WO2014014285A1 - 셀 댐퍼를 포함한 이차전지모듈 - Google Patents

셀 댐퍼를 포함한 이차전지모듈 Download PDF

Info

Publication number
WO2014014285A1
WO2014014285A1 PCT/KR2013/006425 KR2013006425W WO2014014285A1 WO 2014014285 A1 WO2014014285 A1 WO 2014014285A1 KR 2013006425 W KR2013006425 W KR 2013006425W WO 2014014285 A1 WO2014014285 A1 WO 2014014285A1
Authority
WO
WIPO (PCT)
Prior art keywords
pouch
cell
damper
type
secondary battery
Prior art date
Application number
PCT/KR2013/006425
Other languages
English (en)
French (fr)
Inventor
김덕수
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Publication of WO2014014285A1 publication Critical patent/WO2014014285A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0472Vertically superposed cells with vertically disposed plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery module including a cell damper to fix the pouch-type cell to absorb assembly and dimensional tolerances, and to prevent deformation and impact of the pouch-type cell.
  • secondary batteries unlike primary batteries, can be charged and discharged and applied to various fields such as digital cameras, mobile phones, laptops, and hybrid cars, and active research is being conducted.
  • secondary batteries include nickel-cadmium batteries, nickel-metal hydride batteries, nickel-hydrogen batteries, and lithium secondary batteries.
  • nickel-cadmium batteries nickel-metal hydride batteries
  • nickel-hydrogen batteries nickel-hydrogen batteries
  • lithium secondary batteries lithium secondary batteries.
  • many researches on lithium secondary batteries having high energy density and discharge voltage have been conducted and commercialized and widely used.
  • lithium secondary batteries may be manufactured in various forms, and representative shapes thereof include cylindrical and prismatic types, which are mainly used in lithium ion batteries.
  • Lithium polymer batteries which have recently been in the spotlight, have a flexible pouch. Made of a pouched type, the shape is relatively free.
  • the pouch-type lithium polymer battery (hereinafter, referred to as a "pouch-type cell”) can be easily bent or bent, it is configured to be used for a long time by combining a rigid cell case on the outside of the pouch-type cell, or two pouch-type
  • the buffer pads are interposed between the cells and manufactured in a form in which an aluminum cover and the like are coupled to both sides of the stacked pouch-type outer cells so that a plurality of cells are inserted into the slots of the case and arranged side by side.
  • the pouch-type cells and partitions may be stacked in close contact with each other and may be configured in a modular form that is accommodated and fixed in a rigid case.
  • the secondary battery module including a pouch-type cell may have a gap due to dimensional tolerances of pouch-type cells and assembly tolerances of a cover, partition, or case coupled with the pouch-type cell, and seal the electrode body by vibration or shock.
  • the edge portion of the pouch of one pouch cell may be deformed or bent.
  • the secondary battery module including the pouch-type cell may deform the pouch edge of the pouch-type cell due to vibration and shock when used in a vehicle, causing short-circuit of the pouch-type cell, and the edge of the pouch covers the cell.
  • the electrode body is damaged by contact with the case and the shock is directly transmitted to the electrode body.
  • an object of the present invention is a pouch in which a plurality of stacked through the cell damper to be in close contact with both sides of the pouch edge of the pouch-type cell formed to seal the electrode body It is to provide a secondary battery module including a cell damper that can absorb the assembly and dimensional tolerances of the case, cell cover, partition and pouch-type cells are fixed and prevent the deformation and impact of the pouch-type cell.
  • a secondary battery module including a cell damper of the present invention for achieving the above object one or more pouch-type cell is formed so that the electrode body is sealed by the pouch and the electrode tab is drawn out of one side of the pouch; A partition in close contact with both sides of the pouch-type cell; And a cell damper of elastic material interposed between both sides of the edge portion of the pouch-type cell and the partition. It includes, wherein the cell damper is in close contact with the partition coupled to the pouch-type cell, is formed so that a portion of the cell damper protrudes out of the edge portion of the pouch-type cell.
  • the pouch-type cell is in close contact with the insulating pad interposed between the two pouch-type cells, the two pouch-type cells are in close contact with each other, the partition between the pouch-type cell between the edge and the pouch
  • the cell dampers are interposed between the edges of the cell and the partitions, respectively.
  • the cell damper is formed in a shape connected to one to be in close contact with the entire edge portion of the pouch-type cell.
  • the cell damper has a hollow portion sealed therein.
  • the cell damper interposed so as to be in close contact with both sides of the pouch edge of the pouch-type cell absorbs assembly and dimensional tolerances to securely fix the pouch-type cell, and the pouch edge part is deformed.
  • FIG 1 and 2 are exploded perspective view showing a coupling structure of the cell damper according to the present invention.
  • FIG. 3 is an assembled perspective view of FIG. 2.
  • FIGS. 4 and 5 are exploded and assembled perspective view showing a coupling structure with the case according to the present invention.
  • FIG. 6 is a cross-sectional view taken along the line AA 'showing a secondary battery module including a cell damper of the present invention.
  • FIG. 7 is a partially enlarged view of FIG. 6.
  • FIG 8 is a cross-sectional view taken along the BB ′ direction of the secondary battery module including the cell damper of the present invention.
  • electrode body 120 electrode tab
  • 1 to 8 are an exploded perspective view, an assembled perspective view and a cross-sectional view showing a secondary battery module including a cell damper of the present invention.
  • At least one pouch type is formed such that the electrode body 110 is sealed by the pouch and the electrode tab 120 is drawn out to one side of the pouch.
  • Cell 100; Partition 300 is in close contact with both sides of the pouch-type cell 100;
  • an electrode tab 120 is formed on one side of the electrode body 110.
  • the electrode body 110 is composed of a positive electrode, a negative electrode, an electrolyte, and a separator separating the positive electrode and the negative electrode and is a portion in which electricity is charged and discharged, and the electrode tab 120 is generated when discharged from the electrode body 110 or from outside. This is the part that delivers the current flowing in during charging.
  • the electrode body 110 is enclosed by a pouch, the edge portion 130 of the pouch is sealed so that the electrode tab 120 is formed to be drawn out of the pouch.
  • the edge portion 130 of the pouch-shaped cell 100 is heated and pressed to form a flat shape because the resin of the pouch is fused. That is, the pouch-shaped cell 100 is formed in a shape in which the electrode body 110 is surrounded by the pouch and the edge portion 130 that is the periphery of the pouch is flat.
  • the partition 300 is coupled to be in close contact with both sides of the pouch-type cell 100, and the partition 300 is formed wider than the pouch-type cell 100.
  • the plurality of pouch-type cells 100 may be arranged side by side, the partition 300 is interposed therebetween, and the partition 300 may be in close contact with each other and may be stacked.
  • the partition 300 serves to stack and combine a plurality of pouch-type cells 100, and a tube in which a heat conduction plate or a cooling channel is formed to cool heat generated in the pouch-type cell 100 is formed. Can be.
  • the cell damper 200 is interposed between the pouch-type cells 100 and the partitions 300 stacked in this manner.
  • the cell damper 200 is formed of an elastic material and is interposed between both sides of the edge portion 130 of the pouch-type cell 100 and the partitions 300. That is, both sides of the edge portion 130 formed flat for sealing the pouch are in close contact with the cell dampers 200.
  • the cell damper 200 is in close contact with the cell damper 200 and is deformed while being pushed out of the edge portion 130 of the pouch-shaped cell 100.
  • the secondary battery module 1000 including the cell damper of the present invention is accommodated in a case in which the pouch-type cell 100, the cell damper 200, and the partition 300 are stacked and coupled.
  • the cell damper 200 may be in contact with the inner bottom surface or both sides of the case such that the pouch edge 130 of the pouch-type cell 100 may not directly contact the case.
  • the cell damper interposed so as to be in close contact with both sides of the pouch edge of the pouch-type cell can absorb the assembly and dimensional tolerances to securely fix the pouch-type cell, and to the cell damper. Thereby, there is an advantage that the pouch edge portion is not deformed, thereby preventing short circuit of the pouch-type cell.
  • the secondary battery module 1000 including the cell damper of the present invention may be in close contact with an insulating pad 230 interposed between two pouch-type cells 100, and partitions outside the two pouch-type cells 100. 300 is tightly coupled, the cell damper 200 between the edge portion 130 of the two pouch-type cells 100 and between the edge portion 130 and the partition 300 of the pouch-type cell 100. ) May be formed to be in close contact with each other.
  • two pouch-type cells 100 are interposed between a plurality of partitions 300 arranged side by side at a predetermined distance, and an insulating pad 230 is disposed between two pouch-type cells 100.
  • an insulating pad 230 is disposed between two pouch-type cells 100.
  • the cell damper 200 is coupled to be in close contact with both sides of the edge portion 130 of the pouch-shaped cell 100, and is formed such that a part of the cell damper 200 protrudes outwardly of the edge portion 130 when the cell damper 200 is in close contact.
  • the pouch cell 100, the cell damper 200, the insulation pad 230, and the partition 300 are stacked to form an electrode assembly.
  • the insulating pad 230 is formed of an elastic body at the same time as the electrical insulation between the two pouch-type cells 100 to absorb dimensional tolerances and vibrations and shocks in the stacking direction. It is preferable that the electrode body 110 is formed to be in close contact with the portion where the electrode body 110 is formed.
  • FIG. 4 and 5 is an exploded and assembled perspective view showing a coupling structure with the case according to the present invention.
  • the secondary battery module 1000 including the cell damper of the present invention is stacked and accommodated inside the case 400 in a state of being coupled to the electrode assembly.
  • the case 400 is formed so that the electrode assembly is accommodated therein and fixed, the case 400 is the upper case 410, the upper case 410, the inner side is hollow and both sides of the lower side and the longitudinal direction is open, the upper case 410 It is coupled to the lower side of the inner hollow and the upper side and both sides in the longitudinal direction of the lower case 420 and a pair of side cover 430 coupled to both sides of the upper case 410 and the lower case 420 can do.
  • the electrode assembly may be surrounded by the upper case 410, the lower case 420, and a pair of side covers 430, and both ends of the partition 300 may be coupled to be fixed to the side covers 430.
  • the lower support 440 supporting the lower sides of the pouch-shaped cells 100 and the partitions 300 may be coupled to the inner lower surface of the lower case 420.
  • the lower support 440 allows the pouch-shaped cells 100 and the partitions 300 to be spaced apart from the bottom of the lower case 420 by a predetermined height, and easily fits the height of the side cover 430 and the partition 300. You can do that.
  • the pouch-type cell 100 and the partition 300 constituting the electrode assembly are placed on the upper surface of the lower support 440.
  • the partitions 300 and the cell damper 200 as shown in FIG. 7. May be supported by the lower support 440, or only the cell dampers 200 may contact the upper surface of the lower support 440.
  • the secondary battery module 1000 when the secondary battery module 1000 is mounted and used in a vehicle, vibration and shock may be prevented by the cell dampers 200, and the edge portion 131 of the lower side of the pouch-type cell 100 may be deformed or bent. You can prevent it.
  • the support part 310 is formed on both sides of the partition 300 to facilitate the coupling of the partitions 300 and the coupling with the case 400.
  • the cell damper 200 may be formed in a shape in which the cell damper 200 is connected to the whole of the edge portion 130 of the pouch-type cell 100. That is, it is formed to be in close contact with the entire edge portion 130 of the pouch in a form connected to surround the electrode body 110 of the pouch-type cell 100.
  • both edges of the pouch-shaped cell 100 do not directly contact the side cover 430 of the case 400 by the cell damper 200 or do not directly contact the support 310 of the partition 300 as shown in FIG. 8. It is possible to prevent the edge portion 130 of the pouch from bending.
  • the cell dampers 200 are formed in the form of a rectangular ring connected to each other, and are coupled in a form surrounding the electrode body 110 of the pouch-shaped cell 100, and are transmitted to the electrode body 110.
  • the vibration and impact of the height direction can be absorbed to prevent breakage and deformation of the electrode body 110 and the pouch edge portion 130, thereby improving the life of the secondary battery module.
  • the cell damper 200 may have a hollow portion 220 sealed therein.
  • the hollow part 220 is formed therein, and both ends of the elastic tube 210 are connected to each other to form a sealed shape. And when not connected to one, both ends of the elastic tube 210 may be clogged.
  • the cell damper 200 is easy to expand and deform because the air is filled in the hollow portion 220 of the closed elastic tube 210 as shown in FIG. 7, and the lower side of the cell damper 200 is pressed in close contact with the air.
  • the shape of the cell damper 200 may be corrected by being expanded at the portion.
  • the cell damper 200 may be formed in various shapes such as round, oval, polygonal, or rectangular in the shape of a round section, and may have high heat, harmful gas, and vibration due to the characteristics of the battery. It is preferable to be formed of a material having excellent absorption, chemical resistance, heat resistance and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명은 전극체를 밀봉하도록 형성되는 파우치형 셀의 파우치 테두리의 양면에 밀착되도록 셀 댐퍼를 개재하여, 다수개가 적층되는 파우치형 셀, 셀 커버, 파티션 및 파우치형 셀들이 고정되는 케이스와의 조립 및 치수 공차를 흡수하고 파우치형 셀의 변형 및 충격을 방지할 수 있는 셀 댐퍼를 포함한 이차전지모듈에 관한 것이다.

Description

셀 댐퍼를 포함한 이차전지모듈
본 발명은 파우치형 셀을 고정하여 조립 및 치수 공차를 흡수하고, 파우치형 셀의 변형 및 충격을 방지할 수 있는 셀 댐퍼를 포함한 이차전지모듈에 관한 것이다.
일반적으로, 이차전지는 일차전지와는 달리 충전 및 방전이 가능하여 디지털 카메라, 휴대폰, 노트북, 하이브리드카와 같은 다양한 분야에 적용되며 활발한 연구가 진행중이다. 이차전지로는 니켈-카드뮴 전지, 니켈-메탈 하이드라이드 전지, 니켈-수소 전지, 리튬 이차전지를 들 수 있다. 그리고 이차전지 중에서도 높은 에너지 밀도와 방전 전압을 가진 리튬 이차전지에 대한 많은 연구가 행해지고 있고 또한 상용화되어 널리 사용되고 있다.
그리고 리튬 이차전지는 다양한 형태로 제조가능한데, 대표적인 형상으로는 리튬 이온 전지에 주로 사용되는 원통형(cylinder type) 및 각형(prismatic type)을 들 수 있으며, 최근 들어 각광받는 리튬 폴리머 전지는 유연성을 지닌 파우치형(pouched type)으로 제조되어서, 그 형상이 비교적 자유롭다.
이러한, 파우치형 리튬 폴리머 전지(이하, “파우치형 셀”이라고 함)는 쉽게 휘어지거나 구부러질 수 있기 때문에 파우치형 셀의 외측에 견고한 셀 케이스를 결합하여 장시간 사용할 수 있도록 구성되거나, 두 개의 파우치형 셀 사이에 완충패드를 개재하고 적층시키고 적층된 파우치형 셀 바깥쪽 양면에 알루미늄 커버 등을 결합하는 형태로 제작하여 다수개를 케이스의 슬롯에 삽입하여 나란하게 배열되도록 한 모듈형태로 구성된다. 또한, 파우치형 셀과 파티션을 적층하여 밀착시키고 견고한 케이스 내에 수용되어 고정되는 모듈형태로 구성될 수도 있다.
그런데 파우치형 셀을 포함한 이차전지모듈은 제작시 파우치형 셀들의 치수 공차와 파우치형 셀과 결합되는 커버, 파티션 또는 케이스 등과의 조립 공차로 인해 간격이 발생할 수 있으며 진동 또는 충격에 의해 전극체를 밀봉한 파우치형 셀의 파우치의 테두리 부분이 눌려 변형되거나 구부러질 수 있다.
이로 인해 파우치형 셀을 포함한 이차전지모듈은 차량에 장착되어 사용될 때 진동과 충격 등으로 인해 파우치형 셀의 파우치 테두리 부분이 변형되어 파우치형 셀의 단락을 유발할 수 있으며, 파우치의 테두리 부분이 셀 커버, 케이스 등에 접촉되어 전극체로 충격이 직접 전달되어 전극체가 파손될 수 있는 문제점이 있다.
이와 관련된 종래 기술로는 미국공개특허(20120015226)인 “Pouch type lithium secondary battery(파우치형 리튬 이차전지)”가 개시되어 있다.
[선행기술문헌]
[특허문헌]
US 20120015226 A1 (2012.01.19.)
본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 전극체를 밀봉하도록 형성되는 파우치형 셀의 파우치 테두리의 양면에 밀착되도록 셀 댐퍼를 개재하여, 다수개가 적층되는 파우치형 셀, 셀 커버, 파티션 및 파우치형 셀들이 고정되는 케이스와의 조립 및 치수 공차를 흡수하고 파우치형 셀의 변형 및 충격을 방지할 수 있는 셀 댐퍼를 포함한 이차전지모듈을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 셀 댐퍼를 포함한 이차전지모듈은, 파우치에 의해 전극체가 밀폐되고 상기 파우치의 일측 외부로 전극탭이 인출되도록 형성되는 하나 이상의 파우치형 셀; 상기 파우치형 셀의 양면에 밀착되는 파티션; 및 상기 파우치형 셀의 테두리부 양면과 상기 파티션 사이에 개재되어 밀착되는 탄성 재질의 셀 댐퍼; 를 포함하되, 상기 셀 댐퍼는 파우치형 셀과 결합되는 파티션에 의해 밀착되어, 상기 파우치형 셀의 테두리부 바깥쪽으로 상기 셀 댐퍼의 일부가 돌출되도록 형성된다.
또한, 상기 파우치형 셀은 두 개의 파우치형 셀 사이에 절연 패드가 개재되어 밀착되고, 상기 두 개의 파우치형 셀 외측에는 각각 파티션이 밀착 결합되며, 상기 두 개의 파우치형 셀의 테두리부 사이 및 상기 파우치형 셀의 테두리부와 상기 파티션 사이에 상기 셀 댐퍼가 각각 개재되어 밀착된다.
또한, 상기 셀 댐퍼는 파우치형 셀의 테두리부 전체에 밀착되도록 하나로 연결된 형태로 형성된다.
또한, 상기 셀 댐퍼는 내부에 밀폐된 중공부가 형성된다.
본 발명의 셀 댐퍼를 포함한 이차전지모듈은 파우치형 셀의 파우치 테두리의 양면에 밀착되도록 개재되는 셀 댐퍼가 조립 및 치수 공차를 흡수하여 파우치형 셀을 확실하게 고정할 수 있으며, 파우치 테두리 부분이 변형되지 않도록 하여 파우치형 셀의 단락을 방지할 수 있는 장점이 있다.
또한, 다수개가 적층되는 파우치형 셀, 셀 커버, 파티션 및 파우치형 셀들이 고정되는 케이스와의 조립 및 치수 공차를 흡수하고 파우치형 셀에 전달되는 진동 및 충격을 방지할 수 있어, 내구성이 향상되고 수명을 증가시킬 수 있는 장점이 있다.
도 1 및 도 2는 본 발명에 따른 셀 댐퍼의 결합구조를 나타낸 분해사시도.
도 3은 도 2의 조립사시도.
도 4 및 도 5는 본 발명에 따른 케이스와의 결합구조를 나타낸 분해 및 조립사시도.
도 6은 본 발명의 셀 댐퍼를 포함한 이차전지모듈을 나타낸 AA'방향 단면도.
도 7은 도 6의 부분 확대도.
도 8은 본 발명의 셀 댐퍼를 포함한 이차전지모듈을 나타낸 BB'방향 단면도.
[부호의 설명]
1000 : (본 발명의) 셀 댐퍼를 포함한 이차전지모듈
100 : 파우치형 셀
110 : 전극체 120 : 전극탭
130 : 테두리부
200 : 셀 댐퍼
210 : 탄성 튜브 220 : 중공부
230 : 절연 패드
300 : 파티션 310 : 지지부
400 : 케이스
410 : 상부 케이스 420 : 하부 케이스
430 : 측면 커버 440 : 하부 지지대
이하, 상기한 바와 같은 본 발명의 셀 댐퍼를 포함한 이차전지모듈을 첨부된 도면을 참고하여 상세하게 설명한다.
도 1 내지 도 8은 본 발명의 셀 댐퍼를 포함한 이차전지모듈을 나타낸 분해사시도, 조립사시도 및 단면도이다.
도시된 바와 같이 본 발명의 셀 댐퍼를 포함한 이차전지모듈(1000)은, 파우치에 의해 전극체(110)가 밀폐되고 상기 파우치의 일측 외부로 전극탭(120)이 인출되도록 형성되는 하나 이상의 파우치형 셀(100); 상기 파우치형 셀(100)의 양면에 밀착되는 파티션(300); 및 상기 파우치형 셀(100)의 테두리부(130) 양면과 상기 파티션(300) 사이에 개재되어 밀착되는 탄성 재질의 셀 댐퍼(200); 를 포함하되, 상기 셀 댐퍼(200)는 파우치형 셀(100)과 결합되는 파티션(300)에 의해 밀착되어, 상기 파우치형 셀(100)의 테두리부(130) 바깥쪽으로 상기 셀 댐퍼(200)의 일부가 돌출되도록 형성된다.
우선, 도 1과 같이 파우치형 셀(100)은 전극체(110)의 일측에 전극탭(120)이 형성된다. 전극체(110)는 양극, 음극, 전해질 및 양극과 음극을 분리하는 격리판으로 구성되어 전기가 충전 및 방전되는 부분이며, 전극탭(120)은 전극체(110)에서 방전시 발생되거나 외부로부터 충전시 유입되는 전류를 전달하는 부분이다. 이때, 전극체(110)는 파우치로 둘러싸여 밀봉되도록 파우치의 테두리부(130)가 밀폐되며, 전극탭(120)은 파우치의 외부로 인출되도록 형성된다. 여기에서 파우치형 셀(100)의 테두리부(130)는 가열 및 압착되어 파우치의 수지가 융착되므로 납작한 형태로 형성된다. 즉, 파우치형 셀(100)은 전극체(110)가 파우치로 둘러싸이고 파우치의 둘레인 테두리부(130)가 납작한 형태로 형성된다.
그리고 파티션(300)은 파우치형 셀(100)의 양면에 밀착되도록 결합되며, 파티션(300)은 파우치형 셀(100)보다 넓게 형성된다. 이때, 다수개의 파우치형 셀(100)이 나란히 배열되고 그 사이에 파티션(300)이 각각 개재되고 최외측에 파티션(300)이 밀착되어 적층된 형태로 이루어질 수 있다. 여기에서 파티션(300)은 다수개의 파우치형 셀(100)을 적층하여 결합할 수 있도록 하는 역할을 하며, 파우치형 셀(100)에서 발생하는 열을 냉각시키기 위한 열전도 플레이트 또는 냉각 유로가 형성된 튜브가 될 수 있다.
이와 같이 적층되는 파우치형 셀(100)들과 파티션(300)들 사이에 셀 댐퍼(200)가 개재되어 밀착된다. 이때, 셀 댐퍼(200)는 탄성 재질로 형성되어 파우치형 셀(100)의 테두리부(130) 양면과 파티션(300)들 사이에 개재되어 밀착된다. 즉, 파우치의 밀폐를 위해 납작하게 형성된 테두리부(130)의 양측이 셀 댐퍼(200)들에 의해 밀착된 상태가 된다. 또한, 셀 댐퍼(200)가 밀착되면서 변형되어 파우치형 셀(100)의 테두리부(130) 바깥쪽으로 셀 댐퍼(200)의 일부가 밀려나와 돌출되도록 형성된다.
그리하여 본 발명의 셀 댐퍼를 포함한 이차전지모듈(1000)은 파우치형 셀(100), 셀 댐퍼(200) 및 파티션(300)이 적층되어 결합된 상태로 케이스에 수용된다. 이때, 셀 댐퍼(200)가 케이스의 내부 하면 또는 양측면에 접촉되어 파우치형 셀(100)의 파우치 테두리부(130)가 케이스에 직접 닿지 않을 수 있다. 즉, 본 발명의 셀 댐퍼를 포함한 이차전지모듈은 파우치형 셀의 파우치 테두리의 양면에 밀착되도록 개재되는 셀 댐퍼가 조립 및 치수 공차를 흡수하여 파우치형 셀을 확실하게 고정할 수 있으며, 셀 댐퍼에 의해 파우치 테두리부가 변형되지 않도록 하여 파우치형 셀의 단락을 방지할 수 있는 장점이 있다.
그리고 본 발명의 셀 댐퍼를 포함한 이차전지모듈(1000)은 두 개의 파우치형 셀(100) 사이에 절연 패드(230)가 개재되어 밀착되고, 상기 두 개의 파우치형 셀(100) 외측에는 각각 파티션(300)이 밀착 결합되며, 상기 두 개의 파우치형 셀(100)의 테두리부(130) 사이 및 상기 파우치형 셀(100)의 테두리부(130)와 상기 파티션(300) 사이에 상기 셀 댐퍼(200)가 각각 개재되어 밀착되도록 형성될 수 있다.
이는 도 2 및 도 3과 같이 일정거리 이격되어 나란히 배열되는 다수개의 파티션(300)들 사이에 두 개의 파우치형 셀(100)이 개재되고, 두 개의 파우치형 셀(100) 사이에 절연 패드(230)가 개재되어 밀착 적층되도록 형성되어, 두 개의 파우치형 셀(100) 사이 및 파우치형 셀(100)과 파티션(300) 사이에 셀 댐퍼(200)가 개재되어 밀착되는 것이다. 이때, 셀 댐퍼(200)는 파우치형 셀(100)의 테두리부(130) 양측면에 밀착되도록 결합되어, 밀착되었을 때 테두리부(130)의 바깥쪽으로 셀 댐퍼(200)의 일부가 돌출되도록 형성된다. 이와 같이 파우치형 셀(100), 셀 댐퍼(200), 절연 패드(230) 및 파티션(300)들이 적층되어 전극조립체가 형성된다.
여기에서 절연 패드(230)는 두 개의 파우치형 셀(100)사이의 전기적인 절연과 동시에 탄성체로 형성되어 적층 방향의 치수 공차와 진동 및 충격을 흡수하는 역할을 하며, 파우치형 셀(100)의 전극체(110)가 형성된 부분에만 밀착되도록 형성되는 것이 바람직하다.
도 4 및 5는 본 발명에 따른 케이스와의 결합구조를 나타낸 분해 및 조립사시도이다.
도시된 바와 같이 본 발명의 셀 댐퍼를 포함한 이차전지모듈(1000)은 적층되어 결합된 전극조립체 상태로 케이스(400) 내부에 수용된다. 이때, 케이스(400)는 전극조립체가 내부에 수용되어 고정될 수 있도록 형성되며, 케이스(400)는 내부가 중공되고 하측과 길이 방향 양측이 개방되는 상부 케이스(410), 상기 상부 케이스(410)의 하측에 결합되며 내부가 중공되고 상측과 길이 방향 양측이 개방되는 하부 케이스(420) 및 상기 상부 케이스(410)와 하부 케이스(420)의 양측에 결합되는 한 쌍의 측면 커버(430)를 포함할 수 있다.
이때, 전극조립체는 상부 케이스(410), 하부 케이스(420) 및 한 쌍의 측면 커버(430)에 의해 둘러싸이되, 파티션(300)의 양단이 측면 커버(430)에 고정되도록 결합될 수 있다. 그리고 하부 케이스(420)의 내측 하면에는 파우치형 셀(100)들 및 파티션(300)들의 하측을 지지하는 하부 지지대(440)가 결합될 수 있다. 하부 지지대(440)는 파우치형 셀(100)들 및 파티션(300)들을 하부 케이스(420)의 바닥면에서 일정높이 이격되도록 하며 측면 커버(430)와 파티션(300)의 높이를 맞추어 용이하게 결합되도록 할 수 있다.
여기에서 도 6과 같이 전극조립체를 구성하는 파우치형 셀(100) 및 파티션(300)이 하부 지지대(440)의 상면에 안치되며, 이때 도 7과 같이 파티션(300)들과 셀 댐퍼(200)들이 하부 지지대(440)에 의해 지지되거나, 셀 댐퍼(200)들만 하부 지지대(440)의 상면에 접촉되도록 지지될 수도 있다.
그리하여 이차전지모듈(1000)이 차량에 장착되어 사용될 때, 셀 댐퍼(200)들에 의해 진동 및 충격을 방지할 수 있으며 파우치형 셀(100) 하측의 테두리부(131)가 변형되거나 구부러지는 것을 방지할 수 있다.
이때, 파티션(300)에는 양측에 지지부(310)가 형성되어 파티션(300)들의 결합 및 케이스(400)와의 결합이 용이하도록 할 수 있다.
또한, 셀 댐퍼(200)는 파우치형 셀(100)의 테두리부(130) 전체에 밀착되도록 하나로 연결된 형태로 형성될 수 있다. 즉, 파우치형 셀(100)의 전극체(110)를 둘러싸도록 하나로 연결된 형태로 파우치의 테두리부(130) 전체에 밀착될 수 있도록 형성된다.
그리하여 파우치형 셀(100)의 양측 테두리가 셀 댐퍼(200)에 의해 케이스(400)의 측면 커버(430)에 직접 닿지 않거나, 도 8과 같이 파티션(300)의 지지부(310)에 직접 닿지 않아 파우치의 테두리부(130)가 구부러지는 것을 방지할 수 있다.
이와 같이 셀 댐퍼(200)가 하나로 연결된 사각 링 형태로 형성되고 파우치형 셀(100)의 전극체(110) 부분을 둘러싸는 형태로 결합되어, 전극체(110) 부분으로 전달되는 길이, 폭 및 높이 방향의 진동과 충격을 흡수하여 전극체(110)와 파우치 테두리부(130)의 파손 및 변형을 방지할 수 있어 이차전지모듈의 수명을 향상시킬 수 있다.
또한, 셀 댐퍼(200)는 내부에 밀폐된 중공부(220)가 형성될 수 있다. 이는 셀 댐퍼(200)가 하나로 연결된 링 형태로 형성되는 경우, 내부에 중공부(220)가 형성되어 탄성 튜브(210)의 양단이 연결되어 밀폐된 형태가 된다. 그리고 하나로 연결되지 않은 경우에는 탄성 튜브(210)의 양단이 막힌 형태가 될 수 있다.
즉, 셀 댐퍼(200)는 도 7과 같이 밀폐된 탄성 튜브(210)의 중공부(220)에 공기가 채워져 있어 팽창 및 변형이 용이하며, 셀 댐퍼(200)의 하측이 밀착되어 눌리는 경우 나머지 부분에서 팽창되어 셀 댐퍼(200)의 형상이 보정될 수 있다.
그리하여 셀 댐퍼(200)와 밀착되는 파우치형 셀(100), 파티션(300)들의 치수공차 및 조립공차를 흡수하기가 보다 용이하며, 진동 및 충격을 흡수하는 효과가 향상될 수 있다.
그리고 셀 댐퍼(200)는 단면 형상이 원형, 타원형, 다각형 또는 사각형의 모서리부에 라운드가 형성된 형태 등 다양하게 형성될 수 있으며, 전지의 특성상 고열, 유해가스 및 진동 등이 발생할 수 있으므로 탄성, 진동 흡수, 내화학성, 내열성 등이 우수한 재질로 형성되는 것이 바람직하다.
본 발명은 상기한 실시 예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.

Claims (4)

  1. 파우치에 의해 전극체가 밀폐되고 상기 파우치의 일측 외부로 전극탭이 인출되도록 형성되는 하나 이상의 파우치형 셀;
    상기 파우치형 셀의 양면에 밀착되는 파티션; 및
    상기 파우치형 셀의 테두리부 양면과 상기 파티션 사이에 개재되어 밀착되는 탄성 재질의 셀 댐퍼; 를 포함하되,
    상기 셀 댐퍼는 파우치형 셀과 결합되는 파티션에 의해 밀착되어, 상기 파우치형 셀의 테두리부 바깥쪽으로 상기 셀 댐퍼의 일부가 돌출되도록 형성되는 셀 댐퍼를 포함한 이차전지모듈.
  2. 제1항에 있어서,
    상기 파우치형 셀은 두 개의 파우치형 셀 사이에 절연 패드가 개재되어 밀착되고, 상기 두 개의 파우치형 셀 외측에는 각각 파티션이 밀착 결합되며, 상기 두 개의 파우치형 셀의 테두리부 사이 및 상기 파우치형 셀의 테두리부와 상기 파티션 사이에 상기 셀 댐퍼가 각각 개재되어 밀착되는 셀 댐퍼를 포함한 이차전지모듈.
  3. 제1항에 있어서,
    상기 셀 댐퍼는 파우치형 셀의 테두리부 전체에 밀착되도록 하나로 연결된 형태인 셀 댐퍼를 포함한 이차전지모듈.
  4. 제1항에 있어서,
    상기 셀 댐퍼는 내부에 밀폐된 중공부가 형성되는 셀 댐퍼를 포함한 이차전지모듈.
PCT/KR2013/006425 2012-07-18 2013-07-18 셀 댐퍼를 포함한 이차전지모듈 WO2014014285A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0078335 2012-07-18
KR1020120078335A KR20140011207A (ko) 2012-07-18 2012-07-18 셀 댐퍼를 포함한 이차전지모듈

Publications (1)

Publication Number Publication Date
WO2014014285A1 true WO2014014285A1 (ko) 2014-01-23

Family

ID=49949048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006425 WO2014014285A1 (ko) 2012-07-18 2013-07-18 셀 댐퍼를 포함한 이차전지모듈

Country Status (2)

Country Link
KR (1) KR20140011207A (ko)
WO (1) WO2014014285A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923179B2 (en) 2015-07-15 2018-03-20 Ford Global Technologies, Llc Battery assembly with biased component profiles to promote battery cell to heat exchanger contact
CN109428107A (zh) * 2017-08-31 2019-03-05 宁德时代新能源科技股份有限公司 电池单元以及电池模组
CN109524584A (zh) * 2018-10-08 2019-03-26 许正婉 一种新能源汽车蓄电池存放控制方法
CN115244773A (zh) * 2020-08-05 2022-10-25 株式会社Lg新能源 具有能够吸收电池膨胀的结构的电池模块、以及包括电池模块的电池组和的车辆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101805650B1 (ko) 2015-08-28 2017-12-06 삼성에스디아이 주식회사 이차 전지 팩
KR102184169B1 (ko) * 2016-08-26 2020-11-27 주식회사 엘지화학 배터리 모듈
WO2018163816A1 (ja) * 2017-03-07 2018-09-13 パナソニックIpマネジメント株式会社 セパレータ、電池モジュール及び電池モジュールの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190601A (ja) * 2005-01-07 2006-07-20 Central Res Inst Of Electric Power Ind 積層型電池
KR20070093159A (ko) * 2006-03-13 2007-09-18 주식회사 엘지화학 완충부재가 설치되어 있는 중대형 전지모듈
KR20070104688A (ko) * 2006-04-24 2007-10-29 주식회사 엘지화학 외부 입출력 단자가 전지셀의 측부 또는 하단에 위치하는소형 전지팩
US20090297936A1 (en) * 2006-07-13 2009-12-03 Seiji Nemoto Assembled battery formed by stacking a plurality of flat cells
JP2010218756A (ja) * 2009-03-13 2010-09-30 Hitachi Maxell Ltd 非水電解質電池及び非水電解質電池モジュール
KR20120077635A (ko) * 2010-12-30 2012-07-10 에스케이이노베이션 주식회사 파우치형 셀 케이스

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190601A (ja) * 2005-01-07 2006-07-20 Central Res Inst Of Electric Power Ind 積層型電池
KR20070093159A (ko) * 2006-03-13 2007-09-18 주식회사 엘지화학 완충부재가 설치되어 있는 중대형 전지모듈
KR20070104688A (ko) * 2006-04-24 2007-10-29 주식회사 엘지화학 외부 입출력 단자가 전지셀의 측부 또는 하단에 위치하는소형 전지팩
US20090297936A1 (en) * 2006-07-13 2009-12-03 Seiji Nemoto Assembled battery formed by stacking a plurality of flat cells
JP2010218756A (ja) * 2009-03-13 2010-09-30 Hitachi Maxell Ltd 非水電解質電池及び非水電解質電池モジュール
KR20120077635A (ko) * 2010-12-30 2012-07-10 에스케이이노베이션 주식회사 파우치형 셀 케이스

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923179B2 (en) 2015-07-15 2018-03-20 Ford Global Technologies, Llc Battery assembly with biased component profiles to promote battery cell to heat exchanger contact
US10529968B2 (en) 2015-07-15 2020-01-07 Ford Global Technologies, Llc Battery assembly with biased component profiles to promote battery cell to heat exchanger contact
CN109428107A (zh) * 2017-08-31 2019-03-05 宁德时代新能源科技股份有限公司 电池单元以及电池模组
CN109428107B (zh) * 2017-08-31 2024-04-16 宁德时代新能源科技股份有限公司 电池单元以及电池模组
CN109524584A (zh) * 2018-10-08 2019-03-26 许正婉 一种新能源汽车蓄电池存放控制方法
CN115244773A (zh) * 2020-08-05 2022-10-25 株式会社Lg新能源 具有能够吸收电池膨胀的结构的电池模块、以及包括电池模块的电池组和的车辆

Also Published As

Publication number Publication date
KR20140011207A (ko) 2014-01-28

Similar Documents

Publication Publication Date Title
WO2014014285A1 (ko) 셀 댐퍼를 포함한 이차전지모듈
WO2016056774A1 (ko) 효율적인 냉각 구조의 전지팩 케이스
WO2012091509A2 (en) Case of pouch type cell
WO2012067365A2 (ko) 안전성이 향상된 전지모듈
WO2012064160A2 (ko) 배터리 모듈 케이스
WO2017209388A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2014035160A1 (ko) 배터리 모듈
WO2014010842A1 (ko) 간접 공냉 구조를 포함하는 전지모듈
WO2015182909A1 (ko) 수냉식 냉각구조를 포함하는 전지모듈
WO2014027786A1 (ko) 조립 체결 구조를 가진 전지모듈
KR101058102B1 (ko) 배터리 팩
WO2014007474A1 (ko) 전지팩
WO2013168989A1 (en) Secondary battery module having through type cool channel
WO2017061746A1 (ko) 전지 모듈
WO2017043889A1 (ko) 냉각 성능이 개선된 배터리 모듈
WO2013168948A1 (ko) 비정형 구조의 전지셀 및 이를 포함하는 전지모듈
WO2013168934A1 (ko) 안정성이 향상된 전지모듈
WO2011099703A2 (ko) 용접 신뢰성이 향상된 전지모듈 및 이를 포함하는 중대형 전지팩
WO2014027783A1 (ko) 벤팅 유도부를 포함하는 전지모듈
WO2015141920A1 (ko) 비대칭 구조 및 만입 구조를 포함하는 전지셀
WO2016032092A1 (ko) 전지모듈
WO2017065384A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2019124795A1 (ko) 파우치 케이스 실링 장치
WO2021221300A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2014126339A1 (ko) 배터리 모듈 케이스 및 이를 포함하는 배터리 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819711

Country of ref document: EP

Kind code of ref document: A1