WO2023088411A1 - 发送指令、信息的方法及装置 - Google Patents

发送指令、信息的方法及装置 Download PDF

Info

Publication number
WO2023088411A1
WO2023088411A1 PCT/CN2022/132789 CN2022132789W WO2023088411A1 WO 2023088411 A1 WO2023088411 A1 WO 2023088411A1 CN 2022132789 W CN2022132789 W CN 2022132789W WO 2023088411 A1 WO2023088411 A1 WO 2023088411A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
terminal device
plane network
user plane
priority
Prior art date
Application number
PCT/CN2022/132789
Other languages
English (en)
French (fr)
Inventor
彭涛
余舟毅
花荣荣
李冠军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023088411A1 publication Critical patent/WO2023088411A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the present application relates to the field of broadband technologies, and in particular to a method and device for sending instructions and information.
  • the broadband network gateway (BNG) system is the core node for terminal equipment to access the broadband network.
  • the BNG system includes a control plane network element and multiple user plane network elements.
  • the control plane network element can be CP (control plane), and the user plane network element can be UP (user plane).
  • the control plane network element is used to control and manage multiple user plane network elements, and any user plane network element is used to forward the traffic of the terminal equipment.
  • the terminal device can send a keep alive request message to the user plane network element, and the user plane network element receives the keep alive request message sent by the terminal device.
  • the terminal device After the text, based on the forwarding control table item information corresponding to the terminal device in the locally stored forwarding control table item information set, the validity of the keep-alive request message is verified. After the legality verification is passed, based on the The forwarding control entry information corresponding to the terminal device sends a keep-alive response message to the terminal device, so that the terminal device determines whether the link between the two or the user plane network element fails.
  • the target user plane network element needs to obtain the forwarding control table corresponding to the terminal device entry information to update the local forwarding control table entry information set. If the number of terminal devices currently migrated to the target user plane network element is large, the target user plane network element needs to obtain a large amount of forwarding control entry information. In this scenario, the target user plane NE may have received the keep-alive request message sent by the terminal device before the target user plane NE has obtained the forwarding control entry information of the terminal device. The user plane network element cannot respond to the keep-alive request message of the terminal device, thus causing a problem in the fault detection of the terminal device.
  • the present application provides a method and device for sending instructions and information, which can prevent high-priority terminal equipment from going offline due to keep-alive detection failure during the migration process. Described technical scheme is as follows:
  • a method for sending instructions is provided, the method is applied to a BNG system in a communication network, and the BNG system includes a control plane network element and multiple user plane network elements.
  • the control plane network element sends the second update command to the second user plane network element after sending the first update command to the first user plane network element.
  • the first update instruction is used to instruct the first user plane network element to update the local forwarding control entry information set based on the forwarding control entry information of the first terminal device
  • the second update instruction is used to instruct the second user plane network element to update the local forwarding control entry information set based on The forwarding control entry information of the second terminal device updates the local forwarding control entry information set, and the first user plane network element and the second user plane network element belong to multiple user plane network elements.
  • the forwarding control entry information of the high-priority terminal device is updated first, thereby realizing the high-priority terminal device's Prioritize migration to prevent high-priority terminal devices from going offline due to keep-alive detection failures.
  • the first update instruction carries forwarding control entry information of the first terminal device
  • the second update instruction carries forwarding control entry information of the second terminal device.
  • the forwarding control entry information of each terminal device can be carried in the update command and delivered during migration.
  • the priority of the first terminal device exceeds the target priority, and the priority of the second terminal device is lower than the target priority.
  • the control plane network element before it is determined to migrate the first terminal device to the first user plane network element, in response to the priority of the first terminal device exceeding the target priority, the control plane network element The network element sends the forwarding control entry information of the first terminal device; correspondingly, the first update instruction does not carry the forwarding control entry information of the first terminal device, and the second update instruction carries the forwarding control entry information of the second terminal device information.
  • the forwarding control entry information of the high-priority terminal device can be issued in advance, and the forwarding control entry information of the low-priority terminal device can be carried in the update instruction and delivered.
  • This method saves the delivery time of the forwarding control table item information from the control plane network element to the user plane network element, and the update command for high-priority terminal equipment does not need to carry the forwarding control table item information, so high-priority terminal equipment
  • the update command can be sent to the user plane network elements faster, so as to quickly update the forwarding control table entry information of high-priority terminal equipment to the local forwarding control table entry information set, so as to restore services faster.
  • the control plane network element sends a stop update instruction to the first user plane network element, and stops The update instruction instructs the first user plane network element not to update the local forwarding control entry information set based on the forwarding control entry information of the first terminal device when receiving the forwarding control entry information of the first terminal device.
  • the control plane NE delivers the forwarding control entry information of the high-priority terminal device in advance
  • the first user plane NE responds to stopping the update when receiving the forwarding control entry information of the first terminal device
  • the instruction does not update the local forwarding control entry information set based on the forwarding control entry information of the first terminal device, so the forwarding control entry information of the first terminal device delivered in advance does not occupy the forwarding resources of the first user plane network element .
  • the first user plane network element and the second user plane network element are the same user plane network element, or, the first user plane network element and the second user plane network element are different user plane network elements.
  • the first terminal device is a terminal device migrated from the third user plane network element to the first user plane network element
  • the second terminal device is a terminal migrated from the fourth user plane network element to the second user plane network element
  • the device; the third user plane network element and the fourth user plane network element are the same user plane network element, or the third user plane network element and the fourth user plane network element are different user plane network elements.
  • the control plane network element only needs to issue the corresponding The update command of the device is sufficient.
  • the application flexibility of the embodiment of the present application is improved.
  • the interface on the third user plane network element and the first user plane network element that receives the traffic of the first terminal device belongs to the first type of interface
  • the fourth user plane network element and the second user plane network element receive the second The interface for the traffic of the end device belongs to the second type of interface.
  • the priority of the first terminal device is the priority of the interface of the first type
  • the priority of the second terminal device is the priority of the interface of the second type.
  • the priority of the first terminal device is the priority of the service of the first terminal device
  • the priority of the second terminal device is the priority of the service of the second terminal device.
  • the priority of the first terminal device is the agreed service level SLA of the first terminal device
  • the priority of the second terminal device is the SLA of the second terminal device.
  • the priority of the terminal device can also be directly SLA, and the priority of the terminal device can also be directly configured on the CP side.
  • the operator can base it on a certain type of service, a certain sub-interface or a certain physical interface, etc. Dimension configures the priority of end devices.
  • the application flexibility of the embodiment of the present application is improved.
  • control plane network element receives the priority of the first terminal device and the priority of the second terminal device sent by the verification authorization and accounting AAA server.
  • the priority of the terminal device may be provided by the AAA server, which improves the feasibility of the embodiment of the present application.
  • a method for sending instructions is provided, the method is applied to a communication network, and the communication network includes a user switching function USF network element and a broadband network gateway BNG system, and the BNG system includes a control plane network element and multiple user planes network element.
  • the USF network element in response to the fact that the priority of the first terminal device is higher than that of the second terminal device, sends the second relocation command to the second user plane network element after sending the first relocation instruction to the control plane network element. migration instructions.
  • the first migration instruction indicates to migrate the first terminal device to the first user plane network element
  • the second migration instruction indicates to migrate the second terminal device to the second user plane network element
  • the first user plane network element and the second user plane A plane network element belongs to multiple user plane network elements.
  • the USF network itself does not fail, and the links between USF NEs, SDN NEs, and control plane NEs do not fail, in this case, the USF NEs based on the priority of the terminal equipment to guide end device migration.
  • the first migration instruction is issued prior to the second migration instruction, based on the method provided in the embodiment of this application, it can be ensured that the forwarding control entry information of the high-priority terminal device is updated first, thereby realizing high-priority Priority migration of terminal devices to avoid failure of keep-alive detection of high-priority terminal devices.
  • the USF network element receives the priority of the first terminal device and the priority of the second terminal device sent by the control plane network element. class.
  • the USF network element can guide the migration of the terminal device based on the priority of the terminal device, the USF network element can obtain the priority of the terminal device from the control plane network element.
  • the communication network further includes a switching function SF network element, and the SF network element is configured with interfaces respectively corresponding to the first user plane network element and the second user plane network element.
  • the USF network element in response to the priority of the first terminal device being higher than the priority of the second terminal device, after the USF network element sends the first interface configuration command to the SF network element, it sends to the SF network element Second interface configuration command.
  • the first interface configuration instruction instructs the SF network element to bind the interface corresponding to the first terminal device and the first user plane network element
  • the second interface configuration instruction instructs the SF network element to bind the first terminal device to the second user plane network element.
  • the first interface configuration instruction instructs the SF network element to bind the interface corresponding to the first terminal device and the first user plane network element, so that when the subsequent SF network element receives the traffic of the first terminal device, it passes the traffic through the The interface corresponding to the first user plane network element is sent out, so that the traffic is sent to the first user plane network element.
  • the second interface configuration instruction instructs the SF network element to bind the interface corresponding to the first terminal device and the second user plane network element, so that when the subsequent SF network element receives the traffic of the second terminal device, it passes the traffic through the The interface corresponding to the second user plane network element is sent out, so that the traffic is sent to the second user plane network element.
  • the priority of the first terminal device is the agreed service level SLA of the first terminal device
  • the priority of the second terminal device is the SLA of the second terminal device
  • a method for sending information is provided.
  • the method is applied to a broadband network gateway BNG system in a communication network.
  • the BNG system includes a control plane network element and multiple user plane network elements.
  • the control plane network element sends the first terminal device to the first user plane network element keepalive information.
  • the keep-alive information is used for the first user plane network element to respond to the keep-alive request message sent by the first terminal device, and the first user plane network element belongs to multiple user plane network elements.
  • the keep-alive information is part of information in the forwarding control entry information, and this part of information is information required in responding to the keep-alive request in the forwarding control entry information.
  • control plane network element may also issue only part of the information in the forwarding control entry information of the terminal device in advance (that is, the keep-alive information) , instead of sending all the forwarding control entry information, so as to reduce the memory consumption of the user plane network element.
  • the control plane network element when it is determined to migrate the first terminal device to the first user plane network element, the control plane network element sends a first update instruction to the first user plane network element, where the first update instruction carries The forwarding control entry information of the first terminal device, and the first update instruction is used to instruct the first user plane network element to update the local forwarding control entry information set based on the forwarding control entry information of the first terminal device.
  • the control plane network element Since the keep-alive information is part of the forwarding control entry information, when the terminal device is migrated, the control plane network element also needs to deliver the forwarding control entry information to complete the terminal device migration.
  • a control plane network element in a fourth aspect, includes a transceiver module and a processing module;
  • the transceiving module is used to perform operations related to transceiving in the method provided in the first aspect
  • the processing module is configured to perform operations in the method provided in the first aspect except the operations related to sending and receiving.
  • a USF network element in the fifth aspect, includes a transceiver module and a processing module;
  • the transceiving module is configured to perform operations related to transceiving in the method provided in the second aspect
  • the processing module is configured to perform operations in the method provided in the second aspect except the operations related to sending and receiving.
  • a control plane network element in a sixth aspect, includes a transceiver module and a processing module;
  • the transceiving module is configured to perform operations related to transceiving in the method provided in the third aspect
  • the processing module is configured to perform operations in the method provided in the third aspect except the operations related to sending and receiving.
  • a network device in a seventh aspect, includes a memory and a processor.
  • the memory is used to store a program that supports the network device to execute the method provided in any one of the above-mentioned first to third aspects, and to store a program for implementing the method provided in any one of the above-mentioned first to third aspects the data involved;
  • the processor is configured to execute programs stored in the memory.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, and when it is run on a processor, the above-mentioned one of the first to third aspects is implemented. method.
  • a computer program product including instructions is provided, and when it is run on a processor, it implements the method provided in any one of the first to third aspects above.
  • Fig. 1 is a schematic diagram of a structure comparison between a traditional BNG and a decoupled BNG system provided by an embodiment of the present application;
  • Fig. 2 is a schematic diagram of the existence form of a control plane network element and a user plane network element in a vBNG provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a network architecture in a steering scenario provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a user access process provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a network architecture in a warm standby scenario provided by an embodiment of the present application.
  • FIG. 6 is a flow chart of a method for sending instructions provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a terminal device going online in a warm standby scenario provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a user migration process provided by an embodiment of the present application.
  • FIG. 9 is a flow chart of another method for sending instructions provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a user online process provided by an embodiment of the present application.
  • FIG. 11 is a flow chart of a method for sending information provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a control plane network element provided in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a USF network element provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • BNG As a traditional gateway device for accessing broadband networks, BNG is very important in scenarios where users access broadband networks.
  • the functions played by the BNG in the process of users accessing the broadband network mainly include: user authentication, access control, and traffic scheduling.
  • the requirements for the number of user sessions supported by BNG and the bandwidth for users to access the network are constantly increasing, especially for the ability of BNG to provide open and programmable services to the outside world. Also getting higher and higher. Based on these factors, the traditional SDN/NFV-based architecture of BNG needs to realize the two decouplings mentioned above.
  • the traditional BNG evolves into a BNG system, which includes a control plane network element and multiple user plane network elements.
  • the control plane network element can manage multiple user plane network elements, and schedule users, traffic, and resources between multiple user plane network elements. Compared with the stand-alone BNG without decoupling, the utilization rate and reliability of the BNG system after the forwarding function and control function are decoupled can be greatly improved.
  • the control plane network element may also be called CP or CP network element or CP device
  • the user plane network element may also be called UP or UP network element or UP device.
  • Fig. 1 is a schematic structural comparison diagram of a traditional BNG and a decoupled BNG system provided by an embodiment of the present application.
  • a traditional BNG it is necessary to have user management (user management), verification and authorization and accounting (authentication, authorization, accounting, AAA) services, address management (address management), Radius services, Routing control, point-to-point protocol over Ethernet (PPPoE) service, dynamic host configuration protocol (DHCP) service, forward engine and other functions.
  • the functions that these BNGs need to support are simultaneously deployed on the same hardware device as shown in FIG. 1 , and the hardware device may be a switch or the like.
  • the AAA service is a server program capable of processing user access requests.
  • the program is used to provide authentication, authorization and account services.
  • the main purpose is to manage user access to the network server and provide services to users with access rights.
  • Radius is a document protocol for authentication, authorization, and accounting information between network access servers that need to authenticate their links and shared authentication servers.
  • the Radius service is responsible for receiving the user's connection request, authenticating the user, and then returning all necessary configuration information to the client to deliver the service to the user.
  • PPPoE is a network tunneling protocol that encapsulates Point-to-Point Protocol (PPP) in an Ethernet frame.
  • the BNG system may also be called vBNG.
  • the vBNG includes a control plane (CP) network element and multiple user plane (UP) network elements, and one user plane network element is taken as an example for illustration in FIG. 1 .
  • the control plane network element is used to provide user management, AAA service, address management, Radius service, PPPoE service, DHCP service and other functions required by BNG.
  • the control plane network element also needs to provide BNG required User plane network element management (UP management) function.
  • UP management User plane network element management
  • Any user plane network element is used to provide routing (routing), multicast (multicast) service, quality of service (quality of service, QoS), forwarding (forwarding) service, access control list (access control lists, ACL) required by BNG ) service, multi-protocol label switching (multi-protocol label switching, MPLS)/label distribution protocol (label distribution protocol, LDP) service and other functions.
  • routing routing
  • multicast multicast
  • QoS quality of service
  • forwarding forwarding
  • access control list access control lists, ACL
  • ACL access control lists
  • MPLS multi-protocol label switching
  • LDP label distribution protocol
  • the control plane network element and the user plane network element can be connected through three types of interfaces. These three interfaces are respectively the following three interfaces.
  • Packet Redirection interface Packet Redirection interface
  • PRi Packet Redirection interface
  • the PRi is also called a service interface, and the PRi may specifically adopt a virtual extensible local area network-generic protocol encapsulation (vxlan-GPE) interface.
  • vxlan-GPE virtual extensible local area network-generic protocol encapsulation
  • the user plane network element receives the user access protocol message, it encapsulates the user access protocol message through this interface, and then sends the encapsulated user access protocol message to the control plane network element, and the control plane network element Element processing user access protocol packets.
  • the user access protocol message is also called a dial request.
  • Mi Management interface
  • the control plane NEs use this interface to deliver configurations to the user plane NEs.
  • the user plane network element uses this interface to report some running status and so on.
  • SCi State Control interface
  • the SCi may adopt a control plane and user plane separated protocol (CUSP) interface.
  • CUSP control plane and user plane separated protocol
  • the network elements of the control plane process the user access protocol packets to complete the user protocol interaction.
  • the control plane NE sends forwarding control entries to the corresponding user plane NE through this interface.
  • the forwarding control entry is used to carry the user information of the terminal device, so that subsequent user plane network elements forward the traffic of the terminal device based on the forwarding control entry.
  • the detailed functions of the forwarding control entries will be described in subsequent embodiments.
  • Fig. 2 is a schematic diagram of an existing state of a control plane network element and a user plane network element in a vBNG provided by an embodiment of the present application.
  • VNF virtual network function
  • the control plane network element in the vBNG can run on an X86 server, thereby realizing virtualization.
  • a control plane network element of a vBNG may manage one or more pUPs and one or more vUPs, which is not limited in this embodiment of the present application.
  • the control plane network elements can perform flexible scheduling of terminal equipment among different user plane network elements according to traffic load conditions or failure conditions. For example, when it is detected that a certain user plane network element has a heavy load, the traffic of the terminal device on the user plane network element may be diverted to another user plane network element for forwarding. Or, when a user plane NE is detected to be faulty or the link between the user plane NE and the terminal device is faulty, the services of all online terminal devices on the user plane NE will be interrupted, so the user plane NE needs to be The traffic of the terminal equipment on the network is diverted to another user plane network element for forwarding. This process may also be referred to as user migration or migration, and the detailed process of user migration will be described in subsequent embodiments.
  • the method provided in the embodiment of the present application is applied to the above scenario of user migration.
  • the method provided in the embodiment of the present application can be applied to a network architecture in a steering scenario, and can also be applied to a network architecture in a warm standby scenario.
  • it can also be applied to other types of network architectures, and examples will not be described one by one here.
  • the two network architectures are firstly explained in detail below.
  • FIG. 3 is a schematic diagram of a network architecture in a steering scenario provided by an embodiment of the present application.
  • the network architecture includes terminal equipment, switching function (steering function, SF) network elements, SDN control network elements, user switching function (user steering function, USF) network elements, and BNG.
  • the BNG includes a control plane network element (the control plane network element is marked as CP in Figure 3) and a plurality of user plane network elements (the user plane network element is marked as UP in Figure 3, wherein, Figure 3 includes three user Plane network elements are respectively UP1, UP2 and UP3).
  • the terminal equipment and the SF network element are connected for communication.
  • the SF network element and any user plane network element are connected through a two-layer tunnel (Lay2-tunnel) for communication.
  • Different physical sub-interfaces are configured on the SF network element. Different physical sub-interfaces match different virtual local area network (virtual local area network, VLAN)/QinQ (QinQ is the representation of two-layer VLAN).
  • VLAN virtual local area network
  • QinQ is the representation of two-layer VLAN.
  • Different physical sub-interfaces Corresponding to different Layer 2 tunnels, that is, different physical sub-interfaces are used to lead to different user plane network elements. In this way, the terminal device can send traffic to a certain user plane network element through a certain physical sub-interface on the SF network element.
  • the SF network element and each user plane network element are deployed on the edge of the MAN to forward the traffic of the terminal equipment to the core network.
  • the SDN control network element is respectively connected to the SF network element and each user plane network element for communication.
  • USF network elements and SDN control network elements are connected for communication.
  • the control plane network elements are respectively connected to the USF network element, the SDN control network element and each user plane network element for communication.
  • the control plane network element is also connected to the Radius server for communication, so as to facilitate the subsequent authentication of terminal device access through the Radius server.
  • the control plane network element is the service control plane of vBNG, which is used to process the dial-up request of the terminal equipment, and interact with the AAA server for user authentication, accounting, and authorization.
  • the control plane network element can notify the USF network element of the terminal equipment to go online and wait for the USF network element to guide the user to migrate through the access line information carried in the dial request according to the agreed service level agreement (SLA) of the terminal equipment, so as to transfer the terminal
  • SLA agreed service level agreement
  • the device is mapped to the port corresponding to the access of the network element on the user plane.
  • the control plane network element sends the forwarding control table item of the terminal device to the corresponding user plane network element, and the corresponding user plane network element generates the forwarding table item of the terminal device and advertises the route to the outside.
  • USF network element the policy control component for the migration of the user plane network element of the terminal device, generates a migration policy according to the user SLA and load of the terminal device, and notifies the control plane network element and the SF network element to migrate the terminal device to realize the load of the network Average and SLA requirements.
  • the user plane network element is the vBNG service forwarding plane. After the control plane NE processes the user online, it issues the forwarding control table item. The user plane NE receives the forwarding control table item issued by the control plane NE, generates the forwarding table item of the terminal device locally, and executes related business policies. and traffic forwarding, and advertise routes to the outside world.
  • SF network element user access gateway, when the terminal device goes online, the dialing request sent by the terminal device is sent to the control plane network element through the service channel for processing, and at the same time, the aggregation of home terminals is performed, and the traffic of the terminal device is aggregated to the user plane network Forwarding of Layer 2 messages, and isolation of VLAN/QINQ (two-layer VLAN) for different terminal devices, each terminal device exclusively enjoys a VLAN/QINQ.
  • RGW Residential gateway It is used to access computers and mobile phones in the home. Generally, it will perform network address translation (network address translation, NAT) processing, and distribute private networks (internet protocol, IP) address. Perform dial-up based on PPPoE and IPoE protocols to obtain an IP address from vBNG for network access.
  • network address translation network address translation, NAT
  • IP Internet protocol
  • the SDN control network element receives the access line information of the corresponding user sent by the control plane network element.
  • the access line information includes the access switch/optical line terminal (switch/optical line terminal, SW/OLT) identification, access port information, virtual local area network (virtual local area network, VLAN) information, etc., to the corresponding SW /OLT issues a migration policy, and maps the port +VLAN/QINQ of the terminal device to the layer-2 tunnel connected to the corresponding user plane network element (the layer-2 tunnel can be a virtual extended local area network (virtual extensible local area network, VXLAN) , or a virtual leased line (virtual leased line, VLL), or an Ethernet-based virtual private network (ethernet virtual private network, EVPN).
  • VXLAN virtual extensible local area network
  • VLL virtual leased line
  • Ethernet-based virtual private network Ethernet virtual private network
  • the user access procedure is used to instruct the terminal device to access the network
  • the user migration procedure is used to instruct to divert the traffic of the terminal device from one user plane network element to another user plane network element.
  • the terminal device accessing the network, it goes online from UP1 by default.
  • the terminal device sends control packets such as dial-up requests to the CP through UP1 connected to the SF network element.
  • the CP exchanges the migration policy of the terminal device with the USF network element.
  • the USF network element judges that the terminal device should be accessed from UP2 according to the user service level agreement (SLA) of the terminal device, and then notifies
  • SLA user service level agreement
  • the USF notifies the SDN control network element, so that the SDN control network element configures the SF network element, and binds the VLAN/QinQ corresponding to the terminal device to the physical sub-interface corresponding to UP2 on the SF network element, that is, Establish a binding relationship between the terminal device and UP2. Subsequent forwarding messages of the terminal device can be directly forwarded to UP2.
  • the above user access process may be specifically represented by the flow chart shown in FIG. 4 .
  • the process of terminal equipment accessing the network can be subdivided into the following steps.
  • the terminal device After each network element in the network is initialized, the terminal device sends a dial up request (dial up) based on PPPoE or DHCP to the SF network element.
  • the SF network element After receiving the dial request, the SF network element sends the dial request to the control plane network element (CP) through the default UP1.
  • CP control plane network element
  • the control plane network element After receiving the dialing request, the control plane network element sends a user migration policy request to the USF network element, and the user migration policy request is used to request which user plane network element the terminal device needs to forward traffic based on.
  • the user migration policy request may carry the user SLA of the terminal device.
  • the user SLA of the terminal device indicates the user's priority and so on.
  • the USF network element determines that the terminal device should forward traffic from UP2 based on the user SLA of the terminal device. Therefore, the USF network element returns the user migration result to the control plane network element, and the user The migration result indicates that the target UP of the terminal device is UP2.
  • control plane network element After the control plane network element receives the user migration result, it can allocate an Internet protocol (internet protocol, IP) address for the terminal device from the address pool of UP2, and send the allocated IP address to the terminal device , so that the end device uses the IP address as the source IP address in the traffic.
  • IP Internet protocol
  • the control plane network element also sends the forwarding control entry of the terminal device to UP2, which carries the user information of the terminal device, and the user information includes the IP address, MAC address, interface and other information of the terminal device .
  • the purpose of the forwarding control table item issued by the control plane network element to the terminal device to UP2 is to verify the validity of the received data message based on the forwarding control table item in the subsequent UP2, such as verifying the source data in the data message. Whether the media access control (media access control, MAC) address and source IP address are the MAC address and IP address in the locally configured forwarding control entry, if yes, continue to forward the data message based on the forwarding control entry, if not , the data packet is discarded.
  • media access control media access control
  • the network element of the control plane can notify the USF network element of the entry configuration success message.
  • the USF network element After the USF network element receives the message that the configuration of the entry is successful, it can notify the SDN control network element to perform a handover operation.
  • the handover operation instructs the SDN control network element to configure the binding relationship between the terminal device and UP2 on the SF network element. In order to facilitate the SF network element to divert the terminal device traffic to UP2.
  • the USF network element is required to re-determine the user SLA after the change. From which user plane network element the terminal device needs to forward traffic. If it is determined that the terminal device needs to forward traffic from another user plane network element, it is necessary to control the migration of the terminal device from the currently accessed user plane network element to another user plane network element. For this process, reference may be made to steps 3-8 in the above user access process, which will not be repeated here.
  • the USF network element may also control the migration of the terminal device on one user plane network element to another user plane network element based on policies such as load balancing. For this process, reference may also be made to steps 3-8 in the above-mentioned user access process, which will not be repeated here.
  • the USF network element is the strategic point of dynamic migration, and the USF network element actively guides the migration of terminal equipment.
  • the USF network element shown in FIG. 3 may be embedded in the control plane network element, may also be embedded in the SDN control network element, or may be a separate network element. This embodiment of the present application does not limit it.
  • the USF network element controls the migration of terminal devices on one user plane network element to another user plane network element
  • the number of terminal devices on one user plane network element is relatively large. Therefore, the USF network element actually controls the migration of a batch of terminal devices from one user plane network element to another user plane network element.
  • the USF network element actually controls the migration of a batch of terminal devices from one user plane network element to another user plane network element.
  • the method provided in the embodiment of the present application can ensure that a high-priority terminal device is preferentially migrated to another user plane network element.
  • FIG. 5 is a schematic diagram of a network architecture in a warm standby scenario provided by an embodiment of the present application.
  • the network structure includes terminal equipment, access equipment (access node, AN), multiple user plane network elements (marked as UP1, UP2, UP3 and UP4 in Figure 5) and control plane network elements ( Figure 5 5 marked as CP).
  • UP1, UP2, UP3 and UP4 form a warm backup group.
  • Each UP and AN in the warm backup group forms a layer-2 broadcast domain, so that terminal devices can access the network through the layer-2 broadcast domain.
  • the functions of the network elements of the control plane and the network elements of the user plane in FIG. 5 can refer to the network architecture of FIG. 3 , and will not be repeated here.
  • the access device in FIG. 5 may be SW or OLT.
  • the control plane network element allocates the terminal device to different UPs to go online according to the load sharing situation of each UP in the warm backup group. For example, as shown in FIG. 5, when terminal device 1 (that is, user1), terminal device 2 (that is, user2), terminal device 3 (that is, user3), and terminal device 4 (that is, user4) go online, the control plane The network element controls terminal device 1 to access the network from UP1, that is, the traffic of terminal device 1 is forwarded by UP1. The control plane network element controls terminal device 2 to access the network from UP2, that is, the traffic of terminal device 2 is forwarded by UP2.
  • the control plane network element controls terminal device 3 to access the network from UP3, that is, the traffic of terminal device 3 is forwarded by UP3.
  • the control plane network element controls the terminal device 4 to access the network from the UP4, that is, the traffic of the terminal device 4 is forwarded by the UP4.
  • the control plane network element controlling terminal device 1 to access the network from UP1 specifically includes two operations: one is that the control plane network element sends the forwarding control entry of terminal device 1 to UP1; The method learns the MAC address of terminal device 1 from UP1, so that when the access device receives the traffic of terminal device 1, it can forward the traffic to UP1 based on the interface when the MAC address is learned.
  • the specific process of controlling other terminal devices to access the network from the UP by the network element of the control plane can also refer to the foregoing content, and details will not be repeated here.
  • a corresponding failover strategy is configured for the warm backup group, and the failover strategy may be, for example, migrating the terminal device on the UP1 to another UP2 when UP1 fails.
  • the failover strategy may also be exemplarily: when UP1 fails, the terminal device on the UP1 is migrated to the other three UPs in a load sharing manner.
  • the failover strategy is pre-established, and UP1 in the subsequent warm backup group can dynamically migrate users based on the failover strategy to keep users from being disconnected.
  • control plane NE is the strategic point for dynamic migration, and the control plane NE actively guides the migration of terminal devices.
  • FIG. 6 is a flowchart of a method for sending instructions provided by an embodiment of the present application.
  • the control plane network element actively guides the migration of the terminal device.
  • the control plane network element can also Proactively guide endpoint device migration. Therefore, the method shown in FIG. 6 can be applied to the network architecture in the steering scenario shown in FIG. 3 , and can also be applied to the network architecture in the warm standby scenario shown in FIG. 5 .
  • the method includes step 601 as follows.
  • Step 601 When it is determined to migrate the first terminal device to the first user plane network element and migrate the second terminal device to the second user plane network element, responding that the priority of the first terminal device is higher than that of the second terminal device priority, the control plane network element sends the second update command to the second user plane network element after sending the first update command to the first user plane network element.
  • the first update instruction is used to instruct the first user plane network element to update the local forwarding control entry information set based on the forwarding control entry information of the first terminal device
  • the second update instruction is used to instruct the second user plane network element to update the local forwarding control entry information set based on
  • the forwarding control table item information of the second terminal device updates the local forwarding control table item information set, so that the control plane network element first updates the forwarding control table item information of the first terminal device to the forwarding control table item information set, and then updates the forwarding control table item information set of the second terminal device.
  • the forwarding control entry information of the terminal device is updated to the forwarding control entry information set. In this way, the forwarding control entry information of the high-priority terminal device can be quickly updated to the local forwarding control entry information set, so as to prevent the high-priority terminal device from going offline due to the keep-alive detection failure.
  • first user plane network element and the second user plane network element belong to multiple user plane network elements, and the first user plane network element and the second user plane network element may be the same user plane network element.
  • first user plane network element and the second user plane network element may also be different user plane network elements. That is, the first terminal device and the second terminal device may be terminal devices migrated to the same user plane network element, or may be terminal devices migrated to different user plane network elements.
  • the first user plane network element and the second user plane network element may be the same warm standby Different user plane network elements in the group may also be user plane network elements in different warm standby groups.
  • the first terminal device is a terminal device that is migrated from the third user plane network element to the first user plane network element
  • the second terminal device is a terminal device that is migrated from the fourth user plane network element to the second user plane network element
  • the third user plane network element and the fourth user plane network element may be the same user plane network element.
  • the third user plane network element and the fourth user plane network element may also be different user plane network elements. That is, the first terminal device and the second terminal device may be terminal devices migrated from the same user plane network element, or may be terminal devices migrated from different user plane network elements.
  • the third user plane network element and the fourth user plane network element may be the same warm standby Different user plane network elements in the group may also be user plane network elements in different warm standby groups.
  • control plane network element when the control plane network element guides the terminal device to migrate, no matter whether the first terminal device and the second terminal device are migrated from the same user plane network element or from different user plane network elements, Or whether the first terminal device and the second terminal device are migrated to the same user plane network element or to different user plane network elements, the control plane network element only needs to issue the respective The update command is sufficient.
  • the application flexibility of the embodiment of the present application is improved.
  • the second user plane network element Sending the second update instruction may specifically refer to: for each terminal device to be migrated, sequentially sending update instructions for each terminal device in descending order of the priority of each terminal device. At this time, if the priority of one terminal device is higher than that of another terminal device, the update command of one terminal device must be issued before the update command of the other terminal device.
  • the control plane network element in response to the fact that the priority of the first terminal device is higher than that of the second terminal device, sends the first update instruction to the first user plane network element, and sends the second user plane
  • the sending of the second update instruction by the network element may specifically refer to: the control plane network element pre-configures a priority threshold, and for each terminal device to be migrated, divides each terminal into two categories, and the priority of the first type of terminal equipment exceeds the priority Threshold, the priority of the second type of terminal device is lower than the priority threshold, and then the update command for the first type of terminal device is issued first, and then the update command for the second type of terminal device is issued, correspondingly, the first A terminal device is one of the first type of terminal devices, and the second terminal device is one of the second type of terminal devices.
  • one terminal device has a higher priority than another terminal device, and the two terminal devices belong to the same type of terminal device, there is no strict order in which the update instructions of the two terminal devices are issued. If the priority of one terminal device is higher than that of another terminal device, and the two terminal devices belong to different types of terminal devices, the update instructions of the two terminal devices must be issued in a strict sequence.
  • priority thresholds may be pre-configured by operators based on network planning, which is not limited in this embodiment of the present application.
  • “exceed” referred to in the embodiment of the present application can be understood as greater than or greater than or equal to.
  • “beyond” is understood to be greater than, correspondingly “below” is understood to be less than or equal to.
  • “beyond” is understood to be greater than or equal to, correspondingly “below” is understood to be less than.
  • the ultimate goal of terminal device migration is to enable the migrated user plane network element to update the forwarding control entry information of the terminal device to the local forwarding control table information set, so that the subsequent user plane network element can Forward traffic for that end device.
  • the forwarding control entry information of the first terminal device or the second terminal device may have been delivered to the corresponding user plane network element before the migration, and then it only needs to update the forwarding control entry information set during the migration.
  • the forwarding control entry information of the first terminal device or the second terminal device may also be carried in an update instruction and delivered to a corresponding user plane network element. This is explained in two scenarios below.
  • Scenario 1 The forwarding control entry information is carried in the update command and sent to the corresponding user plane network element.
  • the first update instruction carries forwarding control entry information of the first terminal device
  • the second update instruction carries forwarding control entry information of the second terminal device.
  • the control plane NE does not need to deliver the forwarding control entry information in advance, but only needs to carry the forwarding control entry information of the terminal device in the update command and send it to the corresponding user plane NE during the migration process of the terminal device That's it.
  • This method is compatible with the current terminal equipment migration technology, so the operation is simple and easy to implement.
  • Scenario 2 The forwarding control entry information has been delivered to the corresponding user plane network element before migration.
  • the forwarding control entry information of the high-priority terminal device may be issued in advance, and the forwarding control entry information of the low-priority terminal device is carried in the update instruction and delivered.
  • This method saves the delivery time of the forwarding control table item information from the control plane network element to the user plane network element, and the update command for high-priority terminal equipment does not need to carry the forwarding control table item information, so high-priority terminal equipment
  • the update command can be sent to the user plane network elements faster, so as to quickly update the forwarding control table entry information of high-priority terminal equipment to the local forwarding control table entry information set, so as to restore services faster.
  • the control plane network element is pre-configured with a target priority, and at this time, in step 601, the priority of the first terminal device exceeds the target priority, and the priority of the second terminal device is lower than the target priority.
  • the implementation process of delivering the forwarding control entry information of the high-priority terminal device in advance may be: before it is determined to migrate the first terminal device to the first user plane network element, in response to the first terminal device's If the priority exceeds the target priority, the control plane network element sends the forwarding control entry information of the first terminal device to the first user plane network element.
  • the control plane network element will not send the Forwarding control entry information of the second terminal device.
  • step 601 the first update instruction does not carry the forwarding control entry information of the first terminal device, and the second update instruction carries the forwarding control entry information of the second terminal device.
  • the foregoing target priorities may be pre-configured by operators based on network planning, which is not limited in this embodiment of the present application.
  • the control plane network element since the forwarding control entry information is issued to the first user plane network element before the migration of the first terminal device, in order to prevent the first user plane network element from updating the local forwarding control entry set, the control plane network element sends the first user plane network element After the user plane network element sends the forwarding control entry information of the first terminal device, the control plane network element may also send a stop update command to the first user plane network element, and the stop update command instructs the first user plane network element to receive the first When forwarding the control entry information of the terminal device, the local forwarding control entry information set is not updated based on the forwarding control entry information of the first terminal device.
  • the first user plane network element Since the first user plane network element does not update the local forwarding control entry information set based on the forwarding control entry information of the first terminal device when receiving the forwarding control entry information of the first terminal device, the The forwarding control entry information does not occupy the forwarding resources of the first user plane network element.
  • the first user plane network element can directly "convert" the forwarding control entry information of the first terminal device issued in advance, that is, update the forwarding control entry information based on the first terminal device A collection of local forwarding control entry information.
  • stop updating command and forwarding control control entry information may be carried in the same message and sent to the first user plane network element, or may be carried in different messages and sent to the first user plane network element. This embodiment of the present application does not limit it.
  • the first user plane network element can know the migration situation of the first terminal device through other means, after the control plane network element sends the forwarding control entry information of the first terminal device to the first user plane network element, it also The update stop instruction may not be sent to the first user plane network element.
  • the first user plane network element receives the forwarding control entry information of the first terminal device, since the first user plane network element has learned that the first terminal device is not currently relocated based on other means, there is no need to update the local A collection of forwarding control entry information.
  • the first user plane network element may obtain the migration situation of the first terminal device through other means.
  • the control plane network element when the first terminal device starts to migrate, the control plane network element will notify the first user plane network element.
  • the USF network element when the first terminal device starts to migrate, the USF network element will notify the first user plane network element through the SDN control network element. This embodiment of the present application does not describe this in detail.
  • the first terminal device to the first user plane network element may refer to: during the process of going online of the first terminal device. It may also refer to: within a reference time period after the first terminal device goes online.
  • the embodiment of the present application does not limit the timing when the control plane network element issues the forwarding control entry information of the terminal device in advance. It is only necessary to ensure that the forwarding control entry information of the first terminal device is issued before the migration.
  • control plane network element For example, for the control plane network element, during the online process of each terminal device, if the control plane network element recognizes that the priority of the terminal device exceeds the target priority for any online terminal device, it will The forwarding control entry information of the terminal device is delivered to the first user plane network element. If the control plane network element recognizes that the priority of the terminal device is lower than the target priority, it will not deliver the forwarding control entry information of the terminal device to the first user plane network element.
  • the first user plane network element is specified in the migration policy for forwarding the traffic of the first terminal device after migration User plane network element.
  • the first user plane network element may be another user plane network element except the user plane network element that the first terminal device accesses when it goes online. For example, in the warm standby scenario shown in FIG. 5 , if the first terminal device accesses the network from UP1 when it goes online, the network elements on the first user plane may be UP2, UP3, and UP4 in the warm standby group.
  • the forwarding control entry information of all terminal devices may be issued in advance. In order to save the transmission time of update instructions of all priority terminal devices, the forwarding control entry information of each terminal device can be quickly updated to the local forwarding control entry information set.
  • the priority of the first terminal device is the SLA of the first terminal device
  • the priority of the second terminal device is the SLA of the second terminal device
  • SLA can be understood as: in order to guarantee the performance and reliability of the service, a mutual agreement defined between the service provider and the user.
  • the SLA stipulates the service level and the performance level that the service must meet, and makes the service provider responsible for completing these predetermined service levels. Therefore, it can be understood that a terminal device with a higher SLA has higher requirements on recovery delay after service interruption.
  • terminal devices with high SLA are preferentially migrated to meet the network requirements of such terminal devices. That is, the priority of this embodiment of the application may be SLA.
  • the implementation manner for the control plane network element to acquire the priorities of the first terminal device and the second terminal device may be: the control plane network element receives the first authentication message and the second authentication message sent by the AAA server.
  • the first authentication message carries the SLA of the first terminal device
  • the second authentication message carries the SLA of the second terminal device.
  • the foregoing first authentication message is interaction information between the control plane network element and the AAA server when the first terminal device goes online.
  • the second authentication message is interaction information between the control plane network element and the AAA server when the second terminal device goes online.
  • the priority of the terminal device can also be directly configured on the CP side.
  • the operator can configure the priority of the terminal device based on a certain type of service, a certain sub-interface or a certain physical interface.
  • the priority of the first terminal device is the priority of services of the first terminal device
  • the priority of the second terminal device is the priority of services of the second terminal device
  • a terminal device with a higher service priority has higher requirements on recovery delay after service interruption.
  • the terminal equipment with high service priority is preferentially migrated to meet the network requirements of such terminal equipment. That is, the priority in this embodiment of the present application may be a service priority.
  • the first terminal device is a terminal device migrated from the third user plane network element to the first user plane network element
  • the second terminal device is a terminal device migrated from the fourth user plane network element Terminal equipment migrated to the second user plane NE
  • the third user plane NE and the first user plane NE belong to the first warm standby group
  • the fourth user plane NE and the second user plane NE belong to the second warm standby group.
  • the priority of the first terminal device is the priority of the first warm standby group
  • the priority of the second terminal device is the priority of the second warm standby group.
  • the priority in this embodiment of the present application may be the priority of the warm standby group to which the user plane network element accessed by the terminal device belongs.
  • the sub-interfaces or physical interfaces of user-plane NEs receiving terminal device traffic in the same warm standby group are usually a type of interface
  • the sub-interfaces or physical interfaces of user-plane NEs receiving terminal device traffic in different warm standby groups can configure the priority for the warm standby group based on the priority of the interface on which the user plane NE in the warm standby group receives the traffic of the terminal device. That is, the priority of the warm standby group can be understood as: the priority of the interface of the user plane network element in the warm standby group that receives the traffic of the terminal device.
  • the implementation manners of the above two priority levels are used for illustration, and this embodiment of the present application does not limit the specific implementation manners of the priority levels of the terminal device, which will not be described here one by one.
  • the priority may also be referred to as switching priority, user priority, or the like.
  • FIG. 6 The embodiment shown in FIG. 6 is further explained below by taking the warming up scenario shown in FIG. 5 as an example.
  • FIG. 7 is a schematic diagram of a terminal device going online in a warm standby scenario provided by an embodiment of the present application.
  • the dial request messages of the first terminal device (marked as user 1 in Figure 7) and the second terminal device (marked as user 2 in Figure 7) arrive at the CP through the default UP (such as UP1), and the CP receives the CP from
  • the user information of the terminal device is analyzed in the dial request message.
  • the user information includes, for example, a MAC address of the terminal device, a username (username), a password (password), and the like.
  • the CP sends an authentication request to the AAA server based on the user information of the terminal device.
  • the AAA server searches for the SLA of the terminal device according to the user information of the terminal device, and returns it to the CP through an authentication message (that is, an authentication reply).
  • the CP After receiving the priority of user 1 and the priority of user 2 sent by the AAA server, the CP stores the priority of user 1 and the priority of user 2, so as to facilitate subsequent user migration.
  • the CP completes user 1 and user 2 online through operations such as allocating IP addresses and publishing entries as shown in FIG. 4 , which will not be described here. In FIG. 7 , for example, user 1 and user 2 access the network through UP1 after going online.
  • the priority of the terminal device can reuse the existing RADIUS attribute to carry in the authentication reply, and the priority of the terminal device can also use the newly defined RADIUS attribute to carry in the authentication reply.
  • other attributes can also be used to carry in the authentication reply. Replying. This embodiment of the present application does not limit it.
  • the priority (SLA) of User 1 is higher than that of User 2 (SLA).
  • UP1 reports the failure event to the CP, and the CP determines that the link between UP1 and AN is faulty.
  • control the dynamic migration of users on UP1 to UP2, that is, control user 1 to migrate from UP1 to UP2, and control user 2 to migrate from UP1 to UP2.
  • AN directs the traffic of user 1 and user 2 from UP1 to UP2.
  • the USF network element guides the migration of the terminal device based on the priority of the terminal device, which will be explained in detail below.
  • FIG. 9 is a flow chart of another method for sending instructions provided by an embodiment of the present application. This method is applied in the steering scene. As shown in FIG. 9 , the method includes the following step 901 .
  • Step 901 In response to the priority of the first terminal device being higher than that of the second terminal device, the USF network element sends a second migration command to the second user plane network element after sending the first migration command to the control plane network element .
  • the first migration instruction indicates to migrate the first terminal device to the first user plane network element
  • the second migration instruction indicates to migrate the second terminal device to the second user plane network element
  • the first user plane network element and the second user plane A plane network element belongs to multiple user plane network elements.
  • the control plane network element Since the USF network element sends the second migration command to the second user plane network element after sending the first migration command to the control plane network element, that is, the USF network element first sends the first migration command and then sends the second migration command, Therefore, the control plane network element first receives the first relocation instruction, and then receives the second relocation instruction. It can be understood that, after receiving the relocation instruction from the USF network element, the control plane network element sends an update instruction in response to the relocation instruction.
  • the control plane network element first sends the first update command to the first user plane network element, and then sends the second update command to the second user plane network element, so that the control plane network element first updates the The forwarding control entry information of the first terminal device is updated to the forwarding control entry information set, and then the forwarding control entry information of the second terminal device is updated to the forwarding control entry information set.
  • the forwarding control entry information of the high-priority terminal device can be quickly updated to the local forwarding control entry information set, so as to prevent the high-priority terminal device from going offline due to the keep-alive detection failure.
  • the USF network element in response to the fact that the priority of the first terminal device is higher than that of the second terminal device, sends the second relocation command to the second user plane network element after sending the first relocation instruction to the control plane network element.
  • the second migration instruction may specifically refer to: for each terminal device to be migrated, sending the migration instruction for each terminal device to the control plane network element sequentially according to the order of priority of each terminal device from high to low. At this time, if the priority of one terminal device is higher than that of another terminal device, the migration command of one terminal device must be issued before the migration command of another terminal device.
  • the USF network element in response to the fact that the priority of the first terminal device is higher than that of the second terminal device, sends the first relocation command to the second user plane network element after sending the
  • the second migration instruction may specifically refer to: the USF network element pre-configures a priority threshold, and for each terminal device to be migrated, divide each terminal into two categories, the priority of the first type of terminal equipment exceeds the priority threshold, and the second The priority of the terminal device of the first type is lower than the priority threshold, and then the migration instruction of the first type of terminal device is issued first, and then the migration instruction of the second type of terminal device is issued.
  • the first terminal device in step 901 is One of the terminal devices of the first type, and the second terminal device is one of the terminal devices of the second type.
  • the two terminal devices belong to the same type of terminal device, there is no strict order in which the migration instructions of the two terminal devices are issued. If the priority of one terminal device is higher than that of another terminal device, and the two terminal devices belong to different types of terminal devices, the migration instructions of the two terminal devices must be issued in a strict sequence.
  • the implementation manner for the USF network element to obtain the priority of each terminal device to be migrated may be: the USF network element receives the priority of the first terminal device and the priority of the second terminal device sent by the network element of the control plane.
  • the priority is SLA
  • the control plane network element when the priority is SLA, for the online process shown in Figure 4, when the control plane network element receives the authentication message sent by the AAA server, the control plane network element will use the SLA in the authentication message Report to the USF network element.
  • the online process of the terminal device in the steering scenario can be simplified to the process shown in Figure 10 .
  • the dial request message of the terminal device reaches the CP through the default UP, and the CP parses the user information of the terminal device from the dial request message.
  • the user information includes, for example, the MAC address, user name, password, etc. of the terminal device.
  • the CP sends an authentication request to the AAA server based on the user information of the terminal device.
  • the AAA server searches for the SLA of the terminal device according to the user information of the terminal device, and returns it to the CP through an authentication message (that is, an authentication reply).
  • the priority of the terminal device can reuse the existing RADIUS attribute to carry in the authentication reply, and the priority of the terminal device can also use the newly defined RADIUS attribute to carry in the authentication reply.
  • other attributes can also be used to carry in the authentication reply.
  • Replying This embodiment of the present application does not limit it.
  • the CP can report the relevant information to the terminal device to the USF network element.
  • the relevant information includes, for example, the SLA, MAC address, user name, password and location information of the terminal device.
  • the control plane network element reports the priority to the USF network element when obtaining the priority of the terminal device configured by the operator.
  • the operator can also directly configure the priority of each terminal device on the USF network element.
  • the terminal device accesses the UP through the SF network element, and the SF network element is configured with interfaces corresponding to the first user plane network element and the second user plane network element respectively. Therefore, when the USF network element determines that the first terminal device and the second terminal device need to be migrated, the USF network element may also respond to the fact that the priority of the first terminal device is higher than that of the second terminal device, and the USF network element sends the SF After the network element sends the first interface configuration instruction, it sends the second interface configuration instruction to the SF network element.
  • the first interface configuration instruction instructs the SF network element to bind the interface corresponding to the first terminal device and the first user plane network element, so that when the subsequent SF network element receives the traffic of the first terminal device, it The traffic is sent out through the interface corresponding to the first user plane network element, so that the traffic is sent to the first user plane network element.
  • the second interface configuration instruction instructs the SF network element to bind the interface corresponding to the first terminal device and the second user plane network element, so that when the subsequent SF network element receives the traffic of the second terminal device, it passes the traffic through the The interface corresponding to the second user plane network element is sent out, so that the traffic is sent to the second user plane network element.
  • the USF network element can also respond to the priority of the first terminal device being higher than the priority of the second terminal device, and the USF network element sends the second interface configuration command to the SF network element after sending the first interface configuration command to the SF network element.
  • the configuration command refer to the aforementioned USF network element sending the first relocation command and the second relocation command, which will not be repeated here.
  • control plane network element issues the forwarding control entry information of the terminal device in advance
  • the control plane network element can also deliver only part of the information in the forwarding control table item information of the terminal device in advance, instead of issuing all the Table entry information to reduce memory consumption of user plane network elements. This is explained below.
  • FIG. 11 is a flow chart of a method for sending information provided by an embodiment of the present application. As shown in FIG. 11 , the method includes step 1101 as follows.
  • Step 1101 before the first terminal device migrates to the first user plane network element, in response to the priority of the first terminal device exceeding the target priority, the control plane network element sends the first user plane network element the protection status of the first terminal device. live information.
  • the keep-alive information is used for the first user plane network element to respond to the keep-alive request message sent by the first terminal device, and the first user plane network element belongs to multiple user plane network elements. It should be noted that the keep-alive information is part of the information in the forwarding control entry information, and this part of information is the information required for responding to the keep-alive request in the forwarding control entry information.
  • the specific form of the keep-alive information is not limited in this embodiment of the present application.
  • the control plane network element can issue the keep-alive information of the terminal device before the terminal device is migrated, so as to avoid the failure of the high-priority terminal device due to the keep-alive detection And offline.
  • step 1101 the timing for sending the keep-alive information of the high-priority terminal devices by the network element of the control plane, and the implementation of determining which terminal devices are high-priority terminal devices can refer to the embodiment shown in FIG. 6 , which will not be repeated here.
  • step 1101 since the control plane network element sends the keep-alive information of the high-priority terminal device before the migration of the terminal device, so that the user plane network element can respond to the keep-alive request of the terminal device based on the keep-alive information message. Therefore, after the migration of the terminal device actually starts, there is no need to consider issuing update commands in order of priority.
  • the first update sent by the control plane network element to the first user plane network element The instruction carries forwarding control entry information of the first terminal device.
  • the first update instruction is used to instruct the first user plane network element to update the local forwarding control entry information set based on the forwarding control entry information of the first terminal device.
  • control plane network element and the USF network element described below respectively have any functions of the control plane network element and the USF network element in the above method embodiments.
  • FIG. 12 is a schematic structural diagram of a control plane network element provided by an embodiment of the present application.
  • the control plane network element 1200 is located in the communication system where UP and CP are separated as shown in FIG. 1 .
  • the control plane network element 1200 includes: a transceiver module 1201 and a processing module 1202 .
  • the transceiver module 1201 is configured to: when the processing module 1202 determines to migrate the first terminal device to the first user plane network element and migrate the second terminal device to the second user plane network element, respond to the high priority of the first terminal device Based on the priority of the second terminal device, after sending the first update instruction to the first user plane network element, send the second update instruction to the second user plane network element.
  • the first update instruction is used to instruct the first user plane network element to update the local forwarding control entry information set based on the forwarding control entry information of the first terminal device
  • the second update instruction is used to instruct the second user plane network element to update the local forwarding control entry information set based on The forwarding control entry information of the second terminal device updates the local forwarding control entry information set, and the first user plane network element and the second user plane network element belong to multiple user plane network elements.
  • step 601 in the embodiment in FIG. 6 , and no further description is given here.
  • the first update instruction carries forwarding control entry information of the first terminal device
  • the second update instruction carries forwarding control entry information of the second terminal device.
  • the transceiver module 1201 is also used for:
  • forwarding control entry information of the first terminal device is sent to the first user plane network element.
  • the first update instruction does not carry the forwarding control entry information of the first terminal device
  • the second update instruction carries the forwarding control entry information of the second terminal device.
  • the transceiver module 1201 is also used for:
  • the first user plane network element and the second user plane network element are the same user plane network element, or, the first user plane network element and the second user plane network element are different user plane network elements.
  • the first terminal device is a terminal device migrated from the third user plane network element to the first user plane network element
  • the second terminal device is a terminal migrated from the fourth user plane network element to the second user plane network element equipment
  • the third user plane network element and the fourth user plane network element are the same user plane network element, or the third user plane network element and the fourth user plane network element are different user plane network elements.
  • the interface on the third user plane network element and the first user plane network element that receives the traffic of the first terminal device belongs to the first type of interface
  • the fourth user plane network element and the second user plane network element receive the second The interface of the traffic of the terminal device belongs to the second type of interface
  • the priority of the first terminal device is the priority of the interface of the first type
  • the priority of the second terminal device is the priority of the interface of the second type.
  • the priority of the first terminal device is the priority of the service of the first terminal device
  • the priority of the second terminal device is the priority of the service of the second terminal device
  • the priority of the first terminal device is the agreed service level SLA of the first terminal device
  • the priority of the second terminal device is the SLA of the second terminal device
  • the transceiver module 1201 is also used for:
  • FIG. 13 is a schematic structural diagram of a USF network element provided by an embodiment of the present application.
  • the USF network element 1300 is located in the communication system in the steering scenario where the UP and CP are separated as shown in FIG. 3 .
  • the USF network element 1300 includes: a transceiver module 1301 and a processing module 1302 .
  • the transceiver module 1301 is configured to: respond to the processing module 1302 determining that the priority of the first terminal device is higher than the priority of the second terminal device, after sending the first relocation instruction to the control plane network element, send the second user plane network element Send a second migration command.
  • the first migration instruction indicates to migrate the first terminal device to the first user plane network element
  • the second migration instruction indicates to migrate the second terminal device to the second user plane network element
  • the first user plane network element and the second user plane A plane network element belongs to multiple user plane network elements.
  • step 901 in the embodiment in FIG. 9 , and no further description is given here.
  • the transceiver module 1301 is also used for:
  • the priority of the first terminal device and the priority of the second terminal device sent by the network element of the control plane are received.
  • the communication network further includes a switching function SF network element, and the SF network element is configured with interfaces respectively corresponding to the first user plane network element and the second user plane network element;
  • the transceiver module 1301 is also used for:
  • the first interface configuration instruction instructs the SF network element to bind the interface corresponding to the first terminal device and the first user plane network element
  • the second interface configuration instruction instructs the SF network element to bind the first terminal device to the second user plane network element.
  • the priority of the first terminal device is the agreed service level SLA of the first terminal device
  • the priority of the second terminal device is the SLA of the second terminal device
  • processing module and the transceiver module in the control plane network element shown in FIG. 12 also have the following functions.
  • the transceiver module 1201 is used for:
  • the processing module 1202 Before the first terminal device migrates to the first user plane network element, in response to the processing module 1202 determining that the priority of the first terminal device exceeds the target priority, send keep-alive information of the first terminal device to the first user plane network element .
  • the keep-alive information is used for the first user plane network element to respond to the keep-alive request message sent by the first terminal device, and the first user plane network element belongs to multiple user plane network elements.
  • step 1101 in the embodiment in FIG. 11 , and no further description is given here.
  • the transceiver module 1201 is also used for:
  • the first update instruction carries forwarding control entry information of the first terminal device, and the first update instruction is used to instruct the first user plane network element to update the local forwarding control entry based on the forwarding control entry information of the first terminal device collection of information.
  • the control plane network element can also deliver only the forwarding control entry information of the terminal device in advance. Part of the information, instead of sending all the forwarding control entry information, so as to reduce the memory consumption of the user plane network element.
  • control plane network element shown in FIG. 12 or the USF network element shown in FIG. 13 .
  • FIG. 14 is a schematic structural diagram of a network device provided by an embodiment of the present application. Both the control plane network element shown in FIG. 12 or the USF network element shown in FIG. 13 can be implemented through the network device.
  • the network device includes at least one processor 1401 , a communication bus 1402 , a memory 1403 and at least one communication interface 1404 .
  • Processor 1401 may be a microprocessor (including a central processing unit (central processing unit, CPU), etc.), an application-specific integrated circuit (application-specific integrated circuit, ASIC), or may be one or more integrated circuit for program execution.
  • a microprocessor including a central processing unit (central processing unit, CPU), etc.
  • an application-specific integrated circuit application-specific integrated circuit, ASIC
  • ASIC application-specific integrated circuit
  • Communication bus 1402 may include a path for communicating information between the components described above.
  • Memory 1403 may be read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), electrically erasable programmable read-only memory (electrically erasable programmable read-Only memory, EEPROM), optical disc ( Including compact disc read-only memory (CD-ROM), compact disc, laser disc, digital versatile disc, Blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage devices, or can be used to carry or store Desired program code in the form of instructions or data structures and any other medium capable of being accessed by a computer, without limitation.
  • the memory 1403 may exist independently, and is connected to the processor 1401 through the communication bus 1402 .
  • the memory 1403 can also be integrated with the processor 1401.
  • the memory 1403 is used to store the program code 1410 for executing the solution of the present application
  • the processor 1401 is used to execute the program code 1410 stored in the memory 1403
  • the network device may implement the method provided by the embodiment of the present application through the processor 1401 and the program code 1410 in the memory 1403 .
  • Communication interface 1404 uses any transceiver-like device for communicating with other devices or a communication network.
  • the processor 1401 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 14 .
  • a network device may include multiple processors, such as processor 1401 and processor 1405 as shown in FIG. 14 .
  • processors can be a single-core processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data such as computer program instructions.
  • the computer device may further include an output device 1406 and an input device 1407 .
  • Output device 1406 is in communication with processor 1401 and can display information in a variety of ways.
  • the output device 1406 may be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector), etc.
  • the input device 1407 communicates with the processor 1401 and can receive user input in various ways.
  • the input device 1407 may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • the aforementioned network device may be a general network device or a dedicated network device.
  • the network device may be a desktop computer, a portable computer, a network server, a palmtop computer, a mobile phone, a tablet computer, a wireless terminal device, a communication device or an embedded device, and the embodiment of the present application does not limit the type of the network device.
  • all or part may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may be a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example: floppy disk, hard disk, magnetic tape), an optical medium (for example: Digital Versatile Disc (Digital Versatile Disc, DVD)) or a semiconductor medium (for example: Solid State Disk (Solid State Disk, SSD)) wait.
  • a magnetic medium for example: floppy disk, hard disk, magnetic tape
  • an optical medium for example: Digital Versatile Disc (Digital Versatile Disc, DVD)
  • a semiconductor medium for example: Solid State Disk (Solid State Disk, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

公开了一种发送指令、信息的方法及装置,属于宽带技术领域。在该方法中,在确定将第一终端设备迁移至第一用户面网元、将第二终端设备迁移至第二用户面网元时,响应于第一终端设备的优先级高于第二终端设备的优先级,在向第一用户面网元发送第一更新指令之后,向第二用户面网元发送第二更新指令。其中,第一更新指令指示基于第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合,第二更新指令指示基于第二终端设备的转发控制表项信息更新本地的转发控制表项信息集合。由于第一更新指令优先于第二更新指令下发,因此,可以保证高优先级终端设备的转发控制表项信息优先得到更新,以避免高优先级终端设备因保活探测失败而引发下线。

Description

发送指令、信息的方法及装置
本申请要求于2021年11月22日提交的申请号为202111381962.2、发明名称为“一种基于用户优先级实现温备切换的方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2022年02月21日提交的申请号为202210157172.4、发明名称为“发送指令、信息的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及宽带技术领域,特别涉及一种发送指令、信息的方法及装置。
背景技术
宽带网络网关(broadband network gateway,BNG)系统是终端设备接入宽带网络的核心节点。BNG系统包括一个控制面网元和多个用户面网元,控制面网元可以为CP(control plane),用户面网元可以为UP(user plane)。其中,控制面网元用于对多个用户面网元进行控制管理,任一用户面网元用于转发终端设备的流量。
相关技术中,终端设备接入BNG系统的一个用户面网元后,终端设备可向该用户面网元发送保活请求报文,该用户面网元在接收到终端设备发送的保活请求报文后,基于本地存储的转发控制表项信息集合中与该终端设备对应的转发控制表项信息,对该保活请求报文进行合法性校验,在合法性校验通过之后,则基于该终端设备对应的转发控制表项信息向该终端设备发送保活响应报文,以便于终端设备确定两者之间的链路或该用户面网元是否发生故障。
在上述技术中,如果终端设备从当前接入的用户面网元迁移至另一目标用户面网元,在终端设备迁移的过程中,目标用户面网元需要获取该终端设备对应的转发控制表项信息以更新本地的转发控制表项信息集合。如果当前迁移到目标用户面网元的终端设备数量较多,此时目标用户面网元需要获取大量的转发控制表项信息。这种场景下,可能在目标用户面网元还未获取到某个终端设备的转发控制表项信息时,目标用户面网元已经接收到该终端设备发送的保活请求报文,此时目标用户面网元则无法对该终端设备的保活请求报文进行响应,从而导致该终端设备的故障探测出现问题。
发明内容
本申请提供了一种发送指令、信息的方法及装置,可以避免高优先级终端设备在迁移过程中因保活探测失败而下线。所述技术方案如下:
第一方面,提供了一种发送指令的方法,该方法应用于通信网络中的BNG系统,该BNG系统包括一个控制面网元和多个用户面网元。在该方法中,在确定将第一终端设备迁移至第一用户面网元、将第二终端设备迁移至第二用户面网元时,响应于第一终端设备的优先级高于第二终端设备的优先级,控制面网元在向第一用户面网元发送第一更新指令之后,向第二用户面网元发送第二更新指令。
其中,第一更新指令用于指示第一用户面网元基于第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合,第二更新指令用于指示第二用户面网元基于第二终端设备的转发控制表项信息更新本地的转发控制表项信息集合,第一用户面网元和第二用户面网元属于多个用户面网元。
由于第一更新指令优先于第二更新指令下发,因此,基于本申请实施例提供的方法,可以保证高优先级终端设备的转发控制表项信息优先得到更新,从而实现高优先级终端设备的优先迁移,以避免高优先级终端设备因保活探测失败而引发下线。
可选地,第一更新指令携带第一终端设备的转发控制表项信息,第二更新指令携带第二终端设备的转发控制表项信息。
在本申请实施例中,为了避免提前的下发转发控制表项信息占用用户面网元的转发面资源,各个终端设备的转发控制表项信息可以在迁移时携带在更新指令中下发。
可选地,第一终端设备的优先级超过目标优先级,第二终端设备的优先级低于目标优先级。这种场景下,在该方法中,在确定将第一终端设备迁移至第一用户面网元之前,响应于第一终端设备的优先级超过目标优先级,控制面网元向第一用户面网元发送第一终端设备的转发控制表项信息;相应地,第一更新指令中不携带第一终端设备的转发控制表项信息,第二更新指令中携带第二终端设备的转发控制表项信息。
在本实施例中,可以将高优先级终端设备的转发控制表项信息提前下发,而将低优先级终端设备的转发控制表项信息携带在更新指令中下发。这种方式,节省了控制面网元到用户面网元的转发控制表项信息的下发时间,且针对高优先级终端设备的更新指令无需携带转发控制表项信息,因此高优先级终端设备的更新指令可以更快下发到用户面网元,从而实现快速将高优先级终端设备的转发控制表项信息更新到本地的转发控制表项信息集合中,以更快的恢复业务。
可选地,控制面网元向第一用户面网元发送第一终端设备的转发控制表项信息之后,在该方法中,控制面网元向第一用户面网元发送停止更新指令,停止更新指令指示第一用户面网元在接收到第一终端设备的转发控制表项信息时,不基于第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合。
在控制面网元将高优先级终端设备的转发控制表项信息提前下发的场景中,由于第一用户面网元在接收到第一终端设备的转发控制表项信息时,响应于停止更新指令不基于第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合,因此提前下发的第一终端设备的转发控制表项信息并不占用第一用户面网元的转发资源。
可选地,第一用户面网元和第二用户面网元为同一用户面网元,或者,第一用户面网元和第二用户面网元为不同的用户面网元。可选地,第一终端设备为由第三用户面网元迁移至第一用户面网元的终端设备,第二终端设备为由第四用户面网元迁移至第二用户面网元的终端设备;第三用户面网元和第四用户面网元为同一用户面网元,或者,第三用户面网元和第四用户面网元为不同的用户面网元。
基于上述实现方式,在控制面网元引导终端设备迁移的过程中,无论第一终端设备和第二终端设备是从同一用户面网元迁移来的,还是从不同用户面网元迁移来的,亦或第一终端设备和第二终端设备是迁移至同一用户面网元,还是迁移至不同用户面网元,控制面网元只需按照各个终端设备的优先级的顺序下发各个针对各个终端设备的更新指令即可。提高了本 申请实施例的应用灵活性。
可选地,第三用户面网元和第一用户面网元上接收第一终端设备的流量的接口属于第一类接口,第四用户面网元和第二用户面网元上接收第二终端设备的流量的接口属于第二类接口。这种场景下,第一终端设备的优先级为第一类接口的优先级,第二终端设备的优先级为第二类接口的优先级。可选地,第一终端设备的优先级为第一终端设备的业务的优先级,第二终端设备的优先级为第二终端设备的业务的优先级。可选地,第一终端设备的优先级为第一终端设备的约定服务等级SLA,第二终端设备的优先级为第二终端设备的SLA。
在本申请实施例中,终端设备的优先级也可以直接为SLA,终端设备的优先级也可以在CP侧直接配置,比如运营商可以基于某一类业务、某个子接口或者某个物理接口等维度配置终端设备的优先级。提高了本申请实施例的应用灵活性。
可选地,在该方法中,控制面网元接收验证授权记账AAA服务器发送的第一终端设备的优先级以及第二终端设备的优先级。
终端设备的优先级具体可以由AAA服务器来提供,提高了本申请实施例的可行性。
第二方面,提供了一种发送指令的方法,该方法应用于通信网络,该通信网络包括用户切换功能USF网元和宽带网络网关BNG系统,BNG系统包括一个控制面网元和多个用户面网元。在该方法中,响应于第一终端设备的优先级高于第二终端设备的优先级,USF网元在向控制面网元发送第一迁移指令之后,向第二用户面网元发送第二迁移指令。其中,第一迁移指令指示将第一终端设备迁移至第一用户面网元,第二迁移指令指示将第二终端设备迁移至第二用户面网元,第一用户面网元和第二用户面网元属于多个用户面网元。
在steering场景中,如果USF网络自身没有发生故障,USF网元与SDN网元以及控制面网元之间的链路也没有出现故障,这种情况下,由USF网元基于终端设备的优先级来引导终端设备迁移。此时,由于第一迁移指令优先于第二迁移指令下发,因此,基于本申请实施例提供的方法,可以保证高优先级终端设备的转发控制表项信息优先得到更新,从而实现高优先级终端设备的优先迁移,以避免高优先级终端设备的保活探测失败。
可选地,USF网元向第二用户面网元发送第二迁移指令之前,在该方法中,USF网元接收控制面网元发送的第一终端设备的优先级以及第二终端设备的优先级。
为了实现USF网元能够基于终端设备的优先级来引导终端设备迁移,USF网元可以从控制面网元处获取终端设备的优先级。
可选地,该通信网络还包括切换功能SF网元,SF网元上配置有和第一用户面网元以及第二用户面网元分别对应的接口。这种场景下,在该方法中,响应于第一终端设备的优先级高于第二终端设备的优先级,USF网元在向SF网元发送第一接口配置指令之后,向SF网元发送第二接口配置指令。其中,第一接口配置指令指示SF网元将第一终端设备和第一用户面网元所对应的接口绑定,第二接口配置指令指示SF网元将第一终端设备和第二用户面网元所对应的接口绑定。
第一接口配置指令指示SF网元将第一终端设备和第一用户面网元所对应的接口绑定,以便于后续SF网元在接收到第一终端设备的流量时,将该流量通过与第一用户面网元所对应的接口发送出去,从而实现该流量发送至第一用户面网元。第二接口配置指令指示SF网元将第一终端设备和第二用户面网元所对应的接口绑定,以便于后续SF网元在接收到第二终端设备的流量时,将该流量通过与第二用户面网元所对应的接口发送出去,从而实现该流量 发送至第二用户面网元。
由于第一接口配置指令优先于第二接口配置指令下发,因此可以实现高优先级终端设备更快的恢复业务。
可选地,第一终端设备的优先级为第一终端设备的约定服务等级SLA,第二终端设备的优先级为第二终端设备的SLA。
第三方面,提供了一种发送信息的方法,该方法应用于通信网络中的宽带网络网关BNG系统,BNG系统包括一个控制面网元和多个用户面网元。在该方法中,在第一终端设备迁移至第一用户面网元之前,响应于第一终端设备的优先级超过目标优先级,控制面网元向第一用户面网元发送第一终端设备的保活信息。其中,该保活信息用于第一用户面网元响应第一终端设备发送的保活请求报文,第一用户面网元属于多个用户面网元。
其中,保活信息为转发控制表项信息中的部分信息,该部分信息是转发控制表项信息中用于响应保活请求所需的信息。
在上述控制面网元提前下发终端设备的转发控制表项信息的情况下,控制面网元还可以仅仅提前下发终端设备的转发控制表项信息中的部分信息(也即保活信息),而不下发全部转发控制表项信息,以降低用户面网元的内存消耗。
可选地,在该方法中,在确定将第一终端设备迁移至第一用户面网元时,控制面网元向第一用户面网元发送第一更新指令,其中,第一更新指令携带第一终端设备的转发控制表项信息,且第一更新指令用于指示第一用户面网元基于第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合。
由于保活信息是转发控制表项信息中的部分信息,因此在终端设备迁移时,控制面网元还需下发转发控制表项信息,以完成终端设备的迁移。
第四方面,提供了一种控制面网元,该控制面网元包括收发模块和处理模块;
所述收发模块用于执行如第一方面提供的方法中收发相关的操作;
所述处理模块用于执行如第一方面提供的方法中除所述收发相关的操作之外的操作。
第五方面,提供了一种USF网元,该USF网元包括收发模块和处理模块;
所述收发模块用于执行如第二方面提供的方法中收发相关的操作;
所述处理模块用于执行如第二方面提供的方法中除所述收发相关的操作之外的操作。
第六方面,提供了一种控制面网元,该控制面网元包括收发模块和处理模块;
所述收发模块用于执行如第三方面提供的方法中收发相关的操作;
所述处理模块用于执行如第三方面提供的方法中除所述收发相关的操作之外的操作。
第七方面,提供了一种网络设备,该网络设备包括存储器和处理器。
所述存储器用于存储支持所述网络设备执行上述第一方面至第三方面中任一方面提供的方法的程序,以及存储用于实现上述第一方面至第三方面中任一方面提供的方法所涉及的数据;
所述处理器被配置为用于执行所述存储器中存储的程序。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在处理器上运行时,实现上述第一方面至第三方面中任一方面提供的方法。
第九方面,提供了一种包含指令的计算机程序产品,当其在处理器上运行时,实现上述第一方面至第三方面中任一方面提供的方法。
上述第四方面至第九方面所获得的技术效果与上述第一方面至第三方面中对应的技术手段获得的技术效果近似,在这里不再赘述。
附图说明
图1是本申请实施例提供的一种传统的BNG和解耦后的BNG系统的结构对比示意图;
图2是本申请实施例提供的一种vBNG中的控制面网元和用户面网元的存在形态的示意图;
图3是本申请实施例提供的一种steering场景下的网络架构示意图;
图4是本申请实施例提供的一种用户接入流程示意图;
图5是本申请实施例提供的一种温备场景下的网络架构示意图;
图6是本申请实施例提供的一种发送指令的方法流程图;
图7是本申请实施例提供的一种温备场景下终端设备上线示意图;
图8是本申请实施例提供的一种用户迁移流程示意图;
图9是本申请实施例提供的另一种发送指令的方法流程图;
图10是本申请实施例提供的一种用户上线流程示意图;
图11是本申请实施例提供的一种发送信息的方法流程图;
图12是本申请实施例提供的一种控制面网元的结构示意图;
图13是本申请实施例提供的一种USF网元的结构示意图;
图14是本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
应当理解的是,本文提及的“多个”是指两个或两个以上。在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在对本申请实施例进行详细解释说明之前,先对本申请实施例的应用场景进行解释说明。
随着软件定义型网络(software designed network,SDN)技术以及网络功能虚拟化(network function virtual,NFV)技术的发展,城域网的网络架构从传统的以网络为核心的网络架构向以数据中心为核心的网络架构演进。与此同时,传统的网元也从专业化朝着通用化演进。其中,传统网元从专业化朝着通用化演进需要实现:控制功能与转发功能的解耦、软件与硬件的解耦。
BNG作为传统的接入宽带网络的网关设备,在用户访问宽带网络的场景中非常重要。其中,BNG在用户访问宽带网络的过程所起的作用主要包括:用户认证、接入控制、以及流量调度等。随着各种互联网业务的层出不穷,对BNG支持的用户的会话数的要求不断提高、对 用户接入网络的带宽也不断提高、尤其是对BNG向外提供业务开放、业务可编程的能力的要求也越来越高。基于这些因素,传统的BNG基于SDN/NFV的架构需要实现前面提到的两个解耦。
转发功能与控制功能解耦后,传统的BNG演进为BNG系统,该BNG系统包括一个控制面网元和多个用户面网元。控制面网元可以管理多个用户面网元,进行多个用户面网元之间用户、流量、资源的调度。相对于没有解耦的单机BNG,转发功能和控制功能解耦后的BNG系统的利用率和可靠性都能得到大幅的提升。其中,控制面网元还可以称为CP或CP网元或CP设备等,用户面网元还可称为UP或UP网元或UP设备等。
图1是本申请实施例提供的一种传统的BNG和解耦后的BNG系统的结构对比示意图。
如图1所示,对于传统的BNG而言,需要同时具有用户管理(user management)、验证和授权和记账(authentication、authorization、accounting,AAA)服务、地址管理(address management)、Radius服务、路由控制(routing control)、以太网上的点对点协议(Point-to-Point Protocol Over Ethernet,PPPoE)服务、动态主机配置协议(dynamic host configuration protocol,DHCP)服务、转发引擎(forward engine)等等功能。这些BNG需要支持的功能如图1所示同时部署在同一硬件设备上,该硬件设备可以为交换机等。
其中,AAA服务是一个能够处理用户访问请求的服务器程序,该程序用于提供验证授权以及帐户等服务,主要目的是管理用户访问网络服务器,对具有访问权的用户提供服务。Radius是一种用于在需要认证其链接的网络访问服务器和共享认证服务器之间进行认证、授权和记帐信息的文档协议。Radius服务负责接收用户的连接请求、认证用户,然后返回客户机所有必要的配置信息以将服务发送到用户。PPPoE是一种将点对点协议(Point-to-Point Protocol,PPP)封装在以太网(Ethernet)框架中的一种网络隧道协议。
对于转发功能和控制功能解耦后的BNG系统,如图1所示,该BNG系统还可以称为vBNG。其中,vBNG包括一个控制面(CP)网元和多个用户面(UP)网元,图1中是以一个用户面网元为例进行说明。如图1所示,控制面网元用于提供BNG所需的用户管理、AAA服务、地址管理、Radius服务、PPPoE服务、DHCP服务等功能,此外,控制面网元还需提供BNG所需的用户面网元管理(UP management)功能。任一用户面网元用于提供BNG所需的路由(routing)、多播(multicast)服务、服务质量(quality of service,QoS)、转发(forwarding)服务、访问控制列表(access control lists,ACL)服务、多协议标签交换(multi-protocol label switching,MPLS)/标签分发协议(label distribution protocol,LDP)服务等功能。本申请实施例对这些功能不做详细说明,相关内容可以参考标准文件。
在BNG系统包括一个控制面网元和多个用户面网元的情况下,如图1所示,控制面网元和用户面网元可以通过三种接口连接。这三种接口分别为如下三种接口。
(1)报文重新定向接口(Packet Redirection interface,PRi)。PRi也称为业务接口,PRi具体可以采用虚拟扩展局域网-通用协议封装(virtual extensible local area network-generic protocol encapsulation,vxlan-GPE)接口。用户面网元在接收到用户接入协议报文时,通过该接口封装该用户接入协议报文,然后将封装后的用户接入协议报文上送至控制面网元,由控制面网元处理用户接入协议报文。该用户接入协议报文也称为拨号请求。
(2)管理接口(Management interface,Mi)。Mi具体可以采用网络配置(netconf)接口。控制面网元采用该接口向用户面网元下发配置。用户面网元采用该接口上报一些运行状态等 等。
(3)状态控制接口(State Control interface,SCi)。SCi具体可以采用控制面和用户面分离协议(control plane and user plane separated protocol,CUSP)接口。控制面网元处理用户接入协议报文,完成用户的协议交互。用户上线后,控制面网元通过该接口向对应用户面网元下发转发控制表项。其中,转发控制表项用于携带终端设备的用户信息,以便于后续用户面网元基于该转发控制表项转发该终端设备的流量。关于转发控制表项的详细功能将在后续实施例中展开说明。
上述控制面网元和用户面网元可以有不同的形态。图2是本申请实施例提供的一种vBNG中的控制面网元和用户面网元的存在形态的示意图。如图2所示,vBNG中的控制面网元作为虚拟网络功能(virtual network function,VNF),可以运行在X86服务器上,从而实现虚拟化。vBNG中的用户面网元可以存在两种形态。一种是作为VNF,运行在X86服务器上,此时用户面网元还可以称为vUP。另一种是作为物理网路功能(physical network function,PNF),运行在一个传统硬件网络设备上,此时用户面网元还可以称为pUP。一个vBNG的控制面网元可以管理一个或多个pUP和一个或多个vUP,本申请实施例对此不做限定。
基于上述BNG系统,控制面网元可以根据流量负载情况或故障情况进行不同用户面网元间终端设备的灵活调度。比如,当检测到某个用户面网元的负载较大时,可以将该用户面网元上的终端设备的流量引流至另一个用户面网元上进行转发。或者,当检测到某个用户面网元故障或者该用户面网元与终端设备连接的链路出现故障,该用户面网元所有上线终端设备的业务都会中断,因此需要将该用户面网元上的终端设备的流量引流至另一个用户面网元上进行转发。这个过程还可以称为用户迁移或迁移,关于用户迁移的详细过程将在后续实施例中展开说明。
本申请实施例提供的方法就应用于上述将用户迁移的场景中。其中,本申请实施例提供的方法可以应用在steering场景下的网络架构中,也可以应用在温备场景下的网络架构中。当然也可以应用在其他类型的网络架构中,在此不再一一举例说明。为了后续便于说明,下面先对这两种网络架构进行详细解释说明。
图3是本申请实施例提供的一种steering场景下的网络架构示意图。如图3所示,该网络架构包括终端设备、切换功能(steering function,SF)网元、SDN控制网元、用户切换功能(user steering function,USF)网元、以及BNG。其中,BNG包括控制面网元(图3中将控制面网元标记为CP)以及多个用户面网元(图3中将用户面网元标记为UP,其中,图3中包括三个用户面网元,分别为UP1、UP2以及UP3)。
如图3所示,终端设备和SF网元之间连接以进行通信。SF网元和任一用户面网元之间通过两层隧道(Lay2-tunnel)连接以进行通信。SF网元上配置有不同的物理子接口,不同的物理子接口中匹配不同的虚拟局域网(virtual local area network,VLAN)/QinQ(QinQ是两两层VLAN的表示方式)范围,不同物理子接口对应不同二层隧道,也即是,不同的物理子接口用于通往不同的用户面网元。如此,终端设备便可通过SF网元上的某个物理子接口将流量发送至某个用户面网元。
其中,SF网元和各个用户面网元部署在城域网的边缘,用于将终端设备的流量转发至核心网。
此外,如图3所示,SDN控制网元分别和SF网元以及各个用户面网元连接以进行通信。 USF网元和SDN控制网元连接以进行通信。控制面网元分别和USF网元、SDN控制网元以及各个用户面网元连接以进行通信。此外,如图3所示,控制面网元还和Radius服务器连接以进行通信,以便于后续通过Radius服务器对终端设备的接入进行认证。
下面对图3所示的各个网元的功能进行解释说明。
控制面网元:控制面网元是vBNG的业务控制平面,用于对终端设备的拨号请求进行处理,与AAA服务器交互进行用户认证、计费、授权。控制面网元可以根据终端设备的约定服务等级(service level agreement,SLA),通过拨号请求中携带的接入线路信息,通知USF网元终端设备上线并等待USF网元指导用户迁移,以将终端设备映射到对应用户面网元接入的端口上。同时,控制面网元将终端设备的转发控制表项下发到对应用户面网元,对应用户面网元生成该终端设备的转发表项,并向外发布路由。
USF网元:终端设备的用户面网元迁移的策略控制组件,根据终端设备的用户SLA以及负载等情况产生迁移策略,通知控制面网元以及SF网元对终端设备进行迁移,实现网络的负载均和以及SLA需求。
用户面网元:用户面网元是vBNG业务转发平面。控制面网元处理完用户上线后下发转发控制表项,用户面网元接收控制面网元下发的转发控制表项,在本地生成该终端设备的转发表项,进行相关的业务策略执行和流量转发,并向外发布路由。
SF网元:用户接入网关,终端设备上线时,将终端设备发送的拨号请求通过业务通道上送至控制面网元处理,同时进行家庭终端的汇聚,将终端设备的流量汇聚到用户面网元,进行二层报文的转发,并对不同终端设别进行VLAN/QINQ(两层VLAN)的隔离,每个终端设备独享一个VLAN/QINQ。
家庭网关(residential gateway,RGW):用于接入家庭内的计算机、手机,一般会做网络地址转换(network address translation,NAT)处理,向家庭内的计算机、手机分配私网网络(internet protocol,IP)地址。进行基于PPPoE、IPoE协议的拨号,向vBNG获取IP地址,从而进行网络访问。
SDN控制网元:接收控制面网元发送的对应用户的接入线路信息。该接入线路信息包括接入的交换机/光线路终端(switch/optical line terminal,SW/OLT)标识,接入的端口信息,虚拟局域网(virtual local area network,VLAN)信息等,向对应的SW/OLT下发迁移的策略,将该终端设备的端口+VLAN/QINQ映射到与对应用户面网元连接的二层隧道(该两层隧道可以为虚拟扩展局域网(virtual extensible local area network,VXLAN),也可以是虚拟租用线路(virtual leased line,VLL),也可以是基于以太网的虚拟私有网络(ethernet virtual private network,EVPN)。
为了后续便于说明,在此对steering场景中用户接入过程和用户迁移过程进行详细说明。其中,用户接入过程用于指示终端设备接入网络,用户迁移过程用于指示将终端设备的流量从一个用户面网元引流至另一个用户面网元。
(1)用户接入过程
如图3所示,终端设备接入的网络的过程中,默认从UP1上线。此时,终端设备通过SF网元所连接的UP1将拨号请求等控制报文发送给CP。CP在接收到拨号请求后,向USF网元交互终端设备的迁移策略,USF网元根据该终端设备的用户服务等级协议(service level agreement,SLA)判断该终端设备应该从UP2接入,则通知CP将该终端设备的转发控制表 项下发至UP2。同时,USF通知SDN控制网元,以使SDN控制网元对SF网元进行配置,在SF网元上将该终端设备对应的VLAN/QinQ绑定在UP2对应的物理子接口上,也即是建立该终端设备和UP2之间的绑定关系。终端设备后续的转发报文便可直接转发至UP2。
上述用户接入过程具体的可以通过图4所示的流程图来表示。如图4所示,终端设备接入网络的过程可以细分为以下几个步骤。
1、在网络中各个网元初始化之后,终端设备向SF网元发送基于PPPoE或者DHCP的拨号请求(dial up)。
2、SF网元在接收到该拨号请求后,将该拨号请求通过默认的UP1发送至控制面网元(CP)。
3、控制面网元在接收到该拨号请求后,向USF网元发送用户迁移策略请求,该用户迁移策略请求用于请求该终端设备需要基于哪个用户面网元来转发流量。该用户迁移策略请求可以携带该终端设备的用户SLA。该终端设备的用户SLA指示用户的优先级等等。
4、USF网元在接收到该用户迁移策略请求后,基于该终端设备的用户SLA确定该终端设备应该从UP2上转发流量,因此,USF网元向控制面网元返回用户迁移结果,该用户迁移结果指示该终端设备的目标UP为UP2。
5、控制面网元在接收到该用户迁移结果后,便可从UP2的地址池中为该终端设备分配一个网络协议(internet protocol,IP)地址,并将分配的IP地址下发给终端设备,以使终端设备将该IP地址作为流量中的源IP地址。
6、控制面网元还向UP2下发该终端设备的转发控制表项,该转发控制表项中携带该终端设备的用户信息,用户信息包括该终端设备的IP地址、MAC地址、接口等信息。控制面网元向UP2下发给终端设备的转发控制表项的目的在于:后续UP2基于该转发控制表项对接收到的数据报文进行合法性校验,比如校验数据报文中的源媒体接入控制(media access control,MAC)地址和源IP地址是否是本地配置的转发控制表项中的MAC地址和IP地址,如果是,则继续基于转发控制表项转发数据报文,如果不是,则丢弃数据报文。
7、控制面网元在执行了上述5和6之后,便可向USF网元通告表项配置成功消息。
8、USF网元接收到该表项配置成功消息后,便可通告SDN控制网元执行切换操作,该切换操作指示SDN控制网元在SF网元上配置该终端设备和UP2的绑定关系,以便于SF网元后续将终端设备流量引流至UP2。
9、在完成了1-8的操作后,表明终端设备当前已经接入网络。后续终端设备发送的数据报文便可通过UP2转发至核心网。
(2)用户迁移过程
在一些实施例中,在终端设备接入网络并通过当前接入的用户面网元转发流量之后,如果终端设备的用户SLA发生变化,此时则需要USF网元来重新判断用户SLA变化后的终端设备需要从哪个用户面网元上转发流量。如果判断出终端设备需要从另一个用户面网元上转发流量,则需控制终端设备从当前接入的用户面网元迁移至另一用户面网元。该过程可以参考上述用户接入过程中的步骤3-8,在此不再赘述。
在另一些实施例中,USF网元还可以基于负载均衡等策略控制一个用户面网元上的终端设备迁移至另一用户面网元上。该过程同样可以参考上述用户接入过程中的步骤3-8,在此不再赘述。
基于上述用户接入过程和用户迁移过程可知,在steering场景中,USF网元是动态迁移的策略点,由USF网元来主动引导终端设备迁移。
需要说明的是,图3所示的USF网元可以内置在控制面网元中,也可以内置在SDN控制网元中,也可以是一个单独的网元。本申请实施例对此不做限定。
在图3以及图4所示的steering场景中,USF网元在控制一个用户面网元上的终端设备迁移至另一用户面网元时,由于一个用户面网元上的终端设备的数量较多,因此USF网元实际是控制一批终端设备从一个用户面网元迁移至另一用户面网元。在该过程中,这一批终端设备中各个终端设备的迁移顺序并没有明确要求。如此,可能存在高优先级终端设备后迁移到另一用户面网元,这样容易导致高优先级终端设备与另一用户面网元之间的保活探测失败,进而引发高优先级终端设备下线。基于此,本申请实施例提供的方法可以保证高优先级终端设备优先迁移至另一用户面网元。
图5是本申请实施例提供的一种温备场景下的网络架构示意图。如图5所示,该网络结构包括终端设备、接入设备(access node,AN)、多个用户面网元(图5中标记为UP1、UP2、UP3以及UP4)以及控制面网元(图5中标记为CP)。其中,UP1、UP2、UP3以及UP4组成一个温备份组。该温备份组内的各个UP和AN组成一个二层广播域,以使终端设备通过两层广播域接入网络。
图5中控制面网元以及用户面网元的功能可以参考图3的网络架构,在此不再赘述。另外,图5中的接入设备可以为SW或OLT等。
下面对图5所示的网络架构中的用户接入和用户迁移过程进行详细说明。
终端设备上线(也即用户接入)时,控制面网元根据该温备份组内各个UP的负载分担情况将终端设备分配至不同的UP上线。示例地,如图5所示,在终端设备1(也即user1)、终端设备2(也即user2)、终端设备3(也即user3)、终端设备4(也即user4)上线时,控制面网元控制终端设备1从UP1处接入网络,也即终端设备1的流量由UP1转发。控制面网元控制终端设备2从UP2处接入网络,也即终端设备2的流量由UP2转发。控制面网元控制终端设备3从UP3处接入网络,也即终端设备3的流量由UP3转发。控制面网元控制终端设备4从UP4处接入网络,也即终端设备4的流量由UP4转发。
其中,控制面网元控制终端设备1从UP1处接入网络具体包括两个操作:一是控制面网元向UP1下发终端设备1的转发控制表项,二是接入设备通过路由学习的方式从UP1处学习终端设备1的MAC地址,如此接入设备在接收到终端设备1的流量时,便可基于学习该MAC地址时的接口将流量转发至UP1。控制面网元控制其他终端设备从UP处接入网络具体过程同样可以参考前述内容,在此不再一一赘述。
另外,针对该温备份组配置有对应的故障切换策略,该故障切换策略示例地可以为:UP1故障时,将该UP1上的终端设备迁移到另一个UP2。该故障切换策略示例地还可以为:UP1故障时,将该UP1上的终端设备按照负载分担的方式迁移到其他三个UP上。其中,故障切换策略是预先制定的,后续温备份组中的UP1便可基于故障切换策略动态迁移用户,以保持用户不掉线。
由此可知,在温备场景中,控制面网元是动态迁移的策略点,由控制面网元主动引导终端设备迁移。
在图5所示的温备场景中,控制面网元在控制一个用户面网元上的终端设备迁移至另一 用户面网元的过程中,各个终端设备的迁移顺序并没有明确要求。如此,可能存在高优先级终端设备后迁移到另一用户面网元,这样容易导致高优先级终端设备与另一用户面网元之间的保活探测失败,进而引发高优先级终端设备下线。基于此,本申请实施例提供的方法可以保证高优先级终端设备优先迁移至另一用户面网元。
下面对本申请实施例提供的方法进行详细解释说明。
图6是本申请实施例提供的一种发送指令的方法流程图。需要说明的是,在图6所示的方法中,由控制面网元主动引导终端设备迁移。其中,在图3所示的steering场景中,如果USF网络自身发生故障,或者,USF网元与SDN网元或控制面网元之间的链路出现故障,此时也可以由控制面网元主动引导终端设备迁移。因此,图6所示的方法可以应用在图3所示的steering场景下的网络架构中,也可以应用于图5所示的温备场景下的网络架构中。如图6所示,该方法包括如下步骤601。
步骤601:在确定将第一终端设备迁移至第一用户面网元、将第二终端设备迁移至第二用户面网元时,响应于第一终端设备的优先级高于第二终端设备的优先级,控制面网元在向第一用户面网元发送第一更新指令之后,向第二用户面网元发送第二更新指令。
其中,第一更新指令用于指示第一用户面网元基于第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合,第二更新指令用于指示第二用户面网元基于第二终端设备的转发控制表项信息更新本地的转发控制表项信息集合,以使控制面网元先将第一终端设备的转发控制表项信息更新至转发控制表项信息集合,再将第二终端设备的转发控制表项信息更新至转发控制表项信息集合。从而实现快速将高优先级终端设备的转发控制表项信息更新到本地的转发控制表项信息集合中,以避免高优先级终端设备因为保活探测失败而下线。
另外,第一用户面网元和第二用户面网元属于多个用户面网元,第一用户面网元和第二用户面网元可以为同一用户面网元。可选地,第一用户面网元和第二用户面网元还可以为不同的用户面网元。也即,第一终端设备和第二终端设备可以为迁移至同一用户面网元的终端设备,也可以为迁移至不同用户面网元的终端设备。
示例地,在温备场景中,当第一终端设备和第二终端设备为迁移至不同用户面网元的终端设备时,第一用户面网元和第二用户面网元可以为同一温备组中的不同用户面网元,还可以为不同温备组中的用户面网元。
另外,假设第一终端设备为由第三用户面网元迁移至第一用户面网元的终端设备,第二终端设备为由第四用户面网元迁移至第二用户面网元的终端设备,则第三用户面网元和第四用户面网元可以为同一用户面网元。可选地,第三用户面网元和第四用户面网元也可以为不同的用户面网元。也即,第一终端设备和第二终端设备可以为从同一用户面网元迁移来的终端设备,也可以为从不同用户面网元迁移来的终端设备。
示例地,在温备场景中,当第一终端设备和第二终端设备为从不同用户面网元迁移来的终端设备时,第三用户面网元和第四用户网元可以为同一温备组中的不同用户面网元,还可以为不同温备组中的用户面网元。
换句话说,在控制面网元引导终端设备迁移的过程中,无论第一终端设备和第二终端设备是从同一用户面网元迁移来的,还是从不同用户面网元迁移来的,亦或第一终端设备和第二终端设备是迁移至同一用户面网元,还是迁移至不同用户面网元,控制面网元只需按照各个终端设备的优先级的顺序下发各个针对各个终端设备的更新指令即可。提高了本申请实施 例的应用灵活性。
在一些实施例中,响应于第一终端设备的优先级高于第二终端设备的优先级,控制面网元在向第一用户面网元发送第一更新指令之后,向第二用户面网元发送第二更新指令具体可以是指:对于待迁移的各个终端设备,按照各个终端设备的优先级从高到低的顺序依次下发针对各个终端设备的更新指令。此时,如果一个终端设备的优先级高于另一个终端设备,则一个终端设备的更新指令必定先于另一个终端设备的更新指令下发。
在另一些实施例中,响应于第一终端设备的优先级高于第二终端设备的优先级,控制面网元在向第一用户面网元发送第一更新指令之后,向第二用户面网元发送第二更新指令具体可以是指:控制面网元预先配置一个优先级阈值,对于待迁移的各个终端设备,将各个终端分成两类,第一类终端设备的优先级超过该优先级阈值,第二类终端设备的优先级低于该优先级阈值,然后先下发第一类终端设备的更新指令,再下发第二类终端设备的更新指令,相应地,步骤601中的第一终端设备为第一类终端设备中的一者,第二终端设备为第二类终端设备中的一者。此时,如果一个终端设备的优先级高于另一个终端设备,且这两个终端设备属于同一类终端设备,则这两个终端设备的更新指令没有严格的先后下发顺序。如果一个终端设备的优先级高于另一个终端设备,且这两个终端设备属于不同类终端设备,则这两个终端设备的更新指令有严格的先后下发顺序。
上述优先级阈值可以由运营商预先基于网络规划配置,本申请实施例对此不作限定。另外,本申请实施例涉及的“超过”可以理解为大于也可以理解为大于或等于。当“超过”理解为大于时,相应地“低于”理解为小于或等于。当“超过”理解为大于或等于时,相应地“低于”理解为小于。后续涉及的“超过”和“低于”均可以参考该解释。
需要说明的是,终端设备迁移的最终目的是:让迁移后的用户面网元能够将终端设备的转发控制表项信息更新至本地的转发控制表项信息集合,如此后续该用户面网元才能转发该终端设备的流量。
其中,第一终端设备或第二终端设备的转发控制表项信息可以在迁移之前已经下发到对应的用户面网元上,然后在迁移时只需更新转发控制表项信息集合即可。可选地,第一终端设备或第二终端设备的转发控制表项信息也可以为携带在更新指令中下发给对应的用户面网元。下面分两种场景对此进行解释说明。
场景一:转发控制表项信息携带在更新指令中下发给对应的用户面网元。
也即,第一更新指令携带第一终端设备的转发控制表项信息,第二更新指令携带第二终端设备的转发控制表项信息。
在场景一中,控制面网元无需提前下发转发控制表项信息,只需在终端设备迁移过程中,将终端设备的转发控制表项信息携带在更新指令中下发给相应用户面网元即可。该方式和目前终端设备迁移技术兼容,因此操作简单且容易实现。
场景二:转发控制表项信息在迁移之前已经下发到对应的用户面网元。
在一些实施例中,可以将高优先级终端设备的转发控制表项信息提前下发,而将低优先级终端设备的转发控制表项信息携带在更新指令中下发。这种方式,节省了控制面网元到用户面网元的转发控制表项信息的下发时间,且针对高优先级终端设备的更新指令无需携带转发控制表项信息,因此高优先级终端设备的更新指令可以更快下发到用户面网元,从而实现快速将高优先级终端设备的转发控制表项信息更新到本地的转发控制表项信息集合中,以更 快的恢复业务。
示例地,控制面网元预先配置有目标优先级,此时步骤601中第一终端设备的优先级超过目标优先级,第二终端设备的优先级低于目标优先级。这场情况下,将高优先级终端设备的转发控制表项信息提前下发的实现过程可以为:在确定将第一终端设备迁移至第一用户面网元之前,响应于第一终端设备的优先级超过目标优先级,控制面网元向第一用户面网元发送第一终端设备的转发控制表项信息。相应地,在确定将第二终端设备迁移至第二用户面网元之前,响应于第二终端设备的优先级低于目标优先级,控制面网元则不会向第二用户面网元发送第二终端设备的转发控制表项信息。
此时,步骤601中第一更新指令中不携带第一终端设备的转发控制表项信息,第二更新指令中携带第二终端设备的转发控制表项信息。
上述目标优先级可以由运营商预先基于网络规划配置,本申请实施例对此不作限定。
另外,由于是在第一终端设备迁移之前向第一用户面网元下发转发控制表项信息,因此为了避免第一用户面网元更新本地转发控制表项集合,控制面网元向第一用户面网元发送第一终端设备的转发控制表项信息之后,控制面网元还可以向第一用户面网元发送停止更新指令,停止更新指令指示第一用户面网元在接收到第一终端设备的转发控制表项信息时,不基于第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合。
由于第一用户面网元在接收到第一终端设备的转发控制表项信息时,不基于第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合,因此第一终端设备的转发控制表项信息并不占用第一用户面网元的转发资源。当第一终端设备真正迁移时,第一用户面网元可直接将提前下发的第一终端设备的转发控制表项信息“转正”,也即基于第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合。
需要说明的是,上述停止更新指令和转发控制控制表项信息可以携带在同一报文中发送至第一用户面网元,也可以携带在不同报文中发送至第一用户面网元。本申请实施例对此不作限定。
可选地,如果第一用户面网元可以通过其他途径获知第一终端设备的迁移情况,则控制面网元向第一用户面网元发送第一终端设备的转发控制表项信息之后,也可以不向第一用户面网元发送停止更新指令。此时,第一用户面网元在接收到第一终端设备的转发控制表项信息之后,由于第一用户面网元基于其他途径已经获知第一终端设备当前没有迁移,因此则无需更新本地的转发控制表项信息集合。
其中,关于第一用户面网元通过其他途径获知第一终端设备的迁移情况的实现方式可以由多种。比如,在温备场景中,在第一终端设备开始迁移时,控制面网元会通知第一用户面网元。又比如,在steering场景中,在第一终端设备开始迁移时,USF网元会通过SDN控制网元通知第一用户面网元。本申请实施例对此不作详细说明。
另外,在确定将第一终端设备迁移至第一用户面网元之前可以是指:在第一终端设备上线过程中。也可以是指:在第一终端设备上线之后参考时长内。本申请实施例对控制面网元提前下发终端设备的转发控制表项信息的时机不作限定。只需保证在迁移之前将第一终端设备的转发控制表项信息下发即可。
示例地,对于控制面网元而言,控制网元在各个终端设备上线过程中,对于任一上线的终端设备,如果控制面网元识别到该终端设备的优先级超过目标优先级,则将该终端设备的 转发控制表项信息下发至第一用户面网元。如果控制面网元识别到该终端设备的优先级低于目标优先级,则不会将该终端设备的转发控制表项信息下发至第一用户面网元。
需要说明的是,在这种情况下,如果针对第一终端设备的迁移策略是预先制定的,则第一用户面网元为该迁移策略中指定的用于转发迁移后第一终端设备流量的用户面网元。可选地,如果预先没有针对第一终端设备制定迁移策略,则第一用户面网元可以为除第一终端设备上线所接入的用户面网元之外的其他用户面网元。示例地,在图5所示的温备场景中,若第一终端设备上线时从UP1接入网络,在第一用户面网元可以为该温备组中的UP2、UP3以及UP4。
在另一些实施例中,可以将全部终端设备的转发控制表项信息提前下发。以节省全部优先级终端设备的更新指令的传输时间,从而实现快速将各个终端设备的转发控制表项信息更新到本地的转发控制表项信息集合中。
全部终端设备的转发控制表项信息提前下发的实现过程可以参考前述内容,在此不再赘述。
基于图6所示的实施例,在大量终端设备迁移的过程中,可以保证高优先级终端设备的转发控制表项信息优先得到更新,从而实现高优先级终端设备的优先迁移,以避免高优先级终端设备因保活探测失败而引发下线。
此外,本申请实施例涉及的优先级可以有多种实现方式。下面对此进行解释说明。
(1)第一终端设备的优先级为第一终端设备的SLA,第二终端设备的优先级为第二终端设备的SLA。
其中,SLA可以理解为:为了保障服务的性能和可靠性,服务提供商与用户间定义的一种双方认可的协定。SLA中规定了服务等级和服务所必须满足的性能等级,并使服务提供商有责任完成这些预定的服务等级。因此,可以理解的是,SLA越高的终端设备对业务中断后的恢复时延要求越高。基于此,在本申请实施例中,在终端迁移时,优先迁移高SLA的终端设备,以满足这类终端设备的网络需求。也即,本申请实施例的优先级可以为SLA。
这种场景下,控制面网元获取第一终端设备和第二终端设备的优先级的实现方式可以为:控制面网元接收AAA服务器发送的第一认证消息和第二认证消息。其中,第一认证消息携带第一终端设备的SLA,第二认证消息携带第二终端设备的SLA。
上述第一认证消息为第一终端设备上线时控制面网元和AAA服务器之间的交互信息。第二认证消息为第二终端设备上线时控制面网元和AAA服务器之间的交互信息。
(2)终端设备的优先级也可以在CP侧直接配置,比如运营商可以基于某一类业务、某个子接口或者某个物理接口等维度配置终端设备的优先级。
在一些实施例中,第一终端设备的优先级为第一终端设备的业务的优先级,第二终端设备的优先级为第二终端设备的业务的优先级。
可以理解的是,业务优先级越高的终端设备对业务中断后的恢复时延要求越高。基于此,在本申请实施例中,在终端设备迁移时,优先迁移高业务优先级的终端设备,以满足这类终端设备的网络需求。也即,本申请实施例的优先级可以为业务优先级。
在另一些实施例中,在温备场景中,在第一终端设备为由第三用户面网元迁移至第一用户面网元的终端设备,第二终端设备为由第四用户面网元迁移至第二用户面网元的终端设备,且第三用户面网元和第一用户面网元属于第一温备组,第四用户面网元和第二用户面网元属 于第二温备组的情况下,第一终端设备的优先级为第一温备组的优先级,第二终端设备的优先级为第二温备组的优先级。
温备组的优先级越高,相应地该温备组内接入的终端设备对业务中断后的恢复时延要求越高。基于此,在本申请实施例中,在终端设备迁移时,优先迁移较高优先级的温备组中接入的终端设备,以满足这类温备组中接入的终端设备的网络需求。也即,本申请实施例的优先级可以为终端设备接入的用户面网元所属温备组的优先级。
需要说明的是,同一温备组中用户面网元接收终端设备流量的子接口或者物理接口通常为一类接口,且不同温备组中用户面网元接收终端设备流量的子接口或者物理接口通常不同,因此对于控制面网元,控制面网元可以基于温备组中用户面网元接收终端设备流量的接口的优先级为温备组配置优先级。也即,温备组的优先级可以理解为:温备组中用户面网元接收终端设备流量的接口的优先级。
需要说明的是,上述两种优先级的实现方式用于示例说明,本申请实施例不限定终端设备的优先级具体实现方式,在此不再一一举例说明。另外,优先级还可称为切换优先级或用户优先级等等。
下面以图5所示的温备场景为例对图6所示的实施例进一步解释说明。
图7是本申请实施例提供的一种温备场景下终端设备上线示意图。如图7所示,第一终端设备(图7中标记为用户1)和第二终端设备(图7中标记为用户2)的拨号请求报文通过默认UP(如UP1)到达CP,CP从拨号请求报文中解析该终端设备的用户信息。该用户信息示例地包括终端设备的MAC地址、用户名(username)、密码(password)等等。CP基于该终端设备的用户信息向AAA服务器发送认证请求。AAA服务器根据终端设备的用户信息查找终端设备的SLA,并通过认证消息(也即认证回复)返回给CP。CP在接收到AAA服务器发送的用户1的优先级以及用户2的优先级后,存储用户1的优先级和用户2的优先级,以便于后续进行用户迁移。另外,CP还通过图4所示的分配IP地址以及下发表项等操作,完成用户1和用户2的上线,在此不再展开说明。图7中示例地用户1和用户2上线后通过UP1接入网络。
其中,终端设备的优先级可以复用现有RADIUS属性携带在认证回复中,终端设备的优先级也使用新定义的RADIUS属性携带在认证回复中,可选地,也可以使用其他属性携带在认证回复中。本申请实施例对此不作限定。
如图7所示,用户1的优先级(SLA)高于用户2的优先级(SLA)。
在用户1和用户2在UP1上上线之后,如图8所示,当UP1和AN之间的链路出现故障,UP1将该故障事件上报CP,CP在确定UP1和AN之间的链路出现故障时,控制UP1上的用户动态迁移至UP2,也即控制用户1从UP1迁移至UP2,控制用户2从UP1迁移至UP2。在迁移完成之后,AN将用户1和用户2的流量从UP1引到UP2。
基于图6所示的实施例,CP在控制用户1从UP1迁移至UP2,控制用户2从UP1迁移至UP2的过程中,由于用户1的优先级高于用户2的优先级,因此CP将先下发针对用户1更新指令,再下发针对用户2的更新指令,以实现用户1优先迁移至UP2,从而避免高优先级的用户1因保活探测失败而下线。具体实现方式可以参考图6所示的实施例,在此不再展开说明。
另外,在steering场景中,如果USF网络自身没有发生故障,USF网元与SDN网元以及控制面网元之间的链路也没有出现故障,此时则由USF网元主动引导终端设备迁移。这种情况下,由USF网元基于终端设备的优先级来引导终端设备迁移,下面对该内容进行详细解释说明。
图9是本申请实施例提供的另一种发送指令的方法流程图。该方法应用于steering场景中。如图9所示,该方法包括如下步骤901。
步骤901:响应于第一终端设备的优先级高于第二终端设备的优先级,USF网元在向控制面网元发送第一迁移指令之后,向第二用户面网元发送第二迁移指令。
其中,第一迁移指令指示将第一终端设备迁移至第一用户面网元,第二迁移指令指示将第二终端设备迁移至第二用户面网元,第一用户面网元和第二用户面网元属于多个用户面网元。
由于USF网元是在向控制面网元发送第一迁移指令之后,向第二用户面网元发送第二迁移指令,也即,USF网元先发送第一迁移指令再发送第二迁移指令,因此,控制面网元先接收到第一迁移指令,再接收第二迁移指令。可以理解的是,控制面网元在接收到USF网元的迁移指令后便响应于该迁移指令发送更新指令。因此,基于步骤901,控制面网元是先向第一用户面网元发送第一更新指令之后,再向所述第二用户面网元发送第二更新指令,以使控制面网元先将第一终端设备的转发控制表项信息更新至转发控制表项信息集合,再将第二终端设备的转发控制表项信息更新至转发控制表项信息集合。从而实现快速将高优先级终端设备的转发控制表项信息更新到本地的转发控制表项信息集合中,以避免高优先级终端设备因为保活探测失败而下线。
在一些实施例中,响应于第一终端设备的优先级高于第二终端设备的优先级,USF网元在向控制面网元发送第一迁移指令之后,向第二用户面网元发送第二迁移指令具体可以是指:对于待迁移的各个终端设备,按照各个终端设备的优先级从高到低的顺序依次向控制面网元发送针对各个终端设备的迁移指令。此时,如果一个终端设备的优先级高于另一个终端设备,则一个终端设备的迁移指令必定先于另一个终端设备的迁移指令下发。
在另一些实施例中,响应于第一终端设备的优先级高于第二终端设备的优先级,USF网元在向控制面网元发送第一迁移指令之后,向第二用户面网元发送第二迁移指令具体可以是指:USF网元预先配置一个优先级阈值,对于待迁移的各个终端设备,将各个终端分成两类,第一类终端设备的优先级超过该优先级阈值,第二类终端设备的优先级低于该优先级阈值,然后先下发第一类终端设备的迁移指令,再下发第二类终端设备的迁移指令,相应地,步骤901中的第一终端设备为第一类终端设备中的一者,第二终端设备为第二类终端设备中的一者。此时,如果一个终端设备的优先级高于另一个终端设备,且这两个终端设备属于同一类终端设备,则这两个终端设备的迁移指令没有严格的先后下发顺序。如果一个终端设备的优先级高于另一个终端设备,且这两个终端设备属于不同类终端设备,则这两个终端设备的迁移指令有严格的先后下发顺序。
另外,关于第一终端设备迁移前后的用户面网元以及第二终端设备迁移前后的用户面网元,可以参考图6所示的实施例,在此不再赘述。
另外,USF网元获取待迁移的各个终端设备的优先级的实现方式可以为:USF网元接收控制面网元发送的第一终端设备的优先级以及第二终端设备的优先级。
在一些实施例中,在优先级为SLA的情况下,对于图4所示的上线过程,控制面网元在接收到AAA服务器发送的认证消息时,控制面网元将该认证消息中的SLA上报给USF网元。
如图4所示的steering场景下上线流程可知,steering场景下终端设备上线过程可以简化为图10所示的流程。如图10所示,终端设备的拨号请求报文通过默认UP到达CP,CP从拨号请求报文中解析该终端设备的用户信息。该用户信息示例地包括终端设备的MAC地址、用户名、密码等等。CP基于该终端设备的用户信息向AAA服务器发送认证请求。AAA服务器根据终端设备的用户信息查找终端设备的SLA,并通过认证消息(也即认证回复)返回给CP。其中,终端设备的优先级可以复用现有RADIUS属性携带在认证回复中,终端设备的优先级也使用新定义的RADIUS属性携带在认证回复中,可选地,也可以使用其他属性携带在认证回复中。本申请实施例对此不作限定。CP在接收到认证回复后,便可将向终端设备的相关信息上报给USF网元,该相关信息示例地包括终端设备的SLA、MAC地址、用户名、密码以及位置信息等。
在另一些实施例中,在优先级为业务优先级或接口优先级的情况下,控制面网元在获取到运行商配置的终端设备的优先级时,将优先级上报给USF网元。可选地,这种情况下,运行商也可以直接在USF网元上配置各个终端设备的优先级。
另外,如图3所示,在steering场景中,终端设备是通过SF网元接入UP的,SF网元上配置有和第一用户面网元以及第二用户面网元分别对应的接口。因此,USF网元在确定需要迁移第一终端设备和第二终端设备时,USF网元还可以响应于第一终端设备的优先级高于第二终端设备的优先级,USF网元在向SF网元发送第一接口配置指令之后,向SF网元发送第二接口配置指令。
其中,第一接口配置指令指示SF网元将第一终端设备和第一用户面网元所对应的接口绑定,以便于后续SF网元在接收到第一终端设备的流量时,将该流量通过与第一用户面网元所对应的接口发送出去,从而实现该流量发送至第一用户面网元。第二接口配置指令指示SF网元将第一终端设备和第二用户面网元所对应的接口绑定,以便于后续SF网元在接收到第二终端设备的流量时,将该流量通过与第二用户面网元所对应的接口发送出去,从而实现该流量发送至第二用户面网元。
其中,USF网元还可以响应于第一终端设备的优先级高于第二终端设备的优先级,USF网元在向SF网元发送第一接口配置指令之后,向SF网元发送第二接口配置指令的详细实现方式,可以参考前述USF网元发送第一迁移指令和第二迁移指令,在此不再赘述。
在上述控制面网元提前下发终端设备的转发控制表项信息的情况下,控制面网元还可以仅仅提前下发终端设备的转发控制表项信息中的部分信息,而不下发全部转发控制表项信息,以降低用户面网元的内存消耗。下面对此内容进行解释说明。
图11是本申请实施例提供的一种发送信息的方法流程图。如图11所示,该方法包括如下步骤1101。
步骤1101:在第一终端设备迁移至第一用户面网元之前,响应于第一终端设备的优先级超过目标优先级,控制面网元向第一用户面网元发送第一终端设备的保活信息。
其中,保活信息用于第一用户面网元响应第一终端设备发送的保活请求报文,第一用户面网元属于多个用户面网元。需要说明的是,保活信息为转发控制表项信息中的部分信息, 该部分信息是转发控制表项信息中用于响应保活请求所需的信息。关于保活信息的具体形式本申请实施例对此不作限定。
由此可知,在本申请实施例中,对于高优先级终端设备,控制面网元可以在终端设备迁移前下发该终端设备的保活信息,以避免高优先级终端设备由于保活探测失败而下线。
另外,步骤1101中,控制面网元下发高优先级终端设备的保活信息的下发时机,以及确定哪些终端设备为高优先级终端设备的实现方式均可以参考图6所示的实施例,在此不再赘述。
另外,在步骤1101中,由于控制面网元在高优先级终端设备迁移前下发该终端设备的保活信息,以便于用户面网元能够基于该保活信息响应该终端设备的保活请求报文。因此,在终端设备真正开始迁移后,可以无需考虑按照优先级顺序下发更新指令了。
另外,由于提前下发的是终端设备的保活信息,因此,在确定将第一终端设备迁移至第一用户面网元时,控制面网元向第一用户面网元发送的第一更新指令携带第一终端设备的转发控制表项信息。其中,第一更新指令用于指示第一用户面网元基于第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合。
以上介绍了本申请施例提供的方法,以下介绍本申请实施例提供的控制面网元和USF网元。
以下介绍的控制面网元和USF网元分别具有上述方法实施例中控制面网元和USF网元的任意功能。
图12是本申请实施例提供的一种控制面网元的结构示意图。该控制面网元1200位于图1所示的UP和CP分离的通信系统中,如图12所示,控制面网元1200包括:收发模块1201和处理模块1202。
收发模块1201用于:在处理模块1202确定将第一终端设备迁移至第一用户面网元、将第二终端设备迁移至第二用户面网元时,响应于第一终端设备的优先级高于第二终端设备的优先级,在向第一用户面网元发送第一更新指令之后,向第二用户面网元发送第二更新指令。其中,第一更新指令用于指示第一用户面网元基于第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合,第二更新指令用于指示第二用户面网元基于第二终端设备的转发控制表项信息更新本地的转发控制表项信息集合,第一用户面网元和第二用户面网元属于多个用户面网元。
具体实现方式可以参考图6实施例中的步骤601,在此不再展开说明。
可选地,第一更新指令携带第一终端设备的转发控制表项信息,第二更新指令携带第二终端设备的转发控制表项信息。
可选地,收发模块1201还用于:
在确定将第一终端设备迁移至第一用户面网元之前,响应于第一终端设备的优先级超过目标优先级,向第一用户面网元发送第一终端设备的转发控制表项信息。相应地,第一更新指令中不携带第一终端设备的转发控制表项信息,第二更新指令中携带第二终端设备的转发控制表项信息。
可选地,收发模块1201还用于:
向第一用户面网元发送停止更新指令,停止更新指令指示第一用户面网元在接收到第一终端设备的转发控制表项信息时,不基于第一终端设备的转发控制表项信息更新本地的转发 控制表项信息集合。
可选地,第一用户面网元和第二用户面网元为同一用户面网元,或者,第一用户面网元和第二用户面网元为不同的用户面网元。
可选地,第一终端设备为由第三用户面网元迁移至第一用户面网元的终端设备,第二终端设备为由第四用户面网元迁移至第二用户面网元的终端设备;
第三用户面网元和第四用户面网元为同一用户面网元,或者,第三用户面网元和第四用户面网元为不同的用户面网元。
可选地,第三用户面网元和第一用户面网元上接收第一终端设备的流量的接口属于第一类接口,第四用户面网元和第二用户面网元上接收第二终端设备的流量的接口属于第二类接口;
第一终端设备的优先级为第一类接口的优先级,第二终端设备的优先级为第二类接口的优先级。
可选地,第一终端设备的优先级为第一终端设备的业务的优先级,第二终端设备的优先级为第二终端设备的业务的优先级。
可选地,第一终端设备的优先级为第一终端设备的约定服务等级SLA,第二终端设备的优先级为第二终端设备的SLA。
可选地,收发模块1201还用于:
接收验证授权记账AAA服务器发送的第一终端设备的优先级以及第二终端设备的优先级。
基于图12所示的控制面网元,在大量终端设备迁移的过程中,可以保证高优先级终端设备的转发控制表项信息优先得到更新,从而实现高优先级终端设备的优先迁移,以避免高优先级终端设备因保活探测失败而引发下线。
图13是本申请实施例提供的一种USF网元的结构示意图。该USF网元1300位于图3所示的UP和CP分离的steering场景下的通信系统中,如图13所示,USF网元1300包括:收发模块1301和处理模块1302。
收发模块1301用于:响应于处理模块1302确定的第一终端设备的优先级高于第二终端设备的优先级,在向控制面网元发送第一迁移指令之后,向第二用户面网元发送第二迁移指令。
其中,第一迁移指令指示将第一终端设备迁移至第一用户面网元,第二迁移指令指示将第二终端设备迁移至第二用户面网元,第一用户面网元和第二用户面网元属于多个用户面网元。
具体实现方式可以参考图9实施例中的步骤901,在此不再展开说明。
可选地,收发模块1301还用于:
接收控制面网元发送的第一终端设备的优先级以及第二终端设备的优先级。
可选地,通信网络还包括切换功能SF网元,SF网元上配置有和第一用户面网元以及第二用户面网元分别对应的接口;
收发模块1301还用于:
响应于第一终端设备的优先级高于第二终端设备的优先级,在向SF网元发送第一接口配置指令之后,向SF网元发送第二接口配置指令;
其中,第一接口配置指令指示SF网元将第一终端设备和第一用户面网元所对应的接口绑定,第二接口配置指令指示SF网元将第一终端设备和第二用户面网元所对应的接口绑定。
可选地,第一终端设备的优先级为第一终端设备的约定服务等级SLA,第二终端设备的优先级为第二终端设备的SLA。
基于图13所示的USF网元,在大量终端设备迁移的过程中,可以保证高优先级终端设备的转发控制表项信息优先得到更新,从而实现高优先级终端设备的优先迁移,以避免高优先级终端设备因保活探测失败而引发下线。
在另一些实施例中,图12所示的控制面网元中的处理模块和收发模块还具有如下功能。
收发模块1201用于:
在第一终端设备迁移至第一用户面网元之前,响应于处理模块1202确定的第一终端设备的优先级超过目标优先级,向第一用户面网元发送第一终端设备的保活信息。
其中,保活信息用于第一用户面网元响应第一终端设备发送的保活请求报文,第一用户面网元属于多个用户面网元。
具体实现方式可以参考图11实施例中的步骤1101,在此不再展开说明。
可选地,收发模块1201还用于:
在确定将第一终端设备迁移至第一用户面网元时,向第一用户面网元发送第一更新指令;
其中,第一更新指令携带第一终端设备的转发控制表项信息,且第一更新指令用于指示第一用户面网元基于第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合。
基于上述控制面网元的功能,在上述控制面网元提前下发终端设备的转发控制表项信息的情况下,控制面网元还可以仅仅提前下发终端设备的转发控制表项信息中的部分信息,而不下发全部转发控制表项信息,以降低用户面网元的内存消耗。
下面对图12所示的控制面网元或图13所示的USF网元的硬件结构进行介绍。
图14是本申请实施例提供的一种网络设备的结构示意图,图12所示的控制面网元或图13所示的USF网元均可以通过该网络设备实现。参见图14,该网络设备包括至少一个处理器1401、通信总线1402、存储器1403以及至少一个通信接口1404。
处理器1401可以是微处理器(包括中央处理器(central processing unit,CPU)等)、特定应用集成电路(application-specific integrated circuit,ASIC),或者可以是一个或多个用于控制本申请方案程序执行的集成电路。
通信总线1402可包括一通路,用于在上述组件之间传送信息。
存储器1403可以是只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、电可擦可编程只读存储器(electrically erasable programmable read-Only memory,EEPROM)、光盘(包括只读光盘(compact disc read-only memory,CD-ROM)、压缩光盘、激光盘、数字通用光盘、蓝光光盘等)、磁盘存储介质或者其它磁存储设备,或者是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储器1403可以是独立存在,并通过通信总线1402与处理器1401相连接。存储器1403也可以和处理器1401集成在一起。
其中,存储器1403用于存储执行本申请方案的程序代码1410,处理器1401用于执行存储器1403中存储的程序代码1410。该网络设备可以通过处理器1401以及存储器1403中的程序代码1410,来实现本申请实施例提供的方法。
通信接口1404使用任何收发器一类的装置,用于与其它设备或通信网络通信。如以太网、无线接入网(radio access network,RAN)、无线局域网(wireless local area network,WLAN)等。
在具体实现中,作为一种实施例,处理器1401可以包括一个或多个CPU,如图14中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,网络设备可以包括多个处理器,如图14中所示的处理器1401和处理器1405。这些处理器中的每一个可以是一个单核处理器,也可以是一个多核处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,计算机设备还可以包括输出设备1406和输入设备1407。输出设备1406和处理器1401通信,可以以多种方式来显示信息。例如,输出设备1406可以是液晶显示器(liquid crystal display,LCD)、发光二级管(light emitting diode,LED)显示设备、阴极射线管(cathode ray tube,CRT)显示设备或投影仪(projector)等。输入设备1407和处理器1401通信,可以以多种方式接收用户的输入。例如,输入设备1407可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的网络设备可以是一个通用网络设备或一个专用网络设备。在具体实现中,网络设备可以是台式机、便携式电脑、网络服务器、掌上电脑、移动手机、平板电脑、无线终端设备、通信设备或嵌入式设备,本申请实施例不限定网络设备的类型。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意结合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如:同轴电缆、光纤、数据用户线(Digital Subscriber Line,DSL))或无线(例如:红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质,或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如:软盘、硬盘、磁带)、光介质(例如:数字通用光盘(Digital Versatile Disc,DVD))或半导体介质(例如:固态硬盘(Solid State Disk,SSD))等。
以上所述为本申请提供的实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (24)

  1. 一种发送指令的方法,其特征在于,所述方法应用于通信网络中的宽带网络网关BNG系统,所述BNG系统包括一个控制面网元和多个用户面网元;
    所述方法包括:
    在确定将第一终端设备迁移至第一用户面网元、将第二终端设备迁移至第二用户面网元时,响应于所述第一终端设备的优先级高于所述第二终端设备的优先级,所述控制面网元在向所述第一用户面网元发送第一更新指令之后,向所述第二用户面网元发送第二更新指令;
    其中,所述第一更新指令用于指示所述第一用户面网元基于所述第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合,所述第二更新指令用于指示所述第二用户面网元基于所述第二终端设备的转发控制表项信息更新本地的转发控制表项信息集合,所述第一用户面网元和所述第二用户面网元属于所述多个用户面网元。
  2. 如权利要求1所述的方法,其特征在于,所述第一更新指令携带所述第一终端设备的转发控制表项信息,所述第二更新指令携带所述第二终端设备的转发控制表项信息。
  3. 如权利要求1所述的方法,其特征在于,所述第一终端设备的优先级超过目标优先级,所述第二终端设备的优先级低于所述目标优先级,所述方法还包括:
    在确定将所述第一终端设备迁移至所述第一用户面网元之前,响应于所述第一终端设备的优先级超过所述目标优先级,所述控制面网元向所述第一用户面网元发送所述第一终端设备的转发控制表项信息;
    相应地,所述第一更新指令中不携带所述第一终端设备的转发控制表项信息,所述第二更新指令中携带所述第二终端设备的转发控制表项信息。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    所述控制面网元向所述第一用户面网元发送所述第一终端设备的转发控制表项信息对应的停止更新指令,所述停止更新指令指示所述第一用户面网元在接收到提前下发的所述第一终端设备的转发控制表项信息时,不基于所述第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合。
  5. 如权利要求1至4任一所述的方法,其特征在于,所述第一用户面网元和所述第二用户面网元为同一用户面网元,或者,所述第一用户面网元和所述第二用户面网元为不同的用户面网元。
  6. 如权利要求1至5任一所述的方法,其特征在于,所述第一终端设备为由第三用户面网元迁移至所述第一用户面网元的终端设备,所述第二终端设备为由第四用户面网元迁移至所述第二用户面网元的终端设备;
    所述第三用户面网元和所述第四用户面网元为同一用户面网元,或者,所述第三用户面 网元和所述第四用户面网元为不同的用户面网元。
  7. 如权利要求6所述的方法,其特征在于,所述第三用户面网元和所述第一用户面网元上接收所述第一终端设备的流量的接口属于第一类接口,所述第四用户面网元和所述第二用户面网元上接收所述第二终端设备的流量的接口属于第二类接口;
    所述第一终端设备的优先级为所述第一温备组的优先级,所述第二终端设备的优先级为所述第二温备组的优先级。
  8. 如权利要求1至6任一所述的方法,其特征在于,所述第一终端设备的优先级为所述第一终端设备的业务的优先级,所述第二终端设备的优先级为所述第二终端设备的业务的优先级。
  9. 如权利要求1至6任一所述的方法,其特征在于,所述第一终端设备的优先级为所述第一终端设备的约定服务等级SLA,所述第二终端设备的优先级为所述第二终端设备的SLA。
  10. 如权利要求1至9任一所述的方法,其特征在于,所述方法还包括:
    所述控制面网元接收验证授权记账AAA服务器发送的所述第一终端设备的优先级以及所述第二终端设备的优先级。
  11. 一种发送指令的方法,其特征在于,所述方法应用于通信网络,所述通信网络包括用户切换功能USF网元和宽带网络网关BNG系统,所述BNG系统包括一个控制面网元和多个用户面网元;
    所述方法包括:
    响应于所述第一终端设备的优先级高于所述第二终端设备的优先级,所述USF网元在向所述控制面网元发送第一迁移指令之后,向所述第二用户面网元发送第二迁移指令;
    其中,所述第一迁移指令指示将所述第一终端设备迁移至第一用户面网元,所述第二迁移指令指示将所述第二终端设备迁移至第二用户面网元,所述第一用户面网元和所述第二用户面网元属于所述多个用户面网元。
  12. 如权利要求11所述的方法,其特征在于,所述USF网元向所述第二用户面网元发送第二迁移指令之前,所述方法还包括:
    所述USF网元接收所述控制面网元发送的所述第一终端设备的优先级以及所述第二终端设备的优先级。
  13. 如权利要求11或12所述的方法,其特征在于,所述通信网络还包括切换功能SF网元,所述SF网元上配置有和所述第一用户面网元以及第二用户面网元分别对应的接口;
    所述方法还包括:
    响应于所述第一终端设备的优先级高于所述第二终端设备的优先级,所述USF网元在向所述SF网元发送第一接口配置指令之后,向所述SF网元发送第二接口配置指令;
    其中,所述第一接口配置指令指示所述SF网元将所述第一终端设备和所述第一用户面网元所对应的接口绑定,所述第二接口配置指令指示所述SF网元将所述第一终端设备和所述第二用户面网元所对应的接口绑定。
  14. 如权利要求11至13任一所述的方法,其特征在于,所述第一终端设备的优先级为所述第一终端设备的约定服务等级SLA,所述第二终端设备的优先级为所述第二终端设备的SLA。
  15. 一种发送信息的方法,其特征在于,所述方法应用于通信网络中的宽带网络网关BNG系统,所述BNG系统包括一个控制面网元和多个用户面网元;
    所述方法包括:
    在第一终端设备迁移至第一用户面网元之前,响应于所述第一终端设备的优先级超过目标优先级,所述控制面网元向所述第一用户面网元发送所述第一终端设备的保活信息;
    其中,所述保活信息用于所述第一用户面网元响应所述第一终端设备发送的保活请求报文,所述第一用户面网元属于所述多个用户面网元。
  16. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    在确定将所述第一终端设备迁移至所述第一用户面网元时,所述控制面网元向所述第一用户面网元发送第一更新指令;
    其中,所述第一更新指令携带所述第一终端设备的转发控制表项信息,且所述第一更新指令用于指示所述第一用户面网元基于所述第一终端设备的转发控制表项信息更新本地的转发控制表项信息集合。
  17. 一种网络设备,其特征在于,所述网络设备包括存储器和处理器;
    所述存储器用于存储程序指令;
    所述处理器被配置为调用所述存储器中存储的程序,以使得所述网络设备执行如权利要求1-10任一所述的方法。
  18. 一种网络设备,其特征在于,所述网络设备包括存储器和处理器;
    所述存储器用于存储程序指令;
    所述处理器被配置为调用所述存储器中存储的程序,以使得所述网络设备执行如权利要求11-14任一所述的方法。
  19. 一种网络设备,其特征在于,所述网络设备包括存储器和处理器;
    所述存储器用于存储程序指令;
    所述处理器被配置为调用所述存储器中存储的程序,以使得所述网络设备执行如权利要求15-16任一所述的方法。
  20. 一种控制面网元,其特征在于,所述控制面网元包括收发模块和处理模块;
    所述收发模块用于执行如权利要求1-10任一项所述方法中收发相关的操作;
    所述处理模块用于执行如权利要求1-10任一项所述方法中除所述收发相关的操作之外的操作。
  21. 一种用户切换功能USF网元,其特征在于,所述USF网元包括收发模块和处理模块;
    所述收发模块用于执行如权利要求11-14任一项所述方法中收发相关的操作;
    所述处理模块用于执行如权利要求11-14任一项所述方法中除所述收发相关的操作之外的操作。
  22. 一种控制面网元,其特征在于,所述控制面网元包括收发模块和处理模块;
    所述收发模块用于执行如权利要求15-16任一项所述方法中收发相关的操作;
    所述处理模块用于执行如权利要求15-16任一项所述方法中除所述收发相关的操作之外的操作。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在处理器上运行时,实现权利要求1-10任一项所述的方法、或者实现权利要求11-14任一项所述的方法、或者实现权利要求15-16任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,所述计算机程序产品包含指令,所述指令在处理器上运行时,实现权利要求1-10任一项所述的方法、或者实现权利要求11-14任一项所述的方法、或者实现权利要求15-16任一项所述的方法。
PCT/CN2022/132789 2021-11-22 2022-11-18 发送指令、信息的方法及装置 WO2023088411A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111381962.2 2021-11-22
CN202111381962 2021-11-22
CN202210157172.4A CN116155791A (zh) 2021-11-22 2022-02-21 发送指令、信息的方法及装置
CN202210157172.4 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023088411A1 true WO2023088411A1 (zh) 2023-05-25

Family

ID=86358795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132789 WO2023088411A1 (zh) 2021-11-22 2022-11-18 发送指令、信息的方法及装置

Country Status (2)

Country Link
CN (1) CN116155791A (zh)
WO (1) WO2023088411A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160156718A1 (en) * 2014-12-01 2016-06-02 Telefonaktiebolaget L M Ericsson (Publ) Enf selection for nfvi
CN107623593A (zh) * 2017-08-31 2018-01-23 北京华为数字技术有限公司 基于cu分离的双机热备的方法及设备
CN109891830A (zh) * 2016-11-04 2019-06-14 华为技术有限公司 一种功能调度方法、设备和系统
EP3731464A1 (en) * 2019-04-24 2020-10-28 Huawei Technologies Co. Ltd. Method and apparatus for accessing a gateway
CN113597020A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 一种通信方法及相关设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160156718A1 (en) * 2014-12-01 2016-06-02 Telefonaktiebolaget L M Ericsson (Publ) Enf selection for nfvi
CN109891830A (zh) * 2016-11-04 2019-06-14 华为技术有限公司 一种功能调度方法、设备和系统
CN107623593A (zh) * 2017-08-31 2018-01-23 北京华为数字技术有限公司 基于cu分离的双机热备的方法及设备
EP3731464A1 (en) * 2019-04-24 2020-10-28 Huawei Technologies Co. Ltd. Method and apparatus for accessing a gateway
CN113597020A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 一种通信方法及相关设备

Also Published As

Publication number Publication date
CN116155791A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2020216339A1 (zh) 接入网关的方法及装置
EP2806601B1 (en) Tunnels between virtual machines
US8121126B1 (en) Layer two (L2) network access node having data plane MPLS
JP5986692B2 (ja) ネットワークデバイスのためのネットワーク機能仮想化
US8085791B1 (en) Using layer two control protocol (L2CP) for data plane MPLS within an L2 network access node
US11398956B2 (en) Multi-Edge EtherChannel (MEEC) creation and management
WO2022143818A1 (zh) 故障处理方法、控制面网元、切换决策网元及相关设备
US20120008632A1 (en) Sharing Resource Reservations Among Different Sessions In RSVP-TE
US20130227673A1 (en) Apparatus and method for cloud networking
EP3493483A1 (en) Virtual broadband access method, controller, and system
JP7541116B2 (ja) 通信方法および関連装置
WO2013174096A1 (zh) 一种云计算虚拟机迁移的方法、设备及系统
WO2023088411A1 (zh) 发送指令、信息的方法及装置
CN114079649B (zh) 地址分配方法、设备及系统
WO2022213822A1 (zh) 一种控制用户设备接入网络的方法、装置及设备
WO2022012383A1 (zh) 一种报文传输的方法、装置、系统及存储介质
WO2023036135A1 (zh) 消息收发方法、信息获取及收发方法、及相关设备
US11943101B2 (en) Joint orchestration for private mobile network
WO2022017453A1 (zh) 一种网络接入方法、装置及系统
WO2024051294A1 (zh) 客户端设备的接入方法、装置及系统
CN114615181A (zh) 路由生成方法、报文转发方法、转发设备及存储介质
CN117459476A (zh) 网络连接方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE