WO2014015715A1 - 逻辑通道的建立方法及系统、边缘虚拟桥接站点及网桥 - Google Patents

逻辑通道的建立方法及系统、边缘虚拟桥接站点及网桥 Download PDF

Info

Publication number
WO2014015715A1
WO2014015715A1 PCT/CN2013/076885 CN2013076885W WO2014015715A1 WO 2014015715 A1 WO2014015715 A1 WO 2014015715A1 CN 2013076885 W CN2013076885 W CN 2013076885W WO 2014015715 A1 WO2014015715 A1 WO 2014015715A1
Authority
WO
WIPO (PCT)
Prior art keywords
evb
bridge
channel
svid
logical
Prior art date
Application number
PCT/CN2013/076885
Other languages
English (en)
French (fr)
Inventor
肖敏
王阿忠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13823229.3A priority Critical patent/EP2879338B1/en
Priority to US14/417,125 priority patent/US9467340B2/en
Publication of WO2014015715A1 publication Critical patent/WO2014015715A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • H04L12/4675Dynamic sharing of VLAN information amongst network nodes
    • H04L12/4679Arrangements for the registration or de-registration of VLAN attribute values, e.g. VLAN identifiers, port VLAN membership
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5038Address allocation for local use, e.g. in LAN or USB networks, or in a controller area network [CAN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention relates to the field of communications, and in particular to a method and system for establishing a logical channel, and Edge Virtual Bridging (EVB). Sites and bridges.
  • a data center is a system that includes servers, storage devices, and infrastructure such as a network that connects all servers and storage devices.
  • the virtualization of a data center mainly refers to the virtualization of servers and the data networks they generate. Virtualization.
  • the so-called server virtualization is to allow the creation of multiple virtual servers called Virtual Servers (VSs) on a physical server (Physical Server).
  • Each VS is configured with a separate Internet protocol (Internet Protocol). , referred to as IP) address and Media Access Control (MAC) address and provide independent services.
  • Internet Protocol Internet Protocol
  • MAC Media Access Control
  • IP Internet Protocol
  • ER Edge Relay
  • ER has two specific implementation forms, one is called virtual edge network.
  • the Virtual Edge Bridge (VEB) is another type of Virtual Edge Port Aggregator (VEPA).
  • VEB is a virtual switch with both relay function and switching function, which can directly realize data communication between connected VSs;
  • VEPA is a virtual device with only relay function and no switching function, it can't Directly implement data communication between the connected VSs, but it can forward the data received from the connected VS to the physical switch for exchange, or forward the data received from the physical switch to the connected VS, so that It is possible to implement data communication between the connected VSs by using an external physical switch connected to the physical server.
  • FIG. 1 is a schematic diagram of an EVB architecture according to the related art. As shown in FIG.
  • an EVB site ie, a physical server supporting EVB
  • the S-VLAN component is introduced into the EVB architecture.
  • the EVB site and the EVB bridge that is, the physical switch supporting the EVB) form a plurality of S-VLAN components.
  • each S channel is connected to an ER's Uplink Relay Port (URP) and a site-oriented part of the EVB Bridge internal tenant identification package component Station-facing Bridge Port (SBP).
  • the S-Channel Access Port (CAP) of the S-VLAN component is connected to the URP and SBP respectively.
  • the logical port on the other side of the S-VLAN component is called the uplink access port (Uplink Access).
  • UAP Uplink Access
  • the CDCP protocol defined by the aforementioned 802.1Qbg standard runs between the UAP inside the EVB site and the UAP inside the EVB bridge.
  • the logical S channel is in the data plane by marking the data frame entering the S channel with an S-VLAN tag (S-VLAN TAG, abbreviated as S-TAG) corresponding to the S channel, and then stripping the data frame leaving the S channel. It is implemented by the S-TAG corresponding to the S channel. See Table 1, Table 1 describes the specific package format of the S-TAG specified by the IEEE 802.1Q-2011 standard. Table 1
  • the S-TAG includes a 16-bit tag protocol identifier (Tag Protocol ID, TPID for short), a 3-bit Priority Code Point (PCP), and a 1-bit discard.
  • a Drop Eligible Indicator (DEI) and a 12-bit S-VLAN ID (S-VLAN ID, SVID for short).
  • the TPID carries a fixed Ethertype value specified by the standard, and the Ethernet frame type value assigned to the S-TAG by the 802.1Q-2011 standard is 0x88A8.
  • the PCP and the DEI are used for performing the quality of the Ethernet frame.
  • SVID is the field in S-TAG that is used to distinguish and identify different logical S channels.
  • the IEEE 802.1Qbg standard defines the protocol message encapsulation format of CDCP, and details the protocol interaction process of CDCP.
  • the CDCP protocol message uses the same outer layer encapsulation as the Link Layer Discovery Protocol (LLDP) message defined by the IEEE 802.1AB-2009 standard, and passes the CDCP TLV (Type/Type, Length/Length, Value).
  • LLDP Link Layer Discovery Protocol
  • the encapsulation form of /value carries the specific message content.
  • CDCP is a one-way protocol between a UAP running on an EVB site and a UAP of an EVB bridge.
  • the CDCP TLV has a 1-bit Role field to distinguish whether the sender of the protocol message is an EVB site or an EVB bridge.
  • the S-VLAN component inside the EVB site and the S-VLAN component inside the EVB bridge respectively run the CDCP protocol state machine, and complete the protocol state jump according to the received CDCP protocol message.
  • FIG. 2 is a flowchart of a protocol interaction process of the CDCP defined by the IEEE 802.1Qbg standard of the related art. It should be noted that, in FIG. 2, each step in the protocol interaction process of the CDCP is not continuously performed in time series, but is triggered by the corresponding CDCP protocol status.
  • the protocol interaction process of the CDCP of the related art includes the following main steps: Step S201: After the CDCP protocol is started, the logical port UAP inside the EVB bridge sends a CDCP message to the logical port UAP inside the EVB site, and the EVB site is notified that the port is supported. The maximum number of S channels. Step S202: After the CDCP protocol is started, the logical port UAP inside the EVB station sends a CDCP message to the logical port UAP inside the EVB bridge, and requests the EVB bridge for each S channel according to the number of S channels required inside the EVB site. SVID.
  • the CDV message of the SVID contains multiple pairs (SCID, SVID) information, where the SCID represents the S-Channel ID, which is assigned by the EVB site.
  • SCID represents the S-Channel ID
  • the SVIDs in the other pairs are fixed to the unavailable value 0, indicating that the SVID is not yet allocated. Request an EVB bridge for distribution.
  • the CDCP message sent by the EVB station to the EVB bridge will contain ⁇ ( 1, 1 ), (2, 0), (3, 0), (4, 0) ⁇ A total of 4 pairs (SCID, SVID) information, requesting the EVB bridge to assign SVIDs to the S channels with S channel numbers 2, 3, and 4 respectively.
  • Step S203 After receiving the CDCP message requesting the SVID sent by the EVB station, the logical port UAP inside the EVB bridge sends a CDCP message to the logical port UAP inside the EVB station, and allocates an SVID to each S channel requested.
  • the CDCP message of the SVID allocated by the EVB bridge contains multiple pairs (SCID, SVID) information, where the SCID is consistent with the SCID carried in the CDCP message sent by the EVB station.
  • SCID, SVID in addition to the default S channel (1, 1) that the protocol stipulates, the SVIDs in the remaining pairs are assigned available values.
  • the CDCP message sent by the EVB station to the EVB bridge includes ⁇ ( 1, 1 ), (2, 0), (3, 0), (4, 0) ⁇ )
  • the CDCP message sent by the Bay U EVB bridge also contains ⁇ ( 1, 1 ), (2, 7), (3, 345 ), (4, 10) ⁇ 4
  • the SVID available values 7, 345, and 10 are assigned to the S channels of the S channel numbers 2, 3, and 4, respectively.
  • Step S204 after receiving the CDCP message of the SVID allocated by the EVB bridge, the logical port UAP inside the EVB station sends a CDCP message to the logical port UAP inside the EVB bridge, and announces to the EVB bridge that the EVB site has been used for each S The SVID of the channel configuration.
  • the CDCP message of the assigned SVID sent by the EVB station contains multiple pairs (SCID, SVID) information, where the SCID remains unchanged.
  • SCID, SVID in addition to the default S channel (1, 1) that must be included in the protocol, the SVIDs in the other pairs are assigned available values, indicating that the SVID assigned by the EVB bridge is received. After that, the configuration has taken effect at the EVB site.
  • the CDCP message sent by the EVB bridge to the EVB station contains ⁇ ( 1, 1 ), (2, 7), (3, 345 ), (4, 10 ⁇ )
  • a total of 4 pairs (SCID, SVID) information for the S channel with S channel number 2, 3, 4 respectively assigned SVID available values 7, 345, 10
  • the CDCP message sent by the EVB station to the EVB bridge will also be Contains ⁇ ( 1, 1 ), (2, 7), (3, 345 ), (4, 10) ⁇ a total of 4 pairs (SCID, SVID) information to confirm that the EVB site has been S channel number 2, 3,
  • the S channels of 4 are respectively configured with SVID available values 7, 345, and 10.
  • the IEEE 802.1AX-2008 standard defines a single-node link aggregation (Link Aggregation) technology, which logically bundles multiple physical links connected to the same adjacent node on one node as a logical link (ie, The link aggregation group (Link Aggregation Group, LAG for short) is used to implement load balancing between the multiple physical member links that form the LAG, and to quickly switch service traffic when some member links fail. Redundancy protection is implemented on other member links that are not faulty.
  • the IEEE 802.1 AX-REV project is currently revising and extending the single-node link aggregation technology defined by the 802.1AX-2008 standard.
  • the goal is to develop a cross-node link aggregation mechanism that can connect one or more nodes.
  • a plurality of physical links to a plurality of different neighboring nodes are logically bundled and used as a logical link.
  • the purpose is the same as that of the single-node link aggregation technology.
  • redundancy protection The 802.1AX-REV draft standard (version D0.2, published in May 2012) stipulates that when implementing cross-node link aggregation technology, a single or multiple nodes on one side of a LAG form a portal together. A plurality of nodes form a portal. Therefore, a physical link must exist between the multiple nodes.
  • the physical link is called an Intra-Portal Link (IPL) and acts as a node in a portal.
  • the port that is connected to the two ends of the IPL is called the Intra-Portal Link Port (IPP).
  • IPL Intra-Portal Link
  • IPP Intra-Portal Link Port
  • 802.1 AX-REV draft standard stipulates that when implementing cross-node link aggregation technology, service traffic must be load-balanced based on outer VLAN tags between LAG member links, that is, carrying different outer VLAN tags ( That is, the data frames with different VIDs in the outer VLAN tag are allocated to different physical member links for transmission according to a certain algorithm. For the specific allocation algorithm, the standard draft is not specified yet, but both sides of the LAG are required.
  • the Portal uses the same allocation algorithm to ensure that data frames carrying the same outer VLAN tag select the same physical member link in both directions of the LAG.
  • the server In the actual deployment of the current data center, in order to achieve high bandwidth and high reliability of the server accessing the external network, the server is required to simultaneously access two network edge physical switches through two physical ports. This access mode is called double. Attribution (referred to as Dual-Homing) access.
  • Dual-Homing the most common method for server dual-homing access is to use cross-node link aggregation technology. In combination with the existing EVB architecture defined by the 802.1Qbg standard and the requirement of using the cross-node link aggregation technology to implement server dual-homing access, FIG.
  • FIG. 3 is a schematic diagram of the architecture of the EVB site dual-homing to two EVB bridges according to the related art.
  • the S-VLAN components inside the EVB site are respectively connected to the S-VLAN component inside the EVB bridge 1 and the S-VLAN component inside the EVB bridge 2.
  • the EVB site itself constitutes a LAG on the LAG side.
  • Portal, EVB Bridge 1 and EVB Bridge 2 form a LAG Portal on the other side of the LAG and are connected by IPL.
  • the CDCP protocol defined by the IEEE 802.1Qbg standard currently only applies to the case where an EVB station running the protocol accesses a network edge physical switch through one physical port, and cannot be applied to an EVB site running the protocol through two.
  • the CDCP protocol cannot be used in the related art to realize that the EVB site is dual-homed to two network edge physical switches through two physical ports, an effective solution has not been proposed yet.
  • the embodiments of the present invention provide a solution for establishing a logical channel, so as to solve at least the problem that the EVB site cannot be dual-homed to two network edge physical switches through two physical ports by using the CDCP protocol.
  • a method for establishing a logical channel including: sending, by an EVB station, a first EVB bridge and a second EVB bridge that belong to the same LAG portal Portal respectively a CDCP message requesting the SVID corresponding to the required logical S channel, wherein the SVID of a part of the logical S channel in the required logical S channel is requested from the first EVB bridge, and the required logical S channel is requested from the second EVB bridge
  • the SVID of the remaining logical S channel the EVB station respectively obtains the SVID allocated by the first EVB bridge and the second EVB bridge according to the first CDCP message; the EVB station configures the allocated SVID to the corresponding logical S channel, and goes to the first
  • the EVB bridge and the second EVB bridge respectively send a second CDCP message, and respectively advertise the EVB site for all SVIDs configured for the required logical S channel.
  • the method further includes: an uplink access port UAP inside the first EVB bridge and a second internal EVB bridge The UAP sends a third CDCP message to the UAP inside the EVB site to notify the EVB site of the maximum number of S channels supported by the port.
  • the first CDCP message carries a plurality of pairs of SCID and SVID information groups, where the value of the SVID includes: a first predetermined value or a second predetermined value, where the first predetermined value is used to indicate that the allocation needs to be paired with the SVID The SVID of the logical S channel corresponding to the SCID, and the second predetermined value is used to indicate that the SVID of the logical S channel corresponding to the SCID paired with the SVID is not required to be allocated.
  • the first predetermined value is 0 and the second predetermined value is 0xFFF.
  • the second CDCP message carries a plurality of pairs of SCID and SVID information groups, where the value of the SVID includes: an SVID obtained from the first EVB bridge and configured to the corresponding logical S channel and from the second EVB bridge Gets and configures the SVID to the corresponding logical S channel.
  • the method further includes: the first EVB bridge and the second EVB bridge are received according to the EVB The first CDCP message of the station determines the SCID for which the SVID needs to be allocated, and assigns a corresponding SVID to the determined SCID.
  • the method further includes: mutually interacting between the first EVB bridge and the second EVB bridge Sending an S channel request verification message, comparing S channel information carried in the first CDCP message received by the first EVB bridge and the second EVB bridge from the EVB station, and determining the EVB site to the first EVB bridge and The logical S channel of the second EVB bridge requesting the allocation of the SVID is complementary.
  • comparing the S channel information carried in the first CDCP message received by the first EVB bridge and the second EVB bridge from the EVB station comprises: receiving, respectively, the first EVB bridge and the second EVB bridge
  • the first CDCP message is extracted to extract a logical S channel that requires the first EVB bridge and the second EVB bridge to allocate the SVID; if they are the same, the complement is determined, and the verification is passed; otherwise, the non-complementary, the verification fails, to the EVB site Notifies the logical S channel corresponding to the verification failure.
  • the method further includes: receiving, by the first EVB bridge and the second EVB bridge, The second CDCP message of the EVB site is used to notify the EVB site of all the SVIDs configured for the required logical S channel, and the SVID assigned by the local bridge in all the SVIDs is configured to the corresponding logical S channel.
  • the SVIDs assigned by the non-local bridges in all SVIDs are saved as alternate information for link aggregation protection.
  • an EVB station including: a sending module, configured to separately send to a first EVB bridge and a second EVB bridge belonging to the same LAG portal Portal
  • the first CDCP message requests the SVID corresponding to the required logical S channel, where the first EVB bridge requests the SVID of a part of the logical S channel in the required logical S channel, and requests the required logical S channel to the second EVB bridge.
  • an EVB bridge including: an allocating module, configured to identify logic required for an EVB site from a received first CDCP message from an EVB site.
  • the bridge needs to allocate a part of the logical S channel of the SVID, allocate a corresponding SVID for the part of the logical S channel, and send the allocated SVID to the EVB site, where the first CDCP message is used to request the logic required by the EVB site.
  • the SVID corresponding to the S channel, the SVID corresponding to the remaining logical S channel in the logical S channel required by the EVB site in the first CDCP message is allocated by another EVB bridge belonging to the same LAG entry Portal as the EVB bridge.
  • the EVB bridge further includes: an announcement information processing module, configured to perform corresponding processing according to the received second CDCP message from the EVB site for informing the EVB site to configure all SVIDs of the required logical S channel,
  • the SVIDs allocated by the local bridges of all the SVIDs are configured to the corresponding logical S channels, and the SVIDs of the non-local bridges in all the SVIDs are saved as the backup information of the link aggregation protection.
  • the EVB bridge further includes: a verification module, configured to: according to the received first CDCP message from the EVB site, the bridge and the other EVB bridge mutually send an S channel request verification message, to the bridge and another The S channel information carried in the first CDCP message received by the EVB bridge from the EVB station is compared, and it is determined that the logical S channel that the EVB station requests to allocate the SVID to the bridge and the other EVB bridge is complementary.
  • a system for establishing a logical channel is provided, including the foregoing EVB site, the EVB bridge, and another LAG entry portal belonging to the EVB bridge. An EVB bridge.
  • the EVB station separately requests a part of the required logical S channel from the first EVB bridge and the second EVB bridge belonging to the same LAG portal, and then respectively from the first EVB bridge and The allocated SVID acquired by the second EVB bridge is configured to the corresponding logical S channel, and is respectively directed to the first
  • the EVB bridge and the second EVB bridge advertise the EVB site for all the SVIDs configured for the required logical S channel, and solve the related art that the EVB site cannot be dual-homed to the two network edges through the two physical ports by using the CDCP protocol.
  • the problem of the physical switch realizes the load sharing of the server traffic and the redundancy protection of the uplink, which improves the stability and accuracy of the system.
  • FIG. 1 is a schematic diagram of an architecture of an EVB according to the related art
  • FIG. 2 is a flowchart of a protocol interaction process of a CDCP defined according to the IEEE 802.1Qbg standard of the related art
  • FIG. 3 is a double return of an EVB station according to the related art.
  • FIG. 4 is a flowchart of a method for establishing a logical channel according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of an EVB site according to an embodiment of the present invention
  • FIG. 7 is a structural block diagram of an EVB bridge according to a preferred embodiment of the present invention
  • FIG. 8 is a structural block diagram of a system for establishing a logical channel according to an embodiment of the present invention
  • FIG. 10 is a flowchart of a protocol interaction process for establishing a logical channel in a server dual-homing access scenario according to the first embodiment of the present invention
  • FIG. 11 is a flowchart of a protocol interaction process for establishing a logical channel in a server dual-homing access scenario according to the first embodiment of the present invention
  • 2 is a schematic flowchart of a method for establishing a logical channel.
  • FIG. 10 is a flowchart of a protocol interaction process for establishing a logical channel in a server dual-homing access scenario according to the first embodiment of the present invention
  • FIG. 11 is a flowchart of a protocol interaction process for establishing
  • FIG. 4 is a flowchart of a method for establishing a logical channel according to an embodiment of the present invention. As shown in FIG. 4, the method includes the following steps: Step S402: An EVB station goes to a first EVB bridge belonging to the same LAG portal.
  • EVB bridge 1 and the second EVB bridge respectively send a first CDCP message requesting the SVID corresponding to the required logical S channel, wherein the required logic S is requested from the first EVB bridge SVID of a part of the logical S channel in the channel, requesting the SVID of the remaining logical S channel of the required logical S channel from the second EVB bridge;
  • Step S404 the EVB station respectively obtains the first EVB bridge and the second EVB bridge according to The SVID of the first CDCP message is allocated; in step S406, the EVB station allocates the allocated SVID to the corresponding logical S channel, and sends a second CDCP message to the first EVB bridge and the second EVB bridge respectively, respectively advertising the EVB site All SVIDs configured for the desired logical S channel.
  • the EVB station separately requests a part of the required logical S channel from the first EVB bridge and the second EVB bridge belonging to the same LAG portal, and then will respectively be from the first EVB bridge and the second
  • the allocated SVID obtained by the EVB bridge is configured to the corresponding logical S channel, and the first EVB bridge and the second EVB bridge are respectively notified to the first EVB bridge and the second EVB bridge for all the SVIDs configured for the required logical S channel, and the related
  • the CDCP protocol cannot be used to realize the problem that the EVB site is dual-homed to two network edge physical switches through two physical ports, and the load balancing of the server traffic and the redundancy protection of the uplink are realized, thereby improving the stability of the system and accuracy.
  • the UAP inside the first EVB bridge and the UAP inside the second EVB bridge respectively send a third CDCP message to the UAP inside the EVB station, and notify the EVB station of the maximum S channel supported by the port. Quantity.
  • the EVB station can know the maximum number of S channels supported by the first EVB bridge and the second EVB bridge respectively, and is more targeted when transmitting the request for allocating the SVID for the required logical S channel, thereby improving the accuracy of the system. And processing efficiency.
  • the first CDCP message that the EVB station sends the SVID to the first EVB bridge and the second EVB bridge in the step S402 carries a plurality of pairs of SCID and SVID information groups, wherein the value of the SVID in the information group include: a first predetermined value or a second predetermined value, the first predetermined value is used to indicate that an SVID of a logical S channel corresponding to the SCID paired with the SVID needs to be allocated, and the second predetermined value is used to indicate that the SCID paired with the SVID is not required to be allocated The SVID of the corresponding logical S channel.
  • the first predetermined value may be 0 and the second predetermined value may be 0xFFF.
  • the method is simple and practical, and has high operability.
  • the first EVB bridge and the second EVB bridge determine that the SVID corresponding to the SCID needs to be assigned to the information group in the case that the value of the SVID in the received information group of the CDCP message requesting the SVID is 0; If the value of the SVID in the received information group is OxFFF, the first EVB bridge determines that the SVID is allocated by the second EVB bridge, and the first EVB bridge does not need to allocate the information group corresponding to the SVID to the SCID. SVID.
  • the second EVB bridge determines that the SVID is allocated by the first EVB bridge, and the second EVB bridge does not need to be the information group where the SVID is located.
  • the SVID corresponding to the SCID is assigned.
  • the second CDCP message that advertises all the configured SVIDs in the step S406 carries a plurality of pairs of the SCID and the SVID information group, where the value of the SVID is: obtained from the first EVB bridge and configured to the corresponding logical S.
  • the first EVB bridge and the second EVB bridge may determine, according to the received first CDCP message from the EVB site, the SCID that needs to allocate the SVID, and assign the corresponding SVID to the determined SCID. .
  • the S channel may be mutually sent between the first EVB bridge and the second EVB bridge.
  • the logical S channel that the bridge requests to allocate the SVID is complementary. That is, after the first EVB bridge and the second EVB bridge receive the first CDCP message from the EVB station requesting to allocate the SVID, the first EVB bridge and the second EVB bridge need to perform mutual authentication through the S-channel request. The message verifies whether the logical S channel allocated by the first EVB bridge and the second EVB bridge is complementary, and after the verification is passed, the first EVB bridge and the second EVB bridge are allocated by the EVB site. SVID.
  • Comparing the S channel information carried in the first CDCP message received by the first EVB bridge and the second EVB bridge from the EVB station may include: receiving, respectively, the first EVB bridge and the second EVB bridge
  • the first CDCP message is extracted to extract a logical S channel that requires the first EVB bridge and the second EVB bridge to allocate the SVID; if they are the same, the complement is determined, and the verification is passed; otherwise, the non-complementary, the verification fails,
  • the logical S channel corresponding to the verification failure is notified to the EVB site.
  • the first EVB bridge and the second EVB bridge allocate the requested SVID for verifying the passed logical S channel.
  • the logical S channel allocates the requested SVID.
  • step S406 when the EVB station advertises all SVIDs configured for the required logical S channel to the first EVB bridge and the second EVB bridge, the first EVB bridge and the second EVB bridge are not failed for verification.
  • the logical S channel allocates the requested SVID. Therefore, when the EVB station advertises all SVIDs configured for the required logical S channel to the first EVB bridge and the second EVB bridge, the logical S channel that fails the verification does not have a corresponding SVID.
  • the first EVB bridge and the second EVB bridge receive a second CDCP message from the EVB site for announcing the EVB site to all the SVIDs configured for the required logical S channel, and perform corresponding processing,
  • the SVIDs allocated by the local bridges of all the SVIDs are configured to the corresponding logical S channels, and the SVIDs of the non-local bridges in all the SVIDs are saved as the backup information of the link aggregation protection.
  • an embodiment of the present invention further provides an EVB site.
  • 5 is a structural block diagram of an EVB site according to an embodiment of the present invention. As shown in FIG.
  • the EVB site 50 includes: a sending module 52, configured to connect to a first EVB bridge and a first LAG portal (Portal)
  • the two EVB bridges respectively send the first CDCP message, request the SVID corresponding to the required logical S channel, and request the SVID of a part of the logical S channel in the required logical S channel from the first EVB bridge to the second EVB bridge.
  • the receiving module 54 is configured to respectively acquire the SVID allocated by the first EVB bridge and the second EVB bridge according to the first CDCP message;
  • the configuration module 56 is coupled to receive The module 54 is configured to configure the allocated SVID received by the receiving module 54 to the corresponding logical S channel;
  • the advertising module 58 is coupled to the configuration module 56, and configured to send to the first EVB bridge and the second EVB bridge respectively
  • the second CDCP message separately advertises all SVIDs configured by the EVB site for the required logical S channel.
  • the sending module 52 requests a part of the required logical S channel from the first EVB bridge and the second EVB bridge belonging to the same LAG portal, respectively, and then the configuration module 56 will pass the receiving module 54 respectively.
  • the allocated SVIDs obtained from the first EVB bridge and the second EVB bridge are configured to the corresponding logical S channels, and the notification module 58 notifies the EVB sites to the first EVB bridge and the second EVB bridge respectively.
  • All SVIDs in the logical S-channel configuration solve the problem that the CDCP protocol cannot be used to realize the double-homing of two EVB sites to two network edge physical switches through the two physical ports in the related art, and the load sharing of the server traffic and the uplink are realized. Redundancy protection improves system stability and accuracy.
  • an EVB bridge is also provided.
  • 6 is a structural block diagram of an EVB bridge according to an embodiment of the present invention.
  • the EVB bridge 60 includes: an allocation module 62 configured to discover and configure a first S channel from a received EVB site.
  • a logical S channel required for the EVB site is required to allocate a portion of the logical S channel of the S virtual network identifier SVID, and a corresponding SVID is allocated for the part of the logical S channel, and the allocated SVID is sent to the EVB site.
  • FIG. 7 is a structural block diagram of an EVB bridge according to a preferred embodiment of the present invention. As shown in FIG. 7, the EVB bridge 60 further includes: an announcement information processing module 72, configured to be used according to the received notification from the EVB site.
  • the EVB site is configured to process the second CDCP message of all the SVIDs of the required logical S channel, and the SVID assigned by the local bridge in all the SVIDs is configured to the corresponding logical S channel, and all the SVIDs are not in the local network.
  • the SVID assigned by the bridge is saved as the alternate information of the link aggregation protection.
  • the EVB bridge 60 further includes: a verification module 74, configured to: according to the received first CDCP message from the EVB site, the bridge and the other EVB bridge mutually send an S channel request verification message to the bridge Comparing with the S channel information carried in the first CDCP message received by the EVB station from the EVB station, and determining that the logical S channel of the EVB station requesting the SVID to the local bridge and another EVB bridge is complementary.
  • the embodiment of the invention also provides a system for establishing a logical channel. 8 is a structural block diagram of a system for establishing a logical channel according to an embodiment of the present invention. As shown in FIG.
  • the system includes the EVB site 50, the EVB bridge 60, and the same LAG portal Portal as the EVB bridge 60.
  • Another EVB bridge 60' inside. 9 is a structural block diagram of a system for establishing a logical channel according to a preferred embodiment of the present invention.
  • the EVB bridge 60 of the system includes: an announcement information processing module 72 and a verification module 74; and the EVB bridge 60
  • Another EVB bridge 60' belonging to the same LAG portal Portal includes: an announcement information processing module 72' and a verification module 74'.
  • the EVB bridge 60 and the EVB bridge 60' allocate the requested SVID to the EVB site 50 only if the verification passes.
  • Embodiment 1 This embodiment provides a method for establishing a logical channel in a server dual-homing access scenario by extending the CDCP protocol mechanism specified by the IEEE 802.1Qbg standard and the interaction information between the EVB bridges in a portal. Load balancing of server traffic and redundancy protection of uplinks are implemented in accordance with the technical requirements of the prior art EVB architecture and cross-node link aggregation.
  • 10 is a flowchart of a protocol interaction process for establishing a logical channel in a dual-homing access scenario of a server according to the first embodiment of the present invention. As shown in FIG. 10, the process includes the following steps: Step S1001, starting LAG and CDCP protocol After, the logical port UAP inside the EVB bridge 1 and
  • the logical port UAP inside the EVB bridge 2 sends a CDCP message to the logical port UAP inside the EVB site to notify the EVB site of the maximum number of S channels supported by the port.
  • Step S1002 After the LAG and the CDCP protocol are started, the logical port UAP inside the EVB station respectively sends CDCP messages to the logical port UAPs inside the EVB bridge 1 and the EVB bridge 2, according to the number of S channels required inside the EVB site.
  • An SVID is requested for each S channel to the EVB bridge, where part of the S channel requests the EVB bridge 1 and the remaining portion of the S channel requests the EVB bridge 2.
  • the EVB site allocates the number of S channels requested to the EVB bridge 1 and the EVB bridge 2 is completely the local behavior of the EVB site, either manually or automatically.
  • the CDCP message of the request SVID sent by the EVB station contains multiple pairs (SCID, SVID) information
  • the CDCP message sent to the EVB bridge 1 and the CDCP message addressed to the EVB bridge 2 contain the same number and assigned SCID.
  • the difference between the two CDCP messages is that in the multiple pairs (SCID, SVID) included in the CDCP message sent to the EVB bridge 1, the corresponding SVID of the S channel that needs to request the SVID from the EVB bridge 1 is set to 0, and needs to be The corresponding SVID of the S channel of the EVB bridge 2 requesting the SVID is set to the unavailable value OxFFF, indicating that the SVID will be allocated by other EVB bridges in the same Portal; the pairs of CDCP messages sent to the EVB bridge 2 (SCID) In SVID), the SVID of the S channel that needs to request the SVID from the EVB bridge 2 is set to 0, and the corresponding SVID of the S channel that needs to request the SVID to the EVB bridge 1 is set to the unavailable value 0xFFF, indicating that the SVID will be the same Other EVB bridges in the Portal are allocated.
  • Step S1003 After receiving the CDCP message requesting the SVID sent by the EVB station, the EVB bridge 1 and the EVB bridge 2 mutually send an S channel request verification message, which includes the S channel requested in the CDCP message received by each. Verify that the requests received are complementary.
  • the EVB bridge 1 and the EVB bridge 2 After receiving the S channel request verification message sent by the other party, the EVB bridge 1 and the EVB bridge 2 extract the S channel information requested by the EVB station carried by the other party, and then collect the information from the EVB site with the local party. The S channel information carried by the CDCP message requesting the SVID is compared to verify whether the requests received by the EVB bridge 1 and the EVB bridge 2 belonging to the same Portal are complementary.
  • Step S1004 After receiving the CDCP message requesting the SVID sent by the EVB station and the S channel request verification message sent by the EVB bridge 2, the logical port UAP inside the EVB bridge 1 sends a CDCP message to the logical port UAP inside the EVB site. If the verification is passed, the SVID is assigned to each S channel requested. If the verification fails, the SVID is not assigned, only the verification failure is notified; the CDCP message requesting the SVID sent by the EVB station and the EVB bridge 1 are sent. After the S channel requests the verification message, the logical port UAP inside the EVB bridge 2 sends a CDCP message to the logical port UAP inside the EVB site. If the verification succeeds, the SVID is assigned to each S channel requested.
  • the verification fails.
  • the SVID is not assigned and only the verification fails. If the verification is passed, the CDCP message of the allocated SVID sent by the EVB bridge contains multiple pairs (SCID, SVID) information, where the SCID is the SCID carried in the CDCP message sent by the EVB station, and the EVB site is addressed to the EVB site.
  • the SVID of the SVID is requested to allocate the available SVID value.
  • the SVID value is not allocated to the S channel of the EVB site requesting the SVID from another EVB bridge in the same Portal, and the SVID value is reserved as OxFFF; if the verification fails, the EVB bridge
  • the transmitted CDCP message for which the advertisement verification failed includes a plurality of pairs (SCID, SVID) information, wherein the SCID is consistent with the SCID carried in the CDCP message sent by the EVB station, and all the SVIDs are set to an unavailable value of 0xFFF.
  • the current 802.1AX-REV draft standard stipulates that when the cross-node link aggregation technology is implemented, the service traffic must be load-balanced based on the outer VLAN tag between the LAG member links, and the Portals on both sides of the LAG are required.
  • the same allocation algorithm is used, so under normal circumstances, EVB Bridge 1 and EVB Bridge 2 belonging to the same Portal will assign different SVID values to the S channels respectively requested by the EVB stations, and the two EVB bridges are respectively allocated.
  • the SVID available values correspond to their respective LAG member links that are connected to the EVB site.
  • Step S1005 After receiving the CDV message sent by the EVB bridge to allocate the SVID or notify the verification failure, the logical port UAP inside the EVB station sends the same content to the logical port UAP inside the EVB bridge 1 and the EVB bridge 2 respectively.
  • CDCP message If the EVB station receives the CDCP message of the SVID allocated by the EVB bridge, it notifies the EVB bridge 1 and the EVB bridge 2 of the SVID that the EVB station has configured for each S channel; if the EVB station receives the EVB If the CDCP message sent by the bridge fails to verify the failure, the EVB bridge 1 and the EVB bridge 2 are notified that the corresponding SVID of the EVB site fails to be configured.
  • the CDCP message of the allocated SVID sent by the EVB station contains multiple pairs (SCID, SVID) information, wherein the SCID remains unchanged, and the S channel that has acquired the SVID from the EVB bridge 1 or the EVB bridge 2 corresponds accordingly.
  • the SVID is set to the configured available value.
  • the corresponding SVID is set to the unavailable value 0xFFF. It can be seen that in this embodiment, the EVB site is dual-homed to two EVB bridges, and the IEEE is extended.
  • the interaction information between multiple nodes of the road aggregation enables the requirements for establishing logical channels between the EVB site and the EVB bridge to be satisfied, and the load sharing of the server traffic and the redundancy protection of the uplink are realized.
  • the information exchange between the EVB bridges in the portal is increased.
  • the two EVB bridges respectively allocate SVIDs to the EVB sites on a coordinated basis.
  • a logical S channel is established with the EVB site to meet the requirements of the EVB site for the logical S channel.
  • an EVB station includes five ERs, and five logical channels need to be established. Three logical channels are manually designated to allocate SVIDs by EVB bridge 1, and two logical channels are allocated SVIDs by EVB bridges 2, EVB. Both Bridge 1 and EVB Bridge 2 authenticate and pass the SVID available values.
  • 11 is a schematic flowchart of a method for establishing a logical channel according to Embodiment 2 of the present invention. As shown in FIG.
  • Step S1101 After starting the LAG and CDCP protocols, the logical port inside the EVB bridge 1 The logical port UAP inside the UAP and EVB bridge 2 respectively sends a CDCP message to the logical port UAP inside the EVB site, and announces the maximum number of S channels supported by the port to the EVB site.
  • Step S1102A and step S1102B after the LAG and the CDCP protocol are started, the logical port UAP inside the EVB station respectively sends a CDCP message to the logical port UAP inside the EVB bridge 1 and the EVB bridge 2, and a total of 5 internal EVB sites need to be established.
  • the CDCP message sent by the EVB station to the EVB bridge 1 in step S1102A includes S channel request information ⁇ ( 1, 1 ), (2, 0), (3, 0), (4, 0), (5, OxFFF), (6, OxFFF) ⁇ , where the SVID of the S channel that needs to request the SVID to the EVB bridge 1 is set to 0, and the corresponding SVID of the S channel that needs to request the SVID to the EVB bridge 2 is set to the unavailable value 0xFFF, indicating this The SVID will be allocated by other EVB bridges in the same Portal; the CDCP message sent by the EVB station to the EVB bridge 2 in step S1102B contains the S channel request information ⁇ ( 1, 1 ), (2, OxFFF), (3,
  • Step SI 103 after receiving the CDCP message requesting the SVID sent by the EVB station, respectively, the EVB bridge 1 and the EVB bridge 2 mutually send an S channel request verification message, which includes the S channel requested in the CDCP message received by each. , verify that the requests received are complementary.
  • the S channel request verification message sent by the EVB bridges to each other contains multiple pairs (SCID, SVID) information.
  • the S channel request verification message sent by the EVB bridge 1 to the EVB bridge 2 includes ⁇ (2, 0), (3, 0), (4,
  • the corresponding SVID of the S channel that needs to request the SVID to the EVB bridge 1 is set to 0; wherein the S channel request verification message sent by the EVB bridge 2 to the EVB bridge 1 contains ⁇ (5, 0), (6, 0) ⁇ , the corresponding SVID of the S channel that needs to request the SVID from the EVB bridge 2 is set to 0.
  • the EVB bridge 1 after receiving the S channel request verification message sent by the EVB bridge 2, the EVB bridge 1 extracts the S channel information requested by the EVB station carried by the EVB bridge to the EVB bridge 2 ⁇ (5, 0), (6 , 0) ⁇ , and then the S channel information carried by the CDCP message requesting the SVID received from the EVB station with the EVB bridge 1 ⁇ (1)
  • Step S1104A and step S1104B after receiving the CDCP message requesting the SVID sent by the EVB station and the S channel request verification message sent by the EVB bridge 2, the logical port UAP inside the EVB bridge 1 is sent to the logical port UAP inside the EVB site.
  • the CDCP message because the EVB bridge 1 is authenticated, assigns the SVID to the requested three S channels; after receiving the CDCP message requesting the SVID sent by the EVB station and the S channel request verification message sent by the EVB bridge 1, the EVB The logical port UAP inside the bridge 2 sends a CDCP message to the logical port UAP inside the EVB site. Since the EVB bridge 2 passes the authentication, the SVID is assigned to the requested 2 S channels.
  • the CDCP message assigned by the EVB bridge to allocate the SVID contains multiple pairs (SCID, SVID) information.
  • the CDCP message sent by the EVB bridge 1 to the EVB station in step S1104A includes S channel allocation information ⁇ ( 1, 1 ), (2, 2), (3, 4), (4, 6), (5, OxFFF), (6, OxFFF) ⁇ , respectively assign SVID available values for S channels with S channel numbers 2, 3, 4, 2, 4, 6, these SVID usable values and LAG member links between EVB bridge 1 and EVB sites Corresponding;
  • the CDCP message sent by the EVB bridge 2 to the EVB station in step S1104B contains the S channel allocation information ⁇ ( 1, 1 ), (2, OxFFF), (3, OxFFF), (4, OxFFF), (5, 3), (6, 5) ⁇ , assign SVID available values 3 and 5 to the S channel with S channel number 5 and B 6, respectively, these SVIDs
  • the available value corresponds to the LAG member link between the EVB Bridge 2 and the E
  • step S1104A and step S1104B are in parallel relationship in execution time, and there is no order.
  • Step S1105 After receiving the CDCP message of the SVID allocated by the EVB bridge 1 and the EVB bridge 2, the logical port UAP inside the EVB station sends the same content to the logical port UAP inside the EVB bridge 1 and the EVB bridge 2 respectively.
  • the CDCP message informs the EVB Bridge 1 and the EVB Bridge 2 of the SVID that the EVB site has configured for each S channel.
  • the CDCP message of the allocated SVID sent by the EVB station contains multiple pairs (SCID, SVID) information.
  • the CDCP message sent by the EVB station to the same content of EVB Bridge 1 and EVB Bridge 2 contains S channel configuration information ⁇ ( 1, 1 ), (2, 2), (3, 4), (4, 6), ( 5, 3 ), (6, 5 ) ⁇ , indicating that the EVB station assigns SVID available values 2, 4, 6, 3, 5 to the S channels with S channel numbers 2, 3, 4, 5, and 6, respectively.
  • an EVB station includes five ERs, five logical channels need to be established, two logical channels are automatically allocated, and an SVID is allocated by the EVB bridge 1, and three logical channels are allocated an SVID by the EVB bridge 2, and the EVB is allocated.
  • FIG. 12 is a schematic flowchart of a method for establishing a logical channel according to Embodiment 3 of the present invention. As shown in FIG. 12, the process mainly includes the following steps: Step S1201: After starting the LAG and CDCP protocols, the logical port inside the EVB bridge 1 The logical port UAP inside the UAP and EVB bridge 2 respectively sends a CDCP message to the logical port UAP inside the EVB site, and announces the maximum number of S channels supported by the port to the EVB site.
  • the logical port UAP inside the EVB station respectively sends a CDCP message to the logical port UAP inside the EVB bridge 1 and the EVB bridge 2, and a total of 5 internal EVB sites need to be established.
  • S channel where 2 S channels request SVID from EVB bridge 1, and the remaining 3 S channels request SVID from EVB bridge 2.
  • the CDCP message of the request SVID sent by the EVB station contains multiple pairs (SCID, SVID) information.
  • the CDCP message sent by the EVB station to the EVB bridge 1 in step S1202A includes S channel request information ⁇ ( 1, 1 ), (2, 0), (3, 0), (4, OxFFF), (5, OxFFF), (6, OxFFF) ⁇ , where the SVID of the S channel that needs to request the SVID to the EVB bridge 1 is set to 0, and the corresponding SVID of the S channel that needs to request the SVID to the EVB bridge 2 is set to the unavailable value OxFFF, indicating this The SVID will be allocated by other EVB bridges in the same Portal; the CDCP message sent by the EVB station to the EVB bridge 2 in step S1202B contains the S channel.
  • step S1202A and step S1202B are in parallel relationship in execution time, and there is no order.
  • Step S1203 After receiving the CDCP message requesting the SVID sent by the EVB station, the EVB bridge 1 and the EVB bridge 2 mutually send an S channel request verification message, which includes the S channel requested in the CDCP message received by each. Verify that the requests received are complementary.
  • the S channel request verification message sent by the EVB bridges to each other contains multiple pairs (SCID, SVID) information.
  • the S channel request verification message sent by the EVB bridge 1 to the EVB bridge 2 includes ⁇ (2, 0), (3, 0) ⁇ , and the corresponding SVID of the S channel that needs to request the SVID from the EVB bridge 1 is set to 0;
  • the S channel request verification message sent by the EVB bridge 2 to the EVB bridge 1 includes ⁇ (4, 0), (5, 0), (6, 0) ⁇ , and the S channel corresponding to the SVID needs to be requested from the EVB bridge 2
  • the SVID is set to zero.
  • the EVB bridge 1 extracts the S channel information requested by the EVB station carried by the EVB bridge to the EVB bridge 2 ⁇ (4, 0), (5 , 0), (6, 0) ⁇ , and then the S channel information ⁇ ( 1, 1 ), (2, 0), (3, 0) carried by the CDCP message of the request SVID received from the EVB station with the EVB bridge 1 ), (4, OxFFF), (5, OxFFF), (6, OxFFF) ⁇
  • the EVB bridge 2 After the EVB bridge 2 receives the S channel request verification message sent by the EVB bridge 1, the EVB bridge 2 extracts the S channel information requested by the EVB station carried by the EVB bridge 1 ⁇ (2, 0), (3, 0) ⁇ , and then with the EVB bridge 2 received from the EVB site request SVID CD channel message carrying S
  • Step S1204A and step S1204B after receiving the CDCP message requesting the SVID sent by the EVB station and the S channel request verification message sent by the EVB bridge 2, the logical port UAP inside the EVB bridge 1 is sent to the logical port UAP inside the EVB site.
  • the CDCP message because the EVB bridge 1 is authenticated, assigns the SVID to the requested 2 S channels; after receiving the CDCP message requesting the SVID sent by the EVB station and the S channel request verification message sent by the EVB bridge 1, the EVB The logical port UAP inside the bridge 2 sends a CDCP message to the logical port UAP inside the EVB site.
  • the EVB bridge 2 fails to pass the authentication, the SVID is not assigned to the requested three S channels, and only the EVB site is notified that the verification fails.
  • the CDCP message sent by the EVB bridge to allocate SVID or advertisement verification failure contains multiple pairs (SCID, SVID) information.
  • the CDCP message sent by the EVB bridge 1 to the EVB station in step S1204A includes S channel allocation information ⁇ ( 1, 1 ), (2, 2), (3, 4), (4, OxFFF), (5, OxFFF), (6, OxFFF) ⁇ , respectively assign SVID available values 2 and 4 to S channels with S channel numbers 2 and 3, and these SVID usable values correspond to LAG member links between EVB bridge 1 and EVB stations;
  • the CDCP message sent by the EVB bridge 2 to the EVB site in S1204B contains the notification verification failure information ⁇ ( 1, 1 ), (3, OxFFF), (4, OxFFF), (5, OxFFF), (6, OxFFF) ⁇ , All the SVIDs to be assigned are set to the unavailable value OxFFF, indicating that the EVB Bridge 2 verification fails and the SVID cannot be assigned.
  • step S1204A and step S1204B are in parallel relationship in execution time, and there is no order.
  • Step S1205 After receiving the CDCP message of the SVID allocated by the EVB bridge 1 and the CDCP message of the advertisement verification failure sent by the EVB bridge 2, the logical port UAP inside the EVB site is internal to the EVB bridge 1 and the EVB bridge 2 The logical port UAP respectively sends a CDCP message of the same content, and advertises to the EVB bridge 1 and the EVB bridge 2 the SVID that the EVB site has configured for the two S channels.
  • the CDCP message of the allocated SVID sent by the EVB station contains multiple pairs (SCID, SVID) information.
  • the CDCP message sent by the EVB station to the same content of EVB Bridge 1 and EVB Bridge 2 contains S channel configuration information ⁇ ( 1, 1 ), (2, 2), (3, 4), (4, OxFFF), ( 5, OxFFF), (6, OxFFF) ⁇ , indicating that the EVB site is configured with the SVID available values 2 and 4 for the S channel with S channel numbers 2 and 3, respectively, and also indicates that the other 3 S channel numbers are 4, 5, and 6
  • the S channel to be allocated cannot acquire and configure the SVID due to the EVB bridge verification failure.
  • the EVB site is respectively connected to the EVB bridge 1 and the EVB bridge.
  • the EVB station can also inform the EVB bridge of the logical S channel requested by the other EVB bridge in the Portal, and the EVB bridge 1 and the EVB bridge 2 can mutually send the S channel request verification message, and verify the receipt. Whether the requests arrived are complementary.
  • the embodiment of the present invention provides a method for establishing a logical channel in a server dual-homing access scenario, and adopts an extended CDCP protocol, so that an EVB site can utilize a cross-node link aggregation technology through two physical ports. It is connected to two network edge physical switches, which implements load balancing of server traffic and redundancy protection of uplinks.
  • a general-purpose computing device which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种逻辑通道的建立方法及系统、EVB站点及网桥,该方法包括:EVB站点向属于同一LAG入口Portal内的第一EVB网桥和第二EVB网桥分别发送第一CDCP消息,请求所需逻辑S通道对应的SVID,其中,向第一EVB网桥请求所需逻辑S通道中的一部分逻辑S通道的SVID,向第二EVB网桥请求所需逻辑S通道中其余部分逻辑S通道的SVID;EVB站点分别获取第一EVB网桥和第二EVB网桥根据第一CDCP消息分配的SVID;EVB站点将分配的SVID配置给对应的逻辑S通道,并向第一EVB网桥和第二EVB网桥分别发送第二CDCP消息,分别通告EVB站点为所需逻辑S通道配置的所有SVID。

Description

逻辑通道的建立方法及系统、 边缘虚拟桥接站点及网桥 技术领域 本发明涉及通信领域, 具体而言, 涉及一种逻辑通道的建立方法及系统、 边缘虚 拟桥接 (Edge Virtual Bridging, 简称为 EVB) 站点及网桥。 背景技术 随着云计算概念的提出及其研究和部署不断取得进展, 数据中心的虚拟化作为数 据中心的发展方向已经成为了业界的共识。 简单来说, 数据中心就是包含服务器、 存 储设备, 以及把所有服务器和存储设备连接起来的网络等基础设施的一个系统, 而数 据中心的虚拟化主要是指服务器的虚拟化及其引发的数据网络的虚拟化。 所谓服务器 的虚拟化, 就是允许在一台物理服务器 (Physical Server) 上创建多个被称为虚拟机 (Virtual Station, 简称为 VS) 的虚拟服务器, 每一个 VS 配置有单独的因特网协议 (Internet Protocol, 简称为 IP) 地址和媒体接入控制 (Media Access Control, 简称为 MAC) 地址并独立对外提供服务。 为了实现 VS之间的相互通信, 业界又引入了可连 接多个 VS的边缘中继器(Edge Relay,简称为 ER)的概念, ER有两种具体实现形态, 一种被称为虚拟边缘网桥 (Virtual Edge Bridge, 简称为 VEB), 另一种被称为虚拟边 缘端口聚合器 (Virtual Edge Port Aggregator, 简称为 VEPA)。 其中, VEB是一个同时 具备中继功能和交换功能的虚拟交换机, 它可以直接实现所连接 VS之间的数据通信; VEPA是一个只具备中继功能而不具备交换功能的虚拟设备, 它不可以直接实现所连 接 VS之间的数据通信,但它可以把从所连的 VS收到的数据转发到物理交换机上进行 交换,也可以把从物理交换机收到的数据转发到所连的 VS,这样就能够利用连接物理 服务器的外部物理交换机实现所连接 VS之间的数据通信。 由于数据中心服务器虚拟化技术的快速发展和大量的实际部署, 一台物理服务器 上经常需要同时创建多个 ER, 为了对这些 ER进行区分和识别, 就需要在物理服务器 与外部物理交换机之间创建多条逻辑上相互隔离的通道 (简称逻辑通道, Logical Channel), 每个逻辑通道对应一个 ER并作为该 ER所连接 VS的通信路径。 国际标准 组织电气和电子工程师协会 (Institute of Electrical and Electronics Engineers, 简称为 IEEE)制定了一套协议机制, 以实现物理服务器与外部网络边缘物理交换机之间逻辑 通道的自动发现和自动建立, 这套协议机制被称为 S通道发现和配置协议(S-Chatmel Discovery and Configuration Protocol, 简称为 CDCP), 已作为 802.1Qbg边缘虚拟桥接 (Edge Virtual Bridging, 简称为 EVB) 标准的一部分于 2012年 5月获得 IEEE批准。 IEEE 802.1Qbg定义了整体的 EVB架构, 图 1是根据相关技术的 EVB的架构示 意图, 如图 1所示, 一个 EVB站点 (即支持 EVB的物理服务器) 可以包含多个 ER, 每一个 ER又可以通过多个下行中继端口 (Downlink Relay Port, 简称为 DRP)连接多 个虚拟机接口 (Virtual Station Interface, 简称为 VSI), 每一个 VSI代表一个虚拟机。 为了把不同的 ER区隔开来, EVB架构中引入了 S虚拟局域网(S-VLAN)组件, EVB 站点与 EVB网桥 (即支持 EVB的物理交换机) 内部的 S-VLAN组件一道构成了多条 相互隔离的逻辑 S通道 (S-Chamiel), 每一条 S通道都连接着某个 ER的上行中继端 口 (Uplink Relay Port, 简称为 URP) 和 EVB网桥内部租户标识封装组件的某个面向 站点网桥端口 (Station-facing Bridge Port, 简称为 SBP)。 S-VLAN组件的 S通道接入 端口 (S-Channel Access Port, 简称为 CAP) 分别与 URP和 SBP——相连, S-VLAN 组件的另一侧逻辑端口被称为上行接入端口 (Uplink Access Port, 简称为 UAP), 而前 述 802.1Qbg标准定义的 CDCP协议就运行于 EVB站点内部的 UAP与 EVB网桥内部 的 UAP之间。 逻辑上的 S通道在数据平面是通过给进入 S通道的数据帧打上对应于 该 S通道的 S-VLAN标签 (S-VLAN TAG, 简称为 S-TAG), 然后给离开 S通道的数 据帧剥去对应于该 S通道的 S-TAG来实现的。参见表 1,表 1描述了 IEEE 802.1Q-2011 标准规定的 S-TAG的具体封装格式。 表 1
Figure imgf000004_0001
如表 1所示, S-TAG包含 16比特(bits) 的标签协议标识(Tag Protocol ID, 简称 为 TPID)、 3比特的优先级码组 (Priority Code Point, 简称为 PCP)、 1比特的丢弃标 识(Drop Eligible Indicator,简称为 DEI), 以及 12比特的 S虚拟局域网标识(S-VLAN ID,简称为 SVID)。其中, TPID携带一个由标准规定的固定的以太帧类型值(Ethertype value), 802.1Q-2011标准分配给 S-TAG的以太帧类型值是 0x88A8, PCP和 DEI是用 于进行以太帧的服务质量 (Quality of Service, 简称为 QoS) 标识, SVID则是 S-TAG 中真正用来区分和识别不同逻辑 S通道的字段。 IEEE 802.1Qbg标准定义了 CDCP的协议消息封装格式, 并详细说明了 CDCP的 协议交互过程。 CDCP的协议消息采用与 IEEE 802.1AB-2009标准定义的链路层发现 协议 (Link Layer Discovery Protocol, 简称为 LLDP) 消息相同的外层封装, 并通过 CDCP TLV (Type/类型, Length/长度, Value/取值) 的封装形式携带具体的消息内容。 CDCP是一个运行于 EVB站点的 UAP与 EVB网桥的 UAP之间的单向协议, CDCP TLV 中有 1比特的角色(Role)字段来区分协议消息的发送者是 EVB站点还是 EVB网桥, 且 EVB站点内部的 S-VLAN组件和 EVB网桥内部的 S-VLAN组件分别运行 CDCP协 议状态机, 根据收到的 CDCP的协议消息完成协议状态的跳转。 参见图 2, 图 2是根 据相关技术的 IEEE 802.1Qbg标准定义的 CDCP的协议交互过程的流程图。 需要说明 的是, 图 2中, CDCP的协议交互过程中的每一个步骤并不是按时间顺序连续执行的, 而是由相应的 CDCP协议状态所触发的。相关技术的 CDCP的协议交互过程包括以下 主要步骤: 步骤 S201, 在启动 CDCP协议后, EVB网桥内部的逻辑端口 UAP向 EVB站点 内部的逻辑端口 UAP发送 CDCP消息, 向 EVB站点通告本端口所支持的最大 S通道 数量。 步骤 S202, 在启动 CDCP协议后, EVB站点内部的逻辑端口 UAP向 EVB网桥 内部的逻辑端口 UAP发送 CDCP消息, 根据 EVB站点内部所需 S通道的数量, 为每 个 S通道向 EVB网桥请求 SVID。
EVB站点所发送的请求 SVID的 CDCP消息包含多对 (SCID, SVID) 信息, 其 中的 SCID表示 S通道号 (S-Channel ID), 由 EVB站点指配。 在多对(SCID, SVID) 中, 除了协议规定必须包含的缺省 S通道 (1, 1 ) 之外, 其余各对中的 SVID都固定 置为不可用值 0, 表示此 SVID暂未分配, 请求 EVB网桥进行分配。 举例来说, 如果 EVB站点内部包含有 3个 ER, 需要为这 3个 ER的对外通信建立 3个逻辑 S通道, 则 EVB站点向 EVB网桥发送的 CDCP消息会包含 { ( 1, 1 ), (2, 0), (3, 0), (4, 0) }共4对 (SCID, SVID) 信息, 请求 EVB网桥为 S通道号为 2、 3、 4的 S通道分 别分配 SVID。 步骤 S203, 在收到 EVB站点发送的请求 SVID的 CDCP消息后, EVB网桥内部 的逻辑端口 UAP向 EVB站点内部的逻辑端口 UAP发送 CDCP消息, 给被请求的每 个 S通道分配 SVID。
EVB网桥所发送的分配 SVID的 CDCP消息包含多对 (SCID, SVID) 信息, 其 中的 SCID与其收到的 EVB站点发送的 CDCP消息中携带的 SCID—致。在多对( SCID, SVID) 中, 除了协议规定必须包含的缺省 S通道 (1, 1 ) 之外, 其余各对中的 SVID 都分配了可用值。 举例来说, 如果 EVB站点请求建立 3个逻辑 S通道, 且 EVB站点 向 EVB网桥发送的 CDCP消息包含 { ( 1, 1 ), (2, 0),(3, 0), (4, 0) }共 4对(SCID, SVID) 信息, 贝 U EVB 网桥发送的 CDCP消息也包含 { ( 1, 1 ), (2, 7), (3, 345 ), (4, 10) }共4对 (SCID, SVID) 信息, 为 S通道号为 2、 3、 4的 S通道分别分配 了 SVID可用值 7、 345、 10。 步骤 S204, 在收到 EVB网桥发送的分配 SVID的 CDCP消息后, EVB站点内部 的逻辑端口 UAP向 EVB网桥内部的逻辑端口 UAP发送 CDCP消息, 向 EVB网桥通 告 EVB站点已经为每个 S通道配置的 SVID。
EVB站点所发送的已分配 SVID的 CDCP消息包含多对 (SCID, SVID) 信息, 其中的 SCID保持不变。 在多对 (SCID, SVID) 中, 除了协议规定必须包含的缺省 S 通道 (1, 1 )之外, 其余各对中的 SVID都分配了可用值, 表示在收到 EVB网桥分配 的 SVID后, 已经在 EVB站点配置生效。 举例来说, 如果 EVB站点请求建立 3个逻 辑 S通道, 且 EVB网桥向 EVB站点发送的 CDCP消息包含{ ( 1, 1 ), (2, 7), (3, 345 ), (4, 10) }共4对 (SCID, SVID) 信息, 为 S通道号为 2、 3、 4的 S通道分别 分配了 SVID可用值 7、 345、 10, 则 EVB站点向 EVB网桥发送的 CDCP消息同样会 包含 { ( 1, 1 ), (2, 7), (3, 345 ), (4, 10) }共 4对 (SCID, SVID) 信息, 以确认 EVB站点已经为 S通道号为 2、 3、 4的 S通道分别配置了 SVID可用值 7、 345、 10。
IEEE 802.1AX-2008标准定义了单节点链路聚合 (Link Aggregation) 技术, 就是 把一个节点上连接到同一个相邻节点的多条物理链路从逻辑上捆绑起来, 作为一条逻 辑链路 (即链路聚合组, Link Aggregation Group, 简称为 LAG) 使用, 实现业务流量 在组成 LAG的这多条物理成员链路间的负载分担,并在部分成员链路发生故障的情况 下把业务流量快速切换到无故障的其它成员链路上, 实现冗余保护的功能。 目前 IEEE 802.1 AX-REV项目正在对 802.1AX-2008标准定义的单节点链路聚合技术进行修订和 扩展, 目标是要制定跨节点链路聚合的工作机制, 就是可以把一个或多个节点上连接 到多个不同相邻节点的多条物理链路从逻辑上捆绑起来, 作为一条逻辑链路使用, 其 目的与单节点链路聚合技术一致,就是实现业务流量在 LAG成员链路间的负载分担和 冗余保护。 802.1AX-REV标准草案 (版本 D0.2, 2012年 5月公开) 规定, 在实现跨 节点链路聚合技术时, LAG某一侧的单个或多个节点共同组成一个入口 (Portal), 如 果是多个节点组成一个 Portal, 那么在这多个节点之间必须存在物理链路, 该物理链 路被称为入口内部链路 (Intra-Portal Link, 简称为 IPL), 作为一个 Portal内多个节点 之间为完成链路聚合所需交互信息的通道, IPL两端所连节点端口被称为入口内部链 路端口 (Intra-Portal Link Port, 简称为 IPP)。 此外, 802.1 AX-REV标准草案还规定, 在实现跨节点链路聚合技术时, 业务流量在 LAG成员链路间必须基于外层 VLAN标 签进行负载分担, 也就是说, 携带不同外层 VLAN标签(即外层 VLAN标签中含有不 同的 VID) 的数据帧会按照一定的算法被分配到不同的物理成员链路上进行传输, 对 于具体的分配算法标准草案中暂未规定,但要求 LAG两侧的 Portal采用相同的分配算 法, 以保证携带相同外层 VLAN标签的数据帧在 LAG的两个方向上选择相同的物理 成员链路。 在当前数据中心的实际部署中, 为了实现服务器接入外部网络的高带宽和高可靠 性, 要求服务器通过两个物理端口同时接入两个网络边缘物理交换机, 这种接入方式 被称为双归属 (简称双归, Dual-Homing)接入。 目前, 服务器双归接入最常用的方法 就是利用跨节点链路聚合技术。 结合 802.1Qbg标准所定义的现有 EVB架构和利用跨 节点链路聚合技术实现服务器双归接入的需求,图 3是根据相关技术的 EVB站点双归 接入两个 EVB网桥的架构示意图, 如图 3所示, EVB站点内部的 S-VLAN组件分别 与 EVB网桥 1 内部的 S-VLAN组件和 EVB网桥 2内部的 S-VLAN组件相连, EVB 站点自身组成了 LAG—侧的一个 LAG Portal, EVB网桥 1与 EVB网桥 2组成了 LAG 另一侧的一个 LAG Portal, 并通过 IPL相连。 然而, 目前已制定的 IEEE 802.1Qbg标准定义的 CDCP协议, 只适用于运行该协 议的 EVB站点通过一个物理端口接入一个网络边缘物理交换机的情况,而无法适用于 运行该协议的 EVB站点通过两个物理端口,利用跨节点链路聚合技术双归接入两个网 络边缘物理交换机的情况。 针对相关技术中无法利用 CDCP协议实现 EVB站点通过两个物理端口双归接入 两个网络边缘物理交换机的问题, 目前尚未提出有效的解决方案。 发明内容 本发明实施例提供了一种逻辑通道的建立方案, 以至少解决上述相关技术中无法 利用 CDCP协议实现 EVB站点通过两个物理端口双归接入两个网络边缘物理交换机 的问题。 为了实现上述目的, 根据本发明实施例的一个方面, 提供了一种逻辑通道的建立 方法, 包括: EVB站点向属于同一 LAG入口 Portal内的第一 EVB网桥和第二 EVB 网桥分别发送第一 CDCP消息,请求所需逻辑 S通道对应的 SVID,其中,向第一 EVB 网桥请求所需逻辑 S通道中的一部分逻辑 S通道的 SVID, 向第二 EVB网桥请求所需 逻辑 S通道中其余部分逻辑 S通道的 SVID; EVB站点分别获取第一 EVB网桥和第二 EVB网桥根据第一 CDCP消息分配的 SVID; EVB站点将分配的 SVID配置给对应的 逻辑 S通道, 并向第一 EVB网桥和第二 EVB网桥分别发送第二 CDCP消息, 分别通 告 EVB站点为所需逻辑 S通道配置的所有 SVID。 优选地, EVB站点向第一 EVB网桥和第二 EVB网桥分别发送第一 CDCP消息之 前, 该方法还包括: 第一 EVB网桥内部的上行接入端口 UAP和第二 EVB网桥内部的 UAP分别向 EVB站点内部的 UAP发送第三 CDCP消息, 向 EVB站点通告本端口所 支持的最大 S通道数量。 优选地, 第一 CDCP消息中携带有多对 SCID和 SVID信息组, 其中, SVID的取 值包括: 第一预定值或第二预定值, 第一预定值用于指示需要分配与该 SVID成对的 SCID对应的逻辑 S通道的 SVID, 第二预定值用于指示无需分配与该 SVID成对的 SCID对应的逻辑 S通道的 SVID。 优选地, 第一预定值为 0, 第二预定值为 0xFFF。 优选地, 第二 CDCP消息中携带有多对 SCID和 SVID信息组, 其中, SVID的取 值包括: 从第一 EVB网桥获取并配置给对应的逻辑 S通道的 SVID和从第二 EVB网 桥获取并配置给对应的逻辑 S通道的 SVID。 优选地, EVB站点分别获取第一 EVB网桥和第二 EVB网桥根据第一 CDCP消息 分配的 SVID之前, 该方法还包括: 第一 EVB网桥和第二 EVB网桥根据接收到的来 自 EVB站点的第一 CDCP消息,确定自身需要分配 SVID的 SCID,并为确定的 SCID 分配对应的 SVID。 优选地, 第一 EVB网桥和第二 EVB网桥根据接收到的第一 CDCP消息确定自身 需要分配 SVID的 SCID之前, 该方法还包括: 第一 EVB网桥与第二 EVB网桥之间 互发 S通道请求验证消息,对第一 EVB网桥和第二 EVB网桥接收到的来自 EVB站点 的第一 CDCP消息中携带的 S通道信息进行比较, 并确定 EVB站点向第一 EVB网桥 和第二 EVB网桥请求分配 SVID的逻辑 S通道是互补的。 优选地,对第一 EVB网桥和第二 EVB网桥接收到的来自 EVB站点的第一 CDCP 消息中携带的 S通道信息进行比较包括: 分别从第一 EVB网桥和第二 EVB网桥接收 到的第一 CDCP消息中提取需要第一 EVB网桥和第二 EVB网桥分配 SVID的逻辑 S 通道进行比较; 如果相同, 则确定互补, 验证通过; 否则, 不互补, 验证失败, 向 EVB 站点通告与该验证失败对应的逻辑 S通道。 优选地, EVB站点向第一 EVB网桥和第二 EVB网桥分别通告 EVB站点为所需 逻辑 S通道配置的所有 SVID之后, 方法还包括: 第一 EVB网桥和第二 EVB网桥接 收来自 EVB站点的用于通告 EVB站点为所需逻辑 S通道配置的所有 SVID的第二 CDCP消息, 并做相应处理, 其中, 将所有 SVID中本网桥分配的 SVID配置给对应的 逻辑 S通道, 将所有 SVID中非本网桥分配的 SVID保存为链路聚合保护的备用信息。 为了实现上述目的,根据本发明实施例的另一方面,提供了一种 EVB站点,包括: 发送模块,设置为向属于同一 LAG入口 Portal内的第一 EVB网桥和第二 EVB网桥分 别发送第一 CDCP消息, 请求所需逻辑 S通道对应的 SVID, 其中, 向第一 EVB网桥 请求所需逻辑 S通道中的一部分逻辑 S通道的 SVID, 向第二 EVB网桥请求所需逻辑 S通道中其余部分逻辑 S通道的 SVID; 接收模块, 设置为分别获取第一 EVB网桥和 第二 EVB网桥根据第一 CDCP消息分配的 SVID; 配置模块, 设置为将接收模块接收 至啲分配的 SVID配置给对应的逻辑 S通道; 通告模块, 设置为向第一 EVB网桥和第 二 EVB网桥分别发送第二 CDCP消息, 分别通告 EVB站点为所需逻辑 S通道配置的 所有 SVID。 为了实现上述目的,根据本发明实施例的再一方面,提供了一种 EVB网桥,包括: 分配模块, 设置为从接收到的来自 EVB站点的第一 CDCP消息中识别出 EVB站点所 需逻辑 S通道中需要本网桥分配 SVID的一部分逻辑 S通道, 为该部分逻辑 S通道分 配对应的 SVID, 并将分配的 SVID发给 EVB站点, 其中, 第一 CDCP消息用于请求 EVB站点所需逻辑 S通道对应的 SVID,第一 CDCP消息中 EVB站点所需逻辑 S通道 中其余部分逻辑 S通道对应的 SVID由与 EVB网桥属于同一 LAG入口 Portal内的另 一 EVB网桥分配。 优选地, EVB 网桥还包括: 通告信息处理模块, 设置为根据接收到的来自 EVB 站点的用于通告 EVB站点为所需逻辑 S通道配置的所有 SVID的第二 CDCP消息,并 做相应处理, 其中, 将所有 SVID中本网桥分配的 SVID配置给对应的逻辑 S通道, 将所有 SVID中非本网桥分配的 SVID保存为链路聚合保护的备用信息。 优选地, 上述 EVB网桥还包括: 验证模块, 设置为根据接收到的来自 EVB站点 的第一 CDCP消息, 本网桥与另一 EVB网桥互发 S通道请求验证消息, 对本网桥和 另一 EVB网桥接收到的来自 EVB站点的第一 CDCP消息中携带的 S通道信息进行比 较, 并确定 EVB站点向本网桥和另一 EVB网桥请求分配 SVID的逻辑 S通道是互补 的。 为了实现上述目的, 根据本发明实施例的又一方面, 还提供了一种逻辑通道的建 立系统, 包括上述 EVB站点、 上述 EVB网桥, 以及与该 EVB网桥属于同一 LAG入 口 Portal内的另一 EVB网桥。 通过本发明实施例, 采用 EVB站点分别向属于同一 LAG入口 (Portal) 内的第一 EVB网桥和第二 EVB网桥请求所需逻辑 S通道的一部分,然后将分别从第一 EVB网 桥和第二 EVB网桥获取的所分配的 SVID配置给对应的逻辑 S通道, 并分别向第一 EVB网桥和第二 EVB网桥通告 EVB站点为所需逻辑 S通道配置的所有 SVID的方式, 解决了相关技术中无法利用 CDCP协议实现 EVB站点通过两个物理端口双归接入两 个网络边缘物理交换机的问题,实现了服务器流量的负载分担和上行链路的冗余保护, 提高了系统的稳定性和准确性。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据相关技术的 EVB的架构示意图; 图 2是根据相关技术的 IEEE 802.1Qbg标准定义的 CDCP的协议交互过程的流程 图; 图 3是根据相关技术的 EVB站点双归接入两个 EVB网桥的架构示意图; 图 4是根据本发明实施例的逻辑通道的建立方法的流程图; 图 5是根据本发明实施例的 EVB站点的结构框图; 图 6是根据本发明实施例的 EVB网桥的结构框图; 图 7是根据本发明优选实施例的 EVB网桥的结构框图; 图 8是根据本发明实施例的逻辑通道的建立系统的结构框图; 图 9是根据本发明优选实施例的逻辑通道的建立系统的结构框图; 图 10 是根据本发明实施例一的服务器双归接入场景下建立逻辑通道的协议交互 过程的流程图; 图 11是根据本发明实施例二的建立逻辑通道的方法流程示意图; 图 12是根据本发明实施例三的建立逻辑通道的方法流程示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 根据本发明实施例, 提供了一种逻辑通道的建立方法。 图 4是根据本发明实施例 的逻辑通道的建立方法的流程图, 如图 4所示, 该方法包括如下步骤: 步骤 S402, EVB站点向属于同一 LAG入口(Portal)内的第一 EVB网桥(即 EVB 网桥 1 ) 和第二 EVB网桥 (即 EVB网桥 2) 分别发送第一 CDCP消息, 请求所需逻 辑 S通道对应的 SVID, 其中, 向第一 EVB网桥请求所需逻辑 S通道中的一部分逻辑 S通道的 SVID,向第二 EVB网桥请求所需逻辑 S通道中其余部分逻辑 S通道的 SVID; 步骤 S404,EVB站点分别获取第一 EVB网桥和第二 EVB网桥根据上述第一 CDCP 消息分配的 SVID; 步骤 S406, EVB站点将分配的 SVID配置给对应的逻辑 S通道, 并向第一 EVB 网桥和第二 EVB网桥分别发送第二 CDCP消息, 分别通告 EVB站点为所需逻辑 S通 道配置的所有 SVID。 通过上述步骤,采用 EVB站点分别向属于同一 LAG入口(Portal)内的第一 EVB 网桥和第二 EVB网桥请求所需逻辑 S通道的一部分, 然后将分别从第一 EVB网桥和 第二 EVB网桥获取的所分配的 SVID配置给对应的逻辑 S通道, 并分别向第一 EVB 网桥和第二 EVB网桥通告 EVB站点为所需逻辑 S通道配置的所有 SVID的方式, 解 决了相关技术中无法利用 CDCP协议实现 EVB站点通过两个物理端口双归接入两个 网络边缘物理交换机的问题, 实现了服务器流量的负载分担和上行链路的冗余保护, 提高了系统的稳定性和准确性。 优选地, 在步骤 S402之前, 第一 EVB网桥内部的 UAP和第二 EVB网桥内部的 UAP分别向 EVB站点内部的 UAP发送第三 CDCP消息, 向 EVB站点通告本端口所 支持的最大 S通道数量。这样可以使 EVB站点知晓第一 EVB网桥和第二 EVB网桥分 别支持的最大 S通道数量, 在发送为所需要的逻辑 S通道分配 SVID的请求时更有针 对性, 提高了系统的准确性和处理效率。 优选地, 步骤 S402中 EVB站点向第一 EVB网桥和第二 EVB网桥发送的请求分 配 SVID的第一 CDCP消息中携带有多对 SCID和 SVID信息组,其中,信息组中 SVID 的取值包括: 第一预定值或第二预定值,第一预定值用于指示需要分配与该 SVID成对的 SCID 对应的逻辑 S通道的 SVID, 第二预定值用于指示无需分配与该 SVID成对的 SCID对 应的逻辑 S通道的 SVID。 例如, 在实施过程中, 第一预定值可以为 0, 第二预定值可 以为 0xFFF。 该方法简单实用、 可操作性强。 例如, 第一 EVB网桥和第二 EVB网桥在接收到的请求分配 SVID的 CDCP消息 的信息组中 SVID的值为 0的情况下, 确定自身需要为该信息组分配与 SCID对应的 SVID;第一 EVB网桥在接收到的信息组中 SVID的值为 OxFFF的情况下,确定该 SVID 由第二 EVB网桥分配, 第一 EVB网桥无需为该 SVID所在的信息组分配与 SCID对 应的 SVID, 同理,第二 EVB网桥在接收到的信息组中 SVID的值为 OxFFF的情况下, 确定该 SVID由第一 EVB网桥分配, 第二 EVB网桥无需为该 SVID所在的信息组分 配与 SCID对应的 SVID。 优选地, 步骤 S406中通告已配置的所有 SVID的第二 CDCP消息中携带有多对 SCID和 SVID信息组, 其中, SVID的取值包括: 从第一 EVB网桥获取并配置给对应 的逻辑 S通道的 SVID和从第二 EVB网桥获取并配置给对应的逻辑 S通道的 SVID。 优选地,在步骤 S404之前,第一 EVB网桥和第二 EVB网桥可以根据接收到的来 自 EVB站点的第一 CDCP消息,确定自身需要分配 SVID的 SCID,并为确定的 SCID 分配对应的 SVID。 优选地, 第一 EVB网桥和第二 EVB网桥根据接收到的第一 CDCP消息确定自身 需要分配 SVID的 SCID之前, 第一 EVB网桥与第二 EVB网桥之间还可以互发 S通 道请求验证消息, 对第一 EVB网桥和第二 EVB网桥接收到的来自 EVB站点的第一 CDCP消息中携带的 S通道信息进行比较, 并确定 EVB站点向第一 EVB网桥和第二 EVB网桥请求分配 SVID的逻辑 S通道是互补的。 也就是说, 在第一 EVB网桥和第 二 EVB网桥接收到来自 EVB站点请求分配 SVID的第一 CDCP消息后,第一 EVB网 桥与第二 EVB网桥需要通过互发 S通道请求验证消息,验证第一 EVB网桥与第二 EVB 网桥收到的请求分配的逻辑 S通道是否互补, 在验证通过后, 第一 EVB网桥和第二 EVB网桥才会分配 EVB站点所请求的 SVID。这样, 进一步提高了系统的精准度和可 靠性。 其中, 对第一 EVB网桥和第二 EVB网桥接收到的来自 EVB站点的第一 CDCP 消息中携带的 S通道信息进行比较可以包括: 分别从第一 EVB网桥和第二 EVB网桥 接收到的第一 CDCP消息中提取需要第一 EVB网桥和第二 EVB网桥分配 SVID的逻 辑 S通道进行比较; 如果相同, 则确定互补, 验证通过; 否则, 不互补, 验证失败, 向 EVB站点通告与该验证失败对应的逻辑 S通道。第一 EVB网桥和第二 EVB网桥为 验证通过的逻辑 S通道分配所请求的 SVID,如果验证失败,则需要向 EVB站点通告, 第一 EVB网桥和第二 EVB网桥无需为验证失败的逻辑 S通道分配所请求的 SVID。 其中, 在步骤 S406中, EVB站点向第一 EVB网桥和第二 EVB网桥通告为所需 逻辑 S通道配置的所有 SVID时, 由于第一 EVB网桥和第二 EVB网桥没有为验证失 败的逻辑 S通道分配所请求的 SVID, 所以, EVB站点向第一 EVB网桥和第二 EVB 网桥通告为所需逻辑 S通道配置的所有 SVID时, 验证失败的逻辑 S通道没有相应的 SVID, 即验证通过的逻辑 S通道被建立, 而验证失败的逻辑 S通道的没有被建立。 优选地, 在步骤 S406之后, 第一 EVB网桥和第二 EVB网桥接收来自 EVB站点 的用于通告 EVB站点为所需逻辑 S通道配置的所有 SVID的第二 CDCP消息,并做相 应处理, 其中, 将所有 SVID中本网桥分配的 SVID配置给对应的逻辑 S通道, 将所 有 SVID中非本网桥分配的 SVID保存为链路聚合保护的备用信息。 SP, 第一 EVB网 桥和第二 EVB网桥将 EVB站点为所需逻辑 S通道配置的所有 SVID中, 本网桥分配 的 SVID配置给对应的逻辑 S通道, 非本网桥分配的 SVID保存为链路聚合保护的备 用信息。 对应于上述方法,本发明实施例还提供了一种 EVB站点。 图 5是根据本发明实施 例的 EVB站点的结构框图, 如图 5所示, 该 EVB站点 50包括: 发送模块 52, 设置 为向属于同一 LAG入口 (Portal) 内的第一 EVB网桥和第二 EVB网桥分别发送第一 CDCP消息, 请求所需逻辑 S通道对应的 SVID, 其中, 向第一 EVB网桥请求所需逻 辑 S通道中的一部分逻辑 S通道的 SVID, 向第二 EVB网桥请求所需逻辑 S通道中其 余部分逻辑 S通道的 SVID;接收模块 54,设置为分别获取第一 EVB网桥和第二 EVB 网桥根据第一 CDCP消息分配的 SVID; 配置模块 56, 耦合至接收模块 54, 设置为将 接收模块 54接收到的分配的 SVID配置给对应的逻辑 S通道; 以及通告模块 58, 耦 合至配置模块 56,设置为向第一 EVB网桥和第二 EVB网桥分别发送第二 CDCP消息, 分别通告 EVB站点为所需逻辑 S通道配置的所有 SVID。 通过上述 EVB站点 50, 发送模块 52分别向属于同一 LAG入口 (Portal) 内的第 一 EVB网桥和第二 EVB网桥请求所需逻辑 S通道的一部分,然后配置模块 56将通过 接收模块 54分别从第一 EVB网桥和第二 EVB网桥获取的所分配的 SVID配置给对应 的逻辑 S通道, 并由通告模块 58分别向第一 EVB网桥和第二 EVB网桥通告 EVB站 点为所需逻辑 S通道配置的所有 SVID, 解决了相关技术中无法利用 CDCP协议实现 EVB站点通过两个物理端口双归接入两个网络边缘物理交换机的问题, 实现了服务器 流量的负载分担和上行链路的冗余保护, 提高了系统的稳定性和准确性。 根据本发明实施例, 还提供了一种 EVB网桥。 图 6是根据本发明实施例的 EVB 网桥的结构框图, 如图 6所示, 该 EVB网桥 60包括: 分配模块 62, 设置为从接收到 的来自 EVB站点的第一 S通道发现和配置协议 CDCP消息中识别出 EVB站点所需逻 辑 S通道中需要本网桥分配 S虚拟局域网标识 SVID的一部分逻辑 S通道, 为该部分 逻辑 S通道分配对应的 SVID, 并将分配的 SVID发给 EVB站点, 其中, 第一 CDCP 消息用于请求 EVB站点所需逻辑 S通道对应的 SVID, 第一 CDCP消息中 EVB站点 所需逻辑 S通道中其余部分逻辑 S通道对应的 SVID由与 EVB网桥属于同一 LAG入 口 Portal内的另一 EVB网桥分配。 图 7是根据本发明优选实施例的 EVB网桥的结构框图, 如图 7所示, 该 EVB网 桥 60还包括: 通告信息处理模块 72, 设置为根据接收到的来自 EVB站点的用于通告 EVB站点为所需逻辑 S通道配置的所有 SVID的第二 CDCP消息, 并做相应处理, 其 中,将所有 SVID中本网桥分配的 SVID配置给对应的逻辑 S通道,将所有 SVID中非 本网桥分配的 SVID保存为链路聚合保护的备用信息。 优选地, 该 EVB网桥 60还包括: 验证模块 74, 设置为根据接收到的来自 EVB 站点的第一 CDCP消息, 本网桥与另一 EVB网桥互发 S通道请求验证消息, 对本网 桥和另一 EVB网桥接收到的来自 EVB站点的第一 CDCP消息中携带的 S通道信息进 行比较, 并确定 EVB站点向本网桥和另一 EVB网桥请求分配 SVID的逻辑 S通道是 互补的。 本发明实施例还提供了一种逻辑通道的建立系统。 图 8是根据本发明实施例的逻 辑通道的建立系统的结构框图,如图 8所示,该系统包括上述 EVB站点 50、上述 EVB 网桥 60, 以及与该 EVB网桥 60属于同一 LAG入口 Portal内的另一 EVB网桥 60'。 图 9是根据本发明优选实施例的逻辑通道的建立系统的结构框图, 如图 9所示, 该系统的 EVB网桥 60包括: 通告信息处理模块 72和验证模块 74; 与该 EVB网桥 60 属于同一 LAG入口 Portal内的另一 EVB网桥 60'包括: 通告信息处理模块 72'和验证 模块 74'。 EVB网桥 60和 EVB网桥 60'在验证通过的情况下, 才为 EVB站点 50分配 请求的 SVID。 下面结合优选实施例和附图对上述实施例的实现过程进行详细说明。 实施例一 本实施例通过扩展 IEEE 802.1Qbg标准规定的 CDCP协议机制和一个 Portal 内 EVB网桥之间的交互信息, 提供一种服务器双归接入场景下建立逻辑通道的方法, 可 以同时符合现有技术的 EVB的架构和跨节点链路聚合的技术要求,实现服务器流量的 负载分担和上行链路的冗余保护。 图 10 是根据本发明实施例一的服务器双归接入场景下建立逻辑通道的协议交互 过程的流程图, 如图 10所示, 该流程包括以下步骤: 步骤 S 1001, 在启动 LAG和 CDCP协议后, EVB网桥 1内部的逻辑端口 UAP和
EVB网桥 2内部的逻辑端口 UAP分别向 EVB站点内部的逻辑端口 UAP发送 CDCP 消息, 向 EVB站点通告本端口所支持的最大 S通道数量。 步骤 S1002, 在启动 LAG和 CDCP协议后, EVB站点内部的逻辑端口 UAP分别 向 EVB网桥 1和 EVB网桥 2内部的逻辑端口 UAP分别发送 CDCP消息, 根据 EVB 站点内部所需 S通道的数量, 为每个 S通道向 EVB网桥请求 SVID, 其中部分 S通道 向 EVB网桥 1请求, 其余部分 S通道向 EVB网桥 2请求。 其中, EVB站点如何分配向 EVB网桥 1和 EVB网桥 2请求的 S通道数量, 完全 是 EVB站点的本地行为, 既可以是手工指定, 也可以是自动分配。 这里, EVB站点所发送的请求 SVID的 CDCP消息包含多对 (SCID, SVID) 信 息, 且发往 EVB网桥 1的 CDCP消息与发往 EVB网桥 2的 CDCP消息包含相同数量 和赋值的 SCID。 两个 CDCP消息的区别在于, 发往 EVB网桥 1的 CDCP消息所包含 的多对 (SCID, SVID) 中, 需要向 EVB网桥 1请求 SVID的 S通道相应的 SVID置 为 0, 而需要向 EVB网桥 2请求 SVID的 S通道相应的 SVID置为不可用值 OxFFF, 表示此 SVID将由同一 Portal中的其它 EVB网桥进行分配;发往 EVB网桥 2的 CDCP 消息所包含的多对 (SCID, SVID) 中, 需要向 EVB网桥 2请求 SVID的 S通道相应 的 SVID置为 0, 而需要向 EVB网桥 1请求 SVID的 S通道相应的 SVID置为不可用 值 0xFFF, 表示此 SVID将由同一 Portal中的其它 EVB网桥进行分配。 步骤 S1003,在分别收到 EVB站点发送的请求 SVID的 CDCP消息后, EVB网桥 1和 EVB网桥 2相互发送 S通道请求验证消息,其中包含各自收到的 CDCP消息中所 请求的 S通道, 验证收到的请求是否互补。 在实施过程中, EVB网桥 1和 EVB网桥 2在收到对方发送的 S通道请求验证消 息后, 提取其中携带的 EVB站点向对方所请求的 S通道信息, 然后与本方从 EVB站 点收到的请求 SVID的 CDCP消息携带的 S通道信息进行比较, 验证属于同一 Portal 内的 EVB网桥 1和 EVB网桥 2收到的请求是否互补。 步骤 S1004, 在收到 EVB站点发送的请求 SVID的 CDCP消息和 EVB网桥 2发 送的 S通道请求验证消息后, EVB网桥 1内部的逻辑端口 UAP向 EVB站点内部的逻 辑端口 UAP发送 CDCP消息, 如果验证通过, 则给被请求的每个 S通道分配 SVID, 如果验证不通过,则不分配 SVID,只通告验证失败;在收到 EVB站点发送的请求 SVID 的 CDCP消息和 EVB网桥 1发送的 S通道请求验证消息后, EVB网桥 2内部的逻辑 端口 UAP向 EVB站点内部的逻辑端口 UAP发送 CDCP消息, 如果验证通过, 则给 被请求的每个 S通道分配 SVID, 如果验证不通过,则不分配 SVID, 只通告验证失败。 如果验证通过, EVB网桥所发送的分配 SVID的 CDCP消息包含多对 (SCID, SVID)信息,其中的 SCID与其收到的 EVB站点发送的 CDCP消息中携带的 SCID— 致, 对于 EVB站点向本方请求 SVID的 S通道分配可用的 SVID值, 对于 EVB站点 向同一 Portal内另一个 EVB网桥请求 SVID的 S通道不分配可用的 SVID值,保留 SVID 值为 OxFFF; 如果验证不通过, EVB网桥所发送的通告验证失败的 CDCP消息包含多 对 (SCID, SVID) 信息, 其中的 SCID与其收到的 EVB站点发送的 CDCP消息中携 带的 SCID—致, 所有的 SVID都置为不可用值 0xFFF。 如前所述, 目前的 802.1AX-REV标准草案规定, 在实现跨节点链路聚合技术时, 业务流量在 LAG成员链路间必须基于外层 VLAN标签进行负载分担,且要求 LAG两 侧的 Portal采用相同的分配算法, 所以正常情况下, 属于同一个 Portal的 EVB网桥 1 和 EVB网桥 2会给 EVB站点分别请求的 S通道分配不同的 SVID可用值,且两个 EVB 网桥各自分配的 SVID可用值与其各自跟 EVB站点连接的 LAG成员链路相对应。 步骤 S1005, 在收到 EVB网桥发送的分配 SVID的或通告验证失败的 CDCP消息 后, EVB站点内部的逻辑端口 UAP向 EVB网桥 1和 EVB网桥 2内部的逻辑端口 UAP 分别发送相同内容的 CDCP消息。 EVB站点收到的如果是 EVB网桥发送的分配 SVID 的 CDCP消息, 则向 EVB网桥 1和 EVB网桥 2通告 EVB站点已经为每个 S通道配 置的 SVID; EVB站点收到的如果是 EVB网桥发送的通告验证失败的 CDCP消息, 则 向 EVB网桥 1和 EVB网桥 2通告 EVB站点配置相应的 SVID失败。 这里, EVB站点所发送的已分配 SVID的 CDCP消息包含多对 (SCID, SVID) 信息, 其中的 SCID保持不变, 对于已经从 EVB网桥 1或 EVB网桥 2获取了 SVID 的 S通道, 相应的 SVID置为已配置的可用值, 对于因为验证失败而无法从 EVB网桥 1或 EVB网桥 2获取 SVID的 S通道, 相应的 SVID置为不可用值 0xFFF。 可见, 本实施例在 EVB站点双归接入两个 EVB网桥的场景下, 通过扩展 IEEE
802.1Qbg标准定义的 CDCP协议和 IEEE 802.1 AX-REV标准草案定义的参与跨节点链 路聚合的多节点间的交互信息, 使得 EVB站点与 EVB网桥间建立逻辑通道的需求得 到满足, 同时实现了服务器流量的负载分担和上行链路的冗余保护。 并且, 增加了一 个 Portal内 EVB网桥之间的信息交互,使得在 EVB站点双归接入 EVB网桥的场景下, 两个 EVB网桥在协调一致的基础上, 分别给 EVB站点分配 SVID, 分别与 EVB站点 建立逻辑 S通道, 共同满足 EVB站点对于逻辑 S通道的需求。 实施例二 本实施例中, EVB站点包含 5个 ER, 需要建立 5个逻辑通道, 手工指定其中 3 个逻辑通道由 EVB网桥 1分配 SVID, 2个逻辑通道由 EVB网桥 2分配 SVID, EVB 网桥 1和 EVB网桥 2都验证通过并分配了 SVID可用值。 图 11是根据本发明实施例二的建立逻辑通道的方法流程示意图, 如图 11所示, 该过程主要包括如下步骤: 步骤 S1101 , 在启动 LAG和 CDCP协议后, EVB网桥 1内部的逻辑端口 UAP和 EVB网桥 2内部的逻辑端口 UAP分别向 EVB站点内部的逻辑端口 UAP发送 CDCP 消息, 向 EVB站点通告本端口所支持的最大 S通道数量。 步骤 S1102A和步骤 S1102B, 在启动 LAG和 CDCP协议后, EVB站点内部的逻 辑端口 UAP分别向 EVB网桥 1和 EVB网桥 2内部的逻辑端口 UAP分别发送 CDCP 消息, EVB站点内部共需要建立 5个 S通道,其中 3个 S通道向 EVB网桥 1请求 SVID, 其余 2个 S通道向 EVB网桥 2请求 SVID。 这里, EVB站点所发送的请求 SVID的 CDCP消息包含多对 (SCID, SVID) 信 息。步骤 S1102A中 EVB站点发往 EVB网桥 1的 CDCP消息包含 S通道请求信息 {( 1, 1 ), (2, 0), (3, 0), (4, 0), (5, OxFFF), (6, OxFFF) }, 其中需要向 EVB网桥 1 请求 SVID的 S通道相应的 SVID置为 0, 而需要向 EVB网桥 2请求 SVID的 S通道 相应的 SVID置为不可用值 0xFFF, 表示此 SVID将由同一 Portal中的其它 EVB网桥 进行分配; 步骤 S1102B中 EVB站点发往 EVB网桥 2的 CDCP消息包含 S通道请求 信息 { ( 1, 1 ), (2, OxFFF), (3, OxFFF), (4, OxFFF), (5, 0), (6, 0) }, 其中需 要向 EVB网桥 2请求 SVID的 S通道相应的 SVID置为 0, 而需要向 EVB网桥 1请 求 SVID的 S通道相应的 SVID置为不可用值 0xFFF, 表示此 SVID将由同一 Portal 中的其它 EVB网桥进行分配。 需要说明的是, 步骤 S1102A与步骤 S1102B在执行时 间上是并行关系, 没有先后顺序。 步骤 SI 103,在分别收到 EVB站点发送的请求 SVID的 CDCP消息后, EVB网桥 1和 EVB网桥 2相互发送 S通道请求验证消息,其中包含各自收到的 CDCP消息中所 请求的 S通道, 验证收到的请求是否互补。 这里, EVB网桥相互发送的 S通道请求验证消息包含多对(SCID, SVID)信息。 其中 EVB网桥 1发往 EVB网桥 2的 S通道请求验证消息包含{ (2, 0), (3, 0), (4,
0) }, 需要向 EVB网桥 1请求 SVID的 S通道相应的 SVID置为 0; 其中 EVB网桥 2 发往 EVB网桥 1的 S通道请求验证消息包含{ (5, 0), (6, 0) }, 需要向 EVB网桥 2请求 SVID的 S通道相应的 SVID置为 0。 在实施过程中, EVB网桥 1收到 EVB网桥 2发送的 S通道请求验证消息后, 提 取其中携带的 EVB站点向 EVB网桥 2所请求的 S通道信息{ (5, 0), (6, 0) }, 然 后与 EVB网桥 1从 EVB站点收到的请求 SVID的 CDCP消息携带的 S通道信息{ ( 1,
1 ), (2, 0), (3, 0), (4, 0), (5, OxFFF), (6, OxFFF) }进行比较, 发现属于同一 Portal内的 EVB网桥 1和 EVB网桥 2收到的请求是互补的, 所以 EVB网桥 1验证通 过; EVB网桥 2收到 EVB网桥 1发送的 S通道请求验证消息后,提取其中携带的 EVB 站点向 EVB网桥 1所请求的 S通道信息{ (2, 0), (3, 0), (4, 0) }, 然后与 EVB 网桥 2从 EVB站点收到的请求 SVID的 CDCP消息携带的 S通道信息{ ( 1, 1 ), (2, OxFFF), (3, OxFFF), (4, OxFFF), (5, 0), (6, 0) }进行比较, 发现属于同一 Portal 内的 EVB网桥 1和 EVB网桥 2收到的请求是互补的, 所以 EVB网桥 2验证通过。 步骤 S1104A和步骤 S1104B, 在收到 EVB站点发送的请求 SVID的 CDCP消息 和 EVB网桥 2发送的 S通道请求验证消息后, EVB网桥 1 内部的逻辑端口 UAP向 EVB站点内部的逻辑端口 UAP发送 CDCP消息, 由于 EVB网桥 1验证通过, 所以给 被请求的 3个 S通道分配 SVID; 在收到 EVB站点发送的请求 SVID的 CDCP消息和 EVB网桥 1发送的 S通道请求验证消息后, EVB网桥 2内部的逻辑端口 UAP向 EVB 站点内部的逻辑端口 UAP发送 CDCP消息, 由于 EVB网桥 2验证通过, 所以给被请 求的 2个 S通道分配 SVID。 这里, EVB网桥所发送的分配 SVID的 CDCP消息包含多对 (SCID, SVID) 信 息。步骤 S1104A中 EVB网桥 1发往 EVB站点的 CDCP消息包含 S通道分配信息 {( 1, 1 ), (2, 2), (3, 4), (4, 6), (5, OxFFF), (6, OxFFF) }, 分别给 S通道号为 2、 3、 4的 S通道分配了 SVID可用值 2、 4、 6, 这些 SVID可用值和 EVB网桥 1与 EVB 站点间的 LAG成员链路相对应; 步骤 S1104B中 EVB网桥 2发往 EVB站点的 CDCP 消息包含 S通道分配信息 { ( 1, 1 ), (2, OxFFF), (3, OxFFF), (4, OxFFF), (5, 3 ), (6, 5 ) } , 分别给 S通道号为 5禾 B 6的 S通道分配了 SVID可用值 3和 5, 这些 SVID 可用值和 EVB网桥 2与 EVB站点间的 LAG成员链路相对应。 需要说明的是, 步骤 S1104A与步骤 S1104B在执行时间上是并行关系, 没有先后顺序。 步骤 S1105, 在收到 EVB网桥 1和 EVB网桥 2发送的分配 SVID的 CDCP消息 后, EVB站点内部的逻辑端口 UAP向 EVB网桥 1和 EVB网桥 2内部的逻辑端口 UAP 分别发送相同内容的 CDCP消息, 向 EVB网桥 1和 EVB网桥 2通告 EVB站点已经 为每个 S通道配置的 SVID。 这里, EVB站点所发送的已分配 SVID的 CDCP消息包含多对 (SCID, SVID) 信息。 EVB站点发往 EVB网桥 1和 EVB网桥 2的相同内容的 CDCP消息包含 S通道 配置信息{ ( 1, 1 ), (2, 2), (3, 4), (4, 6), (5, 3 ), (6, 5 ) }, 表明 EVB站点分 别给 S通道号为 2、 3、 4、 5、 6的 S通道分配了 SVID可用值 2、 4、 6、 3、 5。 实施例三 本实施例中, EVB站点包含 5个 ER, 需要建立 5个逻辑通道, 自动分配其中 2 个逻辑通道由 EVB网桥 1分配 SVID, 3个逻辑通道由 EVB网桥 2分配 SVID, EVB 网桥 1验证通过并分配了 SVID可用值, EVB网桥 2验证不通过并通告验证失败。 图 12是根据本发明实施例三的建立逻辑通道的方法流程示意图, 如图 12所示, 该过程主要包括如下步骤: 步骤 S1201 , 在启动 LAG和 CDCP协议后, EVB网桥 1内部的逻辑端口 UAP和 EVB网桥 2内部的逻辑端口 UAP分别向 EVB站点内部的逻辑端口 UAP发送 CDCP 消息, 向 EVB站点通告本端口所支持的最大 S通道数量。 步骤 S1202A和步骤 S1202B, 在启动 LAG和 CDCP协议后, EVB站点内部的逻 辑端口 UAP分别向 EVB网桥 1和 EVB网桥 2内部的逻辑端口 UAP分别发送 CDCP 消息, EVB站点内部共需要建立 5个 S通道,其中 2个 S通道向 EVB网桥 1请求 SVID, 其余 3个 S通道向 EVB网桥 2请求 SVID。 这里, EVB站点所发送的请求 SVID的 CDCP消息包含多对 (SCID, SVID) 信 息。步骤 S1202A中 EVB站点发往 EVB网桥 1的 CDCP消息包含 S通道请求信息 {( 1, 1 ), (2, 0), (3, 0), (4, OxFFF), (5, OxFFF), (6, OxFFF) }, 其中需要向 EVB 网桥 1请求 SVID的 S通道相应的 SVID置为 0,而需要向 EVB网桥 2请求 SVID的 S 通道相应的 SVID置为不可用值 OxFFF, 表示此 SVID将由同一 Portal中的其它 EVB 网桥进行分配; 步骤 S1202B中 EVB站点发往 EVB网桥 2的 CDCP消息包含 S通道 请求信息{ ( 1, 1 ), (3, OxFFF), (4, 0), (5, 0), (6, 0) }, 其中需要向 EVB 网 桥 2请求 SVID的 S通道相应的 SVID置为 0, 而需要向 EVB网桥 1请求 SVID的 S 通道相应的 SVID置为不可用值 0xFFF, 表示此 SVID将由同一 Portal中的其它 EVB 网桥进行分配。需要说明的是,步骤 S1202A与步骤 S1202B在执行时间上是并行关系, 没有先后顺序。 步骤 S1203,在分别收到 EVB站点发送的请求 SVID的 CDCP消息后, EVB网桥 1和 EVB网桥 2相互发送 S通道请求验证消息,其中包含各自收到的 CDCP消息中所 请求的 S通道, 验证收到的请求是否互补。 这里, EVB网桥相互发送的 S通道请求验证消息包含多对(SCID, SVID)信息。 其中 EVB网桥 1发往 EVB网桥 2的 S通道请求验证消息包含{ (2, 0), (3, 0) }, 需要向 EVB网桥 1请求 SVID的 S通道相应的 SVID置为 0; 其中 EVB网桥 2发往 EVB网桥 1 的 S通道请求验证消息包含{ (4, 0), (5, 0), (6, 0) }, 需要向 EVB 网桥 2请求 SVID的 S通道相应的 SVID置为 0。 在实施过程中, EVB网桥 1收到 EVB网桥 2发送的 S通道请求验证消息后, 提 取其中携带的 EVB站点向 EVB网桥 2所请求的 S通道信息 { (4,0),(5, 0),(6,0) }, 然后与 EVB网桥 1从 EVB站点收到的请求 SVID的 CDCP消息携带的 S通道信息{( 1, 1 ), (2, 0), (3, 0), (4, OxFFF), (5, OxFFF), (6, OxFFF) }进行比较, 发现属于 同一 Portal内的 EVB网桥 1和 EVB网桥 2收到的请求是互补的,所以 EVB网桥 1验 证通过; EVB网桥 2收到 EVB网桥 1发送的 S通道请求验证消息后, 提取其中携带 的 EVB站点向 EVB网桥 1所请求的 S通道信息{ (2, 0), (3, 0) } , 然后与 EVB网 桥 2从 EVB站点收到的请求 SVID的 CDCP消息携带的 S通道信息 {( 1 , 1 ), (3, OxFFF ), (4, 0), (5, 0), (6, 0) }进行比较, 发现属于同一 Portal内的 EVB网桥 1和 EVB 网桥 2收到的请求不是互补的, 所以 EVB网桥 2验证不通过。 步骤 S1204A和步骤 S1204B, 在收到 EVB站点发送的请求 SVID的 CDCP消息 和 EVB网桥 2发送的 S通道请求验证消息后, EVB网桥 1 内部的逻辑端口 UAP向 EVB站点内部的逻辑端口 UAP发送 CDCP消息, 由于 EVB网桥 1验证通过, 所以给 被请求的 2个 S通道分配 SVID; 在收到 EVB站点发送的请求 SVID的 CDCP消息和 EVB网桥 1发送的 S通道请求验证消息后, EVB网桥 2内部的逻辑端口 UAP向 EVB 站点内部的逻辑端口 UAP发送 CDCP消息, 由于 EVB网桥 2验证不通过, 所以不会 给被请求的 3个 S通道分配 SVID, 只向 EVB站点通告验证失败。 这里, EVB 网桥所发送的分配 SVID 或通告验证失败的 CDCP 消息包含多对 (SCID, SVID)信息。步骤 S1204A中 EVB网桥 1发往 EVB站点的 CDCP消息包含 S通道分配信息 { ( 1, 1 ), (2, 2), (3, 4), (4, OxFFF), (5, OxFFF), (6, OxFFF) }, 分别给 S通道号为 2、 3的 S通道分配了 SVID可用值 2、 4,这些 SVID可用值和 EVB 网桥 1与 EVB站点间的 LAG成员链路相对应;步骤 S1204B中 EVB网桥 2发往 EVB 站点的 CDCP消息包含通告验证失败信息 { ( 1, 1 ), (3, OxFFF), (4, OxFFF), (5, OxFFF), (6, OxFFF) } , 把所有待分配的 SVID都置为不可用值 OxFFF, 表明 EVB 网桥 2验证失败, 无法分配 SVID。 需要说明的是, 步骤 S1204A与步骤 S1204B在执 行时间上是并行关系, 没有先后顺序。 步骤 S1205, 在收到 EVB网桥 1发送的分配 SVID的 CDCP消息和 EVB网桥 2 发送的通告验证失败的 CDCP消息后, EVB站点内部的逻辑端口 UAP向 EVB网桥 1 和 EVB网桥 2内部的逻辑端口 UAP分别发送相同内容的 CDCP消息, 向 EVB网桥 1 和 EVB网桥 2通告 EVB站点已经为 2个 S通道配置的 SVID。 这里, EVB站点所发送的已分配 SVID的 CDCP消息包含多对 (SCID, SVID) 信息。 EVB站点发往 EVB网桥 1和 EVB网桥 2的相同内容的 CDCP消息包含 S通道 配置信息{ ( 1, 1 ), (2, 2), (3, 4), (4, OxFFF), (5, OxFFF), (6, OxFFF) }, 表 明 EVB站点分别给 S通道号为 2、 3的 S通道配置了 SVID可用值 2、 4, 还表明另外 3个 S通道号为 4、 5、 6的待分配的 S通道由于 EVB网桥验证失败而无法获取和配置 SVID。 通过上述实施例可知,本发明实施例是 EVB站点分别向 EVB网桥 1和 EVB网桥
2请求所需逻辑 S通道的一部分, 然后在分别获取和配置 EVB网桥 1和 EVB网桥 2 所分配的 SVID后, 向两个 EVB网桥分别通告获取和配置的所有 SVID。 此外, EVB 站点还可以向 EVB网桥告知其向 Portal中另一 EVB网桥所请求的逻辑 S通道, EVB 网桥 1与 EVB网桥 2之间可以互发 S通道请求验证消息,并验证收到的请求是否互补。 综上所述,本发明实施例提供了一种服务器双归接入场景下建立逻辑通道的方法, 采用扩展 CDCP协议的方式, 使得 EVB站点可以通过两个物理端口利用跨节点链路 聚合技术双归接入两个网络边缘物理交换机, 实现了服务器流量的负载分担和上行链 路的冗余保护。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而可以将 它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限 制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种逻辑通道的建立方法, 包括:
边缘虚拟桥接 EVB站点向属于同一链路聚合组 LAG入口 Portal内的第一 EVB网桥和第二 EVB网桥分别发送第一 S通道发现和配置协议 CDCP消息, 请求所需逻辑 S通道对应的 S虚拟局域网标识 SVID, 其中, 向所述第一 EVB 网桥请求所述所需逻辑 S通道中的一部分逻辑 S通道的 SVID,向所述第二 EVB 网桥请求所述所需逻辑 S通道中其余部分逻辑 S通道的 SVID;
所述 EVB站点分别获取所述第一 EVB网桥和所述第二 EVB网桥根据所述 第一 CDCP消息分配的 SVID;
所述 EVB站点将所述分配的 SVID配置给对应的逻辑 S通道,并向所述第 一 EVB网桥和所述第二 EVB网桥分别发送第二 CDCP消息,分别通告所述 EVB 站点为所述所需逻辑 S通道配置的所有 SVID。
2. 根据权利要求 1所述的方法, 其中, 所述 EVB站点向所述第一 EVB网桥和所 述第二 EVB网桥分别发送所述第一 CDCP消息之前, 所述方法还包括:
所述第一 EVB网桥内部的上行接入端口 UAP和所述第二 EVB网桥内部的 UAP分别向所述 EVB站点内部的 UAP发送第三 CDCP消息, 向所述 EVB站 点通告本端口所支持的最大 S通道数量。
3. 根据权利要求 1所述的方法, 其中, 所述第一 CDCP消息中携带有多对 SCID 和 SVID信息组, 其中, 所述 SVID的取值包括: 第一预定值或第二预定值, 所述第一预定值用于指示需要分配与该 SVID成对的 SCID对应的逻辑 S通道 的 SVID, 所述第二预定值用于指示无需分配与该 SVID成对的 SCID对应的逻 辑 S通道的 SVID。
4. 根据权利要求 3所述的方法, 其中, 所述第一预定值为 0, 所述第二预定值为 0xFFF。
5. 根据权利要求 1所述的方法, 其中, 所述第二 CDCP消息中携带有多对 SCID 和 SVID信息组, 其中, 所述 SVID的取值包括: 从所述第一 EVB网桥获取并 配置给对应的逻辑 S通道的 SVID和从所述第二 EVB网桥获取并配置给对应的 逻辑 S通道的 SVID。
6. 根据权利要求 1所述的方法, 其中, 所述 EVB站点分别获取所述第一 EVB网 桥和所述第二 EVB网桥根据所述第一 CDCP消息分配的 SVID之前,所述方法 还包括:
所述第一 EVB网桥和所述第二 EVB网桥根据接收到的来自所述 EVB站点 的所述第一 CDCP消息, 确定自身需要分配 SVID的 SCID, 并为确定的 SCID 分配对应的 SVID。
7. 根据权利要求 6所述的方法, 其中, 所述第一 EVB网桥和所述第二 EVB网桥 根据接收到的所述第一 CDCP消息确定自身需要分配 SVID的 SCID之前, 所 述方法还包括:
所述第一 EVB网桥与所述第二 EVB网桥之间互发 S通道请求验证消息, 对所述第一 EVB网桥和所述第二 EVB网桥接收到的来自所述 EVB站点的所述 第一 CDCP消息中携带的 S通道信息进行比较, 并确定所述 EVB站点向所述 第一 EVB网桥和所述第二 EVB网桥请求分配 SVID的逻辑 S通道是互补的。
8. 根据权利要求 7所述的方法, 其中, 对所述第一 EVB网桥和所述第二 EVB网 桥接收到的来自所述 EVB站点的所述第一 CDCP消息中携带的 S通道信息进 行比较包括:
分别从所述第一 EVB网桥和所述第二 EVB网桥接收到的所述第一 CDCP 消息中提取需要所述第一 EVB网桥和所述第二 EVB网桥分配 SVID的逻辑 S 通道进行比较;
如果相同, 则确定互补,验证通过; 否则,不互补,验证失败, 向所述 EVB 站点通告与该验证失败对应的逻辑 S通道。
9. 根据权利要求 1所述的方法, 其中, 所述 EVB站点向所述第一 EVB网桥和所 述第二 EVB 网桥分别通告所述 EVB站点为所述所需逻辑 S通道配置的所有 SVID之后, 所述方法还包括:
所述第一 EVB网桥和所述第二 EVB网桥接收来自所述 EVB站点的用于通 告所述 EVB站点为所述所需逻辑 S通道配置的所有 SVID的所述第二 CDCP 消息, 并做相应处理, 其中, 将所述所有 SVID中本网桥分配的 SVID配置给 对应的逻辑 S通道, 将所述所有 SVID中非本网桥分配的 SVID保存为链路聚 合保护的备用信息。
10. 一种边缘虚拟桥接 EVB站点, 包括:
发送模块, 设置为向属于同一链路聚合组 LAG入口 Portal内的第一 EVB 网桥和第二 EVB网桥分别发送第一 S通道发现和配置协议 CDCP消息, 请求 所需逻辑 S通道对应的 S虚拟局域网标识 SVID, 其中, 向所述第一 EVB网桥 请求所述所需逻辑 S通道中的一部分逻辑 S通道的 SVID, 向所述第二 EVB网 桥请求所述所需逻辑 S通道中其余部分逻辑 S通道的 SVID;
接收模块, 设置为分别获取所述第一 EVB网桥和所述第二 EVB网桥根据 所述第一 CDCP消息分配的 SVID;
配置模块, 设置为将所述接收模块接收到的所述分配的 SVID配置给对应 的逻辑 S通道;
通告模块, 设置为向所述第一 EVB网桥和所述第二 EVB网桥分别发送第 二 CDCP消息, 分别通告所述 EVB站点为所述所需逻辑 S通道配置的所有 SVID。
11. 一种边缘虚拟桥接 EVB网桥, 包括:
分配模块, 设置为从接收到的来自所述 EVB站点的第一 S通道发现和配 置协议 CDCP消息中识别出所述 EVB站点所需逻辑 S通道中需要本网桥分配 S 虚拟局域网标识 SVID的一部分逻辑 S通道, 为该部分逻辑 S通道分配对应的 SVID, 并将分配的 SVID发给所述 EVB站点, 其中, 所述第一 CDCP消息用 于请求所述 EVB站点所需逻辑 S通道对应的 SVID,所述第一 CDCP消息中所 述 EVB站点所需逻辑 S通道中其余部分逻辑 S通道对应的 SVID由与所述 EVB 网桥属于同一链路聚合组 LAG入口 Portal内的另一 EVB网桥分配。
12. 根据权利要求 11所述的网桥, 其中, 所述 EVB网桥还包括:
通告信息处理模块, 设置为根据接收到的来自 EVB 站点的用于通告所述 EVB站点为所述所需逻辑 S通道配置的所有 SVID的第二 CDCP消息,并做相 应处理, 其中, 将所述所有 SVID中本网桥分配的 SVID配置给对应的逻辑 S 通道, 将所述所有 SVID中非本网桥分配的 SVID保存为链路聚合保护的备用 信息。
13. 根据权利要求 11所述的 EVB网桥, 其中, 还包括:
验证模块, 设置为根据接收到的来自所述 EVB站点的所述第一 CDCP消 息, 本网桥与所述另一 EVB网桥互发 S通道请求验证消息, 对本网桥和所述 另一 EVB网桥接收到的来自所述 EVB站点的所述第一 CDCP消息中携带的 S 通道信息进行比较, 并确定所述 EVB站点向本网桥和所述另一 EVB网桥请求 分配 SVID的逻辑 S通道是互补的。
14. 一种逻辑通道的建立系统, 包括权利要求 10所述的 EVB站点、 权利要求 11 至 13中任一项所述的 EVB网桥,以及与该 EVB网桥属于同一链路聚合组 LAG 入口 Portal内的所述另一 EVB网桥。
PCT/CN2013/076885 2012-07-24 2013-06-06 逻辑通道的建立方法及系统、边缘虚拟桥接站点及网桥 WO2014015715A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13823229.3A EP2879338B1 (en) 2012-07-24 2013-06-06 Logical channel establishing method and system, edge virtual bridging station, and bridge
US14/417,125 US9467340B2 (en) 2012-07-24 2013-06-06 Logical channel establishing method and system, edge virtual bridging station and bridge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210257562.5A CN103580979B (zh) 2012-07-24 2012-07-24 逻辑通道的建立方法及系统、边缘虚拟桥接站点及网桥
CN201210257562.5 2012-07-24

Publications (1)

Publication Number Publication Date
WO2014015715A1 true WO2014015715A1 (zh) 2014-01-30

Family

ID=49996564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076885 WO2014015715A1 (zh) 2012-07-24 2013-06-06 逻辑通道的建立方法及系统、边缘虚拟桥接站点及网桥

Country Status (4)

Country Link
US (1) US9467340B2 (zh)
EP (1) EP2879338B1 (zh)
CN (1) CN103580979B (zh)
WO (1) WO2014015715A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806950B2 (en) * 2015-02-26 2017-10-31 Cisco Technology, Inc. System and method for automatically detecting and configuring server uplink network interface

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795603B (zh) * 2012-11-01 2017-08-11 新华三技术有限公司 一种基于多网卡的边缘虚拟桥接的实现方法和设备
US9473420B2 (en) 2013-03-13 2016-10-18 International Business Machines Corporation Metrics and forwarding actions on logical switch partitions in a distributed network switch
US9282056B2 (en) * 2013-03-13 2016-03-08 International Business Machines Corporation Metrics and forwarding actions on logical switch partitions in a distributed network switch
CN104734931B (zh) * 2015-03-31 2018-06-05 华为技术有限公司 一种虚拟网络功能间链路建立方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404360A (zh) * 2010-09-09 2012-04-04 中兴通讯股份有限公司 实现M-channel控制的方法和装置
CN102480412A (zh) * 2010-11-24 2012-05-30 中兴通讯股份有限公司 实现S-channel建立的方法和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8401026B2 (en) * 2009-05-18 2013-03-19 Cisco Technology, Inc. Achieving about an equal number of active links across chassis in a virtual port-channel environment
US8125928B2 (en) * 2009-07-24 2012-02-28 Juniper Networks, Inc. Routing frames in a shortest path computer network for a multi-homed legacy bridge node
US8724456B1 (en) * 2010-05-19 2014-05-13 Juniper Networks, Inc. Network path selection for multi-homed edges to ensure end-to-end resiliency
US8665883B2 (en) * 2011-02-28 2014-03-04 Alcatel Lucent Generalized multi-homing for virtual private LAN services
US8929255B2 (en) * 2011-12-20 2015-01-06 Dell Products, Lp System and method for input/output virtualization using virtualized switch aggregation zones

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404360A (zh) * 2010-09-09 2012-04-04 中兴通讯股份有限公司 实现M-channel控制的方法和装置
CN102480412A (zh) * 2010-11-24 2012-05-30 中兴通讯股份有限公司 实现S-channel建立的方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"DCB AND INTERWORKING TASK GROUPS OF IEEE 802.1, Draft Standard for Local and Metropolitan Area Networks-MAC Bridges and Virtual Bridged Local Area Networks-Amendment XX: Edge Virtual Bridging", IEEE P802.1QBG/D2.1, 30 January 2012 (2012-01-30), pages 135 - 137, XP008176052 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806950B2 (en) * 2015-02-26 2017-10-31 Cisco Technology, Inc. System and method for automatically detecting and configuring server uplink network interface
US10374896B2 (en) 2015-02-26 2019-08-06 Cisco Technology, Inc. System and method for automatically detecting and configuring server uplink network interface

Also Published As

Publication number Publication date
US9467340B2 (en) 2016-10-11
CN103580979A (zh) 2014-02-12
EP2879338A1 (en) 2015-06-03
EP2879338A4 (en) 2016-03-09
EP2879338B1 (en) 2019-04-10
US20150172126A1 (en) 2015-06-18
CN103580979B (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
US10554542B2 (en) Label distribution method and device
CN108574616B (zh) 一种处理路由的方法、设备及系统
CN109586972B (zh) 用户终端设备的接入方法、系统和宽带网络网关
US9300524B2 (en) Message forwarding between geographically dispersed network sites
US10523464B2 (en) Multi-homed access
EP3174261B1 (en) Multilink fusion method, server and client
WO2014015715A1 (zh) 逻辑通道的建立方法及系统、边缘虚拟桥接站点及网桥
WO2022143818A1 (zh) 故障处理方法、控制面网元、切换决策网元及相关设备
CN105490937B (zh) 以太虚拟网络网关切换方法和服务商边缘节点设备
WO2021077995A1 (zh) 网络切片共享上联口的方法、装置及存储介质
WO2014180199A1 (zh) 网络建立的方法及控制设备
WO2015081534A1 (zh) 一种数据报文的传输系统、传输方法和设备
WO2021164259A1 (zh) 报文传输方法、装置及系统
US20230018346A1 (en) Dial-up packet processing method, network element, system, and network device
US12095646B2 (en) Message sending and receiving methods and apparatuses, and communication system
WO2022143572A1 (zh) 一种报文处理方法及相关设备
CN115776391A (zh) 通信隧道的建立方法、装置、系统及电子设备
CN117294713A (zh) 一种应用在云平台针对vlan网络实现多活负载均衡的方法
WO2020221458A1 (en) Virtual network topology
CN111565141A (zh) 数据传输方法、第一pe和第二pe
WO2013053293A1 (zh) 一种标识网与传统网络互联互通的方法、asr及isr

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823229

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14417125

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013823229

Country of ref document: EP