WO2014014062A1 - 移動可能なカプセル装置及びその制御方法 - Google Patents

移動可能なカプセル装置及びその制御方法 Download PDF

Info

Publication number
WO2014014062A1
WO2014014062A1 PCT/JP2013/069536 JP2013069536W WO2014014062A1 WO 2014014062 A1 WO2014014062 A1 WO 2014014062A1 JP 2013069536 W JP2013069536 W JP 2013069536W WO 2014014062 A1 WO2014014062 A1 WO 2014014062A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
permanent magnet
movable
capsule device
capsule
Prior art date
Application number
PCT/JP2013/069536
Other languages
English (en)
French (fr)
Inventor
伊藤 高廣
直 村上
Original Assignee
国立大学法人 九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 九州工業大学 filed Critical 国立大学法人 九州工業大学
Priority to CN201380004596.6A priority Critical patent/CN104023631B/zh
Priority to EP13820643.8A priority patent/EP2792299B1/en
Priority to US14/371,493 priority patent/US10715021B2/en
Priority to JP2014525867A priority patent/JP6358750B2/ja
Publication of WO2014014062A1 publication Critical patent/WO2014014062A1/ja
Priority to IL233623A priority patent/IL233623A0/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • H02K33/14Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems wherein the alternate energisation and de-energisation of the two coil systems are effected or controlled by movement of the armatures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00156Holding or positioning arrangements using self propulsion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • A61B10/0266Pointed or sharp biopsy instruments means for severing sample
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • A61M31/002Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/162Capsule shaped sensor housings, e.g. for swallowing or implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/073Intestinal transmitters

Definitions

  • the present invention relates to, for example, a capsule device that is used when performing a digestive system test, has a camera or the like, and moves by itself, and a control method thereof.
  • an inertial body is vibrated using a piezoelectric element, and the capsule is advanced by a frictional force with a living body received by the capsule body.
  • the capsule is advanced by repeatedly energizing and de-energizing the shape memory alloy (SMA) wire, and a forward and backward vibration source is generated using a coil and a permanent magnet. It is disclosed to generate and advance the capsule.
  • the running capsule of patent document 3 describes putting a permanent magnet and a coil in a capsule, and flowing an alternating current through a coil and making a piston motion.
  • JP-A-4-176443 Japanese Patent Laid-Open No. 5-212093 JP 2006-280638 A
  • Patent Document 3 a permanent magnet and a coil arranged opposite to each other are used.
  • the permanent magnet is arranged far from the coil, an attractive force between the permanent magnet and the coil is used. Or there is a problem that the repulsion is reduced and the efficiency is lowered.
  • the present inventors have arranged a coil in the cylindrical outer shell, reciprocates a permanent magnet as a mover by flowing an alternating current, and occurs when it collides with the inertial force or outer wall due to the movement of the mover
  • the present invention has been completed by earnestly researching a capsule device that travels in a certain direction using the impact force. It was also confirmed that when a permanent magnet was placed in a cylindrical coil, the permanent magnet was fixed to the capsule body and an alternating current was passed through the coil, the coil vibrated and the capsule body vibrated by the reaction.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a movable capsule device that is small, compact, and capable of self-propelling and a control method thereof.
  • the movable capsule device drives a permanent magnet provided on a long capsule body so as to be movable in the longitudinal direction with respect to the capsule body, and the permanent magnet
  • a movable capsule device that provides a coil, and generates alternating thrust from the alternating-current generating means to generate a propulsive force by performing longitudinal vibration of the permanent magnet
  • the coil has first and second coil portions provided at the front and rear so as to surround the permanent magnet, and the frequency of alternating current flowing through the first and second coil portions is set to the permanent magnet. To the resonance frequency of the capsule device generated by the longitudinal vibration of the capsule device.
  • the present invention is applied even if the AC frequency is in the range of ⁇ 10% of the resonance frequency of the capsule body (or permanent magnet) (the same applies to the following inventions).
  • the first and second coil portions are movable inside the cylindrical body (usually called a bobbin) in which the permanent magnet is movable with a slight gap. It is preferable that stoppers are provided on both sides of the cylindrical body, and the permanent magnet vibrates while colliding with the stopper.
  • the cylinder is preferably a non-magnetic substance, but may be a conductor (for example, aluminum) or an insulator (the same applies to the following inventions).
  • the alternating current generated by the alternating-current generating means is obtained by further adding direct current to positive and negative symmetrical alternating current, and the first and second coil sections and the permanent magnet It is preferable that the exciting force generated by the above is increased in one direction, and the traveling direction of the capsule device is determined by the polarity of the direct current.
  • the alternating current that flows through the first and second coil sections actually flows alternating current through the first and second coil sections, and the current value is minimum. It is preferable to determine based on the following value. Accordingly, it is technically easy to obtain the resonance frequency.
  • a movable capsule device has a long capsule body, a permanent magnet disposed with its magnetic poles aligned in the length direction with respect to the capsule body, and a gap in the permanent magnet. And a movable capsule device having a coil that is wound and receives an alternating current power supply from an alternating current generating means, The permanent magnet is arranged such that at least two bar magnets face each other with the same pole facing each other, and the frequency of the alternating current is slidably moved so that the coil (or capsule body having the same frequency) can move back and forth. The resonance frequency was matched.
  • the alternating current flowing through the coil is determined based on a value at which the alternating current is actually passed through the coil and the current value is minimized.
  • the coil is wound around a cylindrical body that is slidable relative to the rod-shaped magnet.
  • the coil may have first and second coil portions disposed apart from the cylindrical body.
  • the alternating current generated by the alternating-current generating means is obtained by adding a direct current to a positive / negative symmetrical alternating current, and an excitation force generated by the coil and the permanent magnet is generated. It is preferable to enhance in one direction and determine the traveling direction of the capsule device according to the polarity of the direct current.
  • the capsule body is provided with a wireless device that cooperates with an external control device. And it is preferable that the said coil is used as an antenna of the said radio
  • the capsule body includes one or more of a micro camera with illumination, a device for performing treatment, a medication mechanism, and a posture detection sensor. It is preferable.
  • a control method for a movable capsule device wherein a long capsule body is provided with a permanent magnet movable in a length direction relative to the capsule body, and a coil for driving the permanent magnet.
  • a control method for a movable capsule device that generates alternating current through the coil and generates a propulsion force by performing longitudinal vibration of the permanent magnet, The frequency of the alternating current flowing through the coil is matched with the resonance frequency of the longitudinal vibration of the permanent magnet, and the moving direction of the capsule body is determined by superimposing the direct current on the alternating current.
  • the coil is divided into first and second coil portions respectively arranged before and after the permanent magnet, and the first and second coils are divided.
  • the part is preferably wound around a cylindrical body in which the permanent magnet has a gap and is slidable (slidable) inside, and the permanent magnet is oscillated back and forth with respect to the cylindrical body.
  • a control method for a movable capsule device in which a permanent magnet is fixedly disposed on a long capsule body with a magnetic pole oriented in the length direction with respect to the capsule body.
  • a control method of a movable capsule device that winds a coil with a gap, and causes an alternating current to flow through the coil to perform longitudinal vibration of the coil to generate a propulsive force as a whole
  • the permanent magnet is arranged such that at least two rod-shaped magnets face the same pole, the frequency of alternating current flowing through the coil is matched with the resonance frequency of longitudinal vibration of the coil, and direct current is superimposed on the alternating current.
  • the moving direction of the capsule body is determined.
  • any one or more of a micro camera with illumination, a treatment device, a medication mechanism, and a posture detection sensor are provided in the capsule body. It is good to control by the radio
  • the frequency of the alternating current flowing through the coil and the front and rear of the permanent magnet or the coil Since the resonance frequency of the capsule generated by the dynamic vibration is made coincident, the flowing current is reduced and the vibration (piston motion) having the maximum amplitude can be obtained with the reduced current. Therefore, the capsule device can be moved with less power.
  • the coil that drives the permanent magnet is divided into first and second coil portions arranged before and after the permanent magnet, thereby generating attractive force and repulsive force on the coil, so that the permanent magnet can be generated more efficiently with lower power.
  • the coil can be vibrated.
  • the number of turns can be reduced as compared with the case where the coil is continuously wound over the length direction of the capsule body, and the temperature rise of the capsule device due to heat generation can be prevented.
  • the circuit can be configured by a combination of a circuit that generates alternating current (including rectangular waves) and a circuit that generates direct current, the circuit can be simplified.
  • a movable capsule device (hereinafter simply referred to as a “capsule device”) 10 according to a first embodiment of the present invention has a long capsule body with a circular cross section and an overall length larger than the diameter of the cross section. 11, a rod-shaped permanent magnet 13 that is provided on the capsule body 11 via the cylinder 12 and is movable in the longitudinal direction with respect to the capsule body 11, and both sides (front and rear) of the bobbin made of the cylinder 12
  • the first and second coil portions 15 and 16 are provided so as to surround the permanent magnet 13 and drive the permanent magnet 13.
  • the permanent magnet 13 for example, a neodymium magnet having a diameter D of about 2.5 to 5 mm (3 mm is used in this embodiment) and a length L of 7 to 15 mm (10 mm is used in this embodiment) is used.
  • a neodymium magnet having a diameter D of about 2.5 to 5 mm (3 mm is used in this embodiment) and a length L of 7 to 15 mm (10 mm is used in this embodiment) is used.
  • other materials can be used if they are strong permanent magnets.
  • the gap W between the first and second coil portions 15 and 16 is preferably about 10 to 20 mm.
  • the first and second coil portions 15 and 16 are, for example, a conductive wire having a diameter of 0.05 mm and a cylindrical body 12 having an inner diameter of D + 0.1 mm (the outer diameter is, for example, D + 1.1 mm), and a width of about 2 to 4 mm. It is configured by winding 50 times each.
  • the gap W between the first and second coil portions 15 and 16 is set to about 0.8 to 1.2 times the total length L of the permanent magnet 13. Since a total gap of 0.1 mm is formed between the inner diameter of the cylinder 12 and the permanent magnet 13 in the radial direction, the permanent magnet 13 can move within the cylinder 12 without resistance.
  • the cylindrical body 12 is made of an aluminum pipe, and elastic members (for example, rubber, plastic) or metal stoppers 17 and 18 are provided on both sides thereof (for example, via an adhesive).
  • a space in which the permanent magnet 13 can move by a predetermined distance (about 8 mm in this embodiment) is formed with a small gap inside.
  • the bobbin (cylindrical body 12) around which the first and second coil portions 15 and 16 are wound is put in the capsule body 11 and the whole has an outer diameter of about 10 mm and a length of about 21 mm. 10 capsule device (sometimes simply referred to as “vibration motor”).
  • the present invention In a product to which the present invention is actually applied, it is not limited to these dimensions, and the diameter and the total length can be changed according to the application. Further, the end of the capsule body 11 can be changed according to the application, such as a hemispherical shape or a lens shape.
  • a low frequency oscillator and an amplifier were used as an example of the AC generating means.
  • “WF19739” manufactured by NF Circuit Design Block Co., Ltd. was used as the low-frequency oscillator (multifunction generator), and “BWA25-1” manufactured by Takasago Manufacturing Co., Ltd. was used as the amplifier that amplifies the waveform. These are for the purpose of freely changing the frequency and output voltage of the alternating current flowing through the first and second coil sections 15 and 16 in the experiment.
  • the AC power generated using the multi-function generator and the amplifier described above is supplied to the coil composed of the first and second coil portions 15 and 16, and the first,
  • the internal mover (permanent magnet 13) is oscillated back and forth by the electromagnetic force generated by the second coil portions 15 and 16.
  • the permanent magnet 13 collides with the outer shell (actually the stopper 17), but since the permanent magnet 13 has a larger energy, the whole is further dragged in the direction x1 (step S2). .
  • the direction of the current flowing through the first and second coils 15 and 16 is switched at the position P2.
  • the permanent magnet 13 moves in the x2 direction and collides with the stopper 18 (that is, the outer shell) on the other side at the position P3 (step S3).
  • step S4 the inertial reaction force of the mover (that is, the force generated in the coil) is applied to the outer shell including the stoppers 17 and 18, the cylindrical body 12 and the capsule body 11. A force that moves in the direction opposite to the moving direction is generated, and the mover collides with the stoppers 17 and 18 to generate a large impact force. These forces are applied to the vibration motor (that is, the capsule device 10). Will move. to indicates one period of vibration.
  • the vibration motor that is, the capsule device 10
  • the mover and the capsule body 11 when an AC signal is applied to the coil from the outside regarding the movement of the mover, the mover and the capsule body 11 can be moved back and forth repeatedly, but if the mover moves back and forth at the same speed, The same inertial reaction force and impact force are applied to the front and rear, and the capsule device 10 vibrates on the spot and cannot move forward or backward. Therefore, by changing the duty ratio of the input AC signal (that is, the ratio of the + side current and the-side current), the magnetic field created by the coil is changed, and the moving speed of the mover inside the vibration motor is changed in one direction and the other direction. And change. Thereby, the vibration motor, that is, the capsule device 10 can generate a propulsive force in one direction and can be moved forward or backward.
  • the duty ratio of the input AC signal that is, the ratio of the + side current and the-side current
  • Such an AC signal generation method can be easily obtained by applying a DC bias to the AC current generated from the above-described low-frequency oscillator and amplifier.
  • this method was used to easily set the AC frequency, output voltage, bias voltage, etc.
  • a direct current (voltage b) is superimposed on the alternating current as shown in FIG.
  • an alternating current (crest values h + b, h ⁇ b) having a large amount of current in one direction can be formed.
  • the AC generation means can be easily formed using a digital signal.
  • the traveling direction of the capsule device 10 is determined by changing the polarity of the direct current (that is, the + -direction).
  • the permanent magnet 13 exerts a stronger force (vibration force) in one direction than the other direction. 10 moves can be made faster.
  • the inner end positions of the first and second coil portions 15 and 16 facing each other are disposed at both end positions of the permanent magnet 13 at the center position.
  • FIG. 4 shows the results of examining the temperature rise of the coil when the number of turns of each of the first and second coil portions 15 and 16 is changed.
  • a non-contact thermometer was used for the measurement, and a capsule device for testing with the number of turns of the first and second coil parts 15 and 16 being 150 turns ⁇ 2 and 50 turns ⁇ 2.
  • the measurement was performed at a maximum power of 0.5 [A] and 3.3 [V] that can be input to the capsule device. Switching between +3.3 [V] and -3.3 [V] was performed at 40 [Hz], and measurement was performed for 5 minutes until the surface temperature of the actuator (coil) was balanced.
  • the temperature at the time of measurement was 18 [° C.]. As shown in FIG. 4, in the case of 150 turns ⁇ 2 (300 turns), it reached 63.3 [° C.] after 5 minutes, and in the case of 50 turns ⁇ 2 (100 turns), 44 minutes later. 6 [° C.] was reached. Therefore, in the present invention, in consideration of safety, a coil of 50 turns ⁇ 2 (100 turns) having a small temperature rise was optimal.
  • the moving speed S of the vibration motor (capsule device 10) that vibrates through the above steps S1 to S4 can be calculated by the following equation (1).
  • a sum of the outer displacement of the vibration motor and the displacement of the permanent magnet
  • f 1 electromagnetic force in steps S 1 and S 2
  • f 2 electromagnetic force in steps S 3 and S 4
  • T mover step
  • n Mo / m
  • m represents the mass of the permanent magnet
  • Mo represents the mass obtained by subtracting m from the entire capsule device.
  • the moving speed S is calculated on the condition that the frequency of the alternating current is constant according to the above equation (1), and the behavior changes if the frequency changes.
  • the frequency of the vibration motor was changed from several Hz to about 100 Hz and the running of the vibration motor was observed, it was confirmed that there was a frequency that could move fastest.
  • there is a natural frequency in a mechanical system composed of a spring and a mass, there is a natural frequency, and the amplitude is greatest at the time of resonance.
  • FIG. 5 shows the characteristics of the electromagnetic force of the vibration motor.
  • the currents (direct current) passed through the first and second coil parts 15 and 16 are changed, and the centers of the first and second coil parts 15 and 16 are changed.
  • the relationship between the distance (mm) from the center of the permanent magnet 13 and the electromagnetic force (N) is shown. Since the relationship between the distance and the electromagnetic force is proportional, the electromagnetic force / distance can be approximated to the spring constant K after all. Therefore, as the magnitude of the spring constant, the rate of change of 0.04 (N) with respect to the distance of 4 mm in the graph of 1.5 V in FIG. 5, and the mass of the mover 20 ⁇ 0 ⁇ 4 (0.2 g) is set.
  • K spring constant
  • m mover mass.
  • This resonance frequency is such that when alternating current is passed through the first and second coil portions 15 and 16 and the mover is vibrated, the current passing through the first and second coil portions 15 and 16 is minimized. Therefore, it can be easily detected.
  • the stoppers 17 and 18 that is, the outer shell wall
  • the reciprocating motion may be repeated without causing a collision, resulting in a decrease in traveling speed. Therefore, the limit frequency until the mover reaches the stoppers 17 and 18 is obtained, and the mover is not vibrated at a frequency higher than that. If the stroke is R and the frequency is f, the limit frequency is obtained by (f / 2RM). If the stroke R is substituted, the limit frequency is 456 Hz. Therefore, at 35.6 Hz, it was found that the mover reached the stoppers 17 and 18, and it was confirmed by experiments.
  • FIG. 6 shows a capsule device 24 that further embodies the entire device.
  • an actuator 25 having a permanent magnet 13 and first and second coil portions 15, 16, a battery (power source) 26.
  • the illuminated micro camera 28, the device for performing the treatment, the medication mechanism, and the posture detection sensor 29 are well-known structures, detailed description thereof is omitted.
  • the movable capsule device (hereinafter simply referred to as “capsule device”) according to the second embodiment of the present invention. 35) will be described.
  • the permanent magnet 13 vibrates and the coils (first and second coil portions 15 and 16) are fixed.
  • the permanent magnets 39 and 40 are fixed and the coils are fixed.
  • the capsule device 35 includes a long capsule body 36 and cylindrical permanent magnets 39 and 40 disposed in the capsule body 36 via support members 37 and 38. And a bobbin 41 that is an example of a cylindrical body that is slidably disposed on the outside of the permanent magnets 39 and 40 as a center, and a coil 42 that is uniformly wound around the bobbin 41.
  • the permanent magnets 39 and 40 are located in the axial center of the capsule body 36, and are arranged so that the magnetic poles are oriented in the length direction of the capsule body 36.
  • the diameter of the capsule body 36 is preferably 4 to 10 mm, and the length is preferably about 12 to 20 mm between the ends.
  • the material of the capsule body 36 is preferably a material that is harmless to the human body, particularly the internal organs, such as plastic (acrylic, polycarbonate, polypropylene, etc.), metal (aluminum, titanium, etc.).
  • the capsule body 36 includes a cylindrical portion 36a and hemispherical lid portions 36b and 36c that are screwed to both sides thereof.
  • the support members 37 and 38 are made of a disk-shaped plastic having a diameter ⁇ of about 4 to 8 mm, for example, and are fixed inside the cylindrical portion 36a of the capsule body 36.
  • the total length ⁇ of the permanent magnets 39 and 40 is, for example, about 10 to 15 mm.
  • Permanent magnets 39 and 40 arranged at the center of the capsule body 36 at the center in the front-rear direction are rod-shaped magnets made of two neodymium magnets of the same size, facing the same polarity (N pole or S pole). Are arranged.
  • the end portions of the permanent magnets 39, 40 having the same polarity are faced to each other and bonded together by an adhesive.
  • the bobbin 41 is made of a nonmagnetic material (for example, plastic, aluminum), and has a cylindrical portion 44 and flanges 45 and 46 disposed on both sides thereof.
  • the inner diameter of the cylindrical portion 44 is the diameter of the permanent magnets 39 and 40.
  • the center holes 47a and 47b of the flanges 45 and 46 are larger than the outer diameter of the permanent magnets 39 and 40, the bobbin 41 has a larger diameter. It is possible to slide back and forth with respect to the permanent magnets 39 and 40 with both sides temporarily supported by the permanent magnets 39 and 40.
  • a coil 42 is wound around the bobbin 41 symmetrically in the front-rear direction, both ends of the coil 42 are fixed to the ends of the bobbin 41, and the copper wires at both ends have a margin (for example, have a curled portion).
  • the control unit 48 is fixed to the inside of the capsule body 36. Note that a thin enamel wire is used for the coil 42, and the number of turns is about 50 to 100, which may be a single layer winding or a multilayer winding.
  • the coil 42 has curl portions that serve as winding ends on both sides, and is disposed in the middle portion of the capsule body 36. However, an elastic member is provided on both sides, or a magnetic attractant is provided in the center of the bobbin. Thus, the position of the coil 42 can be determined.
  • An illuminated micro camera 50 is provided on one side of the capsule body 36, and a device (for example, a cutter, a cell collector) 51 and a medication mechanism 52 are provided on both sides of the capsule body 36. Is provided with a storage portion 54 for a battery 53. As shown in FIGS. 7A to 7C and FIG. 8, the control unit 48 is provided on the plate-like substrates 48a and 48b, and is connected to the MPU 55 provided with RAM and ROM, and to the micro camera 50. A transmission circuit 56, an illumination LED 57 of the micro camera 50, and first and second output units 59 and 60 are provided.
  • the capsule body 36 is provided with an attitude detection sensor 61, which detects the orientation of the capsule body 36 and the rotation angle with respect to the axis and sends the detected signal to the image transmission circuit 56, together with the image signal to the outside. sending.
  • this posture detection sensor 61 is not an essential requirement in the present invention, and the orientation of the capsule device 35 (same for 10) inside the body is an externally arranged sensor such as an ultrasonic sensor, radio wave sensor, It can be detected by an X-ray device.
  • the boards 48a and 48b are provided with a radio signal receiving circuit (an example of a radio) 61a, and an external radio signal transmitting device (that is, an external control).
  • Device or controller 64 can receive a wireless signal and operate the control unit 48.
  • the coil 42 is used as an antenna of the radio signal receiving circuit 61a.
  • an independent antenna 62 is provided in the image transmission circuit 56, but this coil 42 may be used.
  • the wireless signal receiving circuit 61a is connected to the control unit 48 by a wireless signal.
  • the first output unit 59 is an amplifier for operating the medication mechanism 52 and amplifies a signal from the MPU 55 to turn the medication mechanism 52 on (open) or off (close).
  • the second output unit 60 superimposes a DC bias on the AC signal obtained from the MPU 55 as shown in FIG. 3B, as shown in FIG.
  • outputs having different duty ratios are obtained.
  • the duty ratio is preferably about 1.1 to 1.4, for example.
  • the capsule device 35 is switched between forward and backward by changing the direction of the superimposed DC bypass.
  • the resonance frequency is determined by the minimum value of the current that has passed through the coil 42 by changing the frequency.
  • the transmission frequency is changed by operating the MPU 55, an experiment is performed in advance to measure the resonance frequency of the longitudinal vibration of the coil 42, and a signal is sent from the MPU 55 to the second output unit 60 according to the frequency. Is good.
  • the second output unit 60 has an amplifier inside, and amplifies the weak signal from the MPU 55 to a predetermined magnitude.
  • the duty ratio is adjusted by controlling the DC current (or voltage) to be superimposed.
  • the duty ratio can be changed by changing the time difference between ON and OFF of the waveform.
  • FIG. 9 shows an operation flow of the capsule device 35.
  • a radio wave from an external radio signal transmission device 64 is received by a coil 42 that operates as an antenna, sent to a radio signal reception circuit 61a, converted into a digital signal, and controlled. Send to part 48.
  • the control unit 48 identifies a command included in the radio signal (step S1). These commands include “advance”, “reverse”, “medicine”, and “camera”.
  • advance an alternating current in which a direct current is superimposed in the positive direction from the second output unit 60 is applied to the coil 42.
  • the capsule device 35 moves forward.
  • an alternating current in which a direct current is superimposed in the negative direction is passed through the coil 42.
  • a signal is given to the first output unit 59 to activate the medication mechanism 52.
  • the illumination LED 57 is turned on to operate the micro camera 50.
  • a reception signal from the micro camera 50 is output to the outside through the image transmission circuit 56 and the antenna 62.
  • An image receiving device (not shown) is provided outside, and images captured by the micro camera 50 are sequentially recorded and output (steps S2 to S5). The above operation ends at the designated time, returns to the start, and waits for a radio signal (step S6).
  • the moving speed of the capsule device 35 can be estimated in the same manner as the capsule device 10.
  • the configuration of the present invention can be freely changed without changing the gist of the present invention.
  • the first and second coil portions are arranged symmetrically with respect to the cylindrical body, but one of the coil portions may be shifted rearward or forward. it can.
  • the first and second coil sections can be connected in parallel, or the number of turns of the first and second coil sections can be changed.
  • the description has been made using specific numbers, but it can be changed without departing from the scope of the present invention.
  • the capsule device 35 according to the second embodiment two permanent magnets are used. However, one or three or more permanent magnets can be used, and the lengths of the plurality of permanent magnets are the same. You can do it, you can change it.
  • the number of the coils 42 is one. However, the coils 42 can be divided into two parts in the front-rear direction to form the first and second coil portions.
  • the inside of the capsule body is the same as the atmospheric pressure, but it can also be reduced in pressure, thereby improving the movement of the permanent magnet or coil. Further, when a part of the capsule device 10 according to the first embodiment is applied to the capsule device 35 according to the second embodiment, a part of the capsule device 35 according to the second embodiment is replaced with the first embodiment.
  • the present invention is also applied to the capsule device 10 according to the present invention.
  • the capsule device according to the present invention can be used to travel in the digestive tract and to be used in examination and treatment.
  • the capsule device can move by itself as compared with the case of flowing naturally, the capsule device can travel without damaging the digestive tract and can reach the target observation treatment place in a short time. It can also be used to collect cells for diagnosis in the digestive tract while communicating with the outside wirelessly.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Endoscopes (AREA)

Abstract

長尺のカプセル本体11に、長さ方向に移動可能に設けられた永久磁石13と、永久磁石13を駆動するコイルとを設け、コイルに交流を流し永久磁石13の前後動振動を行って全体に推進力を発生させる移動可能なカプセル装置10において、コイルは永久磁石13の周りを囲む形で前後に設けられた第1、第2のコイル部15、16を有して構成され、かつ、第1、第2のコイル部15、16に流す交流の周波数を、永久磁石13の前後動振動によって発生するカプセル装置10の共振周波数に一致させる。これにより、小型かつコンパクトでしかも効率のよい自走できる移動可能なカプセル装置10及びその制御方法を提供できる。

Description

移動可能なカプセル装置及びその制御方法
本発明は、例えば、消化器系の検査を行う場合に使用され、カメラ等を内蔵し、自力で移動するカプセル装置及びその制御方法に関する。
現在、医療現場における消化管等の検査において、狭い場所での内部観察や微小作業を目的としたマイクロカプセルが、例えば、特許文献1~3等において提案されている。
特許文献1記載の医療用カプセルは、圧電素子を用いて慣性体を振動させ、カプセル本体が受ける生体との摩擦力によってカプセルを進行させるものであった。
また、特許文献2記載の自動走行カプセル装置には、形状記憶合金(SMA)ワイヤに通電と非通電を繰り返してカプセルを進行させることと、コイルと永久磁石を用いて前進及び後退の振動源を発生し、カプセルを進行させることが開示されている。
そして、特許文献3の走行カプセルには、カプセル内に永久磁石とコイルを入れ、コイルに交流電流を流してピストン運動をさせることが記載されている。
特開平4-176443号公報 特開平5-212093号公報 特開2006-280638号公報
しかしながら、特許文献1記載の技術においては、圧電素子を用いて慣性体を振動させているが、比較的その振動数は大きくかつ力が小さいので、前進力が小さく、より速くカプセルを自走させるには限界がある。勿論、大型化すれば自走力は大きくなるが小型のカプセルに収納できない。
特許文献2記載の技術において、形状記憶合金を用いる場合はその駆動力は比較的小さく、更に効率も悪いという問題がある。また、特許文献2においてコイルと永久磁石の吸引及び反発を利用して振動させることは、比較的大きな振幅を得ることができるが、コイルは一つであるので効率的ではない。
更に、特許文献3記載の技術においても、対向配置された永久磁石とコイルが用いられているが、永久磁石がコイルに対して遠くに配置された場合は、永久磁石とコイルとの間の引力又は斥力が小さくなって、効率が下がるという問題がある。
更に、特許文献2及び特許文献3記載のコイルと永久磁石を用いる振動メカニズムには共振現象についての記載はない。
本発明者らは、円筒状の外殻部にコイルを配置し、交流電流を流すことで可動子である永久磁石を往復運動させ、可動子の移動による慣性力や外壁に衝突する際に発生する衝撃力を利用して、一定方向に進行するカプセル装置を鋭意研究し本発明を完成した。
そして、筒状のコイルの中に永久磁石を配置し、永久磁石をカプセル本体に固定してコイルに交流を流すとコイルが振動し、その反動によってカプセル本体が振動することも確認した。
本発明は、かかる事情に鑑みてなされたもので、小型かつコンパクトでしかも効率のよい自走できる移動可能なカプセル装置及びその制御方法を提供することを目的とする。
前記目的に沿う第1の発明に係る移動可能なカプセル装置は、長尺のカプセル本体に、該カプセル本体に対して長さ方向に移動可能に設けられた永久磁石と、該永久磁石を駆動するコイルとを設け、該コイルに交流発生手段から交流を流し前記永久磁石の前後動振動を行って全体に推進力を発生させる移動可能なカプセル装置において、
前記コイルは前記永久磁石の周りを囲む形で前後に設けられた第1、第2のコイル部を有し、かつ、前記第1、第2のコイル部に流す交流の周波数を、前記永久磁石の前後動振動によって発生する該カプセル装置の共振周波数に一致させる。
ここで、交流の周波数はカプセル本体(又は永久磁石)の共振周波数の±10%の範囲であっても本発明は適用される(以下の発明においても同じ)。
第1の発明に係る移動可能なカプセル装置において、前記第1、第2のコイル部は内部を前記永久磁石が僅少の隙間を有して移動可能な筒体(通常、ボビンと称される)に巻回され、前記筒体の両側にはストッパーが設けられ、前記永久磁石は前記ストッパーに衝突しながら振動しているのが好ましい。なお、筒体は非磁性物質であるのが好ましいが、導体(例えば、アルミニウム)、絶縁体のいずれであってもよい(以下の発明においても同じ)。
第1の発明に係る移動可能なカプセル装置において、前記交流発生手段によって発生する交流は、正負対称な交流に更に直流を加えたものからなり、前記第1、第2のコイル部と前記永久磁石によって発生する加振力を一方向に増強し、前記直流の極性によって該カプセル装置の進行方向を決めるのが好ましい。
第1の発明に係る移動可能なカプセル装置において、前記第1、第2のコイル部に流す交流は、実際に前記第1、第2のコイル部に交流を流して、その電流値が最小となる値に基づいて決定するのが好ましい。これによって共振周波数を求めるのが技術的に容易である。
第2の発明に係る移動可能なカプセル装置は、長尺のカプセル本体に、該カプセル本体に対して長さ方向に磁極の向きを合わせて配置された永久磁石と、該永久磁石に隙間を有して巻回され、交流発生手段から交流の電力供給を受けるコイルとを有する移動可能なカプセル装置において、
前記永久磁石は少なくとも2つの棒状磁石がその同一極を向かい合わせて配置され、前記交流の周波数を、スライド移動可能に配置された前記コイル(又は同じ振動数となるカプセル本体)の前後動振動の共振周波数と一致させた。
第2の発明に係る移動可能なカプセル装置において、前記コイルに流す交流は、実際に前記コイルに交流を流して、その電流値が最小となる値に基づいて決定されるのが好ましい。
第2の発明に係る移動可能なカプセル装置において、前記コイルは前記棒状磁石に対してスライド移動可能な筒体に巻回されているのが好ましい。
第2の発明に係る移動可能なカプセル装置において、前記コイルは前記筒体に離れて配置された第1、第2のコイル部を有することもある。
第2の発明に係る移動可能なカプセル装置において、前記交流発生手段によって発生する交流は、正負対称な交流に更に直流を加えたものからなり、前記コイルと前記永久磁石によって発生する加振力を一方向に増強し、前記直流の極性によって該カプセル装置の進行方向を決めるのがよい。
第1、第2の発明に係る移動可能なカプセル装置において、前記カプセル本体には外部制御装置との連携を行う無線機が設けられているのが好ましい。そして、前記無線機のアンテナとして前記コイルが使用されているのが好ましい。
第1、第2の発明に係る移動可能なカプセル装置において、前記カプセル本体には、照明付きのマイクロカメラ、処置を行う機器、投薬機構、及び姿勢検知センサーのいずれか1又は2以上を備えているのが好ましい。
第3の発明に係る移動可能なカプセル装置の制御方法は、長尺のカプセル本体に、該カプセル本体に対して長さ方向に移動可能な永久磁石と、該永久磁石を駆動するコイルとを設け、該コイルに交流を流し前記永久磁石の前後動振動を行って全体に推進力を発生させる移動可能なカプセル装置の制御方法であって、
前記コイルに流す交流の周波数と、前記永久磁石の前後動振動の共振周波数を一致させ、かつ前記交流に直流を重畳して前記カプセル本体の移動方向を決める。
第3の発明に係る移動可能なカプセル装置の制御方法において、前記コイルを前記永久磁石の前後にそれぞれ配置された第1、第2のコイル部に分割し、かつ前記第1、第2のコイル部は前記永久磁石が隙間を有して内部を摺動移動(スライド移動)可能な筒体に巻かれて、該筒体に対して前記永久磁石を前後動振動させるのが好ましい。
第4の発明に係る移動可能なカプセル装置の制御方法は、長尺のカプセル本体に、該カプセル本体に対して長さ方向に磁極の向きを合わせて永久磁石を固定配置し、該永久磁石に隙間を有してコイルを巻回し、該コイルに交流を流して前記コイルの前後動振動を行って、全体に推進力を発生させる移動可能なカプセル装置の制御方法において、
前記永久磁石は少なくとも2つの棒状磁石がその同一極を向かい合わせて配置され、前記コイルに流す交流の周波数を前記コイルの前後動振動の共振周波数に一致させ、かつ前記交流に直流を重畳して前記カプセル本体の移動方向を決める。
第3、第4の発明に係る移動可能なカプセル装置の制御方法において、前記カプセル本体内に、照明付きのマイクロカメラ、処置を行う機器、投薬機構、及び姿勢検知センサーのいずれか1又は2以上を備え、前記コイルをアンテナとして使用する無線機及びこれに接続される制御部によって制御されるのがよい。
第1、第2の発明に係る移動可能なカプセル装置、及び第3、第4の発明に係る移動可能なカプセル装置の制御方法においては、コイルに流す交流の周波数と、永久磁石又はコイルの前後動振動によって発生するカプセルの共振周波数とを一致させているので、流れる電流が減少すると共に、減少した電流で最大振幅の振動(ピストン運動)を得ることができる。従って、より少ない電力でカプセル装置の移動が可能となる。
特に、永久磁石を駆動するコイルを、永久磁石の前後に配置された第1、第2のコイル部に分割することによって、コイルに引力と斥力を発生させ、より効率的に低い電力で永久磁石又はコイルの振動を行うことができる。
更に、カプセル本体の長さ方向に渡って連続してコイルを巻く場合に比較して巻数を減少させて、発熱によるカプセル装置の温度上昇を防止することができる。
そして、コイルに流す交流に直流を重畳させると、一方側の加振力を他方側より強くすることができ、カプセル装置の一方向運動を加速することができる。この場合、回路は交流(矩形波も含む)を発生させる回路と直流を発生させる回路の組み合わせによって構成できるので、回路の簡略化にもなる。
本発明の第1の実施例に係る移動可能なカプセル装置の要部断面図である。 同移動可能なカプセル装置の動作を示す説明図である。 (A)~(C)はコイルに加える電圧の形成方法を示す説明図である。 アクチュエータ(コイル)の表面温度の変化を示すグラフである。 同移動可能なカプセル装置の電磁力と距離との関係を示すグラフである。 同移動可能なカプセル装置を更に発展させて実用化したカプセル装置の断面図である。 (A)、(B)は本発明の第2の実施例に係る移動可能なカプセル装置の要部断面図、(C)は同斜視図である。 同移動可能なカプセル装置の電気回路のブロック図である。 同移動可能なカプセル装置の動作フロー図である。
続いて、添付した図面を参照しながら、本発明を具体化した実施例について説明する。
図1に示すように、本発明の第1の実施例に係る移動可能なカプセル装置(以下、単に「カプセル装置」という)10は、断面円形で全長が断面の径より大きい長尺のカプセル本体11と、カプセル本体11に筒体12を介して設けられカプセル本体11に対して長さ方向に移動可能な可動子となる棒状の永久磁石13と、筒体12からなるボビンの両側(前後)に巻回されて、永久磁石13の周りを囲む形で設けられて、永久磁石13を駆動する第1、第2のコイル部15、16(コイルの一例)とを有している。以下、これらについて説明する。
永久磁石13としては、例えば直径Dが2.5~5mm程度(この実施例においては3mmを使用)、長さLが7~15mm(この実施例においては10mmを使用)のネオジウム磁石を使用しているが、強力な永久磁石であれば、他の材質のものを使用できる。なお、第1、第2のコイル部15、16の隙間Wは、好ましくは約10~20mm程度である。
第1、第2のコイル部15、16は、例えば、直径が0.05mmの導線を内径がD+0.1mmの筒体12(外径は例えば、D+1.1mm)にそれぞれ幅が2~4mm程度で50回ずつ巻いて構成される。第1、第2のコイル部15、16の隙間Wを永久磁石13の全長Lの0.8~1.2倍程度としている。なお、筒体12の内径と永久磁石13との間には径方向に合計して0.1mmの隙間が形成されているので、永久磁石13は筒体12内を抵抗なく移動できる。
この実施例では筒体12はアルミ製のパイプからなって、その両側には弾性部材(例えば、ゴム、プラスチック)又は金属からなるストッパー17、18が、(例えば、接着剤を介して)設けられ、内部に僅少の隙間を有して永久磁石13が所定距離(この実施例では約8mm)移動できる空間が形成されている。なお、以下に説明する実験に際しては、第1、第2のコイル部15、16が巻かれたボビン(筒体12)ごとカプセル本体11に入れて全体が外径約10mm、長さが約21mmのカプセル装置(単に、「振動モータ」と称することもある)10を使用した。実際に本発明を適用する製品においては、これらの寸法に限定されるものではなく、直径及び全長は用途に応じて変えることができる。また、カプセル本体11の端部は、半球状、レンズ形等、用途に応じて変えることが可能である。
実験においては、交流発生手段の一例として低周波発振器とアンプを用いた。低周波発振器(マルチファンクションジェネレータ)として株式会社エヌエフ回路設計ブロック製の「WF19739」を用い、波形を増幅するアンプとしては、株式会社高砂製作所の「BWA25-1」を用いた。これらは実験において、第1、第2のコイル部15、16に流す交流の周波数及び出力電圧を自由に変えることができるためのものである。
この振動モータを進行させるためには、第1、第2のコイル部15、16からなるコイルに、以上に説明したマルチファンクションジェネレータ及びアンプを用いて発生させた交流電力を供給し、第1、第2のコイル部15、16によって発生する電磁力によって内部の可動子(永久磁石13)を前後動振動させることになる。
この動作を図2を用いて説明する。静止状態の外殻(永久磁石13を除いた部分をいう)をM、永久磁石13をm1、m2で表わし、第1、第2のコイル15、16に一方向の電流を流すと、m1で示す永久磁石13がx1方向に移動し、外殻がx2方向にお互いに引き合うように移動する(ステップS1)。
そして、P1のところで、永久磁石13が外郭(実際はストッパー17)に衝突するが、永久磁石13の方が保有するエネルギーが大きいので、更に全体がx1の方向に引きずられて移動する(ステップS2)。
次に、P2の位置で第1、第2のコイル15、16に流れる電流の方向が切り替わる。これによって、永久磁石13はx2の方向に移動し、P3の位置で他方側のストッパー18(即ち、外殻)に衝突する(ステップS3)。なお、図2に示すステップS3、S4の永久磁石13は位置をm1からずらしてm2として表している。
そして、この後、永久磁石13の保有するエネルギーの方が大きいので、永久磁石13と外殻はそのまま引きずられて元位置又はその近くまで移動する(ステップS4)。
以上に挙げた4つの動作を繰り返すことで、ストッパー17、18、筒体12及びカプセル本体11を含む外殻に、可動子の慣性反力(即ち、コイルに発生する力)によって、可動子の移動方向とは逆方向に移動する力が発生すること、及び可動子がストッパー17、18に衝突して大きな衝撃力を発生し、これらの力が加わって、振動モータ(即ち、カプセル装置10)は移動を行うことになる。toは振動の1周期を示す。
このカプセル装置10においては、可動子の移動に関してコイルに外部から交流信号を与えると、可動子及びカプセル本体11を前後に繰り返し移動させることはできるが、可動子が同じ速度で前後運動を行うと、前後に同じ慣性反力や衝撃力が加わり、このカプセル装置10はその場で振動するだけで前又は後ろに移動することはできない。そこで、入力する交流信号のデューティ比(即ち、+側電流と-側電流の比)を変えることによって、コイルが作る磁界を変化させ、振動モータ内部の可動子の移動速度を一方向と他方向とで変化させる。これによって、振動モータ、即ち、このカプセル装置10を一方向に推進力を発生させて、前又は後ろ方向に移動可能とすることができる。
このような交流信号の生成方法としては、以上の説明した低周波発振器とアンプから発生した交流電流に直流バイアスを加えることによって簡単に得ることができる。振動モータの試験を行う場合は、この方法を用いて、容易に交流の周波数、出力電圧、バイアス電圧等の設定を行ったが、実機にあっては、周波数や出力電圧は変える必要がないので、図3(A)に示すように、所定周波数f、波高値hの正負対称な矩形波交流を作り、これに図3(B)に示すように直流(電圧b)を重畳して、図3(C)に示すように、一方向に電流量が多い交流(波高値h+b、h-b)を形成することができる。この場合の交流発生手段は、デジタル信号を用いて容易に形成できる。ここで、直流の極性(即ち、+-の方向)を変えることによって、このカプセル装置10の進行方向が決まる。
なお、第1、第2のコイル部15、16は直列に接続されているので、永久磁石13に対して一方向に他方向より強い力(加振力)を発揮し、結局は、カプセル装置10の移動をより速くすることができる。この場合、中央位置にある永久磁石13の両端位置に第1、第2のコイル部15、16の対向する内側端位置が配置されるのが好ましい。
次に、第1、第2のコイル部15、16のそれぞれの巻数を変えた場合の、コイルの温度上昇を調べた結果を図4に示す。
測定には非接触温度計を使用し、第1、第2のコイル部15、16の巻き数を150回巻×2と50回巻×2の試験用のカプセル装置を用いた。測定は、このカプセル装置に入力できる最大電力0.5[A]、3.3[V]で行った。+3.3[V]、-3.3[V]を40[Hz]で切り替え、アクチュエータ(コイル)の表面温度が均衡するまでの5分間の測定を行った。
測定時の気温は18[℃]であった。図4に示すように、150回巻×2(300回巻)の場合は5分後に63.3[℃]に到達し、50回巻×2(100回巻)の場合は5分後に44.6[℃]に到達した。ゆえに本発明では安全性を考え、温度上昇の小さい50回巻×2(100回巻)のコイルが最適であった。
続いて、このカプセル装置10の移動速度について検討した。以上のステップS1~S4の工程を経て振動する振動モータ(カプセル装置10)の移動速度Sは以下の式(1)によって算出することができる。ここで、a:振動モータの外郭の変位と永久磁石の変位との和、f1:ステップS1、S2での電磁力、f2:ステップS3、S4での電磁力、T:可動子がステップS1からステップS4までの動作が行われているパルス波形1周期分の時間、n:Mo/mを示す。ここで、mは永久磁石の質量、Moはカプセル装置の全体からmを引いた質量を示す。
Figure JPOXMLDOC01-appb-M000001
しかしながら、上記式(1)によって移動速度Sは、交流電流の周波数は一定であることの条件で算出されており、周波数が変われば挙動は変化する。実験では、周波数を数Hzから100Hz程度まで変化させて振動モータの走行を観察すると、最も速く移動できる周波数が存在することが確認できた。通常、バネと質量から構成される機械系では、固有振動数が存在し、共振時に最も振幅が大きくなる。
振動モータの電磁力の特性を図5に示すが、第1、第2のコイル部15、16に流す電流(直流)を変えて、第1、第2のコイル部15、16の中心と、永久磁石13の中心との距離(mm)と電磁力(N)の関係を示す。距離と電磁力との関係は比例するので、結局は電磁力/距離をバネ定数Kと近似できる。そこで、バネ定数の大きさとして、図5の1.5Vのグラフで、4mmの距離に対して0.04(N)という変化率とし、可動子質量20×0-4(0.2g)を用いて、単振動の固有振動数fを式(2)より求めると、35.6Hzとなり、実験によって求めた最適周波数(即ち、共振周波数)と一致する。但し、K:ばね定数、m:可動子質量を示す。
Figure JPOXMLDOC01-appb-M000002
なお、この共振周波数は、第1、第2のコイル部15、16に交流を流して、可動子を振動させた場合、第1、第2のコイル部15、16を通過する電流が最小となることから容易に検知できる。
なお、可動子が振動で往復する距離R(ストローク)が長いと、コイルに流す電流を増加させても、振動周波数が高い場合には、ストッパー17、18(即ち、外殻の壁)に達せず、衝突しないで往復運動を繰り返し、走行速度が遅くなることがある。そこで、ストッパー17、18にまで可動子が達するまでの限界の周波数を求め、それ以上の周波数で可動子を振動させないようにする。ストロークをR、周波数をfとすると、限界周波数は(f/2RM)で求まり、ストロークRを代入すると、限界周波数が456Hzとなる。従って、35.6Hzでは、可動子がストッパー17、18に達することが分かり、実験でも確認できた。
図6は装置全体を更に具体化したカプセル装置24を示すが、カプセル本体32の内部には、永久磁石13と第1、第2のコイル部15、16を有するアクチュエータ25、電池(電源)26、照明付きのマイクロカメラ28、図示しない処置を行う機器(例えば、細胞採取)、投薬機構、姿勢検知センサー29、これらの制御装置30及び外部制御装置との連携を行う無線機31とを有している。なお、照明付きのマイクロカメラ28、処置を行う機器、投薬機構、姿勢検知センサー29は周知の構造であるので、詳しい説明を省略する。
次に、図7(A)、(B)、(C)、図8、図9を参照しながら、本発明の第2の実施例に係る移動可能なカプセル装置(以下、単に「カプセル装置」という)35について説明する。前述したカプセル装置10においては、永久磁石13が振動しコイル(第1、第2のコイル部15、16)が固定であるが、このカプセル装置35においては、永久磁石39、40が固定でその周囲に配置されたコイル42が振動する。カプセル本体の内部に配置された振動体の反動によってカプセル本体が一方向に移動すること、及び振動に共振現象を使用することは共通している。
図7(A)、(B)に示すように、カプセル装置35は長尺のカプセル本体36と、カプセル本体36内に支持部材37、38を介して配置された円柱状の永久磁石39、40と、永久磁石39、40を中心としてその外側に摺動移動可能に配置された筒体の一例であるボビン41と、ボビン41に均等巻きされたコイル42とを有する。ここで、永久磁石39、40はカプセル本体36の軸心にあって、カプセル本体36の長さ方向に磁極の向きを合わせて配置されている。
カプセル本体36の直径は4~10mm、長さは端端間で12~20mm程度であるのが好ましい。カプセル本体36の材質は人体、特に内臓に対して無害な材料、例えば、プラスチック(アクリル、ポリカーボネイト、ポリプロピレン等)、金属(アルミニウム、チタン等)であるのが好ましい。カプセル本体36は円筒部36aとその両側にねじ取付けされる半球状の蓋部36b、36cを有している。
支持部材37、38は直径βが例えば4~8mm程度の円板状のプラスチックからなって、カプセル本体36の円筒部36aの内側に固定されている。永久磁石39、40の合計長さαは、例えば10~15mm程度である。
カプセル本体36の軸心でかつ前後方向中央位置に配置されている永久磁石39、40は同一寸法の2本のネオジウム磁石からなる棒状磁石を、同一の極性(N極又はS極)を向かい合わせて配置されている。この実施例においては、同一極性の永久磁石39、40の端部を向かい合わせて接着剤によって接合し、一本化している。
ボビン41は、非磁性材料(例えば、プラスチック、アルミニュウム)からなって、円筒部44とその両側に配置されたフランジ45、46とを有し、円筒部44の内径は永久磁石39、40の直径より大きくなっているが、フランジ45、46の中央孔47a、47bは永久磁石39、40の外径より僅少の範囲(例えば、0.05~0.2mm)程度大きくなって、ボビン41はその両側を永久磁石39、40によって仮支持された状態で永久磁石39、40に対して前後にスライド移動可能となっている。
ボビン41には前後方向に対称にコイル42が巻かれ、コイル42の両端部はボビン41の端部に固定され、両端部の銅線が余裕を持って(例えば、カール部を有して)、カプセル本体36の内側に固定された制御部48に接続されている。なお、コイル42には細いエナメル線が使用され、その巻き数は50~100回程度であり、単層巻きでも複層巻きでもよい。コイル42は両側に巻線端部となるカール部を有して、カプセル本体36の中間部に配置されているが、両側に弾性部材を設けるか、又は磁気吸着体をボビンの中央に設けることによって、コイル42の位置を決めることができる。
カプセル本体36の一方側には、照明付きのマイクロカメラ50が、その両側には処置を行う機器(例えば、カッター、細胞採取器)51と投薬機構52が設けられ、カプセル本体36の他方側には電池53の収納部54が設けられている。
図7(A)~(C)、図8に示すように、制御部48は、板状の基板48a、48bに設けられ、RAM、ROMを備えたMPU55と、マイクロカメラ50に接続される画像送信回路56と、マイクロカメラ50の照明用LED57と、第1、第2の出力部59、60とを備えている。
また、カプセル本体36には姿勢検知センサー61が設けられ、カプセル本体36の向きと、軸心に対する回転角度を検知し検知された信号を、画像送信回路56に送って、画像信号と共に、外部に送っている。これによって、マイクロカメラ50の撮影方向、円周方向の角度を外部から認識できる。
なお、この姿勢検知センサー61はこの発明において、必須の要件ではなく、身体内部にあるカプセル装置35(10においても同じ)の向きは外部に配置されたセンサー、例えば、超音波センサー、電波センサー、X線装置によって検知できる。
また、基板48a、48bには制御部48とは別に(同一であってもよい)、無線信号受信回路(無線機の一例)61aが設けられ、外部にある無線信号送信装置(即ち、外部制御装置、又はコントローラ)64から無線による信号を受信し、制御部48を作動できるようになっている。なお、無線信号受信回路61aのアンテナとして、コイル42が使用されている。ここで、画像送信回路56には独立したアンテナ62が設けられているが、このコイル42を使用してもよい。なお、無線信号受信回路61aは無線信号によって制御部48に連結されている。
第1の出力部59は、投薬機構52を作動させるためのアンプで、MPU55からの信号を増幅して、投薬機構52をオン(開)又はオフ(閉)させている。
第2の出力部60は、図3(A)に示すように、MPU55から得た交流信号に、図3(B)に示すように直流バイアスを重畳して、図3(C)に示すように、デューティ比(プラス側の信号とマイナス側の信号の比率)の異なる出力を得ている。これによって、コイル42の信号を一方向に偏らせ、カプセル装置35の進行方向を決めている。デューティ比は、例えば1.1~1.4程度が好ましい。カプセル装置35の前進と後退の切り換えは、重畳する直流バイパスの方向を変えることによって行う。なお、MPU55と第2の出力部60が交流発生手段として動作する。
コイル42に交流を流すと、永久磁石39、40は固定であるので、通常のスピーカと同様、コイル42が永久磁石39、40に沿って前後動振動する。共振周波数は、周波数を変えてコイル42に交流を流した電流の最小値によって決定される。MPU55を操作して発信周波数を変えることもできるが、予め実験を行い、コイル42の前後動振動の共振周波数を測定し、その周波数に合わせてMPU55から第2の出力部60に信号を送るのがよい。第2の出力部60は内部にアンプを有し、MPU55からの微弱信号を所定の大きさに増幅する。
この実施例では、ディーティ比の調整は重ね合わせる直流の電流(又は、電圧)を制御して行ったが、波形のオンとオフの時間差を変えて行うこともできる
図9には、カプセル装置35の動作フローを示すが、外部の無線信号送信装置64からの電波をアンテナとして作動するコイル42で受信し、無線信号受信回路61aに送り、デジタル信号化して、制御部48に送る。制御部48では無線信号に含まれるコマンドを識別する(ステップS1)。このコマンドには、「前進」、「後退」、「投薬」、「カメラ」があり、「前進」の場合は第2の出力部60から正方向に直流が重畳された交流電流がコイル42に流れ、カプセル装置35は前進する。「後退」の場合は直流電流が負方向に重畳された交流をコイル42に流すことになる。
「投薬」のコマンドを受けた場合には、第1の出力部59に信号を与えて、投薬機構52を作動させる。また、「カメラ」のコマンドを受けた場合、照明用LED57をオンにしマイクロカメラ50を作動させる。マイクロカメラ50からの受信信号は画像送信回路56、アンテナ62を介して外部に出力される。外部では図示しない画像受信装置を有し、マイクロカメラ50で撮像された画像が逐次記録され、かつ出力される(以上、ステップS2~S5)。以上の動作は指定時間で終了し、スタートに戻って無線信号を待ち受ける(ステップS6)。
なお、カプセル装置35の移動速度については、カプセル装置10と同様に推定できる。本発明は本発明の要旨を変更しない範囲で自由にその構成を変更できる。
例えば、第1の実施例に係るカプセル装置10においては、筒体に対して第1、第2のコイル部を対称に配置したが、一方のコイル部を後方又は前方にずらして配置することもできる。また、場合によっては、第1、第2のコイル部を並列に接続することも、第1、第2のコイル部の巻数を変えることもできる。また、前記した実施例においては、具体的数字を用いて説明したが、本発明の要旨を変更しない範囲で変えることもできる。
第2の実施例に係るカプセル装置35においては、2つ永久磁石を使用したが、1つ、又は3つ以上の永久磁石を使用することもでき、更に複数の永久磁石の長さを同一にすることもできるし、変えることもできる。また、第2の実施例に係るカプセル装置35においては、コイル42は一つであったが、前後方向に離れて2分割して、第1、第2のコイル部とすることもできる。
なお、第1、第2の実施例においては、カプセル本体の内部は大気圧と同じであるが、減圧することもでき、これによって、より永久磁石又はコイルの動きがよくなる。
また、第1の実施例に係るカプセル装置10の一部を第2の実施例に係るカプセル装置35に適用する場合、第2の実施例に係るカプセル装置35の一部を第1の実施例に係るカプセル装置10に使用する場合も本発明は適用される。
本発明に係るカプセル装置を用いて、消化管内を走行し、検査、治療に用いる消化管内走行カプセルができる。また、自然に流す場合に比較して、カプセル装置が自力移動ができるので、消化管内を傷つけずに走行し、目的の観察治療場所へ短時間で達することができる。また、無線で外部と連絡を取りながら、消化管内の診断を行うための細胞採取にも活用できる。
10:移動可能なカプセル装置、11:カプセル本体、12:筒体、13:永久磁石、15:第1のコイル部、16:第2のコイル部、17、18:ストッパー、24:カプセル装置、25:アクチュエータ、26:電池、28:マイクロカメラ、29:姿勢検知センサー、30:制御装置、31:無線機、32:カプセル本体、35:移動可能なカプセル装置、36:カプセル本体、36a:円筒部、36b、36c:蓋部、37、38:支持部材、39、40:永久磁石、41:ボビン、42:コイル、44:円筒部、45、46:フランジ、47a、47b:中央孔、48:制御部、48a、48b:基板、50:マイクロカメラ、51:処置を行う機器、52:投薬機構、53:電池、54:収納部、55:MPU、56:画像送信回路、57:照明用LED、59:第1の出力部、60:第2の出力部、61:姿勢検知センサー、61a:無線信号受信回路、62:アンテナ、64:無線信号送信装置

Claims (16)

  1. 長尺のカプセル本体に、該カプセル本体に対して長さ方向に移動可能に設けられた永久磁石と、該永久磁石を駆動するコイルとを設け、該コイルに交流発生手段から交流を流し前記永久磁石の前後動振動を行って全体に推進力を発生させる移動可能なカプセル装置において、
    前記コイルは前記永久磁石の周りを囲む形で前後に設けられた第1、第2のコイル部を有し、かつ、前記第1、第2のコイル部に流す交流の周波数を、前記永久磁石の前後動振動によって発生する該カプセル装置の共振周波数に一致させることを特徴とする移動可能なカプセル装置。
  2. 請求項1記載の移動可能なカプセル装置において、前記第1、第2のコイル部は内部を前記永久磁石が僅少の隙間を有して移動可能な筒体に巻回され、前記筒体の両側にはストッパーが設けられ、前記永久磁石は前記ストッパーに衝突しながら振動していることを特徴とする移動可能なカプセル装置。
  3. 請求項1又は2記載の移動可能なカプセル装置において、前記交流発生手段によって発生する交流は、正負対称な交流に更に直流を加えたものからなり、前記第1、第2のコイル部と前記永久磁石によって発生する加振力を一方向に増強し、前記直流の極性によって該カプセル装置の進行方向を決めていることを特徴とする移動可能なカプセル装置。
  4. 請求項1~3のいずれか1記載の移動可能なカプセル装置において、前記第1、第2のコイル部に流す交流は、実際に前記第1、第2のコイル部に交流を流して、その電流値が最小となる値に基づいて決定されていることを特徴とする移動可能なカプセル装置。
  5. 長尺のカプセル本体に、該カプセル本体に対して長さ方向に磁極の向きを合わせて配置された永久磁石と、該永久磁石に隙間を有して巻回され、交流発生手段から交流の電力供給を受けるコイルとを有する移動可能なカプセル装置において、
    前記永久磁石は少なくとも2つの棒状磁石がその同一極を向かい合わせて配置され、前記交流の周波数を、前記コイルの前後動振動の共振周波数と一致させたことを特徴とする移動可能なカプセル装置。
  6. 請求項5記載の移動可能なカプセル装置において、前記コイルに流す交流は、実際に前記コイルに交流を流して、その電流値が最小となる値に基づいて決定されていることを特徴とする移動可能なカプセル装置。
  7. 請求項5又は6記載の移動可能なカプセル装置において、前記コイルは前記棒状磁石に対してスライド移動可能な筒体に巻回されていることを特徴とする移動可能なカプセル装置。
  8. 請求項7記載の移動可能なカプセル装置においては、前記コイルは前記筒体に離れて配置された第1、第2のコイル部を有することを特徴とする移動可能なカプセル装置。
  9. 請求項5~8のいずれか1記載の移動可能なカプセル装置において、前記交流発生手段によって発生する交流は、正負対称な交流に更に直流を加えたものからなり、前記コイルと前記永久磁石によって発生する加振力を一方向に増強し、前記直流の極性によって該カプセル装置の進行方向を決めていることを特徴とする移動可能なカプセル装置。
  10. 請求項1~9のいずれか1記載の移動可能なカプセル装置において、前記カプセル本体には外部制御装置との連携を行う無線機が設けられていることを特徴とする移動可能なカプセル装置。
  11. 請求項10記載の移動可能なカプセル装置において、前記無線機のアンテナとして前記コイルが使用されていることを特徴とことを特徴とする移動可能なカプセル装置。
  12. 請求項1~11のいずれか1記載の移動可能なカプセル装置において、前記カプセル本体には、照明付きのマイクロカメラ、処置を行う機器、投薬機構、及び姿勢検知センサーのいずれか1又は2以上を備えていることを特徴とする移動可能なカプセル装置
  13. 長尺のカプセル本体に、該カプセル本体に対して長さ方向に移動可能な永久磁石と、該永久磁石を駆動するコイルとを設け、該コイルに交流を流し前記永久磁石の前後動振動を行って全体に推進力を発生させる移動可能なカプセル装置の制御方法であって、
    前記コイルに流す交流の周波数と、前記永久磁石の前後動振動の共振周波数を一致させ、かつ前記交流に直流を重畳して前記カプセル本体の移動方向を決めることを特徴とする移動可能なカプセル装置の制御方法。
  14. 請求項13記載の移動可能なカプセル装置の制御方法において、前記コイルを前記永久磁石の前後にそれぞれ配置された第1、第2のコイル部に分割し、かつ前記第1、第2のコイル部は前記永久磁石が隙間を有して内部を摺動移動可能な筒体に巻かれて、該筒体に対して前記永久磁石を前後動振動させることを特徴とする移動可能なカプセル装置の制御方法。
  15. 長尺のカプセル本体に、該カプセル本体に対して長さ方向に磁極の向きを合わせて永久磁石を固定配置し、該永久磁石に隙間を有してコイルを巻回し、該コイルに交流を流して前記コイルの前後動振動を行って、全体に推進力を発生させる移動可能なカプセル装置の制御方法において、
    前記永久磁石は少なくとも2つの棒状磁石がその同一極を向かい合わせて配置され、前記コイルに流す交流の周波数を前記コイルの前後動振動の共振周波数に一致させ、かつ前記交流に直流を重畳して前記カプセル本体の移動方向を決めることを特徴とする移動可能なカプセル装置の制御方法。
  16. 請求項13~15のいずれか1記載の移動可能なカプセル装置の制御方法において、前記カプセル本体内に、照明付きのマイクロカメラ、処置を行う機器、投薬機構、及び姿勢検知センサーのいずれか1又は2以上を備え、前記コイルをアンテナとして使用する無線機及びこれに接続される制御部によって制御されることを特徴とする移動可能なカプセル装置の制御方法。
PCT/JP2013/069536 2012-07-20 2013-07-18 移動可能なカプセル装置及びその制御方法 WO2014014062A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380004596.6A CN104023631B (zh) 2012-07-20 2013-07-18 可移动的胶囊装置
EP13820643.8A EP2792299B1 (en) 2012-07-20 2013-07-18 Movable capsule device
US14/371,493 US10715021B2 (en) 2012-07-20 2013-07-18 Mobile capsule device and control method thereof
JP2014525867A JP6358750B2 (ja) 2012-07-20 2013-07-18 移動可能な消化管内走行カプセル装置
IL233623A IL233623A0 (en) 2012-07-20 2014-07-13 Portable capsule device and method for controlling it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-161209 2012-07-20
JP2012161209 2012-07-20

Publications (1)

Publication Number Publication Date
WO2014014062A1 true WO2014014062A1 (ja) 2014-01-23

Family

ID=49948884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069536 WO2014014062A1 (ja) 2012-07-20 2013-07-18 移動可能なカプセル装置及びその制御方法

Country Status (6)

Country Link
US (1) US10715021B2 (ja)
EP (1) EP2792299B1 (ja)
JP (1) JP6358750B2 (ja)
CN (1) CN104023631B (ja)
IL (1) IL233623A0 (ja)
WO (1) WO2014014062A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098818A1 (ja) * 2014-12-18 2016-06-23 株式会社パイオラックス カプセル内視鏡及びカプセル内視鏡検査方法並びにカプセル内視鏡検査装置
US11450489B2 (en) 2015-12-14 2022-09-20 Kyushu Institute Of Technology Small electronic device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689381B2 (en) * 2012-12-26 2017-06-27 Yanir NULMAN Method and apparatus for recovery of parasitic energy losses
WO2016189724A1 (ja) * 2015-05-28 2016-12-01 オリンパス株式会社 可撓管挿入装置
CN105380777B (zh) * 2015-12-08 2017-10-27 上海交通大学 胃肠道微型无线振动胶囊
CN105362055B (zh) * 2015-12-15 2017-10-03 上海交通大学 基于无线供能的振动胶囊系统
US10500127B2 (en) * 2016-04-18 2019-12-10 Ankon Medical Technologies (Shanghai) Co., Ltd. Vivo device and method of using the same
US10478373B2 (en) * 2016-04-18 2019-11-19 Ankon Medical Technologies (Shanghai) Co., Ltd In vivo device and method of using the same
CN106109022B (zh) * 2016-07-21 2018-11-02 青岛市市立医院 一种新型消化道病变内镜定位装置
CN106667422A (zh) * 2016-08-04 2017-05-17 北京千安哲信息技术有限公司 胶囊内窥镜及其控制装置、系统和检测方法
EP3520208A4 (en) * 2016-09-28 2020-05-13 1543803 Ontario Ltd. INDUCTION POWERED DEVICE, POWER TOOL ACCESSORY, AND POWER TOOL INCLUDING SAME
JP6750185B2 (ja) * 2016-11-22 2020-09-02 株式会社パイオラックス 発光型カプセル治療具
CN109864876A (zh) * 2019-01-03 2019-06-11 歌尔股份有限公司 一种自适应调整振动频率的电路、甩脂机及控制方法
CN109770834A (zh) * 2019-01-12 2019-05-21 中北大学 一种用于小肠无创诊查的冲击驱动式胶囊机器人机构
US10855159B1 (en) * 2020-02-27 2020-12-01 John Sabah Gewarges Coil regeneration device and method of use
GB202014594D0 (en) * 2020-09-16 2020-10-28 Univ London Queen Mary Locomotion system for a medical device
CN112968532B (zh) * 2021-02-05 2022-09-27 浙江大学台州研究院 基于磁共振耦合的无线磁阻执行器
CN112890743B (zh) * 2021-03-04 2021-09-24 山东大学齐鲁医院 一种胶囊内窥镜磁吸式采样装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176443A (ja) 1990-11-09 1992-06-24 Olympus Optical Co Ltd 医療用カプセル
JPH05212093A (ja) 1992-02-07 1993-08-24 Olympus Optical Co Ltd 自動走行カプセル装置
JPH06133925A (ja) * 1992-10-23 1994-05-17 Olympus Optical Co Ltd 生体内挿入具誘導装置
JP2003265404A (ja) * 2002-03-15 2003-09-24 Pentax Corp 内視鏡挿入補助装置及び内視鏡
JP2006280638A (ja) 2005-03-31 2006-10-19 Toin Gakuen 走行カプセル
JP2006305695A (ja) * 2005-04-28 2006-11-09 Tokyo Denki Univ 外側に可動部を持たない小型ロボット
JP2013111255A (ja) * 2011-11-29 2013-06-10 Nagoya Univ 自走式カプセル内視鏡

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406153A (en) * 1992-06-19 1995-04-11 Iowa State University Research Foundation, Inc. Magnetostrictive vibration generation system
JP3879413B2 (ja) * 2001-02-28 2007-02-14 株式会社日立製作所 搬送システム及び回転電機
US6639496B1 (en) * 2001-04-25 2003-10-28 Van Namen Frederik T. Bistable long-stroke electro-magnetic mechanical actuator
JP2003265403A (ja) * 2002-03-15 2003-09-24 Pentax Corp 内視鏡挿入補助装置及び内視鏡装置
JP2004050154A (ja) 2002-07-24 2004-02-19 Fdk Corp 振動発生装置
US7218018B2 (en) * 2002-11-26 2007-05-15 Matsushita Electric Works, Ltd. Actuator
US7751866B2 (en) * 2004-03-08 2010-07-06 Olympus Corporation Detecting system of position and posture of capsule medical device
JP5030392B2 (ja) 2004-06-14 2012-09-19 オリンパス株式会社 医療装置の位置検出システムおよび医療装置誘導システム
CN100469310C (zh) * 2004-06-14 2009-03-18 奥林巴斯株式会社 用于医疗器件的位置检测系统和医疗器件引导系统
EP1927314B1 (en) * 2005-09-22 2011-11-30 Olympus Corporation Receiver
JP4823665B2 (ja) * 2005-12-02 2011-11-24 オリンパスメディカルシステムズ株式会社 カプセル型医療装置およびその誘導システム
US20090281387A1 (en) * 2005-10-05 2009-11-12 Olympus Medical Systems Corp. Capsule-type medical apparatus, guidance system and guidance method therefor, and intrasubject insertion apparatus
AU2007241839B2 (en) * 2006-04-21 2011-03-31 Olympus Medical Systems Corp. Medical device guiding system and its position correcting method
WO2008105393A1 (ja) * 2007-02-26 2008-09-04 Olympus Medical Systems Corp. 磁気アクチュエータ、磁気アクチュエータの動作方法、およびこれを用いたカプセル型内視鏡
CA2709954C (en) * 2007-12-19 2016-05-24 Patrick Headstrom Magnetic spring system for use in a resonant motor
US20120061893A1 (en) * 2010-08-11 2012-03-15 Hochberg David J Kinetic energy management system
CN102427758B (zh) * 2009-05-15 2015-01-07 皇家飞利浦电子股份有限公司 具有反馈校正的光学探头
JPWO2011040265A1 (ja) * 2009-09-29 2013-02-28 ブラザー工業株式会社 振動発電機
JP2011183374A (ja) * 2010-02-10 2011-09-22 Sanyo Electric Co Ltd 電子機器
JP2012034561A (ja) 2010-04-21 2012-02-16 Sanyo Electric Co Ltd 振動デバイスおよび振動デバイスを備える電子機器
JP5811719B2 (ja) * 2011-09-14 2015-11-11 スミダコーポレーション株式会社 振動発電機
US20130137921A1 (en) * 2011-11-28 2013-05-30 Industrial Technology Research Institute Propelling system and capsule applying the same
US9375202B2 (en) * 2012-05-04 2016-06-28 Given Imaging Ltd. Device and method for in vivo cytology acquisition
US9570955B2 (en) * 2013-03-14 2017-02-14 Nike, Inc. Overmold protection for vibration motor
WO2016098818A1 (ja) * 2014-12-18 2016-06-23 株式会社パイオラックス カプセル内視鏡及びカプセル内視鏡検査方法並びにカプセル内視鏡検査装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176443A (ja) 1990-11-09 1992-06-24 Olympus Optical Co Ltd 医療用カプセル
JPH05212093A (ja) 1992-02-07 1993-08-24 Olympus Optical Co Ltd 自動走行カプセル装置
JPH06133925A (ja) * 1992-10-23 1994-05-17 Olympus Optical Co Ltd 生体内挿入具誘導装置
JP2003265404A (ja) * 2002-03-15 2003-09-24 Pentax Corp 内視鏡挿入補助装置及び内視鏡
JP2006280638A (ja) 2005-03-31 2006-10-19 Toin Gakuen 走行カプセル
JP2006305695A (ja) * 2005-04-28 2006-11-09 Tokyo Denki Univ 外側に可動部を持たない小型ロボット
JP2013111255A (ja) * 2011-11-29 2013-06-10 Nagoya Univ 自走式カプセル内視鏡

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MITSUKUNI MIZUNO ET AL.: "Development of Capsule Endoscope Self-propelled by Linear Motor Mechanism", THE JAPANESE JOURNAL OF MEDICAL INSTRUMENTATION, vol. 81, no. 3, 1 June 2011 (2011-06-01), pages 181 - 187, XP008174206 *
See also references of EP2792299A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098818A1 (ja) * 2014-12-18 2016-06-23 株式会社パイオラックス カプセル内視鏡及びカプセル内視鏡検査方法並びにカプセル内視鏡検査装置
JPWO2016098818A1 (ja) * 2014-12-18 2017-10-26 株式会社パイオラックス カプセル内視鏡及びカプセル内視鏡検査方法並びにカプセル内視鏡検査装置
US11450489B2 (en) 2015-12-14 2022-09-20 Kyushu Institute Of Technology Small electronic device

Also Published As

Publication number Publication date
JPWO2014014062A1 (ja) 2016-07-07
CN104023631B (zh) 2016-03-30
CN104023631A (zh) 2014-09-03
IL233623A0 (en) 2014-08-31
US10715021B2 (en) 2020-07-14
US20140378760A1 (en) 2014-12-25
EP2792299B1 (en) 2018-09-26
EP2792299A1 (en) 2014-10-22
EP2792299A4 (en) 2015-10-14
JP6358750B2 (ja) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6358750B2 (ja) 移動可能な消化管内走行カプセル装置
JP6161623B2 (ja) 電気エネルギーと機械エネルギーとの間で変換を行う方法及び装置
JP2011166894A (ja) 振動発電機
JP2004181304A (ja) 振動発生装置
JP2009100523A (ja) 永久磁石素子並びに振動発電機および加速度センサ
JP2010125263A (ja) 電動歯ブラシ
CN109564818B (zh) 磁场控制系统
US10615677B2 (en) Actuator, air pump, beauty treatment device, and laser scanning device
US20090043231A1 (en) Electromagnetic device, method and apparatus for selective application to vertebrates
US9373994B2 (en) Energy conversion apparatus with tuned circuit
WO2015174303A1 (ja) 回転動力生成装置および発電装置
JP2016045595A5 (ja)
JP6375500B2 (ja) 回転動力生成装置および発電装置
JP2015154681A (ja) 発電装置及び方法並びに電子機器
KR20220046250A (ko) 하이브리드식 에너지 하베스터
JP2009130988A (ja) 磁歪式多軸駆動アクチュエータ
JP6146473B2 (ja) 発電デバイス及びセンサシステム
US9000689B2 (en) Energy conversion apparatus
JP6853542B2 (ja) 揺動モータに使用される制御方法および揺動モータ
JP5692768B1 (ja) 回転動力生成装置および発電装置
Lee et al. Vimbot: Design and control of a new magnet robot actuated by an external vibrating magnetic field
WO2021167532A1 (en) An energy harvester and method of harvesting energy
JP6667176B2 (ja) カプセル型内視鏡の誘導装置
JP2010178484A (ja) リニア式電磁駆動装置
US20160308421A1 (en) Signals and systems for controlling an electromagnetic piston for a vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380004596.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014525867

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14371493

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 233623

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2013820643

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE