfide
  • polysulfides in particular disulfides, trisulphides or tetrasulfides
  • bis-monoethoxydimethylsilylpropyl tetrasulfide such as described in the aforementioned patent application WO 02/083782 (or US Pat. No. 7,217,751).
  • silanes carrying at least one thiol function (-SH) (called mercaptosilanes) and / or of at least one blocked thiol function, as described for example in patents or patent applications US 6,849,754, WO 99/09036, WO 2006/023815, WO 2007/098080.
  • the rubber compositions When they are reinforced with an inorganic filler such as silica, the rubber compositions preferably comprise between 2 and 15 phr, more preferably between 3 and 12 phr of coupling agent.
  • microparticles of a sodium or potassium carbonate or hydrogencarbonate as a blowing agent in combination at particularly high levels, which is associated, as an activator with expansion, a carboxylic acid whose whose melting point is between 60 ° C and 220 ° C.
  • Microparticles generally means particles of micrometric size, that is to say the median size (expressed by weight) is greater than 1 ⁇ and less than 1 mm, these microparticles may be in any densified form for example in the form of powder, microbeads, granules or beads; a presentation in powder form is here preferred.
  • An essential characteristic of the blowing agent according to the invention lies in the median size of its microparticles which is particularly small, between 1 and 50 ⁇ (micrometer), preferably between 2 and 30 ⁇ and more preferably still included in a range of 5 to 25 ⁇ . Due to such conditions, it has been observed that the vulcanization kinetics of the rubber compositions is not significantly slowed down, without otherwise penalizing the noise reducing properties.
  • blowing agent in English
  • the blowing agent used in accordance with the present invention is a carbonate or a hydrogencarbonate (sometimes also called bicarbonate) of sodium or potassium. In other words, it is selected from the group consisting of sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate and mixtures of these compounds (including, of course, their forms hydrated).
  • Such an expansion agent has the advantage of only releasing carbon dioxide and water during its decomposition; it is therefore particularly favorable to the environment.
  • Sodium hydrogencarbonate (NaHCO 3) is particularly used.
  • the content of this blowing agent is between 5 and 25, preferably between 8 and 20 phr.
  • Another essential feature of the invention is to add to the blowing agent described above a carboxylic acid whose melting temperature is between 60 ° C and 220 ° C.
  • this carboxylic acid is between 2 and 20 phr, preferably between 2 and 15 phr.
  • this carboxylic acid has the function of chemically activating (ie, by chemical reaction) the blowing agent which, during its thermal decomposition, will release much more gas bubbles (C0 2 and H 2 0) than if it was used alone.
  • Melting temperature is a well-known basic physical constant (available for example in "Handbook of Chemistry and Physics") of hot melt compounds, organic or inorganic; it can be controlled by any known method, for example by the Thiele method, the Kofler bench method or by DSC analysis.
  • the pKa (Ka acid constant) of the carboxylic acid is greater than 1, more preferably between 2.5 and 12, in particular between 3 and 10.
  • the carboxylic acid comprises, along its hydrocarbon chain, from 2 to 22 carbon atoms, preferably from 4 to 20 carbon atoms.
  • the aliphatic monoacids preferably comprise, along their hydrocarbon chain, at least 16 carbon atoms; mention may be made, for example, of palmitic acid (Cl 6), stearic acid (Cl 8), nonadecanoic acid (Cl 9), behenic acid (C 20) and their various mixtures.
  • the aliphatic diacids preferably comprise, along their hydrocarbon chain, from 2 to 10 carbon atoms; mention may be made, for example, of oxalic acid (C2), malonic acid (C3), succinic acid (C4), glutaric acid (C5), adipic acid (C6), pimellic acid (C7), suberic acid (C8), azelaic acid (C9), sebacic acid (CIO) and their different mixtures.
  • aromatic monoacid there may be mentioned for example benzoic acid.
  • the acids having functional groups may be monoacids, diacids or triacids, of the aliphatic type as aromatic; examples that may be mentioned include tartaric acid, malic acid, maleic acid, glycolic acid, ⁇ -ketoglutaric acid, salicylic acid, phthalic acid or citric acid; .
  • the carboxylic acid is chosen from the group consisting of palmitic acid, stearic acid, nonadecanoic acid, behenic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimellic acid, suberic acid, azelaic acid, sebacic acid, benzoic acid, tartaric acid, malic acid, maleic acid, glycolic acid, ⁇ -ketoglutaric acid, salicylic acid, phthalic acid, citric acid and mixtures of these acids.
  • the carboxylic acid is selected from the group consisting of malic acid, ⁇ -ketoglutaric acid, citric acid, stearic acid and mixtures thereof. More preferably still, is used citric acid, stearic acid or a mixture of these two.
  • the total amount of blowing agent and its associated activator is greater than 10 phr, preferably between 10 and 40 phr. This total amount is more preferably greater than 15 phr, in particular between 15 and 40 phr.
  • an analysis of the particle size by mechanical sieving consists in sieving a defined quantity of sample (for example 200 g) on a vibrating table for 30 min with different sieve diameters and in a mesh range adapted to the microparticle sizes to be analyzed; the refusals collected on each sieve are weighed on a precision scale; we deduce the% of refusal for each mesh diameter with respect to the total weight of product; the median size (or median diameter) is finally calculated in a known manner from the histogram of the particle size distribution.
  • the median weight size corresponds to 50% (by weight) of the cumulative particle distribution, that is to say that, by weight, half of the particles are smaller than the median size and that the other half of the particles are larger than this median size.
  • the heat-expandable rubber composition of the invention may also comprise all or part of the usual additives usually used in tire foam rubber compositions, such as, for example, protective agents such as antiozone waxes, chemical antiozonants, oxidizing agents, plasticizers, a crosslinking system based on either sulfur, or sulfur and / or peroxide donors and / or bismaleimides, vulcanization accelerators, vulcanization activators.
  • protective agents such as antiozone waxes, chemical antiozonants, oxidizing agents, plasticizers, a crosslinking system based on either sulfur, or sulfur and / or peroxide donors and / or bismaleimides, vulcanization accelerators, vulcanization activators.
  • the thermo-expandable rubber composition also comprises a liquid plasticizer (at 20 ° C) whose function is to soften the matrix by diluting the diene elastomer and the reinforcing filler; its Tg is by definition less than -20 ° C, preferably less than -40 ° C.
  • this liquid plasticizer is used at a relatively reduced rate, such that the weight ratio reinforcing filler on liquid plasticizer is greater than 2.0, more preferably greater than 2.5, in particular greater than 3 , 0.
  • any extender oil whether aromatic or non-aromatic, any liquid plasticizer known for its plasticizing properties vis-à-vis diene elastomers, is usable.
  • these plasticizers or these oils are liquids (that is to say, as a reminder, substances having the capacity to eventually take on the shape of their container) , in contrast to, in particular, hydrocarbon plasticizing resins which are inherently solid at room temperature.
  • liquid plasticizers selected from the group consisting of naphthenic oils (low or high viscosity, including hydrogenated or not), paraffinic oils, MES oils (Medium Extracted Solvates), oils DAE (Distillate Aromatic Extracts), Treated Distillate Aromatic Extracts (TDAE) oils, Residual Aromatic Extracts (RAE) oils, Treated Residual Aromatic Extracts (TREE) oils, Safety Residual Aromatic Extracts (SRAE) oils, mineral oils, vegetable oils, ethers plasticizers, ester plasticizers, phosphate plasticizers, sulphonate plasticizers and mixtures of these compounds.
  • the liquid plasticizer is selected from the group consisting of MES oils, TDAE oils, naphthenic oils, vegetable oils and mixtures of these oils.
  • phosphate plasticizers are those containing from 12 to 30 carbon atoms, for example trioctylphosphate.
  • ester plasticizers mention may be made in particular of compounds selected from the group consisting of trimellitates, pyromellitates, phthalates, 1,2-cyclohexane dicarboxylates, adipates, azelates, sebacates, triesters of glycerol and mixtures of these compounds.
  • glycerol triesters preferably consisting predominantly (for more than 50%, more preferably more than 80% by weight) of an unsaturated fatty acid Ci 8 is that is to say selected from the group consisting of oleic acid, linoleic acid, linolenic acid and mixtures of these acids. More preferably, whether of synthetic or natural origin (for example vegetable oils of sunflower or rapeseed), the fatty acid used is more than 50% by weight, more preferably still more than 80% by weight. % by weight of oleic acid.
  • Such high oleic acid triesters (trioleates) are well known and have been described, for example, in application WO 02/088238, as plasticizers in tire treads.
  • the rubber composition of the invention may also comprise, as solid plasticizer (at 23 ° C.), a hydrocarbon resin having a Tg greater than + 20 ° C., preferably greater than + 30 ° C, as described for example in the applications WO 2005/087859, WO 2006/061064 or WO 2007/017060.
  • Hydrocarbon resins are polymers that are well known to those skilled in the art, essentially based on carbon and hydrogen, and therefore inherently miscible in diene (s) elastomer compositions when they are further qualified as "plasticisers". ". They may be aliphatic, aromatic or aliphatic / aromatic type that is to say based on aliphatic and / or aromatic monomers. They may be natural or synthetic, whether based on petroleum or not (if so, also known as petroleum resins). They are preferably exclusively hydrocarbon-based, that is to say they contain only carbon and hydrogen atoms.
  • the plasticizing hydrocarbon resin has at least one, more preferably all, of the following characteristics: a Tg greater than 20 ° C (more preferably between 40 and 100 ° C);
  • Mn a number-average molecular weight (Mn) of between 400 and 2000 g / mol (more preferentially between 500 and 1500 g / mol);
  • the Tg of this resin is measured in a known manner by DSC (Differential Scanning Calorimetry), according to the ASTM D3418 standard.
  • the macrostructure (Mw, Mn and Ip) of the hydrocarbon resin is determined by steric exclusion chromatography (SEC): tetrahydroiurane solvent; temperature 35 ° C; concentration 1 g / 1; flow rate 1 ml / min; filtered solution on 0.45 ⁇ porosity filter before injection; Moore calibration with stallions of polystyrene; set of 3 "WATERS" columns in series (“STYRAGEL” HR4E, HR1 and HR0.5); differential refractometer detection ("WATERS 2410") and its associated operating software (“WATERS EMPOWER”).
  • the plasticizing hydrocarbon resin is chosen from the group consisting of cyclopentadiene homopolymer or copolymer resins (abbreviated to CPD), dicyclopentadiene homopolymer or copolymer resins (abbreviated to DCPD), terpene homopolymer or copolymer resins, homopolymer or C5 cut copolymer resins, homopolymer or C9 cut copolymer resins, alpha-methyl-styrene homopolymer or copolymer resins and mixtures thereof. resins.
  • CPD cyclopentadiene homopolymer or copolymer resins
  • DCPD dicyclopentadiene homopolymer or copolymer resins
  • terpene homopolymer or copolymer resins homopolymer or C5 cut copolymer resins
  • homopolymer or C9 cut copolymer resins homopolymer or C9 cut copolymer resins
  • copolymer resins are more preferably used those selected from the group consisting of (D) CPD / vinylaromatic copolymer resins, (D) CPD / terpene copolymer resins, copolymer resins (D) CPD / C5 cut, (D) CPD / C9 cut copolymer resins, terpene / vinylaromatic copolymer resins, terpene / phenol copolymer resins, C5 / vinylaromatic cut copolymer resins, C9 / vinylaromatic cut copolymer resins, and mixtures of these resins.
  • pene here combines in a known manner the alpha-pinene, beta-pinene and limonene monomers; preferably, a limonene monomer is used which is in a known manner in the form of three possible isomers: L-limonene (laevorotatory enantiomer), D-limonene (dextrorotatory enantiomer), or the dipentene, racemic of the dextrorotatory and levorotatory enantiomers. .
  • Suitable vinylaromatic monomers are, for example, styrene, alpha-methylstyrene, ortho-, meta-, para-methylstyrene, vinyltoluene, para-tert-butylstyrene, methoxystyrenes, chlorostyrenes, hydroxystyrenes, vinylmesitylene, divinylbenzene, vinylnaphthalene, any vinylaromatic monomer from a C 9 cut (or more generally from a C 8 to C 10 cut).
  • the vinyl-aromatic compound is styrene or a vinylaromatic monomer derived from a C 9 cut (or more generally from a C 8 to C 10 cut).
  • the vinylaromatic compound is the minor monomer, expressed as a mole fraction, in the copolymer under consideration.
  • the content of hydrocarbon resin is preferably between 3 and 60 phr, more preferably between 3 and 40 phr, especially between 5 and 30 phr.
  • the heat-expandable rubber composition may also contain coupling enhancers when a coupling agent is used, inorganic filler recovery agents when an inorganic filler is used, or more generally, filler agents.
  • compositions likely in known manner, through an improvement in the dispersion of the load in the rubber matrix and a lowering of the viscosity of the compositions, to improve their processability in the green state;
  • these agents are for example hydroxysilanes or hydrolysable silanes such as alkyl-alkoxysilanes, polyols, polyethers, amines, hydroxylated or hydrolysable polyorganosiloxanes.
  • the rubber compositions are manufactured in suitable mixers, for example using two successive preparation phases according to a general procedure known to those skilled in the art: a first phase of work or thermomechanical mixing (sometimes referred to as a "non-productive" phase ) at a high temperature, up to a maximum temperature of between 130 ° C and 200 ° C, preferably between 145 ° C and 185 ° C, during which is incorporated in particular the expansion activator (carboxylic acid), followed by a second phase of mechanical work (sometimes called “productive" phase) at low temperature, typically below 120 ° C, for example between 60 ° C and 100 ° C, finishing phase during which are incorporated the expansion agent and the crosslinking or vulcanization system.
  • a first phase of work or thermomechanical mixing (sometimes referred to as a "non-productive" phase ) at a high temperature, up to a maximum temperature of between 130 ° C and 200 ° C, preferably between 145 ° C and 185 ° C, during which is incorporated in particular
  • a process which can be used for the manufacture of such rubber compositions comprises, for example, and preferably the following steps: - incorporating in a mixer, at the elastomer or in the mixture of elastomers, at least the filler and the carboxylic acid by thermomechanically kneading all, in one or more times, until reaching a maximum temperature of between 130 ° C and 200 ° C;
  • blowing agent carbonate or sodium hydrogencarbonate
  • a suitable mixer such as a conventional internal mixer.
  • the blowing agent and the crosslinking system After work thermomechanical, fallen and cooling of the mixture thus obtained, it is then preferably incorporated in this order, the blowing agent, then the vulcanization retarder (if such a compound is used), finally the rest of the vulcanization system (sulfur and accelerator) at low temperature, typically in an external mixer such as a roll mill; the whole is then mixed (productive phase) for a few minutes, for example between 5 and 15 min.
  • the actual crosslinking system is preferably based on sulfur and a primary vulcanization accelerator, in particular a sulfenamide type accelerator.
  • a primary vulcanization accelerator in particular a sulfenamide type accelerator.
  • various known secondary accelerators or vulcanization activators such as zinc oxide, stearic acid, guanidine derivatives (especially diphenylguanidine), etc.
  • the sulfur content is preferably between 0.5 and 5 phr, that of the primary accelerator is preferably between 0.5 and 8 phr.
  • accelerator primary or secondary
  • any compound capable of acting as an accelerator of vulcanization of diene elastomers in the presence of sulfur in particular thiazole-type accelerators and their derivatives, accelerators of thiuram type, zinc dithiocarbamates.
  • accelerators are for example selected from the group consisting of 2-mercaptobenzothiazyl disulfide (abbreviated "MBTS”), tetrabenzylthiuram disulfide (“TBZTD”), N-cyclohexyl-2-benzothiazyl sulfenamide (“CBS”), N, N dicyclohexyl-2-benzothiazylsulfenamide (“DCBS”), N-tert-butyl-2-benzothiazylsulfenamide (“TBBS”), N-tert-butyl-2-benzothiazylsulfenamide (“TBSI”), zinc dibenzyldithiocarbamate (“ ZBEC ”) and mixtures of these compounds.
  • MBTS 2-mercaptobenzothiazyl disulfide
  • TBZTD tetrabenzylthiuram disulfide
  • CBS N-cyclohexyl-2-benzothiazyl sulfenamide
  • the carboxylic acid has the possible effect of reducing the induction time (that is to say the time required for the beginning of the vulcanization reaction) during the baking of the composition, it is advantageous to use a retarder of beginning of vulcanization to counteract this phenomenon, and thus to provide the rubber composition the time necessary for full expansion before vulcanization.
  • the level of this vulcanization retarder is preferably between 0.5 and 10 phr, more preferably between 1 and 5 phr, in particular between 1 and 3 phr.
  • Vulcanization retarders are well known to those skilled in the art. Mention may be made, for example, of N-cyclohexylthiophthalimide sold under the name "Vulkalent G” by the company Lanxess, N- (trichloromethylthio) benzenesulfonamide sold under the name "Vulkalent E / C" by Lanxess, or else marketed phthalic anhydride. under the name "Vulkalent B / C" by Lanxess.
  • N-cyclohexylthiophthalimide (abbreviated "CTP") is used.
  • CTP N-cyclohexylthiophthalimide
  • the final composition thus obtained is then calendered, for example in the form of a sheet or a plate, in particular for a characterization in the laboratory, or calendered or extruded in the form of a thermo-expandable rubber profile.
  • the density or density denoted Di of the heat-expandable rubber composition is preferably between 1, 100 and 1, 400 g / cm 3 , more preferably within a range of 1,150 to 1,350 g / cm 3 .
  • the vulcanization (or cooking) is conducted in a known manner at a temperature generally between 130 ° C and 200 ° C, for a sufficient time which may vary for example between 5 and 90 min depending in particular on the cooking temperature, the system of vulcanization adopted and the kinetics of vulcanization of the composition under consideration. It is during this vulcanization step that the blowing agent will release a significant amount of gas, lead to bubble formation in the foam rubber composition and eventually expand.
  • the density denoted D 2 of the rubber composition once expanded is preferably between 0.500 and 1 000 g / cm 3 , more preferably in a range from 0.600 to 0.850 g / cm 3 .
  • T E volume expansion rate (expressed in%) is preferably between 30% and 150%, more preferably in a range of 50 to 120%, this expansion ratio T E being calculated in a known manner from densities Di and D 2 above, as follows:
  • T E [(D 1 / D 2 ) - 1] x 100.
  • its Shore A hardness (measured according to ASTM D 2240-86) is in a range from 45 to 60.
  • thermosorbable rubber composition described above is particularly usable in the treads, at least for their portion which is intended to come into direct contact with the road surface, tires for any type of vehicle, particularly in passenger car tires, as demonstrated in the following tests.
  • three rubber compositions denoted C-0, C-1 and C-2) were prepared whose formulation is given in Table 1 (rate of the various products expressed in phr).
  • composition C-0 is the control composition, it does not comprise any blowing agent;
  • composition C-1 is a composition which does not conform to the invention, it does indeed comprise an expansion agent (sodium hydrogencarbonate) but the median size of the microparticles is outside the scope of the invention (approximately 100 ⁇ );
  • the composition C-3 is a composition according to the invention, it comprises an expansion agent (sodium hydrogencarbonate) having a median microparticle size of between 1 and 50 ⁇ (in this case, approximately 10 ⁇ ).
  • both compositions C-1 and C-2 is associated with the blowing agent a carboxylic acid as an expansion promoter; the two compositions C-1 and C-2 further comprise a vulcanization start retarder (CTP).
  • CTP vulcanization start retarder
  • the reinforcing filler, the diene elastomer (SBR cutting and blending) were successively introduced into an internal mixer, the initial batch temperature of which was approximately 60 ° C. BR), the carboxylic acid for the compositions C-1 and C-2, as well as the various other ingredients with the exception of the vulcanization system and the blowing agent; the mixer was thus filled to about 70% (% by volume).
  • Thermomechanical work (non-productive phase) was then carried out in a step of about 2 to 4 minutes, until a maximum "falling" temperature of about 150 ° C. was reached.
  • the mixture thus obtained was recovered, cooled to about 50 ° C., then the blowing agent (Na-hydrogencarbonate), the vulcanization retarder (CTP), then the sulfenamide accelerator and the sulfur were incorporated. on an external mixer (homo-finisher) at 30 ° C, mixing the whole (productive phase) for a few minutes.
  • compositions C-0, C-1 and C-2 thus prepared were then vulcanized in press, and their properties measured before and after curing (see Table 2 attached).
  • the measurements are carried out at 150 ° C. with an oscillating chamber rheometer according to DIN 53529 - Part 3 (June 1983).
  • the evolution of the rheometric torque as a function of time describes the evolution of the stiffening of the composition as a result of the vulcanization reaction.
  • the measurements are processed according to DIN 53529 - Part 2 (March 1983): Ti is the induction time, that is to say the time required for the beginning of the vulcanization reaction; T a (for example T 95 ) is the time necessary to reach a conversion of a%, that is to say a% (for example 95%) of the difference between the minimum and maximum couples.
  • the roasting time (noted T5) is also measured at 130 ° C., in accordance with the French standard NF T 43-005 (1991): the evolution of the consistometric index as a function of time also makes it possible to determine this time of grilling rubber compositions, evaluated in accordance with the above standard by parameter T5 (case of a large rotor), expressed in minutes, and defined as being the time required to obtain an increase in the consistometric index (expressed in UM) of 5 units above the minimum value measured for that index.
  • Reading Table 2 it is firstly noted that, compared with the control composition C-0, the vulcanization process (cooking) is significantly penalized (slowed down) on the composition C1 not according to the invention, as illustrated. in particular by the notable increase of the parameter T 95 : it is noted in particular that the total cooking time, which can be illustrated by the difference (T 95 - Ti), is increased by 50% (30 min instead of 20 min).
  • the composition according to the invention (C-2) incorporating microparticles whose median size is greatly reduced compared to the composition Cl has rheometry properties (T 95 ) which are not only not affected by the presence of the blowing agent, but are even improved compared to the initial values observed on the control composition (C-0) devoid of blowing agent; it is noted in particular that the total cooking time (T 95 - Ti) is significantly reduced (13 min instead of 20 min) in the case of the invention.
  • a tire rolling test was conducted in which the sound level emitted by the tires was evaluated by measuring the sound pressure level during a rolling of the vehicle. at a speed of 60 km / h, thanks to several microphones arranged inside the vehicle ("road noise”).
  • the vehicle used was a "Subaru” brand vehicle ("RI” model); the road surface used for this test corresponds to a semi-rough asphalt; when passing through the measuring area, the sound pressure recording is triggered.
  • composition C-2 The results in Table 4 express the differences in the sound level recorded between the tires according to the invention (composition C-2) or the comparative tires (composition C1) compared to control tires (composition C-0), in a frequency range from 200 to 800 Hz. These differences are expressed in acoustic energy (dB (A)) which corresponds to the integration of the acoustic pressure as a function of the frequency on the frequency domains considered, a negative value indicating a noise reduction with respect to the reference (composition C-0).
  • dB (A) acoustic energy
  • composition C-2 composition according to the invention (C-2), on all the frequency domains tested, with respect to the reference (composition C-0), this reduction being moreover close to that observed for the comparative composition Cl.
  • composition C-2 according to the invention
  • comparative composition C1 Comparative composition C1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
PCT/EP2013/064546 2012-07-27 2013-07-10 Composition de caoutchouc thermo-expansible pour pneumatique apte a reduire les bruits de roulage Ceased WO2014016116A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR20157001745A KR20150037870A (ko) 2012-07-27 2013-07-10 이동 소음을 감소시킬 수 있는 타이어를 위한 열-팽창성 고무 조성물
US14/416,361 US20150183953A1 (en) 2012-07-27 2013-07-10 Heat-expandable rubber composition for tyre able to reduce travel noise
CN201380039224.7A CN104487507B (zh) 2012-07-27 2013-07-10 用于轮胎的能减少行驶噪声的可热膨胀的橡胶组合物
EP13734799.3A EP2877530B1 (fr) 2012-07-27 2013-07-10 Composition de caoutchouc thermo-expansible pour pneumatique apte a reduire les bruits de roulage
JP2015523475A JP6416763B2 (ja) 2012-07-27 2013-07-10 走行騒音を減じることが可能なタイヤ用の熱発泡性ゴム組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1257301 2012-07-27
FR1257301A FR2993889B1 (fr) 2012-07-27 2012-07-27 Composition de caoutchouc thermo-expansible pour pneumatique

Publications (1)

Publication Number Publication Date
WO2014016116A1 true WO2014016116A1 (fr) 2014-01-30

Family

ID=46889300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/064546 Ceased WO2014016116A1 (fr) 2012-07-27 2013-07-10 Composition de caoutchouc thermo-expansible pour pneumatique apte a reduire les bruits de roulage

Country Status (7)

Country Link
US (1) US20150183953A1 (enExample)
EP (1) EP2877530B1 (enExample)
JP (1) JP6416763B2 (enExample)
KR (1) KR20150037870A (enExample)
CN (1) CN104487507B (enExample)
FR (1) FR2993889B1 (enExample)
WO (1) WO2014016116A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104277261A (zh) * 2014-09-22 2015-01-14 安徽喜洋洋儿童用品有限公司 一种用于婴儿推车的轮胎

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002967A1 (en) * 2014-06-30 2016-01-07 Compagnie Generale Des Etablissements Michelin A tire having a tread comprising particles of cork
DE102015211030A1 (de) 2015-06-16 2016-12-22 Siemens Aktiengesellschaft Schnell schließendes Schaltelement
JP6846864B2 (ja) * 2015-12-03 2021-03-24 住友ゴム工業株式会社 タイヤ用ゴム組成物の製造方法
JP6920217B2 (ja) * 2016-01-19 2021-08-18 株式会社ブリヂストン ゴム組成物及びタイヤ
JP6809825B2 (ja) * 2016-07-05 2021-01-06 株式会社ブリヂストン ゴム組成物の製造方法、ゴム組成物及びタイヤ
CN109384964B (zh) * 2017-08-03 2021-04-09 中国石油化工股份有限公司 用于车胎胎侧的橡胶组合物和硫化橡胶及其制备方法和应用
CN109384973B (zh) * 2017-08-03 2021-04-13 中国石油化工股份有限公司 用于鞋底的橡胶组合物和硫化橡胶及其制备方法和应用
IT201700103286A1 (it) * 2017-09-15 2019-03-15 Bridgestone Europe Nv Pneumatico con battistrada a superficie porosa
WO2019213233A1 (en) 2018-05-04 2019-11-07 Bridgestone Americas Tire Operations, Llc Tire tread rubber composition
WO2019213226A1 (en) * 2018-05-04 2019-11-07 Bridgestone Americas Tire Operations, Llc Tire tread rubber composition
US12370830B2 (en) 2018-05-04 2025-07-29 Bridgestone Americas Tire Operations, Llc Tire tread rubber composition
EP3788103A4 (en) 2018-05-04 2022-01-12 Bridgestone Americas Tire Operations, LLC RUBBER COMPOSITION FOR TIRE TREAD
JP7445681B2 (ja) 2019-05-29 2024-03-07 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー タイヤトレッドゴム組成物及び関連方法
WO2020243304A1 (en) 2019-05-29 2020-12-03 Bridgestone Americas Tire Operations, Llc Tire tread rubber composition and related methods
WO2020243308A1 (en) 2019-05-29 2020-12-03 Bridgestone Americas Tire Operations, Llc Tire tread rubber composition and related methods
JP7400419B2 (ja) * 2019-12-06 2023-12-19 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP7523272B2 (ja) * 2020-07-29 2024-07-26 株式会社ブリヂストン ゴム組成物、加硫ゴム、タイヤ用トレッドゴム及びタイヤ
IT202100012329A1 (it) * 2021-05-13 2022-11-13 Pirelli Pneumatico insonorizzato per ruote di veicoli
USD1005209S1 (en) * 2021-10-01 2023-11-21 Prince Arnold Ferry boat

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0337787A2 (en) 1988-04-13 1989-10-18 Bridgestone Corporation Pneumatic tire
JPH03167008A (ja) 1989-11-27 1991-07-18 Yokohama Rubber Co Ltd:The 空気入りタイヤ
US5176765A (en) 1988-04-13 1993-01-05 Bridgestone Corporation Pneumatic tire having outer tread layer of foam rubber
WO1997036724A2 (en) 1996-04-01 1997-10-09 Cabot Corporation Novel elastomer composites, method and apparatus
EP0885925A1 (en) 1997-06-18 1998-12-23 Bridgestone Corporation Tire, rubber composition, and vulcanized rubber
WO1999009036A1 (en) 1997-08-21 1999-02-25 Osi Specialties, Inc. Blocked mercaptosilane coupling agents for filled rubbers
WO1999016600A1 (en) 1997-09-30 1999-04-08 Cabot Corporation Elastomer composite blends and methods for producing them
WO2002010269A2 (fr) 2000-07-31 2002-02-07 Societe De Technologie Michelin Bande de roulement pour pneumatique
WO2002031041A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
WO2002030939A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
WO2002083782A1 (fr) 2001-04-10 2002-10-24 Societe De Technologie Michelin Pneumatique et bande de roulement comportant comme agent de couplage un tetrasulfure de bis-alkoxysilane
WO2002088238A1 (fr) 2001-03-12 2002-11-07 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique
WO2003002649A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a tres basse surface specifique
WO2003002648A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a basse surface specifique
US6849754B2 (en) 2001-08-06 2005-02-01 Degussa Ag Organosilicon compounds
WO2005087859A1 (fr) 2004-02-11 2005-09-22 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2006023815A2 (en) 2004-08-20 2006-03-02 General Electric Company Cyclic diol-derived blocked mercaptofunctional silane compositions
WO2006061064A1 (fr) 2004-10-28 2006-06-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2006069792A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Nanoparticules de polyvinylaromatique fonctionnalise
WO2006069793A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Composition elastomerique renforcee d'une charge de polyvinylaromatique fonctionnalise
WO2006125533A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
WO2006125532A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
WO2006125534A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
WO2007017060A1 (fr) 2005-08-08 2007-02-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
US20070065821A1 (en) 2003-02-21 2007-03-22 Sridhar Kudaravalli Methods for the prediction of suicidality during treatment
WO2007061550A1 (en) 2005-11-16 2007-05-31 Dow Corning Corporation Organosilanes and their preparation and use in elastomer compositions
EP1800911A2 (en) 2005-12-20 2007-06-27 The Goodyear Tire & Rubber Company Tire with integral foamed noise damper
WO2007098080A2 (en) 2006-02-21 2007-08-30 Momentive Performance Materials Inc. Free flowing filler composition based on organofunctional silane
WO2008003434A1 (fr) 2006-07-06 2008-01-10 Societe De Technologie Michelin Nanoparticules de polymere vinylique fonctionnalise
WO2008003435A1 (fr) 2006-07-06 2008-01-10 Societe De Technologie Michelin Composition élastomèrique renforcée d'une charge de polymère vinylique non aromatique fonctionnalise
JP2008001826A (ja) * 2006-06-23 2008-01-10 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2008150413A (ja) * 2006-12-14 2008-07-03 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
WO2009003577A1 (fr) 2007-07-02 2009-01-08 Societe De Technologie Michelin Pneumatique comportant une bande de roulement a adherence elevee
US20100000133A1 (en) 2008-07-03 2010-01-07 Madeleine Kent Article of manufacture for motivating users and method for using same
WO2011051203A1 (fr) 2009-10-27 2011-05-05 Societe De Technologie Michelin Bandage pneumatique dont la paroi interne est pourvue d'une couche de caoutchouc thermo-expansible
KR20110073059A (ko) * 2009-12-23 2011-06-29 한국타이어 주식회사 스노우 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 스노우 타이어
FR2955328A1 (fr) * 2010-01-18 2011-07-22 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique hiver
WO2011113731A1 (fr) * 2010-03-19 2011-09-22 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique hiver

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3414528A (en) * 1965-04-09 1968-12-03 Phillips Petroleum Co Blown sponge rubber
JPS62190238A (ja) * 1986-02-18 1987-08-20 Yokohama Rubber Co Ltd:The タイヤトレツド用ゴム組成物
JP4137236B2 (ja) * 1998-07-03 2008-08-20 株式会社ブリヂストン タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP2005002187A (ja) * 2003-06-11 2005-01-06 Jsr Corp 貫通孔を有する押出シート、および吸音性マット、ならびにそれらの製造方法
US20070219320A1 (en) * 2004-04-28 2007-09-20 Mitsui Chemicals, Inc. Process for Producing Rubber Composition, Rubber Composition and use Thereof
US7249621B2 (en) * 2004-07-29 2007-07-31 The Goodyear Tire & Rubber Company Rubber composition and tire with component of diene-based elastomer composition with corncob granule dispersion
JP2007112933A (ja) * 2005-10-21 2007-05-10 Toyo Ink Mfg Co Ltd 発泡成形用樹脂組成物
US20090071582A1 (en) * 2007-09-14 2009-03-19 Earl Durjan Covering device
CN102844368B (zh) * 2010-04-19 2015-08-19 住友橡胶工业株式会社 轮胎用橡胶组合物及充气轮胎
JP5725957B2 (ja) * 2011-04-20 2015-05-27 三和化工株式会社 架橋ポリオレフィン系発泡体の製造方法
FR2975998B1 (fr) * 2011-06-01 2013-06-14 Michelin Soc Tech Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible

Patent Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176765A (en) 1988-04-13 1993-01-05 Bridgestone Corporation Pneumatic tire having outer tread layer of foam rubber
EP0337787A2 (en) 1988-04-13 1989-10-18 Bridgestone Corporation Pneumatic tire
JPH03167008A (ja) 1989-11-27 1991-07-18 Yokohama Rubber Co Ltd:The 空気入りタイヤ
WO1997036724A2 (en) 1996-04-01 1997-10-09 Cabot Corporation Novel elastomer composites, method and apparatus
US6427738B1 (en) 1997-06-18 2002-08-06 Bridgestone Corporation Tire and vulcanized rubber including elongated cells
EP0885925A1 (en) 1997-06-18 1998-12-23 Bridgestone Corporation Tire, rubber composition, and vulcanized rubber
WO1999009036A1 (en) 1997-08-21 1999-02-25 Osi Specialties, Inc. Blocked mercaptosilane coupling agents for filled rubbers
WO1999016600A1 (en) 1997-09-30 1999-04-08 Cabot Corporation Elastomer composite blends and methods for producing them
WO2002010269A2 (fr) 2000-07-31 2002-02-07 Societe De Technologie Michelin Bande de roulement pour pneumatique
US7199175B2 (en) 2000-07-31 2007-04-03 Michelin Recherche Et Technique S.A. Tread for a tire having a rigidity gradient
WO2002031041A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
WO2002030939A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
US20040051210A1 (en) 2000-10-13 2004-03-18 Jean-Claude Tardivat Rubber composition comprising a polyfunctional organosilane as coupling agent
US6774255B1 (en) 2000-10-13 2004-08-10 Michelin Recherche Et Technique, S.A. Polyfunctional organosilane usable as a coupling agent and process for the obtainment thereof
WO2002088238A1 (fr) 2001-03-12 2002-11-07 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique
US7217751B2 (en) 2001-04-10 2007-05-15 Michelin Recherche Et Technique S.A. Tire and tread comprising a bis-alkoxysilane tetrasulfide as coupling agent
WO2002083782A1 (fr) 2001-04-10 2002-10-24 Societe De Technologie Michelin Pneumatique et bande de roulement comportant comme agent de couplage un tetrasulfure de bis-alkoxysilane
WO2003002648A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a basse surface specifique
WO2003002649A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a tres basse surface specifique
US20050016650A1 (en) 2001-06-28 2005-01-27 Michelin Recherche Et Technique S.A. Tire tread reinforced with a silica of very low specific surface area
US20050016651A1 (en) 2001-06-28 2005-01-27 Michelin Recherche Et Technique S.A. Tire tread reinforced with a silica of low specific surface area
US6849754B2 (en) 2001-08-06 2005-02-01 Degussa Ag Organosilicon compounds
US20070065821A1 (en) 2003-02-21 2007-03-22 Sridhar Kudaravalli Methods for the prediction of suicidality during treatment
WO2005087859A1 (fr) 2004-02-11 2005-09-22 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2006023815A2 (en) 2004-08-20 2006-03-02 General Electric Company Cyclic diol-derived blocked mercaptofunctional silane compositions
WO2006061064A1 (fr) 2004-10-28 2006-06-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2006069793A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Composition elastomerique renforcee d'une charge de polyvinylaromatique fonctionnalise
WO2006069792A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Nanoparticules de polyvinylaromatique fonctionnalise
WO2006125532A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
WO2006125534A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
WO2006125533A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
WO2007017060A1 (fr) 2005-08-08 2007-02-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2007061550A1 (en) 2005-11-16 2007-05-31 Dow Corning Corporation Organosilanes and their preparation and use in elastomer compositions
EP1800911A2 (en) 2005-12-20 2007-06-27 The Goodyear Tire & Rubber Company Tire with integral foamed noise damper
WO2007098080A2 (en) 2006-02-21 2007-08-30 Momentive Performance Materials Inc. Free flowing filler composition based on organofunctional silane
JP2008001826A (ja) * 2006-06-23 2008-01-10 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
WO2008003434A1 (fr) 2006-07-06 2008-01-10 Societe De Technologie Michelin Nanoparticules de polymere vinylique fonctionnalise
WO2008003435A1 (fr) 2006-07-06 2008-01-10 Societe De Technologie Michelin Composition élastomèrique renforcée d'une charge de polymère vinylique non aromatique fonctionnalise
JP2008150413A (ja) * 2006-12-14 2008-07-03 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
WO2009003577A1 (fr) 2007-07-02 2009-01-08 Societe De Technologie Michelin Pneumatique comportant une bande de roulement a adherence elevee
US20100000133A1 (en) 2008-07-03 2010-01-07 Madeleine Kent Article of manufacture for motivating users and method for using same
WO2011051203A1 (fr) 2009-10-27 2011-05-05 Societe De Technologie Michelin Bandage pneumatique dont la paroi interne est pourvue d'une couche de caoutchouc thermo-expansible
KR20110073059A (ko) * 2009-12-23 2011-06-29 한국타이어 주식회사 스노우 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 스노우 타이어
FR2955328A1 (fr) * 2010-01-18 2011-07-22 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique hiver
WO2011113731A1 (fr) * 2010-03-19 2011-09-22 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique hiver

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200825, Derwent World Patents Index; AN 2008-D40497, XP002686591 *
DATABASE WPI Week 200864, Derwent World Patents Index; AN 2008-K76084, XP002686590 *
DATABASE WPI Week 201224, Derwent World Patents Index; AN 2011-K48216, XP002686592 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104277261A (zh) * 2014-09-22 2015-01-14 安徽喜洋洋儿童用品有限公司 一种用于婴儿推车的轮胎

Also Published As

Publication number Publication date
EP2877530B1 (fr) 2016-09-14
EP2877530A1 (fr) 2015-06-03
US20150183953A1 (en) 2015-07-02
JP6416763B2 (ja) 2018-10-31
KR20150037870A (ko) 2015-04-08
CN104487507B (zh) 2016-05-04
CN104487507A (zh) 2015-04-01
JP2015522698A (ja) 2015-08-06
FR2993889A1 (fr) 2014-01-31
FR2993889B1 (fr) 2014-08-22

Similar Documents

Publication Publication Date Title
EP2877530B1 (fr) Composition de caoutchouc thermo-expansible pour pneumatique apte a reduire les bruits de roulage
EP2714788B1 (fr) Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
EP2714790B1 (fr) Pneu dont la bande de roulement comporte une composition de caoutchouc thermo-expansible réduisant les bruits de roulage
CA2835966C (fr) Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
EP2512826A1 (fr) Pneumatique hiver a adherence sur glace amelioree
FR2969629A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique
EP2526145A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
WO2011073186A1 (fr) Pneumatique hiver a adherence sur glace amelioree
EP2864134B1 (fr) Composition de caoutchouc thermo-expansible et pneumatique pour vehicule dont la bande de roulement comporte une telle composition
CA2868136C (fr) Composition de caoutchouc pour bande de roulement de pneumatique comportant des microparticules de sulfate de potassium
CA2890365A1 (fr) Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
WO2015014576A1 (fr) Composition de caoutchouc thermo-expansible et pneumatique comportant une telle composition
FR2960544A1 (fr) Bandage pneumatique dont la zone sommet est pourvue d'une couche interne reduisant les bruits de roulage
WO2013013985A1 (fr) Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
WO2013092341A1 (fr) Pneu dont la bande de roulement comporte une composition de caoutchouc thermo-expansible reduisant les bruits de roulage
FR3009306A1 (fr) Pneu dont la zone sommet est pourvue d’une couche interne reduisant les bruits de roulage
EP2925539A1 (fr) Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
FR2998509A1 (fr) Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
WO2014114623A1 (fr) Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380039224.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13734799

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013734799

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013734799

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157001745

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2015523475

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14416361

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE