WO2022143818A1 - 故障处理方法、控制面网元、切换决策网元及相关设备 - Google Patents

故障处理方法、控制面网元、切换决策网元及相关设备 Download PDF

Info

Publication number
WO2022143818A1
WO2022143818A1 PCT/CN2021/142712 CN2021142712W WO2022143818A1 WO 2022143818 A1 WO2022143818 A1 WO 2022143818A1 CN 2021142712 W CN2021142712 W CN 2021142712W WO 2022143818 A1 WO2022143818 A1 WO 2022143818A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
user
plane network
terminal device
usf
Prior art date
Application number
PCT/CN2021/142712
Other languages
English (en)
French (fr)
Inventor
彭涛
余舟毅
花荣荣
王晓凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21914550.5A priority Critical patent/EP4262256A4/en
Publication of WO2022143818A1 publication Critical patent/WO2022143818A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/40Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • H04L41/0836Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability to enhance reliability, e.g. reduce downtime
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • H04L41/0897Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities by horizontal or vertical scaling of resources, or by migrating entities, e.g. virtual resources or entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2425Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/084Load balancing or load distribution among network function virtualisation [NFV] entities; among edge computing entities, e.g. multi-access edge computing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/088Load balancing or load distribution among core entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5019Ensuring fulfilment of SLA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication

Definitions

  • the present application relates to the technical field of broadband networks, and in particular, to a fault handling method, a control plane network element, a handover decision network element, and related equipment.
  • a broadband network gateway is a bridge for terminal devices to access broadband networks.
  • BNG is mainly used to manage sessions initiated by terminal devices, and to forward traffic of terminal devices.
  • SDN software-defined network
  • NFV network function virtual
  • the BNG with decoupled forwarding and control functions includes a control plane (CP) network element and multiple user plane (user plane) network elements.
  • the control plane network element is used to manage multiple user plane network elements. Any user plane network element is used to forward the traffic of the terminal device.
  • SF steering function
  • USF user steering function
  • the present application provides a fault handling method, a control plane network element, a handover decision network element and related equipment, which can prevent the terminal equipment from being unable to access the network or disconnecting from the network if there is a network element failure during the communication process of the terminal equipment through the BNG. line appears.
  • the technical solution is as follows:
  • a fault handling method is provided.
  • the method is executed by a control plane network element included in a broadband network gateway BNG in the network, the BNG further includes a plurality of user plane network elements, and the network further includes a handover decision network element and a terminal. equipment, the handover decision network element is used to divert the traffic of the terminal equipment to one user plane network element among the multiple user plane network elements.
  • a control plane network element receives an online request from a terminal device, and the terminal device sends an online request to a control plane network element through a first user plane network element, where the first user plane network element is one of multiple user plane network elements.
  • the control plane network element determines that the handover decision network element is faulty, the terminal device is controlled to send a data packet based on the first user plane network element.
  • the control plane network element may skip the handover decision-making unit
  • the decision directly controls the terminal device to send data packets based on the first user plane network element used by the online request. That is, the present application provides a way in which the terminal device can continue to access the network in the case of failure of the handover decision network element. In other words, the present application can realize an escape path in a single network element failure scenario, so that the terminal device can still go online normally.
  • the implementation process of controlling the terminal device to send the datagram based on the first user plane network element may be: the control plane network element sends the user table to the first user plane network element The user entry carries the user information of the terminal device, and the first user plane network element forwards the data packet from the terminal device based on the user entry.
  • control plane network element can skip the decision of the handover decision unit and directly perform the relevant configuration on the first user plane network element, so that in the case of a failure of the handover decision network element, the terminal equipment can continue to connect to the network.
  • the handover decision network element includes any one or more of a handover function SF network element, a user handover function USF network element, and a software-defined network SDN control network element kind.
  • the failure of the handover decision NE includes at least one of the following situations:
  • control plane network element After the control plane network element sends a fault detection request to the USF network element, it does not receive the detection result message returned by the USF network element within the first reference time period, or, after the control plane network element sends a fault detection request to the USF network element, it receives The detection result message returned by the USF network element, the detection result message indicates that the USF network element or the SF network element is faulty, or the SDN control network element is faulty; or,
  • the detection result message returned by the SDN control network element is not received within the second reference time period, or, after the control plane network element sends a fault detection request to the SDN control network element , the detection result message returned by the SDN control network element is received, and the detection result message indicates that the SF network element is faulty or the SDN control network element is faulty; or,
  • control plane network element After the control plane network element sends a request for using the migration policy to the USF network element based on the online request, it does not receive the user migration result returned by the USF network element within the third reference time period, or receives the detection result message returned by the USF network element.
  • the result message indicates that the USF network element, or the SF network element, is faulty, or the SDN control network element is faulty.
  • the control plane network element after receiving the online request from the terminal device, the control plane network element can actively detect whether the handover decision unit is faulty, or can directly send a user migration policy request to the USF network element, and based on the USF network element, the user migration policy The response to the request is used to determine whether the switching decision unit fails.
  • the flexibility of the control plane network element to detect whether the switching decision network element is faulty is improved.
  • the control plane network element may also receive the handover decision network element in the The user migration result sent after the fault is eliminated.
  • the user migration result carries the identifier of the second user plane network element.
  • the second user plane network element is another user plane network element except the first user plane network element; the control plane network element is directed to the user plane network element.
  • the second user plane network element sends the user entry, the user entry carries the user information of the terminal device, and the second user plane network element forwards the data packet from the terminal device based on the user entry; the control plane network element receives the second user plane After the network element returns the table entry configuration success message, it sends the table entry configuration success message to the handover decision network element, so that the handover decision network element establishes the mapping relationship between the terminal device and the second user plane network element, and based on the terminal device and the second user plane network element. The mapping relationship between the second user plane network elements forwards the data packet of the terminal device to the second user plane network element.
  • the control plane network element controls the terminal device to send data packets based on the initial user plane network element.
  • the terminal equipment continues to access the network in the case of failure of the switching decision network element.
  • data packets are continuously forwarded in this way, scheduling among user plane network elements in the network cannot be achieved, and load imbalance among user plane network elements is likely to occur. Therefore, after the handover decision NE fails, once the control plane NE detects that the handover decision NE has been eliminated, it triggers the handover decision NE to perform user migration for the terminal equipment, so as to realize reasonable scheduling among the user plane NEs. .
  • the first user plane network element is a preconfigured user plane network element;
  • the first user plane network element is the user plane network element used by the terminal device to send data packets before the last offline.
  • the above-mentioned determination method for the first user plane network element can improve the success rate of the terminal accessing the network in the case of a failure of the handover decision network element.
  • a fault handling method is provided, the method is executed by a control plane network element included in a broadband network gateway BNG in the network, the BNG further includes a plurality of user plane network elements, and the network further includes a handover decision network element and a terminal equipment, the handover decision network element is used to divert the traffic of the terminal equipment to one user plane network element among the multiple user plane network elements.
  • the control plane network element receives the first relocation configuration instruction sent by the handover decision unit, the first relocation configuration instruction carries the identifier of the first user plane network element and the identifier of the terminal equipment, and the first relocation configuration instruction instructs the terminal equipment
  • the data packets are forwarded by the first user plane network element; after the control plane network element successfully sends the user entry to the first user plane network element based on the identifier of the first user plane network element, if the control plane network element determines the handover decision network element If the element fails, a user entry rollback instruction is sent to the first user plane network element, and the user entry rollback instruction instructs the first user plane network element to delete the added user entry.
  • the user entry carries user information of the terminal device, and the first user plane network element forwards the data packet of the terminal device based on the user entry.
  • the switching decision network element fails (for example, one or more of the USF network element, SDN control network element or SF network element fails) , which will cause the message exchange between the control plane network element and the handover decision network to fail.
  • the control plane network element supports the rollback of user entries that have been delivered, thereby preventing the terminal device from going offline.
  • the handover decision network element includes any one or more of a handover function SF network element, a user handover function USF network element, and a software-defined network SDN control network element kind.
  • the failure of the handover decision NE includes at least one of the following situations:
  • the control plane network element After the control plane network element sends a fault detection request to the USF network element, it does not receive the detection result message returned by the USF network element within the first reference time period, or, after the control plane network element sends a fault detection request to the USF network element, it receives The detection result message returned by the USF network element, the detection result message indicates that the USF network element or the SF network element is faulty or the SDN control network element is faulty; or,
  • the detection result message returned by the SDN control network element is not received within the second reference time period, or, after the control plane network element sends a fault detection request to the SDN control network element , the detection result message returned by the SDN control network element is received, and the detection result message indicates that the SF network element is faulty or the SDN control network element is faulty; or,
  • the control plane network element After the control plane network element successfully sends the user entry to the first user plane network element based on the identifier of the first user plane network element, the control plane network element sends an entry configuration success message to the USF network element. After the USF sends an entry configuration successful message, it does not receive the message returned by the USF network element within the third reference time period. Failure message, the migration failure message indicates that the USF network element, the SDN control network element or the SF network element is faulty.
  • control plane network element can actively detect whether the handover decision unit is faulty, or can directly send a table entry configuration success message to the USF network element, and determine the handover decision based on the USF network element's response to the table entry configuration success message. Whether the unit is faulty.
  • the flexibility of the control plane network element to detect whether the switching decision network element is faulty is improved.
  • the USF network element is used to control the SF network element to bind the terminal device to the last sending The user plane network element used by the data packet, so that the terminal device continues to send the data packet based on the user plane network element used to send the data packet last time.
  • the USF network element After the USF network element notifies the SDN control network element to perform the handover operation, if the SF network element completes the binding between the terminal device and the first user plane network element under the command of the SDN control network element, but due to a fault
  • the reason is that the binding relationship between the terminal device and other user plane network elements used before is not deleted, or the SF network element deletes the binding relationship between the terminal device and other user plane network elements used before, but due to The cause of the failure is that the binding between the terminal device and the first user plane network element has not been completed.
  • the other user plane network elements here refer to the user plane network elements used for sending data packets before the terminal device is migrated.
  • the USF network element receives the migration failure message returned by the SDN control network element, the USF network element is also used to control the SF network element to bind the terminal device to the user plane used for the last data packet sent. On the network element, so that the terminal device continues to send data packets based on the user plane network element used to send the data packets last time.
  • the control plane network element receives the user service level agreement SLA change message, the user SLA change message indicates that the user information of the terminal device is updated; the control plane network element forwards the user SLA change message to the handover decision network element, so that the handover decision network element configures the first user plane for the terminal device based on the updated user information.
  • the network element and sends the first migration configuration instruction to the control plane network element.
  • control plane network element After the control plane network element receives the user SLA change message, if the control plane has determined that the handover decision network element is faulty, the current state is maintained and no operation is required to avoid useless user migration.
  • the handover decision network element includes any one or more of a handover function SF network element, a user handover function USF network element, and a software-defined network SDN control network element kind.
  • the failure of the handover decision NE includes at least one of the following situations:
  • the control plane network element After the control plane network element sends a fault detection request to the USF network element, the detection result message returned by the USF network element is not received within the fifth reference time period, or, after the control plane network element sends a fault detection request to the USF network element, it receives The detection result message returned by the USF network element, the detection result message indicates that the USF network element or the SF network element is faulty or the SDN control network element is faulty; or,
  • the detection result message returned by the SDN control network element is not received within the sixth reference time period, or, after the control plane network element sends a fault detection request to the SDN control network element , the detection result message returned by the SDN control network element is received, and the detection result message indicates that the SF network element is faulty or the SDN control network element is faulty; or,
  • the control plane network element After the control plane network element forwards the user SLA change message to the USF network element, the message returned by the USF network element is not received within the fourth reference time period, or, after the control plane network element forwards the user SLA change message to the USF network element, The detection result message sent by the USF network element is received, and the detection result message indicates that the USF network element, the SDN control network element or the SF network element is faulty.
  • the control plane network element can actively detect whether the handover decision unit is faulty, or can directly send the user SLA change message to the USF network element.
  • the response of the user SLA change message to determine whether the switching decision unit fails.
  • the flexibility of the control plane network element to detect whether the switching decision network element is faulty is improved.
  • the control plane network element forwards the user SLA to the handover decision network element in the case that the failure of the handover decision network element is determined to be eliminated.
  • Change message the user SLA change message indicates that the user information of the terminal device is updated, so that the handover decision network element configures the second user plane network element for the terminal device based on the updated user information, and sends the second user plane network element to the control plane network element.
  • the second migration configuration instruction for the identity of the plane network element.
  • the control plane network element needs to re-trigger the entire user migration process, that is, the control plane network element needs to make a switch decision
  • the network element forwards the user SLA change message, so that the USF network element in the handover decision network element determines the latest user plane network element based on the current network state and the user SLA change message.
  • a fault handling method is provided, the method is performed by a handover decision network element in a network, the network further includes a broadband network gateway BNG and a terminal device, the BNG includes a control plane network element and a plurality of user plane network elements, The handover decision network element is used to divert the traffic of the terminal device to one user plane network element among the multiple user plane network elements.
  • a migration configuration instruction is generated, and the migration configuration instruction carries the identifier of the first user plane network element and the identifier of the terminal device, and the migration configuration The instruction instructs to forward the data packets of the terminal equipment through the first user plane network element; if the handover decision network element determines that it is faulty, it will not send a migration configuration instruction to the control plane network element; In this case, re-send the migration configuration instruction to the network element of the control plane.
  • the switching decision-making network element actively triggers the migration of terminal equipment
  • the switching decision-making network element can detect that it is faulty, the subsequent operation of the migration will not be triggered at this time, but the migration will be re-triggered when the fault is eliminated.
  • the follow-up operations are performed to avoid unnecessary migration triggered in the scenario of switching decision network element failure.
  • the handover decision network element includes any one or more of a handover function SF network element, a user switching function USF network element, and a software-defined network SDN control network element kind.
  • the failure of the handover decision network element includes at least one of the following situations: the USF network element determines that it is faulty; or, after the USF network element sends a fault detection request to the SDN network element, the SDN is not received within the first reference time period.
  • the detection result message returned by the network element or, after the USF network element sends a fault detection request to the SDN network element, the detection result message returned by the SDN network element is received, and the detection result message indicates that the SF network element is faulty or the SDN control network element is faulty .
  • the terminal device in the case of detecting the selection operation for the migration control displayed on the display interface of the switching decision network element, it is determined that the terminal device needs to be The traffic is diverted to the first user plane network element, and both the terminal device and the first user plane network element are specified by the user through the migration control; In the case of a network element, it is determined that the terminal device traffic needs to be diverted to the first user plane network element.
  • the USF network element in the present application actively triggers the migration of the terminal equipment in the above two scenarios, which improves the application flexibility of the present application.
  • a control plane network element is provided, and the control plane network element has a function of implementing the behavior of the fault handling method in the first aspect.
  • the control plane network element includes at least one module, and the at least one module is configured to implement the fault handling method provided in the first aspect.
  • a control plane network element is provided, and the control plane network element has a function of implementing the behavior of the fault handling method in the second aspect.
  • the control plane network element includes at least one module, and the at least one module is configured to implement the fault handling method provided in the second aspect above.
  • a handover decision-making network element is provided, and the handover decision-making network element has a function of implementing the behavior of the fault handling method in the third aspect.
  • the handover decision network element includes at least one module, and the at least one module is configured to implement the fault handling method provided in the third aspect.
  • a network device in a seventh aspect, includes a processor and a memory, and the memory is used to store and support the network device to perform the fault provided in the first aspect or the second aspect or the third aspect.
  • the processor is configured to execute programs stored in the memory.
  • the operating means of the storage device may further include a communication bus for establishing a connection between the processor and the memory.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, which, when executed on a computer, cause the computer to execute the first aspect or the second aspect or the third aspect. Troubleshooting method described above.
  • a computer program product containing instructions, which, when executed on a computer, cause the computer to execute the fault handling method described in the first aspect or the second aspect or the third aspect.
  • FIG. 1 is a schematic diagram of the existence form of a control plane network element and a user plane network element in a vBNG provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of the architecture of a network provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a terminal device accessing a network according to an embodiment of the present application
  • FIG. 4 is a flowchart of a fault processing method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a handover decision network element failure provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a terminal device accessing a network when a switching decision network element fails according to an embodiment of the present application
  • FIG. 7 is a flowchart of another fault processing method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a fault handling process in a user migration process provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a fault handling process in another migration process provided by an embodiment of the present application.
  • FIG. 10 is a flowchart of another fault processing method provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a control plane network element provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another control plane network element provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a handover decision network element provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • references herein to "a plurality” means two or more.
  • “/” means or means, for example, A/B can mean A or B;
  • "and/or” in this text is only a relationship to describe the related objects, Indicates that three relationships can exist, for example, A and/or B, can represent: A alone exists, A and B exist at the same time, and B exists alone.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect. Those skilled in the art can understand that the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • the network architecture of the metropolitan area network has evolved from the traditional network-centric network architecture to the data center-centric network architecture.
  • traditional network elements and other equipment also evolve from specialization to generalization.
  • the evolution of traditional network elements from specialization to generalization mainly solves two decouplings: decoupling of control function and forwarding function, and decoupling of software and hardware.
  • BNG As a traditional gateway device for accessing broadband networks, BNG is very important in scenarios where users access broadband networks.
  • the role of BNG in the process of user access to broadband network includes: user authentication, access control, and traffic scheduling.
  • BNG With the continuous emergence of various Internet services, the requirements for the number of user sessions supported by BNG continue to increase, as well as the bandwidth for users to access the network, especially for the ability of BNG to provide service opening and service programmability to the outside world. also getting higher. Based on these factors, BNG's SDN/NFV-based architecture needs to achieve the two decouplings mentioned above.
  • the BNG after the BNG forwarding function and the control function are decoupled, the BNG includes a control plane (CP) network element and multiple user plane (user plane) network elements.
  • the control plane network element can manage multiple user plane network elements, and perform user, traffic, and resource scheduling among multiple user plane network elements.
  • the utilization and reliability of the BNG after the forwarding function and the control function are decoupled can be greatly improved.
  • BNG For traditional BNG, it is necessary to have user management (user management), authentication and authorization and accounting (authentication, authorization, accounting, AAA) service, address management (address management), Radius service (Radius is a service for document protocol for authentication, authorization, and accounting information between network access servers and shared authentication servers that need to authenticate their links), routing control, Point-to-Point Protocol Over Ethernet, PPPoE) service, dynamic host configuration protocol (dynamic host configuration protocol, DHCP) service, forwarding engine (forward engine) and other functions.
  • PPPoE Point-to-Point Protocol Over Ethernet
  • PPPoE Point-to-Point Protocol Over Ethernet
  • DHCP dynamic host configuration protocol
  • forward engine forward engine
  • the BNG may also be called a vBNG at this time.
  • the vBNG includes a control plane (CP) network element and a plurality of user plane (UP) network elements.
  • the control plane network element is used to provide user management, AAA service, address management, Radius service, PPPoE service, DHCP service and other functions required by BNG.
  • the control plane network element also needs to provide the user plane network element management required by BNG ( UP management) function.
  • Any user plane network element is used to provide routing (routing), multicast (multicast) service, quality of service (QoS), forwarding (forwarding) service, and access control list (ACL) required by BNG ) service, multi-protocol label switching (MPLS)/label distribution protocol (label distribution protocol, LDP) service and other functions.
  • MPLS multi-protocol label switching
  • LDP label distribution protocol
  • control plane network element and the user plane network element can be connected through three interfaces. These three interfaces are the following three interfaces respectively.
  • PRi Primary rate interface
  • PRi is also called a service interface, and PRi can specifically use a virtual extensible local area network-generic protocol encapsulation (vxlan-GPE) interface.
  • vxlan-GPE virtual extensible local area network-generic protocol encapsulation
  • Mi Media independent interface
  • Mi is also called a management interface, and Mi can specifically use a network configuration (netconf) interface.
  • the control plane NE uses this interface to deliver the configuration to the user plane NE.
  • User plane NEs use this interface to report some running states and so on.
  • Serial communication interface serial communication interface
  • SCi Serial communication interface
  • SCi is also called a control interface
  • SCi has a control plane and user plane separated protocol (CUSP) interface that can be used.
  • the control plane network element processes user access protocol packets to complete user protocol interaction. After the user goes online, the control plane network element delivers user entries to the corresponding user plane network element through this interface. The user entry is used to carry user information of the terminal device, so that the subsequent user plane network element forwards the traffic of the terminal device based on the user entry. The detailed functions of the user entry will be described in subsequent embodiments.
  • FIG. 1 is a schematic diagram of an existing form of a control plane network element and a user plane network element in a vBNG provided by an embodiment of the present application.
  • the control plane network elements in vBNG as virtual network functions (VNFs)
  • VNFs virtual network functions
  • User plane network elements in vBNG can exist in two forms. One is as a VNF, running on an X86 server. At this time, the user plane network element can also be called a vUP. The other is as a physical network function (PNF), running on a traditional hardware network device. At this time, the user plane network element can also be called pUP.
  • a control plane network element of a vBNG may manage one or more pUPs and one or more vUPs, which is not limited in this embodiment of the present application.
  • control plane NE can manage many user plane NEs, and all users are managed on the control plane NE, flexible scheduling of users among different user plane NEs can be performed according to the number of user sessions and traffic load. For example, when it is detected that a certain user plane network element has a heavy load, the traffic of the terminal device can be diverted to another user plane network element for forwarding. This process may also be referred to as user migration, which will be described in subsequent embodiments.
  • the fault handling method provided in the embodiment of the present application is applied to the above scenario of decoupling the forwarding function and the control function of the BNG, and the purpose is to provide a network element fault handling method in this scenario.
  • FIG. 2 is a schematic structural diagram of a network provided by an embodiment of the present application.
  • the network includes terminal equipment, a switching function (steering function, SF) network element, an SDN control network element, a user switching function (user steering function, USF) network element, and a BNG.
  • the BNG includes a control plane network element (the control plane network element is marked as CP in FIG. 2 ) and a plurality of user plane network elements (the user plane network element is marked as UP in FIG. 2 , wherein three users are included in FIG. 2 plane network elements, namely UP1, UP2, and UP3).
  • the terminal equipment and the SF network element are connected for communication.
  • the SF network element and any user plane network element are connected through a two-layer tunnel (Lay2-tunnel) for communication.
  • Different physical sub-interfaces are configured on SF network elements. Different physical sub-interfaces match different virtual local area network (VLAN)/QinQ (QinQ is a representation of two-layer VLAN) ranges, and different physical sub-interfaces Corresponding to different Layer 2 tunnels, that is, different physical sub-interfaces are used to lead to different user plane network elements.
  • VLAN virtual local area network
  • QinQ is a representation of two-layer VLAN
  • the SF network element and each user plane network element are deployed at the edge of the metropolitan area network to forward the traffic of the terminal device to the backbone network (core network).
  • core network backbone network
  • the SDN control network element is respectively connected with the SF network element and each user plane network element for communication.
  • the USF network element and the SDN control network element are connected for communication.
  • the control plane network elements are respectively connected with the USF network element, the SDN control network element and each user plane network element for communication.
  • the network element of the control plane is also connected to the Radius server for communication, so as to facilitate the subsequent authentication of the access of the terminal device through the Radius server.
  • the control plane network element is the service control plane of the vBNG, which is used to process the online request of the terminal device and interact with the AAA server for user authentication, accounting and authorization.
  • the control plane network element can identify the user service level agreement (SLA) according to the user account of the terminal device, and use the access line information carried in the online request to notify the USF network element that the terminal device goes online and waits for the USF network element to instruct the user to migrate , to map the terminal device to the port corresponding to the access of the user plane network element.
  • SLA user service level agreement
  • the control plane network element delivers the user table entry of the terminal device to the corresponding user plane network element, and the corresponding user plane network element generates the forwarding table entry of the terminal device, and advertises routes to the outside.
  • USF network element The policy control component for the migration of the user plane network elements of the terminal equipment. It generates a migration strategy according to the user SLA and load of the terminal equipment, and notifies the control plane network elements and SF network elements to migrate the terminal equipment to realize the network load. Average and SLA requirements.
  • the user plane network element is the vBNG service forwarding plane.
  • the control plane NE issues the user entry after processing the user going online.
  • the user plane NE receives the user entry delivered by the control plane NE, generates the forwarding entry for the terminal locally, and performs related service policy execution and traffic flow. Forwarding and publishing routes to the outside world.
  • SF network element User access gateway, when the terminal equipment goes online, the online request sent by the terminal equipment is sent to the control plane network element for processing through the service channel, and at the same time, the aggregation of the home terminal is carried out, and the traffic of the terminal equipment is aggregated to the user plane network.
  • Element forwards Layer 2 packets, and isolates VLAN/QINQ (two-layer VLAN) for different terminal devices. Each terminal device has an exclusive VLAN/QINQ.
  • RGW Residential gateway
  • NAT network address translation
  • IP IP address
  • the SDN control network element receives the access line information of the corresponding user sent by the control plane network element.
  • the access line information includes the access switch/optical line terminal (switch/optical line terminal, SW/OLT) identification, access port information, virtual local area network (virtual local area network, VLAN) information, etc., to the corresponding SW /OLT delivers the migration strategy, and maps the port + VLAN/QINQ of the terminal device to the Layer 2 tunnel connected to the corresponding user plane NE (the Layer 2 tunnel can be a virtual extensible local area network, VXLAN) , or a virtual leased line (VLL), or an Ethernet-based virtual private network (ethernet virtual private network, EVPN).
  • VXLAN virtual extensible local area network
  • VLL virtual leased line
  • Ethernet-based virtual private network ethernet virtual private network, EVPN
  • the process of the terminal equipment accessing services in the backbone network usually includes two basic processes, one is a user access process, and the other is a user migration process.
  • the user access process is used to instruct the terminal device to access the network
  • the user migration process is used to instruct to migrate the traffic of the terminal device from one user plane network element to another user plane network element.
  • the terminal device in the process of accessing the network by the terminal device, it goes online from UP1 by default.
  • the terminal device sends control packets such as an online request to the CP through the UP1 connected to the SF network element.
  • the CP exchanges the migration policy of the terminal device with the USF network element.
  • the USF network element determines that the terminal device should access from UP2 according to the user service level agreement (SLA) of the terminal device, and notifies the The CP delivers the user entry of the terminal device to UP2.
  • SLA user service level agreement
  • the USF notifies the SDN control network element, so that the SDN control network element configures the SF network element, and binds the VLAN/QinQ corresponding to the terminal device to the physical sub-interface corresponding to UP2 on the SF network element.
  • a binding relationship between the terminal device and UP2 is established. Subsequent forwarding packets of the terminal device can be directly forwarded to UP2.
  • the above-mentioned user access process can be specifically represented by the flowchart shown in FIG. 3 .
  • the process of the terminal device accessing the network can be subdivided into the following steps.
  • the terminal device After each network element in the network is initialized, the terminal device sends an online request (dial up) based on PPPoE or DHCP to the SF network element.
  • the SF network element After receiving the online request, the SF network element sends the online request to the control plane network element (CP) through the default UP1.
  • CP control plane network element
  • the control plane network element After receiving the online request, the control plane network element sends a user migration policy request to the USF network element, where the user migration policy request is used to request which user plane network element the terminal device needs to forward traffic based on.
  • the user migration policy request may carry the user SLA of the terminal device.
  • the user SLA of the terminal device indicates the priority of the user and so on.
  • the USF network element determines that the terminal device should forward traffic from UP2 based on the user SLA of the terminal device. Therefore, the USF network element returns the user migration result to the control plane network element. The migration result indicates that the target UP of the terminal device is UP2.
  • control plane network element can assign an internet protocol (IP) address to the terminal device from the address pool of UP2, and deliver the assigned IP address to the terminal device , so that the end device uses that IP address as the source IP address in traffic.
  • IP internet protocol
  • the control plane network element also delivers the user entry of the terminal device to UP2, the user entry carries the user information of the terminal device, and the user information includes the IP address, MAC address, interface and other information of the terminal device.
  • the purpose of the user entry delivered by the control plane network element to the UP2 to the terminal device is: the subsequent UP2 will verify the validity of the received data packet based on the user entry, such as verifying the source media connection in the data packet. Whether the media access control (MAC) address and source IP address are the MAC address and IP address in the locally configured user entry, if so, continue to forward the data packet, if not, discard the data packet.
  • MAC media access control
  • control plane network element can notify the USF network element of a successful message of table entry configuration.
  • the USF network element After the USF network element receives the message of successful configuration of the entry, it can notify the SDN control network element to perform a handover operation, and the handover operation instructs the SDN control network element to configure the binding relationship between the terminal device and UP2 on the SF network element. In order to facilitate the SF network element to divert the terminal device traffic to UP2 later.
  • the user migration process means that after the terminal device accesses the network, if the user SLA of the terminal device changes, the USF network element is required to re-determine which user plane network element the terminal device needs to forward traffic from after the user SLA changes. .
  • the USF network element is required to re-determine which user plane network element the terminal device needs to forward traffic from after the user SLA changes.
  • the USF NE is the policy point for dynamic migration.
  • the control plane NE must ask the USF NE whether to migrate, and the USF NE informs the control plane NE and SDN control NE. How to do the migration. Therefore, if the SF network element, the USF network element, and the SDN control network element, etc. shown in FIG. 2 are faulty, it will directly lead to the failure of the terminal equipment to access or migrate.
  • the fault handling method provided in the embodiment of the present application is applied to this scenario.
  • the SF network element, the USF network element, and the SDN control network element are collectively referred to as handover decision network elements.
  • the USF network element shown in FIG. 2 may be built in the control plane network element, may also be built in the SDN control network element, or may be a separate network element. This embodiment of the present application does not limit this.
  • the fault handling method provided by the embodiment of the present application will be described in detail below. Since the terminal device accesses the network mainly includes two processes: the user access process and the user migration process, the failure basically occurs in these two processes, so the following two embodiments are used to deal with the failures in these two processes respectively.
  • the terminal device accesses the network mainly includes two processes: the user access process and the user migration process
  • the failure basically occurs in these two processes, so the following two embodiments are used to deal with the failures in these two processes respectively.
  • the following two embodiments are used to deal with the failures in these two processes respectively.
  • first, the second, and the third in the following embodiments have no specific meaning, and the first, the second, and the third in each embodiment are independent of each other.
  • first in the embodiment in FIG. 4 is not related to the first in the embodiment in FIG. 7
  • second in the embodiment in FIG. 4 is not related with the second in the embodiment in FIG. 7, and the embodiment in FIG.
  • the third in the FIG. 7 embodiment does not have any relation and so on.
  • FIG. 4 is a flowchart of a fault processing method provided by an embodiment of the present application. The method is used to describe in detail the fault handling in the user access process. As shown in FIG. 4 , the fault handling method includes the following steps.
  • Step 401 A control plane network element receives an online request from a terminal device, and the terminal device sends an online request to a control plane network element through a first user plane network element, where the first user plane network element is one of multiple user plane network elements.
  • the first user plane network element is a preconfigured user plane network element. That is, if the terminal device has not accessed the network before the current time, if the SF network element receives the online request of the terminal device, it forwards the online request based on the configured default user plane network element.
  • the default user plane network element is pre-configured during system initialization, and the embodiment of the present application does not limit the specific operation of how to configure the default user plane network element.
  • UP1 is the default user plane network element
  • the SF network element when the SF network element receives the first online request sent by any terminal device, it can send the online request to the control plane through the UP1 network element.
  • the first user plane network element is the user plane network element used by the terminal device to send the data message before the last time the terminal device goes offline.
  • the user SLA of the terminal device does not change, after the terminal device accesses the network once, it will continue to use the user plane network element used for the last online connection to send the online request, and user migration will not be required. , which reduces the frequency of user migration.
  • the terminal device After the terminal device goes offline, if it goes back online next time, it needs to send an online request to the SF network element again.
  • the user plane network element used to forward the online request.
  • UP1 is the default user plane network element
  • the SF network element when the SF network element receives an online request that is not sent by any terminal equipment for the first time, if the terminal equipment used before the last offline If the UP is UP2, then the SF network element continues to send the online request to the control plane network element through the UP2.
  • the SF network element, the SDN control network element and the USF network element are several network elements used to schedule the user migration process of the terminal equipment, and these network elements can be integrated into one network element .
  • these network elements are collectively referred to as handover decision network elements. That is, in this embodiment of the present application, the handover decision network element includes an SF network element, a USF network element, and an SDN control network element.
  • the control plane network element after the control plane network element receives the online request sent by the terminal device, if any one of the handover decision network elements fails, the access will fail.
  • the control plane network element detects that the handover decision network element fails, the following step 202 may be used to implement the normal access of the terminal equipment.
  • the failure of the switching decision network element refers to the failure of any one or more of the SF network element, the SDN control network element, and the USF network element.
  • the control plane network element can actively detect whether the handover decision network element is faulty, so as to ensure that the terminal device accesses the network through step 402 subsequently. Actively detecting whether the switching decision NE fails means that the control plane NE can actively send detection packets to detect whether the switching decision NE fails. Therefore, in a possible implementation manner, the foregoing handover decision network element failure includes at least one of the following situations.
  • the detection result message returned by the USF network element is not received within the first reference time period.
  • the control plane NE After the control plane NE sends a fault detection request to the USF NE, if the hardware of the USF NE itself fails, for example, the USF NE is powered off or disconnected from the network, the USF NE will not send any fault detection requests to the control plane NE. Therefore, you can configure a first reference duration on the control plane NE in advance. If the detection result message returned by the USF NE is not received within the first reference duration after sending the fault detection request to the USF NE, then The control plane network element can determine that the USF network element is faulty.
  • control plane network element After the control plane network element sends a fault detection request to the USF network element, it receives a detection result message returned by the USF network element, and the detection result message indicates that the USF network element or the SF network element is faulty or the SDN control network element is faulty .
  • the USF NE can report to the control plane.
  • the network element feeds back a detection result message, and the detection result message indicates that the USF network element is faulty, or the SF network element is faulty, or the SDN control network element is faulty.
  • the control plane network element receives the detection result message, it can determine that the USF network element in the handover decision network element is faulty, or the SDN control network element is faulty, or the SF network element is faulty.
  • the above-mentioned implementation manner for the USF network element to detect the failure of the SF network element or the failure of the SDN control network element can also be implemented by actively sending a detection message by the USF network element, which will not be described in detail here.
  • the control plane network element can also directly communicate with the SDN control network element. Therefore, the control plane network element can directly send a fault detection request to the SDN control network element to detect whether the SDN network element is faulty.
  • the control plane network element sends a fault detection request to the SDN control network element
  • the hardware of the SDN control network element itself fails, for example, the SDN control network element is powered off or disconnected from the network, the SDN control network element will not send a fault detection request to the SDN control network element. Therefore, a second reference duration can be pre-configured on the control plane network element. If no response from the SDN control network element is received within the second reference duration after the fault detection request is sent to the SDN control network element.
  • the control plane network element can determine that the SDN control network element is faulty.
  • the second reference duration at this time and the aforementioned first reference duration are only used to distinguish the two durations, and have no special meaning.
  • the first reference duration and the second reference duration may be the same or different.
  • control plane network element After the control plane network element sends a fault detection request to the SDN control network element, it receives a detection result message returned by the SDN control network element, and the detection result message indicates that the SF network element is faulty or the SDN control network element is faulty.
  • the SDN control network element can feed back the detection result to the control plane network element.
  • the detection result message indicates that the SDN control network element is faulty, or the SF network element is faulty.
  • the control plane network element receives the detection result message, it can determine that the SDN control network element in the handover decision network element is faulty, or the SF network element is faulty.
  • the above-mentioned implementation manner of the SDN control network element detecting the failure of the SF network element may also be implemented by actively sending a detection message by the SDN control network element, which will not be described in detail here.
  • the control plane network element will send a user migration policy request to the USF network element to request the USF network element to connect to the terminal device.
  • the failure detection request for the above-mentioned failure situations may occur before the control plane network element sends the user migration policy request to the USF network element. That is, after receiving the online request from the terminal device, the control plane network element first actively detects whether the handover decision unit is faulty. If a fault occurs, it is not necessary to send a user migration policy request to the USF network element, and the following step 402 is directly performed to ensure that the terminal device accesses the network normally. If no fault occurs, a user migration policy request is sent to the USF network element, so as to ensure that the terminal device successfully accesses the network through the process shown in FIG. 3 .
  • the control plane network element after receiving the online request from the terminal device, the control plane network element directly sends a user migration policy request to the USF network element, and the user migration policy request also has the function of the above-mentioned fault detection request.
  • the fault causes the USF network element to have no response to the user migration policy request.
  • the control plane network element does not receive the user migration result for the user migration policy request within the first reference reference period, it is determined that the USF network element has occurred. Fault.
  • the USF network element after receiving the user migration policy request, the USF network element first determines whether the software system or the SDN control network element or the SF network element is faulty through active detection. If a fault occurs, it returns the detection to the control plane network element. In the result message, if there is no fault, then based on the process shown in FIG. 3 , it is ensured that the terminal device successfully accesses the network.
  • the control plane network element determines that the handover decision-making network is faulty, which may also include the following situation: after the control plane network element sends a migration policy request to the USF network element based on the online request, the The user migration result returned by the USF network element is not received within the three reference time periods, or the detection result message returned by the USF network element is received, and the detection result message indicates that the USF network element or the SF network element is faulty, or the SDN control network element is faulty Fault.
  • FIG. 5 is a schematic diagram of a handover decision-making network element failure according to an embodiment of the present application.
  • the failure of the switching decision network element may refer to the failure of one or more of the USF network element, the SDN network element, and the SF network element.
  • FIG. 5 is an example in which the USF network element, the SDN network element, and the SF network element all fail.
  • the control plane network element supports detecting whether the USF network element or the SDN control network element is faulty, that is, whether the USF network element or the SDN control network element is faulty is detected by the above method of sending a fault detection request.
  • the USF network element supports detecting that the SF network element is faulty, and notifies the control plane network element of the detection result. In this way, the network element of the control plane determines that the network element of the control plane is faulty through active detection.
  • the above content is used to explain how the control plane network element determines that the handover decision network element is faulty.
  • the above several implementation manners are only several optional implementation manners provided by the embodiments of the present application, and the embodiments of the present application do not limit the specific implementation manners in which the control plane network element determines that the handover decision network element is faulty.
  • the failure of the handover decision-making network element can also be determined by passive notification, that is, if there are other devices that can detect the failure of the handover decision-making network element, other devices can notify the control plane network element of the handover decision-making network element. error occured.
  • This other device includes, but is not limited to, the failed device itself or other devices other than the failed device.
  • Step 402 In the case that the control plane network element determines that the handover decision network element is faulty, the terminal device is controlled to send a data packet based on the first user plane network element.
  • control plane network element may skip the handover
  • the decision of the decision unit directly controls the terminal device to send the data message based on the first user plane network element.
  • the implementation process for the control plane network element to control the terminal device to send the data packet based on the first user plane network element may specifically be: the control plane network element sends the user entry to the first user plane network element, and the user entry carries the terminal device.
  • the first user plane network element forwards the data packet from the terminal device based on the user entry.
  • the network element of the control plane may also send a first IP configuration instruction to the terminal device, where the first IP configuration instruction carries the first IP address, so that the terminal device uses the first IP address as the source IP address to send data packets, and the first IP address is used as the source IP address to send data packets.
  • the IP address is an IP address in the address pool corresponding to the first user plane network element.
  • FIG. 6 is a schematic flowchart of a terminal device accessing a network when a handover decision network element fails according to an embodiment of the present application. As shown in FIG. 6 , the process of the terminal device accessing the network can be subdivided into the following steps.
  • the terminal device After each network element in the network is initialized, the terminal device sends an online request (dial up) based on PPPoE or DHCP to the SF network element.
  • the SF network element After receiving the online request, the SF network element sends the online request to the control plane network element (CP) through the default UP1.
  • CP control plane network element
  • control plane network element After the control plane network element receives the online request, if it detects that the switching decision-making user is faulty, it will allocate an internet protocol (IP) address to the terminal device from the address pool of UP1, and assign the assigned IP address to the terminal device.
  • IP internet protocol
  • the IP address is delivered to the terminal device, so that the terminal device uses the IP address as the source IP address in the traffic.
  • the control plane network element also delivers the user entry of the terminal device to UP1, the user entry carries the user information of the terminal device, and the user information includes the IP address, MAC address, interface and other information of the terminal device.
  • the control plane network element when the handover decision-making network element fails, the control plane network element only needs to configure the IP address and issue the user entry to ensure the successful access of the terminal device.
  • the network does not need to switch the decision-making network element for related configuration.
  • the control plane network element controls the terminal device to send data packets based on the initial user plane network element.
  • the initial user plane network element may be the default user plane network element, or may be the user plane network element used before going offline last time. Thus, it is ensured that the terminal equipment continues to access the network in the case of failure of the switching decision network element. However, if data packets are continuously forwarded in this way, scheduling among user plane network elements in the network cannot be achieved, and load imbalance among user plane network elements is likely to occur.
  • the control plane NE detects that the handover decision NE has been eliminated, it triggers the handover decision NE to perform user migration for the terminal equipment, so as to realize reasonable scheduling among the user plane NEs. .
  • the control plane network element when the control plane network element detects that the fault of the handover decision network element is eliminated, the control plane network element sends a request for the migration policy to the handover decision network element, and the request for the use of the migration policy indicates The handover decision network element determines whether to switch the user plane network element forwarding the data message of the terminal device from the first user plane network element to another user plane network element.
  • the control plane network element receives the user migration result sent by the handover decision network element, the user migration result carries the identifier of the second user plane network element, and the second user plane network element is another user plane network element other than the first user plane network element.
  • the control plane network element sends the user entry to the second user plane network element, the user entry carries the user information of the terminal device, and the second user plane network element forwards the data packet from the terminal device based on the user entry.
  • the control plane network element After receiving the table entry configuration success message returned by the second user plane network element, the control plane network element sends the table entry configuration success message to the handover decision network element, so that the handover decision network element establishes a relationship between the terminal device and the second user plane network element.
  • the mapping relationship between the terminal device and the second user plane network element is based on the mapping relationship between the terminal device and the second user plane network element, and the data packet of the terminal device is forwarded to the second user plane network element.
  • the interaction between the network elements can refer to FIG. 3 .
  • the above-mentioned control plane network element after receiving the successful message configuration of the table entry returned by the second user plane network element, the above-mentioned control plane network element sends a message of successful configuration of table entry under the table entry to the USF network element, and the USF network element receives the table entry configuration success message.
  • the SDN control network element is notified to perform the handover operation, and the handover operation instructs the SDN control network element to configure the binding relationship between the terminal device and the second user plane network element on the SF network element, so as to facilitate the SF network element.
  • the element subsequently diverts the terminal device traffic to the second user plane network element.
  • the above-mentioned implementation manner of detecting and eliminating the fault of the switching decision-making network element of the control plane network element can also be implemented by actively sending a fault detection request, or implementing the notification of the switching decision-making network element after the fault is eliminated.
  • the embodiment of the present application does not limit how the network element of the control plane detects and obtains that the fault of the handover decision network can be eliminated.
  • the above-mentioned fault elimination of the switching decision network refers to that all network elements in the switching decision network have no faults, not that the fault of a faulty network element is eliminated, but other network elements still have faults. Only in this way can the above-mentioned control plane network element control the terminal device based on the handover decision network element after the fault is eliminated to successfully implement the process of sending the data packet based on the second user plane network element.
  • the control plane network element determines that the handover decision network element is faulty during the process of the terminal device accessing the network, in order to ensure that the terminal device can continue to access the network, the control plane network The element may skip the decision of the handover decision unit and directly control the terminal device to send data packets based on the first user plane network element used by the online request. That is, the embodiment of the present application provides a manner in which the terminal device can continue to access the network when the handover decision-making network element fails. In other words, the embodiment of the present application can implement an escape path in a single network element failure scenario, so that the terminal device can still go online normally.
  • FIG. 7 is a flowchart of another fault processing method provided by an embodiment of the present application. The method is used to describe in detail the fault handling in the user migration process after the user accesses the network. As shown in FIG. 7 , the fault handling method includes the following steps.
  • Step 701 The control plane network element receives the first relocation configuration instruction sent by the handover decision unit, the first relocation configuration instruction carries the identifier of the first user plane network element and the identifier of the terminal device, and the first relocation configuration instruction instructs to transfer the data of the terminal device.
  • the packet is forwarded by the first user plane network element.
  • the application scenario of step 701 may be in the process that the terminal device has successfully accessed the network and accessed the network.
  • the user SLA of the terminal device changes, because the user SLA includes user information such as the priority of the terminal device, and the terminal devices with different priorities need to be forwarded through different user plane network elements, so as to realize the realization of each user plane.
  • Load scheduling between network elements Therefore, when the user SLA of the terminal device changes, the terminal device needs to be migrated, that is, the traffic of the terminal device is diverted to other user plane network elements.
  • the scenario in which the control plane network element receives the first relocation configuration instruction sent by the handover decision unit may specifically be: the control plane network element receives the user SLA change message, and the user SLA change message instructs the terminal
  • the control plane network element forwards the user SLA change message to the handover decision network element, so that the handover decision network element configures the first user plane network element for the terminal device based on the updated user information, and sends it to the control plane network element.
  • the element sends the first migration configuration instruction.
  • the control plane network element after receiving the user SLA change message, forwards the user SLA change message to the USF network element, and the USF network element determines whether the terminal equipment needs to be migrated based on the SLA change message.
  • the new user plane network element if necessary, the new user plane network element is used as the above-mentioned first user plane network element, and the first migration configuration instruction is returned to the control plane network element, and the first migration configuration instruction instructs the The data packets of the terminal device are diverted to the first user plane network element.
  • the USF network element determines based on the SLA change message that the terminal device does not need to be migrated to the new user plane network element, the USF network element can send a notification message indicating that the migration is not required to the control plane network element. After receiving the notification message, the network element does not need to perform other operations, and only needs to maintain the current state.
  • Step 702 After the control plane network element successfully sends the user entry to the first user plane network element based on the identifier of the first user plane network element, if the control plane network element determines that the handover decision network element is faulty, send the user entry to the first user plane network element.
  • the network element sends a user entry rollback instruction, and the user entry rollback instruction instructs the first user plane network element to delete the added user entry.
  • the control plane network element After receiving the first migration configuration instruction sent by the handover decision network element, the control plane network element determines that the terminal device currently needs to be migrated to the first user plane network element. Therefore, the control plane network element may be based on the first user plane network element. The identifier of the element delivers the user entry to the first user plane network element, so that the first user plane network element locally configures the user entry of the terminal device. After the configuration of the first user plane network element is completed, it returns an entry configuration success message to the control plane network element. After the control plane network element receives the message of successful configuration of the entry from the first user plane network element, it can be determined that the user entry has been successfully delivered to the first user plane network element.
  • the user entry carries user information of the terminal device, and the first user plane network element forwards the data packet of the terminal device based on the user entry.
  • the functions of the user entry have been described in detail in the system architecture shown in FIG. 2, and will not be repeated here.
  • the control plane network element After the control plane network element successfully sends the user entry to the first user plane network element based on the identifier of the first user plane network element, the control plane network element notifies the handover decision network element to perform relevant configuration , so that the configured handover decision network element diverts the traffic of the terminal device to the first user plane network element. Therefore, after the control plane network element successfully sends the user entry to the first user plane network element based on the identity of the first user plane network element, if the handover decision network fails, the relevant configuration performed by the handover decision network element will fail. The migration process for end devices will fail.
  • the control plane network element successfully reports to the first user plane network element based on the identifier of the first user plane network element. After the network element sends the user entry, if the control plane network element determines that the handover decision network element is faulty, it sends a user entry fallback instruction to the first user plane network element, and the user entry fallback instruction instructs the first user plane network element. Meta deletes user entries that have been added. Thereby, the terminal equipment offline due to the failure of the switching decision unit during the user migration process is avoided.
  • the switching decision network element fails (for example, the USF network element, the SDN control network element, or the SF network element) One or more failures) will cause the message exchange between the control plane network element and the handover decision network to fail.
  • the control plane network element supports the rollback of the user entries that have been delivered, so as to prevent the terminal equipment from going offline. .
  • the switching decision network element failure in step 702 includes at least one of the following situations.
  • control plane network element After the control plane network element successfully sends the user entry to the first user plane network element based on the identifier of the first user plane network element, the control plane network element sends an entry configuration success message to the USF network element. After the element sends the table entry configuration success message to the USF, it does not receive the message returned by the USF network element within the third reference time period.
  • a first reference duration can be pre-configured on the control plane NE. If no message returned by the USF NE is received within the first reference duration after the entry configuration successful message is sent to the USF NE , the control plane NE can determine that the USF NE is faulty.
  • control plane network element After the control plane network element sends an entry configuration success message to the USF network element, it receives a migration failure message sent by the USF network element.
  • the migration failure message indicates that the USF network element, the SDN control network element or the SF network element is faulty.
  • the USF network element can feed back a migration failure message to the control plane network element.
  • the migration failure message indicates that the USF network element, the SDN control network element or the SF network element is faulty.
  • the control plane network element receives the migration failure message, it can determine that the USF network element in the switching decision network element is faulty, or the SDN control network element is faulty, or the SF network element is faulty. The user migration process was unsuccessful.
  • the USF network element notifies the SDN control network element to perform the handover operation, if the SF network element completes the binding between the terminal device and the first user plane network element under the command of the SDN control network element, but Due to the fault, the binding relationship between the terminal equipment and other user plane network elements used before is not deleted, or the SF network element deletes the binding relationship between the terminal equipment and other user plane network elements used before, However, the binding between the terminal device and the first user plane network element is not completed due to a fault.
  • the other user plane network elements here refer to the user plane network elements used for sending data packets before the terminal device is migrated.
  • the USF network element receives the migration failure message returned by the SDN control network element, the USF network element is also used to control the SF network element to bind the terminal device to the user plane used for the last data packet sent. On the network element, so that the terminal device continues to send data packets based on the user plane network element used to send the data packets last time.
  • the USF network element sends a user fallback instruction to the SDN control network element, and when the SDN control network element receives the user fallback instruction, it forwards the user fallback instruction to the SF network element.
  • the SF network element checks the locally configured user plane network element bound to the terminal device. If the terminal device and the first user plane network element and other user plane network elements are stored locally at the same time The binding relationship between the terminal device and the first user plane network element is deleted. If only the binding relationship between the terminal device and the first user plane network element is stored locally, delete the binding relationship between the terminal device and the first user plane network element, and add the terminal device and other user plane network elements binding relationship between. If only the binding relationship between the terminal device and other user plane network elements is stored locally, no operation is required.
  • FIG. 8 is a schematic diagram of a fault handling process in a user migration process provided by an embodiment of the present application.
  • the user plane network element after the terminal migration is referred to as the target user plane network element
  • the user plane network element before the terminal migration is referred to as the original user plane network element.
  • the flow shown in Figure 8 includes the following steps.
  • the control plane network element receives the user SLA change message sent by the AAA server, where the user SLA change message indicates that the user information of the terminal device is updated.
  • the control plane network element forwards the user SLA change message to the USF network element, so that the USF network element configures the target user plane network element for the terminal device based on the updated user information.
  • the USF network element sends a first migration configuration instruction to the control plane network element, where the first migration configuration instruction carries the identifier of the target user plane network element.
  • control plane network element After receiving the first migration configuration instruction, the control plane network element delivers the user entry of the terminal device to the target user plane network element.
  • the target user plane network element After determining that the user entry of the terminal device is locally configured, the target user plane network element returns an entry configuration success message to the control plane network element.
  • the control plane network element forwards the entry configuration success message to the USF network element to notify the USF network element that the target user plane network element has completed the relevant configuration.
  • the USF network element After the USF network element receives the message that the entry is configured successfully, it sends a handover instruction to the SDN control network element.
  • the handover instruction instructs the SDN control network element to perform a handover operation.
  • the purpose of the handover operation is to migrate the terminal device to the target. on the user plane network element.
  • the SDN control network element After receiving the handover instruction issued by the USF network element, the SDN control network element delivers configuration information to the SF network element.
  • the configuration information instructs the SF network element to establish a local connection between the terminal device and the target user plane network element.
  • the binding relationship is deleted, and the binding relationship between the terminal device and the original user plane network element is deleted.
  • the SF After the SF receives the configuration information, if the binding relationship between the terminal device and the target user plane network element is not successfully established locally, and the binding between the terminal device and the original user plane network element is deleted. If the relationship is operated, a configuration failure message is returned to the SDN control network element.
  • the SDN control network element After receiving the configuration failure message, the SDN control network element returns a migration failure message to the USF network element.
  • the USF network element After receiving the migration failure message, the USF network element notifies the control plane network element of the migration failure message.
  • control plane network element After the control plane network element receives the migration failure message, it sends a user entry rollback instruction to the target user plane network element, and the user entry rollback instruction instructs the target user plane network element to delete the added terminal equipment. User table entry.
  • the target user plane network element After determining to delete the added user entry of the terminal device, the target user plane network element returns a rollback success message to the control plane network element.
  • the USF network element After notifying the control plane network element of the migration failure message, the USF network element also sends a fallback instruction to the SDN control network element, where the fallback instruction instructs the SF network element to bind the terminal device and the original user plane network element.
  • the SDN control network element After receiving the fallback instruction, the SDN control network element sends a configuration fallback instruction to the SF network element, where the configuration fallback instruction instructs the SF network element to bind the terminal device and the original user plane network element.
  • the SF network element After receiving the configuration rollback instruction, the SF network element detects the locally stored user plane network element bound to the terminal device, and after ensuring that the terminal device is only bound to the original user plane network element, reports to the SDN control network element. Returns a configuration fallback success message.
  • the SDN control network element After receiving the configuration rollback success message, the SDN control network element returns a rollback success message to the USF network element to notify the USF network element that the SF network element has bound the terminal device to the original user plane network element.
  • whether the handover decision network element is faulty is determined according to the response of the handover decision network element to the table entry configuration success message sent by the control plane network element.
  • the control plane network element may first determine the handover decision network element by actively probing. Whether there is a fault, so that after it is determined that the switching decision network element is faulty, the above step 702 is used to avoid the offline of the terminal device.
  • the switching decision network element failure in step 702 may also include at least one of the following situations.
  • the detection result message returned by the USF network element is not received within the first reference time period.
  • control plane network element After the control plane network element sends a fault detection request to the USF network element, it receives a detection result message returned by the USF network element, and the detection result message indicates that the USF network element or the SF network element is faulty or the SDN control network element is faulty .
  • control plane network element After the control plane network element sends a fault detection request to the SDN control network element, it receives a detection result message returned by the SDN control network element, and the detection result message indicates that the SF network element is faulty or the SDN control network element is faulty.
  • the control plane network element After the control plane network element successfully sends the user entry to the first user plane network element based on the identifier of the first user plane network element, it first actively detects whether the handover decision unit is faulty. If a fault occurs, it is not necessary to send an entry configuration success message to the USF network element, and the above step 702 is directly performed to avoid disconnection of the terminal device. If there is no fault, send an entry configuration success message to the USF network element, so as to realize the successful migration of the terminal device through the interaction between the USF network element, the SDN control network element, and the SF network element.
  • control plane network element actively detects whether the handover decision-making network is faulty may also occur after the control plane network element receives the user SLA change message.
  • the control plane network element if the control plane network element has passed the The method of active detection switches to determine network failures. At this time, the current state is maintained and no action is required. For example, the user SLA change message is forwarded to the USF network element.
  • control plane network element receives the user SLA change message
  • the control plane network element sends the user SLA change message to the USF network element
  • the USF network element does not return any migration to the control plane network element within the specified time. If the control plane network element can also determine that the USF network element is faulty, the current state is maintained, and no operation is required.
  • the USF network element After the control plane network element receives the user SLA change message, if the control plane network element sends the user SLA change message to the USF network element, the USF network element first determines the SDN control network element or the SDN control network element through active detection. When the SF network element fails, the USF network element returns a detection result message to the control plane network element, and the detection result message indicates that the USF network element, the SDN control network element or the SF network element is faulty. At this time, after receiving the detection result message, the network element of the control plane also maintains the current state and does not need to perform any operation.
  • FIG. 9 is a schematic diagram of another fault handling process in a migration process provided by an embodiment of the present application.
  • the control plane network element receives the user SLA change message sent by the AAA server, and the control plane network element notifies the USF network element that the user SLA of the terminal device has changed. At this time, if the control plane network element receives the USF If the migration failure message is returned by the NE, you do not need to perform any operations.
  • the control plane network element determines that the failure of the handover decision network element is eliminated, the control plane network element forwards the user SLA change message to the handover decision network element, and the user SLA change message indicates the terminal equipment. updated user information, so that the handover decision network element configures the second user plane network element for the terminal device based on the updated user information, and sends the second migration configuration carrying the identifier of the second user plane network element to the control plane network element instruction.
  • the control plane network element needs to re-trigger the entire user migration process, that is, the control plane network element needs to make a switch decision
  • the network element forwards the user SLA change message, so that the USF network element in the handover decision network element determines the latest user plane network element based on the current network state and the user SLA change message.
  • the control plane network element in order to cause the terminal device to go offline due to the failure of the user migration process, the control plane network element successfully sends the user entry to the first user plane network element based on the identifier of the first user plane network element. , if the control plane network element determines that the handover decision network element is faulty, it sends a user table entry rollback instruction to the first user plane network element, and the user table entry rollback instruction instructs the first user plane network element to delete the added user table. item. Thereby, the terminal equipment offline due to the failure of the switching decision unit during the user migration process is avoided. If it is determined that the handover decision network element is faulty before sending the user entry to the first user plane network element based on the identifier of the first user plane network element, then no operation is required to avoid disconnection of the terminal device.
  • the handover decision network element may also actively trigger the terminal device migration.
  • the handover decision-making network element determines that it is faulty, it does not trigger terminal device migration first, but re-triggers terminal device migration when the fault is eliminated.
  • FIG. 10 is a flowchart of another fault processing method provided by an embodiment of the present application. As shown in Figure 10, the method includes the following steps.
  • Step 1001 In the case where it is determined that the traffic of the terminal device needs to be diverted to the first user plane network element, the handover decision network element generates a migration configuration instruction, and the migration configuration instruction carries the identifier of the first user plane network element and the identifier of the terminal device, The migration configuration instruction instructs to forward the data packet of the terminal device through the first user plane network element.
  • the handover decision-making network element When the handover decision-making network element determines that the traffic of the terminal device needs to be diverted to the first user plane network element, the handover decision-making network element will generate a corresponding migration configuration instruction, and the control plane network element will be instructed to the first user plane network element through the migration configuration instruction.
  • the network element delivers the user entry, thereby triggering the migration of the terminal device.
  • the handover decision network element can actively migrate the terminal device in the following two scenarios. That is, the determination by the above handover decision network element that the traffic of the terminal device needs to be diverted to the first user plane network element may be determined in the following two implementation manners.
  • the handover decision-making network element determines that the traffic of the terminal device needs to be diverted to the first user plane network when detecting a selection operation for the migration control displayed on the display interface of the handover decision-making network element element, the terminal device and the first user plane network element are both specified by the user through the migration control.
  • a migration control is displayed on the display interface of the USF network element, and the user can trigger the USF network element to actively migrate the terminal device through the migration control.
  • the USF network element detects the selection operation for the migration control, it obtains the terminal equipment identifier and the user plane network element identifier input by the user through the preset operation, so as to determine that the terminal equipment indicated by the terminal equipment identifier needs to be migrated , and the traffic of the terminal device needs to be diverted to the user plane network element indicated by the user plane network element identifier.
  • the user plane network element indicated by the user plane network element identifier input by the user through the preset operation is the first user plane network element.
  • the SDN control network element or the SF network element can also be used to actively trigger the migration of the terminal device.
  • the specific implementation method refer to the implementation process of the USF network element, which will not be described one by one here.
  • the handover decision-making network element determines that the terminal device traffic needs to be diverted to the first user plane network element in the case of detecting that the first user plane network element other than multiple user plane network elements is added to the network.
  • User plane network element determines that the terminal device traffic needs to be diverted to the first user plane network element in the case of detecting that the first user plane network element other than multiple user plane network elements is added to the network.
  • the USF network element will monitor the configuration of the user plane network elements in the entire network. If it is detected that the first user plane network element has been added to the network, in order to achieve load balancing, the terminal equipment can be migrated to the first user plane network element. On the user plane network element, that is, the data packet of the control terminal device is forwarded by the first user plane network element, so that the traffic of the terminal device is diverted to the first user plane network element.
  • Step 1002 If the handover decision network element determines that it is faulty, it does not send a migration configuration instruction to the control plane network element.
  • the handover decision-making network element After the handover decision-making network element generates the migration configuration command, if it determines that it is faulty, if it sends the migration configuration command to the control plane network element at this time, it will cause the terminal device to fail to migrate, resulting in the terminal device going offline. Therefore, in order to avoid the terminal device going offline due to migration failure, when determining that the terminal device is faulty, the switching decision network element does not send the migration configuration instruction to the control plane network element, but first caches the migration configuration instruction.
  • the USF network element After the USF network element generates the migration configuration instruction, if it is determined that the handover decision network element is faulty, it does not send the migration configuration instruction to the control plane network element, but first caches the migration configuration instruction.
  • the failure of the above handover decision network element may include at least one of the following situations.
  • the USF network element determines that it is faulty.
  • the USF network element determines that it is faulty at this time.
  • the USF network element After the USF network element sends the fault detection request to the SDN network element, it does not receive the detection result message returned by the SDN network element within the first reference time period, or, after the USF network element sends the fault detection request to the SDN network element, it receives To the detection result message returned by the SDN network element, the detection result message indicates that the SF network element is faulty or the SDN control network element is faulty.
  • the USF network element has the function of actively detecting whether the SDN control network element is faulty.
  • a first reference duration can be configured on the USF network element in advance. If the detection request returned by the SDN control network element is not received within the first reference duration after the failure detection request is sent to the SDN control network element When the result message is displayed, the USF network element can determine that the SDN control network element in the handover decision network element is faulty.
  • the SDN control network element can report to the USF network.
  • the element feeds back a detection result message, where the detection result message indicates that the SDN control network element is faulty, or the SF network element is faulty.
  • the USF network element receives the detection result message, it can determine that the SDN control network element in the handover decision network element is faulty, or the SF network element is faulty.
  • the handover decision NE may report an error to remind the user that the current trigger Active migration failed. For example, when the USF network element determines that a certain network element in the switching decision network elements is faulty, an alarm prompt is displayed, and the alarm prompt indicates that the migration of the terminal equipment cannot be completed currently.
  • Step 1003 In the case that the handover decision network element determines that its own fault has been eliminated, re-send a migration configuration instruction to the control plane network element.
  • the handover decision NE When the handover decision NE determines that its own fault has been eliminated, it can re-send a migration configuration instruction to the control plane NE to trigger subsequent migration operations. For example, the USF NE determines that each NE in the handover decision NE has In the case of normal operation, the migration configuration instruction is re-sent to the network element of the control plane.
  • the relevant operations of the control plane network element after receiving the relocation configuration instruction may refer to the relevant operations of the control plane network element after receiving the user migration result sent by the USF network element in FIG. 3 , which will not be repeated here.
  • the switching decision-making network element actively triggers the migration of terminal equipment
  • the switching decision-making network element can detect its own failure, the subsequent operations of the migration will not be triggered at this time, but when the fault is eliminated. In this case, the subsequent operations of the migration are re-triggered, so as to avoid the terminal device going offline due to the failed migration triggered by the failure of the switching decision network element.
  • FIG. 11 is a schematic structural diagram of a control plane network element provided by an embodiment of the present application.
  • the control plane network element is the control plane network element included in the broadband network gateway BNG in the network.
  • the BNG also includes multiple user plane network elements.
  • the network also includes handover decision network elements and terminal equipment. The handover decision network element is used to connect the terminal equipment. The traffic is diverted to one user plane NE among the multiple user plane NEs.
  • control plane network element 1100 includes:
  • the transceiver module 1101 is configured to receive an online request from a terminal device, and the terminal device sends an online request to a control plane network element through a first user plane network element, where the first user plane network element is one of multiple user plane network elements.
  • a control plane network element through a first user plane network element, where the first user plane network element is one of multiple user plane network elements.
  • the control module 1102 is configured to control the terminal device to send a data packet based on the first user plane network element when it is determined that the handover decision network element is faulty. For a specific implementation manner, reference may be made to step 402 in the embodiment of FIG. 4 .
  • control module is used to:
  • the control plane network element sends a user entry to the first user plane network element, the user entry carries user information of the terminal device, and the first user plane network element forwards the data packet from the terminal device based on the user entry.
  • the handover decision network element includes any one or more of a handover function SF network element, a user handover function USF network element, and a software-defined network SDN control network element;
  • the failure of the handover decision network element includes at least one of the following situations:
  • the transceiver module After the transceiver module sends a fault detection request to the USF network element, the transceiver module does not receive the detection result message returned by the USF network element within the first reference time period, or, after the transceiver module sends a fault detection request to the USF network element, the transceiver module receives the message.
  • the detection result message returned by the USF network element, the detection result message indicates that the USF network element or the SF network element is faulty, or the SDN control network element is faulty; or,
  • the transceiver module After the transceiver module sends the fault detection request to the SDN control network element, the transceiver module does not receive the detection result message returned by the SDN control network element within the second reference time period, or, after the transceiver module sends the fault detection request to the SDN control network element, the transceiver module sends and receives The module receives the detection result message returned by the SDN control network element, and the detection result message indicates that the SF network element is faulty or the SDN control network element is faulty; or,
  • the transceiver module After the transceiver module sends a migration policy request to the USF network element based on the online request, it does not receive the user migration result returned by the USF network element within the third reference time period, or the transceiver module receives the detection result message returned by the USF network element, and detects the The result message indicates that the USF network element, or the SF network element, is faulty, or the SDN control network element is faulty.
  • the transceiver module is further configured to:
  • the user migration result carries the identifier of the second user plane network element, and the second user plane network element is another user plane network element except the first user plane network element. ;
  • the handover decision network element After receiving the table entry configuration success message returned by the second user plane network element, send the table entry configuration success message to the handover decision network element, so that the handover decision network element establishes the mapping relationship between the terminal device and the second user plane network element , and based on the mapping relationship between the terminal device and the second user plane network element, the data packet of the terminal device is forwarded to the second user plane network element.
  • the first user plane network element is a preconfigured user plane network element
  • the first user plane network element is the user plane network element used by the terminal device to send the data message before the last time the terminal device goes offline.
  • the control plane network element may The decision to skip the handover decision unit directly controls the terminal device to send data packets based on the first user plane network element used by the online request. That is, the embodiment of the present application provides a manner in which the terminal device can continue to access the network when the handover decision-making network element fails. In other words, the embodiment of the present application can implement an escape path in a single network element failure scenario, so that the terminal device can still go online normally.
  • control plane network element provided in the above embodiment performs fault processing
  • only the division of the above functional modules is used as an example for illustration.
  • the above functions can be allocated to different functional modules as required. , that is, dividing the internal structure of the device into different functional modules to complete all or part of the functions described above.
  • the control plane network element provided in the above embodiment belongs to the same concept as the fault handling method embodiment shown in FIG. 4 , and the specific implementation process is detailed in the method embodiment, which will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a control plane network element provided by an embodiment of the present application.
  • the control plane network element is a control plane network element included in the broadband network gateway BNG in the network.
  • the BNG also includes a plurality of user plane network elements.
  • the network also includes a handover decision network element and a terminal device. The handover decision network element is used to connect the terminal The traffic of the device is diverted to one user plane NE among multiple user plane NEs.
  • control plane network element 1200 includes:
  • the transceiver module 1201 is configured to receive a first relocation configuration instruction sent by the handover decision unit, where the first relocation configuration instruction carries the identifier of the first user plane network element and the identifier of the terminal device, and the first relocation configuration instruction instructs to transfer the datagram of the terminal device The message is forwarded by the first user plane network element.
  • the first relocation configuration instruction carries the identifier of the first user plane network element and the identifier of the terminal device
  • the first relocation configuration instruction instructs to transfer the datagram of the terminal device
  • the message is forwarded by the first user plane network element.
  • the transceiver module 1201 is further configured to, after successfully sending the user entry to the first user plane network element based on the identifier of the first user plane network element, if it is determined that the handover decision network element is faulty, send the user information to the first user plane network element
  • the entry rollback instruction instructs the first user plane network element to delete the added user entry.
  • step 702 in the embodiment of FIG. 7 .
  • the user entry carries user information of the terminal device, and the first user plane network element forwards the data packet of the terminal device based on the user entry.
  • the handover decision network element includes any one or more of a handover function SF network element, a user handover function USF network element, and a software-defined network SDN control network element;
  • the failure of the handover decision network element includes at least one of the following situations:
  • the detection result message returned by the USF network element is not received within the first reference time period.
  • the detection result message indicates that the USF network element, or the SF network element is faulty, or the SDN control network element is faulty; or,
  • the transceiver module After the transceiver module sends the fault detection request to the SDN control network element, it does not receive the detection result message returned by the SDN control network element within the second reference time period, or, after the transceiver module sends the fault detection request to the SDN control network element, it receives the SDN
  • the detection result message returned by the control network element the detection result message indicates that the SF network element is faulty or the SDN control network element is faulty; or,
  • the transceiver module After the transceiver module successfully sends the user entry to the first user plane network element based on the identifier of the first user plane network element, the transceiver module sends the entry configuration success message to the USF network element, and the transceiver module sends the entry configuration successful message to the USF. After the message, the message returned by the USF network element is not received within the third reference time period.
  • the NE, SDN control NE, or SF NE is faulty.
  • the USF network element is used to control the SF network element to bind the terminal device to the user plane network element used to send the data message last time, so as to Make the terminal device continue to send data packets based on the user plane network element used to send the data packets last time.
  • the transceiver module before receiving the first migration configuration instruction sent by the handover decision unit, the transceiver module is further configured to:
  • the user SLA change message is forwarded to the handover decision network element, so that the handover decision network element configures the first user plane network element for the terminal device based on the updated user information, and sends the first migration configuration instruction to the control plane network element.
  • control plane network element further includes a control module 1202 for:
  • the transceiver module After the transceiver module receives the user SLA change message, when it is determined that the switching decision network element is faulty, the current state is maintained.
  • the handover decision network element includes any one or more of a handover function SF network element, a user handover function USF network element, and a software-defined network SDN control network element;
  • the failure of the handover decision network element includes at least one of the following situations:
  • the transceiver module After the transceiver module sends a fault detection request to the USF network element, it does not receive the detection result message returned by the USF network element within the fifth reference time period, or, after the transceiver module sends a fault detection request to the USF network element, it receives a response from the USF network element.
  • the detection result message indicates that the USF network element, or the SF network element is faulty, or the SDN control network element is faulty; or,
  • the transceiver module After the transceiver module sends the fault detection request to the SDN control network element, it does not receive the detection result message returned by the SDN control network element within the sixth reference time period, or, after the transceiver module sends the fault detection request to the SDN control network element, it receives the SDN
  • the detection result message returned by the control network element the detection result message indicates that the SF network element is faulty or the SDN control network element is faulty; or,
  • the transceiver module After the transceiver module forwards the user SLA change message to the USF network element, the message returned by the USF network element is not received within the fourth reference time period, or the transceiver module receives the user SLA change message after forwarding the user SLA change message to the USF network element.
  • the detection result message sent by the element indicates that the USF network element, the SDN control network element or the SF network element is faulty.
  • the transceiver module is also used for:
  • the user SLA change message is forwarded to the handover decision network element, and the user SLA change message indicates that the user information of the terminal device is updated, so that the handover decision network element is based on the updated user information.
  • the device configures the second user plane network element, and sends a second migration configuration instruction carrying the identifier of the second user plane network element to the control plane network element.
  • the control plane network element in order to cause the terminal device to go offline due to the failure of the user migration process, after the control plane network element successfully sends the user entry to the first user plane network element based on the identifier of the first user plane network element, if the control plane network element determines that the handover decision network element is faulty, it sends a user entry rollback instruction to the first user plane network element, where the user entry rollback instruction instructs the first user plane network element to delete the added user entry. Thereby, the terminal equipment offline due to the failure of the switching decision unit during the user migration process is avoided. If it is determined that the handover decision network element is faulty before sending the user entry to the first user plane network element based on the identifier of the first user plane network element, then no operation is required to avoid disconnection of the terminal device.
  • control plane network element provided in the above embodiment performs fault processing
  • only the division of the above functional modules is used as an example for illustration.
  • the above functions can be allocated to different functional modules as required. , that is, dividing the internal structure of the device into different functional modules to complete all or part of the functions described above.
  • the control plane network element provided in the foregoing embodiment belongs to the same concept as the embodiment of the fault handling method shown in FIG. 7 , and the specific implementation process is detailed in the method embodiment, which will not be repeated here.
  • FIG. 13 is a schematic structural diagram of a handover decision network element provided by an embodiment of the present application.
  • the network also includes a BNG and terminal equipment.
  • the BNG includes a control plane network element and multiple user plane network elements.
  • the handover decision network element is used to divert the traffic of the terminal equipment to one user plane network element among the multiple user plane network elements.
  • the handover decision network element 1300 includes:
  • the generating module 1301 is configured to generate a migration configuration instruction when it is determined that the traffic of the terminal device needs to be diverted to the first user plane network element.
  • the migration configuration instruction carries the identifier of the first user plane network element and the identifier of the terminal device, and the migration configuration instruction The configuration instruction instructs to forward the data packet of the terminal device through the first user plane network element.
  • step 1001 in the embodiment of FIG. 10 For a specific implementation manner, reference may be made to step 1001 in the embodiment of FIG. 10 .
  • Sending module 1302 configured to not send a migration configuration instruction to the control plane network element if the handover decision network element determines that it is faulty; and re-send the migration configuration to the control plane network element in the case that the handover decision network element determines that its own fault has been eliminated instruction.
  • Sending module 1302 configured to not send a migration configuration instruction to the control plane network element if the handover decision network element determines that it is faulty; and re-send the migration configuration to the control plane network element in the case that the handover decision network element determines that its own fault has been eliminated instruction.
  • the handover decision network element includes any one or more of a handover function SF network element, a user handover function USF network element, and a software-defined network SDN control network element;
  • the failure of the handover decision network element includes at least one of the following situations:
  • the USF network element determines that it is faulty; or,
  • the USF network element After the USF network element sends a fault detection request to the SDN network element, it does not receive the detection result message returned by the SDN network element within the first reference time period, or, after the USF network element sends a fault detection request to the SDN network element, it receives The detection result message returned by the element indicates that the SF network element is faulty or the SDN control network element is faulty.
  • the handover decision network element further includes a determination module for:
  • the switching decision-making network element actively triggers the migration of terminal equipment
  • the switching decision-making network element can detect its own failure, the subsequent operations of the migration will not be triggered at this time, but when the fault is eliminated. In this case, the subsequent operations of the migration are re-triggered, so as to avoid the terminal equipment going offline due to the failed migration triggered by the failure of the switching decision network element.
  • the handover decision-making network element provided in the above embodiment performs fault processing
  • only the division of the above functional modules is used as an example for illustration.
  • the above functions can be allocated to different functional modules as required. , that is, dividing the internal structure of the device into different functional modules to complete all or part of the functions described above.
  • the handover decision provided in the above embodiment and the fault handling method embodiment shown in FIG. 10 belong to the same concept, and the specific implementation process thereof is detailed in the method embodiment, which will not be repeated here.
  • FIG. 14 is a schematic structural diagram of a network device provided by an embodiment of the present application. Any network element in the foregoing embodiment may be implemented by the network device shown in FIG. 14 .
  • the network device includes at least one processor 1401 , a communication bus 1402 , a memory 1403 and at least one communication interface 1404 .
  • the processor 1401 may be a general-purpose central processing unit (central processing unit, CPU), an application-specific integrated circuit (application-specific integrated circuit, ASIC), or one or more integrated circuits used to control the execution of the programs of the present application.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 1402 may include a path to communicate information between the aforementioned components.
  • Memory 1403 may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or other types of information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only Memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk or other magnetic storage device, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being accessed by a computer any other medium, but not limited to this.
  • the memory 1403 can exist independently and is connected to the processor 1401 through the communication bus 1402 .
  • the memory 1403 may also be integrated with the processor 1401.
  • the memory 1403 is used for storing the program code for executing the solution of the present application, and the execution is controlled by the processor 1401 .
  • the processor 1401 is used to execute program codes stored in the memory 1403 .
  • One or more software modules may be included in the program code.
  • the control plane network element in the above-mentioned BNG may determine the data for developing the application through the processor 1401 and one or more software modules in the program code in the memory 1403 .
  • Communication interface 1404 using any transceiver-like device, for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the network device may include multiple processors, such as the processor 1401 and the processor 1405 shown in FIG. 14 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the above-mentioned network device may be a general network device or a dedicated network device.
  • the network device may be a switch, a router, and the like.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital versatile disc (DVD)), or semiconductor media (eg, solid state disk (SSD)) )Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请实施例公开了一种故障处理方法、控制面网元、切换决策网元及相关设备,属于宽带网络技术领域。所述方法包括:在终端设备接入网络的过程中,如果控制面网元确定切换决策网元出现故障,此时为了保证终端设备能够继续接入网络,控制面网元可以跳过切换决策单元的决策直接控制终端设备基于上线请求所使用的第一用户面网元发送数据报文。通过本申请实施例能够实现单网元故障场景下的逃生路径,使得终端设备依然可以正常上线。此外,在终端设备正在迁移的过程中,如果切换决策网元出现故障,将导致控制面网元和切换决策网络之间的消息交互失败,此时控制面网元支持已经下发的用户表项的回退,从而避免终端设备下线。

Description

故障处理方法、控制面网元、切换决策网元及相关设备
本申请要求于2020年12月30日提交的申请号为202011614473.2、发明名称为“故障处理方法、控制面网元、切换决策网元及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及宽带网络技术领域,特别涉及一种故障处理方法、控制面网元、切换决策网元及相关设备。
背景技术
宽带网络网关(broadband network gateway,BNG)是终端设备接入宽带网络的桥梁。BNG主要用于对终端设备发起的会话进行管理、以及对终端设备的流量进行转发等等。随着软件定义网络(software designed network,SDN)技术以及网络功能虚拟化(network function virtual,NFV)技术的发展,需要将BNG的转发功能和控制功能解耦,以提高BNG的性能。转发功能和控制功能解耦后的BNG包括一个控制面(control plane,CP)网元和多个用户面(user plane)网元,控制面网元用于对多个用户面网元进行管理,任一用户面网元用于转发终端设备的流量。这种场景下,还需要在终端设备和多个用户面网元之间部署切换功能(steering function,SF)网元,该SF网元用于基于用户切换功能(user steering function,USF)网元制定的动态迁移策略将终端设备发送的流量引流至某个用户面网元上。在前述终端设备发送流量的过程中,如果SF网元或USF网元发生故障,将导致终端设备无法成功访问宽带网络。因此,如何对SF网元以及USF网元上发生的故障进行处理是当前亟需解决的问题。
发明内容
本申请提供了一种故障处理方法、控制面网元、切换决策网元及相关设备,可以在终端设备通过BNG通信的过程中如果存在网元出现故障,避免终端设备接入不上网络或者掉线的情况出现。技术方案如下:
第一方面,提供了一种故障处理方法,该方法由网络中的宽带网络网关BNG包括的控制面网元执行,BNG还包括多个用户面网元,网络中还包括切换决策网元和终端设备,切换决策网元用于将终端设备的流量引流至多个用户面网元中的一个用户面网元。在该方法中,控制面网元接收来自终端设备的上线请求,终端设备通过第一用户面网元向控制面网元发送上线请求,第一用户面网元为多个用户面网元中的一个;控制面网元在确定切换决策网元故障的情况下,控制终端设备基于第一用户面网元发送数据报文。
在本申请中,在终端设备接入网络的过程中,如果控制面网元确定切换决策网元出现故障,此时为了保证终端设备能够继续接入网络,控制面网元可以跳过切换决策单元的决策直接控制终端设备基于上线请求所使用的第一用户面网元发送数据报文。也即是,本申请提供了一种在切换决策网元出现故障的情况下,终端设备能够继续接入网络的方式。换句话说, 通过本申请能够实现单网元故障场景下的逃生路径,使得终端设备依然可以正常上线。
基于第一方面提供的方法,在一种可能的实现方式中,控制终端设备基于第一用户面网元发送数据报的实现过程可以为:控制面网元向第一用户面网元发送用户表项,用户表项携带终端设备的用户信息,第一用户面网元基于用户表项转发来自终端设备的数据报文。
由于切换决策网络已经出现故障,控制面网元可以跳过切换决策单元的决策直接在第一用户面网元上进行相关配置即可,从而实现在切换决策网元出现故障的情况下,终端设备能够继续接入网络。
基于第一方面提供的方法,在一种可能的实现方式中,切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种。这种场景下,切换决策网元故障包括下述至少一个情况:
控制面网元向USF网元发送故障探测请求后,在第一参考时长内未接收到USF网元返回的探测结果消息,或者,控制面网元向USF网元发送故障探测请求后,接收到USF网元返回的探测结果消息,探测结果消息指示USF网元、或者SF网元出现故障、或者SDN控制网元出现故障;或者,
控制面网元向SDN控制网元发送故障探测请求后,在第二参考时长内未接收到SDN控制网元返回的探测结果消息,或者,控制面网元向SDN控制网元发送故障探测请求后,接收到SDN控制网元返回的探测结果消息,探测结果消息指示SF网元出现故障或者SDN控制网元出现故障;或者,
控制面网元基于上线请求向USF网元发送用迁移策略请求后,在第三参考时长内未接收到USF网元返回的用户迁移结果,或者,接收到USF网元返回的探测结果消息,探测结果消息指示USF网元、或者SF网元出现故障、或者SDN控制网元出现故障。
在本申请中,控制面网元在接收到终端设备的上线请求后,可以主动探测切换决策单元是否出现故障,也可以直接向USF网元发送用户迁移策略请求,基于USF网元对用户迁移策略请求的响应情况来确定切换决策单元是否出现故障。提高了控制面网元探测切换决策网元是否出现故障的灵活性。
基于第一方面提供的方法,在一种可能的实现方式中,控制终端设备基于第一用户面网元发送数据报文之后,在该方法中,控制面网元还可以接收切换决策网元在故障消除后发送的用户迁移结果,用户迁移结果携带第二用户面网元的标识,第二用户面网元为除第一用户面网元外的另一个用户面网元;控制面网元向第二用户面网元发送用户表项,用户表项携带终端设备的用户信息,第二用户面网元基于用户表项转发来自终端设备的数据报文;控制面网元接收到第二用户面网元返回的表项配置成功消息后,向切换决策网元发送表项配置成功消息,以使切换决策网元建立终端设备和第二用户面网元之间的映射关系,并基于终端设备和第二用户面网元之间的映射关系,将终端设备的数据报文转发至第二用户面网元。
在切换决策网元出现故障的情况下,控制面网元控制终端设备基于初始的用户面网元来发送数据报文。从而保证终端设备在切换决策网元出现故障的情况下,继续接入网络。但是如果后续一直按照这种方式来转发数据报文,将无法实现网络中各个用户面网元之间的调度,容易出现用户面网元之间负载不均衡的情况。因此,在切换决策网元出现故障后,一旦控制面网元探测到切换决策网元故障消除,便触发切换决策网元对终端设备进行用户迁移,从而实现各个用户面网元之间的合理调度。
基于第一方面提供的方法,在一种可能的实现方式中,在终端设备首次发送上线请求的情况下,第一用户面网元为预先配置的用户面网元;在终端设备非首次发送上线请求的情况下,第一用户面网元为终端设备上次下线之前发送数据报文所使用的用户面网元。
上述对于第一用户面网元的确定方式可以提高终端在切换决策网元故障情况下接入网络的成功率。
第二方面,提供了一种故障处理方法,该方法由网络中的宽带网络网关BNG包括的控制面网元执行,BNG还包括多个用户面网元,网络中还包括切换决策网元和终端设备,切换决策网元用于将终端设备的流量引流至多个用户面网元中的一个用户面网元。在该方法中,控制面网元接收切换决策单元发送的第一迁移配置指令,第一迁移配置指令携带第一用户面网元的标识和终端设备的标识,第一迁移配置指令指示将终端设备的数据报文由第一用户面网元转发;在控制面网元基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,如果控制面网元确定切换决策网元出现故障,则向第一用户面网元发送用户表项回退指令,用户表项回退指令指示第一用户面网元删除已经添加的用户表项。其中,用户表项携带终端设备的用户信息,第一用户面网元基于用户表项转发终端设备的数据报文。
在本申请中,通过上述故障处理流程,在终端设备正在迁移的过程中,如果切换决策网元出现故障(比如USF网元、SDN控制网元或SF网元中一者或多者出现故障),将导致控制面网元和切换决策网络之间的消息交互失败,此时控制面网元支持已经下发的用户表项的回退,从而避免终端设备下线。
基于第二方面提供的方法,在一种可能的实现方式中,切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种。这种场景下,切换决策网元故障包括下述至少一个情况:
控制面网元向USF网元发送故障探测请求后,在第一参考时长内未接收到USF网元返回的探测结果消息,或者,控制面网元向USF网元发送故障探测请求后,接收到USF网元返回的探测结果消息,探测结果消息指示USF网元、或者SF网元出现故障或者SDN控制网元出现故障;或者,
控制面网元向SDN控制网元发送故障探测请求后,在第二参考时长内未接收到SDN控制网元返回的探测结果消息,或者,控制面网元向SDN控制网元发送故障探测请求后,接收到SDN控制网元返回的探测结果消息,探测结果消息指示SF网元出现故障或者SDN控制网元出现故障;或者,
在控制面网元基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,控制面网元向USF网元发送表项配置成功消息,在控制面网元在向USF发送表项配置成功消息后,在第三参考时长内未接收到USF网元返回的消息,或者,控制面网元在向USF发送表项配置成功消息后,接收到USF网元发送的迁移失败消息,迁移失败消息指示USF网元、SDN控制网元或SF网元出现故障。
在本申请中,控制面网元可以主动探测切换决策单元是否出现故障,也可以直接向USF网元发送表项配置成功消息,基于USF网元对表项配置成功消息的响应情况来确定切换决策单元是否出现故障。提高了控制面网元探测切换决策网元是否出现故障的灵活性。
基于第二方面提供的方法,在一种可能的实现方式中,在SDN控制网元或SF网元出现 故障的情况下,USF网元用于控制SF网元将终端设备绑定在上次发送数据报文所使用的用户面网元上,以使终端设备继续基于上次发送数据报文所使用的用户面网元发送数据报文。
在USF网元通告SDN控制网元执行切换操作后,如果在SDN控制网元的命令下,SF网元完成了将该终端设备和第一用户面网元之间的绑定工作,但是由于故障原因没有删除该终端设备和之前使用的其他用户面网元之间的绑定关系,或者,SF网元删除了该终端设备和之前使用的其他用户面网元之间的绑定关系,但是由于故障原因没有完成将该终端设备和第一用户面网元之间的绑定工作。此处的其他用户面网元是指在终端设备迁移之前发送数据报文所使用的用户面网元。在这种场景下,如果USF网元接收到SDN控制网元返回的迁移失败消息后,USF网元还用于控制SF网元将终端设备绑定在上次发送数据报文所使用的用户面网元上,以使终端设备继续基于上次发送数据报文所使用的用户面网元发送数据报文。
基于第二方面提供的方法,在一种可能的实现方式中,控制面网元接收切换决策单元发送的第一迁移配置指令之前,在该方法中,控制面网元接收用户服务等级协议SLA变更消息,用户SLA变更消息指示终端设备的用户信息发生更新;控制面网元向切换决策网元转发用户SLA变更消息,以使切换决策网元基于更新后的用户信息为终端设备配置第一用户面网元,并向控制面网元发送第一迁移配置指令。
基于第二方面提供的方法,在一种可能的实现方式中,控制面网元接收用户SLA变更消息之后,在该方法中,在控制面网元确定切换决策网元发生故障时,则保持当前状态。
在控制面网元接收到用户SLA变更消息之后,如果控制面已经确定出切换决策网元出现故障,则保持当前状态,无需执行任何操作,避免产生无用的用户迁移。
基于第二方面提供的方法,在一种可能的实现方式中,切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种。这种场景下,切换决策网元故障包括下述至少一个情况:
控制面网元向USF网元发送故障探测请求后,在第五参考时长内未接收到USF网元返回的探测结果消息,或者,控制面网元向USF网元发送故障探测请求后,接收到USF网元返回的探测结果消息,探测结果消息指示USF网元、或者SF网元出现故障或者SDN控制网元出现故障;或者,
控制面网元向SDN控制网元发送故障探测请求后,在第六参考时长内未接收到SDN控制网元返回的探测结果消息,或者,控制面网元向SDN控制网元发送故障探测请求后,接收到SDN控制网元返回的探测结果消息,探测结果消息指示SF网元出现故障或者SDN控制网元出现故障;或者,
在控制面网元向USF网元转发用户SLA变更消息后,在第四参考时长内未接收到USF网元返回的消息,或者,控制面网元在向USF网元转发用户SLA变更消息后,接收到USF网元发送的探测结果消息,探测结果消息指示USF网元、SDN控制网元或SF网元出现故障。
在本申请中,控制面网元在接收到用户SLA变更消息后,控制面网元可以主动探测切换决策单元是否出现故障,也可以直接向USF网元发送用户SLA变更消息,基于USF网元对用户SLA变更消息的响应情况来确定切换决策单元是否出现故障。提高了控制面网元探测切换决策网元是否出现故障的灵活性。
基于第二方面提供的方法,在一种可能的实现方式中,在该方法中,控制面网元在确定切换决策网元故障消除的情况下,控制面网元向切换决策网元转发用户SLA变更消息,用户 SLA变更消息指示终端设备的用户信息发生更新,以使切换决策网元基于更新后的用户信息为终端设备配置第二用户面网元,并向控制面网元发送携带第二用户面网元的标识的第二迁移配置指令。
由于故障消除的时刻和发生故障的时刻已经不是同一时刻,因此无论在何种故障的情况下,控制面网元均需重新触发整个用户迁移流程,也即是,控制面网元需要向切换决策网元转发用户SLA变更消息,以使切换决策网元中的USF网元基于当前网络状态和该用户SLA变更消息确定出最新的用户面网元。
第三方面,提供了一种故障处理方法,该方法由网络中的切换决策网元执行,该网络还包括宽带网络网关BNG和终端设备,BNG包括控制面网元和多个用户面网元,切换决策网元用于将终端设备的流量引流至多个用户面网元中的一个用户面网元。
在该方法中,在确定需要将终端设备的流量引流至第一用户面网元的情况下,生成迁移配置指令,迁移配置指令携带第一用户面网元的标识和终端设备的标识,迁移配置指令指示将终端设备的数据报文通过第一用户面网元转发;如果切换决策网元确定自身出现故障,则不向控制面网元发送迁移配置指令;在切换决策网元确定自身故障消除的情况下,重新向控制面网元发送迁移配置指令。
在由切换决策网元主动触发终端设备迁移的场景下,如果切换决策网元能够检测到自身出现故障,此时则不会触发迁移的后续操作,而是在故障消除的情况下,重新触发迁移的后续操作,避免了切换决策网元故障的场景下触发的不必要的迁移。
基于第三方面提供的方法,在一种可能的实现方式中,切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种。这种场景下,切换决策网元故障包括下述至少一个情况:USF网元确定自身出现故障;或者,USF网元向SDN网元发送故障探测请求后,在第一参考时长内未接收到SDN网元返回的探测结果消息,或者,USF网元向SDN网元发送故障探测请求后,接收到SDN网元返回的探测结果消息,探测结果消息指示SF网元出现故障或者SDN控制网元出现故障。
在本申请中,USF网元除了可以检测自身是否故障,还可以通过主动探测的方式确定SDN控制网元以及SF网元是否故障。提高了本申请提供的故障处理方法的灵活性。
基于第三方面提供的方法,在一种可能的实现方式中,在该方法中,在检测到针对切换决策网元的显示界面上显示的迁移控件的选择操作的情况下,确定需要将终端设备的流量引流至第一用户面网元,终端设备和第一用户面网元均由用户通过迁移控件指定;或者,在检测到网络中增加了除多个用户面网元外的第一用户面网元的情况下,确定需要将终端设备流量引流至第一用户面网元。
本申请中的USF网元在以上两种场景下主动触发终端设备的迁移,提高了本申请的应用灵活性。
第四方面,提供了一种控制面网元,所述控制面网元具有实现上述第一方面中故障处理方法行为的功能。所述控制面网元包括至少一个模块,该至少一个模块用于实现上述第一方面所提供的故障处理方法。
第五方面,提供了一种控制面网元,所述控制面网元具有实现上述第二方面中故障处理方法行为的功能。所述控制面网元包括至少一个模块,该至少一个模块用于实现上述第二方面所提供的故障处理方法。
第六方面,提供了一种切换决策网元,所述切换决策网元具有实现上述第三方面中故障处理方法行为的功能。所述切换决策网元包括至少一个模块,该至少一个模块用于实现上述第三方面所提供的故障处理方法。
第七方面,提供了一种网络设备,所述网络设备的结构中包括处理器和存储器,所述存储器用于存储支持网络设备执行上述第一方面或第二方面或第三方面所提供的故障处理方法的程序,以及存储用于实现上述第一方面或第二方面或第三方面所提供的故障处理方法所涉及的数据。所述处理器被配置为用于执行所述存储器中存储的程序。所述存储设备的操作装置还可以包括通信总线,该通信总线用于该处理器与存储器之间建立连接。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面或第三方面所述的故障处理方法。
第九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面或第三方面所述的故障处理方法。
上述第四方面至第九方面所获得的技术效果与第一方面或第二方面或第三方面中对应的技术手段获得的技术效果近似,在这里不再赘述。
附图说明
图1是本申请实施例提供的一种vBNG中的控制面网元和用户面网元的存在形态的示意图;
图2是本申请实施例提供的一种网络的架构示意图;
图3是本申请实施例提供的终端设备接入网络的流程示意图;
图4是本申请实施例提供的一种故障处理方法流程图;
图5是本申请实施例提供的一种切换决策网元故障的示意图;
图6是本申请实施例提供的一种切换决策网元出现故障情况下终端设备接入网络的流程示意图;
图7是本申请实施例提供的另一种故障处理方法流程图;
图8是本申请实施例提供的一种用户迁移过程中的故障处理流程示意图;
图9是本申请实施例提供的另一种迁移过程中的故障处理流程示意图;
图10是本申请实施例提供的另一种故障处理方法流程图;
图11是本申请实施例提供的一种控制面网元的结构示意图;
图12是本申请实施例提供的另一种控制面网元的结构示意图;
图13是本申请实施例提供的一种切换决策网元的结构示意图;
图14是本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
应当理解的是,本文提及的“多个”是指两个或两个以上。在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在对本申请实施例进行详细解释说明之前,先对本申请实施例的应用场景进行解释说明。
随着SDN技术和NFV技术的发展,城域网的网络架构从传统的以网络为核心的网络架构向以数据中心为核心的网络架构演进。在此演进过程中,传统的网元等设备也从专业化朝着通用化演进。其中,传统网元从专业化朝着通用化演进主要解决两个解耦:控制功能与转发功能的解耦、软件与硬件的解耦。
BNG作为传统的接入宽带网络的网关设备,在用户访问宽带网络的场景中非常重要。BNG在用户访问宽带网络的过程所起的作用包括:用户认证、接入控制、以及流量调度等。随着各种互联网业务的层出不穷,对BNG支持的用户的会话数的要求不断提高、对用户接入网络的带宽也不断提高、尤其是对BNG向外提供业务开放、业务可编程的能力的要求也越来越高。基于这些因素,BNG基于SDN/NFV的架构需要实现前面提到的两个解耦。
其中,BNG转发功能与控制功能解耦后,BNG包括一个控制面(control plane,CP)网元和多个用户面(user plane)网元。控制面网元可以管理多个用户面网元,进行多个用户面网元之间用户、流量、资源的调度。相对于没有解耦的单机BNG,转发功能和控制功能解耦后的BNG的利用率和可靠性都能得到大幅的提升。
对于传统的BNG而言,需要同时具有用户管理(user management)、验证和授权和记账(authentication、authorization、accounting,AAA)服务、地址管理(address management)、Radius服务(Radius是一种用于在需要认证其链接的网络访问服务器和共享认证服务器之间进行认证、授权和记帐信息的文档协议)、路由控制(routing control)、以太网上的点对点协议(Point-to-Point Protocol Over Ethernet,PPPoE)服务、动态主机配置协议(dynamic host configuration protocol,DHCP)服务、转发引擎(forward engine)等等功能。这些BNG需要支持的功能同时部署在同一硬件设备上,该硬件设备可以为交换机等等。
对于转发功能和控制功能解耦后的BNG,此时该BNG还可以称为vBNG。其中,vBNG包括控制面(CP)网元和多个用户面(UP)网元。控制面网元用于提供BNG所需的用户管理、AAA服务、地址管理、Radius服务、PPPoE服务、DHCP服务等功能,此外,控制面网元还需提供BNG所需的用户面网元管理(UP management)功能。任一用户面网元用于提供BNG所需的路由(routing)、多播(multicast)服务、服务质量(quality of service,QoS)、转 发(forwarding)服务、访问控制列表(access control lists,ACL)服务、多协议标签交换(multi-protocol label switching,MPLS)/标签分发协议(label distribution protocol,LDP)服务等功能。本申请实施例对这些功能不做详细说明,相关内容可以参考标准文件。
在BNG包括一个控制面网元和多个用户面网元的情况下,控制面网元和用户面网元可以通过三种接口连接。这三种接口分别为如下三种接口。
(1)基群速率接口(primary rate interface,PRi)。PRi也称为业务接口,PRi具体可以采用虚拟扩展局域网-通用协议封装(virtual extensible local area network-generic protocol encapsulation,vxlan-GPE)接口。用户面网元在接收到用户接入协议报文时,通过该接口封装该用户接入协议报文,然后将封装后的用户接入协议报文上送至控制面网元,由控制面网元处理用户接入协议报文。该用户接入协议报文也称为上线请求。
(2)介质无关接口(media independent interface,Mi)。Mi也称为管理接口,Mi具体可以采用网络配置(netconf)接口。控制面网元采用该接口向用户面网元下发配置。用户面网元采用该接口上报一些运行状态等等。
(3)串行通信接口(serial communication interface,SCi)。SCi也称为控制接口,SCi具有可以采用控制面和用户面分离协议(control plane and user plane separated protocol,CUSP)接口。控制面网元处理用户接入协议报文,完成用户的协议交互。用户上线后,控制面网元通过该接口向对应用户面网元下发用户表项。其中,用户表项用于携带终端设备的用户信息,以便于后续用户面网元基于该用户表项转发该终端设备的流量。关于用户表项的详细功能将在后续实施例中展开说明。
上述控制面网元和用户面网元可以有不同的形态。图1是本申请实施例提供的一种vBNG中的控制面网元和用户面网元的存在形态的示意图。如图1所示,vBNG中的控制面网元作为虚拟网络功能(virtual network function,VNF),可以运行在X86服务器上,从而实现虚拟化。vBNG中的用户面网元可以存在两种形态。一种是作为VNF,运行在X86服务器上,此时用户面网元还可以称为vUP。另一种是作为物理网路功能(physical network function,PNF),运行在一个传统硬件网络设备上,此时用户面网元还可以称为pUP。一个vBNG的控制面网元可以管理一个或多个pUP和一个或多个vUP,本申请实施例对此不做限定。
由于控制面网元可以管理很多用户面网元,所有用户统一在控制面网元上进行管理,因此可以根据用户会话数、流量负载情况进行不同用户面网元间用户的灵活调度。比如,当检测到某个用户面网元的负载较大时,可以将终端设备的流量引流至另一个用户面网元上进行转发。这个过程还可以称为用户迁移,关于用户迁移将在后续实施例中展开说明。
本申请实施例提供的故障处理方法就应用于上述将BNG的转发功能和控制功能解耦的场景中,目的在于提供一种该场景下的网元故障处理方法。
图2是本申请实施例提供的一种网络的架构示意图。如图2所示,该网络包括终端设备、切换功能(steering function,SF)网元、SDN控制网元、用户切换功能(user steering function,USF)网元、以及BNG。其中,BNG包括控制面网元(图2中将控制面网元标记为CP)以及多个用户面网元(图2中将用户面网元标记为UP,其中,图2中包括三个用户面网元,分别为UP1、UP2以及UP3)。
如图2所示,终端设备和SF网元之间连接以进行通信。SF网元和任一用户面网元之间 通过两层隧道(Lay2-tunnel)连接以进行通信。SF网元上配置有不同的物理子接口,不同的物理子接口中匹配不同的虚拟局域网(virtual local area network,VLAN)/QinQ(QinQ是两两层VLAN的表示方式)范围,不同物理子接口对应不同二层隧道,也即是,不同的物理子接口用于通往不同的用户面网元。如此,终端设备便可通过SF网元上的某个物理子接口将流量发送至某个用户面网元。
其中,SF网元和各个用户面网元部署在城域网的边缘,用于将终端设备的流量转发至骨干网(corenetwork)。
此外,如图2所示,SDN控制网元分别和SF网元以及各个用户面网元连接以进行通信。USF网元和SDN控制网元连接以进行通信。控制面网元分别和USF网元、SDN控制网元以及各个用户面网元连接以进行通信。此外,如图2所示,控制面网元还和Radius服务器连接以进行通信,以便于后续通过Radius服务器对终端设备的接入进行认证。
下面对图2所示的各个网元的功能进行解释说明。
控制面网元:控制面网元是vBNG的业务控制平面,用于对终端设备的上线请求进行处理,与AAA服务器交互进行用户认证、计费、授权。控制面网元可以根据终端设备的用户账号识别用户服务等级协议(service level agreement,SLA),通过上线请求中携带的接入线路信息,通知USF网元终端设备上线并等待USF网元指导用户迁移,以将终端设备映射到对应用户面网元接入的端口上。同时,控制面网元将终端设备的用户表项下发到对应用户面网元,对应用户面网元生成该终端设备的转发表项,并向外发布路由。
USF网元:终端设备的用户面网元迁移的策略控制组件,根据终端设备的用户SLA以及负载等情况产生迁移策略,通知控制面网元以及SF网元对终端设备进行迁移,实现网络的负载均和以及SLA需求。
用户面网元:用户面网元是vBNG业务转发平面。控制面网元处理完用户上线后下发用户表项,用户面网元接收控制面网元下发的用户表项,在本地生成该终端设备的转发表项,进行相关的业务策略执行和流量转发,并向外发布路由。
SF网元:用户接入网关,终端设备上线时,将终端设备发送的上线请求通过业务通道上送至控制面网元处理,同时进行家庭终端的汇聚,将终端设备的流量汇聚到用户面网元,进行二层报文的转发,并对不同终端设别进行VLAN/QINQ(两层VLAN)的隔离,每个终端设备独享一个VLAN/QINQ。
家庭网关(residential gateway,RGW):用于接入家庭内的计算机、手机,一般会做网络地址转换(network address translation,NAT)处理,向家庭内的计算机、手机分配私网网络(internet protocol,IP)地址。进行基于PPPoE、IPoE协议的上线,向vBNG获取IP地址,从而进行网络访问。
SDN控制网元:接收控制面网元发送的对应用户的接入线路信息。该接入线路信息包括接入的交换机/光线路终端(switch/optical line terminal,SW/OLT)标识,接入的端口信息,虚拟局域网(virtual local area network,VLAN)信息等,向对应的SW/OLT下发迁移的策略,将该终端设备的端口+VLAN/QINQ映射到与对应用户面网元连接的二层隧道(该两层隧道可以为虚拟扩展局域网(virtual extensible local area network,VXLAN),也可以是虚拟租用线路(virtual leased line,VLL),也可以是基于以太网的虚拟私有网络(ethernet virtual private network,EVPN)。
基于上述各个网元之间的连接关系以及各个网元的功能,终端设备访问骨干网中的服务的过程中通常包括两个基本过程,一个是用户接入过程,一个是用户迁移过程。其中,用户接入过程用于指示终端设备接入网络,用户迁移过程用于指示将终端设备的流量从一个用户面网元迁移至另一个用户面网元。
为了后续便于说明,在此先对上述两个基本过程进行详细说明。
(1)用户接入过程
如图2所示,终端设备接入的网络的过程中,默认从UP1上线。此时,终端设备通过SF网元所连接的UP1将上线请求等控制报文发送给CP。CP在接收到上线请求后,向USF网元交互终端设备的迁移策略,USF网元根据该终端设备的用户服务等级协议(service level agreement,SLA)判断该终端设备应该从UP2接入,则通知CP将该终端设备的用户表项下发至UP2。同时,USF通知SDN控制网元,以使SDN控制网元对SF网元进行配置,在SF网元上将该终端设备对应的VLAN/QinQ绑定在UP2对应的物理子接口上,也即是建立该终端设备和UP2之间的绑定关系。终端设备后续的转发报文便可直接转发至UP2。
上述用户接入过程具体的可以通过图3所示的流程图来表示。如图3所示,终端设备接入网络的过程可以细分为以下几个步骤。
1、在网络中各个网元初始化之后,终端设备向SF网元发送基于PPPoE或者DHCP的上线请求(dial up)。
2、SF网元在接收到该上线请求后,将该上线请求通过默认的UP1发送至控制面网元(CP)。
3、控制面网元在接收到该上线请求后,向USF网元发送用户迁移策略请求,该用户迁移策略请求用于请求该终端设备需要基于哪个用户面网元来转发流量。该用户迁移策略请求可以携带该终端设备的用户SLA。该终端设备的用户SLA指示用户的优先级等等。
4、USF网元在接收到该用户迁移策略请求后,基于该终端设备的用户SLA确定该终端设备应该从UP2上转发流量,因此,USF网元向控制面网元返回用户迁移结果,该用户迁移结果指示该终端设备的目标UP为UP2。
5、控制面网元在接收到该用户迁移结果后,便可从UP2的地址池中为该终端设备分配一个网络协议(internet protocol,IP)地址,并将分配的IP地址下发给终端设备,以使终端设备将该IP地址作为流量中的源IP地址。
6、控制面网元还向UP2下发该终端设备的用户表项,该用户表项中携带该终端设备的用户信息,用户信息包括该终端设备的IP地址、MAC地址、接口等信息。控制面网元向UP2下发给终端设备的用户表项的目的在于:后续UP2基于该用户表项对接收到的数据报文进行合法性校验,比如校验数据报文中的源媒体接入控制(media access control,MAC)地址和源IP地址是否是本地配置的用户表项中的MAC地址和IP地址,如果是,则继续转发数据报文,如果不是,则丢弃数据报文。
7、控制面网元在执行了上述5和6之后,便可向USF网元通告表项配置成功消息。
8、USF网元接收到该表项配置成功消息后,便可通告SDN控制网元执行切换操作,该切换操作指示SDN控制网元在SF网元上配置该终端设备和UP2的绑定关系,以便于SF网元后续将终端设备流量引流至UP2。
9、在完成了1-8的操作后,表明终端设备当前已经接入网络。后续终端设备发送的数据报文便可通过UP2转发至骨干网。
(2)用户迁移过程
用户迁移过程是指在终端设备接入网路之后,如果终端设备的用户SLA发生变化,此时则需要USF网元来重新判断用户SLA变化后的终端设备需要从哪个用户面网元上转发流量。该过程可以参考上述用户接入过程中的步骤3-8,在此不再赘述。
基于上述用户接入过程和用户迁移过程可知,USF网元是动态迁移的策略点,控制面网元必须向USF网元询问是否迁移,由USF网元来通知控制面网元和SDN控制网元如何进行迁移。因此,如果图2所示的SF网元、USF网元以及SDN控制网元等出现故障时,将直接导致终端设备接入或迁移失败。本申请实施例提供的故障处理方法就应用于该场景。为了后续便于说明,将SF网元、USF网元以及SDN控制网元统称为切换决策网元。
需要说明的是,图2所示的USF网元可以内置在控制面网元中,也可以内置在SDN控制网元中,也可以是一个单独的网元。本申请实施例对此不做限定。
基于图2所示的系统架构,下面对本申请实施例提供的故障处理方法进行详细说明。由于终端设备访问网络主要包括用户接入过程和用户迁移过程两个过程,因此,发生故障基本上出现在这两个过程中,所以下面通过两个实施例分别对这两个过程中的故障处理进行详细说明。
需要说明的是,下述各个实施例中的第一、第二以及第三等等没有特定含义,每个实施例中的第一、第二以及第三等均是相互独立的。比如,图4实施例中的第一和图7实施例中的第一并没有任何关联,图4实施例中的第二和图7实施例中的第二并没有任何关联,图4实施例中的第三和图7实施例中的第三也并没有任何关联等等。
图4是本申请实施例提供的一种故障处理方法流程图。该方法用于对用户接入过程中的故障处理进行详细说明。如图4所示,该故障处理方法包括如下几个步骤。
步骤401:控制面网元接收来自终端设备的上线请求,终端设备通过第一用户面网元向控制面网元发送上线请求,第一用户面网元为多个用户面网元中的一个。
在步骤401中,在终端设备首次发送上线请求的情况下,第一用户面网元为预先配置的用户面网元。也即是,如果终端设备在当前时间之前没有访问过网络的情况下,如果SF网元接收到终端设备的上线请求,则基于配置的默认用户面网元来转发该上线请求。其中,默认用户面网元为系统初始化时预先配置,本申请实施例并不限定如何配置该默认用户面网元的具体操作。
比如,对于图2所示的系统,假设UP1是默认的用户面网元,当SF网元接收到任一终端设备首次发送的上线请求时,均可以通过该UP1将该上线请求发送给控制面网元。
在终端设备非首次发送上线请求的情况下,第一用户面网元为终端设备上次下线之前发送数据报文所使用的用户面网元。这种情况下,如果该终端设备的用户SLA没有发生变化,终端设备在接入一次网络之后,后续继续使用上次上线所使用的用户面网元继续发送上线请求后,就可以不用进行用户迁移,如此便可减少用户迁移的频率。
也即是,在终端设备下线之后,下次如果重新上线,则需要重新向SF网元发送上线请求,SF网元在发送上线请求后,可以基于记录的该终端设备上次下线前所使用的用户面网元来转发该上线请求。
比如,对于图2所示的系统,假设UP1是默认的用户面网元,当SF网元接收到任一终 端设备非首次发送的上线请求时,如果该终端设备上次下线前所使用的UP为UP2,则此时SF网元继续通过该UP2将该上线请求发送给控制面网元。
基于图2所示的系统可知,SF网元、SDN控制网元以及USF网元是用于对终端设备的用户迁移过程进行调度的几个网元,并且这些网元可以集成在一个网元中。为了后续便于说明,将这些网元统称为切换决策网元。也即是,在本申请实施例中,切换决策网元包括SF网元、USF网元、以及SDN控制网元。
在本申请实施例中,控制面网元在接收到终端设备发送的上线请求后,如果切换决策网元中任一者发生故障,都将导致接入失败。为了能够保证终端设备接入网络的正常进行,控制面网元在检测到切换决策网元发生故障时,可以通过下述步骤202来实现终端设备的正常接入。其中,切换决策网元发生故障是指SF网元、SDN控制网元以及USF网元中任一者或多者发生故障。
在本申请实施例中,控制面网元能够主动探测切换决策网元是否发生故障,以便于后续通过步骤402来保证终端设备接入网络。主动探测切换决策网元是否发生故障是指:控制面网元能够主动发送探测报文来检测切换决策网元是否发生故障。因此,在一种可能的实现方式中,上述切换决策网元故障包括下述至少一个情况。
(1)控制面网元向USF网元发送故障探测请求后,在第一参考时长内未接收到USF网元返回的探测结果消息。
在控制面网元向USF网元发送故障探测请求后,如果USF网元本身的硬件发生故障,比如USF网元断电或与网络断开连接,那么USF网元将不会给控制面网元任何回应,因此,可以预先在控制面网元上配置一个第一参考时长,如果在向USF网元发送故障探测请求后第一参考时长内未接收到USF网元返回的探测结果消息,此时控制面网元就可以确定出USF网元发生故障。
(2)控制面网元向USF网元发送故障探测请求后,接收到USF网元返回的探测结果消息,该探测结果消息指示USF网元、或者SF网元出现故障或者SDN控制网元出现故障。
如果USF网元本身的硬件没有故障,但是USF网元探测得到SF网元出现故障或者SDN控制网元出现故障,或者USF网元上的软件功能模块出现故障,此时USF网元可以向控制面网元反馈探测结果消息,该探测结果消息指示USF网元出现故障、或者SF网元出现故障或者SDN控制网元出现故障。这种场景下,控制面网元在接收到该探测结果消息时,便可确定出切换决策网元中的USF网元出现故障、或者SDN控制网元出现故障、或者SF网元出现故障。
上述USF网元探测SF网元出现故障或者SDN控制网元出现故障的实现方式也可以通过USF网元主动发送探测报文来实现,在此不再详细说明。
(3)控制面网元向SDN控制网元发送故障探测请求后,在第二参考时长内未接收到SDN控制网元返回的探测结果消息。
基于图2所示的系统可知,控制面网元还可以直接与SDN控制网元进行通信。因此,控制面网元可以直接向SDN控制网元发送故障探测请求,以检测SDN网元是否发生故障。在控制面网元向SDN控制网元发送故障探测请求后,如果SDN控制网元本身的硬件发生故障,比如SDN控制网元断电或与网络断开连接,那么SDN控制网元将不会给控制面网元任何回应,因此,可以预先在控制面网元上配置一个第二参考时长,如果在向SDN控制网元发送故 障探测请求后第二参考时长内未接收到SDN控制网元返回的探测结果消息,此时控制面网元就可以确定出SDN控制网元发生故障。
此时的第二参考时长和前述的第一参考时长仅仅用于区分两个时长,没有特别的含义。在应用本申请实施例时,第一参考时长和第二参考时长可以相同,也可以不同。
(4)控制面网元向SDN控制网元发送故障探测请求后,接收到SDN控制网元返回的探测结果消息,该探测结果消息指示SF网元出现故障或者SDN控制网元出现故障。
如果SDN控制网元本身的硬件没有故障,但是SDN控制探测得到SF网元出现故障,或者SDN控制网元上的软件功能模块出现故障,此时SDN控制网元可以向控制面网元反馈探测结果消息,该探测结果消息指示SDN控制网元出现故障、或者SF网元出现故障。这种场景下,控制面网元在接收到该探测结果消息时,便可确定出切换决策网元中的SDN控制网元出现故障、或者SF网元出现故障。
上述SDN控制网元探测SF网元出现故障的实现方式也可以通过SDN控制网元主动发送探测报文来实现,在此不再详细说明。
此外,基于图3所示的用户接入过程可知,控制面网元在接收到终端设备发送的上线请求后,会向USF网元发送用户迁移策略请求,以请求USF网元对该终端设备的用户面网元进行配置。上述几种出现故障的情况的故障探测请求可以在控制面网元向USF网元发送用户迁移策略请求之前发生。也即是,控制面网元在接收到终端设备的上线请求后,先主动探测切换决策单元是否出现故障。如果出现故障,则无需向USF网元发送用户迁移策略请求,直接通过下述步骤402来保证终端设备正常接入网络即可。如果没有出现故障,再向USF网元发送用户迁移策略请求,以通过图3所示的流程来保证终端设备成功接入网络。
可选地,控制面网元在接收到终端设备的上线请求后,直接向USF网元发送用户迁移策略请求,该用户迁移策略请求同时具有上述故障探测请求的功能,如果USF网元自身硬件出现故障导致USF网元对该用户迁移策略请求没有任何响应,此时,控制面网元如果在第一参考参考时长内没有接收到针对该用户迁移策略请求的用户迁移结果,则确定USF网元出现故障。或者,USF网元在接收到用户迁移策略请求后,先通过主动探测的方式来确定自身软件系统或SDN控制网元或SF网元是否出现故障,如果出现故障,则向控制面网元返回探测结果消息,如果没有出现故障,再基于图3所示的流程来保证终端设备成功接入网络。
也即是,在终端设备接入网络的场景中,控制面网元确定切换决策网络出现故障还可以包括如下情况:控制面网元基于上线请求向USF网元发送用迁移策略请求后,在第三参考时长内未接收到USF网元返回的用户迁移结果,或者,接收到USF网元返回的探测结果消息,探测结果消息指示USF网元、或者SF网元出现故障、或者SDN控制网元出现故障。
图5是本申请实施例提供的一种切换决策网元故障的示意图。如图5所示,切换决策网元出现故障可以是指USF网元、SDN网元以及SF网元中的一者或多者出现故障。图5是以USF网元、SDN网元以及SF网元均出现故障为例进行说明。如图5所示,控制面网元支持探测USF网元或SDN控制网元是否故障,也即是通过上述发送故障探测请求的方式来探测USF网元或SDN控制网元是否故障。此外,USF网元支持探测SF网元是故障,并将探测结果通知控制面网元。从而实现上述控制面网元通过主动探测的方式确定故障决策网元出现故障。
上述内容用于解释说明控制面网元如何确定切换决策网元出现故障。需要说明的是,上 述几种实现方式仅仅是本申请实施例提供的几种可选的实现方式,本申请实施例并不限定控制面网元确定切换决策网元出现故障的具体实现方式。比如,也可以通过被动通告的方式来确定切换决策网元出现故障,也即是,如果存在其他设备能够检测到切换决策网元出现故障,则其他设备可以通告给控制面网元切换决策网元出现故障。该其他设备包括但不限于出现故障的设备自身或除了出现故障的设备外的其他设备。
步骤402:控制面网元在确定切换决策网元故障的情况下,控制终端设备基于第一用户面网元发送数据报文。
在终端设备接入网络的过程中,如果控制面网元确定切换决策网元出现故障,此时为了保证终端设备能够继续接入网络,在本申请实施例中,控制面网元可以跳过切换决策单元的决策直接控制终端设备基于第一用户面网元发送数据报文。
此时,控制面网元控制终端设备基于第一用户面网元发送数据报文的实现过程具体可以为:控制面网元向第一用户面网元发送用户表项,用户表项携带终端设备的用户信息,第一用户面网元基于用户表项转发来自终端设备的数据报文。
此外,控制面网元还可以向终端设备发送第一IP配置指令,第一IP配置指令携带第一IP地址,以使终端设备将第一IP地址作为源IP地址来发送数据报文,第一IP地址为第一用户面网元对应的地址池中一个IP地址。
图6是本申请实施例提供的一种切换决策网元出现故障情况下终端设备接入网络的流程示意图。如图6所示,终端设备接入网络的过程可以细分为以下几个步骤。
1、在网络中各个网元初始化之后,终端设备向SF网元发送基于PPPoE或者DHCP的上线请求(dial up)。
2、SF网元在接收到该上线请求后,将该上线请求通过默认的UP1发送至控制面网元(CP)。
3、控制面网元在接收到该上线请求后,如果探测到切换决策网友出现故障,则从UP1的地址池中为该终端设备分配一个网络协议(internet protocol,IP)地址,并将分配的IP地址下发给终端设备,以使终端设备将该IP地址作为流量中的源IP地址。
4、控制面网元还向UP1下发该终端设备的用户表项,该用户表项中携带该终端设备的用户信息,用户信息包括该终端设备的IP地址、MAC地址、接口等信息。
5、在完成了1-4的操作后,表明终端设备当前已经接入网络。后续终端设备发送的数据报文便可通过UP1转发至骨干网。
和图3所示的用户接入流程相比,在切换决策网元出现故障的情况下,控制面网元仅仅需要配置IP地址和下发用户表项两步操作便可保证终端设备成功接入网络,无需切换决策网元进行相关配置。
也即是,在切换决策网元出现故障的情况下,控制面网元控制终端设备基于初始的用户面网元来发送数据报文。该初始的用户面网元可以是默认用户面网元,也可以是上次下线前所使用的用户面网元。从而保证终端设备在切换决策网元出现故障的情况下,继续接入网络。但是如果后续一直按照这种方式来转发数据报文,将无法实现网络中各个用户面网元之间的调度,容易出现用户面网元之间负载不均衡的情况。因此,在切换决策网元出现故障后,一旦控制面网元探测到切换决策网元故障消除,便触发切换决策网元对终端设备进行用户迁移,从而实现各个用户面网元之间的合理调度。
基于上述思路,在一种可能的实现方式中,控制面网元在探测到切换决策网元故障消除 的情况下,控制面网元向切换决策网元发送用迁移策略请求,用迁移策略请求指示切换决策网元确定是否将转发终端设备的数据报文的用户面网元由第一用户面网元切换至其他用户面网元。控制面网元接收切换决策网元发送的用户迁移结果,该用户迁移结果携带第二用户面网元的标识,第二用户面网元为除第一用户面网元外的另一个用户面网元,控制面网元向第二用户面网元发送用户表项,用户表项携带终端设备的用户信息,第二用户面网元基于用户表项转发来自终端设备的数据报文。控制面网元接收到第二用户面网元返回的表项配置成功消息后,向切换决策网元发送表项配置成功消息,以使切换决策网元建立终端设备和第二用户面网元之间的映射关系,并基于终端设备和第二用户面网元之间的映射关系,将终端设备的数据报文转发至第二用户面网元。
其中,控制面网元接收到第二用户面网元返回的表项配置成功消息后,向切换决策网元发送表项配置成功消息后,各个网元之间的交互操作可以参考图3。如图3所示,上述控制面网元接收到第二用户面网元返回的表项配置成功消息后,向USF网元发送表项下发表项配置成功消息,USF网元在接收到该表项配置成功消息后,通告SDN控制网元执行切换操作,该切换操作指示SDN控制网元在SF网元上配置该终端设备和第二用户面网元之间的绑定关系,以便于SF网元后续将终端设备流量引流至第二用户面网元。
上述控制面网元探测切换决策网元故障消除的实现方式同样可以通过主动发送故障探测请求来实现,或者通过故障消除后的切换决策网元的通告来实现。本申请实施例并不限定控制面网元如何探测得到切换决策网络的故障得以消除。
此外,需要说明的是,上述切换决策网络的故障消除是指切换决策网络中所有网元均没有故障,而不是某一个出现故障的网元的故障消除了,但是其他网元还存在故障。如此,才能保证上述控制面网元基于故障消除后的切换决策网元控制终端设备基于第二用户面网元发送数据报文的过程的成功实现。
综上所述,在本申请实施例中,在终端设备接入网络的过程中,如果控制面网元确定切换决策网元出现故障,此时为了保证终端设备能够继续接入网络,控制面网元可以跳过切换决策单元的决策直接控制终端设备基于上线请求所使用的第一用户面网元发送数据报文。也即是,本申请实施例提供了一种在切换决策网元出现故障的情况下,终端设备能够继续接入网络的方式。换句话说,通过本申请实施例能够实现单网元故障场景下的逃生路径,使得终端设备依然可以正常上线。
图7是本申请实施例提供的另一种故障处理方法流程图。该方法用于对用户接入网络之后的用户迁移过程中的故障处理进行详细说明。如图7所示,该故障处理方法包括如下几个步骤。
步骤701:控制面网元接收切换决策单元发送的第一迁移配置指令,第一迁移配置指令携带第一用户面网元的标识和终端设备的标识,第一迁移配置指令指示将终端设备的数据报文由第一用户面网元转发。
其中步骤701的应用场景可以为在终端设备已经成功接入网络并访问网络的过程中。这种场景下,如果终端设备的用户SLA发生变化,由于用户SLA包括终端设备的优先级等用户信息,而不同优先级的终端设备需要通过不同的用户面网元转发,从而实现对各个用户面网元之间的负载调度。因此,在终端设备的用户SLA发生变化时,需要将该终端设备进行迁 移,也即是,将终端设备的流量引流至其他用户面网元。
基于上述配置,在一种可能的实现方式中,控制面网元接收切换决策单元发送的第一迁移配置指令的场景具体可以为:控制面网元接收用户SLA变更消息,用户SLA变更消息指示终端设备的用户信息发生更新,控制面网元向切换决策网元转发用户SLA变更消息,以使切换决策网元基于更新后的用户信息为终端设备配置第一用户面网元,并向控制面网元发送第一迁移配置指令。
比如,对于图2所示的系统,控制面网元在接收到用户SLA变更消息之后,将该用户SLA变更消息转发给USF网元,USF网元基于该SLA变更消息判断是否需要将终端设备迁移到新的用户面网元上,如果需要,则将该新的用户面网元作为上述第一用户面网元,并向控制面网元返回第一迁移配置指令,第一迁移配置指令指示将终端设备的数据报文引流至第一用户面网元。
需要说明的是,如果USF网元基于该SLA变更消息判断不需要将终端设备迁移到新的用户面网元上,则USF网元可以向控制面网元发送指示无需迁移的通知消息,控制面网元接收到该通知消息后,无需执行其他操作,保持当前状态即可。
步骤702:在控制面网元基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,如果控制面网元确定切换决策网元出现故障,则向第一用户面网元发送用户表项回退指令,用户表项回退指令指示第一用户面网元删除已经添加的用户表项。
控制面网元在接收到切换决策网元发送的第一迁移配置指令后,确定当前需要将该终端设备迁移至第一用户面网元上,因此,控制面网元可以基于第一用户面网元的标识向第一用户面网元下发用户表项,以使第一用户面网元在本地配置该终端设备的用户表项。第一用户面网元在配置完成后,向控制面网元返回表项配置成功消息。当控制面网元接收到来自第一用户面网元的表项配置成功消息后,便可确定已经成功地向第一用户面网元下发了用户表项。
其中,用户表项携带终端设备的用户信息,第一用户面网元基于用户表项转发终端设备的数据报文。关于用户表项的功能已经在前述图2所示的系统架构中进行了详细说明,在此不再赘述。
基于图3所示的流程可知,在控制面网元基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,控制面网元才通告切换决策网元进行相关配置,以便配置后的切换决策网元将终端设备的流量引流至第一用户面网元。因此,在控制面网元基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,如果切换决策网络出现故障,那么切换决策网元进行的相关配置将失败,这样终端设备的迁移过程将失败。但是由于第一用户面网元上已经配置了该终端设备的用户表项,这种情况下将导致第一用户面网元配置的用户表项无效,这种场景下很容易导致终端设备下线。因此,在本申请实施例中,为了避免第一用户面网元上配置的用户表项无效而导致终端设备下线,控制面网元基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,如果控制面网元确定切换决策网元出现故障,则向第一用户面网元发送用户表项回退指令,该用户表项回退指令指示第一用户面网元删除已经添加的用户表项。从而避免了在用户迁移过程中由于切换决策单元的故障导致终端设备下线。
也即是,在本申请实施例中,通过上述步骤701至步骤702,在终端设备正在迁移的过程中,如果切换决策网元出现故障(比如USF网元、SDN控制网元或SF网元中一者或多者 出现故障),将导致控制面网元和切换决策网络之间的消息交互失败,此时控制面网元支持已经下发的用户表项的回退,从而避免终端设备下线。
下面对步骤702中的切换决策网元的故障情况进行解释说明。
由于在控制面网元基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,控制面网元才通告切换决策网元进行相关配置。因此,在一种可能的实现方式,步骤702中的切换决策网元故障包括下述至少一个情况。
(1)在控制面网元基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,控制面网元向USF网元发送表项配置成功消息,在控制面网元在向USF发送表项配置成功消息后,在第三参考时长内未接收到USF网元返回的消息。
在控制面网元向USF网元发送表项配置成功消息后,如果USF网元本身的硬件发生故障,比如USF网元断电或与网络断开连接,那么USF网元将不会给控制面网元任何回应,因此,可以预先在控制面网元上配置一个第一参考时长,如果在向USF网元发送表项配置成功消息后第一参考时长内未接收到USF网元返回的任何消息,此时控制面网元就可以确定出USF网元发生故障。
(2)控制面网元在向USF网元发送表项配置成功消息后,接收到USF网元发送的迁移失败消息,迁移失败消息指示USF网元、SDN控制网元或SF网元出现故障。
如果USF网元本身的硬件没有故障,但是USF网元探测得到USF上的软件功能模块出现故障,或者,USF网元在对SDN控制网元和SF网元进行相关配置时,发现SF网元出现故障或者SDN控制网元出现故障,此时USF网元可以向控制面网元反馈迁移失败消息,迁移失败消息指示USF网元、SDN控制网元或SF网元出现故障。这种场景下,控制面网元在接收到该迁移失败消息时,便可确定出切换决策网元中的USF网元出现故障、或者SDN控制网元出现故障、或者SF网元出现故障从而导致该用户迁移过程没有成功实现。
上述USF网元在对SDN控制网元和SF网元进行相关配置时,发现SF网元出现故障或者SDN控制网元出现故障具体可以为:USF网元通告SDN控制网元执行切换操作后,没有接收到SDN控制网元的任何响应,或者接收到SDN控制网元返回的切换失败指令。
此外,在USF网元通告SDN控制网元执行切换操作后,如果在SDN控制网元的命令下,SF网元完成了将该终端设备和第一用户面网元之间的绑定工作,但是由于故障原因没有删除该终端设备和之前使用的其他用户面网元之间的绑定关系,或者,SF网元删除了该终端设备和之前使用的其他用户面网元之间的绑定关系,但是由于故障原因没有完成将该终端设备和第一用户面网元之间的绑定工作。此处的其他用户面网元是指在终端设备迁移之前发送数据报文所使用的用户面网元。在这种场景下,如果USF网元接收到SDN控制网元返回的迁移失败消息后,USF网元还用于控制SF网元将终端设备绑定在上次发送数据报文所使用的用户面网元上,以使终端设备继续基于上次发送数据报文所使用的用户面网元发送数据报文。
也即是,USF网元向SDN控制网元发送用户回退指令,当SDN控制网元接收到用户回退指令后,向SF网元转发该用户回退指令。SF网元在接收到该用户回退指令后,检查本地配置的该终端设备所绑定的用户面网元,如果本地同时存储有该终端设备和第一用户面网元以及其他用户面网元之间的绑定关系,则删除该终端设备和第一用户面网元之间的绑定关系。如果本地仅仅存储了该终端设备和第一用户面网元的绑定关系,则删除该终端设备和第一用户面网元之间的绑定关系,并添加该终端设备和其他用户面网元之间的绑定关系。如果本地 仅仅存储了该终端设备和其他用户面网元的绑定关系,则无需执行任何操作。
图8是本申请实施例提供的一种用户迁移过程中的故障处理流程示意图。为了后续说明,将终端迁移后的用户面网元称为目标用户面网元,将终端迁移前的用户面网元称为原用户面网元。图8所示的流程包括以下几个步骤。
1、控制面网元接收AAA服务器发送的用户SLA变更消息,该用户SLA变更消息指示该终端设备的用户信息发生更新。
2、控制面网元向USF网元网元转发该用户SLA变更消息,以使USF网元基于更新后的用户信息为终端设备配置目标用户面网元。
3、USF网元向控制面网元发送第一迁移配置指令,该第一迁移配置指令携带目标用户面网元的标识。
4、控制面网元接收第一迁移配置指令后,向目标用户面网元下发该终端设备的用户表项。
5、目标用户面网元在确定本地配置了该终端设备的用户表项后,向控制面网元返回表项配置成功消息。
6、控制面网元向USF网元转发该表项配置成功消息,以通告USF网元目标用户面网元已经完成了相关配置。
7、USF网元在接收到该表项配置成功消息后,向SDN控制网元发送切换指令,该切换指令指示SDN控制网元执行切换操作,该切换操作的目的是将该终端设备迁移到目标用户面网元上。
8、SDN控制网元在接收到USF网元下发的切换指令后,向SF网元下发配置信息,该配置信息指示SF网元在本地建立该终端设备和目标用户面网元之间的绑定关系,并删除该终端设备和原用户面网元之间的绑定关系。
9、SF在接收到该配置信息后,如果没有成功完成在本地建立该终端设备和目标用户面网元之间的绑定关系,并删除该终端设备和原用户面网元之间的绑定关系的操作,则向SDN控制网元返回配置失败消息。
10、SDN控制网元接收到该配置失败消息后,向USF网元返回迁移失败消息。
11、USF网元接收到该迁移失败消息后,向控制面网元通告迁移失败消息。
12、控制面网元接收到该迁移失败消息后,向目标用户面网元下发用户表项回退指令,该用户表项回退指令指示目标用户面网元删除已经添加的该终端设备的用户表项。
13、目标用户面网元在确定删除已经添加的该终端设备的用户表项后,向控制面网元返回回退成功消息。
14、USF网元在向控制面网元通告迁移失败消息后,还向SDN控制网元下发回退指令,该回退指令指示SF网元绑定该终端设备和原用户面网元。
15、SDN控制网元接收到该回退指令后,向SF网元下发配置回退指令,该配置回退指令指示SF网元绑定该终端设备和原用户面网元。
16、SF网元在接收到配置回退指令后,检测本地存储的该终端设备所绑定的用户面网元,在确保该终端设备仅仅绑定在原用户面网元之后,向SDN控制网元返回配置回退成功消息。
17、SDN控制网元在接收到该配置回退成功消息后,向USF网元返回回退成功消息,以通告USF网元SF网元已经将该终端设备绑定在原用户面网元上。
需要说明的是,图8所示的流程仅仅上述控制面网元确定切换决策网元出现故障的一种 场景,对于控制面网元确定切换决策网元出现故障的其他场景,本申请实施例在此就不再一一举例说明。
另外,上述均是通过切换决策网元对控制面网元发送的表项配置成功消息的响应情况来确定切换决策网元是否出现故障。可选地,在控制面网元基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,控制面网元还可以先通过主动探测的方式来确定切换决策网元是否出现故障,以便于在确定切换决策网元出现故障后,通过上述步骤702来避免终端设备的下线。
因此,步骤702中的切换决策网元故障还可以包括下述至少一个情况。
(1)控制面网元向USF网元发送故障探测请求后,在第一参考时长内未接收到USF网元返回的探测结果消息。
(2)控制面网元向USF网元发送故障探测请求后,接收到USF网元返回的探测结果消息,该探测结果消息指示USF网元、或者SF网元出现故障或者SDN控制网元出现故障。
(3)控制面网元向SDN控制网元发送故障探测请求后,在第二参考时长内未接收到SDN控制网元返回的探测结果消息。
(4)控制面网元向SDN控制网元发送故障探测请求后,接收到SDN控制网元返回的探测结果消息,该探测结果消息指示SF网元出现故障或者SDN控制网元出现故障。
上述四种故障探测情况具体可以参考图4所示的实施例,在此不再赘述。
也即是,控制面网元在基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,先主动探测切换决策单元是否出现故障。如果出现故障,则无需向USF网元发送表项配置成功消息,直接通过上述步骤702来避免终端设备的掉线。如果没有出现故障,再向USF网元发送表项配置成功消息,以通过USF网元、SDN控制网元以及SF网元之间的交互来实现终端设备的成功迁移。
另外,在本申请实施例中,上述控制面网元主动探测切换决策网络是否发生故障还可以发生在控制面网元接收到用户SLA变更消息之后,这种场景下,如果控制面网元已经通过主动探测的方式切换决策网络故障,此时则保持当前状态,无需执行任何操作。比如向USF网元转发用户SLA变更消息等。
可选地,控制面网元接收到用户SLA变更消息之后,如果控制面网元在向USF网元发送该用户SLA变更消息后,USF网元在指定时间内没有向控制面网元返回任何迁移配置指令,此时控制面网元也可以确定USF网元出现故障,则保持当前状态,无需执行任何操作。
可选地,控制面网元接收到用户SLA变更消息之后,如果控制面网元在向USF网元发送该用户SLA变更消息后,USF网元先通过主动探测的方式确定出SDN控制网元或SF网元出现故障,此时,USF网元则向控制面网元返回探测结果消息,该探测结果消息指示USF网元、或SDN控制网元或SF网元出现故障。此时控制面网元在接收到该探测结果消息后,也保持当前状态,无需执行任何操作。
图9是本申请实施例提供的另一种迁移过程中的故障处理流程示意图。如图9所示,控制面网元接收AAA服务器发送的用户SLA变更消息,控制面网元向USF网元通告该终端设备的用户SLA发生了变化,此时,如果控制面网元接收到USF网元返回的迁移失败消息,则可以无需执行任何操作。
另外,在上述任一故障场景中,控制面网元在确定所述切换决策网元故障消除的情况下, 控制面网元向切换决策网元转发用户SLA变更消息,用户SLA变更消息指示终端设备的用户信息发生更新,以使切换决策网元基于更新后的用户信息为终端设备配置第二用户面网元,并向控制面网元发送携带第二用户面网元的标识的第二迁移配置指令。
由于故障消除的时刻和发生故障的时刻已经不是同一时刻,因此无论在何种故障的情况下,控制面网元均需重新触发整个用户迁移流程,也即是,控制面网元需要向切换决策网元转发用户SLA变更消息,以使切换决策网元中的USF网元基于当前网络状态和该用户SLA变更消息确定出最新的用户面网元。
综上所述,在本申请实施例中,为了用户迁移过程的失败导致终端设备下线,控制面网元基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,如果控制面网元确定切换决策网元出现故障,则向第一用户面网元发送用户表项回退指令,该用户表项回退指令指示第一用户面网元删除已经添加的用户表项。从而避免了在用户迁移过程中由于切换决策单元的故障导致终端设备下线。如果在基于第一用户面网元的标识向第一用户面网元发送用户表项之前确定出切换决策网元出现故障,此时,则无需执行任何操作,以避免终端设备的掉线。
上述图7所示的实施例应用在由控制面网元触发终端设备迁移的场景中。可选地,在本申请实施例中,切换决策网元也可以主动触发终端设备迁移。在这种场景下,如果切换决策网元在确定自身故障的情况下,则先不触发终端设备迁移,而是在故障消除的情况下,重新触发终端设备迁移。下面通过图10所示的实施例对该场景下的故障处理流程进行详细解释说明。
图10是本申请实施例提供的另一种故障处理方法流程图。如图10所示,该方法包括如下几个步骤。
步骤1001:在确定需要将终端设备的流量引流至第一用户面网元的情况下,切换决策网元生成迁移配置指令,迁移配置指令携带第一用户面网元的标识和终端设备的标识,迁移配置指令指示将终端设备的数据报文通过第一用户面网元转发。
在切换决策网元确定需要将终端设备的流量引流至第一用户面网元的情况下,切换决策网元会相应生成迁移配置指令,通过该迁移配置指令指示控制面网元向第一用户面网元下发用户表项,从而触发对终端设备的迁移。
在本申请实施例中,切换决策网元可在以下两种场景下对终端设备进行主动迁移。也即是,上述切换决策网元确定需要将终端设备的流量引流至第一用户面网元可以通过以下两种实现方式来确定。
在一种可能的实现方式中,切换决策网元在检测到针对切换决策网元的显示界面上显示的迁移控件的选择操作的情况下,确定需要将终端设备的流量引流至第一用户面网元,该终端设备和第一用户面网元均由用户通过迁移控件指定。
具体地,在USF网元的显示界面上显示有迁移控件,用户可以通过该迁移控件触发USF网元对终端设备进行主动迁移。比如,当USF网元检测到针对该迁移控件的选择操作时,获取用户通过预设操作输入的终端设备标识以及用户面网元标识,从而确定需要对该终端设备标识所指示的终端设备进行迁移,且需要将该终端设备的流量引流至该用户面网元标识所指示的用户面网元。前述用户通过预设操作输入的用户面网元标识所指示的用户面网元即为第 一用户面网元。
上述是以USF网元为例来说明切换决策网元如何主动触发终端设备的迁移。可选地,也可以通过SDN控制网元或SF网元来主动触发终端设备的迁移,具体实现方式可以参考USF网元的实现过程,在此不再一一举例说明。
在另一种可能的实现方式中,切换决策网元在检测到网络中增加了除多个用户面网元外的第一用户面网元的情况下,确定需要将终端设备流量引流至第一用户面网元。
具体地,USF网元会监控整个网络内的用户面网元的配置情况,如果检测到网络中新增了第一用户面网元,此时为了实现负载均衡,可以将终端设备迁移至第一用户面网元上,也即是控制终端设备的数据报文由第一用户面网元转发,从而实现将终端设备的流量引流至第一用户面网元。
需要说明的是,上述两种场景仅仅是切换决策网元主动触发终端设备进行迁移的两种示例的场景,本申请实施例对切换决策网元主动触发终端设备的场景不做限定。
步骤1002:如果切换决策网元确定自身出现故障,则不向控制面网元发送迁移配置指令。
切换决策网元在生成迁移配置指令后,如果确定自身出现故障,此时如果向控制面网元发送迁移配置指令,则会引发终端设备迁移失败,从而导致终端设备下线。因此,为了避免迁移失败导致终端设备下线,在确定自身出现故障时,切换决策网元不向控制面网元发送迁移配置指令,而是先将该迁移配置指令缓存起来。
具体地,USF网元在生成迁移配置指令后,如果确定切换决策网元出现故障,此时则不向控制面网元发送迁移配置指令,而是先将该迁移配置指令缓存起来。
上述切换决策网元出现故障可以包括以下至少一种情况。
(1)USF网元确定自身出现故障。
比如,USF网元中某些软件模块出现故障,导致USF网元确定自身不能完成后续的迁移工作时,此时USF网元则确定自身出现故障。
(2)USF网元向SDN网元发送故障探测请求后,在第一参考时长内未接收到SDN网元返回的探测结果消息,或者,USF网元向SDN网元发送故障探测请求后,接收到SDN网元返回的探测结果消息,探测结果消息指示SF网元出现故障或者SDN控制网元出现故障。
在本申请实施例中,USF网元具有主动探测SDN控制网元是否故障的功能。
示例地,在USF网元向SDN网元发送故障探测请求后,如果SDN控制网元本身的硬件发生故障,比如SDN控制网元断电或与网络断开连接,那么SDN控制网元将不会给USF网元任何回应,因此,可以预先在USF网元上配置一个第一参考时长,如果在向SDN控制网元发送故障探测请求后第一参考时长内未接收到SDN控制网元返回的探测结果消息,此时USF网元就可以确定出切换决策网元中的SDN控制网元发生故障。
示例地,如果SDN控制网元本身的硬件没有故障,但是SDN控制网元探测得到SF网元出现故障,或者SDN控制网元上的软件功能模块出现故障,此时SDN控制网元可以向USF网元反馈探测结果消息,该探测结果消息指示SDN控制网元出现故障、或者SF网元出现故障。这种场景下,USF网元在接收到该探测结果消息时,便可确定出切换决策网元中SDN控制网元出现故障、或者SF网元出现故障。
对于步骤1001中第一种由用户触发的主动迁移场景,如果切换决策网元确定自身出现故障,除了不向控制面网元发送迁移配置指令,切换决策网元还可以报错,以提示用户当前触 发的主动迁移失败。比如,USF网元在确定切换决策网元中的某个网元出现故障时,显示报警提示,该报警提示指示当前无法完成终端设备的迁移。
步骤1003:在切换决策网元确定自身故障消除的情况下,重新向控制面网元发送迁移配置指令。
在切换决策网元确定自身故障消除的情况下,便可重新向控制面网元发送迁移配置指令,以触发后续的迁移操作,比如,USF网元在确定切换决策网元中各个网元均已正常工作的情况下,则重新向控制面网元发送该迁移配置指令。其中,控制面网元在接收到该迁移配置指令后的相关操作可以参考前述图3中控制面网元接收到USF网元发送的用户迁移结果后的相关操作,在此不再赘述。
综上所述,在由切换决策网元主动触发终端设备迁移的场景下,如果切换决策网元能够检测到自身出现故障,此时则不会触发迁移的后续操作,而是在故障消除的情况下,重新触发迁移的后续操作,避免了切换决策网元故障的场景下触发失败的迁移而导致终端设备下线。
图11是本申请实施例提供的一种控制面网元的结构示意图。控制面网元为网络中的宽带网络网关BNG包括的控制面网元,BNG还包括多个用户面网元,网络中还包括切换决策网元和终端设备,切换决策网元用于将终端设备的流量引流至多个用户面网元中的一个用户面网元。
如图11所示,该控制面网元1100包括:
收发模块1101,用于接收来自终端设备的上线请求,终端设备通过第一用户面网元向控制面网元发送上线请求,第一用户面网元为多个用户面网元中的一个。具体实现方式可以参考图4实施例中的步骤401。
控制模块1102,用于在确定切换决策网元故障的情况下,控制终端设备基于第一用户面网元发送数据报文。具体实现方式可以参考图4实施例中的步骤402。
可选地,控制模块用于:
控制面网元向第一用户面网元发送用户表项,用户表项携带终端设备的用户信息,第一用户面网元基于用户表项转发来自终端设备的数据报文。
可选地,切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种;
切换决策网元故障包括下述至少一个情况:
收发模块向USF网元发送故障探测请求后,收发模块在第一参考时长内未接收到USF网元返回的探测结果消息,或者,收发模块向USF网元发送故障探测请求后,收发模块接收到USF网元返回的探测结果消息,探测结果消息指示USF网元、或者SF网元出现故障、或者SDN控制网元出现故障;或者,
收发模块向SDN控制网元发送故障探测请求后,收发模块在第二参考时长内未接收到SDN控制网元返回的探测结果消息,或者,收发模块向SDN控制网元发送故障探测请求后,收发模块接收到SDN控制网元返回的探测结果消息,探测结果消息指示SF网元出现故障或者SDN控制网元出现故障;或者,
收发模块基于上线请求向USF网元发送用迁移策略请求后,在第三参考时长内未接收到USF网元返回的用户迁移结果,或者,收发模块接收到USF网元返回的探测结果消息,探测 结果消息指示USF网元、或者SF网元出现故障、或者SDN控制网元出现故障。
可选地,在控制模块控制终端设备基于第一用户面网元发送数据报文之后,收发模块还用于:
接收切换决策网元在故障消除后发送的用户迁移结果,用户迁移结果携带第二用户面网元的标识,第二用户面网元为除第一用户面网元外的另一个用户面网元;
向第二用户面网元发送用户表项,用户表项携带终端设备的用户信息,第二用户面网元基于用户表项转发来自终端设备的数据报文;
接收到第二用户面网元返回的表项配置成功消息后,向切换决策网元发送表项配置成功消息,以使切换决策网元建立终端设备和第二用户面网元之间的映射关系,并基于终端设备和第二用户面网元之间的映射关系,将终端设备的数据报文转发至第二用户面网元。
可选地,在终端设备首次发送上线请求的情况下,第一用户面网元为预先配置的用户面网元;
在终端设备非首次发送上线请求的情况下,第一用户面网元为终端设备上次下线之前发送数据报文所使用的用户面网元。
综上,在本申请实施例中,在终端设备接入网络的过程中,如果控制面网元确定切换决策网元出现故障,此时为了保证终端设备能够继续接入网络,控制面网元可以跳过切换决策单元的决策直接控制终端设备基于上线请求所使用的第一用户面网元发送数据报文。也即是,本申请实施例提供了一种在切换决策网元出现故障的情况下,终端设备能够继续接入网络的方式。换句话说,通过本申请实施例能够实现单网元故障场景下的逃生路径,使得终端设备依然可以正常上线。
需要说明的是:上述实施例提供的控制面网元在进行故障处理时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的控制面网元与图4所示的故障处理方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图12是本申请实施例提供的一种控制面网元的结构示意图。该控制面网元为网络中的宽带网络网关BNG包括的控制面网元,BNG还包括多个用户面网元,网络中还包括切换决策网元和终端设备,切换决策网元用于将终端设备的流量引流至多个用户面网元中的一个用户面网元。
如图12所示,该控制面网元1200包括:
收发模块1201,用于接收切换决策单元发送的第一迁移配置指令,第一迁移配置指令携带第一用户面网元的标识和终端设备的标识,第一迁移配置指令指示将终端设备的数据报文由第一用户面网元转发。具体实现方式可以参考图7实施例中的步骤701。
收发模块1201,还用于在基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,如果确定切换决策网元出现故障,则向第一用户面网元发送用户表项回退指令,用户表项回退指令指示第一用户面网元删除已经添加的用户表项。具体实现方式可以参考图7实施例中的步骤702。
其中,用户表项携带终端设备的用户信息,第一用户面网元基于用户表项转发终端设备 的数据报文。
可选地,切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种;
切换决策网元故障包括下述至少一个情况:
收发模块向USF网元发送故障探测请求后,在第一参考时长内未接收到USF网元返回的探测结果消息,或者,收发模块向USF网元发送故障探测请求后,接收到USF网元返回的探测结果消息,探测结果消息指示USF网元、或者SF网元出现故障或者SDN控制网元出现故障;或者,
收发模块向SDN控制网元发送故障探测请求后,在第二参考时长内未接收到SDN控制网元返回的探测结果消息,或者,收发模块向SDN控制网元发送故障探测请求后,接收到SDN控制网元返回的探测结果消息,探测结果消息指示SF网元出现故障或者SDN控制网元出现故障;或者,
在收发模块基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,收发模块向USF网元发送表项配置成功消息,在收发模块在向USF发送表项配置成功消息后,在第三参考时长内未接收到USF网元返回的消息,或者,收发模块在向USF发送表项配置成功消息后,接收到USF网元发送的迁移失败消息,迁移失败消息指示USF网元、SDN控制网元或SF网元出现故障。
可选地,在SDN控制网元或SF网元出现故障的情况下,USF网元用于控制SF网元将终端设备绑定在上次发送数据报文所使用的用户面网元上,以使终端设备继续基于上次发送数据报文所使用的用户面网元发送数据报文。
可选地,收发模块在接收切换决策单元发送的第一迁移配置指令之前,还用于:
接收用户服务等级协议SLA变更消息,用户SLA变更消息指示终端设备的用户信息发生更新;
向切换决策网元转发用户SLA变更消息,以使切换决策网元基于更新后的用户信息为终端设备配置第一用户面网元,并向控制面网元发送第一迁移配置指令。
可选地,控制面网元还包括控制模块1202,用于:
在收发模块接收用户SLA变更消息之后,在确定切换决策网元发生故障时,则保持当前状态。
可选地,切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种;
切换决策网元故障包括下述至少一个情况:
收发模块向USF网元发送故障探测请求后,在第五参考时长内未接收到USF网元返回的探测结果消息,或者,收发模块向USF网元发送故障探测请求后,接收到USF网元返回的探测结果消息,探测结果消息指示USF网元、或者SF网元出现故障或者SDN控制网元出现故障;或者,
收发模块向SDN控制网元发送故障探测请求后,在第六参考时长内未接收到SDN控制网元返回的探测结果消息,或者,收发模块向SDN控制网元发送故障探测请求后,接收到SDN控制网元返回的探测结果消息,探测结果消息指示SF网元出现故障或者SDN控制网元出现故障;或者,
在收发模块向USF网元转发用户SLA变更消息后,在第四参考时长内未接收到USF网元返回的消息,或者,收发模块在向USF网元转发用户SLA变更消息后,接收到USF网元发送的探测结果消息,探测结果消息指示USF网元、SDN控制网元或SF网元出现故障。
可选地,收发模块还用于:
在确定切换决策网元故障消除的情况下,向切换决策网元转发用户SLA变更消息,用户SLA变更消息指示终端设备的用户信息发生更新,以使切换决策网元基于更新后的用户信息为终端设备配置第二用户面网元,并向控制面网元发送携带第二用户面网元的标识的第二迁移配置指令。
综上,在本申请实施例中,为了用户迁移过程的失败导致终端设备下线,控制面网元基于第一用户面网元的标识成功向第一用户面网元发送用户表项之后,如果控制面网元确定切换决策网元出现故障,则向第一用户面网元发送用户表项回退指令,该用户表项回退指令指示第一用户面网元删除已经添加的用户表项。从而避免了在用户迁移过程中由于切换决策单元的故障导致终端设备下线。如果在基于第一用户面网元的标识向第一用户面网元发送用户表项之前确定出切换决策网元出现故障,此时,则无需执行任何操作,以避免终端设备的掉线。
需要说明的是:上述实施例提供的控制面网元在进行故障处理时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的控制面网元与图7所示的故障处理方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图13是本申请实施例提供的一种切换决策网元的结构示意图。网络中还包括BNG和终端设备,BNG包括控制面网元和多个用户面网元,切换决策网元用于将终端设备的流量引流至多个用户面网元中的一个用户面网元。
如图13所示,该切换决策网元1300包括:
生成模块1301,用于在确定需要将终端设备的流量引流至第一用户面网元的情况下,生成迁移配置指令,迁移配置指令携带第一用户面网元的标识和终端设备的标识,迁移配置指令指示将终端设备的数据报文通过第一用户面网元转发。具体实现方式可以参考图10实施例中的步骤1001。
发送模块1302,用于如果切换决策网元确定自身出现故障,则不向控制面网元发送迁移配置指令;在切换决策网元确定自身故障消除的情况下,重新向控制面网元发送迁移配置指令。具体实现方式可以参考图10实施例中的步骤1002和步骤1003。
可选地,切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种;
切换决策网元故障包括下述至少一个情况:
USF网元确定自身出现故障;或者,
USF网元向SDN网元发送故障探测请求后,在第一参考时长内未接收到SDN网元返回的探测结果消息,或者,USF网元向SDN网元发送故障探测请求后,接收到SDN网元返回的探测结果消息,探测结果消息指示SF网元出现故障或者SDN控制网元出现故障。
可选地,切换决策网元还包括确定模块,用于:
在检测到针对切换决策网元的显示界面上显示的迁移控件的选择操作的情况下,确定需要将终端设备的流量引流至第一用户面网元,终端设备和第一用户面网元均由用户通过迁移控件指定;或者,
在检测到网络中增加了除多个用户面网元外的第一用户面网元的情况下,确定需要将终端设备流量引流至第一用户面网元。
综上所述,在由切换决策网元主动触发终端设备迁移的场景下,如果切换决策网元能够检测到自身出现故障,此时则不会触发迁移的后续操作,而是在故障消除的情况下,重新触发迁移的后续操作,避免了切换决策网元故障的场景下触发失败的迁移而导致终端设备下线。
需要说明的是:上述实施例提供的切换决策网元在进行故障处理时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的切换决策与图10所示的故障处理方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图14是本申请施例提供的一种网络设备的结构示意图。上述实施例中任一网元均可以通过图14所示的网络设备来实现。参见图14,该网络设备包括至少一个处理器1401,通信总线1402、存储器1403以及至少一个通信接口1404。
处理器1401可以是一个通用中央处理器(central processing unit,CPU)、特定应用集成电路(application-specific integrated circuit,ASIC)或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线1402可包括一通路,在上述组件之间传送信息。
存储器1403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only Memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘或者其它磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储器1403可以是独立存在,通过通信总线1402与处理器1401相连接。存储器1403也可以和处理器1401集成在一起。
其中,存储器1403用于存储执行本申请方案的程序代码,并由处理器1401来控制执行。处理器1401用于执行存储器1403中存储的程序代码。程序代码中可以包括一个或多个软件模块。上述BNG中的控制面网元可以通过处理器1401以及存储器1403中的程序代码中的一个或多个软件模块,来确定用于开发应用的数据。
通信接口1404,使用任何收发器一类的装置,用于与其它设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
在具体实现中,作为一种实施例,网络设备可以包括多个处理器,例如图14中所示的处 理器1401和处理器1405。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
上述的网络设备可以是一个通用网络设备或者是一个专用网络设备。在具体实现中,网络设备可以是交换机、路由器等等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意结合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如:同轴电缆、光纤、数据用户线(digital subscriber line,DSL))或无线(例如:红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如:软盘、硬盘、磁带)、光介质(例如:数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如:固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (32)

  1. 一种故障处理方法,其特征在于,所述方法由网络中的宽带网络网关BNG包括的控制面网元执行,所述BNG还包括多个用户面网元,所述网络中还包括切换决策网元和终端设备,所述切换决策网元用于将所述终端设备的流量引流至所述多个用户面网元中的一个用户面网元;
    所述方法包括:
    所述控制面网元接收来自所述终端设备的上线请求,所述终端设备通过第一用户面网元向所述控制面网元发送所述上线请求,所述第一用户面网元为所述多个用户面网元中的一个;
    所述控制面网元在确定所述切换决策网元故障的情况下,控制所述终端设备基于所述第一用户面网元发送数据报文。
  2. 如权利要求1所述的方法,其特征在于,所述控制所述终端设备基于所述第一用户面网元发送数据报文,包括:
    所述控制面网元向所述第一用户面网元发送用户表项,所述用户表项携带所述终端设备的用户信息,所述第一用户面网元基于所述用户表项转发来自所述终端设备的数据报文。
  3. 如权利要求1或2所述的方法,其特征在于,所述切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种;
    所述切换决策网元故障包括下述至少一个情况:
    所述控制面网元向所述USF网元发送故障探测请求后,在第一参考时长内未接收到所述USF网元返回的探测结果消息,或者,所述控制面网元向所述USF网元发送故障探测请求后,接收到所述USF网元返回的探测结果消息,所述探测结果消息指示所述USF网元、或者所述SF网元出现故障、或者所述SDN控制网元出现故障;或者,
    所述控制面网元向所述SDN控制网元发送故障探测请求后,在第二参考时长内未接收到所述SDN控制网元返回的探测结果消息,或者,所述控制面网元向所述SDN控制网元发送故障探测请求后,接收到所述SDN控制网元返回的探测结果消息,所述探测结果消息指示所述SF网元出现故障或者所述SDN控制网元出现故障;或者,
    所述控制面网元基于所述上线请求向所述USF网元发送用迁移策略请求后,在第三参考时长内未接收到所述USF网元返回的用户迁移结果,或者,接收到所述USF网元返回的探测结果消息,所述探测结果消息指示所述USF网元、或者所述SF网元出现故障、或者所述SDN控制网元出现故障。
  4. 如权利要求1至3任一所述的方法,其特征在于,所述控制所述终端设备基于所述第一用户面网元发送数据报文之后,所述方法还包括:
    所述控制面网元接收所述切换决策网元在故障消除后发送的用户迁移结果,所述用户迁移结果携带第二用户面网元的标识,所述第二用户面网元为除所述第一用户面网元外的另一个用户面网元;
    所述控制面网元向所述第二用户面网元发送用户表项,所述用户表项携带所述终端设备的用户信息,所述第二用户面网元基于所述用户表项转发来自所述终端设备的数据报文;
    所述控制面网元接收到所述第二用户面网元返回的表项配置成功消息后,向所述切换决策网元发送表项配置成功消息,以使所述切换决策网元建立所述终端设备和所述第二用户面网元之间的映射关系,并基于所述终端设备和所述第二用户面网元之间的映射关系,将所述终端设备的数据报文转发至所述第二用户面网元。
  5. 如权利要求1至4任一所述的方法,其特征在于,
    在所述终端设备首次发送所述上线请求的情况下,所述第一用户面网元为预先配置的用户面网元;
    在所述终端设备非首次发送所述上线请求的情况下,所述第一用户面网元为所述终端设备上次下线之前发送数据报文所使用的用户面网元。
  6. 一种故障处理方法,其特征在于,所述方法由网络中的宽带网络网关BNG包括的控制面网元执行,所述BNG还包括多个用户面网元,所述网络中还包括切换决策网元和终端设备,所述切换决策网元用于将所述终端设备的流量引流至所述多个用户面网元中的一个用户面网元;
    所述方法包括:
    所述控制面网元接收所述切换决策单元发送的第一迁移配置指令,所述第一迁移配置指令携带第一用户面网元的标识和所述终端设备的标识,所述第一迁移配置指令指示将所述终端设备的数据报文通过所述第一用户面网元转发;
    在所述控制面网元基于所述第一用户面网元的标识成功向所述第一用户面网元发送用户表项之后,如果所述控制面网元确定所述切换决策网元出现故障,则向所述第一用户面网元发送用户表项回退指令,所述用户表项回退指令指示所述第一用户面网元删除已经添加的所述用户表项;
    其中,所述用户表项携带所述终端设备的用户信息,所述第一用户面网元基于所述用户表项转发所述终端设备的数据报文。
  7. 如权利要求6所述的方法,其特征在于,所述切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种;
    所述切换决策网元故障包括下述至少一个情况:
    所述控制面网元向所述USF网元发送故障探测请求后,在第一参考时长内未接收到所述USF网元返回的探测结果消息,或者,所述控制面网元向所述USF网元发送故障探测请求后,接收到所述USF网元返回的探测结果消息,所述探测结果消息指示所述USF网元、或者所述SF网元出现故障或者所述SDN控制网元出现故障;或者,
    所述控制面网元向所述SDN控制网元发送故障探测请求后,在第二参考时长内未接收到所述SDN控制网元返回的探测结果消息,或者,所述控制面网元向所述SDN控制网元发送故障探测请求后,接收到所述SDN控制网元返回的探测结果消息,所述探测结果消息指示所述SF网元出现故障或者所述SDN控制网元出现故障;或者,
    在所述控制面网元基于所述第一用户面网元的标识成功向所述第一用户面网元发送用户表项之后,所述控制面网元向所述USF网元发送表项配置成功消息,在所述控制面网元在向所述USF发送表项配置成功消息后,在第三参考时长内未接收到所述USF网元返回的消息,或者,所述控制面网元在向所述USF发送表项配置成功消息后,接收到所述USF网元发送的迁移失败消息,所述迁移失败消息指示所述USF网元、所述SDN控制网元或所述SF网元出现故障。
  8. 如权利要求7所述的方法,其特征在于,在所述SDN控制网元或所述SF网元出现故障的情况下,所述USF网元用于控制所述SF网元将所述终端设备绑定在上次发送数据报文所使用的用户面网元上,以使所述终端设备继续基于上次发送数据报文所使用的用户面网元发送数据报文。
  9. 如权利要求6所述的方法,其特征在于,所述控制面网元接收所述切换决策单元发送的第一迁移配置指令之前,所述方法还包括:
    所述控制面网元接收用户服务等级协议SLA变更消息,所述用户SLA变更消息指示所述终端设备的用户信息发生更新;
    所述控制面网元向所述切换决策网元转发所述用户SLA变更消息,以使所述切换决策网元基于更新后的用户信息为所述终端设备配置所述第一用户面网元,并向所述控制面网元发送所述第一迁移配置指令。
  10. 如权利要求9所述的方法,其特征在于,所述控制面网元接收用户SLA变更消息之后,所述方法还包括:
    在所述控制面网元确定所述切换决策网元发生故障时,则保持当前状态。
  11. 如权利要求10所述的方法,其特征在于,所述切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种;
    所述切换决策网元故障包括下述至少一个情况:
    所述控制面网元向所述USF网元发送故障探测请求后,在第四参考时长内未接收到所述USF网元返回的探测结果消息,或者,所述控制面网元向所述USF网元发送故障探测请求后,接收到所述USF网元返回的探测结果消息,所述探测结果消息指示所述USF网元、或者所述SF网元出现故障或者所述SDN控制网元出现故障;或者,
    所述控制面网元向所述SDN控制网元发送故障探测请求后,在第五参考时长内未接收到所述SDN控制网元返回的探测结果消息,或者,所述控制面网元向所述SDN控制网元发送故障探测请求后,接收到所述SDN控制网元返回的探测结果消息,所述探测结果消息指示所述SF网元出现故障或者所述SDN控制网元出现故障;或者,
    在所述控制面网元向所述USF网元转发所述用户SLA变更消息后,在第六参考时长内未接收到所述USF网元返回的消息,或者,所述控制面网元在向所述USF网元转发所述用户SLA变更消息后,接收到所述USF网元发送的探测结果消息,所述探测结果消息指示所述USF网元、所述SDN控制网元或所述SF网元出现故障。
  12. 如权利要求6至11任一所述的方法,其特征在于,所述方法还包括:
    所述控制面网元在确定所述切换决策网元故障消除的情况下,所述控制面网元向所述切换决策网元转发用户SLA变更消息,所述用户SLA变更消息指示所述终端设备的用户信息发生更新,以使所述切换决策网元基于更新后的用户信息为所述终端设备配置第二用户面网元,并向所述控制面网元发送携带所述第二用户面网元的标识的第二迁移配置指令。
  13. 一种故障处理方法,其特征在于,所述方法由网络中的切换决策网元执行,所述网络还包括宽带网络网关BNG和终端设备,所述BNG包括控制面网元和多个用户面网元,所述切换决策网元用于将所述终端设备的流量引流至所述多个用户面网元中的一个用户面网元;
    所述方法包括:
    在确定需要将终端设备的流量引流至第一用户面网元的情况下,所述切换决策网元生成迁移配置指令,所述迁移配置指令携带所述第一用户面网元的标识和所述终端设备的标识,所述迁移配置指令指示将所述终端设备的数据报文通过所述第一用户面网元转发;
    如果所述切换决策网元确定自身出现故障,则不向所述控制面网元发送所述迁移配置指令;
    在所述切换决策网元确定自身故障消除的情况下,重新向所述控制面网元发送所述迁移配置指令。
  14. 如权利要求13所述的方法,其特征在于,所述切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种;
    所述切换决策网元故障包括下述至少一个情况:
    所述USF网元确定自身出现故障;或者,
    所述USF网元向所述SDN网元发送故障探测请求后,在第一参考时长内未接收到所述SDN网元返回的探测结果消息,或者,所述USF网元向所述SDN网元发送故障探测请求后,接收到所述SDN网元返回的探测结果消息,所述探测结果消息指示所述SF网元出现故障或者所述SDN控制网元出现故障。
  15. 如权利要求13或14所述的方法,其特征在于,所述方法还包括:
    在检测到针对所述切换决策网元的显示界面上显示的迁移控件的选择操作的情况下,确定需要将所述终端设备的流量引流至所述第一用户面网元,所述终端设备和所述第一用户面网元均由用户通过所述迁移控件指定;或者,
    在检测到所述网络中增加了除所述多个用户面网元外的第一用户面网元的情况下,确定需要将所述终端设备流量引流至所述第一用户面网元。
  16. 一种控制面网元,其特征在于,所述控制面网元为网络中的宽带网络网关BNG包括的控制面网元,所述BNG还包括多个用户面网元,所述网络中还包括切换决策网元和终端设备,所述切换决策网元用于将所述终端设备的流量引流至所述多个用户面网元中的一个用户面网元;
    所述控制面网元包括:
    收发模块,用于接收来自所述终端设备的上线请求,所述终端设备通过第一用户面网元向所述控制面网元发送所述上线请求,所述第一用户面网元为所述多个用户面网元中的一个;
    控制模块,用于在确定所述切换决策网元故障的情况下,控制所述终端设备基于所述第一用户面网元发送数据报文。
  17. 如权利要求16所述的控制面网元,其特征在于,所述控制模块用于:
    所述控制面网元向所述第一用户面网元发送用户表项,所述用户表项携带所述终端设备的用户信息,所述第一用户面网元基于所述用户表项转发来自所述终端设备的数据报文。
  18. 如权利要求16或17所述的控制面网元,其特征在于,所述切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种;
    所述切换决策网元故障包括下述至少一个情况:
    所述收发模块向所述USF网元发送故障探测请求后,所述收发模块在第一参考时长内未接收到所述USF网元返回的探测结果消息,或者,所述收发模块向所述USF网元发送故障探测请求后,所述收发模块接收到所述USF网元返回的探测结果消息,所述探测结果消息指示所述USF网元、或者所述SF网元出现故障、或者所述SDN控制网元出现故障;或者,
    所述收发模块向所述SDN控制网元发送故障探测请求后,所述收发模块在第二参考时长内未接收到所述SDN控制网元返回的探测结果消息,或者,所述收发模块向所述SDN控制网元发送故障探测请求后,所述收发模块接收到所述SDN控制网元返回的探测结果消息,所述探测结果消息指示所述SF网元出现故障或者所述SDN控制网元出现故障;或者,
    所述收发模块基于所述上线请求向所述USF网元发送用迁移策略请求后,在第三参考时长内未接收到所述USF网元返回的用户迁移结果,或者,所述收发模块接收到所述USF网元返回的探测结果消息,所述探测结果消息指示所述USF网元、或者所述SF网元出现故障、或者所述SDN控制网元出现故障。
  19. 如权利要求16至18任一所述的控制面网元,其特征在于,在所述控制模块控制所述终端设备基于所述第一用户面网元发送数据报文之后,所述收发模块还用于:
    接收所述切换决策网元在故障消除后发送的用户迁移结果,所述用户迁移结果携带第二用户面网元的标识,所述第二用户面网元为除所述第一用户面网元外的另一个用户面网元;
    向所述第二用户面网元发送用户表项,所述用户表项携带所述终端设备的用户信息,所述第二用户面网元基于所述用户表项转发来自所述终端设备的数据报文;
    接收到所述第二用户面网元返回的表项配置成功消息后,向所述切换决策网元发送表项配置成功消息,以使所述切换决策网元建立所述终端设备和所述第二用户面网元之间的映射关系,并基于所述终端设备和所述第二用户面网元之间的映射关系,将所述终端设备的数据报文转发至所述第二用户面网元。
  20. 如权利要求16至19任一所述的控制面网元,其特征在于,
    在所述终端设备首次发送所述上线请求的情况下,所述第一用户面网元为预先配置的用 户面网元;
    在所述终端设备非首次发送所述上线请求的情况下,所述第一用户面网元为所述终端设备上次下线之前发送数据报文所使用的用户面网元。
  21. 一种控制面网元,其特征在于,所述控制面网元为网络中的宽带网络网关BNG包括的控制面网元,所述BNG还包括多个用户面网元,所述网络中还包括切换决策网元和终端设备,所述切换决策网元用于将所述终端设备的流量引流至所述多个用户面网元中的一个用户面网元;
    所述控制面网元包括:
    收发模块,用于接收所述切换决策单元发送的第一迁移配置指令,所述第一迁移配置指令携带第一用户面网元的标识和所述终端设备的标识,所述第一迁移配置指令指示将所述终端设备的数据报文通过所述第一用户面网元转发;
    所述收发模块,还用于在基于所述第一用户面网元的标识成功向所述第一用户面网元发送用户表项之后,如果确定所述切换决策网元出现故障,则向所述第一用户面网元发送用户表项回退指令,所述用户表项回退指令指示所述第一用户面网元删除已经添加的所述用户表项;
    其中,所述用户表项携带所述终端设备的用户信息,所述第一用户面网元基于所述用户表项转发所述终端设备的数据报文。
  22. 如权利要求21所述的控制面网元,其特征在于,所述切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种;
    所述切换决策网元故障包括下述至少一个情况:
    所述收发模块向所述USF网元发送故障探测请求后,在第一参考时长内未接收到所述USF网元返回的探测结果消息,或者,所述收发模块向所述USF网元发送故障探测请求后,接收到所述USF网元返回的探测结果消息,所述探测结果消息指示所述USF网元、或者所述SF网元出现故障或者所述SDN控制网元出现故障;或者,
    所述收发模块向所述SDN控制网元发送故障探测请求后,在第二参考时长内未接收到所述SDN控制网元返回的探测结果消息,或者,所述收发模块向所述SDN控制网元发送故障探测请求后,接收到所述SDN控制网元返回的探测结果消息,所述探测结果消息指示所述SF网元出现故障或者所述SDN控制网元出现故障;或者,
    在所述收发模块基于所述第一用户面网元的标识成功向所述第一用户面网元发送用户表项之后,所述收发模块向所述USF网元发送表项配置成功消息,在所述收发模块在向所述USF发送表项配置成功消息后,在第三参考时长内未接收到所述USF网元返回的消息,或者,所述收发模块在向所述USF发送表项配置成功消息后,接收到所述USF网元发送的迁移失败消息,所述迁移失败消息指示所述USF网元、所述SDN控制网元或所述SF网元出现故障。
  23. 如权利要求22所述的控制面网元,其特征在于,在所述SDN控制网元或所述SF网元出现故障的情况下,所述USF网元用于控制所述SF网元将所述终端设备绑定在上次发送数据报文所使用的用户面网元上,以使所述终端设备继续基于上次发送数据报文所使用的用 户面网元发送数据报文。
  24. 如权利要求21所述的控制面网元,其特征在于,所述收发模块在接收所述切换决策单元发送的第一迁移配置指令之前,还用于:
    接收用户服务等级协议SLA变更消息,所述用户SLA变更消息指示所述终端设备的用户信息发生更新;
    向所述切换决策网元转发所述用户SLA变更消息,以使所述切换决策网元基于更新后的用户信息为所述终端设备配置所述第一用户面网元,并向所述控制面网元发送所述第一迁移配置指令。
  25. 如权利要求24所述的控制面网元,其特征在于,所述控制面网元还包括控制模块,用于:
    在所述收发模块接收用户SLA变更消息之后,在确定所述切换决策网元发生故障时,则保持当前状态。
  26. 如权利要求25所述的控制面网元,其特征在于,所述切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种;
    所述切换决策网元故障包括下述至少一个情况:
    所述收发模块向所述USF网元发送故障探测请求后,在第四参考时长内未接收到所述USF网元返回的探测结果消息,或者,所述收发模块向所述USF网元发送故障探测请求后,接收到所述USF网元返回的探测结果消息,所述探测结果消息指示所述USF网元、或者所述SF网元出现故障或者所述SDN控制网元出现故障;或者,
    所述收发模块向所述SDN控制网元发送故障探测请求后,在第五参考时长内未接收到所述SDN控制网元返回的探测结果消息,或者,所述收发模块向所述SDN控制网元发送故障探测请求后,接收到所述SDN控制网元返回的探测结果消息,所述探测结果消息指示所述SF网元出现故障或者所述SDN控制网元出现故障;或者,
    在所述收发模块向所述USF网元转发所述用户SLA变更消息后,在第六参考时长内未接收到所述USF网元返回的消息,或者,所述收发模块在向所述USF网元转发所述用户SLA变更消息后,接收到所述USF网元发送的探测结果消息,所述探测结果消息指示所述USF网元、所述SDN控制网元或所述SF网元出现故障。
  27. 如权利要求21至26任一所述的控制面网元,其特征在于,所述收发模块还用于:
    在确定所述切换决策网元故障消除的情况下,向所述切换决策网元转发用户SLA变更消息,所述用户SLA变更消息指示所述终端设备的用户信息发生更新,以使所述切换决策网元基于更新后的用户信息为所述终端设备配置第二用户面网元,并向所述控制面网元发送携带所述第二用户面网元的标识的第二迁移配置指令。
  28. 一种切换决策网元,其特征在于,网络中还包括宽带网络网关BNG和终端设备,所述BNG包括控制面网元和多个用户面网元,所述切换决策网元用于将所述终端设备的流量引 流至所述多个用户面网元中的一个用户面网元;
    所述切换决策网元包括:
    生成模块,用于在确定需要将终端设备的流量引流至第一用户面网元的情况下,生成迁移配置指令,所述迁移配置指令携带所述第一用户面网元的标识和所述终端设备的标识,所述迁移配置指令指示将所述终端设备的数据报文通过所述第一用户面网元转发;
    发送模块,用于如果所述切换决策网元确定自身出现故障,则不向所述控制面网元发送所述迁移配置指令;在所述切换决策网元确定自身故障消除的情况下,重新向所述控制面网元发送所述迁移配置指令。
  29. 如权利要求28所述的切换决策网元,其特征在于,所述切换决策网元包括切换功能SF网元、用户切换功能USF网元、以及软件定义网络SDN控制网元中的任一种或多种;
    所述切换决策网元故障包括下述至少一个情况:
    所述USF网元确定自身出现故障;或者,
    所述USF网元向所述SDN网元发送故障探测请求后,在第一参考时长内未接收到所述SDN网元返回的探测结果消息,或者,所述USF网元向所述SDN网元发送故障探测请求后,接收到所述SDN网元返回的探测结果消息,所述探测结果消息指示所述SF网元出现故障或者所述SDN控制网元出现故障。
  30. 如权利要求28或29所述的切换决策网元,其特征在于,所述切换决策网元还包括确定模块,用于:
    在检测到针对所述切换决策网元的显示界面上显示的迁移控件的选择操作的情况下,确定需要将所述终端设备的流量引流至所述第一用户面网元,所述终端设备和所述第一用户面网元均由用户通过所述迁移控件指定;或者,
    在检测到所述网络中增加了除所述多个用户面网元外的第一用户面网元的情况下,确定需要将终端设备流量引流至所述第一用户面网元。
  31. 一种网络设备,其特征在于,所述网络设备包括存储器和处理器;
    所述存储器用于存储支持所述装置执行权利要求1-5或者6-12或者13-15任一项所述的方法的程序,以及存储用于实现权利要求1-5或者6-12任一项所述的方法所涉及的数据;
    所述处理器被配置为用于执行所述存储器中存储的程序。
  32. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行权利要求1-5或者6-12或者13-15任一项所述的方法。
PCT/CN2021/142712 2020-12-30 2021-12-29 故障处理方法、控制面网元、切换决策网元及相关设备 WO2022143818A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21914550.5A EP4262256A4 (en) 2020-12-30 2021-12-29 FAULT PROCESSING METHOD, CONTROL PLANE NETWORK ELEMENT, DIRECTION DECISION-MAKING NETWORK ELEMENT AND RELATED DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011614473.2A CN114765572A (zh) 2020-12-30 2020-12-30 故障处理方法、控制面网元、切换决策网元及相关设备
CN202011614473.2 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022143818A1 true WO2022143818A1 (zh) 2022-07-07

Family

ID=82260267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142712 WO2022143818A1 (zh) 2020-12-30 2021-12-29 故障处理方法、控制面网元、切换决策网元及相关设备

Country Status (4)

Country Link
US (1) US20230345273A1 (zh)
EP (1) EP4262256A4 (zh)
CN (1) CN114765572A (zh)
WO (1) WO2022143818A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051294A1 (zh) * 2022-09-07 2024-03-14 华为技术有限公司 客户端设备的接入方法、装置及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115996380B (zh) * 2023-03-22 2023-06-20 北京首信科技股份有限公司 一种网络柔性管控的方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107135116A (zh) * 2016-02-26 2017-09-05 华为技术有限公司 用于进行连通性检测的方法和装置
CN109429221A (zh) * 2017-08-29 2019-03-05 华为技术有限公司 数据传输方法、设备及系统
CN109428780A (zh) * 2017-08-30 2019-03-05 中兴通讯股份有限公司 一种流量监测的调度方法、装置、服务器及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166270A (zh) * 2018-02-13 2019-08-23 中兴通讯股份有限公司 热备切换处理方法、设备及存储介质
US10813035B2 (en) * 2018-10-29 2020-10-20 T-Mobile Usa, Inc. Transparent session migration between user plane functions
CN114157579A (zh) * 2019-04-24 2022-03-08 华为技术有限公司 接入网关的方法及装置
CN114531337A (zh) * 2020-10-31 2022-05-24 华为技术有限公司 一种宽带连接方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107135116A (zh) * 2016-02-26 2017-09-05 华为技术有限公司 用于进行连通性检测的方法和装置
CN109429221A (zh) * 2017-08-29 2019-03-05 华为技术有限公司 数据传输方法、设备及系统
CN109428780A (zh) * 2017-08-30 2019-03-05 中兴通讯股份有限公司 一种流量监测的调度方法、装置、服务器及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BROADBAND FORUM: "TR-459 Control and User Plane Separation for a disaggregated BNG", 3GPP DRAFT; C4-203064, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 14 May 2020 (2020-05-14), XP051882750 *
See also references of EP4262256A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051294A1 (zh) * 2022-09-07 2024-03-14 华为技术有限公司 客户端设备的接入方法、装置及系统

Also Published As

Publication number Publication date
US20230345273A1 (en) 2023-10-26
CN114765572A (zh) 2022-07-19
EP4262256A1 (en) 2023-10-18
EP4262256A4 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
US11394644B2 (en) EVPN packet processing method, device, and system
US10999125B1 (en) Inter-application communication via signal-routes
US11050586B2 (en) Inter-cloud communication method and related device, and inter-cloud communication configuration method and related device
US9380111B2 (en) Feature peer network with scalable state information
US9001671B2 (en) Feature peer network representations and scalable feature peer network management
EP3605968B1 (en) N:1 stateful application gateway redundancy model
EP2731313B1 (en) Distributed cluster processing system and message processing method thereof
EP3759870A1 (en) Network slicing with smart contracts
WO2022143818A1 (zh) 故障处理方法、控制面网元、切换决策网元及相关设备
WO2022001669A1 (zh) 建立vxlan隧道的方法及相关设备
WO2021057962A1 (zh) 隧道配置方法、装置、系统、设备及存储介质
US11223597B2 (en) Network and network management method
CN111614505B (zh) 报文处理的方法和网关设备
EP3750073B1 (en) A method for seamless migration of session authentication to a different stateful diameter authenticating peer
CN113891428A (zh) 网络接入方法、设备及系统
WO2022057810A1 (zh) 业务报文的转发方法、sr策略的发送方法、设备及系统
US11863394B2 (en) Connectivity detection session creation method, network device, and system
CN110545240B (zh) 基于分布式聚合系统的标签转发表的建立及报文转发方法
CN116418760A (zh) 报文转发方法、设备及系统
CN112887185B (zh) 一种叠加网络的通信方法及装置
WO2023088411A1 (zh) 发送指令、信息的方法及装置
CN109417513B (zh) 软件定义网络中动态检测对端的系统和方法
JP7486597B2 (ja) ダイアルアップ・パケット処理方法、ネットワーク要素、システム、ネットワーク装置
CN113992557B (zh) 报文处理方法及装置
US11996993B2 (en) Packet transmission method, apparatus, and system, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021914550

Country of ref document: EP

Effective date: 20230712

NENP Non-entry into the national phase

Ref country code: DE