WO2014014081A1 - 励磁突入電流抑制装置及びその抑制方法 - Google Patents

励磁突入電流抑制装置及びその抑制方法 Download PDF

Info

Publication number
WO2014014081A1
WO2014014081A1 PCT/JP2013/069635 JP2013069635W WO2014014081A1 WO 2014014081 A1 WO2014014081 A1 WO 2014014081A1 JP 2013069635 W JP2013069635 W JP 2013069635W WO 2014014081 A1 WO2014014081 A1 WO 2014014081A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
transformer
voltage
magnetic flux
inrush current
Prior art date
Application number
PCT/JP2013/069635
Other languages
English (en)
French (fr)
Inventor
圭 川崎
腰塚 正
志郎 丸山
齋藤 実
徳幸 長山
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to IN218DEN2015 priority Critical patent/IN2015DN00218A/en
Priority to EP13819958.3A priority patent/EP2876765A4/en
Priority to AU2013291046A priority patent/AU2013291046B2/en
Publication of WO2014014081A1 publication Critical patent/WO2014014081A1/ja
Priority to US14/594,702 priority patent/US10074971B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • H02H9/002Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off limiting inrush current on switching on of inductive loads subjected to remanence, e.g. transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/593Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for ensuring operation of the switch at a predetermined point of the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H9/563Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle for multipolar switches, e.g. different timing for different phases, selecting phase with first zero-crossing

Definitions

  • Embodiments of the present invention relate to a magnetizing inrush current suppressing device and a suppressing method thereof for suppressing an magnetizing inrush current generated when a transformer is turned on to perform no-load excitation.
  • a circuit breaker in the path for turning on the transformer.
  • This circuit breaker has a contact with a resistor in which a closing resistance is connected in series with the contact.
  • the circuit breaker is configured to suppress a magnetizing inrush current by connecting a contact with a resistor in parallel to the main contact and applying the contact prior to the main contact.
  • a direct grounding type three-phase transformer power may be supplied to the power supply via three single-phase circuit breakers. In this case, any one phase is supplied in advance, and then the remaining two phases are supplied.
  • a method of suppressing the magnetizing inrush current in such a manner that the current is input.
  • the value of the magnetic flux remaining in the iron core when the transformer is cut off is used as a method to suppress the magnetizing inrush current. It is known that the inrush current generated when the transformer is turned on is controlled by the closing phase of the circuit breaker.
  • an object is to provide an excitation inrush current suppressing device capable of suppressing an excitation inrush current generated when a transformer for converting a three-phase AC voltage to a single-phase AC voltage is supplied to a single-phase AC power system, and the suppression thereof. It is to provide a method.
  • the magnetizing inrush current suppression device includes a main-seat transformer and a T-seat transformer, and switches a transformer that converts a three-phase AC voltage into a single-phase AC voltage. Is used in a power system system that selectively cuts off / injects power to / from the bus on the single-phase AC side, and suppresses the magnetizing inrush current generated when the transformer is turned on.
  • phase detection means At the same voltage phase as is the phase, it is charged with the single-phase AC side of the switch.
  • FIG. 1 is a diagram illustrating a configuration of a power system including the magnetizing inrush current suppressing device according to the first embodiment.
  • FIG. 2 is a diagram showing the transformer shown in FIG. 1 (in the case of wood bridge connection).
  • FIG. 3 is a diagram showing the transformer shown in FIG. 1 (in the case of a modified wood bridge connection).
  • FIG. 4 is a diagram showing the transformer shown in FIG. 1 (in the case of roof delta connection).
  • FIG. 5A shows the three-phase phase voltage and line voltage during the steady operation of the modified Woodbridge connection transformer 3 shown in FIG. 3, and the single-phase voltage of each of the M- and T-seat transformers.
  • FIG. 5B is a diagram illustrating a phase vector on a three-phase side and a voltage vector of a line voltage.
  • FIG. 5C is a diagram illustrating a voltage vector of a single-phase side voltage of each of the M seat transformer and the T seat transformer.
  • 6A is a diagram showing a voltage waveform of the three-phase side line voltage shown in FIGS. 5B and 5C.
  • 6B is a diagram illustrating voltage waveforms of the phase voltages on the three-phase side illustrated in FIGS. 5B and 5C.
  • FIG. 6C is a diagram illustrating a voltage waveform of a single-phase side voltage of the M seat transformer and the T seat transformer.
  • FIG. 7 is a diagram showing the relationship between the interrupting phase and the residual magnetic flux on the single-phase side when the modified Woodbridge connection transformer in the first embodiment is interrupted.
  • FIG. 8A is a diagram illustrating a magnetizing inrush current flowing through the switch according to the relationship between the cutoff phase (0 °) and the closing phase of the modified Woodbridge connection transformer in the first embodiment.
  • FIG. 8B is a diagram illustrating a magnetizing inrush current flowing through the switch according to the relationship between the cutoff phase (60 °) and the closing phase of the modified Woodbridge connection transformer in the first embodiment.
  • FIG. 8C is a diagram illustrating a magnetizing inrush current that flows through the switch according to the relationship between the cutoff phase (90 °) and the closing phase of the modified Woodbridge connection transformer in the first embodiment.
  • FIG. 8D is a diagram illustrating a magnetizing inrush current flowing in the switch according to the relationship between the cutoff phase (150 °) and the closing phase of the modified Woodbridge connection transformer in the first embodiment.
  • FIG. 9 is a diagram illustrating a configuration of a power system including the magnetizing inrush current suppressing device according to the second embodiment.
  • FIG. 10A is a waveform diagram showing a voltage on the transformer single phase side.
  • FIG. 10B is a waveform diagram showing a closing phase range in which the excitation inrush current can be suppressed by the excitation inrush current suppressing device.
  • FIG. 11 is a diagram illustrating a transformer single-phase side voltage and magnetic flux when a transformer in steady operation is opened with a switch.
  • FIG. 12A is a waveform diagram showing a transformer single-phase voltage, magnetic flux, and exciting inrush current flowing through the switch when the switches are simultaneously turned on in the making phase range shown in FIG. 12B is a waveform diagram showing the transformer single-phase side voltage, magnetic flux, and exciting inrush current flowing in the switch when the switches are simultaneously turned on outside of the making phase range shown in FIG.
  • FIG. 13: is a figure which shows the structure of an electric power grid
  • FIG. 14A is a diagram illustrating a three-phase line voltage in the third embodiment.
  • FIG. 14B is a diagram illustrating a single-phase side voltage converted from a three-phase side line voltage in the third embodiment.
  • FIG. 14C is a diagram illustrating a transformer single-phase side voltage in the third embodiment.
  • FIG. 15A is a diagram illustrating a three-phase side phase voltage in the third embodiment.
  • FIG. 15B is a diagram illustrating a single-phase side voltage converted from a three-phase side phase voltage in the third embodiment.
  • FIG. 15C is a diagram illustrating a transformer single-phase side voltage in the third embodiment.
  • FIG. 16 is a figure which shows the structure of an electric power grid
  • FIG. 17 is a diagram illustrating a configuration of a power system including the magnetizing inrush current suppressing device according to the fifth embodiment.
  • FIG. 18 is a diagram illustrating a configuration of a power system including the magnetizing inrush current suppressing device according to the sixth embodiment.
  • FIG. 1 is a block diagram illustrating a configuration of an electric power system including the magnetizing inrush current suppressing device 6 according to the first embodiment.
  • symbol is attached
  • the power system shown in FIG. 1 is provided in a single-phase AC side bus 1, a switch (so-called circuit breaker) 2, a modified Woodbridge connection transformer 3 that converts a three-phase AC voltage into a single-phase AC voltage, and a bus 1.
  • the bus voltage detectors 4A and 4B, the transformer single phase side voltage detectors 5M and 5T provided on the secondary side (single phase side) of the modified Woodbridge connection transformer 3, and the magnetizing inrush current suppressing device 6 are provided.
  • the single-phase AC bus 1 is a power bus that supplies a single-phase AC voltage, which is converted by a transformer 3, to a three-phase AC voltage of a power bus (not shown) of a three-phase AC power system.
  • the single-phase AC side bus 1 is referred to as bus 1.
  • the switch 2 is provided between the bus 1 and the deformed wood bridge connection transformer 3 and operates to open and close the main contact in each phase of the bus 1. That is, the transformer 3 is inserted into the bus 1 when the switch 2 is inserted. The transformer 3 is disconnected from the bus 1 when the switch 2 is opened.
  • the bus voltage detectors 4A and 4B detect the phase voltages Va and Vb of the bus 1.
  • the bus voltage detectors 4A and 4B send detection signals of the detected phase voltages Va and Vb to the bus voltage measuring unit 601 of the magnetizing inrush current suppression device 6.
  • the transformer single-phase side voltage detectors 5M, 5T detect the single-phase side voltages Vm, Vt of the transformer 3.
  • the transformer single-phase side voltage detectors 5M and 5T send detection signals of the detected single-phase side voltages Vm and Vt to the transformer voltage measuring unit 603 of the magnetizing inrush current suppressing device 6.
  • the bus voltage measuring unit 601 measures the phase voltages Va and Vb of the bus 1 based on the detection signals of the phase voltages of the bus 1 detected by the bus voltage detectors 4A and 4B. To do.
  • the bus voltage measuring unit 601 sends the measured phase voltages Va and Vb to the phase detecting unit 605.
  • the transformer voltage measuring unit 603 is configured to detect the single unit of the modified Woodbridge connection transformer 3 based on the detection signals of the single phase side voltages Vm and Vt of the transformer 3 detected by the transformer single phase side voltage detectors 5M and 5T. The phase side voltages Vm and Vt are measured. The transformer voltage measurement unit 603 sends the measured single-phase side voltages Vm and Vt to the phase detection unit 605.
  • the phase detection unit 605 includes the phase voltages Va and Vb of the bus 1 measured by the bus voltage measurement unit 601 and the single-phase side voltage Vm of the modified Woodbridge connection transformer 3 measured by the transformer voltage measurement unit 603. By monitoring Vt, the voltage phase (breaking phase) when the switch 2 last shuts off the transformer 3 is stored. Phase detector 605 detects the same phase as the stored cutoff phase based on each phase voltage Va, Vb of bus 1 measured by bus voltage measuring unit 601. The phase detection unit 605 sends the detected phase to the input command output unit 606.
  • the closing command output unit 606 uses the phase detected by the phase detection unit 605 as the closing phase, and outputs a closing command to the operation mechanism that drives the main contact of the switch 2. Thereby, the transformer 3 is put into the bus 1.
  • FIG. 2 shows a wood bridge connection transformer
  • FIG. 3 shows a modified wood bridge connection transformer
  • FIG. 4 shows a roof delta connection transformer.
  • the wood bridge connection transformer of FIG. 2 and the roof delta connection transformer of FIG. 4 can be used instead of the modified wood bridge connection transformer shown in FIG. It is.
  • the transformation results are similar to the modified Woodbridge connection transformer. Therefore, the wood bridge connection transformer and the roof delta connection transformer shall be replaced with a modified wood bridge unless otherwise specified.
  • the replacement with the modified wood bridge connection transformer is the same in the following embodiments.
  • the wood bridge connection transformer shown in FIG. 2 has a turns ratio of 1: 0.366: 0.366 for only one phase on the single phase side.
  • the autotransformer is connected to only one phase on the single-phase side.
  • the roof-delta connection transformer shown in FIG. 4 has a single-phase side composed of a combination of a roof connection and a delta connection, and the roof connection and the delta connection are electrically insulated.
  • the transformer 3 includes a main seat transformer 302 and a T seat transformer 301.
  • the main transformer 302 is also called an M seat transformer.
  • FIG. 5A shows three-phase phase voltages Vu, Vv, Vw and line voltages Vvw, Vwu, Vuv, and M-seat transformer 302 and T-seat transformer during the steady operation of the modified Woodbridge connection transformer 3 shown in FIG.
  • FIG. 3 is a diagram showing single-phase voltages Vm and Vt of each of the units 301.
  • FIG. 5B is a diagram showing voltage vectors of three-phase phase voltages Vu, Vv, Vw and line voltages Vvw, Vwu, Vuv.
  • FIG. 5C is a diagram showing voltage vectors of the single-phase side voltages Vm and Vt of the M seat transformer 302 and the T seat transformer 301, respectively.
  • 6A, 6B, and 6C are respectively the three-phase phase voltages Vu, Vv, and Vw and the line voltages Vvw, Vwu, and Vuv shown in FIGS. 5B and 5C, and the M-seat transformer 302 and T It is a figure which shows the voltage waveform of the single phase side voltage Vm of a seat transformer 301, and Vt.
  • the three-phase line voltage Vvw is in phase with the Vm voltage applied between the single-phase terminals ac.
  • the three-phase phase voltage Vu has the same phase as the Vt voltage applied between the single-phase terminals bd.
  • the phase voltage Vu is 90 degrees ahead of the line voltage Vvw.
  • the phase of the single-phase side voltage Vt of the T-seat transformer 301 is advanced by 90 degrees from the single-phase side voltage Vm of the M-seat transformer 302.
  • the detection signals of the phase voltages Va and Vb of the bus 1 detected by the bus voltage detectors 4A and 4B under the above conditions are sent to the bus voltage measuring unit 601 of the magnetizing inrush current suppressing device 6. Further, the detection signals of the single-phase side voltages Vm and Vt of the transformer 3 detected by the transformer single-phase side voltage detectors 5M and 5T are sent to the transformer voltage measuring unit 603 of the magnetizing inrush current suppressing device 6.
  • the phase voltages Va and Vb of the bus 1 measured by the bus voltage measuring unit 601 are sent to the phase detecting unit 605. Further, the single-phase side voltages Vm and Vt measured by the transformer voltage measuring unit 603 are sent to the phase detecting unit 605.
  • phase detector 605 the phase voltages Va and Vb of the bus 1 measured by the bus voltage measuring unit 601 and the single-phase side voltage Vm of the modified Woodbridge connection transformer 3 measured by the transformer voltage measuring unit 603, Vt is monitored, and the voltage phase (breaking phase) when the switch 2 finally shuts off the transformer 3 is stored. Then, the phase detection unit 605 detects the same phase as the stored cutoff phase for each phase voltage Va, Vb of the bus 1 measured by the bus voltage measurement unit 601. The detected phase is sent to the input command output unit 606, and the input command output unit 606 outputs the input command to the operating mechanism that drives the main contact of the switch 2 with the phase as the input phase. Thereby, the switch 2 is turned on, and the transformer 3 is connected to the bus 1.
  • FIG. 7 is a diagram showing the relationship between the interruption phase when the modified Woodbridge connection transformer 3 in the first embodiment is interrupted and the residual magnetic fluxes ⁇ m and ⁇ t on the single-phase side.
  • the single-phase AC voltages Vm and Vt are applied in a steady state, the residual magnetic fluxes ⁇ m and ⁇ t shown in FIG. 7 are cut off to 360 degrees every 30 degrees with the phase ⁇ 0 shown in FIG. 6 as a reference (0 degree).
  • the residual magnetic fluxes ⁇ m and ⁇ t when the phase is changed are shown.
  • the residual magnetic fluxes ⁇ m and ⁇ t on the single-phase side of the modified Woodbridge connection transformer 3 differ depending on the cutoff phase.
  • FIG. 8 is a diagram showing excitation inrush currents Im and It flowing in the switch 2 according to the relationship between the cutoff phase and the closing phase of the modified Woodbridge connection transformer 3 in the first embodiment.
  • the magnetizing inrush current Im indicates the M-phase single-phase side magnetizing inrush current
  • the magnetizing inrush current It indicates the single-phase side magnetizing inrush current of the T seat.
  • 8A, FIG. 8B, FIG. 8C, and FIG. 8D show changes in excitation inrush currents Im and It when the cutoff phase is 0 degree, 60 degrees, 90 degrees, and 150 degrees, respectively. From FIG. 8, it can be seen that the excitation inrush currents Im and It are most suppressed when the closing phase is the same as the cutoff phase regardless of the cutoff phase.
  • the magnetizing inrush current suppressing device 6 As described above, in the first embodiment, in the magnetizing inrush current suppressing device 6, the voltage phase on the three-phase side to the single-phase side when the switch 2 last shuts off the transformer 3 is detected and stored. Keep it. Next, when the transformer 3 is turned on, the magnetizing inrush current suppressing device 6 turns on the switch 2 in accordance with the phase. Thereby, the magnetizing inrush current suppression device 6 can suppress the magnetizing inrush currents Im and It.
  • FIG. 9 is a block diagram showing a configuration of a power system including the magnetizing inrush current suppressing device 6A according to the second embodiment.
  • the magnetizing inrush current suppression device 6A shown in FIG. 9 includes a phase detection unit 605A instead of the phase detection unit 605 of the first embodiment.
  • the magnetizing inrush current suppressing device 6A adds a steady magnetic flux calculating unit 602 and a residual magnetic flux calculating unit 604.
  • Other configurations are the same as those of the magnetizing inrush current suppressing device 6 according to the first embodiment.
  • the steady magnetic flux calculating unit 602 integrates the phase voltages Va and Vb of the bus 1 measured by the bus voltage measuring unit 601, and calculates the steady-state magnetic fluxes ⁇ Tm and ⁇ Tt.
  • the steady magnetic flux calculation unit 602 sends the calculated steady magnetic fluxes ⁇ Tm and ⁇ Tt to the phase detection unit 605A.
  • the residual magnetic flux calculation unit 604 integrates the single-phase side voltages Vm and Vt measured by the transformer voltage measurement unit 603 to calculate the residual magnetic flux ⁇ Zm and ⁇ Zt.
  • the residual magnetic flux calculation unit 604 sends the calculated residual magnetic fluxes ⁇ Zm and ⁇ Zt to the phase detection unit 605A.
  • the phase detection unit 605A inputs the steady magnetic fluxes ⁇ Tm and ⁇ Tt calculated by the steady magnetic flux calculation unit 602 and the residual magnetic fluxes ⁇ Zm and ⁇ Zt calculated by the residual magnetic flux calculation unit 604, and the input steady magnetic fluxes ⁇ Tm and ⁇ Tt and the residual magnetic flux Phase sections Tm and Tt in which the polarities of ⁇ Zm and ⁇ Zt coincide are identified, and the input phase range Tc is identified based on the detected phase sections Tm and Tt.
  • the phase detection unit 605A sends the identified making phase range Tc to the making command output unit 606.
  • the closing command output unit 606 determines the closing phase within the closing phase range Tc identified by the phase detector 605A, and outputs a closing command to the operation mechanism that drives the main contact of each phase of the switch 2.
  • the magnetizing inrush current suppression device 6 when a voltage is applied to the transformer 3 in a steady state, the phase voltages Va and Vb measured by the bus voltage measuring unit 601 are integrated by the steady magnetic flux calculating unit 602. The steady magnetic fluxes ⁇ Tm and ⁇ Tt on the single-phase side of the M seat transformer and the T seat transformer are calculated.
  • the magnetizing inrush current suppression device 6 measures the transformer single-phase side voltages Vm and Vt when the transformer 3 to which a voltage is applied in a steady state is shut off by the switch 2 by the transformer voltage measuring unit 603, The measured transformer single-phase voltages Vm and Vt are integrated to calculate residual magnetic fluxes ⁇ Zm and ⁇ Zt.
  • FIG. 10A and FIG. 10B are waveform diagrams showing voltages Vm and Vt on the transformer single phase side and a closing phase range in which the excitation inrush current can be suppressed by the excitation inrush current suppressing device.
  • ⁇ Tm and ⁇ Tt indicate steady magnetic fluxes calculated by the steady magnetic flux calculation unit 602.
  • ⁇ Zm and ⁇ Zt indicate residual magnetic fluxes calculated by the residual magnetic flux calculation unit 604.
  • Tm and Tt indicate phase sections in which the polarities of the steady magnetic fluxes ⁇ Tm and ⁇ Tt and the residual magnetic fluxes ⁇ Zm and ⁇ Zt coincide.
  • Tc represents a closing phase range in which the magnetizing inrush current can be suppressed.
  • FIG. 11 is a waveform diagram showing changes in single-phase side voltage and magnetic flux before and after the transformer 2 in steady operation is opened (TP) with the switch 2.
  • 12A shows the transformer single-phase side voltages Vm and Vt when the switch 2 is simultaneously opened (CL) in the closing phase range Tc shown in FIG. 10 after the switch 2 is opened at the phase shown in FIG.
  • FIG. 6 is a waveform diagram showing magnetic fluxes ⁇ Tm and ⁇ Tt and exciting inrush currents Im and It flowing in the switch 2.
  • FIG. 12B shows the transformer single-phase side voltage Vm when the switch 2 is simultaneously opened (CL) outside the closing phase range Tc shown in FIG. 10 after the switch 2 is opened at the phase shown in FIG.
  • FIG. 6 is a waveform diagram showing Vt, magnetic fluxes ⁇ Tm, ⁇ Tt, and magnetizing inrush currents Im, It flowing in the switch 2.
  • the closing phase is controlled so that the transformer 3 is turned on by the switch 2.
  • voltages Vm, Vt on the transformer single phase side and magnetic fluxes ⁇ Tm, ⁇ Tt on the transformer single phase side appear, and the excitation inrush currents Im, It are 120 A at the maximum.
  • the section where the polarities of the single-phase side steady magnetic fluxes ⁇ Tm and ⁇ Tt and the residual magnetic fluxes ⁇ Zm and ⁇ Zt coincide with each other is set as the input phase range Tc. Since the closing phase of the switch 2 is determined, the closing command output unit 606 issues a closing command according to the determined closing phase to turn on the switch 2. Thereby, the magnetizing inrush current suppressing device 6A can suppress the magnetizing inrush currents Im and It generated when the transformer 3 is turned on.
  • the switch 2 when the switch 2 is turned on, there is a variation in the turn-on time of the transformer 3 due to a preceding discharge called a pre-arc generated between the main contacts, a variation in operation of the operation mechanism, and the like.
  • the variation in charging due to pre-arcing and the variation in switching-in of the switch 2 can be corrected by a control device that performs phase control by acquiring the characteristics in advance, and these variations can be corrected by exciting inrush current Im, It does not prevent the suppression of It.
  • the switch 2 on the single-phase AC side is turned on at a phase in which the residual magnetic flux ⁇ Zt substantially coincides, the switch 2 may be turned on individually.
  • FIG. 13 is a block diagram which shows the structure of an electric power grid
  • the magnetizing inrush current suppressing device 6B shown in FIG. 13 includes a transformer voltage measuring unit 603B and a residual magnetic flux calculating unit 604B instead of the transformer voltage measuring unit 603 and the residual magnetic flux calculating unit 604 of the second embodiment.
  • the magnetizing inrush current suppressing device 6B has a configuration in which a transformer voltage converting unit 610 is added. Other configurations are the same as those of the magnetizing inrush current suppressing device 6A according to the second embodiment.
  • the transformer voltage measuring unit 603B is configured to generate a modified wood based on the detection signal on the three-phase voltage side of the transformer 3 detected by the transformer three-phase voltage detectors 5U, 5V, 5W. Each voltage on the three-phase side of the bridge connection transformer 3 is measured.
  • the three-phase side voltage is a three-phase side line voltage Vvw, Vwu, Vuv and a three-phase side phase voltage Vu, Vv, Vw.
  • the transformer voltage measurement unit 603B sends the measured three-phase side voltage of the transformer 3 to the transformer voltage conversion unit 610.
  • the transformer voltage conversion unit 610 converts the three-phase side voltage of the transformer 3 input from the transformer voltage measurement unit 603B into a single-phase side voltage.
  • the transformer voltage conversion unit 610 sends the converted single-phase side voltages Vm and Vt to the residual magnetic flux calculation unit 604B.
  • the residual magnetic flux calculation unit 604B integrates the single-phase side voltages Vm and Vt converted by the transformer voltage conversion unit 610, and calculates the residual magnetic flux ⁇ Zm and ⁇ Zt.
  • the residual magnetic flux calculation unit 604B sends the calculated residual magnetic fluxes ⁇ Zm and ⁇ Zt to the phase detection unit 605A.
  • the transformer voltage conversion unit 610 converts the single-phase side voltage from the transformer three-phase side voltage measured by the transformer voltage measurement unit 603B.
  • Convert to 14A, 14B, and 14C illustrate three-phase side line voltages Vuv, Vvw, and Vwu that are input to the transformer voltage conversion unit 610, and single-phase side voltages Vlm ′ and Vlt after conversion by the transformer voltage conversion unit 610, respectively.
  • the waveforms in FIGS. 14A, 14B, and 14C are displayed in a par unit display with a peak value of 1.
  • the transformer voltage conversion unit 610 calculates each line voltage Vuv, Vvw, Vwu based on each phase voltage measured by the transformer voltage measurement unit 603B, and converts each line voltage Vuv, Vvw, Vwu to the transformer single phase side. The voltages are converted to Vlm ′ and Vlt ′.
  • the transformer single-phase side voltages Vlm ′ and Vlt ′ after conversion by the transformer voltage conversion unit 610 are obtained by the following equations.
  • Vuv line voltage between three-phase side UV
  • Vvw line voltage between three-phase side
  • VW Line voltage between three-phase side WU
  • Vlm ′ Single-phase side voltage after conversion of M-seat transformer that converts from three-phase side line voltage
  • Vlt ′ Single-phase side voltage after conversion of the T-seat transformer that converts from the three-phase side line voltage
  • the single-phase side voltages Vlm ′ and Vlt ′ converted by the transformer voltage conversion unit 610 are sent to the residual magnetic flux calculation unit 604B.
  • FIG. 15A, FIG. 15B, and FIG. 15C are respectively the three-phase side phase voltages Vu, Vv, and Vw inputted to the transformer voltage conversion unit 610, and the single-phase side voltage Vpm after conversion by the transformer voltage conversion unit 610.
  • It is a wave form diagram which shows the phase relationship of ', Vpt' and transformer single phase side voltage Vm, Vt.
  • the waveforms in FIGS. 15A, 15B, and 15C are displayed as a par unit with a peak value of 1.
  • Transformer voltage conversion unit 610 converts each phase voltage Vu, Vv, Vw measured by transformer voltage measurement unit 603B into transformer single-phase side voltages Vpm ′, Vpt ′.
  • the transformer single-phase side voltages Vpm ′ and Vpt ′ after conversion by the transformer voltage conversion unit 610 are obtained by the following equations.
  • Vu three-phase side U-phase voltage
  • Vv three-phase side V-phase voltage
  • Vw three-phase side W-phase voltage
  • Vpm ′ Single-phase side voltage after conversion of M-seat transformer that converts from three-phase side-phase voltage
  • Vpt ′ Single-phase side voltage after conversion of the T-seat transformer that converts from the three-phase side-phase voltage
  • the single-phase side voltages Vpm ′ and Vpt ′ converted by the transformer voltage conversion unit 610 are sent to the residual magnetic flux calculation unit 604B.
  • the single-phase side voltages Vlm ′, Vlt ′ to Vpm ′, Vpt ′ converted by the transformer voltage conversion unit 610 are used as voltages for calculating the residual magnetic fluxes ⁇ Zm, ⁇ Zt on the transformer single-phase side. be able to.
  • the residual magnetic flux calculation unit 604B integrates the single-phase side voltages Vlm ′, Vlt ′ to Vpm ′, Vpt ′ converted by the transformer voltage conversion unit 610 immediately after the transformer 3 is cut off by the switch 2 to transform the voltage.
  • the residual magnetic fluxes ⁇ Zm and ⁇ Zt on the single-phase side are calculated. Other points are the same as the residual magnetic flux calculation unit 604 according to the second embodiment.
  • the magnetizing inrush current suppressing device 6B is modified even if the transformer single-phase side voltage detectors 5M and 5T are not provided between the switch 2 and the transformer single-phase side terminal.
  • the three-phase side line voltages Vuv, Vvw, Vwu and the phase voltages Vu, Vv, Vw of the Woodbridge connection transformer 3 are converted into single-phase side voltages Vlm ′, Vlt ′, Vpm ′, Vpt ′, respectively.
  • the magnetizing inrush current suppression device 6B can calculate the residual magnetic fluxes ⁇ Zm and ⁇ Zt, and can suppress the magnetizing inrush currents Im and It as in the second embodiment.
  • the stationary magnetic flux ⁇ Tm and the residual magnetic flux ⁇ Zm on the single phase side of the M seat transformer 302, and the steady magnetic flux ⁇ Tt and the residual magnetic flux ⁇ Zt on the single phase side of the T seat transformer 301 are used.
  • the switches 2 on the single-phase alternating current side are turned on at phases that substantially coincide with each other, the switches 2 may be turned on individually.
  • FIG. 16 is a block diagram illustrating a configuration of a power system including the magnetizing inrush current suppressing device 6C according to the fourth embodiment.
  • An inrush current suppression device 6C shown in FIG. 16 includes a phase detector 605C instead of the phase detector 605 of the first embodiment. Further, the magnetizing inrush current suppressing device 6C is configured to add an opening command output unit 609. Other configurations are the same as those of the magnetizing inrush current suppressing device 6 according to the first embodiment.
  • the phase detection unit 605C includes each phase voltage Va, Vb of the bus 1 measured by the bus voltage measuring unit 601 and the modified Woodbridge connection transformer 3 measured by the transformer voltage measuring unit 603. The timing at which the respective phases of the single-phase side voltages Vm and Vt become the previously held phases is detected.
  • the phase detection unit 605C notifies the closing command output unit 606 and the opening command output unit 609 of the holding phase detection timing.
  • the closing command output unit 606 and the opening command output unit 609 issue commands to the operating mechanisms that drive the main contacts of the switch 2 so that the switching is performed at the holding phase detection timing.
  • the phase detection unit 605C holds a predetermined phase.
  • the predetermined phase may be set in advance or may be held according to a condition that the switch 2 has been opened and closed in the past.
  • the cutoff phase and the input phase of the modified Woodbridge connection transformer 3 are always set in advance. Therefore, the magnetizing inrush current suppressing device 6C can suppress the magnetizing inrush currents Im and It, as in the first embodiment.
  • the switch 2 when the switch 2 is turned on, there is a variation in the turn-on time of the transformer 3 due to a preceding discharge called a pre-arc generated between the main contacts, a variation in operation of the operation mechanism, and the like.
  • the variation in charging due to pre-arcing and the variation in switching on the switch 2 can be corrected by a control device that performs phase control by acquiring the characteristics in advance, and these variations can be corrected by exciting inrush current Im. , It does not prevent suppression of It.
  • FIG. 17 is a block diagram illustrating a configuration of a power system including the magnetizing inrush current suppressing device 6D according to the fifth embodiment.
  • An excitation inrush current suppression device 6D shown in FIG. 17 includes a phase detection unit 605D instead of the phase detection unit 605A in the excitation inrush current suppression device 6A according to the second embodiment.
  • the magnetizing inrush current suppressing device 6D is configured to add a measurement information holding unit 607, an opening phase control unit 608, and an opening command output unit 609. Other configurations are the same as those of the magnetizing inrush current suppressing device 6A according to the second embodiment.
  • the measurement information holding unit 607 holds the residual magnetic fluxes ⁇ Zm and ⁇ Zt calculated by the residual magnetic flux calculating unit 604 before the operation of the exciting inrush current suppressing device 6D.
  • the measurement information holding unit 607 holds, as measurement information, the relationship between the cutoff phase when the modified Woodbridge connection transformer 3 is cut off and the residual magnetic fluxes ⁇ Zm and ⁇ Zt on the single phase side. At this time, the measurement information holding unit 607 opens the switch 2 at least once before operation.
  • the opening phase control unit 608 inputs the residual magnetic fluxes ⁇ Zm and ⁇ Zt held in the measurement information holding unit 607 and the phase voltages Va and Vb of the bus 1 measured by the bus voltage measuring unit 601, Based on the residual magnetic fluxes ⁇ Zm and ⁇ Zt and the phase voltages Va and Vb, the opening phase of the main contact of the switch 2 is controlled so that the opening phase is always the same.
  • the opening phase control unit 608 sends the controlled opening phase to the opening command output unit 609.
  • the opening command output unit 609 opens the switch 2 based on the opening phase from the opening phase control unit 608.
  • the phase detector 605D inputs the residual magnetic fluxes ⁇ Zm and ⁇ Zt held in the measurement information holding unit 607 and the steady magnetic fluxes ⁇ Tm and ⁇ Tt calculated by the steady magnetic flux calculator 602, and these steady magnetic fluxes ⁇ Tm and ⁇ Tt and the residual magnetic flux. Based on ⁇ Zm and ⁇ Zt, the input phase range Tc is identified.
  • the exciting inrush current suppressing device 6D when the deformed wood bridge connection transformer 3 is interrupted by the switch 2, the opening phase of the switch 2 is always the same. To control. That is, since the exciting inrush current suppressing device 6D can always make the residual magnetic fluxes ⁇ Zm and ⁇ Zt the same, even when the switch 2 is turned on to excite the deformed woodbridge connection transformer 3, the same phase is always obtained. Can do. Thereby, the exciting inrush current suppressing device 6D can always suppress the exciting inrush currents Im and It.
  • the magnetizing inrush current suppression device 6D can obtain the residual magnetic fluxes ⁇ Zm and ⁇ Zt held from the measurement information holding unit 607. Therefore, the transformer single-phase side voltage detectors 5M and 5T can be connected only at the time of measurement by the measurement information holding unit 607, can be removed in a normal operation state, and further, the broken line portion shown in FIG. 17 can be removed. . However, the transformer single-phase side voltage detectors 5M and 5T may be permanently installed.
  • the single-phase steady magnetic flux ⁇ Tm and the residual magnetic flux ⁇ Tm and the residual magnetic flux ⁇ Zt of the single-phase side magnetic flux ⁇ Tm and the residual magnetic flux ⁇ ZmT of the M-transformer 302 are shown.
  • the switches 2 may be turned on individually.
  • FIG. 18 is a block diagram illustrating a configuration of a power system including the magnetizing inrush current suppressing device 6E according to the sixth embodiment.
  • An inrush current suppression device 6E shown in FIG. 18 includes a phase detector 605D according to the fifth embodiment instead of the phase detector 605A of the third embodiment.
  • the magnetizing inrush current suppressing device 6E has a configuration in which an opening phase control unit 608 and an opening command output unit 609 according to the fifth embodiment are added, and a measurement information holding unit 607E is further added.
  • Other configurations are the same as those of the magnetizing inrush current suppressing device 6B according to the third embodiment.
  • the measurement information holding unit 607E holds the residual magnetic fluxes ⁇ Zm and ⁇ Zt calculated by the residual magnetic flux calculating unit 604 before operation. Further, the measurement information holding unit 607E holds, as measurement information, the relationship between the cutoff phase when the modified Woodbridge connection transformer 3 is cut off and the residual magnetic fluxes ⁇ Zm and ⁇ Zt on the single phase side. At this time, the measurement information holding unit 607E opens the switch 2 at least once before operation.
  • the opening phase control unit 608 is configured such that the residual magnetic fluxes ⁇ Zm and ⁇ Zt held in the measurement information holding unit 607E and the phase voltage Va of the bus 1 measured by the bus voltage measuring unit 601 Based on Vb, the opening phase of the main contact of the switch 2 is controlled so that the interruption phase is always the same.
  • the opening phase controlled by the opening phase control unit 608 is sent to the opening command output unit 609.
  • the opening command output unit 609 opens the switch 2 based on the opening phase received from the opening phase control unit 608.
  • the phase detector 605D is based on the residual magnetic fluxes ⁇ Zm and ⁇ Zt held in the measurement information holding unit 607E and the steady magnetic fluxes ⁇ Tm and ⁇ Tt calculated by the steady magnetic flux calculator 602, as in the fifth embodiment. Then, the input phase range Tc in which the transformer 3 is input is identified. Henceforth, about the flow of excitation inrush current suppression, it is the same as that of 3rd Embodiment.
  • the circuit conditions of the power system are always the same. is there. Therefore, if the phase when the switch 2 is opened is always the same, the values of the residual magnetic fluxes ⁇ Zm and ⁇ Zt of each phase of the modified Woodbridge connection transformer 3 should always be the same.
  • the residual magnetic fluxes ⁇ Zm and ⁇ Zt are always the same because they are held in the measurement information holding unit 607E.
  • the magnetizing inrush current suppressing device 6E can shut off the open circuit phase of the switch 2 so that the cut-off phase is always the same when the deformed Woodbridge connection transformer 3 is cut off by the switch 2. it can.
  • the exciting inrush current suppressing device 6E can always be in the same phase when the switch 2 is turned on to excite the deformed wood bridge connection transformer 3. Thereby, the exciting inrush current suppressing device 6E can always suppress the exciting inrush currents Im and It.
  • the magnetizing inrush current suppression device 6E can obtain the residual magnetic fluxes ⁇ Zm, ⁇ Zt held in the measurement information holding unit 607E. it can. Therefore, the transformer single-phase side voltage detectors 5M and 5T are connected only at the time of measurement by the measurement information holding unit 607E, can be removed in a normal operation state, and further, the one-dot chain line portion shown in FIG. it can. However, the transformer three-phase voltage detectors 5U, 5V, 5W may be permanently installed.
  • the switches 2 may be turned on individually.
  • the magnetizing inrush current suppression device includes a single-phase AC side power system, and a transformer 3 that converts a three-phase AC voltage to a single-phase AC voltage. Can be suppressed from the magnetizing inrush currents Im and It that are generated when the switch 2 is turned on from the single-phase side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Protection Of Transformers (AREA)
  • Keying Circuit Devices (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 励磁突入電流抑制装置(6)は、母線電圧計測部(601)によって単相交流側の母線の各相電圧を計測し、変圧器電圧計測部(603)によって変圧器単相側電圧を計測する。励磁突入電流抑制装置(6)は、位相検出部(605)によって母線電圧計測部(601)で計測される各相電圧及び変圧器電圧計測部(603)で計測される単相側電圧から開閉器(2)を遮断開極したときの遮断位相を検出し、その遮断位相を保持し、保持されている遮断位相と同一の位相を得る。励磁突入電流抑制装置(6)は、投入指令出力部(606)により、位相検出部(605)で得られる位相と同じ電圧位相で、単相交流側の開閉器(2)を投入する。 

Description

励磁突入電流抑制装置及びその抑制方法
 本発明の実施形態は、変圧器を電源に投入して無負荷励磁を行う際に生じる励磁突入電流を抑制するための励磁突入電流抑制装置及びその抑制方法に関する。
 一般に、変圧器を電源に投入して無負荷状態で励磁を行う場合、変圧器の鉄心に残留磁束があると、大きな励磁突入電流が流れる可能性があることが知られている。この励磁突入電流の大きさは変圧器の定格負荷電流の数倍になる。このように大きな励磁突入電流が流れると電力系統の電圧が変動するため、その電圧変動が大きい場合、需要者に影響を与えることがある。
 上記励磁突入電流を抑制する代表的な方法として、変圧器を電源に投入する経路に、遮断器を配置することが知られている。この遮断器は、投入抵抗が接点に直列に接続された抵抗体付き接点を有する。遮断器は、抵抗体付き接点を主接点に並列に接続し、主接点に先行して投入することにより、励磁突入電流を抑制するように構成される。
 一方、直接接地系の三相変圧器では、3台の単相型遮断器を介して電源に投入することがあるが、この場合、任意の1相を先行投入し、その後に残りの2相を投入させるようにして励磁突入電流を抑制する方法も既に知られている。さらに、電力系統に設置された三相変圧器を三相一括操作型の遮断器で投入する場合、励磁突入電流を抑制する方法として、変圧器が遮断された時の鉄心に残留する磁束の値を計測し、変圧器投入時に生じる励磁突入電流を遮断器の投入位相で制御することが知られている。
 ところで、単相電気炉又は単相交流電気車などの単相交流機器に給電する場合、三相交流電圧を単相交流電圧に変換するため、スコット結線、ウッドブリッジ結線、変形ウッドブリッジ結線、又はルーフ・デルタ結線等による変圧器が用いられる。これに対して、抵抗体付き接点を有する遮断器を用いる励磁突入電流抑圧方法は、通常の遮断器と比較して抵抗体付き接点を付加する必要があるため、全体として大型化してしまうことになる。他の方法は、いずれも三相変圧器を対象としており、上述のような三相交流電圧を単相交流電圧に変換する変圧器を想定しており、利用することができない。
 そこで、目的は、三相交流電圧から単相交流電圧に変換する変圧器を単相交流側の電力系統に投入する際に生じる励磁突入電流を抑制することができる励磁突入電流抑制装置及びその抑制方法を提供することにある。
 本実施形態に係る励磁突入電流抑制装置は、主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の母線に選択的に遮断・投入する電力系統システムに用いられ、前記変圧器の投入の際に発生する励磁突入電流を抑制するもので、母線電圧計測手段により前記単相交流側の母線の各相電圧を計測し、変圧器電圧計測手段により前記変圧器の単相側電圧を計測し、位相検出手段により、前記母線電圧計測手段で計測される各相電圧及び前記変圧器電圧計測手段で計測される単相側電圧から前記開閉器を開極するときの遮断位相を検出し、その遮断位相を保持し、前記保持されている遮断位相と同一の位相を得て、投入指令出力手段により、前記位相検出手段で得られる位相と同じ電圧位相で、単相交流側の開閉器を投入させる。
図1は、第1の実施形態における励磁突入電流抑制装置を備える電力系統システムの構成を示す図である。 図2は、図1に示す変圧器(ウッドブリッジ結線の場合)を示す図である。 図3は、図1に示す変圧器(変形ウッドブリッジ結線の場合)を示す図である。 図4は、図1に示す変圧器(ルーフ・デルタ結線の場合)を示す図である。 図5Aは、図3に示す変形ウッドブリッジ結線変圧器3の定常運転時における三相側の相電圧、及び線間電圧と、M座変圧器及びT座変圧器それぞれの単相側電圧とを示す図である。 図5Bは、三相側の相電圧、及び線間電圧の電圧ベクトルを示す図である。 図5Cは、M座変圧器及びT座変圧器それぞれの単相側電圧の電圧ベクトルを示す図である。 図6Aは、図5B及び図5Cに示す三相側線間電圧の電圧波形を示す図である。 図6Bは、図5B及び図5Cに示す三相側の相電圧の電圧波形を示す図である。 図6Cは、M座変圧器及びT座変圧器の単相側電圧の電圧波形を示す図である。 図7は、第1の実施形態における変形ウッドブリッジ結線変圧器を遮断するときの遮断位相と単相側における残留磁束の関係を示す図である。 図8Aは、第1の実施形態における変形ウッドブリッジ結線変圧器の遮断位相(0°)と投入位相との関係による開閉器に流れる励磁突入電流を示す図である。 図8Bは、第1の実施形態における変形ウッドブリッジ結線変圧器の遮断位相(60°)と投入位相との関係による開閉器に流れる励磁突入電流を示す図である。 図8Cは、第1の実施形態における変形ウッドブリッジ結線変圧器の遮断位相(90°)と投入位相との関係による開閉器に流れる励磁突入電流を示す図である。 図8Dは、第1の実施形態における変形ウッドブリッジ結線変圧器の遮断位相(150°)と投入位相との関係による開閉器に流れる励磁突入電流を示す図である。 図9は、第2の実施形態における励磁突入電流抑制装置を備える電力系統システムの構成を示す図である。 図10Aは、変圧器単相側の電圧を示す波形図である。 図10Bは、励磁突入電流抑制装置による励磁突入電流を抑制できる投入位相範囲を示す波形図である。 図11は、定常運転している変圧器を開閉器で開極する場合の変圧器単相側電圧、磁束を示す図である。 図12Aは、図10に示す投入位相範囲で開閉器を同時に投入する場合の変圧器単相側電圧、磁束、及び開閉器に流れる励磁突入電流を示す波形図である。 図12Bは、図10に示す投入位相範囲外で開閉器を同時に投入する場合の変圧器単相側電圧、磁束、及び開閉器に流れる励磁突入電流を示す波形図である。 図13は、第3の実施形態における励磁突入電流抑制装置を備える電力系統システムの構成を示す図である。 図14Aは、第3の実施形態における三相側線間電圧を示す図である。 図14Bは、第3の実施形態における三相側線間電圧から変換した単相側電圧を示す図である。 図14Cは、第3の実施形態における変圧器単相側電圧を示す図である。 図15Aは、第3の実施形態における三相側相電圧を示す図である。 図15Bは、第3の実施形態における三相側相電圧から変換した単相側電圧を示す図である。 図15Cは、第3の実施形態における変圧器単相側電圧を示す図である。 図16は、第4の実施形態における励磁突入電流抑制装置を備える電力系統システムの構成を示す図である。 図17は、第5の実施形態における励磁突入電流抑制装置を備える電力系統システムの構成を示す図である。 図18は、第6の実施形態における励磁突入電流抑制装置を備える電力系統システムの構成を示す図である。
 以下、実施形態について、図面を参照して説明する。
 (第1の実施形態) 
 図1は、第1の実施形態に係る励磁突入電流抑制装置6を備える電力系統システムの構成を示すブロック図である。なお、以降の図における同一部分には同一符号を付してその詳しい説明を省略し、異なる部分について主に述べる。以降の実施形態も同様にして重複する説明を省略する。
 図1に示す電力系統システムは、単相交流側母線1、開閉器(いわゆる遮断器)2、三相交流電圧を単相交流電圧に変換する変形ウッドブリッジ結線変圧器3、母線1に設けられる母線電圧検出器4A,4B、変形ウッドブリッジ結線変圧器3の2次側(単相側)に設けられる変圧器単相側電圧検出器5M,5T及び励磁突入電流抑制装置6を備える。
 単相側交流母線1は、三相交流側電力系統の電源母線(図示せず)の三相交流電圧が変圧器3によって変換される単相交流電圧を負荷に供給する電力系統の母線である。以降、単相交流側母線1は母線1と表記する。
 開閉器2は、母線1と変形ウッドブリッジ結線変圧器3との間に設けられ、母線1の各相における主接点の開閉を操作する。すなわち、変圧器3は、開閉器2が投入されることにより、母線1に投入される。また、変圧器3は、開閉器2が開極されることにより、母線1から遮断される。
 母線電圧検出器4A,4Bは、母線1の各相電圧Va,Vbを検出するものである。母線電圧検出器4A,4Bは、検出された各相電圧Va,Vbの検出信号を励磁突入電流抑制装置6の母線電圧計測部601へ送る。変圧器単相側電圧検出器5M,5Tは、変圧器3の単相側電圧Vm,Vtを検出するものである。変圧器単相側電圧検出器5M,5Tは、検出された単相側電圧Vm,Vtの検出信号を励磁突入電流抑制装置6の変圧器電圧計測部603へ送る。
 励磁突入電流抑制装置6において、母線電圧計測部601は、母線電圧検出器4A,4Bにより検出される母線1の各相電圧の検出信号に基づいて、母線1の各相電圧Va,Vbを計測する。母線電圧計測部601は、計測された相電圧Va,Vbを位相検出部605へ送る。
 変圧器電圧計測部603は、変圧器単相側電圧検出器5M,5Tにより検出される変圧器3の単相側電圧Vm,Vtの検出信号に基づいて、変形ウッドブリッジ結線変圧器3の単相側電圧Vm,Vtを計測する.変圧器電圧計測部603は、計測された単相側電圧Vm,Vtを位相検出部605へ送る。
 位相検出部605は、母線電圧計測部601により計測される母線1の各相電圧Va,Vb、及び変圧器電圧計測部603により計測される変形ウッドブリッジ結線変圧器3の単相側電圧Vm,Vtを監視することにより、開閉器2が最後に変圧器3を遮断したときの電圧位相(遮断位相)を記憶する。そして、位相検出部605は、母線電圧計測部601により計測される母線1の各相電圧Va,Vbに基づいて、記憶されている遮断位相と同一の位相を検出する。位相検出部605は、検出された位相を投入指令出力部606へ送る。
 投入指令出力部606は、位相検出部605により検出される位相を投入位相とし、開閉器2の主接点を駆動する操作機構に対して投入指令を出力する。これにより、変圧器3が母線1に投入される。
 ここで、本実施形態では、変形ウッドブリッジ結線変圧器3を用いる場合について説明するが、図2~図4に示す結線の変圧器であってもよい。
 図2はウッドブリッジ結線変圧器、図3は変形ウッドブリッジ結線変圧器、図4はルーフ・デルタ結線変圧器を示す。第1の実施形態における変圧器3には、図3に示す変形ウッドブリッジ結線変圧器に代わって、図2のウッドブリッジ結線変圧器、及び図4のルーフ・デルタ結線変圧器を用いることも可能である。しかしながら、変成結果は変形ウッドブリッジ結線変圧器と同様になる。したがって、ウッドブリッジ結線変圧器、及びルーフ・デルタ結線変圧器は、特に区別しない限り、変形ウッドブリッジに置き換えられるものとする。変形ウッドブリッジ結線変圧器への置き換えは、以降の実施形態でも同様である。
 図2に示すウッドブリッジ結線変圧器は、単相側の1相分のみ、巻数比が1:0.366:0.366となる。図3に示す変形ウッドブリッジ結線変圧器は、単相側の1相分のみに単巻変圧器を接続する。図4に示すルーフ・デルタ結線変圧器は、単相側がルーフ結線とデルタ結線との組み合わせで構成されており、ルーフ結線とデルタ結線は電気的に絶縁される。また、図2乃至図4に示すように、変圧器3は主座変圧器302及びT座変圧器301を備える。主座変圧器302はM座変圧器とも呼ばれる。
 上記構成による電力系統システムにおいて、図5乃至図8を参照してその動作を説明する。
 図5Aは図3に示す変形ウッドブリッジ結線変圧器3の定常運転時における三相側の相電圧Vu,Vv,Vw及び線間電圧Vvw,Vwu,Vuvと、M座変圧器302及びT座変圧器301それぞれの単相側電圧Vm及びVtを示す図である。図5Bは三相側の相電圧Vu,Vv,Vw及び線間電圧Vvw,Vwu,Vuvの電圧ベクトルを示す図である。図5CはM座変圧器302及びT座変圧器301それぞれの単相側電圧Vm及びVtの電圧ベクトルを示す図である。また、図6A,図6B,図6Cは、それぞれ図5B,図5Cに示す三相側の相電圧Vu,Vv,Vw、及び線間電圧Vvw,Vwu,Vuvと、M座変圧器302及びT座変圧器301の単相側電圧Vm,Vtの電圧波形とを示す図である。
 図6A,図6B,図6Cに示すように、M座変圧器302では、三相側の線間電圧Vvwが単相側端子a-c間に印加されるVm電圧と同位相になる。また、T座変圧器301では、三相側の相電圧Vuが単相側端子b-d間に印加されるVt電圧と同位相になる。相電圧Vuは、線間電圧Vvwより90度位相が進んでいる。これにより、T座変圧器301の単相側電圧VtはM座変圧器302の単相側電圧Vmよりも90度位相が進む。
 上記の条件のもとで、母線電圧検出器4A,4Bによって検出された母線1の各相電圧Va,Vbの検出信号は励磁突入電流抑制装置6の母線電圧計測部601へ送られる。また、変圧器単相側電圧検出器5M,5Tによって検出された変圧器3の単相側電圧Vm,Vtの検出信号は励磁突入電流抑制装置6の変圧器電圧計測部603へ送られる。
 励磁突入電流抑制装置6において、母線電圧計測部601によって計測された母線1の相電圧Va,Vbは位相検出部605へ送られる。また、変圧器電圧計測部603によって計測された単相側電圧Vm,Vtは位相検出部605へ送られる。
 この位相検出部605では、母線電圧計測部601により計測される母線1の各相電圧Va,Vb及び変圧器電圧計測部603により計測される変形ウッドブリッジ結線変圧器3の単相側電圧Vm,Vtを監視しており、開閉器2が最後に変圧器3を遮断したときの電圧位相(遮断位相)を記憶している。そして、位相検出部605は、母線電圧計測部601により計測される母線1の各相電圧Va,Vbについて、記憶されている遮断位相と同一の位相を検出する。検出された位相は投入指令出力部606へ送られ、投入指令出力部606により、その位相を投入位相として、開閉器2の主接点を駆動する操作機構に対して投入指令を出力する。これにより、開閉器2が投入され、変圧器3は母線1に接続される。
 図7は、第1の実施形態における変形ウッドブリッジ結線変圧器3を遮断したときの遮断位相と単相側における残留磁束φm,φtの関係を示す図である。図7に示す残留磁束φm,φtは、単相交流電圧Vm,Vtが定常状態で印加されている場合、図6に示す位相θを基準(0度)として30度毎に360度まで遮断位相を変化させた場合の残留磁束φm,φtを示している。図7に示すように、遮断位相によって、変形ウッドブリッジ結線変圧器3の単相側の残留磁束φm,φtは異なる。
 次に、励磁突入電流抑制装置6による励磁突入電流Im,Itの抑制について、図8を参照して説明する。
 図8は、第1の実施形態における変形ウッドブリッジ結線変圧器3の遮断位相と投入位相との関係による開閉器2に流れる励磁突入電流Im,Itを示す図である。図8において、励磁突入電流ImはM座の単相側励磁突入電流を示し、励磁突入電流ItはT座の単相側励磁突入電流を示す。図8A,図8B,図8C,図8Dは、それぞれ遮断位相を0度、60度、90度、150度としたときの励磁突入電流Im,Itの変化を示す。図8から、遮断位相がいずれの場合でも、励磁突入電流抑制装置6による投入位相が遮断位相と同じ場合が最も励磁突入電流Im,Itが抑制されていることがわかる。
 以上のように、第1の実施形態では、励磁突入電流抑制装置6において、開閉器2が最後に変圧器3を遮断したときの三相側乃至単相側の電圧位相を検出して記憶しておく。次に、励磁突入電流抑制装置6は、変圧器3を投入する際、その位相に合わせて開閉器2を投入する。これにより、励磁突入電流抑制装置6は、励磁突入電流Im,Itを抑制することができる。
 尚、開閉器2の投入において、主接点間に発生するプレアークと呼ばれる先行放電や操作機構の動作ばらつき等に起因する変圧器3の投入時間のばらつきが存在する。このようなプレアークによる投入ばらつきや開閉器2の投入時のばらつきが問題となる場合には、予めその特性を取得しておき、開閉器2の投入位相を制御する際にそのばらつきを補正すればよい。よって、これらのばらつきは励磁突入電流Im,Itの抑圧を妨げるものではない。
 (第2の実施形態) 
 図9は、第2の実施形態に係る励磁突入電流抑制装置6Aを備える電力系統システムの構成を示すブロック図である。図9に示す励磁突入電流抑制装置6Aは、第1の実施形態の位相検出部605の代わりに、位相検出部605Aを備える。また、励磁突入電流抑制装置6Aは、定常磁束算出部602及び残留磁束算出部604を追加する。その他の構成は、第1の実施形態に係る励磁突入電流抑制装置6と同様である。
 励磁突入電流抑制装置6Aにおいて、定常磁束算出部602は、母線電圧計測部601により計測される母線1の各相電圧Va,Vbを積分し、定常時の磁束φTm,φTtを算出する。定常磁束算出部602は、算出された定常磁束φTm,φTtは位相検出部605Aへ送る。 
 残留磁束算出部604は、変圧器電圧計測部603により計測される単相側電圧Vm,Vtを積分し、残留磁束φZm,φZtを算出する。残留磁束算出部604は、算出された残留磁束φZm,φZtは位相検出部605Aへ送る。
 位相検出部605Aは、定常磁束算出部602により算出される定常磁束φTm,φTt及び残留磁束算出部604により算出される残留磁束φZm,φZtを入力し、入力された定常磁束φTm,φTt及び残留磁束φZm,φZtの極性が一致する位相区間Tm,Ttを同定し、さらに検出したそれぞれの位相区間Tm,Ttに基づいて、投入位相範囲Tcを同定する。位相検出部605Aは、同定された投入位相範囲Tcを投入指令出力部606に送る。
 投入指令出力部606は、位相検出部605Aにより同定される投入位相範囲Tc内で投入位相を決定し、開閉器2の各相の主接点を駆動する操作機構に対して投入指令を出力する。
 次に、励磁突入電流抑制装置6による励磁突入電流Im,Itの抑制について、図10乃至図12を参照して説明する。
 図9において、励磁突入電流抑制装置6では、変圧器3に定常状態で電圧が印加されるとき、母線電圧計測部601により計測される各相電圧Va,Vbを定常磁束算出部602で積分し、M座変圧器及びT座変圧器の単相側の定常磁束φTm,φTtを算出する。一方、励磁突入電流抑制装置6は、定常状態で電圧が印加される変圧器3を開閉器2で遮断するときの変圧器単相側電圧Vm,Vtを変圧器電圧計測部603により計測し、計測される変圧器単相側電圧Vm,Vtを積分し、残留磁束φZm,φZtを算出する。上記M座及びT座の定常磁束は予めわかっている。そこで、両者の極性が一致する区間、すなわち定常磁束の極性と残留磁束の極性が同一となる位相が重なる投入位相範囲Tcを同定する。
 図10A,図10Bはそれぞれ変圧器単相側の電圧Vm,Vt、励磁突入電流抑制装置による励磁突入電流を抑制できる投入位相範囲を示す波形図である。φTm,φTtは定常磁束算出部602により算出される定常磁束を示す。φZm,φZtは残留磁束算出部604により算出される残留磁束を示す。Tm,Ttは定常磁束φTm,φTt及び残留磁束φZm,φZtの極性が一致する位相区間を示す。Tcは励磁突入電流を抑制できる投入位相範囲を示す。図11は、定常運転している変圧器を開閉器2で開極(TP)させる前後の単相側電圧及び磁束の変化を示す波形図である。図12Aは図11で示した位相で開閉器2を開極させた後、図10に示す投入位相範囲Tcで開閉器2を同時に投入(CL)する場合の変圧器単相側電圧Vm,Vt、磁束φTm,φTt及び開閉器2に流れる励磁突入電流Im,Itを示す波形図である。図12Bは図11で示した位相で開閉器2を開極させた後、図10に示す投入位相範囲Tc外で開閉器2を同時に投入(CL)する場合の変圧器単相側電圧Vm,Vt、磁束φTm,φTt及び開閉器2に流れる励磁突入電流Im,Itを示す波形図である。
 本実施形態では、図10に示す投入位相範囲Tcにおいて、開閉器2により変圧器3を投入するように投入位相を制御する。この場合、図12Aに示すように変圧器単相側の電圧Vm,Vt及び変圧器単相側の磁束φTm,φTtが現れ、励磁突入電流Im,Itは最大で120Aとなる。これに対し、投入位相の制御を行わず、図12Bに示す投入位相範囲Tc外で開閉器2を同時に投入した場合、励磁突入電流Im,Itは最大で10kA(=10000A)となる。このことから、投入位相を図10に示す投入位相範囲Tcに制御することにより、励磁突入電流Im,Itが抑制されていることがわかる。
 以上のように、第2の実施形態では、励磁突入電流抑制装置6Aにおいて、単相側の定常磁束φTm,φTt及び残留磁束φZm,φZtの極性が一致する区間を投入位相範囲Tcとし、その範囲内で開閉器2の投入位相を決定しているので、決定された投入位相により投入指令出力部606から投入指令を出し、開閉器2を投入させる。これにより、励磁突入電流抑制装置6Aは、変圧器3を投入する際に発生する励磁突入電流Im,Itを抑制することができる。
 尚、開閉器2の投入において、主接点間に発生するプレアークと呼ばれる先行放電や操作機構の動作のばらつき等に起因する変圧器3の投入時間のばらつきが存在する。プレアークによる投入ばらつきや開閉器2の投入時のばらつきは、予めその特性を取得しておくことにより、位相制御を行う制御装置で補正することが可能であり、これらのばらつきは励磁突入電流Im,Itの抑制を妨げるものではない。
 また、変圧器3の投入時の励磁突入電流抑制装置6Aにおいて、M座変圧器302単相側の定常磁束φTmと、残留磁束φZmと、T座変圧器301単相側の定常磁束φTtと、残留磁束φZtとが、共に略一致する位相で単相交流側の開閉器2を投入する場合、開閉器2を個別に投入させるようにしてもよい。
 (第3の実施形態) 
 図13は、第3の実施形態に係る励磁突入電流抑制装置6Bを備える電力系統システムの構成を示すブロック図である。図13に示す励磁突入電流抑制装置6Bは、第2の実施形態の変圧器電圧計測部603及び残留磁束算出部604の代わりに、変圧器電圧計測部603B及び残留磁束算出部604Bを備える。また、励磁突入電流抑制装置6Bは、変圧器電圧変換部610を追加する構成となっている。その他の構成は、第2の実施形態に係る励磁突入電流抑制装置6Aと同様である。
 励磁突入電流抑制装置6Bにおいて、変圧器電圧計測部603Bは、変圧器三相側電圧検出器5U,5V,5Wにより検出される変圧器3の三相電圧側の検出信号に基づいて、変形ウッドブリッジ結線変圧器3の三相側の各電圧を計測する。三相側電圧とは、三相側線間電圧Vvw,Vwu,Vuv及び三相側相電圧Vu,Vv,Vwのことである。変圧器電圧計測部603Bは、計測された変圧器3の三相側電圧を変圧器電圧変換部610に送られる。
 変圧器電圧変換部610は、変圧器電圧計測部603Bから入力される変圧器3の三相側電圧を単相側電圧に変換する。変圧器電圧変換部610は、変換された単相側電圧Vm,Vtは残留磁束算出部604Bへ送る。
 残留磁束算出部604Bは、変圧器電圧変換部610により変換される単相側電圧Vm,Vtを積分し、残留磁束φZm,φZtを算出する。残留磁束算出部604Bは、算出された残留磁束φZm,φZtは位相検出部605Aへ送る。
 次に、励磁突入電流抑制装置6Bによる励磁突入電流Im,Itの抑制について、図13乃至図15を参照して説明する。
 図13において、変圧器電圧変換部610は、変圧器3に定常状態で単相交流電圧が印加されるとき、変圧器電圧計測部603Bにより計測される変圧器三相側電圧から単相側電圧に変換する。図14A,図14B,図14Cは、それぞれ変圧器電圧変換部610に入力される三相側線間電圧Vuv,Vvw,Vwu、変圧器電圧変換部610による変換後の単相側電圧Vlm’,Vlt’及び変圧器単相側電圧Vm,Vtの位相関係を示す波形図である。図14A,図14B,図14Cの波形は波高値を1としたパーユニット表示にしている。変圧器電圧変換部610は、変圧器電圧計測部603Bにより計測される各相電圧に基づいて各線間電圧Vuv,Vvw,Vwuを算出し、各線間電圧Vuv,Vvw,Vwuを変圧器単相側電圧Vlm’,Vlt’に変換する。変圧器電圧変換部610による変換後の変圧器単相側電圧Vlm’,Vlt’は、以下の式により求める。
Figure JPOXMLDOC01-appb-M000001
  Vuv:三相側UV間の線間電圧,Vvw:三相側VW間の線間電圧 
  Vwu:三相側WU間の線間電圧 
  Vlm’:三相側線間電圧から変換するM座変圧器の変換後の単相側電圧 
  Vlt’:三相側線間電圧から変換するT座変圧器の変換後の単相側電圧 
 変圧器電圧変換部610によって変換された単相側電圧Vlm’,Vlt’は残留磁束算出部604Bへ送られる。
 ここで、図15A,図15B,図15Cは、それぞれ変圧器電圧変換部610に入力される三相側相電圧Vu,Vv,Vw、変圧器電圧変換部610による変換後の単相側電圧Vpm’,Vpt’及び変圧器単相側電圧Vm,Vtの位相関係を示す波形図である。図15A,図15B,図15Cの波形は波高値を1としてパーユニット表示にしている。変圧器電圧変換部610は、変圧器電圧計測部603Bにより計測される各相電圧Vu,Vv,Vwを変圧器単相側電圧Vpm’,Vpt’に変換する。変圧器電圧変換部610による変換後の変圧器単相側電圧Vpm’,Vpt’は、以下の式により求める。
Figure JPOXMLDOC01-appb-M000002
  Vu:三相側U相電圧,Vv:三相側V相電圧,Vw:三相側W相電圧 
  Vpm’:三相側相電圧から変換するM座変圧器の変換後の単相側電圧 
  Vpt’:三相側相電圧から変換するT座変圧器の変換後の単相側電圧 
 変圧器電圧変換部610によって変換された単相側電圧Vpm’,Vpt’は残留磁束算出部604Bへ送られる。
 図14及び図15に示すように、変圧器電圧変換部610において、三相側線間電圧Vuv,Vvw,Vwuから変換される単相側電圧Vlm’,Vlt’の波形と三相側相電圧Vu,Vv,Vwから変換される単相側電圧Vpm’,Vpt’の波形は、いずれも変圧器単相側電圧Vm,Vtの電圧波形と周期及び位相が同一である。したがって、変圧器電圧変換部610により変換される単相側電圧Vlm’,Vlt’乃至Vpm’,Vpt’は、変圧器単相側の残留磁束φZm,φZtを算出するための電圧とみなして用いることができる。
 残留磁束算出部604Bは、開閉器2による変圧器3の遮断直後に、変圧器電圧変換部610により変換される単相側電圧Vlm’,Vlt’乃至Vpm’,Vpt’を積分することで変圧器単相側の残留磁束φZm,φZtを算出する。その他の点は、第2の実施形態に係る残留磁束算出部604と同様である。
 以上のように、第3の実施形態では、励磁突入電流抑制装置6Bにおいて、開閉器2と変圧器単相側端子の間に変圧器単相側電圧検出器5M,5Tがなくても、変形ウッドブリッジ結線変圧器3の三相側線間電圧Vuv,Vvw,Vwu及び相電圧Vu,Vv,Vwをそれぞれ単相側電圧Vlm’,Vlt’及びVpm’,Vpt’に変換するようにしている。このため、励磁突入電流抑制装置6Bは、各残留磁束φZm,φZtを算出することができ、第2の実施形態と同様に励磁突入電流Im,Itを抑制することができる。
 尚、開閉器2の投入において、主接点間に発生するプレアークと呼ばれる先行放電や操作機構の動作ばらつき等に起因する投入時間のばらつきが存在する。このようなプレアークによる投入のばらつきや開閉器2の投入時のばらつきが問題となる場合、予めその特性を取得しておき、開閉器2の投入位相を制御する際にそのばらつきを補正すればよい。よって、これらのばらつきは励磁突入電流Im,Itを妨げるものではない。
 また、変圧器3の投入時の励磁突入電流抑制装置6Bにおいて、M座変圧器302単相側の定常磁束φTmと残留磁束φZm、T座変圧器301単相側の定常磁束φTtと残留磁束φZtが共に略一致する位相で単相交流側の開閉器2を投入する場合、開閉器2を個別に投入させるようにしてもよい。
 (第4の実施形態) 
 図16は、第4の実施形態に係る励磁突入電流抑制装置6Cを備える電力系統システムの構成を示すブロック図である。図16に示す励磁突入電流抑制装置6Cは、第1の実施形態の位相検出部605の代わりに、位相検出部605Cを備える。また、励磁突入電流抑制装置6Cは、開極指令出力部609を追加する構成となっている。その他の構成は、第1の実施形態に係る励磁突入電流抑制装置6と同様である。
 励磁突入電流抑制装置6Cにおいて、位相検出部605Cは、母線電圧計測部601により計測される母線1の各相電圧Va,Vb及び変圧器電圧計測部603により計測される変形ウッドブリッジ結線変圧器3の単相側電圧Vm,Vtそれぞれの位相が予め保持されている位相となるタイミングを検出する。位相検出部605Cは、保持位相を検出した場合には保持位相の検出タイミングを投入指令出力部606及び開極指令出力部609に通知する。投入指令出力部606及び開極指令出力部609はそれぞれ開閉器2の主接点を駆動する操作機構に対して保持位相の検出タイミングで投入・開極がなされるように指令を出す。これにより、投入指令出力部606及び開極指令出力部609は、開閉器2の投入と開極は常に同じ位相で行われる。なお、位相検出部605Cには、所定の位相が保持されるが、所定の位相は予め設定されていてもよいし、開閉器2の過去に開閉される条件によって保持されるものでもよい。
 以上のように、第4の実施形態では、励磁突入電流抑制装置6Cにおいて、変形ウッドブリッジ結線変圧器3の遮断位相及び投入位相が常に予め設定されている位相になる。したがって、励磁突入電流抑制装置6Cは、第1の実施形態と同様に、励磁突入電流Im,Itを抑制することができる。
 尚、開閉器2の投入において、主接点間に発生するプレアークと呼ばれる先行放電や操作機構の動作のばらつき等に起因する変圧器3の投入時間のばらつきが存在する。プレアークによる投入のばらつきや開閉器2の投入時のばらつきは、予めその特性を取得しておくことにより、位相制御を行う制御装置で補正することが可能であり、これらのばらつきは励磁突入電流Im,Itの抑制を妨げるものではない。
 (第5の実施形態) 
 図17は、第5の実施形態に係る励磁突入電流抑制装置6Dを備える電力系統システムの構成を示すブロック図である。図17に示す励磁突入電流抑制装置6Dは、第2の実施形態に係る励磁突入電流抑制装置6Aにおいて、位相検出部605Aの代わりに、位相検出部605Dを備える。また、励磁突入電流抑制装置6Dは、計測情報保持部607、開極位相制御部608及び開極指令出力部609を追加する構成となっている。その他の構成は、第2の実施形態に係る励磁突入電流抑制装置6Aと同様である。
 励磁突入電流抑制装置6Dにおいて、計測情報保持部607は、励磁突入電流抑制装置6Dの運用前に、残留磁束算出部604により算出される残留磁束φZm,φZtを保持する。また、計測情報保持部607は、変形ウッドブリッジ結線変圧器3を遮断したときの遮断位相と単相側における残留磁束φZm,φZtの関係を計測情報として保持する。このとき、計測情報保持部607は、運用前に前記開閉器2を少なくとも1回開極操作しておく。
 すなわち、開極位相制御部608は、計測情報保持部607に保持されている残留磁束φZm,φZt及び母線電圧計測部601により計測される母線1の各相電圧Va,Vbを入力し、これらの残留磁束φZm,φZt及び各相電圧Va,Vbに基づいて、開極位相が常に同じになるように、開閉器2の主接点の開極位相を制御する。ここで、開極位相制御部608は、制御された開極位相を開極指令出力部609へ送る。開極指令出力部609は、開極位相制御部608からの開極位相に基づいて、開閉器2を開極する。
 位相検出部605Dは、計測情報保持部607に保持されている残留磁束φZm,φZt及び定常磁束算出部602により算出される定常磁束φTm,φTtを入力し、これらの定常磁束φTm,φTt及び残留磁束φZm,φZtに基づいて、投入位相範囲Tcを同定する。
 ここで、電力系統に開閉器2及び変形ウッドブリッジ結線変圧器3を一旦接続した後は、電力系統の回路条件は常に同じである。このため、開閉器2が開極されるときの位相を常に同じにしておけば、変形ウッドブリッジ結線変圧器3の各相の残留磁束の値も常に同じになるはずである。
 そこで、第5の実施形態では、励磁突入電流抑圧装置6Dにおいて、開閉器2で変形ウッドブリッジ結線変圧器3を遮断する際、その遮断位相が常に同じになるように開閉器2の開極位相を制御する。すなわち、励磁突入電流抑制装置6Dは、残留磁束φZm,φZtを常に同じにすることができるので、開閉器2を投入させて変形ウッドブリッジ結線変圧器3を励磁させるときも常に同じ位相にすることができる。これにより、励磁突入電流抑制装置6Dは、常に励磁突入電流Im,Itを抑制することができる。
 また、変圧器単相側電圧検出器5M,5Tが常時接続されていない場合、励磁突入電流抑制装置6Dは、計測情報保持部607から保持されている残留磁束φZm,φZtを得ることができる。したがって、変圧器単相側電圧検出器5M,5Tは、計測情報保持部607による計測時のみ接続し、通常の運用状態では取り外すことができ、さらには図17に示す破線部分を取り外すことができる。但し、変圧器単相側電圧検出器5M,5Tは、恒久的に設置されていてもよい。
 また、変圧器3の投入時の励磁突入電流抑制装置6Dにおいて、M座変圧器302の単相側の定常磁束φTmと残留磁束φZmT座変圧器301の単相側の定常磁束φTtと残留磁束φZtが共に略一致する位相で単相交流側の開閉器2を投入させる場合には、開閉器2を個別に投入させるようにしてもよい。
 (第6の実施形態) 
 図18は、第6の実施形態に係る励磁突入電流抑制装置6Eを備える電力系統システムの構成を示すブロック図である。図18に示す励磁突入電流抑制装置6Eは、第3の実施形態の位相検出部605Aの代わりに、第5の実施形態に係る位相検出部605Dを備える。また、励磁突入電流抑制装置6Eは、第5の実施形態に係る開極位相制御部608及び開極指令出力部609を追加し、さらに計測情報保持部607Eを追加する構成となっている。その他の構成は、第3の実施形態に係る励磁突入電流抑制装置6Bと同様である。
 励磁突入電流抑制装置6Eにおいて、計測情報保持部607Eは、運用前に、残留磁束算出部604により算出される残留磁束φZm,φZtを保持する。また、計測情報保持部607Eは、変形ウッドブリッジ結線変圧器3を遮断するときの遮断位相と単相側における残留磁束φZm,φZtの関係を計測情報として保持する。このとき、計測情報保持部607Eは、運用前に開閉器2を少なくとも1回開極操作する。
 開極位相制御部608は、第5の実施形態と同様に、計測情報保持部607Eに保持されている残留磁束φZm,φZt及び母線電圧計測部601により計測される母線1の各相電圧Va,Vbに基づいて、遮断位相が常に同じになるように、開閉器2の主接点の開極位相を制御する。開極位相制御部608によって制御された開極位相は開極指令出力部609へ送られる。開極指令出力部609は、第5の実施形態と同様に、開極位相制御部608から受信した開極位相に基づいて開閉器2を開極する。
 一方、位相検出部605Dは、第5の実施形態と同様に、計測情報保持部607Eに保持されている残留磁束φZm,φZt及び定常磁束算出部602により算出される定常磁束φTm,φTtに基づいて、変圧器3を投入する投入位相範囲Tcを同定する。以降、励磁突入電流抑制の流れについては、第3の実施形態と同様である。
 以上のように、第6の実施形態では、励磁突入電流抑制装置6Eにおいて、電力系統に開閉器2及び変形ウッドブリッジ結線変圧器3を一旦接続した後は、電力系統の回路条件は常に同じである。このため、開閉器2が開極するときの位相を常に同じにしておけば、変形ウッドブリッジ結線変圧器3の各相の残留磁束φZm,φZtの値も常に同じになるはずである。
 本実施形態の場合、残留磁束φZm,φZtは計測情報保持部607Eに保持されているので、常に同じである。すなわち、励磁突入電流抑制装置6Eは、開閉器2で変形ウッドブリッジ結線変圧器3を遮断する際、遮断位相が常に同じになるように開閉器2の開極位相を制御して遮断することができる。また、励磁突入電流抑制装置6Eは、開閉器2を投入させて変形ウッドブリッジ結線変圧器3を励磁させるときも常に同じ位相にすることができる。これにより、励磁突入電流抑制装置6Eは、常に励磁突入電流Im,Itを抑制することができる。
 また、変圧器三相側電圧検出器5U,5V,5Wが常時接続していない場合、励磁突入電流抑制装置6Eは、計測情報保持部607Eに保持されている残留磁束φZm,φZtを得ることができる。したがって、変圧器単相側電圧検出器5M,5Tは、計測情報保持部607Eによる計測時のみ接続し、通常の運用状態では取り外すことができ、さらには図18に示す一点鎖線部分を取り外すことができる。但し、変圧器三相側電圧検出器5U,5V,5Wは、恒久的に設置されていてもよい。
 また、変圧器3の投入時の励磁突入電流抑制装置6Eにおいて、M座変圧器302の単相側の定常磁束φTmと残留磁束φZm、T座変圧器301の単相側の定常磁束φTtと残留磁束φZtが共に略一致する位相で単相交流側の開閉器2が投入される場合には、開閉器2を個別に投入させるようにしてもよい。
 以上の説明から明らかなように、第1乃至第6の実施形態に係る励磁突入電流抑制装置は、単相交流側の電力系統と、三相交流電圧から単相交流電圧に変換する変圧器3とを、単相側から開閉器2で電源に投入する場合に生じる励磁突入電流Im,Itを抑制することができる。
 以上、いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載される発明とその均等の範囲に含まれるものである。

Claims (39)

  1.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の母線に選択的に遮断・投入する電力系統システムに用いられ、前記変圧器の投入の際に発生する励磁突入電流を抑制する励磁突入電流抑制装置において、
     前記単相交流側母線の各相電圧を計測する母線電圧計測手段と、
     前記変圧器の単相側電圧を計測する変圧器電圧計測手段と、
     前記母線電圧計測手段で計測される各相電圧及び前記変圧器電圧計測手段で計測される単相側電圧を監視して前記開閉器を開極したときの遮断位相を検出し、前記検出された遮断位相を保持し、前記保持されている遮断位相と同一の位相を出力する位相検出手段と、
     前記位相検出手段より出力される遮断位相と同じ電圧位相で前記開閉器を投入させる投入指令出力手段と
     を具備する励磁突入電流抑制装置。
  2.  前記変圧器は、ウッドブリッジ結線変圧器、変形ウッドブリッジ変圧器乃至ルーフ・デルタ結線変圧器のいずれかである請求項1記載の励磁突入電流抑制装置。
  3.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の母線に選択的に遮断・投入する電力系統システムに用いられ、前記投入の際に発生する励磁突入電流を抑制する励磁突入電流抑制装置において、
     前記単相交流側の母線の各相電圧を計測する母線電圧計測手段と、
     前記変圧器の単相側電圧を計測する変圧器電圧計測手段と、
     前記母線電圧計測手段で計測される各相電圧及び前記変圧器電圧計測手段で計測される単相側電圧を監視して前記開閉器を開極したときの遮断位相を検出し、前記検出された遮断位相を保持し、前記保持されている遮断位相と同一の位相を出力する位相検出手段と、
     前記位相検出手段より出力される遮断位相と同じ電圧位相で前記開閉器を投入させる投入指令出力手段と、
     前記位相検出手段より出力される遮断位相と同じ電圧位相で前記開閉器を開極する開極指令出力手段と、
     を具備する励磁突入電流抑制装置。
  4.  前記変圧器は、ウッドブリッジ結線変圧器、変形ウッドブリッジ変圧器乃至ルーフ・デルタ結線変圧器のいずれかである請求項3記載の励磁突入電流抑制装置。
  5.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の母線に選択的に遮断・投入する電力系統システムに用いられ、前記投入の際に発生する励磁突入電流を抑制する励磁突入電流抑制装置において、
     前記単相交流側の母線の各相電圧を計測する母線電圧計測手段と、
     前記母線電圧計測手段で計測される各相電圧より前記変圧器の定常磁束を算出する定常磁束算出手段と、
     前記変圧器の単相側電圧を計測する変圧器電圧計測手段と、
     前記変圧器電圧計測手段で計測される変圧器単相側電圧より残留磁束を算出する残留磁束算出手段と、
     前記定常磁束算出手段で算出される定常磁束の極性及び前記残留磁束算出手段で算出される残留磁束の極性が一致し、位相が重なる範囲を同定する位相検出手段と、
     前記位相検出手段より同定される位相範囲内で前記開閉器を投入させる投入指令出力手段と
     を具備する励磁突入電流抑制装置。
  6.  前記変圧器は、ウッドブリッジ結線変圧器、変形ウッドブリッジ変圧器乃至ルーフ・デルタ結線変圧器のいずれかである請求項5記載の励磁突入電流抑制装置。
  7.  前記開閉器は、前記変圧器の単相側の定常磁束及び残留磁束が共に略一致する位相において、個別に投入する請求項5記載の励磁突入電流抑制装置。
  8.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の母線に選択的に遮断・投入する電力系統システムに用いられ、前記投入の際に発生する励磁突入電流を抑制する励磁突入電流抑制装置において、
     前記単相交流側の母線の各相電圧を計測する母線電圧計測手段と、
     前記母線電圧計測手段で計測される各相電圧より前記変圧器の定常磁束を算出する定常磁束算出手段と、
     前記変圧器の単相側電圧を計測する変圧器電圧計測手段と、
     前記変圧器電圧計測手段で計測した変圧器単相側電圧より残留磁束を算出する残留磁束算出手段と、
     前記開閉器を少なくとも1回開極操作したときの前記残留磁束算出手段で算出される残留磁束及び前記残留磁束と開閉器の開極による遮断位相との関係を運用前に計測し保持する計測情報保持手段と、
     前記計測情報保持手段に保持される残留磁束及び前記母線電圧計測手段から前記母線の各相電圧を入力し、入力される残留磁束及び母線の各相電圧に基づいて、前記遮断位相が同じになるように前記開閉器の開極位相を制御する開極位相制御手段と、
     前記開極位相制御手段より制御される開極位相で前記開閉器を開極させる開極指令出力手段と、
     前記定常磁束算出手段で算出される定常磁束の極性及び前記計測情報保持手段に保持される残留磁束の極性が一致し、位相が重なる範囲を同定する位相検出手段と、
     前記位相検出手段より同定される位相範囲内で単相交流側の開閉器を投入させる投入指令出力手段と
     を具備する励磁突入電流抑制装置。
  9.  前記変圧器は、ウッドブリッジ結線変圧器、変形ウッドブリッジ変圧器乃至ルーフ・デルタ結線変圧器のいずれかである請求項8記載の励磁突入電流抑制装置。
  10.  前記開閉器は、前記変圧器の単相側の定常磁束及び残留磁束が共に略一致する位相において、個別に投入する請求項8記載の励磁突入電流抑制装置。
  11.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の母線に選択的に遮断・投入する電力系統システムに用いられ、前記投入の際に発生する励磁突入電流を抑制する励磁突入電流抑制装置において、
     前記単相交流側の母線の各相電圧を計測する母線電圧計測手段と、
     前記母線電圧計測手段で計測される各相電圧より前記変圧器の定常磁束を算出する定常磁束算出手段と、
     前記変圧器の三相側の線間電圧を計測する変圧器電圧計測手段と、
     前記変圧器電圧計測手段で計測される三相側の線間電圧を変圧器単相側電圧に変換する変圧器電圧変換手段と、
     前記変圧器電圧変換手段で変換される変圧器単相側電圧より残留磁束を算出する残留磁束算出手段と、
     前記定常磁束算出手段で算出される定常磁束の極性及び前記残留磁束算出手段で算出される残留磁束の極性が一致し、位相が重なる範囲を同定する位相検出手段と、
     前記位相検出手段より同定される位相範囲内で前記開閉器を投入させる投入指令出力手段と
     を具備する励磁突入電流抑制装置。
  12.  前記変圧器電圧変換手段は、前記変圧器電圧計測手段で計測される三相側線間電圧の内の一つを前記主座変圧器の単相側電圧とし、前記計測される三相側線間電圧の残りの線間電圧の差分に定数0.5774を乗算することで前記T座変圧器の単相側電圧として求め、
     前記残留磁束算出手段は、前記開閉器による前記変圧器の遮断直後に、前記主座変圧器及びT座変圧器で得られる単相側電圧をそれぞれ積分することで前記変圧器単相側における前記主座変圧器及びT座変圧器の残留磁束を求める請求項11記載の励磁突入電流抑制装置。
  13.  前記変圧器は、ウッドブリッジ結線変圧器、変形ウッドブリッジ変圧器乃至ルーフ・デルタ結線変圧器のいずれかである請求項11記載の励磁突入電流抑制装置。
  14.  前記開閉器は、前記変圧器の単相側の定常磁束及び残留磁束が共に略一致する位相において、個別に投入する請求項11記載の励磁突入電流抑制装置。
  15.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の母線に選択的に遮断・投入する電力系統システムに用いられ、前記投入の際に発生する励磁突入電流を抑制する励磁突入電流抑制装置において、
     前記単相交流側の母線の各相電圧を計測する母線電圧計測手段と、
     前記母線電圧計測手段で計測される各相電圧より前記変圧器の定常磁束を算出する定常磁束算出手段と、
     前記変圧器の三相側の線間電圧を計測する変圧器電圧計測手段と、
     前記変圧器電圧計測手段で計測される三相側の線間電圧を変圧器単相側電圧に変換する変圧器電圧変換手段と、
     前記変圧器電圧変換手段で変換される変圧器単相側電圧より前記残留磁束を算出する残留磁束算出手段と、
     前記開閉器を少なくとも1回遮断操作したときの前記残留磁束算出手段で算出される残留磁束及び前記残留磁束と開閉器の開極による遮断位相との関係を運用前に計測し保持する計測情報保持手段と、
     前記計測情報保持手段に保持される残留磁束及び前記母線電圧計測手段から母線の各相電圧を入力し、入力される残留磁束及び母線の各相電圧に基づいて遮断位相が同じになるように前記開閉器の開極位相を制御する開極位相制御手段と、
     前記開極位相制御手段より制御される開極位相で前記開閉器を開極させる開極指令出力手段と、
     前記定常磁束算出手段で算出される定常磁束の極性及び前記計測情報保持手段に保持される残留磁束の極性が一致し、位相が重なる範囲を同定する位相検出手段と、
     前記位相検出手段より同定される位相範囲内で前記開閉器を投入させる投入指令出力手段と
     を具備する励磁突入電流抑制装置。
  16.  前記変圧器電圧変換手段は、前記変圧器電圧計測手段で計測される三相側線間電圧の内の一つを前記主座変圧器の単相側電圧とし、前記計測される三相側線間電圧の残りの線間電圧の差分に定数0.5774を乗算することで前記T座変圧器の単相側電圧として求め、
     前記残留磁束算出手段は、前記開閉器による前記変圧器の遮断直後に、前記主座変圧器及びT座変圧器で得られる単相側電圧をそれぞれ積分することで前記変圧器単相側における前記主座変圧器及びT座変圧器の残留磁束を求める請求項15記載の励磁突入電流抑制装置。
  17.  前記変圧器は、ウッドブリッジ結線変圧器、変形ウッドブリッジ変圧器乃至ルーフ・デルタ結線変圧器のいずれかである請求項15記載の励磁突入電流抑制装置。
  18.  前記開閉器は、前記変圧器の単相側の定常磁束及び残留磁束が共に略一致する位相において、個別に投入する請求項15記載の励磁突入電流抑制装置。
  19.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の電力系統に投入する場合に発生する励磁突入電流を抑制する励磁突入電流抑制装置において、
     前記単相交流側の母線の各相電圧を計測する母線電圧計測手段と、
     前記母線電圧計測手段で計測される各相電圧より前記変圧器の定常磁束を算出する定常磁束算出手段と、
     前記変圧器の三相側の相電圧を計測する変圧器電圧計測手段と、
     前記変圧器電圧計測手段で計測される三相側の相電圧を変圧器単相側電圧に変換する変圧器電圧変換手段と、
     前記変圧器電圧変換手段で変換される変圧器単相側電圧より残留磁束を算出する残留磁束算出手段と、
     前記定常磁束算出手段で算出される定常磁束の極性及び前記残留磁束算出手段で算出される残留磁束の極性が一致し、位相が重なる範囲を同定する位相検出手段と、
     前記位相検出手段より同定される位相範囲内で前記開閉器を投入させる投入指令出力手段と
     を具備する励磁突入電流抑制装置。
  20.  前記変圧器電圧変換手段は、前記変圧器電圧計測手段で計測される三相側線間電圧の内の一つに定数1.732を乗算した算出結果を前記主座変圧器の単相側電圧とし、前記計測される三相側線間電圧の残りの線間電圧の差分結果をT座変圧器の単相側電圧として求め、
     前記残留磁束算出手段は、前記開閉器による前記変圧器の遮断直後に、前記主座変圧器及びT座変圧器で得られる単相側電圧をそれぞれ積分することで前記変圧器単相側における前記主座変圧器及びT座変圧器の残留磁束を求める請求項19記載の励磁突入電流抑制装置。
  21.  前記変圧器は、ウッドブリッジ結線変圧器、変形ウッドブリッジ変圧器乃至ルーフ・デルタ結線変圧器のいずれかである請求項19記載の励磁突入電流抑制装置。
  22.  前記開閉器は、前記変圧器の単相側の定常磁束及び残留磁束が共に略一致する位相において、個別に投入する請求項19記載の励磁突入電流抑制装置。
  23.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の電力系統に投入する場合に発生する励磁突入電流を抑制する励磁突入電流抑制装置において、
     前記単相交流側の母線の各相電圧を計測する母線電圧計測手段と、
     前記母線電圧計測手段で計測される各相電圧より前記変圧器の定常磁束を算出する定常磁束算出手段と、
     前記変圧器の三相側の相電圧を計測する変圧器電圧計測手段と、
     前記変圧器電圧計測手段で計測される三相側の相電圧を変圧器単相側電圧に変換する変圧器電圧変換手段と、
     前記変圧器電圧変換手段で変換される変圧器単相側電圧より残留磁束を算出する残留磁束算出手段と、
     前記開閉器を少なくとも1回開極操作するときの前記残留磁束算出手段で算出される残留磁束及び前記残留磁束と開閉器の開極による遮断位相との関係を、運用前に計測し保持する計測情報保持手段と、
     前記計測情報保持手段に保持される残留磁束及び前記母線電圧計測手段から母線の各相電圧を入力し、入力される残留磁束及び母線の各相電圧に基づいて前記遮断位相が同じになるように前記開閉器の開極位相を制御する開極位相制御手段と、
     前記開極位相制御手段より制御される開極位相で前記開閉器を開極する開極指令出力手段と、
     前記定常磁束算出手段で算出される定常磁束の極性及び前記計測情報保持手段に保持される残留磁束の極性が一致し、位相が重なる範囲を同定する位相検出手段と、
     前記位相検出手段より同定される位相範囲内で前記開閉器を投入させる投入指令出力手段と
     を具備する励磁突入電流抑制装置。
  24.  前記変圧器電圧変換手段は、前記変圧器電圧計測手段で計測される三相側線間電圧の内の一つに定数1.732を乗算した算出結果を前記主座変圧器の単相側電圧とし、前記計測される三相側線間電圧の残りの線間電圧の差分結果をT座変圧器の単相側電圧として求め、
     前記残留磁束算出手段は、前記開閉器による前記変圧器の遮断直後に、前記主座変圧器及びT座変圧器で得られる単相側電圧をそれぞれ積分することで前記変圧器単相側における前記主座変圧器及びT座変圧器の残留磁束を求める請求項23記載の励磁突入電流抑制装置。
  25.  前記変圧器は、ウッドブリッジ結線変圧器、変形ウッドブリッジ変圧器乃至ルーフ・デルタ結線変圧器のいずれかである請求項23記載の励磁突入電流抑制装置。
  26.  前記開閉器は、前記変圧器の単相側の定常磁束及び残留磁束が共に略一致する位相において、個別に投入する請求項23記載の励磁突入電流抑制装置。
  27.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の電力系統に投入する場合に発生する励磁突入電流を抑制する励磁突入電流抑制装置に用いられる励磁突入電流抑制方法において、
     前記単相交流側の母線の各相電圧を計測し、
     前記変圧器の単相側電圧を計測し、
     前記計測される各相電圧及び計測される単相側電圧に基づいて、前記開閉器を開極したときの遮断位相を検出し、その遮断位相を保持し、保持されている遮断位相と同一の位相を出力し、
     前記遮断位相と同一の位相と同じ電圧位相で前記開閉器を投入する励磁突入電流抑制方法。
  28.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の電力系統に投入する場合に発生する励磁突入電流を抑制する励磁突入電流抑制装置に用いられる励磁突入電流抑制方法において、
     前記単相交流側の母線の各相電圧を計測し、
     前記変圧器の単相側電圧を計測し、
     前記計測される各相電圧及び計測される単相側電圧に基づいて、前記開閉器を開極したときの遮断位相を検出し、その遮断位相を保持し、保持されている遮断位相と同一の位相を出力し、
     前記遮断位相と同じ電圧位相で前記開閉器を投入し、
     前記遮断位相と同じ電圧位相で前記開閉器を開極する励磁突入電流抑制方法。
  29.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の電力系統に投入する場合に発生する励磁突入電流を抑制する励磁突入電流抑制装置に用いられる励磁突入電流抑制方法において、
     前記単相交流側の母線の各相電圧を計測し、
     前記計測される各相電圧より前記変圧器の定常磁束を算出し、
     前記変圧器の単相側電圧を計測し、
     前記計測される変圧器単相側電圧より残留磁束を算出し、
     前記定常磁束の極性及び残留磁束の極性が一致し、位相が重なる範囲を同定し、
     前記同定される位相範囲内で前記開閉器を投入する励磁突入電流抑制方法。
  30.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の電力系統に投入する場合に発生する励磁突入電流を抑制する励磁突入電流抑制装置に用いられる励磁突入電流抑制方法において、
     前記単相交流側の母線の各相電圧を計測し、
     前記計測される各相電圧より前記変圧器の定常磁束を算出し、
     前記変圧器の単相側電圧を計測し、
     前記計測した変圧器単相側電圧より残留磁束を算出し、
     前記開閉器を少なくとも1回開極操作したときに算出される残留磁束及び残留磁束と開閉器の開極による遮断位相との関係を運用前に計測して保持し、
     前記保持される残留磁束及び母線の各相電圧に基づいて前記遮断位相が同じになるように前記開閉器の開極位相を制御し、
     前記制御される開極位相で前記開閉器を開極し、
     前記算出される定常磁束の極性及び算出される残留磁束の極性が一致し、前記位相が重なる範囲を同定し、
     前記同定される位相範囲内で前記開閉器を投入する励磁突入電流抑制方法。
  31.  前記変圧器単相側の定常磁束及び残留磁束が共に略一致する位相において、前記開閉器を個別に投入する請求項30記載の励磁突入電流抑制方法。
  32.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の電力系統に投入する場合に発生する励磁突入電流を抑制する励磁突入電流抑制装置に用いられる励磁突入電流抑制方法において、
     前記単相交流側の母線の各相電圧を計測し、
     前記計測される各相電圧より前記変圧器の定常磁束を算出し、
     前記変圧器の三相側の線間電圧を計測し、
     前記計測される三相側の線間電圧を変圧器単相側電圧に変換し、
     前記変換される変圧器単相側電圧より残留磁束を算出し、
     前記算出される定常磁束の極性及び算出される残留磁束の極性が一致し、位相が重なる範囲を同定し、
     前記同定される位相範囲内で前記開閉器を投入させる励磁突入電流抑制方法。
  33.  前記変圧器単相側の定常磁束及び残留磁束が共に略一致する位相において、前記開閉器を個別に投入する請求項32記載の励磁突入電流抑制方法。
  34.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の電力系統に投入する場合に発生する励磁突入電流を抑制する励磁突入電流抑制装置に用いられる励磁突入電流抑制方法において、
     前記単相交流側の母線の各相電圧を計測し、
     前記計測される各相電圧より前記変圧器の定常磁束を算出し、
     前記変圧器の三相側の線間電圧を計測し、
     前記計測される三相側の線間電圧を変圧器単相側電圧に変換し、
     前記変換される変圧器単相側電圧より残留磁束を算出し、
     前記開閉器を少なくとも1回開極操作するときに算出される残留磁束及び残留磁束と開閉器の開極による遮断位相との関係を、運用前に計測して保持し、
     前記保持される残留磁束及び母線の各相電圧を入力し、入力される残留磁束及び母線の各相電圧に基づいて、前記遮断位相が同じになるように開閉器の開極位相を制御し、
     前記制御される開極位相で前記開閉器を開極し、
     前記算出される定常磁束の極性及び残留磁束の極性が一致し、位相が重なる範囲を同定し、
     前記同定される位相範囲内で前記開閉器を投入する励磁突入電流抑制方法。
  35.  前記変圧器単相側の定常磁束及び残留磁束が共に略一致する位相において、前記開閉器を個別に投入する請求項34記載の励磁突入電流抑制方法。
  36.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器を、単相交流側の開閉器の接点開閉により単相交流側の母線に投入する場合に発生する励磁突入電流を抑制する励磁突入電流抑制装置に用いられる励磁突入電流抑制方法において、 前記単相交流側の母線の各相電圧を計測し、
     前記計測される各相電圧より前記変圧器の定常磁束を算出し、
     前記変圧器の三相側の相電圧を計測し、
     前記計測される三相側の相電圧を変圧器単相側電圧に変換し、
     前記変換される変圧器単相側電圧より、残留磁束を算出し、
     前記算出される定常磁束の極性及び算出される残留磁束の極性が一致し、位相が重なる範囲を同定し、
     前記同定される位相範囲内で前記開閉器を投入する励磁突入電流抑制方法。
  37.  前記変圧器単相側の定常磁束及び残留磁束が共に略一致する位相において、前記開閉器を個別に投入する請求項36記載の励磁突入電流抑制方法。
  38.  主座変圧器及びT座変圧器を備え、三相交流電圧を単相交流電圧に変換する変圧器とを、単相交流側の開閉器により単相交流側の電力系統に投入する場合に発生する励磁突入電流を抑制する励磁突入電流抑制装置に用いられる励磁突入電流抑制方法において、
     前記単相交流側の母線の各相電圧を計測し、
     前記計測される各相電圧より前記変圧器の定常磁束を算出し、
     前記変圧器の三相側の相電圧を計測し、
     前記計測される三相側の相電圧を変圧器単相側電圧に変換し、
     前記変換される変圧器単相側電圧より、残留磁束を算出し、
     前記開閉器を少なくとも1回開極操作するときに算出される残留磁束及び残留磁束と開閉器の開極による遮断位相との関係を、運用前に計測して保持し、
     前記保持される残留磁束及び母線の各相電圧を入力し、入力される残留磁束及び母線の各相電圧に基づいて、遮断位相が同じになるように前記開閉器の開極位相を制御し、
     前記制御される開極位相で前記開閉器を開極し、
     前記算出される定常磁束の極性及び保持される残留磁束の極性が一致し、位相が重なる範囲を同定し、
     前記同定される位相範囲内で前記開閉器を投入する励磁突入電流抑制方法。
  39.  前記変圧器単相側の定常磁束及び残留磁束が共に略一致する位相において、前記開閉器を個別に投入する請求項38記載の励磁突入電流抑制方法。
PCT/JP2013/069635 2012-07-19 2013-07-19 励磁突入電流抑制装置及びその抑制方法 WO2014014081A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
IN218DEN2015 IN2015DN00218A (ja) 2012-07-19 2013-07-19
EP13819958.3A EP2876765A4 (en) 2012-07-19 2013-07-19 DEVICE FOR SUPPRESSING A MAGNETISATION SWITCH-ON CURRENT AND SUPPRESSION METHOD THEREFOR
AU2013291046A AU2013291046B2 (en) 2012-07-19 2013-07-19 Excitation inrush current suppressing apparatus and excitation inrush current suppressing method
US14/594,702 US10074971B2 (en) 2012-07-19 2015-01-12 Excitation inrush current suppressing apparatus and excitation inrush current suppressing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-160483 2012-07-19
JP2012160483A JP6099896B2 (ja) 2012-07-19 2012-07-19 励磁突入電流抑制装置及びその抑制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/594,702 Continuation US10074971B2 (en) 2012-07-19 2015-01-12 Excitation inrush current suppressing apparatus and excitation inrush current suppressing method

Publications (1)

Publication Number Publication Date
WO2014014081A1 true WO2014014081A1 (ja) 2014-01-23

Family

ID=49948901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069635 WO2014014081A1 (ja) 2012-07-19 2013-07-19 励磁突入電流抑制装置及びその抑制方法

Country Status (6)

Country Link
US (1) US10074971B2 (ja)
EP (1) EP2876765A4 (ja)
JP (1) JP6099896B2 (ja)
AU (1) AU2013291046B2 (ja)
IN (1) IN2015DN00218A (ja)
WO (1) WO2014014081A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405261A (zh) * 2015-07-30 2017-02-15 群光电能科技股份有限公司 交流涌入电流测试器及交流涌入电流测试方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362920B (zh) * 2014-10-22 2017-10-20 国网江苏省电力公司扬州供电公司 一种自适应的励磁涌流抑制装置及方法
KR101793061B1 (ko) * 2015-12-30 2017-11-02 주식회사 효성 차단기 개폐 제어 방법 및 장치
US11437205B2 (en) * 2018-12-27 2022-09-06 Hitachi Energy Switzerland Ag Method and device for monitoring operation of a switching device for controlled switching applications
CN114389469B (zh) * 2021-12-02 2022-11-04 中国大唐集团科学技术研究院有限公司火力发电技术研究院 功率变换器性能优化方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11353969A (ja) * 1998-06-09 1999-12-24 Kansai Electric Power Co Inc:The しゃ断器投入制御装置
JP2010073666A (ja) * 2008-09-22 2010-04-02 Hokkaido Electric Power Co Inc:The 変圧器の励磁突入電流抑制装置及びその制御方法
JP2011154974A (ja) * 2010-01-28 2011-08-11 Toshiba Corp 励磁突入電流抑制装置
JP2012043744A (ja) * 2010-08-23 2012-03-01 Toshiba Corp 励磁突入電流抑制装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896858B2 (ja) 2006-11-29 2012-03-14 株式会社東芝 変圧器の励磁突入電流抑制装置および方法
JP2008140580A (ja) 2006-11-30 2008-06-19 Toshiba Corp 3相変圧器の励磁突入電流抑制装置
JP5487051B2 (ja) 2010-08-20 2014-05-07 株式会社東芝 励磁突入電流抑制装置
JP5444162B2 (ja) * 2010-08-20 2014-03-19 株式会社東芝 励磁突入電流抑制装置
JP5762870B2 (ja) 2011-07-27 2015-08-12 株式会社東芝 励磁突入電流抑制装置
JP5740240B2 (ja) 2011-08-03 2015-06-24 株式会社東芝 励磁突入電流抑制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11353969A (ja) * 1998-06-09 1999-12-24 Kansai Electric Power Co Inc:The しゃ断器投入制御装置
JP2010073666A (ja) * 2008-09-22 2010-04-02 Hokkaido Electric Power Co Inc:The 変圧器の励磁突入電流抑制装置及びその制御方法
JP2011154974A (ja) * 2010-01-28 2011-08-11 Toshiba Corp 励磁突入電流抑制装置
JP2012043744A (ja) * 2010-08-23 2012-03-01 Toshiba Corp 励磁突入電流抑制装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405261A (zh) * 2015-07-30 2017-02-15 群光电能科技股份有限公司 交流涌入电流测试器及交流涌入电流测试方法

Also Published As

Publication number Publication date
IN2015DN00218A (ja) 2015-06-12
AU2013291046B2 (en) 2016-01-14
EP2876765A1 (en) 2015-05-27
US20150124357A1 (en) 2015-05-07
JP6099896B2 (ja) 2017-03-22
AU2013291046A1 (en) 2015-02-05
EP2876765A4 (en) 2016-03-09
JP2014023308A (ja) 2014-02-03
US10074971B2 (en) 2018-09-11

Similar Documents

Publication Publication Date Title
JP5459666B2 (ja) 励磁突入電流抑制装置
JP5487051B2 (ja) 励磁突入電流抑制装置
WO2011086671A1 (ja) 突入電流抑制装置および突入電流抑制方法
WO2014014081A1 (ja) 励磁突入電流抑制装置及びその抑制方法
JP5472920B2 (ja) 励磁突入電流抑制装置
US9385525B2 (en) Magnetizing inrush current suppression device
JP6054163B2 (ja) 励磁突入電流抑制システム
JP5444162B2 (ja) 励磁突入電流抑制装置
US9704664B2 (en) Magnetizing inrush current suppression device
JP5740240B2 (ja) 励磁突入電流抑制装置
JP5547013B2 (ja) 突入電流抑制装置
JP5762870B2 (ja) 励磁突入電流抑制装置
JP5976444B2 (ja) 励磁突入電流抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819958

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013819958

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013291046

Country of ref document: AU

Date of ref document: 20130719

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015001233

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015001233

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150119