WO2014015405A1 - Processo para a produção de álcool pela fermentação de açúcares - Google Patents

Processo para a produção de álcool pela fermentação de açúcares Download PDF

Info

Publication number
WO2014015405A1
WO2014015405A1 PCT/BR2013/000267 BR2013000267W WO2014015405A1 WO 2014015405 A1 WO2014015405 A1 WO 2014015405A1 BR 2013000267 W BR2013000267 W BR 2013000267W WO 2014015405 A1 WO2014015405 A1 WO 2014015405A1
Authority
WO
WIPO (PCT)
Prior art keywords
fermentation
process according
electrodes
sugars
alcohol
Prior art date
Application number
PCT/BR2013/000267
Other languages
English (en)
French (fr)
Inventor
José Francisco LOPES
Original Assignee
Advel Tecnologia E Comércia Ltda.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advel Tecnologia E Comércia Ltda. filed Critical Advel Tecnologia E Comércia Ltda.
Priority to RU2014153698A priority Critical patent/RU2654590C2/ru
Priority to US14/417,133 priority patent/US9365869B2/en
Priority to BR112015001644A priority patent/BR112015001644B1/pt
Priority to AU2013296083A priority patent/AU2013296083B2/en
Priority to CN201380035038.6A priority patent/CN104540942A/zh
Priority to EP13823900.9A priority patent/EP2878669A4/en
Priority to JP2015523352A priority patent/JP6225183B2/ja
Publication of WO2014015405A1 publication Critical patent/WO2014015405A1/pt
Priority to ZA2014/09270A priority patent/ZA201409270B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a physicochemical process for improving alcohol production through the fermentation of sugars which includes the creation of polarization to the fermentation broth through an electric field.
  • Alcohol is a class of chemical compounds characterized by containing at least one hydroxyl (OH) group and are widely used in industry.
  • the best known compound of this class is ethanol or ethyl alcohol. It can be found in alcoholic beverages, in cleaning products, in pharmaceuticals, it is widely used as a chemical solvent and is also used as a fuel for automobiles, which is currently more noble and intense use.
  • the ethanol production process is usually made from sugar cane, but can be made from a variety of grains and sugar sources such as maize, cassava, other tubers, sorghum, wheat, barley, and molasses, syrup, sugarcane bagasse, potato, whey, etc.
  • Ethanol manufacture is basically divided into 4 phases: milling, liquefaction, fermentation and distillation. Grinding comprises passing the sugar source through a processor. In this step a broth is obtained, which contains a high content of water and sugars.
  • the fermentation part comprises the addition of some type of yeast that causes the sugar present in the solution to turn into ethanol.
  • the action of enzymes is what accomplishes this work. After this process, the fermented must is obtained, which already contains part of its total volume transformed into ethanol.
  • fermentation also called alcoholic fermentation, which is the chemical process of transforming sugars, especially sucrose, glucose and fructose, into ethanol.
  • microbiological agents participate, which are responsible for the conversion of sugars into ethanol.
  • Brian Burmaster International Patent Application WO 2007/064545 describes a process for improving ethanol yield, decreasing fermentation time and reducing by-product formation by monitoring and controlling the oxidizing potential of the fermenter.
  • this process requires very specific and difficult to maintain monitoring, making the process expensive but more efficient.
  • Vladimir Vlad International Patent Application WO 2008/024331 describes a method for magnetic fermentation which includes subjecting a biological material to a static magnetic field to affect the fermentation of the biological material in a fermented product.
  • the fermentation reaction it can occur in alkaline or acidic medium and the magnetic field can be positive or negative.
  • the present document makes use of the static magnetic field to provide a more conducive environment for the cellular reproduction of microorganisms. Although increasing the number of microorganisms in alcoholic fermentation and thus increasing the reaction yield, this process needs constant monitoring and total reaction control which makes the process expensive.
  • the inventor has developed a process for the production of alcohol through the fermentation of sugars that has benefits such as increased process efficiency through continuous electrical polarization during fermentation.
  • the present invention provides a physicochemical process for increasing and improving the yield of alcohol production through modifications and improvements in the fermentation stage of solutions containing sugars.
  • This improvement consists of the introduction of a direct current electric field, making a dynamic polarization of the sugars, as well as an electrolysis of the wort, which in fact comes from the acidified water in almost all of the wort.
  • the electrodes described in the present invention are devices made of conductive metal.
  • the process described in the present invention comprises the following steps: 1. Preparing a container for the processed broth containing at least 2 electrodes;
  • the apparatus includes means for controlling and maintaining fermentation parameters such as voltage and current.
  • the process described below comprises not only the application of the electric field to the prepared broth, but all the steps for the production of ethanol from sugarcane.
  • this plant produces from 9 to 10% ethanol from 300,000 liters in each barrel, ie 27,000 to 30,000 liters of ethanol per batch of each barrel.
  • ART will be used to identify “total reducing sugars”.
  • BRIX we will also use the term BRIX to identify the hydrometric scale for measuring sugar concentration in a given solution and temperature. These terms are already grounded in the state of the art and easy to understand for one skilled in the art.
  • the pH in the bowl when starting fermentation is approximately 4.5.
  • the BRIX of must when fermenting ranges from 18 to 22 with an alcohol content of approximately 8%.
  • the total reducing sugars, ART, as well as BRIX will scale down, reducing their contents, and the pH of the must acidifying to as much as 3.5 as well as the rising temperature.
  • the wort temperature should not rise, as it will cause the proliferation of microorganisms that will consume some of the remaining ART in the process.
  • the anodes and cathodes are geometrically equal. They consist of coils with gaps between turns, approximately equal to the diameter of the pipes and should be 99.9% pure copper. They are made to measure existing barrels that now reach 10 (10) meters in diameter and with a capacity of 1,000 m3 of must each.
  • anodes and cathodes in the tubular form comprise; - Conduct cathodic and anodic direct current;
  • the shape of the spirals depends on the shape of the dorna, and they are present in pairs, with at least one pair. These spirals are carried by insulating material supports, which do not allow electrical contact between them and the sides of the dornas.
  • the circulating current in these coils can be polarized to prevent anodic sludge from depositing on the anodes.
  • the distance between anode and cathode depends on the amperage and voltage, varying automatically according to pH variations. As the pH of the mash becomes acidic, an automatic injection of lime juice or other alkalis is injected.
  • the fermentation gas is CO2 (or carbon dioxide) that decreases with the fermentation process.
  • CO2 or carbon dioxide
  • Reactive gases are ionic, able to react in the formation of ethanol and other products. They present differently and at a pH of around 4.5 and a temperature below 35 ° C, remaining approximately constant throughout the fermentation process even after the extinction of the CO2 formation with natural end of the fermentation. This will also drag part of the alcohol continuously in the form of steam. These alcohol vapors should preferably be condensed and collected without distillation of the final must. This will also allow the capture of almost all CO2, which is released into the atmosphere today. This substantially reduces the atmospheric emission of CO2, which is on the order of 1 cubic meter for each cubic meter of ethanol.
  • sucrose molecules are dynamically polarized there will always be an orientation of these, facilitating their transformation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Electromagnetism (AREA)
  • Molecular Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A presente invenção refere-se a processo melhorado para a produção e álcool pela fermentação de açúcares, onde a melhoria do processo está na aplicação de um campo elétrico ao caldo preparado antes que o processo de fermentação inicie, bem como durante toda a fermentação.

Description

TÍTULO
"PROCESSO PARA A PRODUÇÃO DE ÁLCOOL PELA FERMENTAÇÃO DE AÇÚCARES" Campo da invenção
A presente invenção refere-se a um processo físico-químico para melhorar a produção de álcool através da fermentação de açúcares que inclui a criação de polarização ao caldo da fermentação, através de um campo elétrico.
Antecedentes da Invenção
Álcool é uma classe de compostos químicos caracterizados por conter pelo menos um grupo hidroxila (OH) e são muito utilizados na indústria. O mais conhecido composto desta classe é o etanol ou álcool etílico. Este pode ser encontrado em bebidas alcoólicas, em produtos de limpeza, em produtos farmacêuticos, é muito utilizado como solvente químico e também tem aplicação como combustível para automóveis, que é atualmente uso mais nobre e intenso.
O processo de produção do etanol é geralmente feito a partir da cana- de-açúcar, mas pode pode ser feito a partir de uma variedade de grãos e fontes de açúcar como o milho, mandioca, outro tubérculos, sorgo, trigo, cevada, e melaço, xarope, bagaço de cana, batata, soro de leite, etc.
A manufatura do etanol divide-se basicamente em 4 fases: moagem, liquefação, fermentação e destilação. A moagem compreende a passagem do da fonte de açúcar por um processador. Nesta etapa obtém-se um caldo, que contém um alto teor de água e açucares.
A parte da fermentação compreende a adição de algum tipo de levedura que faz com que o açúcar presente na solução se transforme em etanol. A ação de enzimas é que realiza esse trabalho. Após esse processo, se obtém o mosto fermentado, que já contém parte do seu volume total transformado em etanol.
O mosto então segue para a ultima etapa, a destilação fracionada e vai dar origem a uma solução cuja composição será de etanol e de água. A etapa que afeta mais diretamente o resultado da produção de etanol, e portanto a mais estudada é a fermentação também chamada de fermentação alcoólica, que é o processo químico de transformação dos açúcares, principalmente a sacarose, glicose e frutose, em etanol. Neste processo, participam agentes microbiológicos, que são responsáveis pela conversão dos açúcares em etanol.
Por ser um processo amplamente conhecido no estado da técnica, diversos documentos descrevem processos para o fim descrito acima podem ser encontrados. Em geral, os processos concentram-se em encontrar uma espécie ou combinação de espécies ideais para a produção de etanol, uma vez que o processo utilizado implica em perda significativa das matérias primas (açúcares) e consequentemente reduzindo a eficiência do processo.
Na literatura patentária diversos documentos que versam sobre diferentes processos para a produção de etanol podem ser encontrados. A patente norte-americana US 4451566 de Donald B. Spencer descreve métodos e aparelhos para a produção enzimática de etanol a partir de açúcares fermentáveis. Uma sequência de enzimas para a catalização da conversão dos açúcares em etanol é retida em uma diversidade de zonas de reação. A solução de açúcar fermentável passa sequencialmente por estas zonas e o álcool é recuperado na ultima zona. Apesar de proporcionar uma reação mais eficiente que o processo usual, o presente documento fornece uma solução onerosa, complexa e de difícil manutenção.
O pedido internacional de patente WO 2007/064545 de Brian Burmaster descreve um processo para melhorar o rendimento do etanol, diminuir o tempo de fermentação e reduzir a formação de subproduto pela monitoração e controle do potencial oxi redutor do fermentador. No entanto, este processo requer um monitoramento muito específico e difícil de manter, deixando o processo caro, apesar de mais eficiente.
O pedido internacional de patente WO 2008/024331 de Vladimir Vlad descreve um método para fermentação magnética que inclui sujeitar um material biológico a um campo magnético estático para afetar a fermentação do material biológico em um produto fermentado. A reação de fermentação pode ocorrer em meio alcalino ou ácido e o campo magnético pode ser positivo ou negativo. O presente documento faz uso do campo magnético estático para prover um ambiente mais propício para a reprodução celular dos microrganismos. Apesar de aumentar o número de microrganismos na fermentação alcoólica e desta forma aumentar o rendimento da reação, este processo precisa de um monitoramento constante e de um controle total da reação que torna o processo caro.
Observando as limitações do estado da técnica, o inventor desenvolveu um processo para a produção de álcool através da fermentação de açúcares que traz benefícios como o aumento da eficiência do processo, através da polarização elétrica continua, durante a fermentação.
Sumário da invenção
Processos para a produção de álcool através da fermentação de açúcares já são conhecidos pelos versados na técnica. No entanto, todos os processos utilizados para a produção de álcool através de fermentação alcoólica ou possuem falha substancial no rendimento da reação de fermentação, acarretando perdas na matéria-prima (açúcares), ou apresentam um equipamento ou um processo com custo elevado para sua implementação ou manutenção. Portanto é objeto da presente invenção fornecer um processo físico-químico melhorado e de baixo custo para a produção de álcool através da fermentação de açúcares que apresente elevada taxa de aproveitamento da matéria-prima (açúcares) e seus sub-produtos, consequentemente aumentando o rendimento da reação de fermentação. Processos de fermentação já são bem sedimentados, envolvem um grande custo com materiais. Portanto, é um objetivo da invenção fornecer um processo que pode ser facilmente implementado em estruturas já instaladas, trazendo uma melhor eficiência do processo de fermentação de açucares. Descrição Detalhada da Invenção
A presente invenção fornece um processo físico-químico para aumentar e melhorar o rendimento da produção de álcool através de modificações e melhorias na etapa de fermentação das soluções contendo açúcares. Esta melhoria consiste na introdução de um campo elétrico de corrente contínua, fazendo uma polarização dinâmica dos açucares, bem como uma eletrólise do mosto, que na verdade é proveniente da água acidulada em quase toda a sua totalidade, contida no mosto.
A aplicação de um campo elétrico no caldo processado (solução contendo açúcares) faz com que as polarizações sejam formados nas moléculas dos açúcares contidos no caldo processado. A formação dos referidos polarizações elétricas aumentam a seletividade das moléculas dos açúcares, aumentando assim o rendimento do processo.
Para que esta seletividade ocorra com a eficiência desejada, é necessário que o processo de fermentação só seja iniciado depois de aplicado o campo elétrico ao caldo processado. Uma vez que tenhamos todas as moléculas orientadas eletricamente, a fermentação tem seu início.
Os eletrodos descritos na presente invenção são dispositivos feitos em metal condutor.
O processo descrito na presente invenção compreende as seguintes etapas: 1. Preparar um recipiente para o caldo processado contendo pelo menos 2 eletrodos;
2. Ligar os eletrodos a uma fonte de corrente contínua;
3. Preparar o caldo para a fermentação;
4. Encher o recipiente por batelada ou continuamente;
5. Ligar os eletrodos para orientar as moléculas de açúcar e;
6. Iniciar o processo de fermentação
Em um aspecto da presente invenção, o equipamento inclui meios para controle e manutenção dos parâmetros da fermentação, como tensão e corrente.
Foram feitos alguns testes para avaliar a eficácia da aplicação do campo elétrico no caldo da fermentação. Segue abaixo um exemplo de um processo, que não tem por objetivo limitar o escopo de proteção da presente invenção. Exemplo de processo de produção de etanol através de fermentação de açucares.
O processo descrito abaixo não compreende somente a aplicação do campo elétrico ao caldo preparado, mas todas as etapas para a produção de etanol a partir da cana-de-açúcar.
Vejamos um caso atual de uma usina moderna que, possui dornas na quantidade de 12 (doze) sendo cada uma delas de 300.000 litros, onde este volume é constituído por caldo de cana, água de embebição, mais a somatória de produtos químicos, perfazendo-se em média 6x10-4 Kg/lt destes produtos ou 180 Kg por dorna de 300000 litros.
Na fermentação e destilação, esta Usina produz de 9 a 10% de etanol dos 300.000 litros em cada dorna, ou seja, 27.000 a 30.000 litros de etanol por batelada de cada dorna.
Em cada dorna, introduz-se de um campo elétrico de corrente contínua, fazendo uma polarização dinâmica da sacarose, bem como uma eletrólise do mosto, que na verdade é proveniente da água acidulada em quase toda a sua totalidade. Dois tipos de gases são naturalmente formados, neste tipo de fermentação composta com uma eletrólise:
- Os da fermentação que é o gás carbónico em bolhas.
- O da eletrólise, onde basicamente os gases em meio acido são iónicos em água com a pequena participação de outros gases relativos aos elementos químicos de baixíssima concentração existentes no mosto.
Isto significa que vai existir um aumento de volume de gases nas dornas de fermentação. A polarização dinâmica dos açucares mais o aumento de volume de gases e suas reatividades, vão também dar origem a um volume de ETANOL e outros compostos em adição aos da simples fermentação alcoólica.
Para efeitos ilustrativos da presente invenção, o termo ART será utilizado para identificar os "açúcares redutores totais". Utilizaremos também o termo BRIX para identificar a escala hidrométrica de medição da concentração de açucares numa determinada solução e temperatura. Estes termos já estão sedimentados no estado da técnica e de fácil entendimento para um versado na técnica.
O pH na dorna ao iniciar a fermentação é de aproximadamente 4,5. O BRIX do mosto ao fermentar varia de 18 a 22 com teor alcoólico de aproximadamente 8%. Quando iniciada a fermentação, os açucares redutores totais, ART, bem como o BRIX vão a escala decrescente, reduzindo os seus teores, e o pH do mosto acidificando, para até 3,5 bem como a temperatura subindo. A temperatura do mosto não deve subir, pois vai provocar a proliferação de micro-organismos que vão consumir parte dos ART ainda remanescentes no processo.
Ânodos e Cátodos
Os ânodos e cátodos são geometricamente iguais. São constituídos por serpentinas com folga entre as espiras, aproximadamente iguais ao diâmetro dos tubos devendo ser de cobre com, 99,9% de pureza. Eles são feitos sob medidas das dornas existentes que hoje já atinge 10 (dez) metros de diâmetro e com capacidade para 1.000 m3 de mosto, cada.
As funções dos ÂNODOS e CÁTODOS na forma tubular compreendem; - Conduzir a corrente contínua catódica e anódica;
- Promover o resfriamento do mosto através de corrente de água desmineralizada e deionizada, em circuito fechado, mantendo a temperatura do mosto menor ou igual a 35°C, utilizando a água que passa por dentro das serpentinas do cátodo e ânodo.
A forma das espirais depende da forma da dorna, e estão presentes em pares, sendo que no mínimo deve haver um par. Estas espirais são portadas por suportes de materiais isolantes, que não permitem o contato elétrico entre elas e os costados das dornas. A corrente circulante nestes espirais, pode ser comutada de polaridade, para evitar o depósito de lama anódica, sobre os ânodos. A distância entre ânodo e cátodo dependem da amperagem e voltagem, variando-se automaticamente, de acordo com as variações do pH. A medida que o pH do mosto se acidifica, uma injeção automática de caldo de cal ou outros alcalis é injetada.
Gases do Processo
O gás da fermentação é o CO2 (ou gás carbónico) que diminui com o processo da fermentação. Quando não existir mais formação de CO2, significa que quase todos os açúcares foram transformados e todo mosto deve ir para a destilação. Os gases reativos são iónicos, aptos a reagirem na formação de etanol e outros produtos. Eles se apresentam de forma distinta e em se mantendo o pH por volta de 4,5 e a temperatura abaixo dos 35°C, permanecendo aproximadamente constantes durante todo o processo da fermentação mesmo após a extinção da formação CO2 com fim natural da fermentação. Com isto, vão arrastar também parte do álcool continuamente na forma de vapor. Estes vapores de álcool, devem ser preferencialmente condensados e recolhidos sem passar pela destilação do mosto final. Isto também vai permitir a captação de quase todo CO2, que hoje é lançado na atmosfera. Desta forma, reduz-se substancialmente a emissão atmosférica de CO2, que é da ordem de 1 metro cúbico para cada metro cúbico de etanol.
Polarização Dinâmica da Sacarose
Como as moléculas da sacarose são dinamicamente polarizadas vai haver sempre uma orientação destas, facilitando a sua transformação.
Automatização do Processo
Na automatização do processo, é necessário que faça o controle do pH no seu ponto mais adequado para cada fase da fermentação. Este controle atua nas bombas dosadoras de caldo de cal ou equivalente, pois a tendência no desenvolvimento do processo, é de acidular mais, o mosto remanescente em fermentação. Devido a variação do pH durante o processo de fermentação, ocorrem variações de densidade de corrente elétrica que também possui um sistema de medição e controle desta, principalmente no processo por batelada.
Os versados na técnica entenderão que o processo descrito na presente invenção não limita-se a especificidades do processo de fermentação do etanol, podendo este processo ser estendido a todo e qualquer processo de fermentação conhecido no estado da técnica, fornecendo eficiência e velocidade e aumento da produção de álcool.

Claims

REIVINDICAÇÕES
"PROCESSO PARA A PRODUÇÃO DE ÁLCOOL PELA FERMENTAÇÃO DE AÇÚCARES" 1. Processo para a produção de álcool pela fermentação de açúcares caracterizado pelo fato compreender a aplicação de um campo elétrico ao caldo de fermentação.
2. Processo de acordo com a revindicação 1 , caracterizado pelo fato de compreender as seguintes etapas:
(i) Preparar um recipiente para o caldo processado contendo pelo menos 2 eletrodos;
(ii) Ligar os eletrodos a uma fonte de corrente contínua;
(iii) Preparar o caldo para a fermentação;
(iv) Encher o recipiente por batelada ou continuamente; e
(v) Ligar os eletrodos para orientar as moléculas de açúcar.
3. Processo de acordo com a revindicação 1 , caracterizado pelo fato do referido álcool ser escolhido do grupo que compreende compostos orgânicos de fórmula R-OH, onde R representa uma cadeia saturada ou insaturada, contendo de 2 átomos de carbono ou mais.
4. Processo de acordo com a revindicação 3, caracterizado pelo fato do radical R representar uma cadeia saturada contendo no minimo 2 átomos de carbono.
5. Processo de acordo com a revindicação 1 , caracterizado pelo fato dos referidos açúcares serem escolhidos do grupo que compreende sacarose, frutose, glicose .
6. Processo de acordo com a reivindicação 1 , caracterizado pelo fato da referida aplicação de um campo elétrico ser fornecida por pelo menos dois eletrodos.
7. Processo, de acordo com a reivindicação 6, caracterizado pelo fato dos eletrodos compreenderem pelo menos um eletrodo positivo e pelo menos um eletrodo negativo, alimentados por fonte de corrente continua.
8. Processo, de acordo com as reivindicações anteriores, caracterizado pelo fato de compreender meios para controle e manutenção do referido campo elétrico, ditos meios para controle selecionado dentre um variador de tensão ou um variador de corrente.
9. Processo, de acordo com a reivindicação 6, caracterizado pelo fato dos referidos eletrodos manterem a diferença potencial constante entre eles.
10. Processo, de acordo com a reivindicação 6, caracterizado pelo fato dos referidos eletrodos serem constituídos por tubos, com geometria conveniente para a circulação de água que também controla a temperatura do processo, do mosto em fermentação.
11 . Processo, de acordo com a reivindicação 1 , caracterizado pelo fato dos referida temperatura estar compreendida no intervalo de 30 a 35°C
12. Processo, de acordo com a reivindicação 1 , caracterizado pelo fato do referido pH variar de 6 a 4,5, em geral de baixa acidez.
13. Processo, de acordo com a reivindicação 12, caracterizado pelo fato de compreender controles contínuos de pH de aproximadamente 4,5.
PCT/BR2013/000267 2012-07-26 2013-07-24 Processo para a produção de álcool pela fermentação de açúcares WO2014015405A1 (pt)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2014153698A RU2654590C2 (ru) 2012-07-26 2013-07-24 Способ получения спирта путем брожения сахаров
US14/417,133 US9365869B2 (en) 2012-07-26 2013-07-24 Process for producing alcohol by fermentation of sugars
BR112015001644A BR112015001644B1 (pt) 2012-07-26 2013-07-24 processo para a produção de álcool pela fermentação de açúcares
AU2013296083A AU2013296083B2 (en) 2012-07-26 2013-07-24 Process for producing alcohol by fermentation of sugars
CN201380035038.6A CN104540942A (zh) 2012-07-26 2013-07-24 通过糖发酵制造醇的方法
EP13823900.9A EP2878669A4 (en) 2012-07-26 2013-07-24 PROCESS FOR THE PRODUCTION OF ALCOHOL BY FERMENTATION OF SUGARS
JP2015523352A JP6225183B2 (ja) 2012-07-26 2013-07-24 糖類の発酵によるアルコール生産方法
ZA2014/09270A ZA201409270B (en) 2012-07-26 2014-12-17 Process for producing alcohol by fermentation of sugars

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1120120185756 2012-07-26
BR102012018575 2012-07-26

Publications (1)

Publication Number Publication Date
WO2014015405A1 true WO2014015405A1 (pt) 2014-01-30

Family

ID=54260566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000267 WO2014015405A1 (pt) 2012-07-26 2013-07-24 Processo para a produção de álcool pela fermentação de açúcares

Country Status (6)

Country Link
US (1) US9365869B2 (pt)
EP (1) EP2878669A4 (pt)
JP (1) JP6225183B2 (pt)
CN (1) CN104540942A (pt)
AU (1) AU2013296083B2 (pt)
WO (1) WO2014015405A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3041943B1 (en) * 2013-09-02 2019-06-19 Mahle Metal Leve S/A A process for microbial fermentation of sugary substrates (wort) by using hydrogen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102015032175B1 (pt) * 2015-12-22 2023-01-31 Innoferm Tecnologia Ltda Célula eletrolítica geradora de hidrogênio em meio de fermentação alcoólica

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451566A (en) 1981-12-04 1984-05-29 Spencer Donald B Methods and apparatus for enzymatically producing ethanol
WO2007064545A2 (en) 2005-11-30 2007-06-07 Brian Burmaster Improved ethanol fermentation using oxidation reduction potential
WO2008024331A2 (en) 2006-08-21 2008-02-28 Emtech Llc Method and apparatus for magnetic fermentation
KR20090008807A (ko) * 2007-07-19 2009-01-22 삼성전자주식회사 전기장을 이용한 효모 성장 촉진 방법 및 장치
JP2011223988A (ja) * 2010-03-31 2011-11-10 Central Res Inst Of Electric Power Ind 発酵処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR830006419A (ko) * 1980-05-30 1983-09-24 로오스 엠 페코라 고주파 전기 신호에 의한 발효법
IL62822A0 (en) 1980-05-30 1981-07-31 Ppg Industries Inc Fermentation process
US4885247A (en) * 1988-04-19 1989-12-05 Michigan Biotechnology Institute Recovery and purification of lactate salts from whole fermentation broth by electrodialysis
US8062872B2 (en) * 2006-11-01 2011-11-22 Inland Environmental Resources, Inc. Methods and compositions for optimizing fermentation
CN101298619A (zh) * 2008-07-01 2008-11-05 刘明全 用甜菜制取乙醇的方法
CN102211840B (zh) * 2011-05-11 2013-03-20 中山市泰帝科技有限公司 一种餐饮废水的资源化利用装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451566A (en) 1981-12-04 1984-05-29 Spencer Donald B Methods and apparatus for enzymatically producing ethanol
WO2007064545A2 (en) 2005-11-30 2007-06-07 Brian Burmaster Improved ethanol fermentation using oxidation reduction potential
WO2008024331A2 (en) 2006-08-21 2008-02-28 Emtech Llc Method and apparatus for magnetic fermentation
KR20090008807A (ko) * 2007-07-19 2009-01-22 삼성전자주식회사 전기장을 이용한 효모 성장 촉진 방법 및 장치
JP2011223988A (ja) * 2010-03-31 2011-11-10 Central Res Inst Of Electric Power Ind 発酵処理装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOTOYOSHI NAKANISHI ET AL.: "Effect of electric current on growth and alcohol production by yeast cells.", JOURNAL OF FERMENTATION AND BIOENGINEERING., vol. 85, no. 2, 1998, pages 250 - 253, XP055182407 *
See also references of EP2878669A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3041943B1 (en) * 2013-09-02 2019-06-19 Mahle Metal Leve S/A A process for microbial fermentation of sugary substrates (wort) by using hydrogen

Also Published As

Publication number Publication date
JP2015528701A (ja) 2015-10-01
AU2013296083A8 (en) 2015-08-06
AU2013296083B2 (en) 2018-07-26
US9365869B2 (en) 2016-06-14
AU2013296083A1 (en) 2015-01-22
JP6225183B2 (ja) 2017-11-01
EP2878669A4 (en) 2015-12-09
US20150225746A1 (en) 2015-08-13
CN104540942A (zh) 2015-04-22
EP2878669A1 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
KR101317447B1 (ko) 알코올 제조 방법
US8304588B2 (en) Recovery of higher alcohols from dilute aqueous solutions
US9765367B2 (en) Method and system for production of hydrogen, methane, volatile fatty acids, and alcohols from organic material
CN102676589B (zh) 一种发酵偶联气提的生产和分离纯化丁醇的方法
Dai et al. Impacts of medium composition and applied current on recovery of volatile fatty acids during coupling of electrodialysis with an anaerobic digester
BR112015022736B1 (pt) Métodos para controlar o perfil metabólico de uma cultura de fermentação
WO2014015405A1 (pt) Processo para a produção de álcool pela fermentação de açúcares
EP2986758B1 (fr) Procédé de production d'hydrocarbures
Hansson et al. End product inhibition in methane fermentations: effects of carbon dioxide on fermentative and acetogenic bacteria
CN106978379B (zh) 一种产异丁醇和乙醇的大肠杆菌及其制备方法
BR112015001644B1 (pt) processo para a produção de álcool pela fermentação de açúcares
Good et al. Use of fixed film and CSTR reactor for anaerobic treatment of stillage of wood hydrolysate
BR102013022434A2 (pt) Processo para fermentação microbiana de substratos açucarados e uso do hidrogênio no estado atomico, iônico ou gasoso no referido processo
AU2015100628A4 (en) Process for producing alcohol by fermentation of sugars
KR102085104B1 (ko) 수소 제조
Winter et al. Fermentation of cellulose and fatty acids with enrichments from sewage sludge
CN111088295A (zh) 一种利用微生物发酵生产乙醇的方法
BR102016029286B1 (pt) Processo de obtenção de etanol a partir do hidrolisado hemicelulósico do bagaço de cana-de-açúcar
Wentworth et al. Production of liquid fuels and chemicals through anaerobic digestion of biomass
BR102015032175B1 (pt) Célula eletrolítica geradora de hidrogênio em meio de fermentação alcoólica
Karthikeyan et al. Comparative Studies on Ethanol Production Efficiency using Zymomonas mobilis, Erwinia carotovora and Saccharomyces cerevisae
CZ305450B6 (cs) Způsob zpracování odpadních vod z výroby sýrů
BR122022024141B1 (pt) Método para controlar o perfil metabólico de uma cultura de fermentação

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823900

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2013823900

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013296083

Country of ref document: AU

Date of ref document: 20130724

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14417133

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015523352

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014153698

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015001644

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015001644

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150126